Influence of seasonality on Salmonella concentration and dynamics in Khartoum wastewater stabilization station

Ayman A. Elshayeb
University of Khartoum, ayman_elshayeb@yahoo.com

Abdelazim A. Ahmed
University of Khartoum

Adil A. EL-Hussien

Follow this and additional works at: https://scholarsarchive.byu.edu/openwater

BYU ScholarsArchive Citation
Available at: https://scholarsarchive.byu.edu/openwater/vol3/iss1/21

This Article is brought to you for free and open access by the All Journals at BYU ScholarsArchive. It has been accepted for inclusion in Open Water Journal by an authorized editor of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Influence of seasonality on Salmonella concentration and dynamics in Khartoum wastewater stabilization station

Ayman A. Elshayeb, Abdelazim A. Ahmed and Adil A. EL-Hussien

University of Khartoum, Faculty of Science, Department of Botany

Corresponding address:
University of Khartoum, Faculty of Science, Department of Botany,
Zip Code:11115,
Khartoum - Sudan
✉: ayman_elshayeb@yahoo.com

Abstract:
Introduction: Seasonal weather variables are universal and can obviously affect different Salmonella sp populations’ dynamics in wastewater influencing their fluctuations.
Objectives: This work was conducted to create a predictive mathematical model for Salmonella spread, distribution and outbreak in local wastewater resources with understanding the mechanisms and impacts of seasonal environmental drivers.
Methods: Empirical models were developed to solve several biologically distinct mechanisms of Salmonella sp by which seasonality can impact their interactions, including seasonal changes in replication, distribution and mortality rates.
Results: Mathematical models and field observations show that the strength and mechanisms of seasonality can alter the spread and persistence of Salmonella sp, and that population-level responses can range from simple annual cycles to more complex multiyear fluctuations. From an applied perspective, understanding the timing and causes of seasonality offers important insights into how microbial populations interact, how and when Salmonella sp control measures should be applied, and how Salmonella different diseases and risks will respond to anthropogenic climate change and altered patterns of seasonality.
Conclusion: Finally, by focusing on well-studied examples of this infectious disease, we hope to highlight general insights that are relevant to other ecological interactions between microorganisms’ natural phenomena and variations in climate changes.