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ABSTRACT 

Phonation Threshold Pressure and Phonation Threshold Flow in Rabbits Treated 
With Inhaled Corticosteroids Versus Controls 

 
Heidi Joan Robison 

Department of Communication Disorders, BYU 
Master of Science 

 
This thesis is part of a larger series of studies being conducted by Kristine Tanner, PhD, 

Associate Professor in the Department of Communication Disorders at Brigham Young 
University (BYU). The larger project is funded by the National Institute on Deafness and Other 
Communication Disorders at the National Institutes of Health. This thesis primarily investigated 
the effects of combination inhaled corticosteroids (ICs) on aerodynamic measures of the voice. 
In recent years, an increase in the localized laryngeal side effects from IC treatment, including 
dysphonia, have been reported. This study employed a between-groups experimental design, 
with two groups of rabbit larynges having been exposed to either ICs or nebulized isotonic saline 
two times each day for eight weeks at The University of Utah. For this study, the independent 
variable is group condition (i.e., IC versus saline) and the dependent variables are two 
aerodynamic measurements made at the onset of phonation using a benchtop experimental setup, 
namely phonation threshold pressure (PTP; cmH2O) and phonation threshold flow (PTF; L/min). 
The results of this study indicate a significant difference in PTP and PTF between vocal folds 
treated with IC as compared to vocal folds treated with nebulized isotonic saline solution. 
Implications of this study suggest negative changes in the voice due to IC treatment. 

 
 

 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: phonation threshold pressure (PTP), phonation threshold flow (PTF), inhaled 
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DESCRIPTION OF THESIS STRUCTURE AND CONTENT 

This thesis, Phonation Threshold Pressure and Phonation Threshold Flow in Rabbits 

Treated With Inhaled Corticosteroids Versus Controls, is written in a journal style format. This 

paper was part of a larger, long-term project being conducted by Dr. Kristine Tanner. Funding 

was received for the project from the David O. McKay School of Education and the National 

Institute on Deafness and Other Communication Disorders, National Institutes of Health 

(1R01DC016269-01A1).  

The preliminary pages of the thesis reflect requirements for submission to the university.  

This thesis contains one reference list found before the appendices. The corresponding annotated 

bibliography is found in Appendix A. Appendix B contains materials necessary for the data 

collection and analysis. Appendix C contains LabChart ™ protocol and computer set-up 

information. Appendix D includes protocol for pressure calibration in LabChart ™ with 

Appendix E containing protocol for flow calibration in LabChart ™. Appendix F details rabbit 

tissue dissection and preparation protocol. Appendix G includes data acquisition protocol and 

Appendix H contains data segmentation and analysis protocol.   

Data from this thesis were accepted as a poster presentation for the Annual Convention of 

the American Speech-Language-Hearing Association in San Diego, CA (Convention canceled 

due to Covid-19). The data will from this thesis will be used in the long-term study conducted by 

Dr. Kristine Tanner and ultimately submitted to a peer-reviewed journal with the author of this 

thesis listed as one of multiple coauthors.  
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Introduction 

In the most recent report from the Centers for Disease Control (CDC), approximately 

7.7% of the total population, or 1 out of every 13 individuals of all ages in the United States has 

an asthma diagnosis (Centers for Disease Control, 2018). Asthma is a lung disease that affects 

people of all ethnicities, genders, living environments, and other demographic variables. It is 

reported that over 40 million adults and children in the US suffer from chronic pulmonary 

diseases, including 25 million cases of asthma (Akinbami & Lie, 2011; Mannino et al., 2000). 

For example, New Zealand has reported one of the highest prevalence of asthma diagnosis in the 

world, affecting approximately 15%-20% of children and adults (Sahrawat et al., 2014). 

According to Sahrawat et al. (2014), asthma is the third highest cause of disease-related long-

term disability in New Zealand.  

One of the hallmark characteristics of asthma is inflammation of the bronchi (Ihre et al., 

2004). Inflammation causes mucus to collect in the airway, causing many individuals to cough 

and clear their throats frequently to achieve their adequate voice for communication. Asthma 

attacks causing coughing, shortness of breath, chest tightness or pain among other symptoms 

vary from person to person and can be triggered by exercise, occupational irritants, or allergies 

(Mayo Foundation for Medical Education and Research, 2020).  

Inhaled Corticosteroid Treatment  

In an effort to reduce inflammation and the effects of asthma on quality of life, inhaled 

corticosteroids (ICs) are commonly prescribed. Short-acting inhalers, or rescue inhalers are used 

during asthma attacks as a quick relief, while longer acting inhalers are used provide control of 

asthma symptoms (Dong et al., 2015). The goal of IC treatment is to decrease the chronic 

inflammation of asthma and reduce airway hyperresponsiveness. This goal is targeted by 
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combining corticosteroids with long-acting beta agonist (LABA). Corticosteroids are 

bronchodilators used to reduce airway inflammation. Additionally, LABA are bronchodilators, 

but also inhibit mast (white blood) cell release and may reduce sensory nerve activation. The 

combination of these two drugs addresses the pathophysiology of asthma and is commonly 

referred to as combination IC. (Barnes, 2002). The positive effects of IC treatment can be seen as 

early as 30 minutes to two hours after treatment (Sahrawat et al., 2014), reducing the frequency 

and severity of asthma attacks. IC treatment have been effective in reducing morbidity and 

improving the health of asthma patients allowing many to live a normal life with improved lung 

function and reduced exacerbations (Barnes, 2010; Erickson & Sivasankar, 2010). While there 

are many advantages to IC treatment, the prevalence of systemic and local side effects must be 

considered when using ICs to treat asthma.  

Systemic side effects occur as a consequence of up to 80% of IC treatment dosage being 

swallowed. These side effects include glaucoma, cataracts, osteoporosis, bruising, adrenal 

suppression, growth suppression, psychiatric disturbances, and metabolic abnormalities (Barnes, 

2010; Bhalla et al., 2008). Local side effects include pharyngitis, laryngitis, throat irritation, 

oropharyngeal candidiasis, and dysphonia (Barnes, 2010; Bhalla et al., 2008; Sahrawat et al., 

2014). The degree of local side effects varies depending on the dose and frequency of IC 

treatment. While all of these side effects of IC treatment are important to consider, the most 

common complaint from up to 50%-55% of individuals using ICs is hoarseness (Ihre et al., 2004; 

Hassen & Hasseba, 2016).  

Pulmonologists, allergists, otolaryngologists, and pharmacologists as well as 

corresponding literature on asthma indicate that in addition to cough and throat clearing, vocal 

fatigue and different dysphonic voice qualities are associated with IC use (Ihre et al., 2004). 
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Dysphonia is characterized by a change in pitch, vocal quality, loudness, or effort that can impair 

functional living and quality of life (Galván & Guarderas, 2012). Dysphonia impacts 

individuals’ ability to effectively communicate in their home, work, and social environments. IC 

treatment induced dysphonia is likely caused by deposits of the medication in the oropharynx 

after administration as it has been reported that up to 80% of the treatment dosage may be 

deposited in the oropharynx (Erickson & Sivasankar, 2010; Galván & Guarderas, 2012).  

To prevent systemic and local side effects, researchers have suggested that when taking 

ICs in large doses (>800 μg), individuals should rinse with mouthwash immediately after 

treatment and use a spacer device, a holding chamber attached to the inhaler to slow the delivery 

of medication (Barnes, 2010). However, rinsing with mouthwash and using a spacer does not 

address the potential changes leading to dysphonia at or below the level of the vocal folds caused 

by IC treatment. More research needs to be completed on effective prevention of side effects 

from the treatment; however human research limitations must be addressed. For example, IC 

treatment cannot be withheld from those who need them, so it is difficult to determine why 

certain individuals experience what seems to be IC-associated voice disorders (Erickson & 

Sivasankar, 2010). For this reason, alternative models have been utilized in studying the effects 

of IC on the voice which include in vivo and ex vivo animal models. 

Animal Models of Human Phonation 

Considerable research has assessed the effectiveness of IC for treating asthma. However, 

only recently have the local side effects of IC treatment been a topic of research. Because of the 

invasive nature of studying the human voice, alternative methodologies including animal, 

cadaveric, and computational models have been used throughout the past decade to further our 

understanding of the voice (Howard et al., 2015). Both in vivo and ex vivo animal studies have 
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been performed, each with their individual advantages. In vivo models provide physiologic 

activation of the intrinsic muscles of the larynx, where ex vivo models use a simulated approach 

for muscle contraction and relaxation (Birk et al., 2017). 

In general, animal models involving pig, dog, cow, and rabbit larynges have been 

extensively studied in attempt to better understand the human voice and laryngeal pathologies 

(Maytag et al., 2013). Each of these animals have benefits in studying the human voice; but pig, 

dog, and cow histological laryngeal composition differs notably from the human histological 

structures, making the translation to human research on vocal fold layers and histology 

questionable. Maytag et al. (2013) proposed that rabbit larynges are the most accurate model to 

study the human voice due to similar tissue composition. Humans have three layers of lamina 

propria, each composed of different fibers. Human vocal folds have a superficial layer of loose, 

pliable, gelatin like substance, an intermediate layer of dense ground substance and elastin, and a 

deep layer of collagen. In most animals, the composition of the lamina propria layers differ. In 

rabbits, however, the composition is the same, making them a more ideal model for 

understanding the human voice and the potential effects medications may have on the vocal fold 

tissue (Maytag et al., 2013). Using rabbits to study the effects of ICs on the voice provides an 

opportunity to reliably quantify vocal fold vibrations and aerodynamic measures (Maytag et al., 

2013). In addition to their having similar tissue properties, the rabbit is small and ideal for in 

vivo drug administration. 

In 1993, Jiang and Titze established a benchtop setup to study ex vivo larynges. The 

model established by Jiang and Titze (1993) has been repeatedly used by researchers in the field 

to study a variety of aspects of the human voice. Maytag et al. (2013) reported a modified 

benchtop setup for studying ex vivo rabbit larynges. Benchtop setups allow research to be 
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conducted on a variety of measurements that may be used to compare animal phonation to voice 

production in humans. Ex vivo models provide a reliable alternative to in vivo experiments when 

using the benchtop setup. In comparison to in vivo, ex vivo experiments require static and manual 

control of the larynx via sutures or screws, whereas in vivo utilizes a complex connection of 

muscle contractions and movement of cartilages (Birk et al., 2017). Using a benchtop, 

researchers have found that they can manually apply force to the thyroid cartilage via sutures to 

provide a simulation of cricothyroid muscle contraction. Adduction is achieved in ex vivo 

larynges by applying force laterally to the arytenoid cartilage, simulating the lateral cricothyroid 

muscle movement (Birk et al., 2017). The benchtop setup has been well researched and adapted 

to make it as reliable as possible for translating to in vivo and human voice research. 

Additionally, the benchtop setup proposed by Jiang and Titze (1993) provides a way to simulate 

different voice disorders to effectively study the nature and characteristics of the voice without 

relying on human subjects (Birk et al., 2017; Döllinger et al., 2018; Hottinger et al., 2007). 

Benchtop Measures of Voice Function 

Aerodynamic and acoustic parameters as well as high speed imaging are frequently used 

to examine voice production. The acoustic signal is typically used in benchtop work to inform 

aerodynamic measures as it represents the vocal sound source but not the source-filter 

interactions. Phonation threshold pressure (PTP) and phonation threshold flow (PTF) are two 

aerodynamic measures that have recently been used in combination to provide insight into the 

effort required to initiate vocal fold oscillation, or phonation onset (Hoffman et al., 2012; Jiang et 

al., 1999).  

The aerodynamic measure most routinely used in benchtop work is PTP, measured in cm 

H2O (Jiang et al., 1999). Phonation threshold pressure (PTP) is defined as the minimum 
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subglottic pressure needed to initiate and sustain phonation (Jiang et al., 1999). Phonation 

threshold pressure has been used for many years to quantify disorders caused by vocal fold 

swelling and masses (Jiang et al., 1999) and has advantages of longstanding translational use that 

can be compared to humans. To measure PTP, direct or indirect measures can be taken. Three 

methods of directly measuring PTP including a translaryngeal catheter inserted through the nasal 

passageway down into the trachea passing through anesthetized vocal folds, a percutaneous 

catheter inserted into the trachea, and an intraesophageal catheter swallowed in a small balloon 

(Plexico et al., 2011; Plant, 2005; Plant et al., 2004). Measuring PTP directly has been done for a 

number of years, but it is very invasive in nature. Hence, direct measurements are not generally 

used in clinical settings. 

To facilitate the use of PTP as one measurement of voice function, indirect measurements 

were developed that are noninvasive and which can be used clinically. The common indirect 

approach is to measure intraoral pressure while having the speaker produce a string of voiceless 

bilabial stop consonants (Smitheran & Hixon, 1981). When using the indirect measure, 

subglottic pressure is equal to the intraoral pressure at the initial point of lip separation (Plant, 

2005). An advantage of studying an ex vivo larynx on the benchtop model is that PTP can be 

measured directly by applying a pressure sensor directly below the vocal folds, making it an 

accurate measurement and not just an estimate (Birk et al., 2017).  

 Phonation threshold pressure has been established as a valuable aerodynamic measure for 

many years and is used in the assessment of vocal fold pathologies (Hottinger et al., 2007; Jiang 

et al., 1999; Plant, 2005). Jiang et al. (1999) found statistical differences in PTP when evaluating 

individuals with vocal fold polyps compared to individuals with normal, healthy voices. Studies 

have shown that when there is an increase in vocal fold mass, caused by growths or swelling, 
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PTP will rise (Jiang et al., 1999). In general, there are four contributing factors to PTP values. 

These factors are 1) vocal fold viscosity, 2) velocity of the mucosal wave, 3) prephonatory 

glottal width, and 4) vocal fold thickness (Jiang & Titze, 1993; Plexico et al., 2011). An increase 

in vocal fold viscosity will increase PTP, a primary reason why vocal fold hydration is a key 

factor in maintaining a healthy voice (Plexico et al., 2011). There are many other physiological 

or biomechanical changes that can occur to the vocal folds due to vocal trauma or laryngeal 

pathologies, all of which change PTP in a predictable manner (Plexico et al., 2011).  

 In 2007, PTF was introduced as an additional aerodynamic measure to evaluate the voice 

(Jiang & Tao, 2007). PTF, measured as mL/s, is defined as the minimum amount of airflow to 

initiate stable phonation (Jiang & Tao, 2007). Similar to PTP, PTF is dependent on glottal 

configuration, tissue properties, and vocal tract loading (Jiang & Tao, 2007). In contrast to PTP, 

PTF has been shown to be more sensitive to changes in glottal width, leading some researchers 

to suggesting PTF is more clinically valuable than PTP (Hottinger et al., 2007). PTF is measured 

noninvasively by averaging the glottal flow rate during vowel production (Jiang & Tao, 2007).  

PTP and PTF have different diagnostic advantages but are both valuable aerodynamic 

measures. Pressure and flow can be measured at onset, during sustained phonation, and at the 

offset of phonation, with sustained and offset pressure being measured through tracheal puncture. 

The measures of PTP and PTF are specific to phonation onset. Subglottic air pressure is the key 

driving force for airflow through the larynx and both play a key role in phonation (Plant, 2005; 

Plant et al., 2004). Threshold values can be influenced by a number of factors including 

fundamental frequency (F0), vocal intensity, and laryngeal resistance (Plant et al., 2004). 

Abnormal changes in aerodynamic functions often indicate vocal fold pathologies and provide 
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diagnostic information regarding speech system dysfunctions, which has clinical significance 

(Hoffman et al., 2012; Hottinger et al., 2007; Jiang & Tao, 2007). 

Context for Current Study 

This thesis is part of a larger study being completed under Dr. Kristine Tanner with the 

long-term goal to prevent and cure voice disorders caused by IC treatment. The study examines 

the adverse effects of inhaled corticosteroids on the vocal folds and it aims to quantify threshold 

for voice function changes associated with ICs. 

Statement of Purpose 

The purpose of this study is to quantify aerodynamic measures of PTP and PTF in rabbit 

vocal folds treated with IC. Asthma prevalence is increasing by 10% each decade, with ICs 

becoming the treatment of choice. The increase in prevalence and administration of ICs has 

resulted in an increase of voice disorders caused by IC treatment in up to 50% of individuals 

with asthma (Galván & Guarderas, 2012; Williamson et al., 1995). 

In any study, a control group is necessary to know what changes occur in the 

experimental group. In many voice studies nebulized isotonic saline is used as the control 

treatment. In a study completed by Tanner et al. (2015), it was found that nebulized saline (0.9% 

Na+Cl-) improved voice production in individuals with Sjögren Syndrome, an autoimmune 

disease-causing vocal fold dehydration. An additional study completed by Welham et al. (2009) 

compared vocal fold scar healing in a treatment, sham, and control group. The sham group was 

treated with saline, while the control group received no treatment. Results of this study indicate 

that PTP, glottal resistance, and glottal efficiency were of similar values in the sham group and 

the control group, indicating reliability in using saline as a sham and/or control group for future 

studies. 
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Research Questions 

Based on the extant literature, it was hypothesized that IC usage would cause adverse 

effects on voice function in an excised larynx model. Specifically, it was hypothesized that 

rabbits that received IC treatment over time would have higher (i.e., worse) airflow 

characteristics as measured using PTP and PTF as compared to controls.  This study will address 

the following research questions:  

1. What are the onset pressure and airflow characteristics of rabbit vocal folds following 

eight-week exposure to inhaled corticosteroids?  

2. How do these onset pressure and airflow characteristics differ from control rabbit 

vocal folds exposed to inhaled saline?   

Method 

This thesis was part of a larger series of studies being conducted by Kristine Tanner, 

PhD, Associate Professor in the Department of Communication Disorders at Brigham Young 

University (BYU). The larger project was funded by the National Institute on Deafness and 

Other Communication Disorders at the National Institutes of Health. This thesis included a 

between-groups experimental design, with two groups of rabbit larynges having been exposed to 

either ICs or nebulized isotonic saline two times each day for eight weeks at The University of 

Utah. For this study, the independent variable was group (i.e., IC versus saline); the dependent 

variables were two aerodynamic measures at the onset of phonation using a benchtop 

experimental setup, namely PTP (cmH2O) and PTF (L/min). 

Statement of Research Ethics 

 All data collection and analysis procedures complied with research ethics for animal 

research. The Institutional Animal Care and Use Committee approved the project procedures at 
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both The University of Utah and BYU. The thesis methods were also compliant with BYU Risk 

Management policies.  

Larynx Samples 

Pre-Study Treatment Administration 

 The larynges for this thesis were obtained after all living animal procedures were 

completed. Preparation for this study was as follows. At The University of Utah, 22 male, white 

New Zealand retired breeder rabbits, ages seven to eight months, were obtained. Each rabbit 

weighed between 3.1 and 4.8 kg prior to quarantine.  Randomization of rabbits was performed 

using a random number generator and 11 rabbits were assigned to each group. For the IC group, 

rabbits were administered one puff of fluticasone propionate (45 mcg) and salmeterol (21 mcg) 

from a metered dose inhaler with spacer (i.e., an animal “puffer” with facemask) twice daily. The 

animals inhaled the ICs transnasally for 18 breaths. The 11 control rabbits received aerosolized 

saline solution twice daily, 18 transnasal breaths per administration, using an ultrasonic nebulizer 

and facemask. During the administration, the rabbits were awake and carefully handled using 

standard procedures. After receiving treatment for 8 weeks, the rabbits were euthanized. 

Immediately after euthanizing, a vertical incision was made on the anterior portion of the neck to 

expose the trachea and larynx after which the neck opening was maintained using metal 

hemostats and a fine scalpel was used to dissect away neck musculature. Tissue was dissected 

until the superior border of the thyroid cartilage and the inferior border of the trachea were 

exposed. Excision of the full length of the trachea, false vocal folds, true vocal folds, epiglottis, 

arytenoid cartilage, and the thyroid cartilage was performed. Once extracted, the larynges were 

placed in small vertical plastic tubes in phosphate-buffered saline (PBS) solution. The tubes were 

then placed in a tray of isopropyl alcohol to prevent ice crystals forming while flash freezing in 
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liquid nitrogen. Larynges were stored at -80°C in a research lab at The University of Utah until 

ready for transportation to BYU for data collection.  

Larynx Procurement 

Larynges were transported to BYU by the thesis study team in a foam cooler to room 105 

of the John Taylor Building Annex where they were stored. The larynges were placed in a 

ThermoScientific Freezer at -80°C for approximately 12 to 15 hours before data collection. Upon 

completion of all thesis data collection, samples were returned to The University of Utah.  

Fine Dissection 

On the day of data collection, each larynx was removed from the freezer and placed in a 

lukewarm bath to thaw approximately 30 minutes before trials were to be run. Once fully 

thawed, the larynges were removed from the PBS solution and finely dissected using X-ActoTM 

knives, scalpels, and small surgical scissors. Throughout the dissection process, larynges were 

kept hydrated by dipping them into PBS solution and spraying them with a 0.9% isotonic saline 

(Na+Cl-). Figure 1 is a photo of larynges in their PBS containers during the thawing process. 
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Figure 1 

Thawing Larynges Prior to Fine Dissection 

 
The trachea was transected, leaving approximately 2 cm to facilitate optimal stabilization 

on the benchtop set up. The epiglottis and superior portion of the thyroid cartilage above the 

thyroid notch were dissected. The false vocal folds were dissected along with any excess tissue 

to reveal the true vocal folds. Hemostats were used to hold tissue in place and provided more 

accurate dissection. Once finely dissected, a surgical suture was threaded above the anterior 

commissure to allow for anterior attachment and stability. After dissection, larynges were placed 

back into a small tube filled with PBS until ready to be mounted for data collection. Figure 2 is a 

photo of a rabbit larynx during the fine dissection process. 
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Figure 2  

Fine Dissection 

 

Benchtop Setup  

The benchtop setup designed by Jiang and Titze (1993) and modified by Maytag et al. 

(2013) was used to guide the benchtop setup for this study. A medical-grade air tank provided 

compressed air with low humidity (50 psi, <1% relative humidity). The tank was secured to the 

wall via chains in accordance with Joint Commission on Accreditation of Healthcare 

Organizations and the Occupational Safety and Health Administration standards. Air passed 

from the air tank through a respiratory flow head transducer (Model MLT300L, AD Instruments, 

Sydney, Australia) to a ThereaHeat heated humidifier (Model RC7000, Smiths Medical, Dublin, 

OH). Air was humidified and traveled through tubing connecting to a 20 cm aluminum foam-
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insulated custom pseudo lung attached beneath the breadboard benchtop (Thorlabs, Ann Arbor, 

MI). The pseudolung was suspended under the benchtop via benchtop pins and strings. Tubing 

protruded up from the pseudolung where two silicone devices designed to taper the airflow and 

narrow the passage from the tubing rested on the benchtop. A 10 mL syringe approximately the 

average width of rabbit larynges was situated over the two silicone devices and provided a 

location for the larynges to be mounted to the benchtop.  

On the surface of the breadboard, three adjustable single prong micropositioners were 

mounted on the benchtop used to stabilize the larynx and adduct the vocal folds. Two 

micropositioners were placed lateral to the syringe head and one was placed anterior. The 

anterior micropositioner provided a location for the string attached to the thyroid via suture in the 

thyroid cartilage to attach. A subtracheal outlet was drilled into the tubing directly above the 

benchtop where a physiological pressure transducer (Model MLT844, AD Instruments, Sydney, 

Australia) attached perpendicular via a stop cock to the upward vertical airflow. A microphone 

was placed approximately 10 cm at a 45° above the mounted larynx to collect acoustic data. A 

digital hygrometer was used to monitor and report room temperature and humidity during data 

collection. Figure 3 is a photo of the benchtop setup and its components. 
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Figure 3  

Benchtop Setup 

  

 

Acquisition System Calibration  

Prior to running trials, pressure and flow were zeroed and calibrated using LabChart™ 

version 8 (PowerLab ™, AD Instruments, Colorado Springs, CO). The respiratory flow head was 

attached to a Glottal EnterpriseTM pneumotach calibration unit to sample the airflow in L/min. 

The flow was then calibrated to 1 L/min. The pressure transducer was calibrated by the 

PowerLab ™ system to 40 mmHg.  

Mounting the Larynx  

When ready to run trials, a finely dissected larynx was mounted on the syringe head on 

the benchtop setup. The trachea was secured on the setup using Zip TiesTM and Teflon ™ tape if 

needed to prevent air leakage. The two lateral micropositioners were inserted into the arytenoid 

cartilage at equal levels to stabilize the larynx and adduct the vocal folds. The suture thread in 
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the anterior commissure of the thyroid was tied to the anterior micropositioner to stabilize the 

larynx. The micropositioner was tightened just enough to stabilize but not to lengthen the vocal 

folds. Figures 4 illustrates the mounted rabbit larynx and three micropositioners; Figure 5 is a 

close-up photo of the mounted larynx. 

Figure 4 

Larynx and Micropositioners                       
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Figure 5 

Close-Up of Benchtop Mount 

 

Data Collection 

Once mounted, 15 phonatory trials were run on each rabbit larynx. Air was supplied from 

the compressed air tank and gradually turned on by twisting a knob until phonation began. Air 

passed from the air tank, through the tubing and humidifier, up the pseudolung and syringe tip to 

vibrate the vocal folds. Once phonation was initiated, the air flow was held at a constant state for 

approximately 3 seconds and then turned off. During each trial, the acoustic signal, pressure, and 

flow were acquired. During all 15 trials the micropositioners and position of the larynx remained 

stable. Pressure was measured by the pressure transducer prior to air reaching the vocal folds and 

flow was measured by the flow meter. Tissue was kept hydrated throughout the 15 phonatory 

trials by spraying 0.9% saline solution every two to three trials as needed.  
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Data Analysis  

After collecting data, using a previously established methodology (Prigmore, 2020), 

markers were placed at phonation onset, steady state, and offset for each trial. The signals were 

the averaged within 10 ms of phonation onset. Phonation onset was determined acoustically and 

visually by listening to acoustic signals and analyzing recurring oscillations in the acoustic 

signal. Analysis was performed using a custom Matlab program (MathWorks, Natick, MA) 

written by Christopher Dromey, PhD, who is a member of this Thesis Committee. Phonation was 

analyzed for each phonatory trial using Praat, version 6.0.49 (Boersma & Weenink, 2020).  

Statistical Analysis 

 For purposes of the parent project, summary data for onset and sustained pressure, 

airflow, laryngeal resistance, and F0 were examined. Data distributions were examined visually 

using box plots. One-way analysis of variance was conducted for each of these variables. For this 

thesis, Student Newman-Keuls analyses were conducted for PTP and PTF using an alpha level of 

.05. Analyses were conducted using the Statistical Analysis System (version 9.4, Cary, NC) by 

Ray M. Merrill, PhD, in Life Sciences at BYU.  

Results 

 As described in the Method section of this document, several analyses were undertaken to 

address the proposed experimental questions. First, descriptive characteristics of the laryngeal 

specimens and environmental conditions in this study are provided. Second, descriptive statistics 

for PTP and PTF values are included. Lastly, this investigation’s experimental hypotheses are 

examined using parametric statistics as described below. Of note, one control group specimen 

was excluded from all analyses due to structural damage to the larynx that resulted in the 
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inability to properly mount and elicit phonation. Therefore, the final data set included 11 

larynges in the inhaler group and 10 in the control group. 

Specimen and Environment Data 

Measurements were taken using a digital caliper for information regarding tracheal, 

laryngeal, and vocal fold dimensions. Tables 1, 2 and 3 include precise measurements of each 

rabbit larynx used in the study reported in mm. Each of these measurements supports a thorough 

representation of the size of each specimen in this study and for comparison and replication 

purposes in other investigations.  
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Table 1  

Anatomical Tracheal Dimensions 

Group Trachea length (mm) Trachea width (mm) 

Inhaler   

1 12.52  7.15 

2 14.52  5.81  

3 14.10 5.80  

4 15.84 6.08  

5 12.32  5.64  

6 16.54  8.20  

7 14.35  6.03  

8 19.10  7.18  

9 13.18  6.75  

10 13.68 7.16  

11 14.56 6.08  

Control   

1 15.15  6.64  

2 19.53  7.04  

3 18.89  5.5  

4 16.24  7.16  

5 18.10  6.94  

6 16.00  7.09  

7 17.40  5.96  

8 15.47  7.28  

9 15.32  7.28  

10 12.56  7.75 
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Table 2  

Vocal Fold Anatomical Size and Dimensions 

Group Length of vocal folds 

(mm) 

Width of vocal folds 

(mm) 

Width from vocal fold to 

thyroid cartilage (mm) 

Inhaler    

1 5.73  1.10  3.58  

2 6.37  1.88  2.78  

3 6.65  1.56  3.30  

4 6.51  1.70  3.29  

5 6.37 1.68  3.65  

6 5.87  1.62  2.51  

7 6.82  1.61  3.64  

8 7.88  1.73  2.78 

9 7.33  1.73 2.78 

10 6.59  1.34  3.58 

11 7.63 2.00  3.76  

Control    

1 6.48  1.44  3.82  

2 6.62  1.61  3.76  

3 6.69 2.10  3.15  

4 7.15 1.84  3.53  

5 7.31 1.65  2.85  

6 6.44  1.59  3.73 

7 7.07  1.76 3.43 

8 7.03  2.03  3.23  

9 5.77  1.72  3.01  

10 6.68  1.85  3.42  

 



22 

 

Table 3  

Thyroid Cartilage Anatomical Measurements 

Group Protuberance to bottom (mm) Width (mm) 

Inhaler   

1 3.35  13.81  

2 2.44  13.75  

3 2.44  13.75  

4 1.77  12.93  

5 2.04 12.82  

6 4.32  12.85  

7 3.82  13.47  

8 2.80  14.19  

9 4.81  14.32  

10 4.75  14.02  

11 3.98  12.51  

Control   

1 2.71  13.81  

2 2.93 13.45  

3 3.54  14.46  

4 4.58  14.39  

5 3.66  13.72  

6 3.80  15.76  

7 4.38  15.11  

8 4.92  15.14  

9 3.78  13.52  

10 5.54  14.22  

 

For each data collection session, both room temperature and environmental humidity 

levels were recorded. Specifically, baseline and any changes in temperature were tracked. 
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Additionally, percent relative humidity was documented at baseline and at the conclusion of data 

collection for each laryngeal specimen. These data are provided in Table 4.   

Table 4  

Room Temperature and Humidity 

Group Session 
Date 

Initial 
Humidity 

Final 
Humidity 

Initial Temperature 
(°F) 

Final 
Temperature 
(°F) 

Inhaler      

1 9/27/2020* 35% 35% 75 75 

2 9/27/2019 38% 38% 75 75 

3 9/27/2019 37% 37% 75 77 

4 9/27/2019 37% 39% 75 75 

5 9/27/2019* 36% 36% 75 76 

6 10/11/2019 12% 14% 80 80 

7 10/11/2019 12% 12% 80 80 

8 10/11/2019 12% 15% 78 80 

9 10/11/2019 11% 14% 79 80 

10 10/11/2019 12% 13% 80 80 

11 10/11/2019 14% 14% 80 80 

Control      

1 1/10/2020 22% 24% 75 76 

2 1/10/2020 22% 21% 75 75 

3 1/10/2020 19% 21% 75 75 

4 1/10/2020 19% 20% 76 76 

5 1/24/2020 19% 20% 79 80 

6 1/24/2020* 19% 20% 79 79 

7 1/24/2020 21% 23% 79 79 

8 1/24/2020 23% 22% 80 79 

9 1/24/2020 20% 23% 79 80 

10 1/24/2020 23% 23% 79 79 

Note. *Replaced by approximates based on series of rabbits and time-frame comparisons. 
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Descriptive Statistics 

Descriptive statistics for PTP and PTF were generated for both the experimental (inhaler) 

and control (saline) groups. The mean PTP for the experimental group was 7.82 cmH2O (SD = 

2.58; Range = 5.18-11.84); mean PTP for the control group was 7.44 cmH2O (SD = 1.67; Range 

= 5.18-10.94). Regression line analysis for PTP in the experimental and control group is shown 

in Figure 6. The mean PTF for the experimental group was 0.10 L/min (SD = 0.04; Range = 

0.05-0.18); mean PTF for the control group was 0.07 L/min (SD = 0.03; Range = 0.02-0.12). 

Regression line analysis of PTF in the experimental and control group is shown in Figure 7. 

Average F0 for the inhaler group was 519.85 Hz (SD=66.61); average F0 for the control group 

was 446.91 Hz (SD=130.63). Visual inspection of PTP and PTF outcome data using box plots 

and distribution examination were compatible with the assumptions for parametric analysis of 

variance. 

Figure 6  

Regression Line Analysis for PTP Inhaler and Control Group 

Control:   Inhaler:  
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Figure 7 

Regression Line Analysis for PTF Inhaler and Control Group 

Group Comparisons 

A repeated measures one-way analysis of variance (ANOVA) was undertaken to examine 

the effect of inhaler use on PTP. The results indicated that inhaler use significantly influenced 

PTP across phonation trials for both groups [F(35, 279) = 124.09, p = 0.0001]. A post-hoc 

Student-Newman-Keuls analysis indicated that mean PTP for the inhaler group was significantly 

different than the mean PTP for the control group, p < .05. 

Additionally, a repeated measures one-way ANOVA was undertaken to examine the 

effects of inhaler use on PTF. The results indicated that inhaler use significantly influenced PTF 

across phonation trials for both groups [F(35, 279) = infty, p = 0.0001]. (Note: an infinity f value 

is defined as an f-value that is so large it cannot be estimated but is an indication of high 

likelihood of differences among the groups.)  A post-hoc Student-Newman-Keuls analysis 

Control:   Inhaler:  
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indicated that mean PTF for the inhaler group was significantly different than the mean PTF for 

the control group, p < .05. 

Segmentation Reliability 

 Although data reduction and aerodynamic analysis procedures were largely automated 

via a custom Matlab program, segmentation in LabChart was required for original identification 

of phonation onset. Two investigators with extensive training in segmentation procedures 

identified phonation onset for each trial. To ensure accuracy of segmentation prior to automated 

Matlab analysis, 10% of samples were re-segmented by each examiner for purposes of intrajudge 

reliability. Intrajudge reliability for each variable resulted in Pearson correlations greater than or 

equal to .98. Additionally, each examiner re-segmented 10% of inhaler and control samples 

originally completed by the other examiner (i.e., interjudge reliability). Interjudge reliability was 

calculated using ICC and reported to be greater than or equal to .948. These results indicate 

acceptable reliability for the segmentation process. 

Results of this study indicate significant differences in PTP and PTF measures in rabbit 

vocal folds treated with ICs over 8 weeks as compared to rabbit vocal folds treated with 

nebulized isotonic saline solution.  

Discussion 

The current study sought to measure the effects of ICs on aerodynamic measures of the 

voice. The purpose of this research was to quantify aerodynamic changes in the voice due to ICs 

treatment as there has been an increase in voice disorders caused by ICs in recent years. Rabbits 

treated with ICs for 8 weeks were compared to rabbits treated with nebulized isotonic saline 

solution. The independent variable was group (IC versus saline) while the dependent variable 

were PTP (cmH2O) and PTF (L/min). The primary questions of this study were 1) what are the 
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onset pressure and flow characteristics of rabbit vocal folds following 8-week exposure to 

inhaled corticosteroids and 2) how do these onset pressure and airflow characteristics differ from 

control rabbit vocal folds exposed to inhaled saline? In collecting data, a benchtop setup was 

used. Operational procedures remained consistent throughout each dissection, trial, and analysis 

using current research on benchtop setups to optimize the results of the study. As hypothesized, 

analysis of the data showed significant differences between PTP and PTF in the inhaler and 

experimental group.  

PTP and PTF Characteristics   

 Aerodynamic measurements of voice (i.e., PTP and PTF) are frequently used to examine 

vocal fold health due to ability to reflect differences in voice productions that can arise from a 

variety of factors (Hoffman et al., 2012; Jiang et al., 1999). The minimum amount of subglottal 

pressure and airflow needed to initiate phonation is defined respectively as PTP and PTF. 

Extensive research has been completed on how to interpret PTP values regarding vocal fold 

health. Researchers have found that when PTP increases it is commonly due to growths or 

swelling of the vocal fold, specifically in changes to vocal fold viscosity, velocity of the mucosal 

wave, prephonatory glottal width, and/or vocal fold thickness (Jiang & Titze, 1993; Plexico et 

al., 2011). Results of this study indicate higher PTP values in vocal folds treated with ICs as 

compared to vocal folds treated with nebulized isotonic saline. Onset pressure characteristics of 

rabbit vocal folds following 8-week ICs treatment revealed a rise in PTP, standard deviation was 

higher, and on average the range of values increased, showing greater variability in PTP values 

when treated with ICs. Likewise, while PTF is a relatively new measurement, it has been found 

that when PTF increases it is commonly due to changes in glottal width due to glottal 

configuration, tissue properties, and vocal tract loading (Jiang & Tao, 2007). The results of this 
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study revealed PTF values in rabbit vocal folds treated with ICs to have higher PTF on average 

with a larger standard deviation and range.  

It might be hypothesized that the increase in PTP and PTF values in rabbit vocal folds 

treated with ICs over 8 weeks is due to histological changes of the vocal folds. The purpose of IC 

treatment is to decrease chronic inflammation of the airways caused by asthma. While ICs are 

effective in decreasing inflammation in the lower airway, local upper airway––and specifically 

laryngeal––side effects such as dysphonia can occur. These laryngeal changes may be 

characterized by laryngitis and hoarseness in a majority of individuals who use ICs. It has been 

reported that ICs may cause the vocal folds to swell, leading to increased mass and histological 

changes to the vocal folds (Ihre et al., 2004; Hassen & Hasseba, 2016; Sahrawat et al., 2014). 

The results of this study are compatible with the literature, indicating that ICs increase the mass 

and stiffness of the vocal folds, therefore increasing PTP and PTF and producing a negative 

impact on phonation.  

Central Tendency and Acoustic Differences Between Groups 

It is notable that the inhaler group had a greater standard deviation than the control group. 

Greater variation among rabbits in the inhaler group for PTP and PTF is similar to the variation 

that is observed among individuals with certain types of voice disorders. It is logical to presume 

that individuals with voice disorders associated with ICs would vary in their clinical presentation 

and voice characteristics. Several different voice characteristics and presentations have been 

reported in the literature (Barnes, 2002; Bhalla et al., 2008; Dogan et al., 2007; Galván & 

Guarderas, 2012; Gallivan et al., 2007). Therefore, the increased standard deviation observed in 

the inhaler group as compared with the control group supports the overall generalizability of the 

animal model used in this study (Erickson & Sivasankar, 2010; Holmberg et al., 2003).  
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In the current study, it was also observed that the inhaler group had a slightly higher F0 

on average than the control group. It is anticipated that with increased swelling F0 would be 

lower as it has been repeatedly found that as mass increases fundamental frequency decreases; 

however, results of this study indicate F0 increased in the inhaler group with an average of 

519.85 (SD=66.61) as compared to the control group with an average F0 of 446.91 (SD=130.63). 

The increase in F0 may be due to not having thyroarytenoid (TA) muscle contraction on the 

benchtop setup as the TA muscle is primarily responsible for lowering pitch. It is anticipated that 

TA muscle contraction may play a bigger part in what causes disordered vocal folds to have 

lower F0. Additionally, TA muscle contraction has been found to be a key factor in individuals 

with voice disorders including hoarseness (Chhetri & Neubauer, 2015). 

Relationship Between PTP and PTF 

Phonation occurs when there is enough pressure (PTP) and flow (PTF) for the vocal folds 

to vibrate. A number of theories and laws govern this principle and provide further 

understanding of the physiology of phonation. Specifically, the Bernoulli Effect provides clarity 

on the relationship between pressure and flow when it comes to phonation. According to 

Bernoulli’s effect, velocity of airflow increases as it travels through narrowing vocal folds, upon 

which negative pressure causes the vocal folds to be drawn together, closing the glottis. Air 

pressure builds up beneath the vocal folds until it reaches a threshold level high enough to 

separate the vocal folds. When the pressure is high enough, airflow occurs through the glottis, 

separating the vocal folds and releasing air. The separation of the vocal folds occurs until the 

myoelastic characteristics of the vocal folds and intrinsic muscles of the larynx take over to draw 

the vocal folds back together. This process of drawing the vocal folds together, building up 

pressure, increasing velocity, decrease in pressure, and drawing the folds back together is 
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repeated to create phonation. Each cycle produces a single pulse of air and when combined 

produces phonation (Seikel et al., 2010). 

The amount of pressure needed to initiation phonation is PTP, one of the primary 

measures of this study. Similarly, the amount of flow needed to initiation phonation is PTF. 

Pressure and flow are related in such a way that pressure drives flow through the glottis. It is 

expected that as pressure increases flow will also increase if resistance stays constant. This study 

found consistent results as both PTP and PTF increased on average compared to the control 

group.  

Translation Potential to Human Subjects  

The goal of this study was to quantify aerodynamic changes in the voice due to ICs usage 

to take further steps to understanding changes in the human voice due to ICs usage. In translating 

this study to humans, it has been found that rabbit vocal folds a valid model of human vocal 

folds due to similar tissue composition. Using rabbit vocal folds, this study was able to 

independently examine how possible changes to vocal fold tissue composition changes 

phonation. As the layers of the vocal folds change, the nature of vocal fold vibration will also 

change. In this study, it was hypothesized that vocal folds swell due to ICs usage, therefore 

pressure and flow measurements would be adversely impacted. With an increase in mass of the 

vocal folds, higher pressure and flow is required to initiate phonation. This pattern found in the 

rabbit larynges can be hypothesized to be identical to how human vocal folds would react to ICs 

usage considering the similar tissue composition.  

Limitations 

Despite best efforts of the researchers, there are limitations to this study. Using rabbit 

vocal folds as a model for human voice production has been found to be reliable due to similar 
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tissue composition; however, the quiet nature of rabbits may be a limiting factor. When 

translating the results to human models, there are many additional factors that influence the 

health of the vocal folds including voice usage and intensity of phonation. This study aimed at 

identifying only aerodynamic measures; therefore, isolating this measure was effective in rabbit 

vocal folds.  

The benchtop setup established by Jiang and Titze (1993) was utilized in this study; 

however, in order to use the benchtop setup fine dissection of excess tissue was completed to 

reveal the true vocal folds. Despite best efforts, human error in dissection is a limitation. Using 

knowledge from classes, training from other lab members, and researching additional 

information, lab members attempted to consistently dissect equal amount of tissue for each 

larynx. Due to human error, some larynges may have had more or less tissue, possibly adversely 

impacting measurements. Additionally, while using the benchtop setup, a small microphone was 

used to collect acoustic data. During the trials, the microphone was frequently repositioned in 

hopes of optimizing the acoustic signal. Because of moving the microphone, acoustic signal 

could be different for larynges worked on different days. Only male rabbits were included in this 

study. While this was an effective way of controlling experimental factors, it is unknown if 

results would be similar in female rabbits. Female rabbits were not included due to prominent fat 

deposits that can obscure laryngeal view.  

Despite these and other limitations such as small sample size and general methodological 

constraints with benchtop models, this study represents an important initial step toward 

understanding how voice function is affected by IC use. 
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Implications for Future Research 

 This study provides a foundation for future work regarding the effects of ICs on the 

voice. This study showed that there is a significant difference in aerodynamic measures when 

using rabbit models to study the voice. Future studies may utilize additional animal and human 

models to further examine the effects of ICs on the voice. Rabbits are the most valid model; 

however, how this translates to human research is still unclear. Therefore, future research could 

look at transitioning these results to human models and comparing the differences between 

aerodynamic measures in human and rabbit larynges that have been treated with ICs.  

 In addition to using human models, further research could be completed utilizing rabbit 

vocal folds. This study exclusively used data obtained ex vivo. Future studies could further look 

at in vivo acoustic parameters of the voice in comparing ICs and inhaled saline solution and well 

as videostroboscopy to visualize the health of the vocal folds as they receive treatment. Due to 

the limiting factor of rabbit fold vocal intensity, an additional implication for future research 

could be to determine the impact of voice usage in combination with ICs has on vocal quality. 

The benchtop setup used for this study has been well researched over the years; however, 

in the voice lab where trials were run, continued modification of the benchtop setup would be 

beneficial. Future studies could specifically look at automating a saline solution hydration 

system to have controlled hydration for each larynx and standardizing the location of the 

microphone for acoustic signal. Additionally, future studies could look at detailing a protocol 

with specific videos/pictures of what tissue to dissect and how much 

 Because this study is part of a larger, five-step process, future steps of this project that 

have been outlined include using an in vivo rabbit model to determine the threshold for and 

reversibility of ICs effects on the voice using transnasal videoendoscopy. Measurements will be 
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taken at baseline and every 2 weeks during treatments with the purpose of testing to see if the 

effects of ICs can be reversed.    

Conclusion 

 Results of this study show there is a significant difference in aerodynamic measures of 

PTP and PTF due to ICs usage as compared to a control group. It was found that PTP and PTF 

values on average increased with ICs treatment as well as in the standard deviation and range. 

The findings of the current study are vital for future research regarding the effects of ICs on the 

voice. Quantifying aerodynamic changes at threshold in the voice due to ICs usage allows further 

research to be done that can translate to human subject research.  
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APPENDIX A 

Annotated Bibliography 

Phonation threshold pressure has been extensively researched in the voice field; however, 

phonation threshold flow is a relatively new measurement. A comprehensive analysis of the 

literature regarding PTP, PTF, ICs use, animal models to study the voice, and the benchtop setup 

provided relevant information necessary for the current study. This literature review includes 

relevant articles pertaining to different aspects of the study.  

Bhalla, R. K., Jones, A. S., & Roland, N. J. (2008). Prevalence of pharyngeal and laryngeal 

complications in adult asthmatics using inhaled corticosteroids. The Journal of 

Laryngology & Otology, 122(10), 1078-1083. doi:10.1017/s0022215107001272 

Purpose of the Study: Inhaled corticosteroids have systemic and local side effects.  

Systemic side effects have been well reported, however the literature and research on 

local side effects is lacking.  The purpose of this study was to examine and report on the 

prevalence of local side effects resulting from the use of inhaled corticosteroids. It is 

essential that researchers understand the prevalence of local side effects so that 

therapeutic strategies can be developed to manage the effects and risk factors of ICS 

usage.  

Method: This study was a questionnaire based observational design.  Participants 

were recruited from two local general practices using asthma nurse specialists to assist in 

selecting participants based on who was currently prescribed ICs. A pilot study of 20 

individuals who had symptoms of pharyngolaryngitis due to ICs completed a respiratory 

symptom questionnaire. After the pilot study, 190 patients were administered the 

questionnaire via mail. Asthma severity was classified as mild, moderate, or severe using 
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the British Thoracic Society guidelines for each participant. Areas assessed in the survey 

included smoking history, co-morbidities, preventative measures, and side effects of ICs 

including hoarseness, voice weakness, voice loss, sore throat, throat irritation, and long-

standing cough. Additionally, the number, type, strength, dosing regime, and duration of 

ICs use were assessed. Participated recorded their throat discomfort using a. 10-poiont 

visual analogue scale.  

Results: The survey had a 75.8% response rate, and the majority of the responses 

were from patients with mild or moderate asthma who had been using ICS for 1-5 years. 

It was found that asthma severity (mild, moderate, or severe) was directly correlated with 

a longer duration of ICS use. The mean discomfort score on the 10-point visual analogue 

scale was 4.26, with 0 indicating no discomfort and 10 indicating severe discomfort. In 

general, side effects from ICS were observed immediately after use or after 3 months. 

Results show that the longer an individual used an inhaler, the more susceptible they 

were to have dysphonia including weakness of their voice, throat irritation, and 

hoarseness.  Overall, hoarseness, sore throat, cough, and throat irritation were found to be 

more prevalent than the researchers initially expected.  

Conclusion: This observational study found that there are both pharyngeal and 

laryngeal local side effects caused by using ICs. Some side effects of inhalers use, such 

as voice weakness, are directly attributable to the use of corticosteroids. Additionally, 

some side effect, such as throat irritation, are a result of using combined corticosteroids 

(steroids and non-steroids). It was determined that there is a correlation between ICs use 

and local side effects in the oropharynx and larynx.   
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Relevance to the Current Work: This study provides evidence of the negative 

local side effects associated with the use of ICs in asthma treatment. The current study is 

specifically looking at the aerodynamic side effects of using ICs that indicate dysphonia. 

Further examining the aerodynamic side effects will expand our understanding of local 

side effects and how they manifest.  

Birk, V., Döllinger, M., Sutor, A., Berry, D. A., Gedeon, D., Traxdorf, M., Wendler, O., Bohr, 

C., & Kniesburges, S. (2017). Automated setup for ex vivo larynx experiments. The 

Journal of the Acoustical Society of America, 141(3), 1349–135 

https://doi.org/10.1121/1.4976085  

Purpose of the Study: The purpose of this study was to minimize the duration of 

experimental procedures in ex vivo larynx studies. The researchers aimed to ease the 

variation of parameters in experiments so as to minimize the influence of degeneration 

and dehydration of the larynx tissue due too extensive experimental time. The possibility 

of achieving an automated onset detection was also examined during this study. 

Researchers attempted to create a standardized experimental procedure to maximize the 

number of experimental conditions implemented in a single larynx in the shortest 

possible amount of time. Automating a set up in attempts to minimize dehydration while 

still acquiring sufficient data.  

Method:  A customized, computer-controlled setup was developed for this study 

using a time-dependent variation of vocal fold elongation and adduction. Additionally, an 

electro-mechanical device was custom developed for positioning the laryngeal cartilage 

and mounting the larynx.  The ex vivo porcine larynx was mounted on an artificial 

stainless-steel trachea with a hold drilled 130mm below the glottis to measure subglottal 



43 

 

pressure via an XCS-93-5PSISG pressure sensor. To stimulate cricothyroid muscle 

contraction, an electro-mechanical setup would apply a defined amount of force on the 

thyroid cartilage, tilting it. An additional device was developed to achieve arytenoid 

cartilage rotation to adduct the vocal folds.   

Results:  The results of this study indicate the effectiveness and functionality of 

using a computer controlled, standardized setup for ex vivo larynx studies.  Acoustic and 

subglottal pressure signals were selected in data acquisition and captured at a sampling 

rate of 50 kHz for 5 seconds each. The influence of vocal fold elongation and adduction 

on phonation were showed by automated onset detection. In addition, the aerodynamic 

measurements taken were compared to similar ex vivo larynx experiments to evaluate the 

effectiveness and accuracy of the measurements. The automated onset and offset 

measurements results were constant for the phonation position of the larynx. Overall, the 

results of this study validated the use of the modified setup.  

Conclusion: The setup described and researched in this study provides and 

automated, standardized method to studying ex vivo larynges. Ex vivo larynx experiments 

are in general limited by tissue degeneration and dehydration, therefore, establishing a 

mechanism to automate the experimental process with each larynx has proven to be 

beneficial and more time effective.  

Relevance to the Current Work: This study relates to the current work as it 

gives an overview of different factors an ex vivo experiment must control when studying 

the glottis. The current study uses ex vivo rabbit larynges, and while it is not an 

automated setup as described and researched in this study, arytenoid rotation, 

cricothyroid contraction, and airflow are all manually manipulated in the experiment and 
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must be maintained constant. This study provides resources for how to maintain stable 

measurements.   

Campagnolo, A. M., Tsuji, D. H., Sennes, L. U., Imamura, R., & Saldiva, P. H. N. (2010). 

Histologic study of acute vocal fold wound healing after corticosteroid injection in a 

rabbit model. Annals of Otology, Rhinology, & Laryngology, 119(2), 133–139. 

https://doi.org/10.1177/000348941011900211 

Purpose of the Study: The purpose of this study was to evaluate the histological effects 

of injecting dexamethasone sodium phosphate (corticosteroid) into the vocal folds and 

the effects it had on acute vocal fold wound healing in rabbit larynges after surgically 

induced injury.   

Method: This study involved 12 New Zealand albino rabbits. Each rabbit 

underwent laryngeal microsurgery where a puncture wound was made with a knife in the 

upper surface at midpoint of each vocal fold. After the wound was made, 0.1 mL of 

dexamethasone sodium phosphate was injected into the left vocal fold and the right vocal 

fold served as a control and was not injected. Three days after the injection six of the 12 

rabbits were sacrificed, with the remaining six were sacrificed 7 days after the injection. 

The histological features of the excised larynges were then studied.  

Results: The mean numerical density of cells in the cortico-steroid treated group 

was 3.16, the mean in the control group was 2.48. There was no significant difference 

between the amount of collagen in the treated vs. the control group vocal folds. The 

concentration of collagen fibers in each vocal fold did show significant increased at 7 

days in both the treated and the control group. There was a statistically significant 

difference in collagen deposition between the treated and the control group, showing 
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corticosteroid treatment to reduce quantity of accumulated collagen during wound 

healing.   

Conclusion: Corticosteroid injection after vocal fold injury reduces collagen 

deposits at the site of injury while in the acute state of recovery.   

Relevance to Current Work:  This study examined vocal fold healing in 

response to corticosteroid injection in rabbits. Details regarding changes in the mucosal-

wave and how that impacts phonation were discussed in this study. The current study also 

uses rabbit vocal folds to study vocal fold health and impacts of corticosteroids. 

Corticosteroids will be inhaled, however is it hypothesized that changes to the mucosal 

wave will occur, leading to changes in phonation.  

Erickson, E., & Sivasankar, M. (2010). Evidence for adverse phonatory change following an 

inhaled combination treatment. Journal of Speech, Language, and Hearing Research, 

53(1), 75-83. doi:10.1044/1092-4388(2009/09-0024 

Purpose of the Study: Dysphonia is a common side effect of ICs treatment for asthma. 

The purpose of this study was to examine the adverse effects of ICs treatment on PTP and 

PPE (perceived phonatory effort). The researchers tested the hypothesis that ICs 

treatment would elevate PTP and PPE, but that the sham treatment would not. They also 

examined the relationship between PTP and PPE in individuals receiving ICs treatment.  

Method: Participants for this study included 14 adults (9 women and 5 men) with 

no reported voice or laryngeal problems. Each participant completed the VHI and scored 

a mild voice handicap. All participants were taking Advair diskus IC to treatment of their 

asthma once or twice daily for at least 4 months. Data collection occurred at the time 

participants habitually took their medication to ensure methodological consistency. Each 
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participant completed two experimental sessions on consecutive days to get an IC and 

sham treatment. Data was collected during both sessions by calculating vocal pitch range, 

PTP, PPE, and FVC. Measurements were recorded both before treatment, immediately 

after treatment, 1 hr. and 2 hrs. after treatment.   

Results: Results indicated that IC treatment did significantly increase PTP while 

the shame treatment did not. The increase in PTP lasted for 2 hours following IC 

administration. PPE was not significantly affected by either treatment. Weak correlations 

appeared between PTP and PPE.   

Conclusion: This study concluded that IC treatments can have a direct effect on 

phonation by increasing PTP in individuals with asthma. The study examined the 

effectiveness of different levels of pitch and determined that when evaluating voice 

functions after IC treatment, it is most useful to evaluate pitch at the 80th percent pitch. 

The increase in PTP is suspected to be caused by the deposit of up to 75% of the IC on 

the vocal fold mucosa.     

Relevance to the Current Work: This study provides background information 

regarding voice disorders associated with IC treatment. In addition, it lays a foundation 

for the reliability of using PTP as a determinant of vocal health differences due to IC 

treatment. The current study uses PTP as a primary aerodynamic measure to study the 

effects of IC treatment on the voice.  

Gallivan, G. J., Gallivan, K. H., & Gallivan, H. K. (2007). Inhaled corticosteroids: Hazardous 

effects on voice—an update. Journal of Voice, 21(1), 101-111. 

doi:10.1016/j.jvoice.2005.09.003 
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Purpose of the Study: The purpose of this study was to provide updates to previously 

found results of strobovideolaryngoscopy (SVL) in individuals who complain of 

dysphonia due to ICs treatment. The report includes information from the SVL including 

mucosal wave symmetry/periodicity, amplitude and magnitude, phase closure, glottic 

closure, supraglottic activity, mucosal quality, and closure on/off glottic plane.   

Method: Participants of this study included 38 patients diagnosed with bronchial 

asthma being treated with ICS and included symptoms of hoarseness and dysphonia. 

Each individual completed a comprehensive history and a physical exam prior to being 

assessed by SVL. Throughout the study, a total of 81 videolaryngoscopies were 

performed, including 73 transoral SVL, and 6 transnasal SVL. Each examination was 

then analyzed for phase closure, amplitude, glottic closure, supraglottic activity, mucosal 

quality, and closure on/off glottic plane.  

Results: Abnormal periodicity of the mucosal wave occurred in 29/38 patients 

taking ICs while 63% (50/79) of all SVL examinations were abnormal. Phase closure 

varied in the participants and was open to differentiating degrees in 74% (28/38) patients 

and 63% (50/79) in all SVL. Examination of glottic closure often revealed more than one 

type of abnormal glottic closure (i.e., bowing, anterior glottal gap, hourglass glottis). 

Abnormal glottic closure occurred in 63% (24/38) patients using ICs and 59% (47/79) of 

all SVL examinations. Abnormalities in the amplitude and magnitude of the mucosal 

wave occurred in 50% (19/38) of patients using ICs and 35% (28/79) in all SVL 

examinations. Supraglottic hyperactivity occurred in 39% (15/38) patients and 25% 

(20/79) of all SVL. Mucosal quality and vocal fold edge abnormalities was recorded in 

34% (13/38) of patients using ICs and 34% (27/79) SVL examinations.  
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Conclusion: Side effects of ICS are dependent on the type of ICs used, inhalation 

device, dosage, frequency of use, particle size, and local effects. This study showed the 

fluticasone containing ICS were the most frequently prescribed ICS that leads to voice 

hoarseness, SVL abnormalities, and laryngitis.   

Relevance to the Current Work: This study highlighted the differences in side 

effects of different ICs, with fluticasone containing ICs being the most commonly 

prescribed ICs, as well as the most common cause of dysphonia. The current study uses 

fluticasone propionate and salmeterol in treatment. This study helps to make clear the 

differences between different ICs, and which ICs have the largest effect on the voice. 

This validates the administration of fluticasone in the current study.  

Galván, C. A., & Guarderas, J. C. (2012). Practical considerations for dysphonia caused by 

inhaled corticosteroids. Mayo Clinic Proceedings, 87(9), 901-904 

Review Article:  The purpose of this article was to review the pertinent literature on the 

incidence of dysphonia associated with ICs, the mechanisms of dysphonia, and the 

relationship between ICS and dysphonia. It was reported that 5%-58% of individuals who 

use ICs experience dysphonia.  ICs are associated with a higher risk of dysphonia and the 

method of delivering the ICs affects the likelihood of developing dysphonia, therefore it 

was concluded that with an individual with dysphonia, clinicians and researchers should 

take into consideration if they are using ICS and which method (MDI or powder) they are 

using.   

Relevance to the Current Work: This article emphasizes the fact that a high 

percentage of individuals who use ICs develop some form of dysphonia. This validates 

the necessity of the current study.  
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Hassen, H. E., & Hasseba, A. M. (2016). Voice evaluation in asthma patients using inhaled 

corticosteroids. The Turkish Journal of Ear Nose and Throat, 26(2), 101-108. 

Doi:10.5606/kbbihtisas.2016.79740 

Purpose of the Study: Dysphonia caused by ICs usage has been studied by many 

researchers, however the specific laryngoscopic and vocal findings of individuals using 

ICs have not been studied extensively. The purpose of this study was to assess the voice 

changes and laryngeal abnormalities in asthmatic patients using ICS.   

Method:  Participants were recruited from the Phoniatric Clinic of the King Fahd 

Hospital Jeddah with a total of 30 patients using ICS treatment for bronchial asthma 

recruited. The minimal duration of treatment for inclusion in the study was 4 months. A 

protocol of voice evaluations that included an elementary diagnostic procedure, clinical 

diagnostic aids, and additional instrumental measurements was completed for each 

participant. In the elementary diagnostic procedure, a comprehensive history and 

otorhinolaryngological examination was performed. The severity of an individual’s 

asthma was assigned using the Global Initiative for Asthma criteria. Additionally, a 

speech sample including conversational speech and dialogue were recorded and assessed 

by two phoniatricians.  Next, a modified GRABS scaled was used to rank the degree of 

dysphonia in each subject experienced. Clinical diagnostic aids were performed using a 

Videolaryngoscopy, which was analyzed by two phoniatricians examining vocal fold 

edema, erythema, bowing, atrophy, irregular edges, interarytenoid thickening, and 

supraglottic hyperfunction.  Lastly, acoustic analysis was performed where participants 

phonated at their natural pitch and loudness levels.   
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Results: It was reported that 53% of ICS users experienced dysphonia to some 

degree, with 36.7% having mild dysphonia and 16.7% having moderate dysphonia.  

Videolaryngoscopy revealed the most typical finding was interearytenoid thickening and 

erythema, as both appeared in 56.7% of participants. Other common findings were vocal 

fold edema (36.7%), supraglottic hyperfunction (53.3%), and irregular vocal fold edges 

(53.3%). Researchers also found that jitter percentages were significantly higher in these 

individuals as compared to normal individuals.   

Conclusion: Dysphonia was found in 53% of patients. Most of the voice acoustic 

parameters were higher than standard values. The most common side effect of inhaled 

steroids is dysphonia.   

Relevance to the Current Work: This study reports prevalence of dysphonia in 

individuals who use ICS. The current work is researching the aerodynamic effects of ICS 

usage on the voice and its contribution to dysphonia caused by ICS usage.   

Hoffman, M. R., Rieves, A. L., Budde, A. J., Surender, K., Zhang, Y., & Jiang, J. J. (2012). 

Phonation instability flow in excised canine larynges. Journal of Voice, 26(3), 280–284. 

https://doi.org/10.1016/j.jvoice.2011.03.007  

Purpose of the Study: Aerodynamic measures of subglottal pressure, mean flow rate, 

and vocal efficiency provide valuable information regarding the functions of the voice.  

The purpose of this study was to examine aerodynamic measurements in an atypical, 

chaotic voice by measuring phonation instability flow (PIF) and phonation flow range 

(PFR). Phonation flow was chosen as the measurement as phonation instability pressure 

as it has been shown to be clinically useful in indicting at what point phonation becomes 
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unstable. Researchers wanted to provide an additional measurement with clinical validity 

to diagnose disordered voices therefore PFR was also included in this study.   

Method: Seven canine larynges were excised using protocol established by Jiang 

and Titze (1993). Before experimentation, dissection of unnecessary tissue was 

performed, and the true vocal folds were exposed. Once properly dissected, the larynx 

was mounted on a bench apparatus as specified by Jiang and Titze (1993). In an effort to 

simulate the human respiratory system a pseudolung attached to the benchtop was used to 

initiate and sustain phonation throughout the trials designed to simulate the human 

respiratory system. For each trial, airflow was gradually increased until phonation began, 

at which point onset time, pressure, and flow were recorded. Airflow was then increased 

to the point where the stable harmonic frequency of the voice was lost and appeared to be 

aperiodic and noise-like; this point was marked as the PIP and PIF.  Airflow was then 

decreased until phonation ceased. Phonation floor range was calculated by subtracting 

PTF from PIF. This process was repeated 5 times in three different glottal configurations 

(0% elongation and 0 mm posterior glottal gap; 20% elongation and 0 mm posterior 

glottal gap; and 20% elongation with 3 mm posterior glottal gap).   

Results: Results of the study show that an increase in vocal fold elongation does 

not affect PTF, PIF, or PIP, however there is a nearly significant increase in PTP 

following elongation. It was shown that increasing glottal abduction significantly 

impacted PTP, PIF, and PFR and had near significant impacts on PTF.   

Conclusion: Phonation instability flow was a new aerodynamic measurement 

presented in this study and it was shown to be sensitive to glottal abduction as predicted. 
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It is suggested that using PIF instead of PIP to measure vocal instability may be a simpler 

means to quantify aerodynamic functions of the voice.   

Relevance to the Current Work: The current study uses PTP and PTF as 

primary aerodynamic measures to evaluate the function of the voice. This study relates to 

the current work in its use of a similar methodology and benchtop set up for experiments 

and data collection.   

Hong, S. J., Lee, S. H., Jin, S. M., Kwon, S. Y., Jung, K. Y., Kim, M. K., Park, H., & Lee, K. W. 

(2011). Vocal fold wound healing after injection of human adipose-derived stem cells in 

a rabbit model. Acta Oto-Laryngologica, 131(11), 1198-1204. 

doi:10.3109/00016489.2011.599816 

Purpose of the Study: The purpose of this study was to examine the phonological and 

morphological qualities of scarred rabbit vocal folds after injection of human adipose-

derived stem cells, as well as to examine the survival degree of hADSC. 

Method: This study involved 12 white New Zealand rabbits that were 

anesthetized and injured with a CO2 laser.  They were then injected with hADSC in the 

left vocal fold and phosphate-buffered saline (PBS) in the right vocal fold.  Every 4 

weeks a rigid endoscopic exam was performed to document any morphological changes 

including surface irregularities, granulation tissue formation, and atrophic changes. After 

12 weeks of injection, each rabbit was euthanized and histological changes were 

documented including intra-epithelial inflammation, stromal inflammation, perichondral 

fibrosis, and collagen deposition. Finally, the tissue was examined for evidence of human 

cells.     
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Results: There was a variety of surface irregularities found in both the left and 

right vocal folds, however there were no significant differences between the two. It was 

reported that 2/12 hADSC treatment rabbits and 10/12 control PBS rabbits had 

granulations tissue formation 12 weeks after injection. Significantly less granulation 

tissue formatted in the treated vocal folds compared to the control group. There were no 

significant differences found between the groups in histological changes regarding intra-

epithelial inflammation and stromal inflammation; however, the right vocal folds injected 

with PBS were found to have significantly more collagen deposits and perichondral 

fibrosis than hADSC.  

Conclusion: The hADSC remained viable after 12 weeks and may prove to be a 

more cost-effective alternative to MSC treatment for vocal fold scarring. Furthermore, it 

was shown that hADSC improved vocal fold healing and produced less signs of vocal 

fold scarring.   

Relevance to the Current Work: Both this study and the current study use white 

New Zealand rabbits to study the effects of treatments on the vocal folds. This study 

looked at the effects of hADSC on vocal fold healing while the current study is looking at 

the effects of ICS on vocal fold health. This study adds to the growing body of research 

that validates the use of rabbit vocal folds as reliable models for the study of histological 

and morphological changes in the vocal folds due to treatment.   

Hottinger, D. G., Tao, C., & Jiang, J. J. (2007). Comparing phonation threshold flow and 

pressure by abducting excised larynges. The Laryngoscope, 117(9), 1695-1699. 

doi:10.1097/MLG.0b013e3180959e38  
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Purpose of the Study: Phonation threshold flow has been proposed as an additional 

aerodynamic voice measure to PTP. The purpose of this study was to examine the effects 

of different glottal widths and abduction on PTP and PTF. Furthermore, this study looked 

at the response of PTF to changes in posterior glottal width.   

Method:  This study examined 10 excised canine larynges that were harvested 

immediately post-mortem from animals that had died of natural causes. The larynges 

were stored and frozen in a 0.9% saline solution prior to the dissection of the false folds 

and portions of the posterior thyroid cartilage. Larynges were then mounted on a pseudo-

lung benchtop apparatus and stabilized by micropositioners.  Glottal width was adjusted 

from 0.0-4.0 mm by metal shims. Subglottal pressure and airflow were measured for each 

glottal width. Data was then analyzed using LabView.   

Results: The average airflow for each glottal width was reported. The average air 

flow for 0.0 mm was 376 mL/s, 1.0 mm was 415 mL/s, 2.0 mm was 580 mL/s, 3.0 was 

867 mL/s, and 4.0 mm was 1,199 mL/s. PTP was also recorded for each glottal width. 0.0 

mm was 9.89, 1.0 mm was 9.26, 2.0 mm was 8.75, 3.0 mm was 9.02, and 4.0 mm was 

9.71 cm H20. These results indicate that PTF is sensitive to changes in glottal width and 

has a linear relationship with glottal width while PTP is not sensitive to changes in glottal 

width.   

Conclusion:  Phonation Threshold Flow is more indicative of vocal fold 

pathologies that affect glottal width than PTP, therefore PTF should be used 

diagnostically.   

Relevance to the Current Work: This study is relevant to the current work as it 

uses both PTP and PTF as aerodynamic measures to examine the health of the vocal 
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folds.  Both measures have indicative potential for different pathologies and this study 

confirms that PTF changes indicate a vocal fold pathology that affects glottal width. This 

means that an increase in PTF would merit an examination of glottal width.  

Ihre, E., Zetterström, O., Ihre, E., & Hammarberg, B. (2004). Voice problems as side effects of 

inhaled corticosteroids in asthma patients—A prevalence study. Journal of Voice, 18(3), 

403-414. doi:10.1016/j.jvoice.2003.05.003 

Purpose of the Study: The purpose of this study was to examine the prevalence of voice 

disorders in individuals who use inhaled corticosteroids in Swedish asthma patients. The 

three primary questions answered in this study were 1) to what extent do asthma patients 

experience voice problems? 2) do certain voice problems appear more frequently than 

others? and 3) are voice problems related to age or gender, the dose, certain substances, 

the type of asthma, voice-demanding professions, or acid regurgitation?  

Method: A pilot study was performed to develop a questionnaire to be given to 

patients.  Once the questionnaire was developed, it was administered to 3 different 

hospitals and the study was administered over a 6-week period. All participants were 

diagnosed with asthma. Overall, 80% (280/350) of participants responded and the results 

were analyzed.   

Results: Results of the questionnaire indicated that there is a significant positive 

relationship between inhalation of cortisone and voice problems. The reported problems 

were equally significant for both women and men. The degree of asthma, cortisone dose, 

and prevalence of acid regurgitation was significantly positively correlated with voice 

problems. Among voice problems, throat clearing, and hoarseness were the most 

commonly reported problems. Further results indicated that younger individuals with 
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asthma had a higher prevalence of voice demanding professions. These individuals 

reported a greater extent of voice problems. A greater number of voice problems were 

reported in patients with voice demanding professions and who used inhaled 

corticosteroids.   

Conclusion: Overall, this study agrees with other studies that show that indicate a 

positive correlation between voice problems and inhaled corticosteroids. Individuals who 

experienced voice disturbances at a greater degree compared to patients with mild asthma 

symptoms appeared to suffer more from their asthma. Voice problems increased with 

cortison dosage, therefore individuals with more severe asthma typically reported more 

voice problems.     

Relevance to the Current Work: This study relates to the current work as it 

further examines the effects inhaled corticosteroids have on the voice and on quality of 

life. The current study is aiming to better diagnose and assess voice problems due to ICS 

usage, and this study is helpful in pinpointing areas that are of main concern. 

Jiang, J., O'mara, T., Conley, D., & Hanson, D. (1999). Phonation threshold pressure 

measurements during phonation by airflow interruption. The Laryngoscope, 109(3), 425–

432. https://doi.org/10.1097/00005537-199903000-00016 

Purpose of the Study: The purpose of this study was to determine the range of values 

obtainable by noninvasive subglottal pressure measurements. The study also sought to 

estimate the differences in PTP between normal vocal folds and individuals with vocal 

fold polyps.   

Method: Participants in this study included 11 control participants and 13 

participants with polyps. Each individual had an airtight mask affixed over their mouth 
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and nose and were instructed to produce a sustained /a/ while airflow was directed into a 

section of a pipe. Airflow, intramask pressure, and intensity (in dB) was recorded for 

each phonation. PTP was then predicted by calculating the difference between an 

estimate of subglottic pressure and the vocal tract pressure at the point phonation ceased. 

The 11 control participants sustained /a/ at 75, 80, and 85 dB without difficulty. The 13 

individuals with polyps sustained phonation at 65, 70, and 75 dB.  

Results: The mean PTP measurements for normal voices were 2.38, 2.67, and 

2.98 at each dB level. The mean PTP measurement for individuals with vocal fold polyps 

was 4.79, 5.85, and 7.37 at each dB level. The differences between means are statistically 

significant.   

Conclusion: This study attempts to use noninvasive means to measure and 

estimate PTP showed statistical significance. The PTP measurements for control subjects 

correlate well with additional similar studies measuring PTP. The difference between 

polyp PTP and normal subjects PTP was statistically significant with PTP in patients with 

vocal fold polyps being significantly higher than that of control subjects.   

Relevance to the Current Work: PTP is a main aerodynamic measurement used 

in the current study. This study evaluated different ways to measure PTP and showed that 

it is a reliable way to quantify vocal fold health, which is a main reason why PTP is being 

evaluated in the current study.   

Jiang, J. J., Regner, M. F., Tao, C., & Pauls, S. (2008). Phonation threshold flow in elongated 

excised larynges. Annals of Otology, Rhinology & Laryngology, 117(7), 548–553. 

https://doi.org/10.1177/000348940811700714  
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Purpose of the Study: The purpose of this study is to further examine the aerodynamic 

measure PTF purposed by Jiang and Chao (2007). Researchers investigated the reliability 

and range of PTF measurements on excised canine larynges with controlled elongation. 

PTF measurements were compared to PTP measurements to find the similarities and 

relationship between the two aerodynamic measures. The physical parameters of the 

vocal folds were manipulated to examine how PTF varies with different pathological 

conditions. It was hypothesized that PTF and PTP are directly related in ranges during 

phonation initiation.   

Method: This study included 10 excised canine larynges that were collected and 

mounted to a benchtop pseudo-lung apparatus. Three-pronged devices were inserted into 

the arytenoid cartilages to stabilize the larynx, and the anterior edge of the thyroid 

cartilage was attached to a micrometer via sutures as to manually elongate the vocal 

folds. Five trials were performed for each elongation level at increments of +5% 

elongation. An Omega airflow meter was connected to the pseudo-respiratory tract to 

record airflow and a digital pressure meter was connected below the vocal folds to record 

subglottal pressure. During each trail, airflow was gradually increased from 0 L/min up 

until phonation was audible and visible on Lab View. Statistical analysis was performed 

using SigmaStata 3.0 to determine PTP and PTF.   

Results: The mean PTF values were found to be between 101 mL/s and 217 

mL/s. At physiologic length (0% elongation), mean PTF was 162 mL/s. Statistically 

significant differences in PTF were found at each elongation level. At +5% elongation, 

mean PTF was 181.14 mL/s, at +10% elongation it was 233.65 mL/s, and at +15% 

elongation it was 313.33 mL/s.   
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Conclusion: This study indicates that PTF is dependent on the biomechanical and 

physiological properties of the vocal folds. For example, it is made clear in this study that 

PTF increases with elongation. PTF is also dependent upon vocal fold tension and 

therefore can be considered an accurate aerodynamic diagnostic tool for assessing 

laryngeal function.   

Relevance to the Current Work: PTF is a primary aerodynamic measure used in 

the current study to evaluate vocal fold health and laryngeal function, and this study 

makes clear the effectiveness of PTF as a measure 

Jiang, J. J., & Tao, C. (2007). The minimum glottal airflow to initiate vocal fold oscillation. The 

Journal of the Acoustical Society of America, 121(5), 2873-2881. doi:10.1121/1.2710961 

Purpose of the Study:  It has been shown that aerodynamic measures can indicate 

speech system dysfunction. Subglottal pressure is one parameter that has been 

extensively researched. The purpose of this article was to propose PTF as a new 

aerodynamic parameter to be used in the assessment of laryngeal pathologies.  PTF is 

defined as "the minimum glottal airflow required to initiate phonation".  

Method: Researchers analyzed the body-cover vocal fold model to research the 

relationship between PTF and phonatory system properties. Using a variety of 

mathematical equations, researchers investigated properties such as the influence of 

glottal configuration, tissue properties, vocal tract loading, and tissue stiffness on PTF. 

Results: The results of this study indicate that PTF can be reduced by reducing 

glottal area, mucosal wave velocity, tissue viscosity, increasing vertical length of the 

glottal duct, reducing the prephonatory convergent angle, or by increasing the 
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prephonatory divergent angle.  Additionally, it was found that PTF can be useful when 

studying vocal fold vibration and energy transformation in the speech system.  

Conclusion:  Researchers proposed PTF as a sensitive and effective indicator 

when assessing the functional efficiency of the laryngeal system. It is concluded that PTF 

may be more practical to use in clinical settings than PTP as it is noninvasive and 

changes when vocal fold biomechanics change.   

Relevance to the Current Work: PTF is a key aerodynamic parameter used in 

the current studies research. This study lays the framework for the use of PTF and the 

validity of using PTF clinically and in research.   

Keir, S., & Page, C. (2008). The rabbit as a model to study asthma and other lung diseases. 

Pulmonary Pharmacology & Therapeutics, 21(5), 721-730. 

doi:10.1016/j.pupt.2008.01.005 

Purpose of the Study: Using the rabbit to study asthma as a model for the human voice 

is a relatively new area of research. The purpose of this article was to compare features of 

asthma in rabbits to humans.   

Method: This study used rabbits immunized with asthma neonatally for the 

purpose of comparison with human asthma symptoms. In total, 8 specific areas were 

examined in asthmatic rabbits immunized with asthma. These areas included pulmonary 

function, airway hyperresponsiveness, antigen-induced airway responses, airway 

inflammation, airway nerves, the effects of drugs on allergen-induced airway responses, 

airway hyperresponsiveness and airway wall remodeling, and airway smooth muscle in 

vitro were compared for human asthma and asthmatic rabbits.   
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Results:  Asthmatic rabbits exhibit enhanced airway hyperresponsiveness similar 

to that of humans. It was found that rabbits had heightened responses to stimuli in the 

airway including histamine, methacholine, and adenosine 5’monophosphate. It was also 

found that asthmatic, allergic rabbits were sensitive to and responded to similar drugs as 

humans with asthma.   

Conclusion: The rabbit is a valid and useful model for use in studying asthma 

treatment and lung physiology. The many similarities between human and rabbit larynges 

make them ideal for use in studying asthma and lung disease.  

Relevance to the Current Work: This study compared asthmatic rabbits to 

humans with asthma to evaluate the effectiveness of using rabbits as a model to study 

asthma and other lung diseases. The current work utilizes rabbits to examine the effects 

of inhaled corticosteroids on aerodynamic measures of the voice, and thus the study 

provides a framework for understanding the effectiveness of using rabbits as a model for 

studying asthma. Furthermore, this study provides evidence that using the rabbit as a 

model to study the effectiveness of different treatments for asthma is appropriate, which 

is the basis of the current study.  

Mau, T., Muhlestein, J., Callahan, S., Weinheimer, K. T., & Chan, R. W. (2011). Phonation 

threshold pressure and flow in excised human larynges. The Laryngoscope, 121(8), 1743-

1751. doi:10.1002/lary.21880 

Purpose of the Study: The purpose of this study was to evaluate and report PTP and 

PTF in excised human larynges so as to determine whether they are sensitive changes to 

posterior glottal width. A secondary purpose was to verify the presence of hysteresis in 

human vocal fold oscillation ex vivo.   
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Method: This study included 9 excised human larynges that were harvested 

within 24 hours postmortem. Prior to phonation trials, excess tissue was dissected and the 

larynges were mounted on a benchtop setup. 5 phonation trials were administered for 

each posterior glottal width (0.5, 1, 2, and 3 mm) in each larynx. Subglottal pressure was 

slowly increased by adjusting the pressure regulator until phonation onset was detected. 

Effects of glottal area and posterior glottal width were documented.  

Results: It was found that PTP and PTF varied more than offset PTP and PTF.  

PTP and PTF offset fluctuated significantly less than PTP and PTF onset measures.  A 

positive correlation was found between PTF onset and posterior glottal width.  Inter-

subject variability was reported for both PTP and PTF.  PTF was higher in ex vivo than in 

vivo models.   

Conclusion: PTP and PTF aerodynamic measurements in excised human 

larynges were similar to those reported in excised canine larynges. Offset PTP and PTF 

were lower than onset values. Offset values were determined to be more valuable than 

onset values.    

Relevance to the Current Work: This study provides an analysis of the 

aerodynamic measures PTP and PTF in phonation onset and offset.  Likewise, the current 

study is examining PTP and PTF values in ex vivo rabbit larynges.   

Maytag, A. L., Robitaille, M. J., Rieves, A. L., Madsen, J., Smith, B. L., & Jiang, J. J. (2013). 

Use of the rabbit larynx in an excised larynx setup. Journal of Voice, 27(1), 24–28. 

https://doi.org/10.1016/j.jvoice.2012.08.004 

Purpose of the Study: Excised larynges are frequently used for voice research.  Canine 

larynges are the common model and the methodology setup necessary for canine larynges 
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use is well established. This study examined how researchers can modify benchtop setups 

so as to be used for rabbit larynges. Researchers aimed to develop a method of obtaining 

accurate and reproducible data from rabbit larynges, including protocol for dissection, 

excision, and mounting the larynx protocol. An additional purpose of this study was to 

develop a way to achieve reliable phonation and collected video and EGG data.   

Method: Study subjects included 5 adult New Zealand white rabbit larynges 

whose larynges were harvested immediately postmortem for the study. Before use, each 

larynx was thawed, and excess tissues was dissected using microscissors. A custom-built 

mounting apparatus was designed for this study and each larynx was mounted on a Luer 

lock in the center of the apparatus. The arytenoids were adducted by rods, and humidified 

air was passed through the larynx to elicit vocal fold vibration. Five trials were collected 

for each larynx. A number of variables were measured during the trials including onset 

and offset pressure and flow, fundamental frequency, jitter, shimmer, and signal-to-noise 

ratio. 

Results: Reliable phonation was achieved in each rabbit larynx. Phonation 

threshold pressure was recorded at 16.50 ± 1.24 cm H20. Phonation threshold flow was 

reported as 4.61 ± 0.41 L/min. The mucosal wave amplitude for the left vocal fold was 

3.32 ± 2.35 pixels and 2.92 ± 2.88 pixels for the right vocal fold. The discrepancy’s 

found in these values was similar to discrepancies found in canine larynges.    

Conclusion: Researchers were able to obtain an accurate method to use rabbits as 

excised laryngeal models. The data found in this study was found to be reproduceable 

and repeatable in terms of dissection, excision, mounting the larynx, achieving reliable 
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phonation, and collecting data. Rabbit larynges were determined to be valuable in 

evaluating vocal fold tissue change.   

Relevance to the Current Work: This study provided a reliable methodology for 

the use of rabbit larynges in ex vivo studies. The current work uses excised rabbit 

larynges to study aerodynamic effects of ICs on the voice and uses similar dissection 

techniques to those described in this study. Additionally, a similar benchtop model to the 

one in this study is used for mounting larynges in the current work.   

Mills, R. D., Dodd, K., Ablavsky, A., Devine, E., & Jiang, J. J. (2017). Parameters from the 

complete phonatory range of an excised rabbit larynx. Journal of Voice, 31(4), 517.e9-

517.e17. doi:10.1016/j.jvoice.2016.12.018 

Purpose of the Study: Excised larynges are frequently used to study the vocal folds.  

Traditionally, canine larynges were used to study vocal fold mechanics and pathologies, 

however they are not an ideal model for studying vocal fold histology. Because of the 

similarities in histological makeup between human and rabbit vocal folds, it is proposed 

that the rabbit will be a more accurate model for the study of histological changes. The 

purpose of this study was to make adjustments to a canine excise booth to allow 

collection of a complete phonatory range. PTP and phonation instability pressure (PIP) 

were measured and aerodynamic, acoustic, and mucosal measurements were taken across 

the entire phonatory range using rabbit larynges. 

Method: This study included 7 white New Zealand rabbits that were sacrificed 

and whose larynges were harvested and stored for use in this study. After dissection, each 

larynx was mounted on a modified benchtop setup as specified by Jiang and Titze (1993). 

Data was collected over the complete phonation pressure range (PPR), which is the range 
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from PTP to PIP. Flow was increased manually from PTP at increments of 0.25 L/min 

until PIP was achieved. PIP was estimated using acoustic waveforms and a real-time 

spectrogram.   

Results: In total, 15 parameters were taken during the study and 12/15 were 

found to be significant. These include PFR, PTP, PPR, F0 at PTP, F0 at PIP, F0 range, 

SPL at PTP, SPL range, VA at PTP, VA at PIP, and VA range. It was found that PTP 

measurements increased as subglottal pressure, fundamental frequency, and sound 

pressure levels and elongation were increased.     

Conclusion: This study provided a reliable methodology for the study of 

phonation parameters of excised rabbit larynges. The results of this study lead the 

researchers to believe that the rabbits is a reliable model for the study of tissue 

inflammation.  

Relevance to the Current Work: The current work examines aerodynamic 

measures in excised rabbit larynges that have undergone ICS treatment, which is 

suspected to inflame the vocal folds. This study reported phonatory range of excised 

rabbit larynges, which we will also be reporting in the current study. In addition, the 

current work utilizes a similar benchtop setup that this study reported using.   

Plant, R. L. (2005). Aerodynamics of the human larynx during vocal fold vibration. The 

Laryngoscope, 115(12), 2087–2100. 

https://doi.org/10.1097/01.mlg.0000184324.45040.17  

Purpose of the Study: The purpose of this study was to comprehensively examine the 

influence of aerodynamics (including sound intensity, fundamental frequency, and 

subglottic air pressure) on laryngeal function. This purpose was separated into 3 portions 
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1) a multidimensional comparison of the interaction of subglottic pressure, sound 

intensity, and fundamental frequency during speech; 2) examining changes during the 

glottic cycle in subglottic pressure; and 3) determining PTP and how it depends on other 

aerodynamic parameters.   

Method: Study participants for this prospective study included 6 healthy 

individuals with no history of voice disorders. Each participant phonated /i/ with a vented 

face mask over their face. Each participant completed 5 different speaking tasks. The first 

task was to speak three tokens with a breathy onset. The second task was to speak three 

tokens with a low pitch while increasing sound intensity with each token. The third task 

was to speak three tokens at a mid-pitch level while increasing intensity with each token. 

The fourth task was to speak three tokens at a high pitch while increasing intensity each 

token. The last task was to speak three tokens while gliding from a low to high pitch. 

Airflow, electroglottography (EGG), subglottic pressure, and sound signal were measured 

during each task. Subglottic pressure was measured directly inserting a 21-gauge needle 

in the cricothyroid membrane. Electroglottography was recorded by placing contact 

electrodes on both sides of the neck over the thyroid cartilage.   

Results: The relationships between different aerodynamic parameters were 

reported. It was found that there was a linear relationship between sound intensity and 

subglottic pressure for most participants. Rapid variations were found in subglottic 

pressuring during each glottic cycle, relating to the opening of the vocal folds at the 

beginning of each cycle. It was found that threshold pressure was primarily dependent on 

sound intensity and fundamental frequency. Additionally, it was found the PTP was 

higher at onset than at offset.   
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Conclusion: The researchers in this study conclude that the larynx responded 

predictably despite variability found in specific parameters. It was found that the 

behavior of the larynx is governed by the physical properties of air and the anatomy of 

the vocal tract.  

Relevance to the Current Work: Phonation occurs as a result of interactions 

between aerodynamics and glottal properties, and researchers must have a thorough 

understanding of those parameters. This study provided instructions for measuring 

subglottic air pressure, a key aerodynamic parameter in the current work. Additionally, 

this study provided foundational information regarding the workings of the larynx and 

what to predictably expect when experimenting on aerodynamic properties.     

Plant, R. L., Freed, G. L., & Plant, R. E. (2004). Direct measurement of onset and offset 

phonation threshold pressure in normal subjects. The Journal of the Acoustical Society of 

America, 116(6), 3640–3646. https://doi.org/10.1121/1.1812309  

Purpose of the Study: The purpose of this study was to measure onset and offset 

pressure in normal subjects with a variety of voicing conditions. Fundamental frequency, 

vocal intensity, laryngeal airway resistance, and the maximum of the first derivative of 

the electroglottography signal were also measured. The goal of the study was to 

determine if there is a relationship between PTP and the four variables measured and to 

examine the differences in onset and offset PTP.   

Method: Participants recruited for this study were 5 healthy adults age 26-47. 

Each individual participated in 5 different voicing segments which were repeated 

throughout the study. First, each individual said three tokens with a breathy onset. 

Second, three tokens at a low pitch with increasing lower intensities. Third, three tokens 
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at a midpitch level while increasing intensity with each token. Fourth, three tokens at a 

high pitch also increasing intensity with each token. Fifth, three tokens gliding from low 

to high pitch. To collect data, a Roothenbereg-type mask was placed on the participants 

face, EGG electrodes were placed on the neck, and a 21-gaugee needle was inserted 

through the cricothyroid membrane to measure subglottic pressure. For analysis 

purposed, the onset of phonation was defined as the first periodically varying EGG signal 

and the point of phonation onset or offset was selected at the peak of the first derivative 

of the first or last EGG waveform.    

Results: Univariate and multiple linear regression analysis of the relationship 

between variables and threshold pressure were performed. It was found that the 

relationships between intensity and fundamental frequency had the largest number of 

significant relationships. Significant relationships were found between fundamental 

frequency and pressure onset or offset. Intensity, airway resistance, and frequency 

predicted threshold pressure in 3 different combinations. Results indicated that offset 

pressure threshold is lower than onset pressure threshold.   

Conclusion: Directly measuring subglottic pressure indicated that fundamental 

frequency influences PTP. It was also shown that vocal intensity and laryngeal airway 

resistance can influence PTP.   

Relevance to the Current Work: This study examined the differences between 

onset and offset phonation threshold pressure and the different variables that influence 

both. In the current study, onset phonation threshold pressure is used as a primary 

aerodynamic measure. This study provides insight into the use of PTP and into the 

variables that impact PTP values.  
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Regner, M. F., Tao, C., Zhuang, P., & Jiang, J. J. (2008). Onset and offset phonation threshold 

flow in excised canine larynges. The Laryngoscope, 118(7), 1313-1317. 

doi:10.1097/mlg.0b013e31816e2ec7 

Purpose of the Study: It has been found that PTF is a reliable aerodynamic parameter 

and has been compared to PTP in clinical usage. Studies have shown that PTF is more 

sensitive to posterior glottal width changes and may be more useful in diagnosing 

pathological conditions with an incomplete glottal gap. The purpose of this study was to 

further explore the usefulness of PTF. This study investigated onset and offset PTF, 

specifically examining the hysteresis effect in PTF. Researchers hypothesized that onset 

PTF is higher than offset PTF, and that the hysteresis effect of PTF is similar to that seen 

in PTP.   

Method: An excised larynx benchtop setup developed by Jiang et al. was used 

with ten canine larynges. Prior to mounting on the benchtop, each larynx was dissected to 

reveal the true vocal folds and reduce dehydration during the trials. Pressure was 

measured for each trial directly below the larynx and acoustic data was collected. For 

each trial, airflow was slowly increased consistently until phonation was detected, after 

which airflow was decreased until phonation offset. Onset PTP and PTF and offset PTP 

and PTF were recorded. This process was repeated three times for each elongation level 

(5%, 10%, and 15%). Lastly, the mean onset and offset PTF values were calculated for 

each elongation length.   

Results: The mean onset PTF at 0% was reported as 3.44.14 mL/s, while the 

mean offset PTF at 0% was 287.34 mL/s. The mean onset PTF at +5% was 222.78 mL/s, 

and at offset was 182.02 mL/s. The mean onset PTF at +10% 363.11 mL/s, and offset 
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was 276.57 mL/s. The mean onset PTF at +15% elongation was 505.24 mL/s and offset 

was 379.75 mL/s. The mean PTF hysteresis ration was 0.795±0.116. Additionally, mean 

onset PTP was found to be greater than mean offset PTP.   

Conclusion: It was found that onset PTF was higher than offset PTF, evidence of 

the hysteresis effect in PTF. Additionally, it was concluded that offset PTF is sensitive to 

changes in posterior glottal width changes, just as onset PTF is. Therefore, offset PTF can 

be clinically effective as well.    

Relevance to the Current Work: The current work utilizes PTP and PTF to 

determine vocal fold health. This study provided theoretical insight to the clinical 

usefulness of PTF and into changes PTF is sensitive to. The current work will primarily 

look at onset PTF, which makes information ono hysteresis effect in PTF as well as PTP 

essential.   

Roy, N., Merrill, R. M., Gray, S. D., & Smith, E. M. (2005). Voice disorders in the general 

population: Prevalence, risk factors, and occupational impact. The Laryngoscope, 

115(11), 1988-1995. doi:10.1097/01.mlg.0000179174.32345.41 

Purpose of the Study: Previous studies have reported the prevalence of voice disorders 

in the general population; however, teachers were excluded from the general population 

reports for comparison purposes. The purpose of this study was to report the prevalence 

of voice disorders and variables associated with populations who have an increased risk 

of voice disorders, including teachers in the general population.   

Method: A sample of the general population was selected from Iowa and Utah to 

complete a phone interview for this study. The sample was obtained using a random digit 

dialing method allowing researchers to access residential telephone numbers. Participants 
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were asked a number of questions to assess symptoms or signs of voice disorders, 

consequences of voice disorders, and potential risk factors of voice disorders. Additional 

questions were asked regarding the presence and frequency of voice disorder symptoms 

and whether they were occupation-related, medical conditions related to voice disorders, 

medication use, chemical exposure, degrees of voice-related work disruption, and 

sociodemographic characteristics.   

Results: A number of results associated with voice disorder prevalence were 

reported.  Overall, 29.9% of participants reported a lifetime prevalence of voice disorders 

with 6.6% reporting current voice disorders. Women and individuals between the age 40-

59 reported an increase in chronic voice disorders. Additional risk factors included voice 

use patterns, voice demands, esophageal reflux, chemical exposures, colds, and sinus 

infections. It was found that voice disorders adversely impacted occupation in 4.3% of 

participants and 7.2% of participants reported missing work 1 or more days due to voice 

problems.   

Conclusion: This study provides valuable information regarding the prevalence 

of voice disorders and the factors that contribute to an increased risk of developing voice 

disorders.  This information can be used in prevention of and education on about voice 

disorders in high risk populations.  

Relevance to the Current Work: This study provides data on the prevalence of 

voice disorders in the general public. The current work looks at voice disorders due to 

ICs use for asthma treatment. This study provides data on the impact voice disorders have 

on one’s occupation, and what individuals with ICS induced dysphonia also struggle 

with.   
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Roy, N., Merrill, R. M., Thibeault, S., Parsa, R. A., Gray, S. D., & Smith, E. M. (2004). 

Prevalence of voice disorders in teachers and the general population. Journal of Speech, 

Language, and Hearing Research, 47(2), 281-293. doi:10.1044/1092-4388(2004/023) 

Purpose of the Study: The purpose of this study was to determine the prevalence of 

voice disorders in age-specific groups of the general population, and more specifically in 

teachers. It also examined demographic variables that may contribute to a higher 

prevalence of voice disorders.   

Method: In total, 2,351 Teachers and nonteachers were surveyed from Utah and 

Iowa for this study. Each participant completed a 30-minute phone survey answering a 

voice disorders questionnaire.   

Results: It was reported that 43% of the total population reported having voice 

disorders and 18.6% reported having chronic voice problems, defined as longer than 4 

weeks. Additionally, 81.4% reported experiencing acute voice problems, defined as less 

than 4 weeks. The prevalence of voice disorders increased with age and was most 

common in people 50-59 years old. Teachers reported voice problems significantly more 

frequently than nonteachers. Women had a higher prevalence of voice disorders than 

men.   

Conclusion: The results of this study indicate that a large percentage of the 

population will experience acute voice problems at some point in their life, with teachers 

being more likely to experience voice disorders than other members of the general 

population. In addition, teachers are more likely to report voice disorders. One variable 

surveyed was frequency of voice disorders co-occurring with asthma and it was found 
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that prevalence of voice disorders was significantly higher in individuals who had 

asthma.   

Relevance to the Current Work: This study provided information on the 

prevalence of voice disorders in the general public and in teachers who are at high risk. 

One of the aspects examined was the prevalence of voice disorders cooccurring with 

asthma. It was reported that there was a significantly higher likelihood that an individual 

with asthma would experience a voice disorder during their lifetime. The current study is 

part of a larger research project designed to evaluate the voice disorders that are a result 

of ICS use as a treatment for asthma, therefore this study will help to further diagnose 

and prevent voice disorders in the general public and in individuals who have high voice 

usage jobs.  

Sahrawat, R., Robb, M. P., Kirk, R., & Beckert, L. (2014). Effects of inhaled corticosteroids on 

voice production in healthy adults. Logopedics Phoniatrics Vocology, 39(3), 108-116. 

Purpose of the Study: The purpose of this study was to examine the effects of ICs on 

individuals with otherwise healthy voices. It has been noted that often individuals with 

asthma experience various comorbidities such as a constant cough, allergies, paranasal 

sinus disease, and gastroesophageal reflux; therefore, the exact effects of ICs on the voice 

in individuals with asthma has not been studied. This study intends to answer the 

questions 1) Does short-term repeated use of ICS result in change in acoustic parameters 

of voice production, and 2) is there a sex difference in the effects of ICS on voice 

production? 

Method: This study included 30 participants (15 male and 15 female) who were 

recruited from the University of Canterbury with ages ranging from 18-30 (average age 
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of 24). Each participant had no history of speech, voice, or language disorders and was 

judged to have normal voice quality by an experienced speech-language pathologist. 

Furthermore, none of the participants had a history of asthma or respiratory illness. Over 

a period of 6 days, individuals recorded audio samples and received ICS treatment. On 

the first day of the study, the individual came in in the morning to audio record the 

baseline samples. The audio recording consisted of sustained /i/, /a/, and /u/ for 5 seconds 

three times each, as well as reading the 'Rainbow Passage' to obtain a connected speech 

sample. After the baseline audio recording, each participant inhaled 500 μg of 

corticosteroid, fluticasone propionatee (FP). One hour after inhalation, each participant 

made a second audio recording of their voice. In the evening of the first day of the study 

the participants received a second round of ICS treatment and one hour after treatment 

participated in an additional audio recording. Days 2-4 of the study the participants 

received ICS treatment in both the morning and the evening. On day 5 of the study, the 

participants received ICS treatment in the morning and evening and recorded an audio 

sample in the evening. On day 6, the participants recorded their Pos-ICS audio recording 

in the morning. After all audio samples were recorded, acoustic analysis and long-term 

spectral analysis were performed to examine vocal fundamental frequency, formant 

frequency and formant bandwidth.   

Results: Results indicate a short-term detrimental effect on a variety of acoustic 

properties of the voice with acoustic parameters returning to normal after ICs treatment 

had been discontinued. There was no statistically significant relationship between the 

effects of ICs on fundamental frequency. There was a significant difference in F1 

between genders, and F1 was significantly lower for /i/ after Is usage. There was a 
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significant difference in F2 between genders, but no significant effect due to ICs 

treatment. Exposure to ICs had no significant effect of F2 for the three vowels sampled. 

The bandwidth analysis indicated no significant effects on BW from exposure to ICS. 

The use of ICS did not affect the average vocal fold vibration rate, as indicated by no 

significant difference in fundamental frequency. FCS and ST analysis of the connected 

speech sample indicate an increase in FSP during the audio recording on the 5th day. 

Conclusion: The findings of this study indicate that researchers must have a 

tradeoff between using participants who have pre-existing asthma conditions and 

participants who have healthy, normal voice functioning. This study controlled for co-

morbid factors that appear with asthma. Effects of ICs use appeared within one week of 

treatment and was most evident in connected speech samples. The changes found in this 

study were relatively minor, however they show the immediate impact of ICS on healthy 

vocal folds.   

Relevance to the Current Work: The effects of ICs is the key component of the 

current work. This study examined the effects of ICs on healthy human participants just 

as the current study will test the effects of ICs treatment on healthy rabbits. This study 

analyzed different acoustic parameters, whereas the current study is mainly focused on 

aerodynamic measures; however, it is important to understand all aspects and parameters 

to understand the effects ICs can have on the voice.   

Swanson, E. R., Abdollahian, D., Ohno, T., Ge, P., Zealear, D. L., & Rousseau, B. (2009). 

Characterization of raised phonation in an evoked rabbit phonation model. The 

Laryngoscope, 119(7), 1439–1443. https://doi.org/10.1002/lary.20532 
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Purpose of the Study: The purpose of this study was to determine if an increase in 

airflow rate would change the glottal configuration in rabbit larynges and contribute to an 

increase in phonation intensity.  

Method: Endoscopic glottal images were collected from 6 New Zealand white 

breeder rabbits to document glottal configuration. Acoustic data was also collected and 

analyzed for phonation intensity between modal and raised phonation. Each rabbit was 

anesthetized for data collection. The neck of the rabbit was shaved and prepped for 

surgery and the larynx and trachea were exposed via a midline incision. A cuffed 

endotracheal tube was inserted into the upper portion of the trachea with the cuff inflated 

to seal off the trachea and ensure flow of air through the glottis. Once the cuff was 

inflated, electrodes were inserted into the CT muscle to serve as cathodes and anthodes 

for electrical stimulation. Video documentation of glottal positioning and closure was 

obtained during phonation and acoustic signals were recorded.   

Results: The mean phonatory intensity was 54.19 dB SPL during modal 

phonation and 60.31 during raised phonation. Images during modal phonation show a 

convergent glottis with slightly separated vocal folds while raised phonation show a 

convergent glottis with a larger separation of the vocal folds.   

Conclusion: This study revealed that during raised phonation there is a greater 

separation of the vocal folds and a convergent glottis. This change in configuration was 

found to be consistent with an increase in phonation intensity and the amplitude of sound.  

Relevance to the Current Work: Both this study and the current study use rabbit 

larynges to examine properties of phonation. This study provides baseline information 

regarding using rabbit larynges too study the voice.  



77 

 

Williamson, I. J., Matusiewicz, S. P., Brown, P. H., Greening, A. P., Crompton, G. K. (1995). 

Frequency of voice problems and cough in patients using pressurized aerosol inhaled 

steroid preparations. European Respiratory Journal, 8(4), 590-592. 

doi:10.1183/09031936.95.08040590 

Purpose of the Study: Local side effects of ICs treatment for asthma are well known and 

have been studied in various study designs. Due to variety of study designs, a large range 

in the prevalence of dysphonia and oral candidiasis has been reported. The purpose of 

this study is to document the prevalence of voice disorders and throat symptoms in 

individuals using inhaled steroids to treat asthma.  Pressurized aerosol, metered dose, and 

inhaled corticosteroid preparations were compared in the study.   

Method: Participants included 269 patients attending the chest clinic at Northern 

General Hospital in Edinburgh who completed an interview-based questionnaire to gather 

information related to inhaler usage, dose frequency, and treatment duration. Additional 

questions were asked concerning the presence of local oropharyngeal adverse effects and 

dysphonia. When symptoms were reported, frequency of occurrence was rated by most 

days or every day.  Additionally, a control group of 100 patients were randomly selected 

from a diabetic out-patient clinic to complete the survey.   

Results: Results indicate 58% (147) of participants using steroid inhalers reported 

having voice or throat symptoms while only 13% (12) of the control participants to voice 

or throat symptoms. Symptoms were more commonly reported by women than men 

however there were not correlations between symptoms and age, smoking status, type of 

steroid aerosol use, dose frequency, duration of treatment, or use of other medication. It 

was found that throat symptoms increased in prevalence in those prescribed higher doses 
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of inhaled steroids. As reported, 67% (172) of patients using steroid MDI had an inhaler 

induced cough, throat symptoms, or voice symptoms, however 6% (11) reported these 

symptoms preceded steroid treatment. Approximately 1/3 of participants reported throat 

clearing and huskiness of the voice as symptoms of the medication. Overall, 

approximately 2/3 of participants experienced at least one local side effect of inhaled 

steroid usage.  

Conclusion: Inhaled steroids have been proven to be useful in managing asthma 

symptoms, however local side effects have been frequently reported. The researchers of 

this study conclude that there is a high prevalence of local adverse effects in use of 

pressurized metered dose steroid aerosols for asthma treatment.   

Relevance to the Current Work: The current work studies adverse effects of 

ICS on aerodynamic parameters of the voice. This study provided data on the frequency 

of throat and voice problems due to asthma treatment, providing justification for 

completing further research to improve asthma treatment.   

Witt, R. E., Regner, M. F., Tao, C., Rieves, A. L., Zhuang, P., & Jiang, J. J. (2009). Effect of 

dehydration on phonation threshold flow in excised canine larynges. Annals of Otology, 

Rhinology, & Laryngology, 118(2), 154–159. 

https://doi.org/10.1177/000348940911800212 

Purpose of the Study: The purpose of this study was to experiment and investigate the 

effects of vocal fold surface dehydration on PTF in ex vivo canine larynges. The 

researchers used a benchtop setup similar to the setup developed by Jiang and Titze 

(1993). It was predicted that with an increase in surface dehydration, PTF would also 

increase.   
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Method: This study involved 11 canine larynges that were extracted after 

sacrifice for other experimental studies. The subjects were divided such that 8/11 were 

used as the experimental group which underwent dehydration, 2/11 were used as control 

larynges, and 1/11 larynx was used as a control and then underwent dehydration. Prior to 

experimental trials, excess tissue was dissected away to expose the true vocal folds and 

allow for insertion of micrometers in arytenoid cartilage. Each larynx was then mounted 

to the benchtop setup, as outlined by Jiang and Titze (1993). For the control trials, 

humidified air was passed through the pseudolung and the vocal folds were hydrated 

using 0.9% saline solution between trials. For the experimental group, the humidifier was 

removed from the pseudolung apparatus and no saline solution was applied to the surface 

of the vocal folds between trials. During the dehydration trials, each larynx underwent 23 

series of 10-second periods of phonation with dry airflow through the vocal folds, then a 

3-second rest period. PTP and PTF onset were recorded.  The control group received a 

similar series of 23 trials, however the 10-second period of phonation consisted of 

humidified air passed through the vocal folds with saline solution applied during the 3-

second rest period.   

Results: Results showed that PTF significantly increased as dehydration 

increased. It was shown that there was a statistically significant difference between initial 

and final PTF in the dehydration group. It was also shown that PTF changed and was 

dependent on the level of dehydration from trial to trial. The initial PTF in dehydrated 

larynges ranged from 133.9 mL/s to 661.9 mL/s. The final PTF values ranged from 196.5 

mL/s to 1,219.2 mL/s.  
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Conclusion: The results of this study indicate that an increase in vocal fold 

surface dehydration leads to a statistically significant PTF increase. This finding suggests 

that for vocal fold pathologies causing surface dehydration, PTF may be a reliable 

clinical tool to examine vocal function.  

Relevance to the Current Work: This study used PTF as the main aerodynamic 

measurement to examine vocal fold function and health. Similarly, in the current study, 

PTF is used to examine the health of both treated and control group vocal folds. This 

study compared PTF in an experimental trial and in control groups, just as the current 

study does. Additionally, this study uses saline solution for the control group, similarly, 

the current study uses saline solution treatment in the control group. Saline solution is 

also used throughout trials to ensure hydration is maintained in the vocal folds during 

trials in both studies.   

Zhuang, P., Sprecher, A. J., Hoffman, M. R., Zhang, Y., Fourakis, M., Jiang, J. J., & Wei, C. 

(2009). Phonation threshold flow measurements in normal and pathological phonation. 

The Laryngoscope, 119(4). doi: 10.1002/lary.21537 

Purpose of the Study: The purpose of this study was to examine PTF in human subjects.  

This study compared PTF in individuals with normal voices, vocal fold nodules, and 

vocal fold polyps. This study examined the effectiveness of using PTF as an aerodynamic 

measure to detect vocal fold pathologies.   

Method: Participants included 40 individuals with healthy vocal folds, 21 

individuals with vocal fold nodules, and 23 individuals with vocal fold polyps. 

Participants sustained /a/ to measure MFR and PTF. Subjects practiced until they felt 

comfortable with the procedure. Subjects phonated a sustained /a/ into a cardboard tube 



81 

 

placed rested above the tongue ~1 in. into the mouth (to standardize vocal tract). To 

obtain MFR recordings, subjects maintained intensity of 72 dB w/ visual feedback for 2-3 

seconds.  MFR trail repeated 5 times w/ subjects resting 3-5 seconds between recordings. 

PTF was recorded by initiating phonation at a soft intensity and decrease intensity over 3-

5 seconds until no phonation was detected PTF was estimated as the airflow at the point 

where phonation ceased (50 dB). Each subject repeated the PTF trial 10 times, resting for 

5-6 seconds between recordings  

Results: Significant differences in PTF between normal voices and individuals 

with vocal fold polyps was detected. There was no statistical difference in individuals 

with nodules.  Additionally, there was a statistically significant difference in males 

compared to females.   

Conclusion: PTF is a significant aerodynamic measure that can be used to assess 

vocal fold pathologies like polyps. PTF was found to be sensitive to gender.   

Relevance to the Current Work: The current study uses PTF to examine the 

health of excised vocal folds. This study demonstrates that PTF is an effective measure of 

different vocal fold pathologies, which validates the use of PTF in the current study.  

Zhuang, P., Swinarska, J. T., Robieux, C. F., Hoffman, M. R., Lin, S., & Jiang, J. J. (2013). 

Measurement of phonation threshold power in normal and disordered voice production. 

Annals of Otology, Rhinology, & Laryngology, 122(9), 555–560. 

https://doi.org/10.1177/000348941312200904  

Purpose of the Study: Aerodynamic parameters are useful clinically as they provide 

objective, quantitative data to reflect vocal fold health. Both PTP and PTF are valuable 

and are sensitive to various laryngeal changes. The purpose of this study was to examine 
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Phonation Threshold Power (PTW) as an aerodynamic measure that combines PTP and 

PTF. Examiners evaluated PTW in normal subjects, and subjects with vocal fold 

disorders in order to determine its effectiveness as an aerodynamic measurement in 

distinguishing between disordered and normal voices.   

Method: Participants included 100 subjects with normal voice function, 22 

individuals with vocal fold cysts, 72 subjects with vocal fold polyps, and 19 subjects with 

vocal fold mobility disorders participated in this study.  PTF was measured using 

methods established by Zhuang et al. (2013) where the subject sustained /a/ into a 

carboard tube. Each subject started phonation at a soft intensity and over 3-5 seconds 

decreased intensity until phonation ceased. PTF measurements were repeated 3 times for 

each subject. PTP was measured by placing a nose clip and face mask on the participant 

with an oral tube placed 2 cm into their mouth. Participants were then asked to say /pi/ 6-

7 times per breath gradually increasing their volume until /i/ was clearly produced. PTW 

was then calculated as a product of PTP and PTF.  

Results: It was found that PTP, PTF, and PTW were different between each 

experimental group. In individuals with vocal fold polyps, all parameters decreased after 

excision. PTF in normal, mass lesion, and movement disorders were reported as 

0.09±0.04, 0.18 ± 0.08, and 0.22±0.12 L/s. PTP was reported in normal, mass lesion, and 

movement disordered subjects as 4.22 ± 1.02, 7.20 ± 1.84, and 6.65 ± 2.09 cm H2O. 

Lastly, PTW was reported for normal, mass lesion, and movement disorder groups as 

0.38±0.20, 1.28±0.68, and 1.62±0.77 cm H20 x L/s.   

Conclusion: It was found that PTW is sensitive to changes due to lesions and 

vocal fold mobility disorders and can be observed after mass lesion excision. It is 
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concluded that PTW could be a clinically useful parameter for evaluating aerodynamic 

inputs of the voice.   

Relevance to the Current Work: This study relates to the current work as it 

examines aerodynamic parameters in the voice with different vocal fold pathologies. The 

current study utilizes PTP and PTF in combination to evaluate vocal fold health in 

excised rabbit larynges after ICS treatment. This study provides information and research 

on the value of using both PTP and PTF in aerodynamic research.    
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APPENDIX B 
 

Materials 
 
Materials for Dissection 

• Dissection table  
• Dissection mats 
• Lab sink  
• Room temperature water 
• Overhead light and drawing table  
• #11 size X-acto™ knife 
• Stainless steel disposable scalpels (size 15) 
• Hemostatic forceps (4) 
• Manicure scissors  
• Medical suture (silk black braided 45 cm suture, 24 mm needle) 
• White, nitrile, powder free gloves 
• Face masks 
• Disposable plastic aprons 
• Safety goggles  
• Phosphate-Buffered Saline (PBS) solution  
• Test tubes   
• ThermoScientific ™ freezer 
• Food grade refrigerator  
• Styrofoam box 
• Cryogenic gloves 
• Sharpie Permanent Marker 
• Red hazardous waste box (for scalpel and suture needle disposal) 
• Sani-Cloth™ germicidal disposable wipes  
• Digital caliper (UltraTECH™ no. 1433) 
• Digital scale (Ozeri Model ZK14-S™) 

 
Materials for data acquisition 

• Dell computer 
• Dell computer monitor 
• PowerLab™ data acquisition hardware (AD Instruments) 
• LabChart™ data acquisition software (AD Instruments 
• Microphone (Model SM-48,Shure, Niles, IL) 
• High-speed camera (KayPentax, Montvale, NJ) 
• Medical-grade air tank (2) containing compressed, low-humidity air (30 psi, <1% relative 

humidity) 
• Physiological pressure transducer (Model MLT844, AD Instruments) 
• Sphygmomanometer (AD Instruments) 
• Syringe (25 cc/ml) 
• Pressure calibration block  
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• Gauze (to decrease reverberation under pressure transducer) 
• Velcro™ for securing transducers during calibration and data collection  
• Pneumotach Calibration Unit (MCU-4, Glottal Enterprises) 
• Audio Output Extension  
• Bose™ Amplifier  
• Pulse transducer (AD Instruments) 
• AcuRite™ Hygrometer (Model 01083M) 

 
 Materials for benchtop and phonation trials 

• Anterior (one) and lateral (two) Micropositioners (Model 1460, Kopf Industries)  
• Micropositioner single prong attachments (Kopf Industries) 
• Plastic syringe tip (25 cc/ml) 
• Tubing  

o Vinyl: 1 ½” ID outer diameter (OD), 1” inner diameter (ID) 
o Clear Vinyl: 1 1/8” OD, 7/8” ID; 1”OD, ¾"ID; ¾" OD, ½" ID; 7/8” OD, 5/8” ID; 

5/8” OD, ½" ID; ½" OD, 3/8” ID; 3/8” OD, ¼" ID; 5/16” OD, 3/16” ID; 3/16” 
OD, 1/8” ID 

• Respiratory flow head transducer (Model MLT300L, AD Instruments, Sydney Australia) 
• Flow head meters (Model MLT300L, AD Instruments) 
• TheraHeat™ Humidifier (Model RC700000, Smiths Medical, Dublin, OH) 
• Distilled water 
• 20 cm foam-insulated aluminum custom pseudolung 
• Teflon tape™ 
• Cable ties  
• Screwdriver 
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APPENDIX C 

LabChartTM Protocol, Computer Set-up 

1. Power on the computer (DellTM), desktop (DellTM), then PowerLabTM unit.
2. Open LabChartTM 8 Application

a. See pop-up, “Scanning for Devices”
b. “Powerlab 8/35” and “Playback File” should be selected, if not, verify that power

to PowerLab is turned on and then select “device scan” again
c. Click “OK”
d. On the “Welcome Center” screen, select “New”
e. In the upper right corner, select “start”

i. Allow LabChart to run for 15 minutes—the program requires sufficient
time to warm up

3. Input channel settings
a. In the upper left corner of LabChart window, select “Setup” tab --> channel

settings
b. Verify that the following settings are applied:

i. Microphone: sampling rate 40 k/s; range 10 mV; units mV
ii. Pressure: sampling rate 1 k/s; range 20 mV; units mmHg

iii. Flow: sampling rate 1 k/s; range 200 mV; units mV
iv. High speed trigger: sampling rate 1 k/s; range 2 V; units V

c. Units will be set during specific pressure and flow calibration
d. Press “OK” in the bottom right corner when settings are accurate

4. Add a comment that settings were double- checked
a. See a word box on the upper right part of the screen

i. Type in “settings”
ii. In the drop-down box to the left of the text box, make sure it is set to “All”

iii. Press the “Add” button to the right of the text box
1. You can drag the comment to be closer to the actual moment of

change by hovering the mouse over the small black box at the
bottom of the screen, directly below the comment. When a white
left/right arrow pops up, you can drag the comment

5. To return to the live recording of data, press the button in the bottom right corner entitled
“Show latest data”
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APPENDIX D 

Pressure Calibration, LabChartTM Protocol 

1. Zero the pressure transducer before collecting data
a. Attach the pressure transducer to the clear piece with the white cap

i. Pinch the clear prongs together and fit circle around the golden piece’s rim
b. Attach the pressure transducer to a small wooden block for stability.
c. Fasten the transducer wire between the Velcro pieces on the benchtop.
d. Attach the manometer (sphygmomanometer dial piece) via the blue stop cock

i. The air-tight screw end should attach to the outlet on the stop cock that is
180 degrees from the tube that attaches the manometer

ii. Remove the white stop cock on the pressure transducer to open it to
atmospheric pressure

iii. The hand within the manometer dial should be within the small rectangle
at the bottom when zeroing

e. Make sure that the pressure transducer is stable
f. On LabChart, press the start button to collect data for approximately 3 seconds

i. Press stop
ii. Highlight most recent section of blue data

1. Click on “Pressure” drop down box on right side of screen
2. Select “Bridge Amp”
3. Set range to 20 mV
4. Do not set a low pass value
5. Do not check “Mains filter” box
6. Press “zero” button
7. Click “OK”

iii. Leave a comment noting that pressure has been zeroed
1. Alt+ p (pre-set comment)
2. Add the white cap back to the clear piece

2. Take the syringe (25 cc/ml) and pull the plunger out to the end of the syringe
3. Add the syringe to the open outlet on the stop cock
4. Press “start” on LabChart
5. Insert plunger into syringe until the manometer dial reads 40 mmHg—hold this for 5

seconds
a. Add a comment: Alt+ 4 (pre-set comment indicating 40 mmHg)

6. Press “stop”
7. At the bottom of the screen, adjust the horizontal scaling to approximately 50, or until the

two bumps are visible without needing to scroll
8. Highlight the two bumps by starting at the “zero pressure” plateau and finishing at the 40

mmHg plateau
9. Click the pressure drop down box (on right side)

a. Click “Units Conversion”
b. On the bottom left side of the popup window should be a + and – box; press the +

button until you can see both bumps on the small graph
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c. Click the Units Conversion “on” button on the right upper corner of the popup 
window 

d. Click your cursor on the first plateau 
i. Click the arrow button next to “Point 1”—a value should automatically 

appear 
ii. Manually insert a “0” in the next text box 

iii. In the “Units” drop down box, select “mmHg” 
e. Click on the second plateau 

i. Click the arrow button next to “Point 2”—a higher value should 
automatically appear 

ii. Manually insert a “40” in the next text box 
f. Click “OK” 
g. Insert pre-set comment “40 mmHg”: Alt+ c 
h. Disconnect pressure transducer from pressure calibration box and attach to the 

trachea mount located on the benchtop 
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APPENDIX E 

Flow Calibration, LabChartTM Protocol 

1. Zero the spirometer before collecting data
a. Remove the tubes from both sides of the flow head meter located on the benchtop

apparatus.
i. Keep the position of the flow head steady while you run 3 seconds of data

collection
ii. Click “stop”

iii. Highlight the most recent flow signal (green line)
iv. On the “Flow” dropdown box, click “Spirometer”

1. Set the Range to 200 mV
2. Set the Low Pass to 100 Hz
3. Do not check the “Invert” box
4. Click “Zero” button
5. Click “Ok”

b. Using the pre-set comment Alt+F, leave comment that zeroing occurred (after
pressing the “start” button)

2. Attach the flow head meter (via the blue piece) to the input on the top of the pneumotach
calibration unit.

a. Switch on the pneumotach calibration unit power using the switch on the back of
the unit; it should make a few beeps

b. Using the switches on the calibration unit, set the Flow rate to “½” and the liter to
“1”

c. Default mode on unit should be on “flow”
d. Select “start” on LabChart software
e. Flip up the “start” switch on the calibration unit; you should hear the machine

take 3 inhalations and 3 exhalations
f. Once the calibration unit has completed inhalations and exhalations stop data

acquisition on LabChart software
g. Select the middle exhalation (“up” plateau) whole single signal
h. Click the “Flow” dropdown box
i. Select “Spirometry Flow”
j. Next to “Flow Head”, click MLT 300 L
k. Click “Calibrate”
l. Insert 1L in injected volume
m. Click “ok”

3. Leave a comment noting that calibration occurred (after pressing “start” button)
a. Alt+ 1 (pre-set comment)

4. Verify that channel 3 (flow channel) is now in L/s
5. Reattach the flow head meter to the tubes under the benchtop setup. The arrow on the

flow head meter should point in the direction of flow (left). Do not remove the clear tube
attachments between the Lab Chart box and the flow head meter.
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APPENDIX F 

Rabbit Tissue Dissection and Preparation Protocol 
 

Procure rabbit larynges   
1. Obtain all animal tissues from the University of Utah. All in vivo animal procedures were 

completed by researchers at the University of Utah. They administered twice-daily doses 
of either inhaled combination corticosteroids (salmeterol fluticasone propionate) or 
nebulized isotonic saline to in vivo experimental and control rabbits, respectively. Then, 
they sacrificed the rabbits and flash froze rabbit larynges in phosphate buffered solution 

2. Transport larynges to the Taylor Building Annex on Brigham Young University campus 
using a Styrofoam container with dry ice, supplied by researchers from the University of 
Utah 

3. Store rabbit larynges procured from the University of Utah in a commercial 
ThermoScientificTM freezer at –80° Celsius 
 

Thaw frozen larynges 
1. Remove larynges from freezer approximately 30 minutes before beginning dissections. 
2. Fill lab sink with lukewarm water. Leave frozen larynges in water until completely 

defrosted. 
 

Fine dissection 
1. Use manicure scissors and size 11 X-actoTM knife 
2. Spare posterior cricoarytenoid, lateral cricoarytenoid, cricothyroid, and thyroarytenoid 

muscles 
3. Resect esophagus from posterior trachea and larynx, inferiorly to superiorly 
4. Resect tissue superior to false vocal folds 

a. Resect epiglottis 
b. Resect portion of thyroid cartilage approximately 4mm superior to vocal folds 

5. Identify fat pads, lateral to vocal folds and superior to anterior commissure 
6. Resect false vocal folds 

c. Abduct false vocal folds using forceps 
d. Resect false vocal folds with anterior to posterior incision, starting at anterior 

commissure 
2. Resect excess tissue lateral, superior, and posterior to true vocal folds that may affect 

vocal fold vibration 
a. Resect ventricular folds 

 
Suture 

1. Insert suture needle through anterior thyroid cartilage, approximately 1 mm superior to 
anterior commissure 

2. String through thyroid commissure, using two loops to secure suture 
3. Dispose of needle in hazardous waste box 

 
Storage 

1. Temporary storage prior to data collection for no more than four hours 
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b. Place completed larynges in coded vials of fresh phosphate buffered solution 
c. Store vials in food-grade refrigerator to maintain tissue hydration 
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APPENDIX G 

Data Acquisition Protocol 
 

These procedures occur immediately following pressure and flow calibration and specimen fine 
dissection. To collect data on pressure and flow of phonation, at least two research assistants 
must work together, one using (1) LabChart on the computer and the other performing (2) 
Mounting and Air responsibilities at the benchtop: 
 

1. LabChart: 
a. Press “start” before trial begins 
b. Manually type “trial 1” in text box, insert at channel 1 (microphone channel) by 

pressing enter 
c. At the onset of phonation, press Alt+ O (pre-set comment) 
d. At the steady-state of phonation, press Alt+ S (pre-set comment) 
e. At the cessation of phonation, press Alt+T (pre-set comment) 
f. Press “stop” button if needed  

i. Ex. need to spray the larynx, adjust the micro-positioners, etc. 
g. When moving on to trial 2, adjust text box to say “trial 2”, click enter to leave 

comment 
h. Repeat until 15 trials are complete 
i. Ensure signals look normal during phonation 
j. Leave additional comments regarding difficulty in phonation, extra steps for 

mounting, re-recording trials for irregular signals, etc. 
k. Take notes for data sheet 

i. Ex. Perceptually pressed phonation, used Teflon tape, air leakage 
initially—fixed by lowering micro-positioners, etc. 

 
2. Mounting and Air:  

a. Mount the rabbit larynx on a custom bench-top set-up. Use Zip Tie™ at base of 
trachea to secure trachea to air flow tube and prevent air leakage. Wrap and 
secure the trachea with Teflon tape as needed to prevent air leakage. Insert micro-
positioners at the same level into the arytenoid cartilages to adduct the vocal 
folds. Tie suture string to anterior elongation post; pull until string is taut, but not 
too tight. Ensure larynx is sitting up straight and is secure.  

b. Using a commercial light and iPhone camera, take still images of mounted 
larynges for visual-perceptual analysis 

c. Turn air tank on using hand-dial until steady phonation is perceived. After 
approximately four seconds, turn the air tank off quickly.  
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APPENDIX H 
 

Data Segmentation and Analysis Protocol 
 

1. Selecting Signals for Segmenting 
a. Open Lab Chart TM version 8 
b. Open the file from Desktop folder “LabChart Data” 
c. Select the pre-collected animal signals that you want to segment  
d. Select “File” –> “Save Selection”  

i. Rename file and save in designated folder 
ii. Do not save changes to main LabChart Data File 

e. Open new file to segment  
2. Placing Onset and Offset 

a. Zoom in to 2:1 
b. Analyze the waveform and place onset on the second peak after the waveform 

begins to look semi-periodic.  
c. Examine both periodicity and amplitude of waveform to determine where offset is 

and place marker on the last semi-periodic peak before signal dies out 
i. Note: You can use the audio from the acoustic signal to help identify the 

approximate location of onset and offset.  
3. Marking trial errors 

a. Identify any trials where errors occurred, and trials were repeated 
b. Change all of the markers in discarded trials so that they are not tagged 

“phonation onset” and “phonation offset”. Change “phonation onset” to “signal 
start” and “phonation offset” to “signal end”. This is so that these trial errors will 
not be accounted for when Matlab analysis is performed.  

c. Keep detailed notes on which trials were in error and where they are in the data. 
4. Export Segments 

a. Click “File” -> “save” and save segmented file as a new file 
b. Select “File”-> “export” to convert file to txt file 
c. Save the txt files in the correct folder and upload to custom Matlab program for 

further analysis  
5. Open Matlab application   

a. Click “Open File” -> select segmented txt file  
b. Drag the yellow boxes on the screen out of the way  
c. Count trials to verify that all 15 trials have been included in txt file   

6. Selecting Results  
a. Move red markers on microphone signal data to surround one trial of phonation 

i.  Note the placement of the vertical lines between pressure signal peaks. 
The red markers should be placed as close to these lines as possible but 
must be within the vertical markers.   

b. Select “play” in order for application to register line placement 
7. Select “save” 

a. Save as “rabbit#_trial#” It will save as a CSV file (both sound and excel file)  
8. Open excel file to see pressure, flow, and resistance values for phonation onset, steady 

phonation, and offset phonation 
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APPENDIX I 

Thesis Timeline 

5/19  
• Training for lab use, including orientation to instruction manuals and videos in cloud 

storage, hard drive storage, lab computer and program usage, and pressure and flow 
calibration.  
 

6/19  
• Training in fine dissection of rabbit larynges and benchtop setup. Trained in collecting 

acoustic, aerodynamic, and visual data.   
 

10/19  
• Fine dissection and collection of acoustic, aerodynamic, and visual data for experimental 

larynges 
 

11/19  
• Training for data segmentation of raw data on LabChart™ to prepare for upload 

to MatLab ™ program for analysis   
 

12/19  
• Preparation for control rabbit acquisition for further data collection  

 
1/20  

• Fine dissection and collection of acoustic, aerodynamic, and visual data for all control 
larynges   
 

2/20-3/20  
• Maintain lab  

o Back-up collected data on hard drive   
o Computer maintenance via crash-plan download  
o Medical grade compressed air USP gas cylinder replacement  
o Reset precautionary ThermoScientific™ battery  

 
4/20  

• Complete data analysis of phonation pressure and flow using MatLab and Audacity 
programs performed by Amber Prigmore and Meg Hoggan   
 

6/20   
• Analyze data for significant differences between experimental and control groups in 

phonation pressure and flow completed by Dr. Ray M. Merrill, Ph.D., using SPSS, 
version 24 and the Statistical Analysis System, version 9.4   
 

8/20  
• Write prospectus  
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11/20  
• Edit prospectus document   

 
12/20  

• Complete Prospectus meeting with thesis committee, discussing specific thesis questions, 
importance of current study, and protocol for completing statistical analysis   
 

1/21  
• Edit Prospectus documents to align with feedback received from thesis committee   

 
2/21 

• Prepare for thesis defense by completing first written draft of thesis document 
• Schedule oral thesis defense 

 
3/21 

• Complete oral thesis defense 
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