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ABSTRACT 
 

A Nonhuman Primate Model of the Out of Africa Theory Utilizing  
Chinese- and Indian-Derived Rhesus 

Macaques (Macaca mulatta) 
 

Jacob N. Hunter 
Neuroscience Center, BYU 

Master of Science 
 
 

Evidence suggests that certain genotypic variants associated with novelty-seeking and 
aggressiveness, such as the 7-repeat dopamine D4 receptor variant (DRD4-7R), short (s) allele of 
the serotonin transporter (5-HTT), and the low-activity variant of the MAOa promoter (MAOa- 
L), are more prevalent in human groups that radiated out of Africa than human groups that 
remained in Africa. Rhesus macaques (Macaca mulatta), like humans, are a widespread species of 
primates that needed to adapt to different regional environments with one group, Indian- derived 
rhesus macaques, largely occupying predictable and resource-rich environments, while the other 
group, the Chinese-derived rhesus macaques, has come to occupy less predictable and resource-
abundant environments. Rhesus macaques possess orthologues of these trait-related genes, making 
it possible to compare the frequency of genotypes associated with these traits between members of 
two strains. DNA was obtained from N=212 rhesus macaques (n=54 Chinese-derived, n=158 
Indian-derived) and genotyped for DRD4 (n=98), 5-HTT (n=190), and MAOA (n=97). Analyses 
showed that Chinese-derived subjects exhibited higher frequencies of the DRD4-7R and 5-HTT-s-
allele when compared to Indian-derived subjects. There were no strain differences in MAOA-L 
genotype groupings, but the Chinese-derived subjects exhibited a more frequent high-activity 
(MAOA-H-6R) allele when compared to the Indian-derived subjects. The results suggest that the 
Chinese-derived rhesus macaques possess a higher frequency of alleles associated with novelty-
seeking, impulsivity, and aggressiveness compared to their Indian-derived peers and that those 
genotypically-mediated traits may have beneficial to both humans and rhesus macaques as they 
spread into novel and unfamiliar environments. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: 5-HTT, DRD4, novelty-seeking, aggressiveness, rhesus macaque 
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A Nonhuman Primate Model of the Out of Africa Theory Utilizing Chinese- and Indian- 

Derived Rhesus Macaques (Macaca mulatta) 

 
The “Out of Africa” Theory 

 
The genus Homo is unique among primates in its extensive migratory tendencies, with 

the paragon of this phenomenon exhibited by Homo sapiens. Yet the earliest H. sapiens 

discoveries have been unearthed in Ethiopia, and date from 195,000 years ago (McDougall et al., 

2005), over 120,000 years before mankind began to spread throughout the world in the Out of 

Africa event. Moreover, an early wave of human emigration into the eastern Mediterranean met 

with failure, with those emigrants being replaced by Neanderthals (Homo neanderthalensis) once 

climate conditions worsened in the territories they had attempted to occupy (Garcea, 2012; Shea, 

2003). Put simply, mankind, in a sense, was an endemic species in Africa, until between 50- 

70,000 years ago (Fernandes et al., 2012; Quintana-Murci et al., 1999; Tierney et al., 2017; 

Timmermann & Friedrich, 2016). Then, in a brief period of geological time, H. sapiens spread 

extensively within Africa (Rito et al., 2019) and beyond to occupy both the Old and New World 

(Cann et al., 1987; Stringer & Andrews, 1988). 

The essential question emerges of which factors may have changed to allow our species 

to successfully expand throughout the world and outcompete other human species when the 

previous expansion of mankind that had failed. The expansion of humanity out of Africa was 

likely precipitated by number of factors, with possible contributing factors ranging from climate 

change (Carto et al., 2009; Derricourt, 2006; Finlayson, 2005) to advances in technology 

(Backwell et al., 2018; Brooks et al., 2006; Lombard, 2011; Wadley, 2010) to cultural shifts 

(d'Errico et al., 2017; d'Errico et al., 2005; Klein, 2008; Texier et al., 2010) and certainly any 

combination of these or other factors. While outside forces may have precipitated this radiation 
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another important potential factor that has not received as extensive a focus in the Out of Africa 

framework is the role of behavioral differences, particularly stable responses to the outside 

world, otherwise referred to as traits. Expanding within, and eventually radiating out of Africa 

was a risky endeavor, and one in which traits such as novelty-seeking, impulsivity, and 

aggressiveness may have been beneficial in contributing to the initial exploration and later 

occupation of novel territories. 

Temperament/Traits 
 

A sizeable literature in animals makes a case for the role of boldness, novelty-seeking, 

and aggressiveness in the expansion of species. Studying crayfish, Pintor et al. (2008) found that 

invasive species that were introduced into novel streams engaged in a bold behavioral response, 

which while increasing the risk of predation, also provided more opportunities to feed, whereas 

other species would avoid such danger. Fraser et al. (2001) utilized a combined laboratory and 

field technique to determine that within a population of Trinidad killifish (Rivulus hartii), 

subjects that left the safety of cover sooner in a tank test were more likely to expand further in a 

river once they were released, and the difference between the low and high novelty-seeking 

subjects, was more pronounced when the authors selected rivers with a high degree of 

environmental risk. In laboratory experiments, common frog (Rana temporaria) tadpoles and 

froglets from the mainland scored lower on boldness tests than individuals whose ancestors 

colonized offshore islands (Brodin et al., 2012). Within nonendemic populations of house 

sparrows (Passer domesticus), researchers have identified that species that live further from the 

locus of introduction are more likely to explore unfamiliar stimuli (Liebl & Martin, 2012) and 

consume unfamiliar food sources (Liebl & Martin, 2014). Taken together, the studies suggest 
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that traits of boldness and novelty-seeking may be beneficial in helping species modify their 

behavior to take risks and prosper in novel territories. 

Aggressiveness is also an important component of successful dispersing species, enabling 

species scoring higher on this trait to outcompete other species for access to resources (Hudina et 

al., 2014). This association is rather robust, with evidence from crustaceans (Pintor et al., 2008; 

Weis, 2010) to reptiles (Polo-Cavia et al., 2010), birds (Dow, 2016; Duckworth, 2008; 

Duckworth & Badyaev, 2007), and mammals (Harris & Macdonald, 2007) confirming the role of 

aggression in species expansion. It appears that this combination of temperaments favoring high- 

risk, high-benefit behaviors may carry significant benefit to those possessing this repertoire as 

they come to occupy novel environments and it is reasonable to infer the same may have been 

valid for humanity as it radiated out of Africa. 

Genetic Basis 
 

Temperament, which is composed of traits, is considered to carry a significant genetic 

component, as evidenced by narrow sense heritability that falls between 0.2 and 0.6 (Fagnani et 

al., 2017; Planalp et al., 2017; Saudino, 2005; Shiner et al., 2012). Although it is impossible to 

directly assess the role of traits in the Out of Africa expansion, it stands to reason that genotypes 

associated with traits such as novelty-seeking, impulsivity, and aggressiveness may provide a 

window into the potential role of these traits in mankind’s expansion into unfamiliar 

environments both within and outside Africa. Notable among these are variants at functionally- 

implicated genes such as the dopamine D4 receptor (DRD4), serotonin transporter (5-HTT, or 

SLC6A4), and monoamine oxidase A (MAOA). 

Studies show that the low-functioning dopamine D4 receptor 7R variant (DRD4-7R) is 

associated with risk-taking (Carpenter et al., 2011; Dreber et al., 2009; Møller & Garamszegi, 
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2012), impulsivity (Congdon et al., 2008; Schilling et al., 2014) and impulsive aggression 

(Dmitrieva et al., 2011; Fresan et al., 2007; Schmidt et al., 2002) in humans. Its principal 

association, however, is with the trait of novelty-seeking (Ebstein et al., 1996; Fidler et al., 2007; 

Hejjas et al., 2007; Korsten et al., 2010; Momozawa et al., 2005). Several studies show a positive 

correlation between geographic distance from Africa and frequency of the DRD4-7R, suggesting 

that that the trait of novelty-seeking, with which this genotype is implicated, may have played a 

role in movements out of Africa (Chang et al., 1996; Chen et al., 1999; Matthews & Butler, 

2011). Other studies show that within ethnic groups, the DRD4-7R is more common in those 

groups that travelled further from their locus of origin, when compared to groups that did not 

radiate as extensively (Chen et al., 1999). Furthermore, the DRD4-7R is less common in 

sedentary populations than it is in nomadic groups (Chen et al., 1999), where impulsivity and 

novelty-seeking may be adaptive in the challenging and resource-deficient environments that 

nomadic groups tend to occupy (Eisenberg et al., 2008; Jensen et al., 1997; Williams & Taylor, 

2006). These studies suggest that DRD4-7R-mediated traits, such as novelty-seeking and of 

impulsivity, may have been adaptive in human groups that ventured nomadically out of Africa 

(Ding et al., 2002). 

Polymorphisms in the upstream promoter regulatory region for the serotonin transporter 

(5-HTT) and monoamine oxidase A (MAOA) are frequently studied in relation to their purported 

contributions to aggressive and impulsive behavior. The promoter region for the 5-HTT is 

functionally biallelic, with an ancestral long (l) allele and a comparatively less functional short 

(s) allele (Bennett et al., 2002; Heils et al., 1996). Several studies suggest that the s-allele 

contributes to reactive and impulse aggression (Aluja et al., 2009; Beitchman et al., 2006; Retz et 

al., 2004) presumably via impairments in central serotonergic functioning (Bennett et al., 2002; 
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Reist et al., 2001), a well-known risk factor in impulsive behavior and aggression (Brown et al., 

1979; Higley et al., 1996; Higley et al., 1992; Howell et al., 2007; Kruesi et al., 1990; Lidberg et 

al., 1985; Linnoila et al., 1983; Virkkunen et al., 1995; Virkkunen et al., 1987). 

Monoamine oxidase-A (MAO) is an enzyme that is involved in the metabolism of 

serotonin, dopamine, and norepinephrine (Shih & Thompson, 1999). The promoter for its gene 

has several variants, grouped into two genotypes according to function: high functioning 

(MAOA-H) and low functioning (MAOA-L). Like the s-allele of the 5-HTT, the MAOA-L is 

frequently implicated in impulsive aggression (Beitchman et al., 2004; Gallardo-Pujol et al., 

2013; McDermott et al., 2009). 

Although both the 5-HTT and MAOA have received less attention in the Out of Africa 

framework than has the DRD4-7R, studies suggest the MAOA-L is common among groups that 

emigrated further from Africa, such as Asian populations, with a frequency approaching 0.70 

among Chinese individuals (Way & Lieberman, 2010). The s-allele is also more frequent in 

groups that radiated out of Africa (Haberstick et al., 2015; Murdoch et al., 2013) and as with 

MAOA-L, is also particularly common in Asian populations (Chiao & Blizinsky, 2010; 

Gelernter et al., 1997; Mrazek et al., 2013). Although only correlational and unable to rule out 

effects of neutral selection on these allele distributions, these findings provide important 

evidence for studies investigating whether the phenotypic expression of 5-HTT and MAOA 

genotypes may have been of benefit to populations whose ancestors explored new environments 

out of Africa, as has been suggested for the DRD4-7R (Ding et al., 2002). 

Rhesus Macaque Evolutionary History 
 

The fragmentary nature of the archaeological record, as well as difficulties in determining 

to which human species fossils and archaeological remains belong, limits the ability to test 



6 GENOTYPIC STRAIN DIFFERENCES IN RHESUS MACAQUES 
 

associations between these trait-related genotypic variants and exploration and occupation of 

novel territories. Moreover, with the advent of air and other forms modern rapid travel, genetic 

isolation and slow predictable migratory patterns likely have been obscured. Orthologs of many 

of the human genetic variants, however, are present in species of our closest-living relatives, the 

non-human primates. One particular species, the rhesus macaque (Macaca mulatta) is 

particularly important in translational biomedical, genetic, and behavioral research because of its 

extensive shared ancestry and genetics with humans (Gibbs et al., 2007). Studies indicate that 

rhesus macaques possess orthologues for the DRD4 (Coyne et al., 2015), 5-HTT (Bennett et al., 

2002; Wendland, Lesch, et al., 2006), and MAOA (Newman et al., 2005; Wendland, Hampe, et 

al., 2006), and the rhesus is frequently utilized to assess the relationship between these candidate 

genes and behavior (Barr & Driscoll, 2013; Coyne et al., 2015; Newman et al., 2005; Suomi, 

2006). Studies suggest that the association between DRD4-7R and risk-taking is present in 

rhesus monkeys (Coyne et al., 2015). While the biallelic 5-HTT appears to have arisen 

independently in both human and rhesus macaque lineages (Lesch et al., 1997; Shattuck et al., 

2014), studies suggest that it plays a role in behavioral adaptability (Shattuck et al., 2014), as 

well as aggression (Schwandt et al., 2010) in both species. The MAOA-L is likewise associated 

with aggressive behavior in rhesus monkeys, although this is often in the context of early 

parental neglect in both species (Karere et al., 2009; Newman et al., 2005). 

Like humans, rhesus macaques are a geographically widespread primate species, 

occupying a vast swath of territory across much of continental Asia (Satkoski et al., 2008). The 

ancestral rhesus macaque likely emerged in the resource-abundant tropical jungles of Indochina, 

diverging from the closely-related long-tail macaque (Macaca fascicularis) and traveling north 

(Hasan et al., 2014; Hernandez et al., 2007; 
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Xue et al., 2016) where it split into two populations, one that occupied China, and another that 

traveled west into India and the Near East (Hasan et al., 2014; Kyes et al., 2006; Smith & 

McDonough, 2005; Wu et al., 2013; Xue et al., 2016). While the Indian-derived population 

occupied warmer areas with more predictable conditions (Koyama & PB, 1981; Kumar & 

Solanki, 2003; Kumar et al., 2011; Neville, 1968; Seth & Seth, 1985; Southwick et al., 1961; 

Southwick & Siddiqi, 1977; Wada, 2005), the ancestors of Chinese-derived rhesus macaques 

occupy a diversity of habitats, from tropical islands off the Chinese coast (Jiang et al., 1991) to 

resource-poor limestone cliffs (Tang et al., 2016) to frigid, dangerous, and resource-poor 

mountain ranges (Lu et al., 2007; Wenyuan et al., 1993; Xie et al., 2012). Prior work has 

demonstrated variability in genetics underlying morphological and physiological adaptations to 

both the cold and warm conditions Chinese-derived rhesus macaques occupy (Wu et al., 2013). 

Genetically-mediated behavioral traits that maximized behavioral flexibility, as well competitive 

ability over resources in agonistic encounters may have also been adaptive in the varied 

environments Chinese-derived rhesus macaques came to occupy, although this has not been 

previously assessed. 

The Current Study 
 

Given that rhesus macaques possess orthologues of human candidate genes associated 

with novelty-seeking, impulsivity, and aggressiveness, and given that the two strains of rhesus 

macaques exhibited differences in the habitats they came to occupy during their evolutionary 

history, rhesus macaques may provide a model for comparing the frequencies of these candidate 

genes between the two strains, to determine if parallels are present between groups of humans 

and rhesus macaques that colonized unfamiliar and potentially less-predictable territories. This is 

an important step in determining whether genetically-mediated traits such as novelty-seeking and 
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aggressiveness may have been involved in the expansion of the two most-widely distributed 

species of primates on Earth. Shattuck et al. (2014) were the first to report a higher frequency of 

the s-allele in Chinese-derived rhesus macaque when compared to their Indian-derived 

counterparts, and other studies demonstrate both behavioral (Champoux et al., 1997) and 

temperament (Champoux et al., 1994) differences between the two strains. To the authors’ 

knowledge, no studies have examined strain-mediated differences in DRD4 and MAOA 

genotypes. Thus, the present study assesses strain differences in the frequencies of DRD4-7R, 5- 

HTT s-allele, and MAOA-L in the Chinese- and Indian-derived rhesus macaques. 

Hypotheses 
 

It is hypothesized that, compared to Indian-derived monkeys, Chinese-derived rhesus 

macaques will exhibit a relatively higher frequency of the DRD4-7R, 5-HTT-s-allele, and 

MAOA-L. 

Materials and Methods 

Subjects 

Subjects were 212 rhesus macaques (99 female, 113 male), genotyped for DRD4, 5-HTT, 

and MAOA. Subjects represented twelve birth cohorts from 1991-1992, and 1994-2003, and 

were housed at the National Institutes of Health Animal Center (NIHAC), located in Poolesville, 

Maryland, USA. In order to maintain genetic diversity within the colony, matings were planned 

and males were rotated between groups every three years. These measures resulted in an average 

identity-by-descent of 1.68%, approximately equivalent to the relatedness of third cousins, which 

others use as an acceptable criterion for outbred pedigree (Newman et al., 2005; Robin et al., 

1997; Wood et al., 2020). Subjects were part of an established extended pedigree that ranges 

back to the 1950s, and the geographical origin was known for each of the founders. None of the 
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founders came from the same region, indicating that the founders were unlikely to be related. 

Water was provided ad libitum, and monkeys were fed a diet of Purina® High Protein Monkey 

Chow (#5038), supplemented with fresh fruit three times a week and sunflower or other seeds, 

provided daily. All protocols were approved by the Institutional Animal Care and Use 

Committee of the National Institute on Alcohol Abuse and Alcoholism and the National Institute 

of Child Health and Human Development. 

Genotyping 
 

DNA was extracted from blood samples obtained during routine examinations when the 

subjects were infants, except for adults purchased as breeders, for which it was extracted in 

adulthood. While there was a total of 212 subjects, the sample size for each of the genotypes 

varied due to DNA availability at the time of sequencing: DRD4 (n = 98), 5-HTT (n = 190), and 

MAOA (n = 97) (See Table 1). Genotyping was performed using established procedures (Barr et 

al., 2004; Coyne et al., 2015; Newman et al., 2005). Genotype frequency did not deviate from 

Hardy–Weinberg equilibrium for DRD4 or 5-HTT, indicating that genetic variation within our 

subjects was constant. As MAOA is X-Linked, calculations for Hardy-Weinberg equilibrium 

were only performed on females, for which our sample did not deviate from Hardy-Weinberg 

equilibrium. 
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Table 1. Genotype Distributions and Percentage Frequencies 
   Total 
DRD4 Genotype    

7R No 7R   

19/19.4% 79/80.6%  98 
5-HTT Genotype    

l/l s-allele   
125/65.8% 65/34.2%  190 

MAOA Genotype    

5R 6R 7R  

40/41.2% 25/25.8% 32/33.0% 97 
Note. DRD4 Genotype: No 7R includes 5R, 5.5R, 6R, 6.5R. 5-HTT Genotype: l/s and s/s were 
combined for analyses. MAOA Genotype: 5R and 6R were combined, as per convention 
(Newman et al., 2005), to form the MAOA-H grouping, while 7R represented the MAOA-L 
grouping. Subsequent analyses suggested an independent effect for each of the alleles (5R, 6R, 
7R). Therefore, subsequent analyses were performed for each allele individually. 

 
 
DRD4 

 
DRD4 genotypes were determined by amplifying a ∼300 bp region on chromosome 14 

with forward primer of 5′-GTGGTCTACTCGTCCGTGTG and a reverse primer of 3′- 

CGTACTCCTCCCCTCCTCTC. Genotyping procedures for DRD4 are described in detail 

elsewhere (see Coyne et al. (2015)). Briefly, Applied Biosystem's Amplitaq Gold Fast PCR 

premix was used with an annealing temperature of 64°C for 35 cycles: 95°C, 10 min; 35× (96°C, 

3 sec; 64°C, 3 sec; 68°C, 10 sec); 72°C, 10 sec; 4°C, hold. Amplicons were separated by 

electrophoresis on 4-20% TBE gels at 210V for one hour, and the alleles (5R, 5.5R, 6R, 6.5R, 

and 7R) were identified by direct visualization following ethidium-bromide staining. 

5-HTT 
 

The serotonin transporter gene promoter region (5-HTT) was determined by amplifying 

from 25 ng of genomic DNA with primers (stpr5, 5′-GGCGTTGCCGCTCTGAATGC; intl, 5′- 

CAGGGGAGATCCTGGGAGGG) in 15-µL reactions with Platinum™ Taq and the PCRX 

Enhancer System kit, according to the manufacturer's protocol (Invitrogen™, Carlsbad, 
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California). Genotyping procedures for 5-HTT are described in detail elsewhere (see Barr et al., 

2004). Amplifications were performed on a Perkin Elmer® (Wellesley, Massachusetts) 

thermocycler (9700) with one cycle at 96°C for 5 min, followed by 30 cycles of 94°C for 15 sec, 

60°c for 15 sec, 72°C for 30 sec, and a final 3-min extension at 72°C. Amplicons were separated 

by electrophoresis on a 10% polyacrylamide gel, and the short (s, 388 bp) and long (l, 419 bp) 

alleles of the rh5-HTTLPR were identified by direct visualization after ethidium bromide 

staining. 

MAOA 
 

The monoamine oxidase gene promoter region (MAOA) was determined by using 

custom primers that flanked the site of interest. Genotyping procedures for MAOA are described 

in detail elsewhere (see Newman et al. (2005)). Polymerase chain reaction amplification of target 

sequence was carried out, and products were separated by electrophoresis and analyzed by 

autoradiography for genotype. Primers were derived from a 1.3-kb clone rhMAP-1327 (EMBL- 

GenBank accession number AJ544234) that was isolated from genomic DNA by polymerase 

chain reaction (PCR) with primers map1 5’-ATATACGCGTCCCAGGCTGCTCCAGAAAC-3’ 

and map2 5’-ATCTCGAGCTTTGGCTGACACGCTCCTG-3’. Oligonucleotide primers 

flanking the rhMAOALPR and corresponding to the nucleotide positions -1327 to-1309 (malpr1, 

5’-CCCAGGCTGCTCCAGAAAC) and -1103 to-1086 (malpr2, 5’- 

GACCTGGGAAGTTGTGC) with respect to the translation initiation codon of the rhesus 

monkey MAOA gene 5’ flanking regulatory region were used to generate 206 (5R)-, 224 (6R)-, 

or 242 (7R)-bp fragments. 
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Chinese Ancestry 
 

Ancestry was determined by using an extended pedigree to trace each subject’s ancestry 

back to the colony’s original founders. Strain type was determined by city and country of origin, 

as well as the date of birth of the original founders. Monkeys with less than 50% Chinese 

ancestry varied between 6.25%— 25% Chinese ancestry. Because this low degree of Chinese 

ancestry would likely have made the effect of Chinese ancestry in this group unclear, only 

Indian-derived monkeys (n = 158) and Chinese-derived monkeys with 50% or greater Chinese 

ancestry (n = 54) were included in the comparisons between strains of the genotypes in question. 

For the distribution of alleles by strain type, see Table 2. 

Table 2. Genotype Distributions and Percentage frequency by Strain Type 
 Indian-Derived Chinese-Derived Total 
DRD4    

No 7R 67/91.8% 12/48.0% 79 
7R 
Total 

6/8.2% 
73 

13/52.0% 
25 

19 
98 

 
5-HTT 

   

l/l 102/73.9% 23/44.2% 125 
s-allele 
Total 

36/26.1% 
138 

29/55.8% 
52 

65 
190 

 
MAOA 

   

5R 31/47.0% 9/29.0% 40 
6R 10/15.1% 15/48.4% 25 
7R 
Total 

25/37.9% 
66 

7/22.6% 
31 

32 
97 

Note. DRD4 Genotype: No 7R includes 5R, 5.5R, 6R, 6.5R. 
 
Data Analysis 

 
To compare DRD4, 5-HTT, and MAOA genotype frequency between the two strains, χ2 

tests of independence were performed, with strain type as the grouping variable, and frequency 

of the respective genotypes as the outcome variable. Following the established rhesus macaque 

DRD4 genotype groupings (Coyne et al., 2015), two groups were used in the analyses: subjects 
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which has no copies of the 7R (5R, 5.5R, 6R, and 6.5R) and subjects which had at least one copy 

of the 7R. Due to low number of subjects homozygous for the s-allele of the serotonin 

transporter (n = 5), s/s and l/s subjects were combined into one group (s-allele) for purposes of 

analyses, as has been done in other studies (Bennett et al., 2002; Schwandt et al., 2010). Because 

only 1 subject possessed the rare Xll genotype, it was excluded from 5-HTT analyses. As MAOA 

is X-linked (Newman et al., 2005), only males and homozygous females were included in 

analyses of MAOA genotype. Using the established allele groupings for rhesus monkeys (Karere 

et al., 2009; Newman et al., 2005), two MAOA genotypes groupings were used: a high activity 

(5R, 6R) and a low activity (7R) group. Preliminary analyses showed that a grouping by the 

alleles produced an effect that was independent of the typical genotype groupings; therefore, a 

separate set of analyses was performed with each of the three alleles (5R, 6R, and 7R) grouped 

separately, as has been done in other studies (Hunter et al., Manuscript in preparation; Karere et 

al., 2004). All analyses were conducted in SPSS, version 26 (IBM, 2019). 

As noted earlier, the colony is outbred; in order to assure that the effects are not due to 

overall relatedness, each of the genotypes (and additionally, each of the three alleles for MAOA) 

were dummy coded and analyses were performed to assess if the three genotypes are correlated. 

Results from these analyses showed no significant between-genotype correlations (p > .05), an 

indication that the effects of the three genotypes are not likely a result of relatedness. 

Results 

DRD4 

There was a significant association between strain and genotype frequency for DRD4, 

(χ2(1, N = 98) = 22.84, p < .001), with the Chinese-derived subjects exhibiting a greater 

frequency of the long allele (7R), when compared to the Indian-derived subjects (see Figure 1). 



14 GENOTYPIC STRAIN DIFFERENCES IN RHESUS MACAQUES 
 

 

Figure 1. Association between Strain Type and 
DRD4 Genotype 

100% 

80% 

60% 

40% 

20% 

0% 

 

 

No 7R 7R 
DRD4 Genotype 

 

Indian-derived Chinese-derived 
 
Results from a chi-square test showed a statistically significant association between strain and 
DRD4 genotype (χ2(1, N = 98) = 22.839, p < .001), with the Chinese-derived subjects more 
likely to possess the long allele (7R), when compared to Indian-derived subjects. Bars in black 
represent Chinese-derived rhesus macaques, while white bars represent rhesus macaques of 
Indian origin. 

 
 
 
5-HTT 

 
There was a significant association between strain and genotype frequency for 5-HTT (χ2 

 

(1, N = 190) = 14.79, p < .001), with the Chinese-derived subjects exhibiting a greater frequency 

of the s-allele, when compared to the Indian-derived subjects (see Figure 2). 
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Figure 2. Association between Strain Type and 
5-HTT Genotype 
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Indian-derived Chinese-derived 
 
Results from a chi-square showed a statistically significant association between strain and 5-HTT 
genotype (χ2 (1, N = 190) = 14.785, p < .001) with Chinese-derived subjects more likely to 
possess the s-allele, when compared to Indian-derived subjects. Bars in black represent Chinese- 
derived rhesus macaques, while white bars represent rhesus macaques of Indian origin. 

 
 
MAOA 

 
Using the conventional genotype allele groupings, there was not a significant association 

between strain and genotype frequency for MAOA (χ2 (1, N = 97) = 2.23, p = .135), although the 

frequency of MAOA-L was lower in Chinese-derived subjects than it was in Indian-derived 

subjects. When the frequency of the three alleles were compared separately, there was a 

significant association between strain and genotype frequency for MAOA (χ2 (2, N = 97) = 

12.18, p = .002), with the Chinese-derived subjects exhibiting greater frequency of the 6R allele, 

when compared to the Indian-derived subjects (see Figure 3). 
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Figure 3. Association between Strain Type and MAOa Allele 
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Results from a chi-square test showed a statistically significant association between strain and 
MAOA allele (χ2 (2, N = 97) = 12.182, p = .002), with the Chinese-derived subjects more likely 
to possess the 6R allele, when compared to Indian-derived subjects. Bars in black represent 
Chinese-derived rhesus macaques, while white bars represent rhesus macaques of Indian origin. 

Discussion 
 

Rhesus macaques have experienced several periods of broad geographic expansion (Xue 

et al., 2016), expanding within and beyond forested habitats into a variety of environments. 

Consistent with the study’s hypotheses, the descendants of groups that occupy more high- 

demand environments exhibited a greater frequency of the DRD4-7R and the 5-HTT s-allele, 

when compared to the descendants of subjects that are found in more stable, productive 

environments (See Figures 1 and 2, respectively). Using the conventional high-activity-/low- 

activity- MAOA genotypes (Karere et al., 2009; Newman et al., 2005), analyses failed to detect 

differences between the two geographic groups in the frequency of the MAOA-H genotype. 

When MAOA alleles were compared separately, however, a significant difference emerged 

between Chinese- and Indian-derived subjects, with Chinese-derived subjects exhibiting a 

greater frequency of one of the high-activity alleles, when compared to their Indian-derived 
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peers. Genetically-mediated traits favoring expansion into those novel environments, such as 

novelty seeking, impulsivity, and aggression may have played a role in the Chinese-derived 

subjects’ expansion to new territory, and competitive ability within those new environments. 

The DRD4-7R genotype is frequently associated with novelty-seeking and risk taking in 

humans (Bailey et al., 2007; Carpenter et al., 2011; Chen et al., 1999; Dulawa et al., 1999; 

Ebstein et al., 1996; Fidler et al., 2007; Hejjas et al., 2007; Korsten et al., 2010; Momozawa et 

al., 2005). Research in other animals indicate that these traits are implicated in the radiation of 

species into unfamiliar environments (Brodin et al., 2012; Liebl & Martin, 2014; Martin & 

Fitzgerald, 2005; Møller & Garamszegi, 2012; Mueller et al., 2014; Riyahi et al., 2016). Groups 

of humans whose ancestors radiated into unfamiliar environments farther from Africa possess a 

higher frequency of the DRD4-7R polymorphism than groups that exhibited less distant 

radiations (Chang et al., 1996; Wang et al., 2004). For example, Native Americans, whose 

ancestors nomadically crossed into the Americas from Asia via the Bering land bridge, have the 

highest frequency of the DRD4-7R found among humans (Chang et al., 1996; Chen et al., 1999; 

Tovo-Rodrigues et al., 2010), and this group occupies territories ranging from tundra to 

temperate forests, prairies, deserts, and tropical jungle. Among nomads in Africa, individuals 

possessing the DRD4-7R exhibit improved nutritional state over members of their group that 

lack this genotype (Eisenberg et al., 2008). It has been implied that this may be an outcome of 

exploiting novel opportunities, including territories and food sources. As with humans (Ebstein 

et al., 1996), studies in both vervet monkeys (Chlorocebus pygerythrus) (Bailey et al., 2007) and 

rhesus macaques (Coyne et al., 2015) indicate that variation in the DRD4 is associated with 

novelty-seeking, an important component of a bold and high risk-taking behavioral response that 



18 GENOTYPIC STRAIN DIFFERENCES IN RHESUS MACAQUES 
 

may have been adaptive to groups of rhesus macaques that colonized unfamiliar and challenging 

territories in China. 

Rhesus macaques are widely considered to be one of the most aggressive representatives 

of the genus Macaca (Wendland, Lesch, et al., 2006) and aggression can be adaptive in 

facilitating the geographic expansion of aggressive species (Duckworth, 2008; Duckworth & 

Badyaev, 2007; Pintor et al., 2008; žganec et al., 2014), enabling those species to outcompete 

less aggressive resident species for desired territories (Dow, 2016; Duckworth & Badyaev, 2007; 

Kumar et al., 2011; Polo-Cavia et al., 2010; Weis, 2010). One of the most replicated findings in 

biological psychiatry and psychology is the link between low or impaired central serotonergic 

functioning and impulsive aggression (Brown et al., 1979; Higley et al., 1996; Higley et al., 

1992; Howell et al., 2007; Kruesi et al., 1990; Lidberg et al., 1985; Linnoila et al., 1983; 

Virkkunen et al., 1995; Virkkunen et al., 1987). Studies show that the s-allele of the 5-HTT is 

associated with lower or impaired CNS serotonergic functioning (Bennett et al., 2002; Reist et 

al., 2001). Impulsivity and aggressiveness, which are more frequently exhibited by subjects that 

possess the s-allele (Aluja et al., 2009; Retz et al., 2004; Suomi, 2004), may be beneficial for 

groups facing challenging and dangerous environments, and it appears that, as with humans, 

populations of rhesus macaques whose ancestors entered less abundant environments also exhibit 

higher frequencies of the s-allele. 

Some authors suggest that rather than being associated with one specific trait, the s-allele 

may confer behavioral plasticity, in general, increasing the capacity to adapt to different 

environmental demands (Shattuck et al., 2014). It is of note that the s-allele emerged 

independently in humans and rhesus monkeys (Lesch et al., 1997; Shattuck et al., 2014), two 

species of primates characterized by their expansive geographic ranges and behavioral flexibility. 
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While speculative, behavioral sensitivity and plasticity may have also allowed for more varied 

responses to the environmental demands the ancestors of Chinese-derived rhesus macaques 

encountered as they occupied their current geographic range. 

When the Chinese and Indian-derived rhesus macaques were compared using the 

traditional MAOA-H grouping (5R/6R), there were no statistically significant differences in the 

frequency of MAOA-L and MAOA-H genotypes between the two strains. When examining each 

allele separately, however, the high-activity 6R allele was more frequent in Chinese-derived 

subjects that it was in Indian-derived subjects. Other studies in nonhuman primates suggest 

differences in both behavior (Karere et al., 2004) and monoamine metabolite concentrations 

(Hunter et al., Manuscript in preparation) between subjects that possess the 5R and 6R allele. 

While those alleles are frequently grouped together in studies assessing the MAOA-H genotype 

in rhesus monkeys, there may be differences between the 5R and 6R that are at variance with the 

conventional MAOA genotype groupings for this species. Studies from our laboratory show that 

rhesus macaque infants that possess the 5R rarely differ from those that possess the 7R in 

concentrations of the metabolites of serotonin, dopamine, and norepinephrine, and that in terms 

of monoamine metabolite degradation, it is those with the 6R that exhibit higher activity leading 

to higher monoamine metabolites (Hunter et al., Manuscript in preparation). While the extent to 

which these differences in monoamine metabolite degradation correlate to aggressive behavior 

remains unclear, future research may benefit from applying the approach of the current study and 

evaluating the effects of each allele separately in rhesus monkeys. 

One cannot rule out genetic drift and neutral selection as mediators of genotype frequency 

differences observed by the two populations of rhesus macaque. It is well-established that Indian- 

derived rhesus macaques exhibit less heterozygosity than Chinese-derived rhesus macaques, 
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suggesting that the Indian-derived population experienced a genetic bottleneck (Ferguson & Smith, 

2015; Hernandez et al., 2007; Melnick et al., 1993; Satkoski et al., 2008; Smith et al., 2006; Xie et 

al., 2012; Xue et al., 2016). Moreover, Chinese-derived rhesus macaques display a substantially 

larger wild population than the Indian-derived rhesus macaques (Liu et al., 2018), which may 

further complicate determinations of the potential role of neutral selection over genetic drift. While 

we were unable to assess the genetically-mediated behavior traits associated with the candidate 

genes studied, previous research abounds in support of the association between the candidate genes 

examined in this study, and their proposed behavioral traits in nonhuman primates. It is likewise 

possible that components of this behavioral repertoire may have also been selected for in the human 

groups that radiated out of Africa, for the 5HTT and MAOa genotypes, although to the authors’ 

knowledge, this has not been previously assessed. 

The current study utilizes a natural model of two strains of the same species that have 

adapted to very different environments to assess whether the frequencies of the genotypes 

associated with these traits are more frequent in subjects that have come to occupy more distal, 

varied, and demanding environments. Together the increased frequency of the genotypes of 

interest to the current study may have provided traits that allowed the Chinese-derived subject to 

better exploit novel resources and challenging environments and perhaps to aggressively acquire 

and defend new territory. This knowledge regarding genetic characteristics of the two populations 

may provide a scaffold for future studies evaluating behavioral and temperament differences 

between the two rhesus macaque strains. The findings of this study present tantalizing parallels 

with what is observed with the human Out of Africa expansion, and suggest that future research 

using rhesus macaques to model mankind’s expansion out of Africa may prove informative in 

delineating factors involved in our species spread and adaptation to novel environments. 
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