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abstract

The Target Model for Genealogical Networks

Kolton Baldwin
Department of Mathematics, BYU

Master of Science

Several large-scale projects including FamilySearch, Ancestry, BALSAC (University of
Quebec), and others have gathered incredible amounts of genealogical data ranging from
millions to billions of individuals. To study the structure of this data, we propose a model
that generates a genealogical network based on real-world genealogical data using two key
features: (i) geodesic distance between couples prior to union and (ii) the number of chil-
dren per couple. The distribution of the distance to a couples’ nearest common ancestor
in an observed community captures the global scale at which biological cycles form in the
underlying genealogical network. Similarly, the number of children per couple captures the
local structure given by the degree distribution in the genealogical network. Constructing
imitation data which approximates a real-world network’s structure and growth rate is desir-
able for use in generalizable machine learning models. This model, which we refer to as the
Target Model, provides a foundation for further work in predicting family network growth
and structure.
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Chapter 1. Introduction

Genealogical research has grown from a dusty, closeted pass time to a big, multifaceted

business. Genealogical data that was once transcribed and painstakingly recorded by hand

has transformed into a booming digital industry. Domestically, the genealogy industry is

valued at more than $8.5 billion (USD) and is expected to double in value in less than

seven years [FutureWise report HC-1137]. While genealogical research in its own rights has

been lauded as the “second most popular hobby in the U.S. after gardening,” the industry

includes far more than tracing pedigrees [1]. Some of the growth in genealogical interest is

the increasing availability of genealogical data and some may be attributed to developments

in technology. Consider the sheer size of FamilySearch’s family tree. As of early 2023, its

network spans more than 1.5 billion individuals. The FamilySearch digital record collection

contains information for an additional twelve billion individuals whose marriage and family

relationships have not yet been entered into their massive genealogical network [2]. Such

diverse industries as medicine and economics have seen new horizons unfold when examining

their respective disciplines through a family history lens [3, 4]. Many of these developments

include the various applications of consumer genomics [4].

While several genealogical software companies have implemented data structures for users

to record their research, such record-keeping structures are tools only. Other technological

innovations reach beyond record keeping to investigate the actual structuring of genealogical

networks. Some of these attempts have been made at automatically reconciling and joining

disparate genealogical datasets [5] and some efforts have been made to automatically form

genealogical networks from digitized documentation [6]. Of note, are studies concerning a

search for a population’s most recent common ancestor [7].

This thesis proposes that a genealogical network’s structure is dominated by two features.

First, how closely partners are related before union (e.g. marriage) and second, how many

children each household has. To justify this, we construct a model that creates artificial
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networks which mimic the structure of a real-world genealogical network. We then show

that our modeled networks approximate both features of the real network.

The structure of this thesis is as follows. In Chapter 2, we describe the relationship

between family networks and genealogical networks. In Chapter 3, we describe the main

characteristics of genealogical networks and introduce the (i) distance to union and (ii) chil-

dren per household distributions as characteristic and descriptive of a genealogical dataset.

In Chapter 4, we introduce the Target Model for generating networks which approximate a

given genealogical network using (i) and (ii). In Chapter 5, we propose a simplified variant of

the Target Model which reduces the size of the networks produced but often at the expense

of losing accuracy in recapturing global network structure. In Chapter 6, we discuss the

advantages and disadvantages of each variation of the Target Model and we explain how

differences in measuring technique affect the accuracy of the model.

Chapter 2. Family Networks and Genealog-

ical Networks

Genealogical and family networks are similar but have important differences. Foremost, a

genealogical network is a subset of a family network. While both types of networks trace

familial relationships and have at least a relative temporal orientation, i.e. families grow as

parents have children, but not as children have parents, genealogical and family networks

differ in their scope and level of precision. A family network represents a complete set of

connections—including extended family members, all births, and all unions—regardless of

whether or not such connections were accurately or ever recorded. Additionally, a genealog-

ical network is a curated collection of real-world family data which contains some of—but

not necessarily all of—the information that the underlying ground-truth family network con-

tains. For example, American genealogists may find that children who were born and died

between sequential U.S. Censuses (held every ten years in the U.S.) are more easily missed

in their research. Such a child would be represented in the ground-truth family network—he

2



or she really was born to their parents—but such a child may conceivably not be represented

in an imperfectly-curated genealogical network.

We focus on genealogical networks, not only as a matter of feasibility, but as a necessary

stepping stone to understanding the connections between genealogical networks and their

underlying family networks. We show that the local and global structures of genealogical

networks are largely determined by (i) the distribution of how closely partners are related and

(ii) the distribution of the number of children per household. We hope that this model will

eventually provide a way to understand and to measure the current and future completeness

of our collective genealogical data.

A genealogical network has an underlying graph structure and can be represented by a

graph G = (V,E) which is comprised of a set of vertices V = {1, 2, ..., n} which represent

individuals and a set of edges E which represent familial relationships between these individ-

uals. The relationship between vertices i and j is represented by an arc connecting i and j

with edge eij = eji ∈ E from i to j. Notably these edges are of two types. An edge either rep-

resents a union between two vertices or else it represents a parent-child relationship. The set

of all unions is represented by Eu and the set of all parent-child relationships is represented

by Epc. No edge represents both a union and a parent-child relationship simultaneously, so

that the set of edges is the disjoint union E = Epc ∪ Eu. Both |V | < ∞ and |E| < ∞, but

vertices are not restricted in the number of edges they are connected to and a vertex may

be connected to both union- and parent-child-type edges. Union edges are undirected and

are unweighted. Parent-child edges are likewise unweighted but are directed from parent

to child. To find a genealogical network’s (i) distance to union distribution we search for

two vertices’ nearest common ancestor making careful use of this directed relation. Given a

pair of vertices, their nearest common ancestor is the most-recent direct-line ancestor from

which a path of parent-child edges may be followed to each of the two vertices. This nearest

common ancestor has a biological path of parent-child edges to each of these two vertices and

the combined length of these paths is not more than the combined path lengths from any
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other common ancestor to each vertex in the pair. Parent-child edges allow travel forward

in time but not backward as parent-child edges begin at a parent vertex and end at a child

vertex.

The term union edge will describe any relationship which could result in children—

including adopted children. For instance, union edges include marriages, but are not re-

stricted thereto. If a person has married more than once, then they will have more than one

union edge connected to them. Each union edge and its connected vertices will be treated

separately as their own household. A household is comprised of exactly one union edge,

both partners joined by that edge, and all children connected by a parent-child edge to

either parent.

Chapter 3. Model Parameters and Outline

We propose the Target Model as a model of genealogical networks which approximates the

structure and characteristics of a specific real-world genealogical network. Given a target

real-world genealogical network G = (V,E), we measure both the size and the interconnect-

edness of its individuals. As mentioned in the previous two chapters, we form probability

distributions of two specific quantities: (i) the distance to nearest common ancestor per

union PU(x) and (ii) the number of children per household PC(x). The distribution of

children essentially dictates the network’s degree distribution and so accounts for the local

structure of the network. However, the distance to union distribution gives only a coarse-

grained view of the global structure of the network. That is, two very different networks

can share the same distance to union distribution. We use these probability distributions

to create a network which approximates the original or target real-world network in its size,

distribution of the number of children, and distance to union distribution. Whether or not

these two distributions together constitute sufficient information to meaningfully recreate a

genealogical network’s structure is one of the main questions motivating this thesis.

Because our proposed model is stochastic, realizations of our model differ one from an-
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other and from the original real-world network. Our model begins with an initial n0 > 0

number of individuals in the network’s 0th generation g0. We then randomly draw from the

distance to union distribution to determine a relative distance between each pair of these

original individuals. Next we build out ancestral lines necessary to support these randomly-

determined distances before proceeding to form unions based on these relative distances from

among the possible pairings in g0 (see Section 4.2). We then form the most likely pairings

relative to PU(x), joining some fraction of individuals in g0 with union edges in what we call

a finite-distance unions. Then some still uncoupled individuals in g0 are randomly selected

to form a union with an individual who is not connected to our graph, in what we refer to

as an infinite-distance union.

Once both finite- and infinite-distance unions are formed in g0, then the (ii) number

of children per union is created using the distribution from the original target network.

These children constitute 1st generation g1 and the model repeats by forming finite-distance

and infinite-distance unions from among the vertices of g1 before adding a new generation of

children to each of the households in g1. This creating of the following generations g2, g3, ..., gL

continues until the total number of individuals in g0, g1, ..., gL exceeds some fixed number

with the creation of the final or last generation gL.

The purpose of the Target Model is to augment genealogical datasets with artificially-

created networks which preserve characteristics of a specific genealogical network for use

in predictive modeling. We later show that the Target Model produces networks whose

distance to union and child distributions well approximate those of the original genealogical

network, in addition to other similarities between our modeled networks and their real-

world counterparts (see Chapter 6). This indicates that our two main feature distributions

effectively characterize the structure of a genealogical network.

As mentioned, given a real-world genealogical network G = (V,E), we measure several

characteristics of its structure for use as parameters in constructing target models of the

original genealogical network. This includes measurements such as number of vertices |V | =
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ntarget and number of union edges |EU | = m which will play a part in our model. However,

network size alone insufficiently captures the complexity of the network’s structure. Metrics

such as the genealogical network’s distributions of (i) distance before union PU(x) and (ii)

children per household PC(x) are much more informative. The process of measuring a

real-world genealogical network for each of these is quite straight-forward. This process is

described in the following section.

3.1 Data

Our codebase for creating a model of a target network is designed for use with Pajek ore-graph

data files (.paj extensions). However, any genealogical network with the required network

structure could work [8]. For our model to operate a target genealogical network with the

following characteristics must be supplied. First, the network must have an accompanying

list of undirected union edges. Next, the network must have a list of directed parent-child

edges, directed from parent to child. Finally, the network must have an average rate of union

not more than one union per individual.

A pajek file encodes basic network information in three different portions. First, Pajek

ore-graph files contain a list of vertices which represents each individual on a new line. (Pajek

files may contain individuals’ names and sexes here, but our model does not require this

information.) Second, the list of vertices is followed by a list of parent-child edges. Each line

in this section represents a new parent-child edge encoded in three numbers representing,

respectively, the parent node, the child node, and the edge weight (in a Pajek ore-graph

format all edges have a weight of one). Pajek formatting refers to parent-child type edges as

arcs. Third, Pajek ore-graph files contain a list of union edges, which mimics the formatting

of the list of parent-child edges. Three integers indicate the first spouse, the second spouse,

and an edge weight respectively. Again, in a Pajek ore-graph format all edges have a weight

of one. Pajek formatting refers to union edges as edges [9]. An example of a Pajek ore-graph

file is shown in Table 3.1.
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Contents and Format of Pajek Ore-graph data file (.paj extension)
Fomatting Example Portion of

Pajek (.paj) File
Vertices:
For each vertex in
the network, list index
number, name, and
sex.

section header:
{*vertices} {no. vertices}
line contents:
{numerical vertex index no.}
{‘string vertex name’} {vertex
sex} {new line}

*vertices 2588
1 ‘John’ triangle
2 ‘Jane’ ellipse
3 ‘James’ triangle
...

Arcs:
For each parent-child
edge in the network,
list the index num-
ber of the parent, the
index number of the
child, and the weight
of the edge.

section header:
{*arcs}
line contents:
{parent vertex} {child vertex}
{edge weight}

*arcs
1 14 1
1 4 1
1 3 1
...

Edges:
For each union edge
in the network, list
the index number of
the first partner ver-
tex, the index number
of the second partner,
and the weight of the
edge.

section header:
{*edges}
line contents:
{partner vertex} {partner ver-
tex} {edge weight}

*edges
1 2 1
3 2303 1
4 1886 1
...

Table 3.1: Pajek (.paj) file formatting consists of a text file divided into three sections:
vertices, arcs (parent-child egdges), and edges (union edges). Each vertex’s sex is listed,
with a corresponding shape: triangle for male, ellipse for female, and square for unknown.

Throughout this thesis we reference a collection of 105 genealogical datasets which are

freely available online. These genealogical networks vary in their size and other characteris-

tics (see Appendix A) [10].

3.2 Distance to Union Distribution

We collect the distribution of specific path lengths between the individuals connected by

each union edge. In a graph G = (V,E), a path of length ℓ ≥ 1 is a sequence of vertices

in (v1, v2, ..., vℓ) with vi ∈ V for i = 1, 2, ..., ℓ such that each consecutive pair vertices is
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connected by an edge ej,j+1 ∈ E for j = 1, 2, ..., ℓ − 1 and in which no vertex is listed

multiple times [11]. The length of the shortest path between two vertices is defined as the

distance between them.

In our search for the nearest common ancestor shared by a couple, we conduct a time-

dependent breadth-first search (BFS) on a subgraph of G comprised of the full set of vertices

but only over the parent-child edges of the graph, with the orientation of each edge reversed.

That is, we do a BFS over the biological subnetwork of a genealogical network graph, with

the orientation of the parent-child edges reversed. That is, on the network G−1
bio = (V,E−1

pc )

. Recall that the set of parent-child edges Epc are directed from parent to child, so that the

set of edges E−1
pc denotes the same set, but with the head and tail of each edge reversed,

i.e. edges in E−1
pc are directed from child to parent. Our search algorithm makes careful use

of the direction of each edge to ensure that we find a common direct-line ancestor, not a

common descendant nor a common cousin.

After inverting the direction of the parent-child edges on our subgraph G−1
bio, we run

essentially a vanilla BFS algorithm on G−1
bio to find the nearest common ancestor for each

unioned pair of vertices in G. For each union edge e ∈ Eu in the full genealogical network

G, the search for a couple’s nearest common ancestor proceeds backwards in time from both

individuals in G−1
bio simultaneously, adding one generation at a time to both trees, until the

trees of ancestors either intersect or until the graph is exhausted and no additional ancestors

can be added to either partner’s tree. If the trees of ancestors intersect, then we can trace

disjoint paths back to the nearest common ancestor, with one path commencing at the first

partner and the second commencing at other partner. The total length ℓ of these paths is

the couple’s geodesic distance prior to union and this couple is said to have a finite-distance

union of distance ℓ (see Figure 3.1). Note that this counting method places siblings at a

distance of two, uncles and nephews at a distance of three, first cousins at a distance of four,

first cousins once removed at a distance of five, and so forth. If no common vertex appears

in both spouses’ ancestry then the spouses share no common ancestor and this couple is said
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to have an infinite-distance union (see Section 4.3).

While our algorithm ultimately identifies paths which travel forward in time from the

nearest common ancestor, if present, to the given pair of vertices, our search algorithm

constructs these paths in reverse. We remove outgoing edges and then convert incoming

edges to outgoing edges when we search for paths from our pair of descendant vertices to their

nearest common ancestor. Our search for nearest common ancestor does not permanently

alter the orientation of any edges in the graph. The reorientation of some parent-child edges

ensures that we search for ancestors rather than cousins or descendants and is temporary.

Once a path is identified from a common ancestor to both objective vertices, all edges are

restored to their original parent-to-child orientation (see Section 3.2).

The process of converting from a list of measured union distances to a probability dis-

tribution follows a slightly different process than is used to form PC(x) in the next section.

When forming the PMF PC(x) of the number of children per household, if a certain value

does not appear in the real world dataset—say for example that there are families in a

dataset with three children and others with five children but no families have exactly four

children—there is no consequence to our model’s ability to correctly mimic the given real-

world child distribution. We can randomly draw from a discrete probability distribution

which has holes in its support and can correctly approximate the number of children in

each household. Specifically, no households of exactly four children are necessary to have

households of five or six children.

While our model is insensitive to any gaps in the child distribution’s support, such gaps in

the support of the distance to union distribution could cripple our model. For instance, one

can imagine a scenario where no unions occur at distance seven in the real-world network,

but a model grown by selectively forming unions between pairings of vertices could get stuck

with a generation wherein all remaining possible pairings are at a distance of seven. In this

scenario, such a modeled network would prematurely cease to grow. Furthermore, unions of

lesser distances produce offspring which are at relatively greater distances. Vertices with a

9



Figure 3.1: In this example, the pink and green vertices form a union (red edge). We search
for their nearest common ancestor in the biological subgraph (along blue parent-child edges),
building a tree of ancestors for both the pink and the green vertices one generation at a time
until common ancestors are encountered. Both common ancestors (yellow and lime vertices)
lie on paths of length five between the pink and green spouses, so we say that the pink and
the green vertices have a finite-distance union at a distance of five, indicated here by the
highlighted yellow and lime paths.
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relative distance of four are necessary to later have vertices with a relative distance of five,

six, or seven for example.

To remedy the challenges presented by possible gaps in the support of a real-world dis-

tance to union distribution, we form unions preferentially, selecting a candidate union at a

distance outside of the support of real-world network’s distance prior to union distribution

PU(x) only when no other viable pairings remain (see Section 4.3).

Note that we do not adjust the support of PU(x). For example, in some island com-

munities, marriages commonly occur at a distance of only two or three (i.e. siblings or an

uncle/niece marriage, respectively) whereas in other cultures such close-relation unions are

socially or legally forbidden and so do not occur. If such unions occur in the real-world

network, then they will occur with a certain probability in an associated Target Model of

that network.

3.3 Children Distribution

For each household in a list of union edges, we count the number of children. This list of

counts is normalized to form a probability mass function (PMF) PC(x). More precisely, for

a genealogical network with u > 0 union edges, we list the counts of children per household

(x1, x2, ..., xu) ∈ Nu
0 where xi ≥ 0 represents the number of children in household i. This list

of counts may include entries which are zeroes—i.e. it is possible that a given couple may have

no children. No further edits or additions are made to the measured target distribution. If

for example no family in the real-world community has four children, then the corresponding

probability of a union in our model having four children is zero. No methods are employed

to smooth the children per household distributions, to fill in gaps, or to otherwise coerce

the measured data. We then divide the number of households with c children by the total

number of households to form a PMF.

When we measure a real-world network for PC(x), we account for complete households

only—those with children and two parents. Across our various datasets, single-parent house-
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holds generally made up less than ten percent of the population, so we made the simplifying

choice to exclude them from our measurements.

3.4 Size of Initial Generation

One of the parameters necessary for our model is not dictated by characteristics of the target

real-world genealogical network. The number of individuals with which to begin our model

in generation g0 is purely a choice. While there are candidate vertices in a genealogical

network for an initial generation, i.e. leaf vertices with children and no parents, there is

little meaning in such a grouping of parentless leaf vertices. We can count how many such

vertices are in a given genealogical network, but without extra information not conveyed by

the graph itself we cannot know whether this group of parentless vertices coincides with a

specific generation—i.e. we cannot know whether these leaf vertices are contemporaries of

one another.

In the real world, generational divisions tend to accelerate and decelerate—e.g. a child

born to thirty year old parents is farther away in time from their parents’ ages than is a child

born to teenage parents, but both relationships span only a single generation. The number

of years between generations in an actual family varies widely and such differences aggregate

together across spans of multiple generations. Instead of counting parentless leaf vertices

and imposing the assumption that these leaf vertices somehow represent contemporary in-

dividuals, we propose searching for an initial number of individuals to place in g0 using a

bisection search method based on the rate of survival of the modeled genealogical network.

We define survival to mean that a modeled network has equaled or surpassed the size,

measured in terms of the number of vertices, of the real-world genealogical network that we

seek to mimic. If few unions form in a generation or if there is a high probability of having a

less than two children per household, then it is likely that the subsequent generation will be

smaller than the current generation. If a model network ever comes to a point where there

are no available pairings with which to form unions or if ever all households in a generation
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have no children before the modeled graph contains at least the target number of vertices

ntarget, then the model is said to have died out.

Our bisection search method proceeds as follows. For a given real-world genealogical

network, we define our feasible set for starting size as the range between two and the number

of individuals in the given real-world network [a0, b0] = [2, ntarget]. This bisection search

method begins at a random integer in the feasible set and then proceeds to construct modeled

graphs beginning with that specified number of initial individuals, s0.

If the modeled graphs die out more than a selected tolerance, then we begin constructing

Target Model graphs with a larger initial population, taken as the midpoint of the previously-

employed starting size s0 and the upper bound of our feasible set ntarget. Call this new

starting size s1. The range we are then searching within would be narrowed to the window

between our first starting size and our original upper bound on our feasible set [s0, ntarget],

so that s1 = ⌈avg(s0, ntarget)⌉.

Similarly, if our instantiated Target Model graphs survive more often than our selected

tolerance allows, then we begin constructing model graphs with a smaller initial population

s1, taken in this case as the midpoint of the original lower bound of our feasible set and

the previously-employed starting size. In this case, the range within which we are searching

would narrow to the interval between our original lower bound on the feasible set and our

first starting size so that [a1, b1] = [2, s0] and s1 = ⌈avg(2, s0)⌉.

The bisection search for an ideal starting size continues in this manner, narrowing the

range between the previously-encountered upper or lower bounds and the midpoint between

that bound and the previously-employed starting size until either the Target Model produces

graphs which survive at the desired rate r ∈ (0, 1) or until the upper and lower bounds are

sequential integers (in which case, we take the larger as our ideal starting size).

In our numerical simulations, we sought for initial populations which were sufficiently

large for the Target Model to survive r = 95% of the time, although this threshold could be

adjusted up or down as desired. See Figure 3.2.
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Figure 3.2: We conduct a bisection search for a reasonable initial population n0, given a
desired rate of survival. We chose to search for an initial population which would allow the
Target Model to construct a graph containing at least as many vertices as the target network
in 95% of instantiations. Each search begins at a random number between two vertices and
ntarget = 2588, the number of vertices in the real-world target network. If the model survives
more often that the chosen 95% threshold, then a smaller initial population is selected for
the next iteration; if the model survives less often than the desired threshold, then a larger
initial population is take for the next iteration. We take our starting size n0 as the mean of
various independent bisection searches across the feasible set of initial populations [2, ntarget].
For the Kel Kummer dataset, our bisection search method found a starting population of
n0 = 432.
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3.5 Other Parameters

In addition to measuring and forming our two probability distributions PC(x) and PU(x),

we note the size of the real-world network or number of vertices ntarget, the fraction of finite-

distance unions pfinite ∈ [0, 1] which are those unions where the couples share a common

ancestor, and the fraction of infinite-distance unions p∞ ∈ [0, 1] or those unions where the

couples do not share a common ancestor. The probability that a vertex forms a union is

punion is taken as two times the number of unions in the given dataset divided by the number

of vertices since we want to condition this probability on the number of vertices in the

graph, as opposed to on the number of union edges. This union probability is the sum of

the probability of finite-distance union and the probability of infinite-distance union

punion = pfinite + p∞.

The complement of this sum psingle = 1− punion ∈ [0, 1] is the probability that an individual

remains single.

3.6 Running Example

As a concrete example, we introduce a genealogical dataset from the Menaka region of Mali

in western Africa. This dataset centers on the Kel Kummer people, a more recent division of

the traditionally nomadic Tuareg Iwellemedden people. While this particular dataset largely

focuses on individuals between the mid-nineteenth to the mid-twentieth centuries, some of

its ancestral lines can be traced back to the founding of the group in the seventeenth century

[12, 13, 14].

This community’s genealogy provides an example of the difficulty inherent to equating

the passage of time with some fixed number of generations. Consider that the number of

generations that separate the most recent individuals in the dataset from their most distant

ancestors in the dataset varies widely from ancestral line to ancestral line. As an example,

suppose that we adopted an average amount of time T > 0 between generations. If we
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were to assume that mothers’ average age at the birth of their child was T = 25, then we

could estimate that about thirteen generations separate the most recent generation (meaning

the most recent generation to be included in this curated genealogical network) of the Kel

Kummer to their seventeenth-century foundations. In reality, however, some of the lines

traversing that same time period contain twenty generations of ancestry [13]. No fixed

amount of time can be used as a proxy for generational growth. While counting generations

comes naturally in a theoretical model, where individuals may be added to a network at

fixed, known intervals, real-world data has no convenient analog.

In terms of model parameters, the Kel Kummer genealogical dataset comprises some

ntarget = 2588 individuals and m = 1011 unions. It is nearly 56% male and 44% female and

largely spans the century from the mid-1800s to the mid-1900s, though some lines can be

traced as far back as the mid 1600s [12]. This dataset has a probability an infinite-distance

union of p∞ = 18.5% and a probability of a finite-distance union of pfinite = 59.6% for a

combined total probability of union of punion = 78.1%. See Figure 3.3 for a visualization of

the entire genealogical network and of its summary distributions and Table 3.2 for a summary

of this dataset’s statistics.

Chapter 4. The Target Model

As mentioned, the Target Model for genealogical networks accepts as input a real-world

genealogical network G = (V,E) and constructs artificial networks which approximate the

structure of this network. This model provides a way to augment a specific genealogical

network with many imitation networks which approximate its structure.

Our model forces generations to move jointly with time. We proceed iteratively forming

unions among the current generation and introducing children vertices to form the next

generation. In some ways this is in contrast to real-world families which have some blurring

across generational lines. Consider for example an individual who is closer in age to their first
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Figure 3.3: Top: An example of a genealogical network from the Kel Kummer people in
Mali. Bottom Left: The distribution PC(x) of the number of children per union in the Kel
Kummer genealogical network. Bottom Right: The distribution PU(x) of the distance prior
to union in the Kel Kummer genealogical network. Infinite-distances indicate that a union
formed between individuals who shared no direct line common ancestor. A distance of zero
indicates the probability that an individual does not form a union.

17



Target Model Parameters Kel Kummer
PC(x) PMF of Children per Union See Figure 3.3
PU(x) PMF of Distance Prior to Union See Figure 3.3
r Chosen rate of survival for use

with bisection search to find size
of initial generation n0

95%

n0 Number of vertices for initial gen-
eration

432

ntarget Number of vertices in target ge-
nealogical network

2588

m Number of union edges in target
genealogical network

1011

p∞ Probability of an infinite-distance
union

18.5%

pfinite Probability of a finite-distance
union, the sum of the probabil-
ities of forming a finite-distance
union at each specific distance
d > 0 in the support of PU(x)

59.6%

psingle Probability of not forming a
union

21.9%

Table 3.2: Given a real-world genealogical network G = (V,E), the parameters required for
the Target Model are measured from G, with the exception of the size of the initial generation
of vertices n0, which we find using a bisection search to meet a user-specified survival rate r
(see Section 3.4).
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cousin’s children than to their first cousins themselves. Or else consider that two individuals

of about the same age might count three generations and four generations from themselves

backwards respectively to find ancestors born one hundred years ago.

Our choice to force generational alignment in the Target Model restricts the pool of

potential union partners for each vertex to those vertices which belong to the same, the

immediately previous, or the immediately subsequent generation. Ultimately, our modeling

choice that unions be restricted to neighboring generations is shown to be a reasonable one.

By restricting our model’s unions to pairings which span at most two immediately adjacent

generations the Target Model can form unions at any distance from each union’s nearest

common ancestor. The Target Model also adds children vertices to all newly-formed unions

at the same time. This choice is procedural and does not greatly deviate from real-world

genealogical networks which tend to make no distinction in the network structure with edge

weights or otherwise about how much time has elapsed between generation.

While counting generations is a temporal metric which is common in practice, it is always

subjective in the real-world, providing relative distances between individuals in a family

network. We simplify this temporal convention by forcing generations to move in lockstep.

Our model adds one generation of individuals at a time and allows unions to form only

between individuals in the same generation or between individuals in sequential generations.

This simplification to keep generations sharply defined allows our algorithm to grow networks

with a temporal sequence.

4.1 Algorithm

As introduced in Chapters 2 and 3, we begin with a given a genealogical network G = (V,E)

and its parameters (see Table 3.2). For a specified number of vertices n0 > 0 the Target

Model instantiates an initial generation g0, comprising n0 vertices and no edges. Each of the

n0 × n0 pairs of vertices in g0 are assigned relative distances from one another via random

draws from the distance to union distribution PU(x). Parent-child type edges and additional
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vertices are added to the model to build these randomly drawn distances into the graph

structure, connecting each pair of vertices in g0 with a newly-added common ancestor with

paths of the specified lengths. Beginning the modeled graph in this way immediately provides

candidate unions at various distances from the support of PU(x) and allows the model to

proceed generation by generation.

Once the initial generation has been constructed, the model proceeds to form unions from

the possible pairings of vertices in the current generation as well as any still single vertices

from the immediately previous generation (this set of still single vertices is empty when first

forming unions of pairings in g0). The total number of union edges to add is taken as the sum

of the probability of an infinite-distance union p∞ and the probability of a finite-distance

union pfinite times half of the number of vertices n0 in the initial generation g0. We retain

the other half of the initial generation to form unions with the next generation of vertices.

For the number of finite-union edges to be added, candidate pairs are first drawn at ran-

dom from those possible pairings which would form at distances which appear in the support

of our distance to union distribution PU(x), weighted by according to this distribution. If

there are not enough candidate pairings, then the remaining number of finite-distance unions

are drawn uniformly at random from whichever candidate unions are possible at the distance

nearest to the support of PU(x). The number of infinite-distance union edges are each con-

nected to a new vertex, i.e. an immigrant, or a vertex which has no incoming parent-child

edges, and a yet single vertex in g0.

An independent random draw from the distribution of children per union is made for each

union edge formed. We connect these new children vertices to both of their parent vertices

via directed parent-child type edge (directed from parent to child). Together, these children

make up the first generation g1. The algorithm continues in like manner, iteratively forming

unions and adding children until either no children are added, no unions are possible or until

the total number of vertices in generations g0, g1, ..., gi equals or surpasses the number of

vertices ntarget in G.
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The algorithm for the Target Model may be summarized as given below:

� Create the initial generation g0 of n0 individuals, forming unions between them (and

possibly some immigrants) using PU(x).

� Add children to each union in g0 using PC(x) to create our next generation g1.

� Add infinite-distance individuals to g1 and form unions in g1 with probabilities p∞,

pfinite.

� Form mixed generational unions between still single individuals in g1 and in the

immediately-previous generation g0, again using the probabilities in PU(x).

� Repeat for each subsequent generation gk until the size of the network exceeds ntarget.

4.2 Initialization and Number of Generations

For our initial generation of individuals g0, consisting of n0 vertices and no edges, there are

n0×n0 possible pairings of individuals. For each possible pairing in this initial generation we

draw a value from PU(x). These distances are then imposed on the graph. That is, between

each pairing of vertices in g0, we construct a path of the specified length of parent-child edges

(introducing the corresponding number of new vertices to the graph). These new paths do

not intersect; each pair of vertices in g0 has its own distinct common ancestor and necessary

scaffolding (i.e. intermediate vertices and edges on the path to the common ancestor from

each vertex in the pair) created. These paths provide the structure necessary to create the

specified relationships between vertices in our initial generation.

For each generation k = 0, 1, 2, ..., L, we define a matrix Dk = [dij] ∈ Nn×n to track the

distances between all pairs of eligible individuals (those still single individuals in the current

and immediately previous generation) where dkij ∈ N0 is the distance from individual i to

individual j. Note that Dk is symmetric so that dkij = dkji and dij ≡ 0 ⇐⇒ i ≡ j. (In our

accompanying code, infinite distance marriages are encoded with a distance of -1.) For our
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initial generation, we store the distances between each pair of vertices in a symmetric matrix

D0 ∈ Nn0×n0
0 .

After the initial generation is instantiated, we build out each successive generation by it-

eratively forming households, generation by generation until our constructed graph surpasses

ntarget, the number of vertices in G, so that our artificial networks approximately match the

size of our real-world target networks. Specifically, our model operates one generation at a

time until the total number of vertices from the initial generation g0 to the final generation

gL surpasses our target size, i.e.
∑L

k=0 |gk| ≥ ntarget.

4.3 Form Unions

The Target Model does not track the sex of each vertex. While the real-world networks have

a certain division of men and women, the Target Model treats all vertices equally and thus

assumes that the sex of each individual was whatever sex was needed to form each union at

the desired distances.

Our model forms three types of unions: infinite-distance unions, intergenerational finite-

distance unions, and intragenerational finite-distance unions. Not every union in a real-world

genealogical network G = (V,E) will share common ancestors. In some unions one partner

may have immigrated to or emigrated from their community. Individuals in G form unions

with immigrants to their community—defined as persons with whom they share no common

ancestry—at average rate p∞. Likewise, our model introduces new vertices so that a random

p∞ ∈ [0, 1] fraction of the individuals not in a union in the current generation form unions

with persons who are an infinite distance away from them—i.e. the pair of vertices has no

common ancestry in the model.

The remaining unpaired vertices are divided into two camps. Half of these vertices are

designated to form unions with other vertices from the following generation while half are

designated to form unions with other vertices from among the current generation and the

still eligible vertices from the previous generation. Among the vertices to be paired off this
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generation and the designated vertices from the previous generation, we note how closely each

possible pairing is related to one another in Dk, then randomly draw marriages, weighted

by the probability of a marriage of each respective distance occurring (see Section 4.3.2).

We purposefully prevent pairings where both spouses come from the previous generation

of vertices. By favoring these intragenerational pairings we preserve the possibility of odd-

valued distances to common ancestry.

4.3.1 Mixed Generation Unions Can Preserve All Distances. Consider that our

generation-by-generation growth pattern increments the length of existing paths by two edges

each time that children are added to a generation’s families—that is the if two households

have a shortest biological ancestral path between them that is of length d, then the children

of these two households will have a such a path that is length d+ 2 between them.

Specifically, as our model grows, relative biological distances cannot decrease. In order

to have candidate pairings at a greater distance, we must have formed pairings at lesser

distances in a previous generation. Considering our restriction that unions form only among

the same generation or between adjacent generations, there must be individuals which are

at a distance of d − 1 or d − 2 in the immediately preceding generation if in the current

generation there will be pairings possible with which to form a union of distance d. Because

later generations rely on the prior presence of lower-distance relationships in order to form

higher-distance unions, we give each generation the opportunity to form both even- and

odd-distance unions.

If we were to restrict the unions we form to those pairings where both partners come from

the same generation, then odd-valued distances cannot be introduced in subsequent gener-

ations, creating an even-dominated distance to union distribution in our modeled graph.

This even-dominated distance to union distribution occurs because existing paths are al-

ways lengthened by two edges at a time in our model, so as the model grows, any pairing

which traces its nearest common ancestor to a vertex in any generation g0, g1, ..., gL−1 (i.e.

any pairing whose nearest common ancestor is not among the loops constructed to impose
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distances on the individuals in our initial generation g0) will have an even-distance prior to

union. In order to preserve the possibility of forming unions at both even and odd distances,

we force half of each generation to wait to form unions until after the next generation of

individuals become eligible.

4.3.2 Reemphaisize Distances. Beginning with generation two, we bias the probabil-

ity distribution with which we select which unions to form to favor those distances which have

occurred less frequently than the target distribution would indicate. This update scheme

affects the proportions of individuals who will form finite-distance unions, will form infinite-

distance unions, and will not form a union (i.e. will remain single).

� Take the list of union distances currently in the model, i.e. all those unions created

from generation g0 to the previous generation gk−1, and normalize the counts into a

probability distribution, P k−1
U (x).

� Subtract P k−1
U (x) from the original target distance to union distribution:

∆k
U = PU(x)− P k−1

U (x).

� Where ∆k
U < 0, set ∆k

U = 0.

� Normalize ∆k
U to form the PMF P k

U(x) from which union pairings will be drawn in our

model at generation k.

The resulting probability distribution emphasizes those distances which have not, as of

the previous generation, occurred as frequently as they ought to have occurred and corrects

for over- or under-occurrences of infinite distance unions, finite distance unions, and the

probability of remaining single.

4.4 Add Children

After forming marriages and adding marriage edges to the graph, the next generation is

populated. For each union edge formed in our model, we make an independent random draw
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from G’s distribution of children per household PC(x). The sum of these random draws

is the total number of children to add to the graph and these new vertices constitute our

next generation gk. We introduce the corresponding number of vertices and add parent-child

edges between each child and both of their parent vertices for each household. There is a

possibility that a household will have no children.

The model then prepares to execute afresh—adding immigrants, forming likely unions,

and introducing children—to this newly introduced generation of individuals. This prepara-

tion includes forming a new matrix Dk of distances between each possible pairing of vertices

in the upcoming union-forming step. This matrix Dk is square and symmetric, tracing the

distance to common ancestor between each pair of vertices in the current generation gk as

well those vertices from the previous generation gk−1 which were not given the opportunity

to form unions previously.

4.5 Stopping Criteria

The model runs generation by generation forming unions and introducing children to the

successive generation until the total number of vertices in the modeled graph’s generations

g0, g1, ..., gL (i.e. excluding the vertices preceding the initial generation g0) equals or surpasses

the real-world network’s size ntarget, measured in number of vertices. If ever a generation

occurs where no new unions can form or where no additional children are introduced to the

next generation, then the model stops. (Our accompanying code base also optionally allows

the user to specify a fixed number of generations for the model to construct, but we feel that

this stopping criteria fails to account for the real-world complexity that generational lines

blur across even closely related families.)
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4.6 Target Model Outline

The steps used to generate a genealogical model using the Target Model algorithm are

explained in detail below:

Stage 1: Initialization:

(a) Set k=0.

(b) Begin with n0 > 0 vertices, add these n0 vertices to the empty graph M . These

n0 vertices comprise our first generation g0.

(c) For each of the n0 × n0 pairs of individuals in g0, draw randomly from PU(x).

Record these distances in a symmetric matrix D0 = [d0ij] where d0ij ∼ PU(x).

(d) Build out the graph structure to represent the distances in D0. For each pair of

vertices (i, j) in g0, add a path of length d0ij between vertices i and j.

Stage 2: Growth: While length(gk) > 1 and while there are fewer vertices from the initial

generation to the previous generation inclusive than the total number of vertices in the

target network G (i.e. while
∑L

k=0 nk ≤ ntarget):

(a) If k > 1, form P k
U(x) to increase the probability of underrepresented distances in

the support of the distance to union distribution PU(x).

(b) Form unions.

Step 1: Multiply the number of individuals in the current generation gk by the proba-

bility of forming an infinite- and of forming a finite- distance marriage p∞ and

pfinite, respectively, to find the number of infinite-distance and finite-distance

unions to create. Round to the nearest integer in each case.

Step 2: Randomly divide the current generation into two sets: first, those individuals

who will attempt to form a union with another individual from the current

generation or with a still-single individual from the previous generation and
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second, those who will not attempt to form a union until the next generation—

i.e. this second category will remain single this time through the while loop,

but may pair up next time we execute the while loop.

Step 3: Form a list of all possible pairings consisting of pairs where at least one partner

comes from the list of those individuals who can form a union this generation

(the second partner may come from the list of yet single individuals who did

not form unions in the previous generation). Record the relative distances

prior to union for each candidate pairing listed.

Step 4: Divide this list of all possible pairings into two sets: first, a list of preferred

unions, consisting of those pairings which would occur at a distance which

appears with non-zero probability in the support of P k
U(x) and second, a list

of other unions which would occur at a distance other than those found with

non-zero probability in the support of P k
U(x).

Step 5: While preferred unions remain and fewer finite-distance unions have formed

than calculated, randomly select a finite-distance pairing with probabilities

given by P k
U(x). For each pairing selected, add a union edge to the graph and

update the list of available preferred pairings by removing all other candidate

pairings which contained either partner now connected by the new union edge.

Step 6: While other unions remain and fewer finite-distance unions have formed than

calculated, identify which possible finite-distance pairings would occur at a

distance closest to the support of our original target distance to union dis-

tribution PU(x). Of the available pairings at this closest-to-correct distance,

select one uniformly at random, add a union edge to the graph, and update

the list of available other pairings.

Step 7: Update the number of infinite-distance unions to form. Take it as the mini-

mum of the number of vertices remaining to be paired off this generation and

the number of infinite-distance unions to form that was calculated in Step 1.
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Step 8: Uniformly at random select individuals from the still-single individuals in

the current generation gk and in the previous generation gk−1 to marry at

an infinite-distance—i.e. to marry those with whom they share no common

ancestor. Add the corresponding number of new vertices to the graph and add

the union edges connecting the selected individuals to the newly introduced

vertices.

(c) Add children. For each union edge added in Steps 5, 6, and 8, draw randomly

from PC(x) and introduce the corresponding of new vertices to the graph. Add

parent-child type edges between the new children vertices and each of their parent

vertices. Note that each child vertex will have two incoming parent-child type

edges, one from each of the parent vertices in the union.

(d) Update the distance to union matrix to find Dk. This matrix tracks the distance

between each possible pairing of the children introduced to the graph this gen-

eration and each of those individuals from the previous generation which were

selected not to form unions until the next generation.

(e) Increment k.

Chapter 5. Variant Algorithm

While our algorithm (see 4.1) produces graphs which reasonably approximate the target

distance to union distribution, it comes at a cost. The choice to actually build out paths to

the initial generation’s nearest common ancestors adds a substantial number of individuals

to the graph, particularly if a larger initial population n0 is selected. Consider for example, a

target network which requires an initial population of one hundred individuals for r = 95% of

model instantiations to survive (see Section 3.4). If the expected value of the target network’s

distance prior to union distribution is 10, then for the 1000 possible pairings in the initial

generation our model would, on average, add nine new vertices and ten new parent-child
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type edges for each pairing to the graph (see steps Stage 1 c, Stage 1 d in Section 4.6).

These added setup vertices and edges create a model which can immediately begin to form

unions for candidate couples at all distances, but at the cost of ballooning the overall size of

the modeled graph by many thousands of vertices and edges. This ballooned size can present

computational issues—for example Zachary Boyd et al. present a persistent homology based

methodology for comparing genealogical networks with social networks [15]. They argue

that persistence curves may be used to distinguish between social networks and genealogical

networks, but they warn that their algorithm for calculating the persistent homology has a

spatial and a temporal complexity of O((n+m)3) where n and m are the number of vertices

and the number of edges in the graph, respectively. Such a complex computation would prove

prohibitive for many of the graphs produced by our algorithm 4.1. As such, we propose an

slight variant to our algorithm which still produces a single weakly connected component,

but which drastically reduces the number of additional vertices and edges needed to connect

the graph into a single component.

5.1 Variant Model Initialization

In this variant algorithm, we largely follow the same procedure as before, but with some

notable differences. Rather than connecting every possible pairing of individuals in the

initial generation with paths from their common ancestor, we instead treat every pairing

in the initial generation as sharing no common ancestor. With every vertex in the initial

generation at an infinite distance from every other vertex in the initial generation, only

infinite-distance unions are possible during the initial generation. The variant algorithm

still proceeds generation by generation iteratively forming unions between pairings in the

current generation and adjacent generations, but the choice to begin with vertices which

share no common ancestry creates the need for a burn-in period before finite-distance unions

are possible. A number of generations of unions and children must be added to the graph

before any finite-distance candidates (i.e. pairs of vertices which share a common ancestor)
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exist.

5.2 Variant Model Infinite-Distance Unions

In the variant algorithm, we allow infinite-distance unions to form between two vertices

which are already in the graph. Any two vertices which are not a part of to the same

weakly connected component share no common ancestors. The converse however is not

true—immigrant vertices connected by a union edge belong to the same component but

share no common ancestry with any other vertices in the component. Unlike our primary

algorithm (Chapter 4), not every infinite-distance union requires a new vertex (i.e. an

immigrant) to be introduced to the graph, rather our variant algorithm prioritizes forming

infinite-distance unions between vertices which are both already in the graph. Whenever

an infinite-distance union forms between two vertices which have already been added to the

graph (i.e. each partner vertex has two parent vertices in the previous generation), then the

union connects two weakly connected components of the graph into a single weakly connected

component. If no such infinite-distance candidate pairing exists within the graph, then the

variant algorithm follows the original algorithm’s format and uniformly selects partners from

the current generation to be paired up with newly-introduce immigrant vertices.

5.3 Connecting Variant Model Components

Even though we connect components in our modeled graph by forming infinite distance

unions with two already-introduced vertices whenever possible, the variant algorithm typi-

cally results in a graph with many disjoint components. Having multiple disjoint components

is not necessarily unrealistic—one can imagine a community with a few predominant families

to which most but not all individuals in the community are related—but it is problematic

for persistent homology calculations on the graph, etc. For instance, dimension one per-

sistent homology calculations only consider a single connected component of the graph. In
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the interest of pursuing a model which will produce graphs for which persistent homology

calculations are both feasible and appropriate, we employ the following methodology to form

a single connected component in graphs produced by our variant model.

We aim to form a single weakly connected component in the graph produced by the

Variant Target Model. We do so by connecting components together via parent-less vertices

in each component. These parent-less vertices are immigrants to the family, meaning that

they have no incoming parent-child type edges. To form one component of two disjoint

components, we identify a vertex in each of the two components which have fewer than two

incoming parent-child type edges. The identified pair of vertices, one in each of the previ-

ously unconnected components, remain unioned to partners in their original components.

We choose to enforce that immigrant vertices must pertain to neighboring or to the same

generation. This choice ensures that realistic temporal connections will be added to the

graph—we will not accidentally say that a vertex in the initial generation g0 is siblings with

some immigrant vertex that was introduced in the twentieth generation of the model, for

instance. We begin our search for candidate vertices to connect via a common ancestor in

the latest generation added to the graph and proceed to search backwards in time until a

suitable pairing is identified. In this way any new common ancestry introduced to the graph

will overlap temporally with the other structure of the modeled graph to the extent possible.

With a candidate pairing identified, we then draw from the target distance to union

distribution PU(x). The drawn value indicates how closely the two vertices are to be related.

As in the original Target Model instantiating (see Section 4.2), we introduce a new vertex

as the most recent common ancestor of the identified pair of vertices and construct paths

of parent-child type edges from this common ancestor to each of the identified vertices,

introducing additional new vertices as needed. As before, the total length of these two

paths is the distance to common ancestor for this pair of vertices. No union edges are

introduced. We continue this joining up process until the modeled graph contains a single

weakly connected component.
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5.3.1 Connecting Variant Model Components Outline. After completing Stage 1

and Stage 2 from the algorithm in Section 4.6 with the modifications outlined in Sections

5.1 and 5.2, complete the following:

Stage 3 Connecting Disjoint Components: While more than one component in the graph M

produced by the Target Model:

(a) Take two components of the graph M . For each component, make a list of vertices

with fewer than two incoming parent-child edges, noting the generation number

in which each vertex was added to the graph.

(b) Sort the lists of available vertices in each component by the generation in which

they were introduced to the graph.

(c) Beginning at the latest generation in one of the components’ lists of available

vertices, search the other component’s list for available vertices belonging to the

same generation or in the next or previous generation. If such a vertex exists,

then uniformly at random select one of the candidate vertices from the first com-

ponent’s set of available vertices in the latest generation and likewise select one

of the candidate vertices from the second component’s set of available vertices in

the identified generation. These randomly selected candidate vertices form the

pair of immigrants to which we will introduce a common ancestor. If the second

component does not contain any candidate immigrant vertices in the same gen-

eration or in the previous or in the next generation, then decrement the search

generation and repeat the search in both components, with the search window

shifted backward in time.

(d) Draw randomly from PU(x). This will be the distance between the pair of candi-

date vertices identified.

(e) Build out the graph structure to represent the distance between the pair of ver-

tices. Introduce a new vertex as the common ancestor and other new vertices as

32



necessary to build a path of parent-child type edges from the common ancestor

to both of the vertices in the pair. These new paths will form a single weakly

connected component out of the two previously disjoint components.

Chapter 6. Results

We summarize the effectiveness of the Target Model (Algorithm 4.6) and its variant (see

Section 5.3.1). We also present results measured on subgraphs of the networks produced by

the Target Model. These subgraphs follow the algorithm outlined in Section 4.6 and then

omit all vertices and edges preceding the initial generation g0. These auxiliary ancestry paths

connect pairs of vertices in g0 to a common ancestor. Their presence in the graph allows

the Target Model to immediately begin forming unions of all distances, but the additional

structure distorts the probability distribution that a random vertex in the graph will form

a union at specific distances. The vast number of auxiliary vertices simply overwhelms the

relatively small number of vertices contained in generations g0, g1, ..., gL.

The original Target Model does very well at approximating the number of union edges at

each distance but does poorly at capturing the probability distribution PU(x), because of the

large number of pre-generation 0 vertices. If we run the Target Model and then examine the

subgraph containing only those vertices and their out-going edges in generations g0, g1, ..., gL,

then the modeled network necessarily shows an increase in infinite-distance unions because

the initial generation no longer share any common ancestry. These subgraphs capture PU(x)

more closely than the full Target Model networks because there are relatively fewer vertices

in the graph on which the probability of a vertex participating in a union depends. The

variant algorithm grows without imposing common ancestry on the initial generation. As

a result, the Variant Target Model shows much greater variance in survival rates, tends to

require much larger initial populations, and produces networks with few generations that are

much larger than the original Target Model produces.
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6.1 Target Model—Results With Auxiliary Ancestry

The Target Models initializes with a fully connected initial generation. Every possible paring

in the initial generation g0 shares a common ancestor. These common ancestors do not

belong to the initial generation. Together with the parent-child type edges and additional

intermediate vertices comprising the paths from common ancestor to individuals in g0, these

common ancestors introduced to the modeled network are auxiliary ancestry. They are

necessary to provide candidate union pairings at finite distances, but are not counted toward

the stopping criteria of having at least ntarget vertices for the Target Model. The choice to

exclude the auxiliary ancestry from the stopping criteria largely comes from the large number

of vertices introduced in these pre-g0 lines. For example, the Kel Kummer dataset requires

a starting size of n0 = 432 individuals (about 19% of the Kel Kummer network’s total

size). Connecting every possible pair to a common ancestor at a distance drawn from PU(x)

results in an additional 450,000 vertices. The original Kel Kummer network comprises only

ntarget = 2588 individuals.

As seen in Figure 6.1, there are advantages and disadvantages to the modeling choice to

fully connect g0 with so many auxiliary ancestral lines. Including the auxiliary lines allows

finite-distance unions to form immediately without any burn-in generations. Because the

auxiliary lines contain no union-type edges and because these lines support the immediate

formation of finite distance unions, the distribution of distance to common ancestor between

unioned partners is well captured. Throughout the target model, this distribution is related

back to PU(x) whenever we form P k
U(x) when forming unions in the kth generation gk (see

Section 4.3.2). PU(x) is the probability that a vertex will participate in a union at at specific

distance. As measured in a real-world genealogical network, PU(x) is conditioned on being

unioned. The Target Model transforms these probabilities to give the probability that a

vertex will participate in a union at a specific distance, without conditioning for unioned

vertices only. We provide two views of the distance to union distributions in the Target

Model with auxiliary ancestry. First, we examine the model’s distance to union distribution
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when conditioned on a vertex’s belonging to a union. Second, we examine the same without

conditioning on a a vertex’s belonging to a union. In the latter, we present probabilities

which account for the entire network structure, including the auxiliary ancestral lines. This

inclusion overwhelms the small proportion of unioned vertices, such that only the probability

that vertex remains single is significant.

All variants of the Target Model presented, including the Target Model with auxiliary

ancestry share the same distribution of children per household. When calculating a modeled

network’s distribution of the number of children per household, we condition on union edges.

Only a pair of vertices joined by a union edge can have children in the Target Model, so the

number of households in the modeled network is determined by the number of union edges

in the network. The auxiliary ancestry preceding the initial generation g0 does not contain

any additional union edges, so the Target Model with auxiliary ancestry and the Target

Model omitting auxiliary ancestry after model growth both share the same set of union

edges. That we approximately recapture PC(x) through independent identically distributed

random draws is unsurprising, but does support that the Target Model mimics the original

target network’s local structure (see Figure 6.2)

In order to compare the global structure of Target-Model-produced graphs against that

of their real-world counterparts, we examine the cycle structure of each. The Target Model

with auxiliary ancestry produces networks with cycle bases which approximate the cycle

basis of the target real-world network. Given a graph G with a spanning tree s, a cycle

basis or set of fundamental cycles is a set of cycles ci where each cycle contains “exactly one

non-tree edge each.” These fundamental cycles “can be combined into new cycles by adding

their edges modulo two, i.e. if the same edge is covered an odd number of times it is kept and

otherwise discarded” [16]. When compared to a configuration model executed on the Target

Model’s degree distribution, a random graph in the same class as the network produced by

the Target Model, the Target Model produces networks whose cycle bases are closer to that of

the target real-world network, although still with more cycle basis elements than are present
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in the real-world network’s cycle basis. Over 1000 instantiations on the Kel Kummer dataset,

the Target Model produces networks whose distribution of lengths of cycles in the their cycle

bases more nearly approximates the Kel Kummer network’s distribution of length of cycles

in its cycle basis (see Figure 6.3). Across many networks, the Target Model demonstrates the

same phenomena. Figure 6.4 shows that the Target Model produces networks with better

than random cycle distributions, even across diverse real-world datasets.

6.2 Reduced Target Model—Results Omitting Auxiliary An-

cestry After Model Growth

If we run the regular Target Model algorithm (see Algorithm 4.6)—introducing an initial

generation of individuals g0 and then fully connect them with auxiliary ancestral lines, giving

each pair of individuals in g0 a common ancestor, then grow the network until the total

number of individuals in generations g0, g1, ..., gL (excluding all auxiliary ancestry connecting

pairs in g0) exceeds the target size ntarget—and then examine the subgraph of the resulting

network comprising only g0, g1, ..., gL, we produce a network which approximates the target

network’s size ntarget. This reduction in size does not affect the distribution of children per

household (see Figure 6.2).

Removing the auxiliary ancestry reconciles the differences observed in the distance to

union distributions presented in Figure 6.1. Observe in Figure 6.5 that the distance to union

distribution conditioned on a vertex belonging to a union (Top Left) agrees with the prob-

ability distribution’s shape when not conditioned on being unioned (Bottom Left). While

omitting auxiliary ancestry from the Target Model after model growth creates agreement be-

tween both notions of distance to union distribution, the modeled network has too large of

a proportion of infinite-distance unions. When we remove the common ancestry connecting

each pair of vertices in g0, the unions in g0 convert to infinite distance unions.
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Figure 6.1: The Target Model as presented in Section 4.6 results in the following comparisons
for the Kel Kummer dataset. The Target Model captures the distribution of distance to
common ancestor, with reasonable consistency. These distributions show the probability
that a randomly selected union edge in the graph will be a certain distance from their partner
(Top Row). The Kel Kummer dataset requires an initial population g0 of 432 individuals.
The Target Model introduces approximately 450,000 auxiliary vertices to impose a relative
distance prior to union for each pairing in this initial generation, resulting in a near-zero
probability that a randomly-selected vertex in the graph will be partner to a union. By
including the auxiliary ancestry which connects all pairings in the initial generation, the
resulting probability distribution in the model PL

U (x) (Bottom Row, orange) hardly resembles
that of the target real-world network PU(x) (Bottom Row, blue). Contrast these results with
those presented in Figure 6.5, where our calculations of distance prior to union exclude the
auxiliary structure prior to g0.
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Figure 6.2: The Target Model as presented in Section 4.6 results in the following comparisons
for the Kel Kummer dataset. Left: Each draw from the target network’s distribution of
children per household PC(x) is independent and identically distributed. This distribution
is calculated per union edge, so that the auxiliary structure which may precedes the initial
generation g0 has no effect on the resulting children per household calculations. Right:
The real-world target network’s distribution of children per household (blue) is compared
against the model’s distribution of children per household for ten instantiations. That we
approximately recapture this distribution from independent random draws is unsurprising,
but necessary to show that our modeled networks approximately capture the real-world
network’s local structure.
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Figure 6.3: We run the Target Model as presented in Section 4.6, retaining the auxiliary
ancestry preceding the initial generation g0. Top: For a single instantiation of the Target
Model using the Kel Kummer dataset, we compare the lengths of the fundamental cycles of
the undirected real-world target network (blue) against that of an undirected Target Model
(orange). We further compare the Target Model against a configuration model, created us-
ing the Target Model’s degree distribution. Notice that the Target Model’s cycle basis more
nearly approximates the distribution of lengths of cycle basis elements in the real-world tar-
get network. Bottom: For 1000 instantiations of the Target Model using the Kel Kummer
dataset, we form a configuration model based on the Target Model’s degree distribution. We
then measure the lengths of elements in the cycle basis for the Target Model and for config-
uration model, then we measure the KL divergence between the Target Model’s distribution
of lengths of cycle basis elements against that of the target network. We do the same for
the configuration networks. These histograms show that the Target Model’s distribution of
cycle lengths more nearly approximates the distribution of cycle lengths in the target net-
work. Contrast these results with those presented in Figure 6.6, where we exclude auxiliary
structure before calculating cycle bases.
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Figure 6.4: For each of the real-world target networks (see Appendix A), we instantiate
1000 Target Models, retaining the auxiliary ancestral lines preceding the initial generation
g0. For each of the Target Models, we instantiate a configuration model. For each of the
1000 Target Models and for each of the 1000 configuration models, we find a cycle basis, and
measure the length of each element in the basis to form a distribution of lengths of cycle
basis elements. We then measure the KL divergence between each Target Model graph’s
distribution of lengths of cycle basis elements and that of the target real-world network. We
take the median KL divergence score from the set of 1000. We treat the configuration models
similarly, finding the KL divergence between the target network’s distribution of lengths of
cycle basis elements and that of each of the 1000 configuration models, recording the median
performance. A smaller KL divergence indicates better agreement between distributions and
we note that almost universally the Target Model produces networks whose cycle bases are
more similar to the cycle bases of the corresponding real-world genealogical networks.
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In Figure 6.6, the network produced by omitting auxiliary ancestral lines from a Target

Model on the Kel Kummer dataset is shown to largely agree with the cycle structure of

the real Kel Kummer network. The Target Model significantly outperforms a configuration

model based on the Target Model’s degree distribution (Top). Across our available datasets,

omitting auxiliary ancestral lines from the networks produced by the Target Model pro-

duce better cycle structure agreement with their real-world counter parts than does a purely

random graph. Across 1000 instantiations of a Kel-Kummer-based Target Model and corre-

sponding configuration models, the cycle basis in the Target Model networks more closely

agrees with that of the real Kel Kummer dataset, see Figure 6.6 (Bottom). This agreement is

demonstrated by smaller KL divergence between the distribution of the length of cycle basis

elements in Target Model produced networks and that of the real Kel Kummer dataset than

is observed between the distribution of the length of cycle basis elements in the configuration

model produced networks and that of the real Kel Kummer dataset.

This trend appears across datasets. Target Model networks consistently have fundamen-

tal cycles which more closely mimic the lengths of their real-world counterparts than do

similar configuration model produced graphs. Again, for each dataset, we run 1000 Target

Models, omitting the auxiliary ancestry post network growth. Then for each of these 1000

Target Models we instantiate a configuration model based on the Target-Model-produced

network’s degree distribution. For each of the 1000 Target Models and for each of the corre-

sponding 1000 configuration models we find a basis of the fundamental cycles in each graph.

We then find the distribution of cycle lengths in each of these fundamental cycle bases and

then take the KL divergence between the distributions of cycle lengths in the Target Model

and in the real-world network and likewise between that of the configuration model and the

real-world network. We then record the median performance. These median KL divergences

are show in Figure 6.7.
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Figure 6.5: We run the Target Model as presented in Section 4.6, then omit the auxiliary
ancestry which precedes the initial generation g0. Omitting these paths to initial common
ancestors changes the structure of the graph and results in the following comparisons for the
Kel Kummer dataset. Top Row: The Target Model without auxiliary ancestry approximately
captures the distribution of finite-distance unions, however by removing the common ancestry
before g0, the graph then misses the proportion of infinite-to-finite unions quite significantly.
These distributions show the probability that a randomly selected union edge in the graph
will be a certain distance from their partner. Bottom Row: The Kel Kummer dataset requires
an initial population g0 of 432 individuals. The Target Model introduces approximately
450,000 auxiliary vertices to impose a relative distance prior to union for each pairing in this
initial generation. If we omit these auxiliary vertices, retaining only those individuals from
our initial generation to our final generation g0, g1, ..., gL, inclusive, then approximately 2600
vertices remain (our target size ntarget for the Kel Kummer dataset is 2588 vertices). With
approximately the correct number of vertices in the graph, the probability that a randomly-
selected vertex in the modeled graph will be partner to a union at each specific distance
approximately mirrors that observed in the target graph, again with the exception that the
the Target Model without auxiliary ancestry overshoots the proportion of infinite-distance
unions and undershoots the proportion of finite-distance unions. Contrast these results with
those presented in Figure 6.1, where our calculations of distance prior to union include the
auxiliary structure.
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Figure 6.6: We run the Target Model as presented in Section 4.6, and then omit the auxil-
iary ancestry preceding the initial generation g0 before calculating cycle bases. Top: For a
single instantiating of the Target Model (omitting auxiliary ancestry) using the Kel Kummer
dataset, we compare the lengths of the cycle basis of the undirected real-world network (blue)
against that of an undirected Target Model (orange). We further compare the Target Model
against a configuration model, created using the Target Model’s degree distribution. Notice
that the Target Model’s cycle basis more nearly approximates the distribution of lengths
of cycle basis elements in the real-world target network. Bottom: For 1000 instantiations
of the Target Model (omitting auxiliary ancestry after completion) using the Kel Kummer
dataset, we form a configuration model based on the Target Model’s degree distribution.
We then measure the lengths of elements in the cycle basis for the Target Model and for
the configuration model, then we measure the KL divergence between the Target Model’s
distribution of lengths of cycle basis elements against that of the target network. We do
the same for the configuration networks. These histograms show that the Target Model’s
distribution of cycle lengths more nearly approximates the distribution of cycle lengths in
the target network. Contrast these results with those in Figure 6.3, where we retain auxiliary
structure when calculating cycle bases. 43



Figure 6.7: For each of the real-world target networks (see Appendix A), we instantiate
1000 Target Models, omitting the auxiliary ancestral lines preceding the initial generation
g0 after the Target Model executes as in Algorithm 4.6. For each of the Target Models, we
instantiate a configuration model. For each of the 1000 Target Models and for each of the
1000 configuration models, we find a cycle basis, and measure the length of each element in
the basis to form distributions of lengths of cycle basis elements. We then measure the KL
divergence between each Target Model graph’s distribution of lengths of cycle basis elements
and that of the target real-world network. We take the median KL divergence score from the
set of 1000. We treat the configuration models similarly, finding the KL divergence between
the target network’s distribution of lengths of cycle basis elements and that of each of the
1000 configuration models, recording the median performance. A smaller KL divergence
indicates better agreement between distributions and we note that almost universally the
Target Model produces networks whose cycle bases are more similar to the cycle bases of the
corresponding real-world genealogical networks.
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6.3 Variant Target Model—Results Omitting Auxiliary An-

cestry Before Model Growth

The Variant Target Model (see Chapter 5) never connects pairings in the initial generation g0

to any common ancestry. In the Variant Target Model all vertices in g0 are an infinite distance

away from one another so that only infinite-distance unions may form from g0 pairings. The

model then grows, adding children to form g1, then forming unions from g1 pairings and so

on. This modeling choice creates a burn-in period. A certain number of generations must

be added to the graph before finite-distance unions may form. This Variant Target Model

is highly volatile. Many of our datasets require such a large starting population that the

algorithm meets its stopping criteria after introducing only a single additional generation

of children vertices. This is the case for the Kel Kummer dataset, which requires such a

large number of initial vertices that the modeled graph has a very large initial generation,

forms unions among this initial population, introduces children to these unions, and then

the algorithm exits (see Figure 6.8).

For other datasets, such as the Torshan genealogical network from Mauritania in West

Africa, the Variant Target Model produces graphs which have a larger number of genera-

tions. In this case, the Variant Target Model produces networks which approximate the size

of the target dataset and which approximately capture the target distance to union distri-

bution PU(x) (see Figure 6.10). The target number of children per house hold distribution

is again constructed with independent identically distributed random samples and so is well

approximated, given a sufficiently large modeled network.

Once again, networks produced by the Variant Target Model do better than configuration

models of the same class in approximating the distribution of lengths of fundamental cycles

in the target dataset (see Figure 6.11). That networks produced by the Variant Target

Model tend to outperform their corresponding configuration models in terms of mimicking

the target network’s fundamental cycle lengths more closely (see Figure 6.12) provides an

indication that the length of fundamental cycles alone is an insufficient metric to capture
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the structure of a genealogical network. Consider that the Variant Target Model for the

Kel Kummer dataset fails to capture the distance to union distribution PU(x) (see Figure

6.8) yet its distribution of fundamental cycle lengths still has a lower KL divergence from

that of the real-world Kel Kummer dataset than configuration models of the same degree

distribution (See Figure 6.9). It is insufficient that cycles of the correct lengths appear—in

order for a modeled network to look like a genealogical network those cycles must occur in

the correct locations, as captured by the distance to union distribution PU(x). While the Kel

Kummer Variant Target Model produces shorter fundamental cycles such as appear in the

real-world network, these cycles occur between two generations only. Contrast this with the

cycles formed in a modeled network with more generations, such as for the Torshan dataset.

These cycles are centered at unions and extend across many generations, which is much more

like the real world dataset.

6.4 Conclusion

We have presented modeling techniques for genealogical networks. The Target Model (see

Algorithm 4.6) forms networks which approximate a real-world genealogical network’s dis-

tribution of distance prior to union PU(x) and its distribution of the number of children

per household PC(x). These two metrics capture both the global and the local network

structure, respectively, and largely account for the structure of a genealogical network. We

have also discussed variations on this algorithm and have demonstrated that each modeling

choice comes with both advantages and disadvantages. The Target Model with auxiliary

ancestry (Algorithm 4.6) captures PU(x), given that we only examine the distribution in

terms of union edges rather than in terms of the vertices in the graph. Additionally, this

main algorithm results in networks which often dwarf their real-world counter parts. If we

run the Target Model and then remove the auxiliary ancestral lines, the resulting networks

are approximately the same size as the target real-world networks, but at the cost that we

form a larger proportion of infinite-distance unions than desired. The Variant Target Model
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Figure 6.8: The Variant Target Model (see Chapter 5) for the Kel Kummer dataset requires a
very large starting size. In fact, the model dies out with starting sizes below n0 = 2216, some
85% of the real world Kel Kummer network’s ntarget = 2588 vertices. This is such a large
initial generation that the model executes only a single iteration—forming infinite distance
unions among pairings of vertices in g0 and introduces children to these households—before
the modeled network surpasses ntarget in size. As a result, our model has only two generations,
and all unions are at an infinite distance, while most vertices do not form unions.
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Figure 6.9: The Variant Target Model (see Chapter 5) for the Kel Kummer dataset requires a
very large starting size. In fact, the model dies out with starting sizes below n0 = 2216, some
85% of the real world Kel Kummer network’s ntarget = 2588 vertices. This is such a large
initial generation that the model forms infinite distance unions among pairings of vertices in
g0 and introduces children to these households before the modeled network surpasses ntarget in
size. Even though our modeled networks generally have only two generations and all unions
are at an infinite distance, the Variant Target Model for the Kel Kummer dataset still out
performs its configuration model counterparts in terms of approximating the distribution
of lengths of fundamental cycles in the real-world Kel Kummer dataset. Knowing that the
Variant Target Modeled networks have fewer generations than the real genealogical dataset
shows that fundamental cycle lengths alone does not capture the full structure of the real-
world genealogical network. It is insufficient that cycles of the correct lengths appear—in
order for a modeled network to look like a genealogical network those cycles must occur in
the correct locations, as captured by the distance to union distribution PU(x).
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Figure 6.10: The Variant Target Model (see Chapter 5) for the Torshan dataset requires
only a modest initial population n0 = 380, some 12% of the real-world Torshan network’s
ntarget = 3008 vertices. The Variant Target Model captures the Torshan dataset’s distance
to union distribution, both when conditioned on a vertex’s being connected to union edges
(Top Row) and when not conditioned on unioning (Bottom Row). The Variant Target Model
for the Torshan dataset approximately mimics the size of the target network and the target
distribution of distance prior to union PU(x).
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Figure 6.11: We run the Variant Target Model as presented in Chapter 5 for the Torshan
dataset. Top: For a single instantiation of the Variant Target Model using the Torshan
dataset, we compare the lengths of the cycle basis of the undirected real-world target net-
work (blue) against that of an undirected Target Model (orange). We further compare the
Variant Target Model against a configuration model, created using the Target Model’s degree
distribution. Notice that the Variant Target Model’s cycle basis more nearly approximates
the distribution of lengths of cycle basis elements in the real-world target network. Bottom:
For 1000 instantiations of the Variant Target Model using the Torshan dataset, we form a
configuration model based on the Target Model’s degree distribution. We then measure the
lengths of elements in the cycle basis for the Variant Target Model and for configuration
model, then we measure the KL divergence between the Variant Target Model’s distribution
of lengths of cycle basis elements against that of the target network. We do the same for the
configuration networks. These histograms show that the Variant Target Model’s distribution
of cycle lengths more nearly approximates the distribution of fundamental cycle lengths in
the target network.
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Figure 6.12: For each of the real-world target networks (see Appendix A), we instantiate
1000 Variant Target Models. For each of the Variant Target Models, we instantiate a config-
uration model using the degree distribution of each Variant-Target-Model produced graph.
For each of the 1000 Variant Target Models and for each of the 1000 configuration models, we
find a cycle basis, and measure the length of each element in the basis to form distributions
of lengths of cycle basis elements. We then measure the KL divergence between each Variant
Target Model graph’s distribution of lengths of cycle basis elements and that of the target
real-world network. We take the median KL divergence score from the set of 1000. We treat
the configuration models similarly, finding the KL divergence between the target network’s
distribution of lengths of cycle basis elements and that of each of the 1000 configuration
models, recording the median performance. A smaller KL divergence indicates better agree-
ment between distributions and we note that almost universally the Variant Target Model
produces networks whose cycle bases are more similar to the cycle bases of the corresponding
real-world genealogical networks.
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(Chapter 5) never introduces common ancestral lines to the initial population. This variant

algorithm instead forms infinite-distance unions only until finite-distance unions are possible

and often results in shallow networks with a small number of very large generations but in

some instances produces modeled networks which look very like their real-world counterparts.

All three variations of the Target Model produce networks which do better than random

(when compared against configuration models) at approximating the lengths of the funda-

mental cycles in the target real-world network. The three variations differ in their ability

to capture the correct distance to union distribution PU(x). This shows that the lengths of

fundamental cycles alone is insufficient to describe a genealogical network’s structure and

argues in favor of using distance to union and number of children per household to capture

both global and local structure in genealogical networks.

Appendix A. Kinsources.net Genealogical

Datasets

Table A.1: Genealogical Network Datasets.

Network Data

Network Type & Name Vertices Edges Citation

Genealogical Networks

Datasets That Work with Our Model

Genealogical Network 173 1140 2014 https://www.kinsources.net/kidarep/dataset-173-

achuar-huasaga-chankuap.xhtml

Genealogical Network 150 795 1387 https://www.kinsources.net/kidarep/dataset-150-

achuar-pastaza.xhtml

Genealogical Network 22 216 378 https://www.kinsources.net/kidarep/dataset-22-ainu-

1880-as01.xhtml

Genealogical Network 3 659 1288 https://www.kinsources.net/kidarep/dataset-3-

anuta-1972.xhtmlj
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Network Name & Type Vertices Edges Citation

Genealogical Network 92 636 1151 https://www.kinsources.net/kidarep/dataset-92-

chenchu-1940-as02.xhtml

Genealogical Network 62 278 464 https://www.kinsources.net/kidarep/dataset-62-

dogrib-1911-25-59-nd04.xhtml

Genealogical Network 65 645 1097 https://www.kinsources.net/kidarep/dataset-65-

igluligmiut-1961-nu07.xhtml

Genealogical Network 164 128 114 https://www.kinsources.net/kidarep/dataset-164-

kaingang.xhtml

Genealogical Network 34 502 786 https://www.kinsources.net/kidarep/dataset-34-

netsilik-1922-nu09.xhtml

Genealogical Network 306 1463 1969 https://www.kinsources.net/kidarep/dataset-306-

nobles-ile-de-france-1000-1440.xhtml

Genealogical Network 229 798 1416 https://www.kinsources.net/kidarep/dataset-229-

nucoorilma-tingha.xhtml

Genealogical Network 251 619 1224 https://www.kinsources.net/kidarep/dataset-251-

nunivak.xhtml

Genealogical Network 58 371 718 https://www.kinsources.net/kidarep/dataset-58-

ojibwa-1930-nd07.xhtml

Genealogical Network 19 479 830 https://www.kinsources.net/kidarep/dataset-19-

ojibwa-1949-nd08.xhtml

Genealogical Network 7 815 1582 https://www.kinsources.net/kidarep/dataset-7-

pakaa-nova.xhtml

Genealogical Network 213 277 516 https://www.kinsources.net/kidarep/dataset-213-

sarmi.xhtml

Genealogical Network 20 868 980 https://www.kinsources.net/kidarep/dataset-20-

saudi-royal-genealogy.xhtml

Genealogical Network 18 294 441 https://www.kinsources.net/kidarep/dataset-18-

tikopia-1930.xhtml

Genealogical Network 216 87 111 https://www.kinsources.net/kidarep/dataset-216-

tiwi.xhtml
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Network Name & Type Vertices Edges Citation

Genealogical Network 242 125 202 https://www.kinsources.net/kidarep/dataset-242-

tlingit.xhtml

Genealogical Network 11 169 275 https://www.kinsources.net/kidarep/dataset-11-top-

of-the-mountain.xhtml

Genealogical Network 13 299 532 https://www.kinsources.net/kidarep/dataset-13-

tory.xhtml

Genealogical Network 28 782 1366 https://www.kinsources.net/kidarep/dataset-28-trio-

1960s.xhtml

Genealogical Network 41 48 86 https://www.kinsources.net/kidarep/dataset-41-

vedda-1905-as04.xhtml

Genealogical Network 66 244 481 https://www.kinsources.net/kidarep/dataset-66-

waimiri-atroari.xhtml

Genealogical Network 51 337 572 https://www.kinsources.net/kidarep/dataset-51-

wilcania.xhtml

Genealogical Network 32 738 1212 https://www.kinsources.net/kidarep/dataset-32-

yaraldi.xhtml

Genealogical Network 70 439 626 https://www.kinsources.net/kidarep/dataset-70-

genesis.xhtml

Genealogical Network 258 1423 3211 https://www.kinsources.net/kidarep/dataset-258-

todas.xhtml

Genealogical Network 115 4463 8416 https://www.kinsources.net/kidarep/dataset-115-

charlevoix.xhtml

Genealogical Network 24 1269 2395 https://www.kinsources.net/kidarep/dataset-24-ayd-

nl-yoruk-2005.xhtml

Genealogical Network 49 377 712 https://www.kinsources.net/kidarep/dataset-49-

alyawarra-1971-au01.xhtml

Genealogical Network 223 1263 2021 https://www.kinsources.net/kidarep/dataset-223-

samburu.xhtml

Genealogical Network 103 1695 3206 https://www.kinsources.net/kidarep/dataset-103-

tikuna-arara.xhtml

54
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Genealogical Network 80 3008 6074 https://www.kinsources.net/kidarep/dataset-80-

torshan.xhtml

Genealogical Network 158 240 395 https://www.kinsources.net/kidarep/dataset-158-

tikar.xhtml

Genealogical Network 45 4178 7351 https://www.kinsources.net/kidarep/dataset-45-

obidos.xhtml

Genealogical Network 78 147 242 https://www.kinsources.net/kidarep/dataset-78-pul-

eliya-1954-simpler-version.xhtml

Genealogical Network 73 330 622 https://www.kinsources.net/kidarep/dataset-73-

parakana.xhtml

Genealogical Network 87 105 245 https://www.kinsources.net/kidarep/dataset-87-

arara.xhtml

Genealogical Network 89 116 220 https://www.kinsources.net/kidarep/dataset-89-

nunamiut-1960-nu13.xhtml

Genealogical Network 287 4109 6517 https://www.kinsources.net/kidarep/dataset-287-

duu-rea.xhtml

Genealogical Network 61 2588 5651 https://www.kinsources.net/kidarep/dataset-61-

kelkummer.xhtml

Genealogical Network 128 3014 5454 https://www.kinsources.net/kidarep/dataset-128-

ammonni.xhtml

Genealogical Network 249 5016 10719 https://www.kinsources.net/kidarep/dataset-249-

baruya.xhtml

Genealogical Network 68 926 1951 https://www.kinsources.net/kidarep/dataset-68-

surui.xhtml

Genealogical Network 35 2049 4159 https://www.kinsources.net/kidarep/dataset-35-

chuukese-1947-1940.xhtml

Genealogical Network 30 2821 5079 https://www.kinsources.net/kidarep/dataset-30-

manus-1929.xhtml

Genealogical Network 56 2477 4015 https://www.kinsources.net/kidarep/dataset-56-us-

presidents.xhtml
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Genealogical Network 74 454 980 https://www.kinsources.net/kidarep/dataset-74-

arawete.xhtml

Genealogical Network 54 3151 4289 https://www.kinsources.net/kidarep/dataset-54-

feistritz-am-gael-1990.xhtml

Genealogical Network 44 585 1249 https://www.kinsources.net/kidarep/dataset-44-

torres-strait.xhtml

Genealogical Network 93 9595 14988 https://www.kinsources.net/kidarep/dataset-93-

sainte-catherine.xhtml

Genealogical Network 76 28586 51446 https://www.kinsources.net/kidarep/dataset-76-san-

marino.xhtml

Genealogical Network 307 18645 32439 https://www.kinsources.net/kidarep/dataset-307-

bwa-slam-biogsurvey.xhtml

Genealogical Network 194 8809 15643 https://www.kinsources.net/kidarep/dataset-194-kel-

owey.xhtml

Datasets with 0 Finite Unions

Genealogical Network 33 40 59 https://www.kinsources.net/kidarep/dataset-33-

angmagsalik-1884-nu01.xhtml

Genealogical Network 10 80 132 https://www.kinsources.net/kidarep/dataset-10-

apache-1932-nd01.xhtml

Genealogical Network 77 88 144 https://www.kinsources.net/kidarep/dataset-77-

apache-1935-nd02.xhtml

Genealogical Network 204 399 592 https://www.kinsources.net/kidarep/dataset-204-

dogon-konsogu-donyu.xhtml

Genealogical Network 39 118 192 https://www.kinsources.net/kidarep/dataset-39-

eyak-1890.xhtml

Genealogical Network 31 17 24 https://www.kinsources.net/kidarep/dataset-31-

family.xhtml

Genealogical Network 81 35 53 https://www.kinsources.net/kidarep/dataset-81-

gundangborn-1948-au02.xhtml

Genealogical Network 37 178 274 https://www.kinsources.net/kidarep/dataset-37-

igluligmiut-1921-nu05.xhtml
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Genealogical Network 226 116 176 https://www.kinsources.net/kidarep/dataset-226-

jie.xhtml

Genealogical Network 5 105 172 https://www.kinsources.net/kidarep/dataset-5-

konkama-1931-44-51-eu02.xhtml

Genealogical Network 14 168 221 https://www.kinsources.net/kidarep/dataset-14-

labrador-inuit-1776-nu02.xhtml

Genealogical Network 17 218 353 https://www.kinsources.net/kidarep/dataset-17-

lainiovouma-1952-eu03.xhtml

Genealogical Network 60 706 1177 https://www.kinsources.net/kidarep/dataset-60-

mbuti-forest-1957-af02.xhtml

Genealogical Network 2 303 537 https://www.kinsources.net/kidarep/dataset-2-

mbuti-village-1957-af03.xhtml

Genealogical Network 64 435 672 https://www.kinsources.net/kidarep/dataset-64-

melombo.xhtml

Genealogical Network 12 90 119 https://www.kinsources.net/kidarep/dataset-12-

miwuyt-1967-au03.xhtml

Genealogical Network 209 310 322 https://www.kinsources.net/kidarep/dataset-209-

mowanjum-kalumburu.xhtml

Genealogical Network 21 19 30 https://www.kinsources.net/kidarep/dataset-21-

ngatatjara-1966-au04.xhtml

Genealogical Network 42 304 472 https://www.kinsources.net/kidarep/dataset-42-

nunamiut-tareumiut-1900-nu12.xhtml

Genealogical Network 75 98 161 https://www.kinsources.net/kidarep/dataset-75-

nunamiut-1885-nu11.xhtml

Genealogical Network 79 139 201 https://www.kinsources.net/kidarep/dataset-79-

paiute-1880-nd09.xhtml

Genealogical Network 223 1263 2021 https://www.kinsources.net/kidarep/dataset-223-

samburu.xhtml

Genealogical Network 8 83 126 https://www.kinsources.net/kidarep/dataset-8-

semang-1924-50-as03.xhtml
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Genealogical Network 4 95 157 https://www.kinsources.net/kidarep/dataset-4-

shoshone-1860-nd10.xhtml

Genealogical Network 23 128 202 https://www.kinsources.net/kidarep/dataset-23-

shoshone-1880-nd11.xhtml

Genealogical Network 69 77 134 https://www.kinsources.net/kidarep/dataset-69-

slavey-1911-nd12.xhtml

Genealogical Network 171 219 371 https://www.kinsources.net/kidarep/dataset-171-

suya.xhtml

Genealogical Network 38 20 28 https://www.kinsources.net/kidarep/dataset-38-

wanindiljaugwa-1948-au06.xhtml

Datasets with Only 1 Finite Union

Genealogical Network 52 378 609 https://www.kinsources.net/kidarep/dataset-52-

apache-1936-nd03.xhtml

Genealogical Network 159 2975 5107 https://www.kinsources.net/kidarep/dataset-159-

cocama-cocamilla.xhtml

Genealogical Network 84 48 76 https://www.kinsources.net/kidarep/dataset-84-hare-

1956-nd05.xhtml

Genealogical Network 71 104 172 https://www.kinsources.net/kidarep/dataset-71-

igluligmiut-1960-61-nu08.xhtml

Genealogical Network 240 410 746 https://www.kinsources.net/kidarep/dataset-240-

kodiak.xhtml

Genealogical Network 90 1513 2217 https://www.kinsources.net/kidarep/dataset-90-

omaha-1880.xhtml

Genealogical Network 15 112 182 https://www.kinsources.net/kidarep/dataset-15-

oodnadatta.xhtml

Genealogical Network 91 64 109 https://www.kinsources.net/kidarep/dataset-91-

takamiut-1927-64-nu03.xhtml

Datasets with Too Few Generations, Insuficient Structure

Genealogical Network 36 272 445 https://www.kinsources.net/kidarep/dataset-36-

copper-1922-nu10.xhtml
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Network Name & Type Vertices Edges Citation

Genealogical Network 46 29 48 https://www.kinsources.net/kidarep/dataset-46-

hatfields-and-mccoys.xhtml

Genealogical Network 6 334 530 https://www.kinsources.net/kidarep/dataset-6-

igluligmiut-1949-nu06.xhtml

Genealogical Network 9 289 477 https://www.kinsources.net/kidarep/dataset-9-

konkama-1951-eu01.xhtml

Genealogical Network 48 367 671 https://www.kinsources.net/kidarep/dataset-48-

wanindiljaugwa-1941-au05.xhtml

Genealogical Network 254 216 286 https://www.kinsources.net/kidarep/dataset-254-

port-keats.xhtml

Genealogical Network 27 657 1166 https://www.kinsources.net/kidarep/dataset-27-

nyungar.xhtml
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