
Brigham Young University Brigham Young University 

BYU ScholarsArchive BYU ScholarsArchive 

Theses and Dissertations 

2021-04-02 

Multilattice Tilings and Coverings Multilattice Tilings and Coverings 

Joshua Randall Linnell 
Brigham Young University 

Follow this and additional works at: https://scholarsarchive.byu.edu/etd 

 Part of the Physical Sciences and Mathematics Commons 

BYU ScholarsArchive Citation BYU ScholarsArchive Citation 
Linnell, Joshua Randall, "Multilattice Tilings and Coverings" (2021). Theses and Dissertations. 8911. 
https://scholarsarchive.byu.edu/etd/8911 

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion 
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please 
contact ellen_amatangelo@byu.edu. 

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F8911&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/114?utm_source=scholarsarchive.byu.edu%2Fetd%2F8911&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/8911?utm_source=scholarsarchive.byu.edu%2Fetd%2F8911&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu


Multilattice Tilings and Coverings

Joshua Randall Linnell

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Rodney W. Forcade, Chair
Jasbir S. Chahal

Stephen Humphries

Department of Mathematics

Brigham Young University

Copyright c© 2021 Joshua Randall Linnell

All Rights Reserved



abstract

Multilattice Tilings and Coverings

Joshua Randall Linnell
Department of Mathematics, BYU

Master of Science

Let L be a discrete subgroup of Rn under addition. Let D be a finite set of points includ-
ing the origin. These two sets will define a multilattice of Rn. We explore how to generate a
periodic covering of the space Rn based on L and D. Additionally, we explore the problem
of covering when we restrict ourselves to covering Rn using only dilations of the right regular
simplex in our covering. We show that using a set D = {0̄, d} to define our multilattice
the minimum covering density is 5 −

√
13. Furthermore, we show that when we allow for

an arbitrary number of displacements, we may get arbitrarily close to a covering density of 1.

Keywords: multilattice, covering, density, word-length, simplex



Contents

Title Page i

Abstract ii

Contents iii

List of Figures v

1 The Initial Covering Problem 1

1.1 Packing and covering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The subtraction Construction . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Two Displacements in Two Dimensions 19

2.1 Simplifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Ensuring the efficiency of a multilattice covering . . . . . . . . . . . . . . . . 21

2.3 Selecting the right displacement . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Square tile problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Best improvement for rectangular tile . . . . . . . . . . . . . . . . . . . . . . 36

2.6 L-shaped tile optimization with 1 displacement . . . . . . . . . . . . . . . . . 39

2.7 Obtaining the density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Multiple Displacements in Two Dimensions 47

3.1 Three displacements in two dimensions . . . . . . . . . . . . . . . . . . . . . 47

3.2 Arbitrary displacement problem . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Bounding the Density 56

4.1 Square tile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Rectangular tile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

iii



4.3 The boundary on an L-shaped tile . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Further Research 72

Bibliography 74

Index 75

iv



List of Figures

1.1 Covering R2 with disks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Covering R2 with half-open squares . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Failing to cover R2 with disks . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 The lattice L generated by (2, 1) and (−1, 3) . . . . . . . . . . . . . . . . . . 8

1.5 The set F in R2 and the hyperplane y = −x . . . . . . . . . . . . . . . . . . 9

1.6 The set L0+ + F and tile T for the lattice generated by (1, 2) and (−1, 3) . . 9

1.7 Edge-centered Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.8 The multilattice Z2 + {0,
(

1
4
, 1

4

)
} and base lattice Z2 . . . . . . . . . . . . . . 15

1.9 Z2 +
{

0,
(

3
5
, 3

5

)}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.10 Z2 + {0,
(

3
5
, 3

5

)
} partial covering by simplices at lattice points . . . . . . . . . 17

1.11 Z2 +
{

0,
(

3
5
, 3

5

)}
partial covering by simplices at displacement points . . . . . 17

1.12 Multilattice covering with right regular simplices . . . . . . . . . . . . . . . . 18

1.13 Multilattice covering with disks . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1 Covering of Tessellation of tile by multiple simplices . . . . . . . . . . . . . . 33

2.2 Increasing λ2 for an L-shaped tile . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3 3-step staircase and simplex . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Two displacements cover a square region of our tile . . . . . . . . . . . . . . 47

3.2 2 displacements each cover a corner . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 square tile divided into 64 squares . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 First simplex added . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Second simplex added . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6 Adding simplices for first iteration of remaining space . . . . . . . . . . . . . 54

3.7 Adding simplices for 2nd iteration of remaining space . . . . . . . . . . . . . 55

4.1 Region of density at most 1.7 . . . . . . . . . . . . . . . . . . . . . . . . . . 59

v



4.2 L-tile generated by (0.4,0.2) and (-0.2, 0.6) . . . . . . . . . . . . . . . . . . . 65

4.3 Region to pull back one corner . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Boundary for h1 + h2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Region of density 1.6 or less . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6 Γ1 and Γ2 on L-tile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.7 Region to pull back both corners optimally . . . . . . . . . . . . . . . . . . . 69

vi



Chapter 1. The Initial Covering Problem

The problem of how to cover a space or how to pack given objects into a space is a problem

that mathematicians have been interested in for quite some time [1]. This naturally arises

from the cannonball packing problem. Given a set of cannonballs, what is the most effective

way to pack them into a given space? This first arose when the question of how to store the

greatest amount of cannonballs on ships was explored. The Kepler conjecture states that

spheres centered on the face-centered cubic lattice result in the best possible packing density

in E3. The Kepler conjecture was later proved by Thomas Hales and Samuel Ferguson [1].

Exploration of this topic naturally led to the similar question of how to cover E3 with

overlapping spheres. In other words, if we take a set of spheres that all share the same radius,

how should we place them most efficiently so that every point of E3 is contained in at least

one sphere? In an effort to answer this question, mathematicians began to explore different

methods of packing and covering with a variety of shapes and arrangements of them. Clearly,

there are many different ways to cover a given space, but which is most efficient? We will

focus on one method that has been used to obtain a covering with simplices, and several

results related to this problem.

1.1 Packing and covering

To approach the problem of efficiently covering spaces by using lattices, we first establish

some key definitions and results from previous approaches to the topic. While we will work

on covering the space En, in order to make some results easier to prove, we will use Rn with

the dot product as the inner product. Note that Rn has the same underlying set as En, but

allows us to define an origin. Having an origin will be important for calculations later. We

also define a convex body.

Definition 1.1. A convex body is a compact set C of points in Rn such that for any two

points x and y in C, the line segment that joins them is also contained in C.
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We will use convex bodies and their translates to cover our space. One method of using

a given convex body to obtain a cover for a given space is to place translates of the convex

body in periodic patterns that result in every point of the space being contained in at least

one of the translates. One method that many are familiar with is a periodic pattern that

results in a lattice.

Definition 1.2. A Lattice L of rank i (i ≤ n) is a discrete subgroup of Rn, under addition,

generated by all integer combinations of R-linearly-independent vectors {v1, v2, . . . , vi}. The

lattice L is said to be full rank if i = n.

One example of a lattice is Zn. The lattice Zn is generated by the vectors {e1, e2, . . . , en}.

Notice that this is a full rank lattice in Rn as n vectors are required to generate Zn. Another

lattice is the set of points L = {(a, b, b) | a, b ∈ Z}. This lattice will be generated by the

vectors (1, 0, 0) and (0, 1, 1). This is not a full rank lattice, as it is generated by only 2 vectors,

but is a subgroup of R3. Another example, perhaps the most famous, is the face-centered

cubic lattice. The face-centered cubic lattice is generated by the three vectors (−1,−1, 0),

(1,−1, 0), and (0, 1,−1) and is a full rank lattice in R3. This lattice is seen in chemistry

and physics in the formation of crystals. It is also the lattice that gives rise to the highest

possible packing density of cannonballs in the Kepler conjecture. Now that we have defined

a lattice, we approach the problem of covering the space Rn by using a given lattice to define

translates of a single convex body. Let us place a convex body C in Rn such that the origin

is contained in C. Let us now take all translates of C by each element of our lattice. It is

possible, given the proper choice of convex body, that this periodic pattern of simplices will

contain every point of Rn. This will result in what is known as a lattice covering.

Definition 1.3. A lattice covering of Rn is a covering obtained by placing a convex body S

in Rn such that the origin is contained in S, and the union of all translates of S by elements

of a full rank lattice L is Rn. We will often write L + S = Rn to express that S and L

generate a cover of Rn.
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Figure 1.1: Covering R2 with disks

(0,0) (1, 0)

(0, 1)

Figure 1.2: Covering R2 with half-open squares

For example, in R2 let L be the full-rank lattice Z2 and the convex body S to be the disk

of radius 1√
2

centered at the origin. Now we take all translates of S by any element of Z2,

and we get the set of all disks of radius 1√
2

centered at integral points. This will result in a

covering of the space R2, pictured in Figure 1.1, and so is a lattice covering. Some points

in R2 are contained in multiple spheres in our covering.

Let us look at another covering defined using a lattice. Suppose that instead of using

disks, we had taken the set of points [0, 1)× [0, 1). This is a square, but with two adjacent

edges not included. We will call this the half-open square. We place half-open squares of

side length 1 at each lattice point, such that the vertices of each square are lattice points.

This will cover the space R2. This covering is illustrated in Figure 1.2. This covering results

in each point belonging to exactly one of our half-open squares. As the set used to cover is

not compact, this is not a lattice covering. We may obtain a lattice covering by taking the
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Figure 1.3: Failing to cover R2 with disks

closure of the half-open square and placing the vertices in the same manner.

Now we look at an example of a non-covering. Suppose that we once again take the

lattice Z2. Let S be the disk of radius 3
5

centered at the origin. We take all translates of S

by the elements of L. However, note that we now have regions of R2 that are not covered

by any of the translates of S. This non-covering is illustrated in Figure 1.3.

We are interested in coverings for our space. So we define a method that will check if a

given lattice and convex body generate a lattice covering. To do this, we first define a tile.

Definition 1.4. Let S be a set. Let P = {S1, S2, . . . } be a partition of the set S. A

transversal is a set T such that for every Si ∈ P , there is exactly one xi ∈ T such that

xi ∈ Si.

Definition 1.5. A Tile is a transversal T of the cosets of the group Rn/L, for a full-rank

lattice L.

For any x ∈ Rn, x may be written uniquely as x′ + g where x′ ∈ T and g ∈ L for a

tile T of our lattice L. We need the lattice to be full rank, otherwise Rn/L will not have

finite volume. We can think of finding a tile as taking a set of points T in Rn such that

the restriction of the quotient map to T will be a bijective map between T and Rn/L. We

now look at an example of a tile. Let n = 1 and let L = Z. This is a discrete subgroup of

R and is clearly rank 1. Now let us take the half open interval [0, 1). Notice that this is a

transversal of the cosets of R/Z, or in our case Rn/L. Thus, this half open interval is a tile

of the lattice Z. We note that if we place the interval [i, i + 1) at each of the points in Z,
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we will certainly cover R as every real number is an element of an interval of this type. We

also note that there is no overlap between any of the intervals of this type. Let us consider

one more example of a tile before moving on. We take the space R2. Take the lattice L

generated by v1 = (1, 0) and v2 = (0, 2). Now we look at the quotient group R2/L. For any

point (a, b) ∈ R2, the point (a−m1, b− 2m2), with m1,m2 ∈ Z, maps to the same coset in

the quotient group. So we may choose a representative (x, y) for the coset (a, b) + L such

that x ∈ [0, 1) and y ∈ [0, 2). So the set [0, 1)× [0, 2) is a transversal of the cosets of R2/L

and thus a tile.

We note that a tile of a lattice L will always give us a covering of Rn. This leads us to

the following.

Theorem 1.6. Any convex body C generates a lattice covering of Rn with the lattice L if

and only if C contains at least one tile of the lattice L.

Proof. For the forward direction, let C be a convex body that covers with the lattice L. We

now show that C must contain a tile. Let x be any point of Rn. Then x is contained in C

translated by some g ∈ L, as L+C is a lattice covering. In other words, x = c+ g for some

c ∈ C and g ∈ L, or x − g = c. Let π : Rn −→ Rn/L be the standard quotient map. Then

π(x) = π(x) − π(0) = π(x) − π(g) = π(x − g) = π(c). However, x − g = c lies inside the

convex body C. We then have that π(C) = Rn/L. Now let T be a tile of the lattice L. We

note that for any point x′ ∈ T , there exists a point y′ ∈ C such that y′ = x′ + g for some g

in our lattice. Let T ′ be the set of all y′. Clearly T ′ ⊆ C. We also note that π(x′) = π(y′).

So T ′ is also a transversal of Rn/L, and so is a tile. C contains a tile.

For the other direction, let T be a tile of the lattice L. Let C be a convex body that

contains T . We now show that C+L will give us a lattice covering. Choose any point x ∈ Rn.

We note that x must be contained inside of a translate of our tile T by a lattice element g.

Call this translation T + g. We note that T ⊆ C. So we also have that T + g ⊆ C+ g, where

C + g is the translation of C by the element g. So x is also contained in C + g. This is true

for every x, so C + L must be a covering of Rn.

5



It is important to note that a tile for a given lattice is not unique, it is just a transversal

of the cosets Rn/L. So it is possible that we may have a convex body which does not contain

a given tile of L, but still gives a covering when paired with L.

As an example we again work in R with Z as our lattice. Suppose we had taken the convex

body [−1
2
, 1

2
]. This does not contain the tile [0, 1), but it does contain the tile [−1

2
, 1

2
). So

long as a single tile of L is found in the chosen convex body, we have a cover of Rn. The

convex body [−1
2
, 1

2
] will still provide a cover with the lattice Z.

We also note that tiles need not be connected. We may choose the tile (a − 1
4
, a + 1

4
] ∪

(a+ 5
4
, a+ 7

4
]. This is a tile for Z, as it is a transversal of each of the cosets of R/Z. It is not

a connected set, but is a union of connected sets, which contains a tile (itself). Any convex

body which contains this tile will also give us a lattice covering for R/Z. We see that since

a lattice does not have a unique tile, it is possible to choose many different convex bodies to

cover our space. With this in mind we turn to one way to obtain a tile, and the approach

we will use moving forward.

1.2 The subtraction Construction

In order to obtain a tile for a given lattice L, we turn to a previously developed method

called the subtraction construction[2]. To begin the subtraction construction, we denote by

F all points of Rn with each coordinate non-negative (the closed first orthant). (As we work

through the process, we will perform the subtraction construction to obtain a tile of the lattice

Z2 in R2). Let a lattice L be given. Take all the points of L whose coordinates have a positive

sum and call this set L+. (In Z2, this is the set {(x, y) ∈ Z2 | x+y > 0}). If xi denotes the ith

coordinate of the point x,
∑n

i=1 xi > 0 for each x ∈ L+. For any x ∈ L+, it must be true that

−x /∈ L+. Now let L0 = {x ∈ L |
∑n

i=1 xi = 0, x � −x under the lexicographical order}. (In

Z2, L0 = {(x,−x) ∈ R2 | x ∈ Z−}). Let L0+ = L0 ∪ L+. (L0+ = {(x, y) ∈ Z2 | x + y >

0} ∪ {(x,−x) | x > 0}). Let L0+ + F = {x′ + y′ ∈ Rn | x′ ∈ L0+, y′ ∈ F}. In other

words, L0+ +F is the set of points that are contained in the first orthant translated by some

6



element of L0+. (L0+ + F = {(x + a, y + b) ∈ R2 | (x, y) ∈ L0+, a ∈ R0+, b ∈ R0+}). Let

T = F \ (L0+ + F ). (For Z2, (0, 1), (1, 0) ∈ L0+, and T = {(x, y) ∈ R2 | 0 ≤ x, y < 1}. Then

T is a tile of the space Rn with the lattice L [2]. T is said to be a tile obtained from the

subtraction construction. In order to discuss the significance of this tile, we need to define

Manhattan diameter.

Definition 1.7. The Manhattan diameter between x and y in Rn is λ =
∑n

i=1|xi − yi|

where xi − yi is the difference in the ith coordinate of x and y. The Manhattan diameter

of a bounded subset C of Rn is the smallest λ such that C is a subset of a right regular

simplex defined by the points {x, x+ λe1, . . . , x+ λen} for some x ∈ Rn. We will write this

as Mdiam (T )

We note that if S is the right regular simplex defined by the points {x, x+λe1, . . . , x+λen},

then any point x′ contained in S will have Manhattan diameter at most λ from the vertex

x. So the Manhattan diameter of a tile will give us the size of the right regular simplex

required to contain the tile.

Theorem 1.8 (Forcade & Lamoreaux). A tile obtained from the subtraction construction

will have a minimal Manhattan diameter for any tile type of the lattice L.

Specifically, if λ is the Manhattan diameter of the tile, then the tile is contained in the

right regular simplex of area λn

n!
defined by the points {0, λe1, . . . , λen}. So the Manhattan

diameter of the tile defines the minimum volume of a right regular simplex S that will cover

Rn with L. So if S ′ is a right regular simplex with smaller volume than S, then S ′+L 6= Rn.

For the proof of this theorem, we refer the reader to [2]. We will generalize this theorem to

the setting of multilattices (Theorem 2.7).

We will now use the subtraction construction to find a tile of a few given lattices. First,

let us take the lattice Z. We have seen several examples of tiles for this lattice. To begin

we note that since this is a one dimensional lattice, L0+ will be the set of all lattice points

that are non-negative numbers, or L0+ = N ∪ {0}. We note that F will be the set [0,∞).

7



Figure 1.4: The lattice L generated by (2, 1) and (−1, 3)

So our set L0+ + F will be the translations of [0,∞) by a positive integer. Since L0+ is

well-ordered, it has a least element, namely 1. So L0+ + F = [1,∞). Our tile becomes

[0,∞) \ [1,∞) = [0, 1). It should be noted that our tile obtained this way is meant to define

a minimal right regular simplex to cover our space. So this tile will allow us to choose a

1-simplex that will cover R with minimum density. The simplex will be [0, 1].

We now look at a more interesting example. Let us take the lattice generated by v1 =

(2, 1) and v2 = (−1, 3), pictured in Figure 1.4. This is a rank 2 lattice, so we start with F

as the first quadrant, which is colored red in Figure 1.5. We also note that the hyperplane

defined by
∑n

i=1 xi = 0 will be the line y = −x, also pictured in Figure 1.5. We note that

L0+ be the set {m1v1 + m2v2 | 3m1 + 2m2 > 0,m1,m2 ∈ Z}. Notice that the set L0+ + F

will be the union
⋃
x∈L0+ x + F , shown in Figure 1.6 as the gray region. The red region

in Figure 1.6 is the tile for this lattice from the subtraction construction. In other words,

the red region in Figure 1.6 is F \ (L0+ + F ). Notice that while there are infinitely many

points in L0+, there are only finitely many of them we need to define our tile T in this

way. In this case they are the points (2, 1), (−1, 3), (3,−2). These points are often called

blockers . Informally, a blocker is a point in L0+ that “blocks” our tile from increasing in a

8



Figure 1.5: The set F in R2 and the hyperplane y = −x

(2,1)

(0,0)

Figure 1.6: The set L0+ + F and tile T for the lattice generated by (1, 2) and (−1, 3)
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given direction. For example, here the blocker (−1, 3) for our tile here “blocks” our tile from

having points with a y-coordinate greater than 3. The blocker (2, 1) “blocks” our tile from

having points with an x-coordinate greater than 2 and a y-coordinate greater than 1. In this

way we get one corner of our tile as (2, 3). A blocker that has strictly positive coordinates

is called the squinch.

1.3 Density

With the subtraction construction, we have a way of finding a tile for a given lattice. Now

that we may check if a convex body will give us a lattice covering, we want to find which

convex body will cover with the least amount of overlap. In other words, we want to find a

covering that minimizes the volume of the set of points in a tile T that are covered by more

than one convex body in our lattice covering. To approach this problem, we will also define

a few terms.

Definition 1.9. Let the lattice L be generated by {v1, . . . , vn}, and L be a full rank lattice

in Rn. The covolume of a lattice is the absolute value of the determinant of the matrix of

the form

[
v1 v2 · · · vn

]
where vi are column vectors.

Theorem 1.10. The volume of any connected and bounded tile of a lattice L is equal to the

covolume of the lattice L.

Proof. We let T be the parallelepiped [0, 1)v1 × · · · × [0, 1)vn. Then T will have volume

det

[
v1 v2 · · · vn

]
. We now show that T is a tile. First we show that under the standard

projection map π : Rn −→ Rn/〈v1, v2, . . . , vn〉, π |T is injective. Choose x, y ∈ T such that

x 6= y. Now we show that π(x) 6= π(y). Assume by way of contradiction that π(x) = π(y).

This means that x = y + g, where g is some elements of the group 〈v1, v2, . . . , vn〉. Note

that 〈v1, v2, . . . , vn〉 = L, so g is a lattice point. Since L is a full-rank lattice, we have that

{v1, . . . , vn} is also a basis for Rn. Since these vectors form a linearly independent basis for

Rn, we may uniquely express x and y in terms of this basis. Let x = r1v1 + r2v2 + · · ·+ rnvn

10



and let y = s1v1 +s2v2 + · · ·+snvn, where ri, si ∈ R. Then ri 6= si for some i. For any g ∈ L,

we may write g as m1v1 +m2v2 + · · ·+mnvn, with mi ∈ Z. Since x = y + g for some g, we

have

r1v1 + · · ·+ rnvn = s1v1 + · · ·+ snvn +m1v1 + · · ·+mnvn.

The basis for L is linearly independent, so rivi = (si + mi)vi for each i. Since x, y ∈ T ,

ri ∈ [0, 1) and si ∈ [0, 1). Thus it must be the case that mi = 0 for all i. But this gives us

that si = ri, a contradiction. So π must be injective when restricted to T .

We now show that π : T −→ Rn/L is surjective. The quotient map π : Rn −→ Rn/L

is surjective. Choose any x̄ in Rn/L. There must be some x in Rn such that π(x) = x̄.

Since {v1, . . . , vn} is a basis for Rn, we may express x as α1v1 + α2v2 + · · · + αnvn. Since

αi is a real number, there exists some integer m′i such that αi + m′i ∈ [0, 1). The point

m′1v1 +m′2v2 + · · ·+m′nvn is a lattice point. So we have

π(x) = π(α1v1 + α2v2 + · · ·+ αnvn)

= π(α1v1 + α2v2 + · · ·+ αnvn) + 0Rn/L

= π(α1v1 + α2v2 + · · ·+ αnvn) + π(m′1v1 +m′2v2 + · · ·+m′nvn)

= π((α1 +m′1)v1 + · · ·+ (αn +m′n)vn).

Since (α1 +m′1)v1 + · · ·+ (αn +m′n)vn is a point contained in T , π(x) ∈ Im(π |T ). Thus we

have that π |T is a bijection, and so T is a tile. So the volume of T is the covolume of the

lattice.

Let T ′ be any connected bounded tile. Since any tile is a transversal of Rn/L, it must

be the case that each point in T ′ is a translate of some point of the parallelepiped T . As

T ′ is bounded, it must be the case that T ′ is contained in some ball B of finite radius r.

Let A = {g1, g2, . . . , gt} be the set of all lattice points such that T + g1 intersects B. Since

L is a discrete subgroup, A must be a finite set. Each point x′ ∈ T ′ may be expressed as

11



x′ = x+ gj for some gj ∈ A and x ∈ T . As T ′ is connected, the subset

T ′i = {x′ ∈ T ′ | x′ = x+ gi, x ∈ T} ⊆ T ′

is also connected. As fi : Rn −→ Rn given by fi(x) = x−gi is an isometry, it preserves volume.

So the volume of T ′i is equal to the volume of the set fi(T
′
i ). The set fi(T

′
i ) ∩ fi′(T ′i′) = ∅ if

i 6= i′. So T = ∪tj=1fj(T
′
j). This gives us that

VolT = Vol
(
∪tj=1fj(T

′
j)
)

=
t∑

j=1

Vol
(
fj(T

′
j)
)

=
t∑

j=1

Vol (T ′j) = Vol (T ′)

So any connected and bounded tile of the lattice L must have volume equal to the covolume

of the lattice L.

Now we use this to define the density of a lattice covering.

Definition 1.11. The density of the lattice covering by a convex body S is the ratio of the

volume of S to the covolume of the lattice. We will use δL,S to denote the density of the

lattice covering obtained from the lattice L and the convex body S. If it is sufficiently clear

from context, we will simply use δ to denote the density of a lattice covering. Any covering

will have density of at least 1.

Let us return to some of the lattice coverings that we have previously seen. The first will

be that of the lattice Z2 which was covered by disks of radius 1√
2
. We will use S1 to denote

the disk of radius 1√
2

centered at the origin. We note that the area of each disk will be π
2
.

Next we note that {(1, 0), (0, 1)} generates Z2. Thus the determinant of the matrix

[
e1 e2

]
is 1. So the density of this lattice covering is δZ2,S1

= π
2

or about 1.57.

Next we look at the covering resulting from a connected and bounded tile T of a given

lattice L′. The measure of any connected and bounded tile will always be the covolume of

the lattice for which it is a tile. Thus regardless of our choice of lattice L′, δL′,T = 1 when T

is a tile of L′.
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Corollary 1.12. If a convex body S gives a lattice covering of Rn with the lattice L, then

δL,S ≥ 1. If δL,S = 1, then S is the closure of a tile.

Proof. Let S be a convex body that gives a lattice covering with the lattice L. S must contain

a tile by Theorem 1.6. As a tile is contained in S, VolS is at least det

[
v1 v2 . . . vn

]
.

Since δL,S is the ratio of the volume of the convex body to the covolume of the lattice,

δL,S ≥ 1. If δL,S = 1, then we see that VolS = VolT . As S is closed, the closure of S must

be the set S. Now we note that the set T is contained in S. Let T be the closure of T . Then

the set S \ T is open in S. If S \ T is not the empty set, then there exists some x ∈ S such

that there is an ε-ball about x that lies in S \T . This has a positive measure of volume, and

so S \ T must have positive measure of volume. This contradicts the fact that δL,S = 1, so

S \ T = ∅. Thus S = T .

The lattice-simplex covering problem. While we may always find a way to cover

Rn using a tile of a lattice L, a more interesting problem is that of using a convex body that

is not a tile [1]. One such problem is that of finding a lattice covering using an n-simplex as

the convex body, also called the lattice-simplex covering problem.

Definition 1.13. An n-simplex is a convex body in Rn that is defined by n + 1 points in

general position. In other words, it is a convex body that has a positive measure of volume

in n-space that is defined by n + 1 distinct points. The n-simplex is the smallest convex

body that contains these n+ 1 points.

While the question is what choice of lattice and simplex will result in the lowest covering

density, it has been shown that we may choose and fix the type of simplex and vary the

lattice to find the optimal covering density [2]. We will choose the right-regular simplex to

be the convex body used in our covering. In other words, our n-simplex will be a scaling

of the convex body defined by the points {0, e1, e2, . . . , en}. Now we must choose a lattice

that will result in the minimal density. One method of solving this problem is by choosing

a lattice and looking at the tile that results from the subtraction construction. If this tile
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is contained in our right regular simplex, we know we have a covering. We also note that

since the volume of a tile and the covolume of a lattice are equal, the density will be the

ratio of the volume of the right-regular simplex to the volume of the tile. Recalling that

the subtraction construction results in a minimum Manhattan diameter for any tile of our

lattice, our choice of lattice will determine our tile. So we must choose the lattice that results

in the volume of the tile from the subtraction construction being closest to the volume of a

right regular simplex scaled by the Manhattan diameter of the tile.

This problem has been solved for n < 3. For n = 1, the 1-simplex will be an interval.

So we may cover the space with a density of 1. For n = 2, the 2-simplex will be an isosceles

right triangle, and the tile will be a rectangle or an L-shape. It has been shown that the

best density for any rectangular tile is 2. It has also been shown that the best density for

an L-shaped tile is 1.5. So we may cover R2 with a minimum density of 1.5.

For n = 3, the problem is still an open problem. It has been shown that the density will

be less than 2. However, unlike the previous examples, there are infinitely many types of

tiles that may result from the subtraction construction. This is part of the reason that the

problem is still open for n ≥ 3, as we cannot break the problem into a finite number of cases.

1.3.1 Multilattice problem. Now that we have set up the problem of finding the best

density with a given lattice and simplex, we extend this to multilattices.

Definition 1.14. Let D be a finite subset of Rn which includes the origin. A multilattice is

the set {g+ d | g ∈ L, d ∈ D}. We write this set as L+D. We refer to L as the base lattice.

We often refer to the points contained in the set D as displacements , as they shift or

“displace” the base lattice. In order to see what multilattices look like, we give a few

examples. One example of a multilattice that is prevalent is that of the edge-centered cubic

lattice, pictured in Figure 1.7. The displacement points are colored red, and the base lattice

points are colored black. This is a scaling of the multilattice 2Z3 +{0, e1, e2, e3}. The reason

that this is referred to as a lattice, despite not being a subgroup of Rn, has to do with the
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(2,0,0)

(0,0,2)

(0,2,0)

Figure 1.7: Edge-centered Lattice

Figure 1.8: The multilattice Z2 + {0,
(

1
4
, 1

4

)
} and base lattice Z2

fact that it is frequently seen in crystalline structures in physics. In physics, a lattice is a

physical model that may be described by using a periodic pattern of discrete points, and so

the class of objects that physicists would describe as a lattice includes multilattices. To see

that the edge-centered cubic lattice is a multilattice but not a lattice, note that it cannot

form a group under addition. Add (0, 1, 0) and (1, 0, 0), which are both in the edge-centered

lattice. We get the point (1, 1, 0), which is not included in the edge-centered cubic lattice.

Another example is that of the lattice Z2 together with the image of the translation

f(x) = x+
(

1
4
, 1

4

)
. This multilattice is pictured next to the base lattice in Figure 1.8.

As we work with multilattices, it is worth noting there may be multiple displacements that

get us the same multilattice. For example, let us take our base lattice to be Z2 once again.

Then let {0,
(

1
3
, 1

3

)
} = D. The displacement will result in the set {

(
3x+1

3
, 3y+1

3

)
| x, y ∈ Z}

being in the multilattice L+D. Now suppose instead we had chosen the displacement
(

4
3
, 4

3

)
.

The set from this displacement is {
(

3x+4
3
, 3y+4

3

)
| x, y ∈ Z}. These both define the same set

of points. For this reason, we may choose a point that lies on the interior of our tile from
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Figure 1.9: Z2 +
{

0,
(

3
5
, 3

5

)}
the subtraction construction whenever it is convenient.

With the new object of a multilattice, we note that if we place convex bodies at each

point, we may still get a covering, but not necessarily a lattice covering.

Definition 1.15. Let D = {d0 = 0, d1, d2, . . . , dk} be a subset of Rn and Cj (0 ≤ j ≤ k) be

a convex body such that dj ∈ Cj. A multilattice covering of Rn by the set of convex bodies

{Cj | 0 ≤ j ≤ k} = C is a covering such that Rn = ∪kj=0(Cj + L). The convex bodies placed

at two distinct displacements need not be translates of each other.

Now that we have a method of covering using a multilattice, we also define the density

of such a covering.

Definition 1.16. The density of a multilattice covering is defined to be the ratio of the sum

of the volume of each of the convex bodies Ci to the covolume of the base lattice L. We

will denote this as δL+D,C for the multilattice covering of Rn generated by the multilattice

L+D and the convex bodies C = {Ci}. If it is sufficiently clear from context, we will use δ

to denote the density of a multilattice covering.

We now look at an example of a multilattice covering, and find the multilattice covering

density. Let us take the lattice Z2 as our base lattice. Let our set of displacements be

D = {0,
(

3
5
, 3

5

)
} Then we get the multilattice in Figure 1.9. We note that under the

subtraction construction of the base lattice, we get a square of side length 1 for our tile. So

we may choose a set of convex bodies that will contain this tile to get a covering. Let us
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Figure 1.10: Z2 + {0,
(

3
5
, 3

5

)
} partial covering by simplices at lattice points

Figure 1.11: Z2 +
{

0,
(

3
5
, 3

5

)}
partial covering by simplices at displacement points

place the right regular simplex of side length 8
5

at each point in our base lattice. Then we get

the non-cover in Figure 1.10. Now let us also place the right regular simplex of side length 4
5

at each of our displacement points. We draw this result in Figure 1.11 where we only place

the simplices at each displacement point. With just the simplices placed at the displacement

points, we still don’t have a covering. However, by placing the right regular simplex of side

length 8
5

at the base lattice points, and the right regular simplex of side length 4
5

at the

displacement points, we do obtain a multilattice covering, pictured in Figure 1.12. As Z2

has a covolume of 1, this covering has a density equal to the sum of the area of each simplex

used in our multilattice covering, or 32
25

+ 8
25

= 8
5
. With the base lattice of Z2, the subtraction

construction resulted in a lattice covering with a density of 2. So given a multilattice, we

may find coverings that result in a lower density than the base lattice covering using right
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Figure 1.12: Multilattice covering with right regular simplices

Figure 1.13: Multilattice covering with disks

regular simplices.

We now do one more example of finding the multilattice covering density of a given

multilattice covering. Let us take the lattice Z2 once more. Then let D = {0,
(

1
2
, 1

2

)
}. For

the convex body that is placed on the points of our base lattice, take the disk of radius 0.6

centered on each point. Then let the convex body for our displacement be a disk of radius
√

0.11 centered on each displacement. This covering gives us a density of π
(

72
100

+
√

11
100

)
,

or about 1.2199983.

Our question now is, given k displacements, what is the best possible density for a

multilattice covering that uses dilations of the right regular simplex at each point?
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Chapter 2. Two Displacements in Two

Dimensions

We address the problem of finding the best multilattice covering density first by limiting

ourselves to two displacements and two dimensions. As we will be using dilations of the right

regular simplex to generate our coverings, we will simplify the problem by standardizing how

we may place these convex bodies to generate a covering.

Definition 2.1. We will say we are placing a simplex S at a point p when the vertices of

our simplex are the set of points {p, p+ ae1, p+ ae2, . . . , p+ aen} where a is a positive real

number. We will also say this simplex has scale a.

Now we turn to the problem of placing simplices such that the density of a multilattice

covering is minimized. When n = 1, we may obtain a lattice covering with a density of 1.

So we begin with multilattice coverings when n = 2. Given a lattice L, we know that by the

subtraction construction we get a given density δL. However, if we add a single displacement,

and we place dilations of the right regular simplex at each point in our multilattice, what is

the new density we can achieve?

We start by listing a few results from our lattice coverings. The best lattice covering

in two dimensions has a density of 1.5. There are two types of tiles that result from the

subtraction construction when n = 2. The two are the rectangular tile and the L-shaped, or

2-staircase, tile [2].

Lemma 2.2. There exists a multilattice covering by the multilattice L+D using only dilations

of the right regular simplex of at most density δL.

Proof. The density of the lattice covering of the base lattice is δL. Let T be the tile obtained

from the subtraction construction. Then let S be the simplex of scale Mdiam (T ). Now

let L + D be a multilattice with |D| = k + 1. Then we must choose a collection of right

regular simplices Si for 0 ≤ i ≤ k such that when Si is placed at di for each di ∈ D we
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will get a multilattice covering of Rn. Additionally, we require
∑k

i=0 Vol (Si) ≤ VolS. Let

S0 be the right regular simplex of scale Mdiam (T ) placed at d0. Now let us choose Si

to be the point di for 1 ≥ i ≥ k. We note that this would be the right regular simplex

of scale 0. Then the measure of n-volume of Si will be 0 for 1 ≥ i ≥ k. Notice that∑k
i=0 Vol (Si) = VolS +

∑k
i=1 VolSi = VolS +

∑k
i=1 0 = VolS. We also note that S0 is the

right regular simplex that resulted in a lattice covering. So there exists some tile T such

that T is contained in S0. Thus T is also contained in ∪ki=0Si. So this collection of simplices

provides a multilattice covering with density δL.

So we assume that the density for any multilattice covering is at most δL, where L is the

base lattice. It may be possible to obtain a multilattice covering with a density δL+D such

that δL+D < δL with the proper choice of Si. We have seen the example of the multilattice

covering of Z2 + {0,
(

3
5
, 3

5

)
}, pictured in Figure 1.12, has a covering density lower than that

of the lattice covering given by Z2. The best density we may achieve for a given multilattice

depends on our set of displacements D. We now focus on how we may choose the base

lattice and add a single displacement that will result in the best possible covering density.

We also note that depending on what displacement we choose with our base lattice, we will

need different sized simplices for both the base lattice points and the displacement points to

cover the tile from the subtraction construction. So we now explore how we may decrease

the total area of these simplices while still covering the tile. As the tile from the subtraction

construction will only depend on the base lattice, our choice of displacement will not affect

the tile type.

2.1 Simplifications

Some assumptions may be made as in the lattice covering problem to simplify the question.

We first start by noting that a lattice and simplex used in a covering may be simultaneously

scaled without changing the density. We will use this to scale our lattice and simplex in

such a way to give the tile T a certain value for its Manhattan diameter. If we allow for
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any simplices to be chosen for our multilattice covering, we now show that we can achieve a

density of 1 in Rn for any n with a finite number of displacements. To see this, simply take

the lattice Zn. The unit cube is comprised of a finite number of simplices whose vertices are

the vertices of the cube, and whose intersection with each other is an m-simplex, with m < n.

So we simply choose these simplices as our convex bodies, and we choose the displacements

to be one of the vertices of a given simplex. This will be the unit cube, which is the closure

of a tile of Zn. Now let us restrict ourselves to a multilattice covering where each simplex

used in the covering is a dilation of a single simplex which contains the origin. In other

words, each simplex in our covering is the same shape, but may be a different size. We note

that this cannot result in a covering density of 1 if n > 1. We now explore what the lowest

multilattice covering density using a single type of simplex is. For convenience we choose

the right regular simplex.

2.2 Ensuring the efficiency of a multilattice covering

Performing the subtraction construction with a lattice L gives us a tile that lies inside

the right regular simplex S such that L + S = Rn and if S ′ is any right regular simplex

with volume less than the volume of S, S ′ + L 6= Rn. In other words, the Manhattan

diameter of the tile obtained from the subtraction construction is the minimum Manhattan

diameter of any tile. We now need to worry about choosing the correct dilation of the right

regular simplex for each multilattice point to ensure that the multilattice covering also has

minimum density. A tessellation of a tile T is any partition of T . The tile obtained from the

subtraction construction may be broken up into a tessellation by following a process similar

to the subtraction construction, formally outlined in Theorem 2.7. We start this process by

taking a tile T obtained from the subtraction construction, rather than an orthant, and take

pieces out of it one at a time based on the multilattice points contained in T . As there are

only finitely many points that we may use in this process, we will only have finitely many

pieces of our tile. These pieces will become what we refer to as prototiles of our tessellation.
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Definition 2.3. If a given tile T of a lattice L is divided into finitely many mutually disjoint

subsets T1, T2, . . . , Tk, then each Ti is referred to as a prototile of T .

A prototile may be thought of as a tiling of a tile, in that a set of prototiles will cover a

tile with no overlap, just as a tile covers a space with no overlap. We may define a tessellation

of a tile by defining the set of prototiles of the tile. By choosing a set of prototiles of our

tile T from the subtraction construction, we may define a multilattice covering by covering

each prototile. If the correct set of prototiles is used, we minimize the multilattice covering

density. We will now formalize this process.

Lemma 2.4. Let a multilattice covering of Rn be given. Let T be a tile obtained from the

subtraction construction. There exists a tessellation of T into k prototiles that are the union

of sets of the form (F + y) \ (F + P ) for some y ∈ T and set of points P ⊆ L + D. which

are covered by k distinct dilations of the right regular simplex.

Proof. Let us take a multilattice covering of Rn by right regular simplices. Let L + D be

the multilattice. If |D| = k, then there will be k distinct dilations of the right regular

simplex. Let T be a tile obtained from the subtraction construction. Any displacement d

may be replaced by d + g, where g is an element of the base lattice, and still give the same

multilattice. We choose a collection of simplices A such that T is covered by the simplices in

the collection. We now take the set of multilattice points that these simplices are placed at

and call this set D′′. We note that D′′ must exist, as T is a subset of Rn. We call the point

the simplex Si is placed at d′′i We also note that |D′′| <∞, as the covering density is finite.

T must have a corner u1 = (a1, . . . , an) such that
∑n

i=1 ai = Mdiam (T ). If there are multiple

points with this property take the corner that would be first under the lexicographical order.

Take the set of simplices which contain u1, and call this set A1 = {Si|u1 ∈ Si}. Let the set

B1 = {si ∈ L+D | Si is placed at si, Si ∈ A1}.

Take the simplex Sj in A1 such that Mdiam (u1, sj ≥ Mdiam (u1, si) for every si ∈ B1. If

there are multiple simplices with this property, take the simplex placed at the sj first under

the lexicographical order. Let sj = d′′j . Then we note that the region T ∩(d′′j +F ) is contained
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in Sj. Call this region T1. Let T ′1 = T \T1. Now let D′′2 = D′′\{d′′j}. Now we note that T ′1 has

a point u2 such that Mdiam (0, u2) = Mdiam (T ′1). If there are multiple, we once again take

the point first under the lexicographical order. Now take the set A2 of all simplices which

contain u2. Let the set B2 = {si ∈ L + D | Si is placed at si, Si ∈ A2}. Take the simplex

Sk in A2 such that Mdiam (u2, sj ≥ Mdiam (u2, si) for every si ∈ B2. If there are multiple

simplices with this property, take the simplex placed at the sj first under the lexicographical

order. Now let T2 = T ′1 ∩ (d′′k + F ) and T ′2 = T ′1 \ T2. Let D′′3 = D′′2 \ {d′′k}. We continue this

process until T ′m′′ is the empty set. Each of the Ti is disjoint from any other. We also note

that ∪m′i=1Ti = T , and so we have a tessellation of T . Each of the Ti must be a set of the

form (F + y) ∩ (F + P ), as Ti may be expressed as T ∩ ((F + d′′i ) \ (F + {d′′1, d′′2, . . . , d′′i−1}).

So we will have a point y ∈ T such that (F + y)∩ T = (F + d′′i )∩ T . However, we note that

m′ ≥ k. If m′ = k, then we are done, as there will be one prototile for each displacement.

Suppose that m′ > k. Then we note that as there are only k choices for a distinct dilation

of a simplex, at least 2 of the simplices are placed at points that differ by a lattice element.

That is, if d′′i and d′′j are the points that these two simplices are placed at, then d′′i − d′′j ∈ L.

We also note that the two simplices must have the same area. Thus, these two simplices map

to the same set under the projection map. So our choice of d′′i or d′′j in D′′ will get us the

same multilattice. Let D′′2 be the set D′′ \ {d′′i }. Now if |D′′2 | 6= k, we continue. Eventually

we will have a set D′′i such that |D′′i | = k. Additionally, L + D = L + D′′i . If Ti and Tj are

regions covered by 2 simplices that are not distinct dilations, then Ti ∪ Tj must be covered

by the same dilation of the right regular simplex. Thus, the region covered by each distinct

simplex is ∪`i=1Tmi
, where {m1, . . . ,m`} is the subset of D′′ such that d′′m1

= d′′mj
+g for some

lattice element g.

So we now know that any covering must give a tessellation of the tile T . This must

include the multilattice covering that gives the minimal covering density. So we know that

any multilattice covering may be thought of in terms of how it divides T into prototiles. So

we turn our attention now to how we may approach the problem of breaking T into prototiles
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in such a way as to give the minimal covering density. We start with how we may find a

cover given a multilattice.

Lemma 2.5. Let the simplices S0, S1, . . . , Sk be the simplices used to generate a multilattice

covering of Rn for a multilattice L + D. If S is the simplex with minimal volume such that

T ⊆ S, where T is the tile obtained from the subtraction construction, then we may replace

any Si in our multilattice covering with a simplex with volume VolS and still retain a cover.

Proof. If VolSi ≤ VolS, then every point contained in Si is also contained in the simplex

S when placed at the same point. Suppose that Si has n-volume greater than S for some

i. Si must be placed at some displacement d. Without loss of generality, let us assume that

d ∈ T . Let us take the region of Rn obtained by shifting T by d. This is still a transversal

of all cosets of Rn/L. This must also be a subset of the region obtained by shifting S by d.

This must be a subset of Si placed at d, as both simplices are a dilation of the right regular

simplex. So S placed at d contains a tile. Thus we still have a covering if we replace Si with

the simplex of size S.

Theorem 2.6. There is no multilattice covering of Rn for a multilattice L+D with density

less than δL for any simplex which covers a prototile of T and is placed at a displacement

with any coordinate whose value is greater than Mdiam (T ).

Proof. We begin by taking a multilattice covering. Let {S0, S1, . . . , Sk} be the set of distinct

simplices that are used in this cover. Using Lemma 2.5 we replace any simplices with area

greater than that used in the lattice covering with the simplex S used in the lattice covering.

S must have the same Manhattan diameter as the tile T . Now let d be any displacement

such that if d = (x1, x2, x3, . . . , xn) there exists some i such that |xi| > Mdiam (T ). We

note that any simplex placed at d must have Manhattan diameter at most Mdiam (T ). If

xi < 0, then xi + Mdiam (T ) < 0. We note that any point with a negative coordinate must

lie outside T , so the simplex at d cannot intersect with T . If xi > 0, then we note that for

any point y = (y1, . . . , yn) in T , xi > yj for every j. As any point in the simplex placed
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at d will have ith coordinate xi + c, where c ≥ 0, there is no point of T that lies in this

simplex. So the simplex S placed at d has an empty intersection with T , and there cannot

be a prototile contained in the simplex placed at this point.

We know that we need only look at a finite number of displacements of a given multi-

lattice, and worry about how to determine what the least dense cover possible will be. To

do this we will take the finite set of displacements we need worry about and we will use a

method similar to the subtraction construction.

The algorithm below finds a minimal density covering for a given multilattice in Rn.

Theorem 2.7. The following steps will result in a minimum covering density for a given

multilattice L+D.

(i) Find all points of L+D that lie in the n-cube of side length 2 Mdiam (T ). Call this set

A

(ii) Let D′ = {d′i} be the representatives of D that lie on the interior of T . Let Ai = {x ∈

A | x = d′i + g, g ∈ L}.

(iii) Define T ′1 to be the tile from the subtraction construction.

(iv) The region T ′j must contain a point (a1, . . . , an) such that
∑n

i=1 ai ≥
∑n

i=1 xi for any

(x1, . . . , xn) in T ′j. In case there are multiple such points, take the point first under the

lexicographical order.

(v) Now for each set Ai, we take the point y = (y1, . . . , yn) in Ai such that ai − yi > 0

and
∑n

i=1 ai − yi ≤
∑n

i=1 ai − y′i for any (y′1, . . . , y
′
n) in Ai. Place a simplex of scale∑n

i=1 ai − yi at the point y and call it Sj. This simplex must cover (a1, . . . , an) with

minimum possible volume when placed at y.

(vi) We now define the prototile that is covered by this simplex. Take the set of points

T ′j ∩ (F + y) and call it Tj. This set must be (F + y) \ (F + P ) for some set P , and is

contained in Sj.
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(vii) Now we define T ′j+1 to be T ′j \Tj. T ′j+1 is the region that is not covered by Sj′ for j′ ≤ j.

(viii) We repeat steps (iv) − (vii) in the same way. We continue this process until T ′j+1 is

the empty set.

(ix) We now take all simplices that were placed at points of Ai for each i. Let Sm be the

largest such simplex. Replace each simplex in this collection by a simplex of the same

scale as Sm.

(x) We do this for each i ≤ |D|, and have |D| distinct simplices.

(xi) Let S ′i be the simplex placed at the displacement d′i. Then {S ′i | 0 ≤ i ≤ k} is the set of

distinct simplices required to cover Rn. Now we note that the density is given by

δ =
VolS0 + VolS1 + · · ·+ VolSn

det{L}
.

(xii) Take a covering with the minimum density in this collection.

Proof. We note that the above process will generate all possible prototiles that are unions

of sets of the form (F + y) \ (F + P ), with P ⊆ L + D. This is because each time we

cover a region of T ′i , we are defining a prototile that is of the form (F + y) \ (F + P ). As

we check each displacement as the cover, we will get all possible divisions of T into sets

of the form (F + y) \ (F + P ) covered by the displacements in the n-cube of side length

2 Mdiam (T ). By Theorem 2.6, we know that one of these will have the minimum covering

density of any tessellation of T by sets of the form (F + y) \ (F + P ). We also note that by

Lemma 2.4 the minimum possible covering density of L + D may be defined using sets of

the form (F + y) \ (F + P ). If π is the standard quotient map, notice that π(Sk) ⊆ π(Sm)

where Sk and Sm are placed at the same point. Thus, the minimum density obtained in this

way will be the minimum possible density of δL+D.

We notice that the prototiles of this covering are defined in the same way as the pieces

we remove in the subtraction construction. We also note that any covering may be defined
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this way. Thus we may consider the problem geometrically as the most effective way of

covering the tile T . We no longer worry about how to choose what simplex we place at a

given displacement. Now we turn our attention to what choice of multilattice will lead to

the lowest covering density.

2.3 Selecting the right displacement

Now that we have a process for choosing simplices that result in a covering for a multilattice,

we find the best displacement points possible. The first step we must take is determining

where to place our displacement relative to the tile T . We begin with the problem of

covering R2. We begin by proving that with a single displacement, we need only consider

the simplex placed at a displacement inside T .

Theorem 2.8. For any multilattice L + D in R2 with |D| = 2 and multilattice covering

density δL+D, there exists a multilattice L′ + D′ such that the tile from the subtraction con-

struction on L′ may be covered by only two right regular simplices and δL+D = δL′+D′.

If we show this, then we may reduce finding the multilattice L + D with the minimum

density to the question of how to cover a 2-staircase with only 2 right regular simplices. We

do not need to worry about the case where a prototile of T is the union of 2 n-staircases.

Proof. Assume by way of contradiction that there exists some multilattice L+D such that

there is no L′ + D′ with δL+D = δL′+D′ and the tile of L′ from the subtraction construction

has 2 prototiles that are n-staircases. The tile T obtained from the subtraction construction

on L is a 1-staircase or a 2-staircase. The density δL+D < 1.5, otherwise we could just use

a lattice covering with the same density, and the simplex of area 0 at the displacement.

We will also define the rectangle from (a, b) to (c, d) to mean the rectangle with vertices

(a, b), (c, b), (c, d), (a, d). We now break this into cases.

We begin with the case that T is a 1-staircase. Let the outermost corner be at (a, d).

If T must be covered by at least 3 simplices to obtain a given density, and there are only
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2 distinct simplices, it must be the case that at least two of the simplices are translates by

some g ∈ L. We may choose (x, y) ∈ D such that x < a and y < d, and x > 0 or y > 0. We

must cover (a, d) with the simplex placed at (x, y). Without loss of generality, assume that

x > 0. Now we note that when we take the region covered by the simplex placed at (x, y),

one corner of prototile not covered by this simplex is (x, d). We also get a corner at (a, y) if

y > 0.

Let us take the case with y > 0. We now have the two corners (a, y) and (x, d). If

x + d ≥ a + y, then we note that (x, d) cannot be covered by the simplex placed at (0, 0),

otherwise L+D would fill the requirements of L′+D′. So (x, d) is covered by a displacement

at (x′, y′) = (x, y) + g. Then we get another 1-staircase contained in T which is contained in

the simplex placed at (x′, y′). The prototile obtained from the region covered by these two

simplices forms the shape of a 2-staircase reflected about the origin.

The point (a, y) must also be covered by a simplex. If it is covered by the simplex at the

origin, then the base prototile is 2-staircase. As a right simplex must have a ratio of at least

1.5 to a 2-staircase it contains, both simplices must have an area of at least 1.5 times the

area of the prototile they contain. Thus our density is at least 1.5, a contradiction. So (a, y)

must be covered by the displacement at (x, y)−g′. The simplex placed at (x, y) must have a

scale of at least (d+ a− x). This breaks T into two regions, a 1-staircase, and a 2-staircase

reflected about the origin. the ratio of area of the simplex to the area of the prototile must

be at least 1.5 for both prototiles. This will once again give us a density of at least 1.5 for

the multilattice covering. As we need the density to be less than 1.5, y 6> 0.

So y = 0, as we may choose a representative that lies in T . So the region covered by the

simplex placed at (x, y) must be a 1-staircase, and the remaining region is a 1-staircase. The

region not covered by the simplex at (x, y) will have corner (x, d). (x, d) must be contained

in a simplex placed at (x, y) + g. If this is the case we have a prototile that is a 2-staircase

reflected about the origin. The base prototile will be a 1-staircase. So the density must be

at least 1.5 again.
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So every lattice L with a rectangular tile from the subtraction construction has some

multilattice L′ +D′ with density at most δL and T ′ covered by two right regular simplices.

We now check the case where T is a 2-staircase. T must have two corners, call them (a, d)

and (c, b). Without loss of generality, let a+ d ≥ c+ b and a < c. Now let (x, y) ∈ T be the

non-trivial displacement of D. If x ≥ a, then to cover (a, d), the simplex must have scale at

least (c− x+ a+ b− y). So we get a rectangular section of T covered by the simplex placed

at (x, y)+g for some g in L, where the rectangular section is defined by corners (0, d+y− b)

and (a, d). However, note that we may shift the rectangle (0, d + y − b) and (a, d) by −g,

and the new shape will still be a tile T ′. T ′ is the union of a 3-staircase contained in T ,

with corners (a, d + y − b), (x, b), and (c, y); and the rectangle (x, y) to (c + a, b). As the

area of a right regular simplex to the area of a 3-staircase contained in the simplex may have

density less than 1.5, we may generate a multilattice covering of R2 by covering T ′ with two

simplices whose areas sum to less than 1.5(Vol (T ′)). Note that the ratio of the volume of

the simplices to the volume of T ′ may be decreased by decreasing the area of the rectangle

(x, y) to (c+ a, b). We do this by decreasing the x-coordinate of our rectangle.

If c−x ≥ b−y, then we will decrease the density of our multilattice covering by decreasing

the rectangular prototile to (x, y) to (c, b). In this case our density will also decrease, and we

see that this tile T ′ will be a 2-staircase. If b−y > c−x, then we will reduce our rectangular

prototile to (x, y) to (b−y+x, b). This will be a square. We now turn back to the 3-staircase.

By the above, x+ b > c+ y. If we change the x-coordinate of the corner (c, y) to b− y + x,

then we will not change the Manhattan diameter of our 3-staircase. However, it will increase

the area of T ′. So we do this, and we again get a 3-staircase and 1-staircase as prototiles of

T ′, with T ′ a 2-staircase.

In either case, T ′ may be covered by 2 right regular simplices. The ratio of the area of

these 2 dilations of the right regular simplex to the 2-staircase will be less than δL+D. So

x 6≥ a.
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Let x < a. We once more place a simplex at (x, y) to cover (a, d). Then we note that the

new corners of the 3-staircase must be (x, d), (a, y), and (c, b). We now see the cases where

each corner determines the Manhattan diameter of the 3-staircase.

If x + d > a + y and x + d > c + b, we note that we must once more cover (x, d) with

a simplex placed at a displacement. The simplex placed at (x, y) must have scale at least

a+ d− y + b, and so to have better density than the lattice using L, y > b. So the simplex

placed at (x, y)+g, g ∈ L will only cover (c, b) if the simplex has scale at least a−x+d−y+b.

If this is the case, then we note that there is a tile of L that is the union of the 2-staircase

placed at (0, 0) with corners (a, y) and (c−a+x, b), and the 2-staircase placed at (x, y) with

corners (a, d + b) and (x + a, d). This tile will have the same area as T . This tile will be

covered by the two simplices place at (0, 0) and (x, y) with the same area as the simplices

used in the multilattice covering of R2 by L + D. However, the simplex to 2-staircase ratio

of each section of the new tile must be at least 1.5. Thus, the density of L+D would be at

least 1.5. So a+ y > x+ d and a+ y > c+ b or c+ b > x+ d and c+ b > a+ y.

If c + b > x + d and c + b > a + y, then (c, b) must be covered by a simplex at a

displacement. However, the displacement must have x coordinate c− a+ x, and a negative

y coordinate. So the simplex at this point will cover the rectangle (c − a + x, 0) to (c, b).

However, we may choose a lattice whose tile will have corners (a, d) and (c− a+ x, b). Now

if our simplex at (x, y) has scale x + y, this will reduce the ratio of the simplex at (x, y) to

the region of T not covered by our base simplex. This reduces the density of our multilattice

covering by a lattice with the properties of L′ +D′. So this will reduce to the previous case

or the case where a+ y > x+ d and a+ y > c+ b.

So it must be the case that a + y > x + d and a + y > c + b. If (a, y) is covered by a

displacement simplex, notice that our simplex must cover the rectangle (x, y − b) to (a, d)

or (x, b) to (a, d). If b ≥ y − b, it will be the rectangle (x, b) to (a, d). If the displacement

simplex has scale at least d − y + a + b, then a displacement simplex will also cover the

rectangle (0, b) to (x, d), and the base simplex must cover a 1-staircase. Thus there is a tile
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that is a union of a rectangular prototile and a 2-staircase prototile covered by the same set

of simplices. So our density would be greater than 1.5. So it must be the case that (x, d) is

not covered by a displacement. Note that there is a tile of L that is a union of 2 2-staircases

covered by these simplices, and so our density δL+D is at least 1.5. So it must be the case

that b < y − b.

This breaks into the cases of (x, d) being covered by the displacements or by the simplex

at the origin. If it is the former, then there is a tile that is a union of 2 2-staircases once

more, so the density is at least 1.5. So (x, d) is not covered by the displacements.

If (x, d) is covered by the base simplex, there is no equivalent tile that is a union of the

3-staircase covered by the simplex at the origin and a 2-staircase placed at (x, y). This is

because we cover the rectangle (x, y − b) to (a, d) with a displacement simplex. If we want

to have a corner with x coordinate greater than a, the equivalent region must come from the

rectangle with vertex (0, y − b) but Manhattan diameter less than x + d + b − y. But this

rectangle will lie in the interior of the region that must be covered by the base tile. Thus, if

the density of a multilattice covering with |D| = 2 is less than 1.5, then the prototiles of T

must be a 3-staircase and rectangle. As we have done previously, we may use a displacement

d′ to cover these two prototiles. We then obtain a multilattice covering with the rectangle

(x, y−b) to (a, d) covered by the displacement simplex, and the remaining region of T covered

by the simplex placed at (0, 0).

But this is every case, and so our assumption that that there exists a multilattice L+D

with density δL+D with no multilattice L′+D′ such that T ′ from the subtraction construction

on L′ may be covered by only 2 simplices and δL+D = δL′+D′ is false.

With this we have that we need not worry about any case other than when we cover T

with a simplex placed at the origin, and a simplex placed at a single displacement d. Notice

that when we add a single displacement to a lattice, it will cover a rectangular section of the

base tile, or an L-shaped section. Thus, we break the problem of finding the best multilattice

with one displacement into these two cases. We use the following theorem to simplify this.
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Theorem 2.9. Any multilattice covering of R2 that has density less than 1.5 must have at

least one connected region that is a rectangle. .

Proof. To prove this theorem, we will note that the density of a multilattice covering may

be thought of as the weighted average of the ratio of each simplex which covers a prototile

to the area of the prototile. The weights in this average are the proportion of the area of

the tile that the prototile covers. Now let us take any multilattice covering with a density

δL+D < 1.5. We note that at least one of the prototiles in this covering must have at least 3

outer corners, or must be a 3-staircase. We know this as at least one of the simplex area to

prototile areas must result in a ratio less than 1.5, and a 2-staircase has at least a density of

1.5. We note that starting from the tile, we will have a 2-staircase or a rectangle. If the tile

is a rectangle then we are done, as any prototile which contains the outermost corner cannot

contain another outer corner, by Theorem 2.8. If the tile is a 2-staircase, then we note that

if we do not have a rectangular prototile to cover the outermost corner, we must have a

2-staircase prototile. If we have a 2-staircase, then we note that at least 2 outer corners

must be contained in it. However, our tile only has 2 corners, so a prototile must cover both

of the outermost corners of our tile. If our prototile is the tile itself, we cannot have a density

less than 1.5. So we assume that the prototile is not the whole tile. We must then have a

positive coordinate for our displacement. If the second coordinate is nonpositive, then our

prototile will be a 2-staircase, but the remainder of our tile must be a rectangle. Thus this

will be a prototile, or from the above must contain a rectangular prototile.

So we must have a displacement with two positive coordinates. But we note that if d1 is

this displacement, and u1 is the squinch, then u1 − d1 must be positive in each coordinate.

We now know that u1 + F ⊆ d1 + F . We note that the part of the tile not contained will

be the set of points F \ ((L0+ + F ) ∪ (d1 + F )). As u1 − d1 is positive, d1 will be the only

blocker for the remainder of the tile that lies in the first quadrant. Thus the remainder of

the tile must be a 2-staircase. As D is a finite set, this means that all prototiles must be

2-staircases if there is not a rectangular prototile. Thus the density must be a weighted
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Figure 2.1: Covering of Tessellation of tile by multiple simplices

average of numbers greater than or equal to 1.5, and the density must be at least 1.5 in this

case.

Let us look at an example of this. Let the base lattice L be generated by v1 = (2, 1) and

v2 = (−1, 3). Let D = {(1, 2)}. Now we note that the tile is broken up into a 3-staircase

and a square. The density of this covering is given by δL+D = 6
7
∗ 42

2∗6 + 1
7
∗ 22

2
. So we have

that the density of this multilattice covering is δL+D = 10
7

. This is illustrated in Figure 2.1.

Notice that the 3-staircase prototile is covered with a simplex that is 8
7

the area of the

staircase. The rectangular prototile is covered by a simplex that is 2 times the area of the

rectangle. In general, the lowest possible ratio we can have of a simplex to a corresponding

rectangular prototile is 2. But we have shown that without this occurrence, we cannot obtain

a covering density of less than 1.5. By choosing a displacement such that the rectangular

prototile is a small proportion of the area of the tile, the multilattice covering density may

be reduced. We now approach the problem of how to place a single displacement in relation

to the tile.

Theorem 2.10. The multilattice with a single displacement that results in the lowest possible

covering density must have the density at a point (a− h, d− h), where (a, d) is the corner of

T which defines the Manhattan diameter of T , and h > 0.

Proof. Let (a, d) be the point with the largest Manhattan diameter from the origin in our tile.

We must place the displacement at (a, d)−(h1, h2) by Theorem 2.9. Let λ1 be the Manhattan
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diameter of the outermost corner. Let λ2 be the Manhattan diameter of the next outermost

corner, which is the point (c, b). The diameter of the simplex used in the lattice covering is

λ1. Under the tessellation of the tile based on the displacement, we will get a rectangular

prototile and a 3-staircase prototile. The Manhattan diameter of the 3-staircase prototile is

λ1 decreased by min{h1, h2, (λ1−λ2)}. Our three corners for our 3-staircase will be the points

(c, b), (a− h1, d), (a, d− h2). The one with the greatest Manhattan diameter from the origin

will determine the diameter of the simplex we will use to cover the 3-staircase. Thus the

diameter of the base simplex has a Manhattan diameter that is min{h1, h2, λ1− λ2} smaller

than the Manhattan diameter used in the lattice covering. The rectangular prototile will

have diameter h1 +h2. So the area of the simplex which covers the rectangular prototile must

be (h1+h2)2

2
. This area increases with a larger choice of either h1 or h2. We also note that the

area of the base simplex will be (λ1−min{h1,h2,λ1−λ2})2
2

. If h1 > λ1 − λ2 and h2 > λ1 − λ2, then

we note that the area of the base simplex will be
λ22
2

. In this case, we note that by reducing hi,

we only vary the area of the displacement simplex. When hi = λ1 − λ2, the area of the base

simplex remains the same, but the area of the simplex covering the rectangular prototile is

reduced. So we should choose our displacement such that h1 ≤ (λ1−λ2) and h2 ≤ (λ1−λ2).

Now we worry about what we may choose for h1 and h2 within these constraints. Let us

assume, without loss of generality, that h1 ≥ h2. Let the area of T be denoted by AT . Then

we note that the area of the base simplex will be (λ1−h2)2

2
. Let this be denoted by SB. If

we decrease h1 as much as possible, this will not affect SB, since SB only depends on the

smaller value of h1 and h2. Now we note that the area of the displacement simplex will be

(h1+h2)2

2
. This will be decreased if we decrease the value of h1. Note that the density of the

multilattice covering now becomes

δ =
h2

1 + 2h1h2 + h2
2 + λ2

1 − 2λ1h2 + h2
2

2AT
=
h2

1 + 2h1h2 + 2h2
2 + λ2

1 − 2λ1h2

2AT
.

The values of λ1 and AT are both fixed for a given tile. Now if we fix h2, we note that δ will

be determined by h1. Taking the derivative of this function with respect to h1 under these
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assumptions we get

δ′ =
2h1 + 2h2

2AT
=
h1 + h2

AT

and we note that δ′ gives positive values for any positive value of h1. Thus, the smallest

possible value of δ will occur when the smallest value possible for h1 is chosen. Based on the

constraints we have set, this gives us that h1 = h2 will be the best choice for where to place

our displacement. So our displacement must be (a− h1, d− h1).

2.4 Square tile problem

Now we will solve where our displacement should go with the simplest case for our tile. Let

us take a tile that is a square.

Theorem 2.11. Let L be a lattice that results in a square tile from the subtraction construc-

tion. The lowest density possible for a multilattice L+D with the |D| = 2 is 1.6.

Proof. Let L be a lattice that generates a square tile under the subtraction construction.

Let us scale this lattice so that our tile has an area of 1. We note that the lattice covering

of R2 by L must result in a density of 2. If we were to add a single displacement, we may

achieve a better density. By Theorem 2.10 we note that this displacement will be located at

(1−h, 1−h). Let SB be the area of the base simplex and SD be the area of the displacement

simplex. We then have that

SB =
(2− h)2

2
=

4− 4h+ h2

2

SD =
(h+ h)2

2
= 2h2.

With this information, we again note that the density function is the ratio of the total area

of the simplices divided by the area of the tile, and so we get the density function of

δ =
SB + SD

1
=

4− 4h+ 5h2

2
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for the multilattice with one displacement. Now to find the minimum we find the derivative

of this function with respect to h.

δ′ =
−4 + 10h

2
= −2 + 5h.

We set this equal to zero, and we find that δ′ = 0 when h = 2
5
. We note that for any value

of h < 2
5
, we get a negative value for δ′, and for any h > 2

5
we get a positive value for δ′,

confirming this value as a minimum. So we place the displacement at
(

3
5
, 3

5

)
. When we do

this we get a density of

δ =
4− 4

(
2
5

)
+ 5

(
2
5

)2

2
=

8

5
.

This density is lower than the density of 2 we originally had. We also note that by

Theorem 2.8 and Theorem 2.10 this is the best multilattice covering of this tile type with

one displacement. We also note that this density is greater 1.5, so it will not be the best

multilattice covering with one displacement.

2.5 Best improvement for rectangular tile

We now see what the best density is for a multilattice with one displacement and a rectan-

gular shaped tile for the base lattice L. We will first examine the case where the prototile

placed at our displacement is a rectangle, and the prototile at the origin is a 2-staircase.

Theorem 2.12. Let L be a lattice that gives a rectangular prototile under the subtraction

construction. Any multilattice L + D with |D| = 2 and a rectangular prototile will have

density of at least 1.6.

Proof. To begin, we scale the lattice in such a way that the Manhattan diameter of the base

tile is 1. Let the tile have dimensions x × y. This gives us that the area of the simplex

used in the lattice covering will be 1
2
. Notice that if we place the displacement (h, h) behind

the outermost corner, the Manhattan diameter of the part of the tile covered by the base
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simplex will be 1 − h and the Manhattan diameter of the displacement will be 2h. So we

now have a density of

δ =
(1−h)2

2
+ (2h)2

2

xy
=

1− 2h+ 5h2

2xy

where x and y are both positive. We now note that since x+ y = 1, y = 1−x. We also have

that x, y ∈ (0, 1). We also note that if we find the optimal value of h in terms of x, we must

minimize

δ =
1− 2h+ 5h2

2x− 2x2
.

To do this, we find the derivative with respect to h, and we get

δ′ =
−2 + 10h

2x− 2x2

and we set this equal to zero to get the critical numbers.

0 =
−2 + 10h

2x− 2x2

0 = −2 + 10h

h =
1

5
.

We now check to see if this is a minimum. We notice that since x ∈ (0, 1), x > x2, and so we

note that 2x− 2x2 > 0. So we need only check the sign of the numerator. We note that for

h < 1
5
, δ′ < 0. We also note that for any h > 1

5
, we have that δ′ > 0. So the value of h = 1

5

gives us a minimum for δ. Notice that by our choice of scaling, we still have that y = 1− x.

We also note the displacement will be
(

1
5
, 1

5

)
behind the outermost corner. Thus the base

simplex will have an area of 8
25

and the displacement simplex will have an area of 2
25

. Thus

the density of the multilattice simplex covering will be given by

δ =
8
25

+ 2
25

2x− 2x2
=

1

5x− 5x2
.

To minimize this we use the same process. We find the derivative with respect to x, and we
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get

δ′ =
−(5− 10x)

(5x− 5x2)2
=

2x− 1

5x2 − 10x3 + 5x4
.

We note that the denominator factors into 5x2(x − 1)2, and since 1 and 0 are not possible

values for x, the only critical number we may get is when δ′ is equal to 0. This happens

when we set x = 1
2
. Now we note that if x < 1

2
, then δ′ < 0, and if x > 1

2
then δ′ > 0, so this

is the minimum density we may achieve. When x = 1
2
, y = 1

2
as well. So the best possible

multilattice covering with a base lattice that gives a rectangular tile with one displacement

will be a scaling of the multilattice Z2 + ( 3
10
, 3

10
). If we scale this by a factor of 2, we get the

example from the previous section, so the density is 8
5
.

While a displacement of this type will result in a covering density of 1.6, it should be

noted that this is not the minimum covering density of any multilattice L+D with a single

displacement and T a rectangular tile.

Theorem 2.13. Let L be a lattice that results in a rectangular tile under the subtraction

construction. Let |D| = 2. The minimum multilattice covering density of any multilattice of

the form L+D is 1.5.

Proof. Let L be any lattice that results in a rectangular tile under the subtraction construc-

tion. We note that for any lattice of this type we may select a lattice point (0, c) or (c, 0) to

be a generator of the lattice. This is because under any tiling with a rectangle, each corner is

identified with at least one other corner. As T has a corner on the origin, at least one other

must be identified with it. Without loss of generality, let (0, c) be a generator of L. Now let

(x, y) denote a displacement. If the prototile at (x, y) is a rectangle, we may only achieve a

density of 1.6. So we now look at the case where the simplex placed at (x, y) + g for some g

in L covers the point (x, d), where d is the height of the rectangle. If we translate this region

covered by the simplex at (x, y)+g by −g, then we note that we have a tile that is the union

of 2 2-staircases. We have already shown that 1.5 is a lower bound for multilattice covering

density in this case. Now take the lattice generated by (0, 3) and (2,−1). This has covolume
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of 6. Now choose (1, 1) as our displacement. Place a simplex of scale 3 at this point. The

rectangle (1, 1) to (2, 3) lies in the simplex placed at (1, 1). We also note that the rectangle

(0, 2) to (1, 3) lies in the simplex placed at (1, 1) − (2,−1) = (−1, 2). So the region left

uncovered by the displacement simplex is the 2-staircase placed at the origin with corners

(1, 2) and (2, 1). Place another simplex of scale 3 at the origin. This generates a cover, with

2 simplices each of area 4.5. Thus δ = 4.5+4.5
6

= 9
6

= 1.5 for the multilattice covering.

These theorems show us that the lowest covering density of a multilattice with a single

displacement must arise from a tile that is a 2-staircase.

2.6 L-shaped tile optimization with 1 displacement

Now we find the best multitlattice covering density with one displacement for a lattice that

gives us an L-shaped tile with the subtraction construction.

Theorem 2.14. Let T be any tile that is a 2-staircase. Let L + D be a mulilattice such

that |D| = 2. The greatest lower bound for the covering density of L+D is 5−
√

13 (about

1.39445).

Proof. Let T be any tile that is a 2-staircase. Let λ1 and λ2 be the Manhattan diameter

of the corners of T , such that λ1 ≥ λ2. We notice by Theorem 2.10 we will get a square

prototile covered by our displacement. The best multilattice covering will be achieved when

λ1 − h ≥ λ2, as we have seen in the proof of Theorem 2.10

We first check the case where λ1− h > λ2. This results in the portion of the tile covered

by the base simplex having two corners with Manhattan diameter λ1 − h, and a third with

Manhattan diameter λ2. However, notice that if we were to deform the 2-staircase in such a

way that λ1 remained constant but λ2 increased, we would have an increased area of T , while

the Manhattan diameter of T remains the same. So the ratio of the area of the simplices

used to cover T to the area of T would decrease. This is illustrated in Figure 2.2. So we

may obtain a lower density simply by increasing λ2 until λ2 = λ1 − h.
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d

x̄1

d

x̄1

d

x̄1

Figure 2.2: Increasing λ2 for an L-shaped tile

d

x̄1

Figure 2.3: 3-step staircase and simplex

We now have that it must be the case that λ1−h = λ2. Let (a, d) be the corner of T with

Manhattan diameter λ1 Then when we place one simplex at (a, d) − (h, h), the portion of

T covered by the remaining simplex is a three-step staircase with all three corners of equal

Manhattan diameter. We will also scale the lattice such that the base simplex will have a

hypotenuse of length 1. We notice that the base simplex will cover an area of the tile as is

shown in Figure 2.3.

We may minimize the overlap of this simplex by minimizing the area of the four right

triangles whose hypotenuses sum to 1. We note that one of these will be defined by the

value of h, but the other three are dependent on the coordinates of the corners of T . For

this purpose we will determine what the relation between the three triangles dependent on

T should be.

To do this, set h = 0. Then we note that if the triangles have hypotenuses of length
√

2a,
√

2b, and
√

2c, we have that
√

2a+
√

2b+
√

2c = 1. So we have that
√

2c = 1−
√

2a−
√

2b.
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We now note that the total area of these three triangles is

A =
a2

2
+
b2

2
+
c2

2
=
a2 + b2 +

(
1√
2
− a− b

)2

2
=

4a2 + 4ab− 2
√

2a+ 4b2 − 2
√

2b+ 1

4
.

We now take the partial derivatives with respect to a and b and we get

Aa =
4a+ 2b−

√
2

2

Ab =
2a+ 4b−

√
2

2
.

Finding where these are both zero we get that

0 =
4a+ 2b−

√
2

2

0 =
2a+ 4b−

√
2

2
.

We solve for b in the first and we get

b =

√
2− 4a

2
.

Now we substitute this into the second equation and we get

0 =
2a+ 4

(√
2−4a
2

)
−
√

2

2
=

√
2− 6a

2
.

This gives that a =
√

2
6

, and that b =
√

2
6

. We also have from before that c = 1√
2
− a− b and

so we have that c = 1√
2
−
√

2
3

=
√

2
6

. Thus we have that a = b = c. We now check the second

partial derivatives and we get

Aaa = 2

Abb = 2

Aab = 1.
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Now we have that AaaAbb − A2
ab = 3 > 0 and Aaa > 0 so we have a minimum at this point.

Thus the smallest possible area of these three triangles occurs when they all have the same

length of hypotenuse. Notice that the choice of 1 for the sum of the hypotenuse does not

affect the relation, so a = b = c. Thus, we must choose a base lattice in such a way that the

three triangles determined by the base lattice are congruent.

We now turn to determining what value of h will give us the lowest possible density.

We now note that the Manhattan diameter of the base simplex will still be λ1 − h and the

Manhattan diameter of the displacement simplex will be 2h. We again scale so that the

hypotenuse of the base simplex will be 1. Now we determine what the area of the tile will

be. We note that if we set the three triangles from the base lattice congruent, and then have

a non-zero value for h, the hypotenuse of the base simplex is 3
√

2b+
√

2h. Note that we scale

so that this is 1, and we get b = 1−
√

2h
3
√

2
. Now we may express the area of the tile in terms of h

and b. Notice that
√

2b is the length of the hypotenuse of any of the three triangles that are

of equal volume, and that
√

2h is the length of the hypotenuse of the triangle that overlaps

with the displacement simplex if we scale such that the base simplex has a hypotenuse of

length 1. We now have that the area of the tile will be

AT = (h+ 2b)(h+ b) + b2 = h2 + 3bh+ 3b2

as the tile may be divided into two rectangles. One a square of side length b, and the other a

rectangle with one side of length h+ 2b and the other of length h+ b. Since the hypotenuse

of the base simplex is 1, we note that the area of the base simplex will be fixed at a value of

1
4
. The Manhattan diameter of the displacement simplex is 2h, so the displacement simplex

will have an area of 2h2. Thus we have for our density of the multitlattice covering

δ =
1
4

+ 2h2

h2 + 3bh+ 3b2
=

24h2 + 3

4h2 + 2
√

2h+ 2
.

Now we note that once again we must find the minimum value of this function. So we take
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the derivative with respect to h and we get

δ′ =
(4h2 + 2

√
2h+ 2)(48h)− (24h2 + 3)(8h+ 2

√
2)

(4h2 + 2
√

2h+ 2)2

=
24
√

2h2 + 36h− 3
√

2

8h4 + 8
√

2h3 + 12h2 + 4
√

2h+ 2
.

To find the critical numbers, we check the denominator, and note that it may be expressed as

2(2h2 +
√

2h+1)2. So we must find where this polynomial is equal to zero. By the quadratic

formula, we have that

h =
−
√

2±
√

2− 8

4
=
−
√

2±
√
−6

4

so there is no real value of h such that 2(2h2 +
√

2h + 1)2 = 0. So we now check where the

numerator is zero. If

0 = 24
√

2h2 + 36h− 3
√

2

then we know

h =
−36±

√
1296 + 576

48
√

2
=
−3±

√
13

4
√

2
.

We note that only the positive value will lie in our domain, so the only critical number we

must worry about is when h = −3+
√

13
4
√

2
. We note that δ′ < 0 if h < −3±

√
13

4
√

2
and that δ′ > 0

if h > −3±
√

13
4
√

2
, so this is a minimum. Notice that this is the minimum for all values of h

such that h ∈
[
0, 1√

2

]
, which are all possible values of h if we scale the base simplex to have

a hypotenuse of 1. Thus, this will be the absolute minimum density for a multilattice with

one displacement and an L-shaped base tile. Plugging this value in to our density function,

we get

δ =
24
(
−3±

√
13

4
√

2

)2

+ 3

4
(
−3±

√
13

4
√

2

)2

+ 2
√

2
(
−3±

√
13

4
√

2

)
+ 2

= 5−
√

13.

This about 1.39445, which is lower than the value of 8
5
. So the minimum possible density of

a multilattice simplex covering with one displacement is 5−
√

13.
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2.7 Obtaining the density

Now that we have a lower bound, we must see if it is possible to obtain this value. Let us

take the lattice that is generated by the two vectors

v1 =

(
−2
√

2 + 2
√

26

24
,
7
√

2−
√

26

24

)

v2 =

(√
26− 7

√
2

24
,
5
√

2 +
√

26

24

)
.

We check that these two vectors are not colinear, and so we check the angle θ between the

two is nonzero.

cos θ =
v1 · v2

‖v1‖ ‖v2‖
=

31−7
√

13
144√

3236−668
√

13

144

=
31− 7

√
13√

3236− 668
√

13
6= 1.

So we do get a rank 2 lattice from these two vectors. Next, we place these as the columns

in a matrix, and find the determinant. This gives us the volume of the tile is

∣∣∣∣∣∣∣
√

26−
√

2
12

√
26−7

√
2

24

7
√

2−
√

26
24

√
26+5

√
2

24

∣∣∣∣∣∣∣ =
13−

√
13

48
.

We now check the resulting tile to see what the Manhattan diameter will be. Using the

subtraction construction, we find the lattice points that will be the blockers for our tile. We

note that v1 will be in the first quadrant, as both the x and y coordinate are positive, and so

is a potential blocker. Next we note that v2 is a potential blocker as the sum of coordinates

is positive. Finally, let us take v1 − v2. The resulting point is (
√

26+5
√

2
24

, 2
√

2−2
√

26
24

), which

also has a positive sum of its coordinates. These three are therefore potential blockers for

our tile. Now we note that (F \ (F + v2)) \ (F + (v1 − v2)) = F ′′, we have that the x

coordinate for any point in our tile may be no more than
√

26+5
√

2
24

and the y coordinate for

any point in our tile may be no more than
√

26+5
√

2
24

. Now we take F ′′ \ (F + v1) from the

square we have, and we get an L-shape with outer corners at the points (
√

26+5
√

2
24

, 7
√

2−
√

26
24

)
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and (−2
√

2+2
√

26
24

,
√

26+5
√

2
24

). The area of this shape T will be

AT =

(
−2
√

2 + 2
√

26

24

)(√
26 + 5

√
2

24

)
+

(
−
√

26 + 7
√

2

24

)(
7
√

2−
√

26

24

)

=
13−

√
13

48
.

This is the covolume of the lattice, so we know that the shape T is our tile for this lattice.

Now we must determine where the displacement should go to optimize the density. Note

that λ1 = 3
√

26+3
√

2
24

and λ2 = 12
√

2
24

. We will place the displacement (h, h) behind the point

(−2
√

2+2
√

26
24

,
√

26+5
√

2
24

). We impose the same restrictions on h as before. So the density will

be

δ =
(3
√

26+3
√

2
24

− h)2 + (2h)2

13−
√

13
48

=
(20
√

13 + 260)h2 + (−14
√

26− 26
√

2)h+ 5
√

13 + 26

26
.

The derivative of this function with respect to h is

δ′ =
(20
√

13 + 260)h− 7
√

26− 13
√

2

13
.

This is 0 when h =
√

26+
√

2
40

. However, we note that

λ1 − λ2 =
3
√

26− 9
√

2

24
<

√
26 +

√
2

40

so there are no critical points in our domain that we may choose for our value of h. We also

note that for all values of h that we may choose, δ′ < 0, and so to minimize the density,

we must choose the largest possible value for h. This is λ1 − λ2, and so we have that

h =
(√

26−3
√

2
8

)
. When we plug this value into our density function, we get back the value of
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δ =
(20
√

13 + 260)
(√

26−3
√

2
8

)2

+ (−14
√

26− 26
√

2)
(√

26−3
√

2
8

)
+ 5
√

13 + 26

26
= 5−

√
13.

So the value is obtainable by a multilattice, though not an integral multilattice.
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Chapter 3. Multiple Displacements in Two

Dimensions

Now that we have addressed the problem with one nontrivial displacement, we see that we

may improve on the covering density of a lattice by adding a set of displacements. We now

explore what happens when we add multiple displacements, and how each may affect the

total covering density.

3.1 Three displacements in two dimensions

To see how we may improve, we first look at the problem when we allow for two displacements.

We will limit ourselves to connected prototiles of T for the time being. We note that there

are two cases which may result in the optimal covering density for a multilattice with two

displacements.

Theorem 3.1. The minimum multilattice covering density of a multilattice with 2 displace-

ments covering connected prototiles is 4
3

Proof. We break the problem into two cases. The first case is that we start with an L-shaped

tile, and use both nontrivial displacements to cover a single square section of the base tile, as

in Figure 3.1. We note by Theorem 2.11 that the most efficient covering of a square region

by two simplices will result in a density of 1.6. For this reason, we may also consider the

d1

x̄1

d2

Figure 3.1: Two displacements cover a square region of our tile
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problem as improving a lattice covering with one nontrivial displacement, but rather than

having the area of the displacement simplex be equal to 2h2, or twice the area of the square

prototile, we set it equal to 8h2

5
. So now we note that with these two displacements, we may

once again approach this as we did before. We scale the lattice so that the hypotenuse of

the base simplex will be 1. We choose the lattice so that the three regions of overlap not

covered by the displacement simplex will be equal. We define b in the same way as before,

so that b = 1−
√

2h
3
√

2
. Now we have that

AT = (h+ 2b)(h+ b) + b2 = h2 + 3bh+ 3b2

and we are now able to find our density function. This will be

δ =
1
4

+ 8h2

5

2h2+
√

2h+1
6

=
96h2 + 15

20h2 + 10
√

2h+ 10

and we get

δ′ =
3
(
32
√

2h2 + 44h− 5
√

2
)

10
(
2h2 +

√
2h+ 1

)2

for the derivative with respect to h. The quadratic factor in the denominator has no real

roots, and so we need only worry about when

0 = 96
√

2h2 + 132h− 15
√

2.

This occurs when

h =
−132±

√
28944

192
√

2
=
−11±

√
201

16
√

2
.

Only the positive option is possible, so we check this critical number. We note that δ′ < 0

when h < −11+
√

201
16
√

2
and δ′ > 0 when h > −11+

√
201

16
√

2
, so this is a minimum. Now we check the
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d1

d2

Figure 3.2: 2 displacements each cover a corner

value of δ when h = −11+
√

201
16
√

2
.

δ =
96
(
−11+

√
201

16
√

2

)2

+ 15

20
(
−11+

√
201

16
√

2

)2

+ 10
√

2
(
−11+

√
201

16
√

2

)
+ 10

=
21−

√
201

5
.

This is about 1.36451, a slight improvement on the density of a multilattice with one dis-

placement.

We now examine the case where we have two distinct displacements cover both corners of

an 2-staircase. We note that this will give a 4-staircase that is covered by the base simplex,

and two square regions covered by the two displacement simplices, as in Figure 3.2. Once

more, we will scale the lattice so that the base simplex will be covered by a simplex with

hypotenuse of length 1. Now note that we have two displacement simplices, one will have side

length h1 and the other with side length h2. We also note that the displacement simplices

must have areas 2h2
1 and 2h2

2. Now if we look at the area of the tile we note that we will get

AT = (b+ h1)(h1 + h2 + 2b) + (h2 + b)2 = h2
1 + h1h2 + 3h1b+ h2

2 + 3h2b+ 3b2.

We also note that 1
3
√

2
− h1

3
− h2

3
= b. With this we may now express the density function in

terms of h1 and h2.

δ =
1
4

+ 2h2
1 + 2h2

2√
2h1+

√
2h2−2h1h2+1+2h21+2h22

6

=
3 + 24h2

1 + 24h2
2

2
√

2h1 + 2
√

2h2 − 4h1h2 + 2 + 4h2
1 + 4h2

2

.
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To minimize this function, we find the partial derivatives of this function. Let p be the value

of 8h4
2 + 8

√
2h3

2 + 12h2
2 + 4

√
2h2 + 2. The partial derivative with respect to h1 is

δh1 =
−48h2

1h2 + 24
√

2h2
1 + 48

√
2h1h2 + 36h1 + 48h3

2 − 24
√

2h2
2 + 6h2 − 3

√
2

8h4
1 − 16h3

1h2 + 8
√

2h3
1 + 24h2

1h
2
2 + 12h2

1 − 16h1h3
2 + 4

√
2h1 + p

.

We also find that the partial derivative with respect to h2 is

δh2 =
−48h2

2h1 + 24
√

2h2
2 + 48

√
2h1h2 + 36h2 + 48h3

1 − 24
√

2h2
1 + 6h1 − 3

√
2

8h4
2 − 16h3

2h1 + 8
√

2h3
2 + 24h2

1h
2
2 + 12h2

2 − 16h2h3
1 + 4

√
2h2 + p

.

Since both of these must be zero at a local minimum for the density, we may simplify the

problem by noting that δh1 = 0 = δh2 when h1 = h2. So we now work under the assumption

that h1 = h2, and we will refer to it as h. Now we may express the density of the covering as

δ =
1
4

+ 4h2

2h2+2
√

2h+1
6

=
3 + 48h2

4h2 + 4
√

2h+ 2

and find the derivative is

δ′ =
48
√

2h2 + 42h− 3
√

2(
2h2 + 2

√
2h+ 1

)2

which gives us that δ′ = 0 when h = −14+
√

324
32
√

2
=
√

2
16

. We again check that this gives us a

minimum. When h <
√

2
16

, we get δ′ < 0 and when h >
√

2
16

, δ′ > 0. So this is a minimum.

Now we note that when h =
√

2
16

, we get a density of

δ =
3 + 48

(√
2

16

)2

4
(√

2
16

)2

+ 4
√

2
(√

2
16

)
+ 2

=
4

3

which is the lower of the two, so it must be that the minimum for two displacements covering

connected prototiles is 4
3
.

So we once more decrease the covering density by adding one additional displacement. In

this case we note that we decrease the density by 5−
√

13 (1.39445) to 4
3

(1.33333) by adding
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a single displacement. Note that by adding one displacement to a lattice we decreased bound

on the density from 1.5 to about 1.39445. By adding a second non-trivial displacement, we

only decrease the bound on the density by about 0.061115. We also note that the multilattice

that results in the density of 4
3

may be scaled so that it is an integral multilattice.

3.2 Arbitrary displacement problem

Now that we have worked through some of the covering densities for a given number of

displacements, we determine what the greatest lower bound on the density of any multilattice

covering is. We will prove the following.

Theorem 3.2. The greatest lower bound for the density of a multilattice covering of R2 with

an arbitrary number of displacements is 1.

Proof. We begin by noting that no multilattice will ever have a covering density of 1 while

we only use dilations of the right regular simplex as our convex bodies. If 1 is a lower bound

for any multilattice, we may work with a single base lattice. Let us choose the base lattice of

Z2. If we can show that 1 is the greatest lower bound for a multilattice of the form Z2 +D,

we are done. With Z2 as our base lattice, we get a square tile T of area 1. Choose m = 2k,

where k is a natural number. We now divide this tile into m2 squares of equal area. Each

square will have a side length of 1
m

and an area of 1
m2 . Let us place a simplex of diameter

m+1
m

at the base lattice point. This simplex will cover m2+m
2

of the squares. This simplex

will cover these squares with a density of

δ1 =

(
m+1
m

)2 1
2

m2+m
2m2

=
m2 + 2m+ 1

m2 +m
.

The remaining m2−m
2

squares lie above the diagonal of the tile T . We will do the first iteration

of placing a simplex in this region. As m is even, then there are an odd number of squares

directly above the diagonal. We place a simplex of Manhattan diameter m+2
2m

at (1
2
, 1

2
). This
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will cover
(m

2 )
2
+m

2

2
= m2+2m

8
squares of our tile. We will also get a density of

δ2 =

(
m+2
2m

)2 (1
2

)
m2+2m

8m2

=
m2 + 4m+ 4

m2 + 2m

for the newly covered section of our tile. Now we have three uncovered sections of our tile,

but now we have m2−2m
8

squares in each of them. We perform the second iteration of placing

simplices by placing a simplex of scale m+4
4m

at the points (1
4
, 3

4
),(3

4
, 3

4
), and (3

4
, 1

4
). This will

leave us with 9 connected regions that are not covered by any of these simplices. We repeat

this process on the remaining regions. For the i + 1th iteration, we will place 3i simplices

of scale m+2i

2im
in our uncovered region. Let {d{i,1}, d{i,2}, . . . , d{i,3i−1}} be the points where we

placed simplices in the ith iteration. We place simplices at the points

{di,j +

(
n′1
2i
,
n′2
2i

)
| n′1, n′2 = ±1, n′1 + n′2 ≥ 0}

in the i + 1th iteration. we continue this process until we place simplices of scale 2
m

. This

will completely cover our tile T . The density of this covering will be

δ =

(
m2 +m

2m2

)(
m2 + 2m+ 1

m2 +m

)
+

k−1∑
i=0

3i
(
m2 + 2i+1m

22i+3m2

)(
m2 + 2i+2m+ 22i+2

m2 + 2i+1m

)

and will have 1 +
∑k−1

i=0 3i simplices in the covering. As m = 2k, we rewrite this as

(
22k + 2k+1 + 1

22k+1

)
+

k−1∑
i=0

3i
(

22k + 2i+22k + 22i+2

22i+322k

)
.

We take the limit

lim
k−→∞

[(
22k + 2k+1 + 1

22k+1

)
+

k−1∑
i=0

3i
(

22k + 2i+22k + 22i+2

22i+322k

)]
= 1.

So 1 must be the greatest lower bound on the density of any multilattice.
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Figure 3.3: square tile divided into 64 squares

Figure 3.4: First simplex added

To make the process clear, we will illustrate this process when m = 8. To begin we take

the tile of Z2 and divide it into 64 squares of equal area as in Figure 3.3. Each square will

have side length 1
8
. Now we will place a simplex of scale 8+1

8
= 9

8
at the origin. The region

this covers is illustrated in Figure 3.4. Notice that the area not covered by this first simplex

is congruent to a reflection of a 7-staircase about the origin. We now add our second simplex

at the point (0.5, 0.5) as in Figure 3.5. This simplex will have scale (8)+2
2(8)

= 5
8
. Now we are

left with three equal regions of squares that are not contained in one of these simplices. For

each of these regions, we will place a simplex of scale 3
8
. We place one simplex at the point

(1
4
, 3

4
), one at (3

4
, 3

4
), and one at (3

4
, 1

4
), as in Figure 3.6. We are now left with 9 squares that

are not contained in any of these simplices on our tile. We now cover each of these regions

with a simplex of scale 1
4
. We note that T is now completely covered. This is shown in
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Figure 3.5: Second simplex added

Figure 3.6: Adding simplices for first iteration of remaining space
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Figure 3.7: Adding simplices for 2nd iteration of remaining space

Figure 3.7. This gives us a covering density of

δ =
(8)2 + 2(8) + 1

2(8)2
+

3∑
i=0

3i
(

82 + 2i+2(8) + 22i+2

22i+3(8)2

)
=

169

128
.

This density is 1.3203125. As we increase the value of m, we note that this will also decrease

the density we get for our covering.
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Chapter 4. Bounding the Density

One more area of interest is where we might place a single displacement to have a multilattice

covering density under a given value. For example, we know that the best density for a

multilattice with one displacement is 5−
√

13. Given the same base lattice L, where may we

place the displacement and still get a density lower than 1.45? We look at some examples.

4.1 Square tile

Let us take the lattice Z2. Suppose that we want to add one displacment to get a multilattice

that has a density between 2 and 8
5
. We will show the following.

Proposition 4.1. Let L be a lattice that results in a square tile T of area 1 under the

subtraction construction. Let c be a number such that 1.6 ≤ c < δL = 2 for the lattice L. Let

D = {0, (x, y)}. Then for any choice of (x, y) that lies inside the curve defined by

c =


d2

1 + d1d2 − d1 + 1
2
d2

2 − 2d2 + 5
2

if d1 ≥ d2

d2
2 + d1d2 − d2 + 1

2
d2

1 − 2d1 + 5
2

if d2 > d2

the multilattice covering density of L+ {0, (x, y)} will be at most c.

Proof. Let the displacement be d = (d1, d2). Then we note that the Manhattan diameter of

the displacement simplex will be 2− d1 − d2. Notice that this is in terms of the coordinates

of our displacement. Previously we have worked with the distance from the displacement to

the outermost corner. We also note that the Manhattan diameter of the base simplex will

be 1 + max{d1, d2}. The area of the tile will be 1, so our density for our multilattice will be

given by

δ =
(1 + max{d1, d2})2 + (2− d1 − d2)2

2
.
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If it is the case that d1 ≥ d2, then we have that

δ =
(1 + d1)2 + (2− d1 − d2)2

2
= d2

1 + d1d2 − d1 +
1

2
d2

2 − 2d2 +
5

2
.

If it is the case that d2 > d1, then the density becomes

δ =
(1 + d2)2 + (2− d1 − d2)2

2
= d2

2 + d1d2 − d2 +
1

2
d2

1 − 2d1 +
5

2
.

To see where these two functions agree, we set them equal to each other and we get

d2
2 + d1d2 − d2 +

1

2
d2

1 − 2d1 +
5

2
= d2

1 + d1d2 − d1 +
1

2
d2

2 − 2d2 +
5

2

0 =
1

2
d2

2 + d2 −
1

2
d2

1 − d1.

So d2 =
−1±
√

1−2(−d1− 1
2
d21)

1
= −1±

√
(d1 + 1)2 = −1± (d1 + 1). This occurs when the value

of d1 = d2 or when d2 = −2− d1. If d2 = −2− d1, the displacement simplex will have scale

2− d1 − (−2− d1) = 4. As this simplex will force us to have a higher multilattice covering

density than our lattice covering density, it must lie outside of the region of R2 such that

the density will be less than that of the lattice density. So these two functions agree when

d1 = d2. We may write the density as the piecewise function

δ =


d2

1 + d1d2 − d1 + 1
2
d2

2 − 2d2 + 5
2

if d1 ≥ d2

d2
2 + d1d2 − d2 + 1

2
d2

1 − 2d1 + 5
2

if d2 > d2.

We then set δ = c, and the region which satisfies this equation will be a level curve. Call this

region C. If we choose our displacement from the interior of C, the density of our multilattice

covering will be less than c. We have seen that if d1 = d2, then the density is given by a

quadratic function whose leading coefficient is positive. So any point on the interior of C

that lies on the line y = x will give a lower density than c.

Now let us consider the case when d1 > d2. Let us define the function f(d1, d2) =
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d2
1 + d1d2 − d1 + 1

2
d2

2 − 2d2 + 5
2
. As this defines our function when d1 ≥ d2, we take the

directional derivative in the direction of u = (−1√
2
, 1√

2
). In other words, the directional

derivative in the direction of the line y = x. We get

Duf(d1, d2) =
−1√

2
− d1√

2
.

As d1 > 0, this must be negative.

If d1 < d2, then we let g(d1, d2) = d2
2 + d1d2 − d2 + 1

2
d2

1 − 2d1 + 5
2
. Then by a similar

argument, the directional derivative of D−ug(d1, d2) must also be negative. So the interior

of C must return a value less than c.

So suppose that we wanted to find where the density would be 1.7. We need only set δ

equal to 1.7, and find the resulting d1 and d2 coordinates. Notice that if d1 = d2, then we

find where

0 =
4

5
− 3d+

5

2
d2.

Which occurs when d = 2
5

or 4
5
. The points with d1 > d2 where the density is 1.7 are the

points where

1.7 = d2
1 + d1d2 − d1 +

1

2
d2

2 − 2d2 +
5

2

or where

d2 = 2− d1 −
√

2.4− 2d1 − d2
1.

Similarly, when d2 > d1 we get a density of 1.7 when

1.7 = d2
2 + d1d2 − d2 +

1

2
d2

1 − 2d1 +
5

2

or when

d2 =
1− d1 +

√
−2.2 + 6d1 − d2

1

2
.

Notice that our point
(

3
5
, 3

5

)
is the center of this region. This is illustrated in Figure 4.1. We
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x

y

(3
5
, 3

5
)

Figure 4.1: Region of density at most 1.7

note that for any chosen value of the density function between 1.6 and 2, we may follow the

same process to find the bound of the region.

4.2 Rectangular tile

Once more we would like to know what the region looks like in a broader situation. Let us

examine when we have a rectangular tile.

Proposition 4.2. Let T be a rectangular tile of a lattice L such that Mdiam (T ) = 1. Let

(x′, y′) be the outermost corner of our tile. Let c be some value such that c < δL. Let

D = {0, (x, y)}. Let C be the curve defined by

c =


(5−4y′)+(−4)h1+(−2−4x′)h2+(2)h22+(2)h1h2+h21

2x′−2x′2
if x′ + d2 ≥ y′ + d1

(1)+(−2−4x′)h1+(2)h2+h22+(2)h1h2+(2)h21
2x′−2x′2

if x′ + d2 < y′ + d1.

Then for any choice of (x, y) such that x = x′−h1 and y = y′−h2 for the point (h1, h2) that

lies on the interior of C, the value of δL+D is at most c.

Proof. Let the tile have dimensions x′ × y′. Once more let us scale the tile and lattice until

the x′ + y′ = 1. Then we note that we may once more place the displacement at the point

(d1, d2) where d1 < x′ and d2 < y′. Then the the areas of the base and displacement simplices
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and the tile are

SB =
(max{x′ + d2, y

′ + d1})2

2

SD =
(1− d1 − d2)2

2

AT = x′y′.

Using the fact that y′ = 1− x′, we note that the density function becomes

δ =
x′2 + 2x′d2 + 2d2

2 + 1− 2d1 − 2d2 + d2
1 + 2d1d2

2x′ − 2x′2

when x′ + d2 ≥ y′ + d1. Otherwise the density is given by

δ =
2− 2x′ − 2x′d1 + x′2 + 2d2

1 − 2d2 + 2d1d2 + d2
2

2x′ − 2x′2
.

These two functions are equal when

x′2 + 2x′d2d
2
2 = 1− 2x′ + 2d1 − 2x′d1 + x′2 + d2

1

or when

d2 = d1 + 1− 2x′ or d2 = −d1 − 1.

To see which of these we must choose, let h1 = x′ − d1 and h2 = y′ − d2. Then we note that

when the previous holds, we also have

y′ − h2 = x′ − h1 + 1− 2x′

h1 = h2.

So as before, the intersection of the two functions lie on the line y = x− x′+ y′. So we have
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that

δ =



x′2+1
2x′−2x′2

+ 2x′−2
2x′−2x′2

d2 + 2
2x′−2x′2

d2
2 + 2

2x′−2x′2
d1 + 2

2x′−2x′2
d1d2 + 1

2x′−2x′2
d2

1

if x′ + d2 ≥ y′ + d1

2−2x′+x′2

2x′−2x′2
+ −2

2x′−2x′2
d2 + 1

2x′−2x′2
d2

2 + −2x′

2x′−2x′2
d1 + 2

2x′−2x′2
d1d2 + 2

2x′−2x′2
d2

1

if x′ + d2 < y′ + d1.

Notice that if we scale our multilattice by a factor of 2x′ − 2x′2, we get that

δ =


x′2 + 1 + (2x′ − 2)d2 + 2d2

2 + 2d1 + 2d1d2 + d2
1 if x′ + d2 ≥ y′ + d1

x′2 − 2x′ + 2− 2d2 + d2
2 − 2x′d1 + 2d1d2 + 2d2

1 if x′ + d2 < y′ + d1.

Rather than express this in terms of di, let us switch again to the notation of hi. Then the

density becomes

δ =



x′2 + 1 + (2x′ − 2)(y′ − h2) + 2(y′ − h2)2 + 2(x′ − h1) + 2(x′ − h1)(y′ − h2)

+(x′ − h1)2w if x′ + d2 ≥ y′ + d1

x′2 − 2x′ + 2− 2(y′ − h2) + (y′ − h2)2 − 2x′(x′ − h1) + 2(x′ − h1)(y′ − h2)

+2(x′ − h1)2 if x′ + d2 < y′ + d1.

Which we simplify to

δ =



(2x′2 + 4x′y′ + 2y′2 + 2x′ − 2y′ + 1) + (−2− 2y′ − 2x′)h1 + (−2− 4x′)h2+

(2)h2
2 + (2)h1h2 + h2

1

(x′2 + 2x′y′ + y′2 − 2x′ − 2y′ + 2) + (−6x′ − 2y′)h1 + (4− 2y′ − 2x′)h2

h2
2 + (2)h1h2 + (2)h2

1.

We note that if we scale back to our original lattice, we may use the fact that x′ + y′ = 1 to
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simplify the two cases further and we get

δ =


(5−4y′)+(−4)h1+(−2−4x′)h2+(2)h22+(2)h1h2+h21

2x′−2x′2
if x′ + d2 ≥ y′ + d1

(1)+(−2−4x′)h1+(2)h2+h22+(2)h1h2+(2)h21
2x′−2x′2

if x′ + d2 < y′ + d1.

4.3 The boundary on an L-shaped tile

The other option is to look at what happens with the tile when we have an L-shaped tile,

and we are trying to bound density. As before we may scale this to our needs. Let the outer

corners of the tile have coordinates (a, d) and (c, b). Let a < c and b < d. The squinch has

coordinates (a, b). Without loss of generality, let a + d ≥ c + b. Then let our displacement

be d = (d1, d2) = (a − h1, d − h2). We note that if we do not choose two positive numbers

h1 and h2, then the diameter of the base simplex will be the same as the diameter for the

simplex used in the lattice covering. Thus any displacement that improves density may be

written in this way. We now break this into two cases for an improvement on density of our

tile.

The first case is that we pull back only the outermost corner, (a, d). In this case we get

the following.

Proposition 4.3. Let L be a lattice such that the tile T obtained from the subtraction

construction is an L-shaped tile. Furthermore, let Mdiam (T ) = 1. Let the tile T have the

corners at (a, d) and (c, b) such that a+ d = 1. Let the curve C be defined by the region

c =



(c+b)2+(h1+h2)2

2(ad+bc−ab) if c+ b ≥ 1− hi

1−2h1+2h21+2h1h2+h22
2ad+2cb−2ab

if 1− h1 > c+ b and h1 < h2

1−2h2+h21+2h1h2+2h22
2ad+2cb−2ab

if 1− h2 > c+ b and h2 < h1.

for some constant c. Let (h1, h2) lie on the interior of C. Then for any set D = {0, (a −

h1, d− h2)}, δL+D ≤ c.
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Proof. As we have seen, if we are pulling back just the corner (a, d), our choice is optimized

when h1 = h2. We also note that h1 ≤ a+d−c+b for our optimal covering density. We note

that this will still be the most efficient way to pull back a single corner to improve density.

However, we may still choose h1 6= h2 and improve our density by some amount. This results

in a Manhattan diameter of the base simplex to be max{a+ d− h1, a+ d− h2, c+ b}. The

displacement will have a diameter of h1+h2. Let us scale the multilattice such that a+d = 1.

So the density of our multilattice covering will be

δ =
(max{1− h1, 1− h2, c+ b})2 + (h1 + h2)2

2(ad+ cb− ab)
.

Let us take the case where a+ d− h2 is the largest. Then our density function is given by

δ =
(1− h2)2 + (h1 + h2)2

2(ad+ cb− ab)
=

1− 2h2 + h2
1 + 2h1h2 + 2h2

2

2ad+ 2cb− 2ab
.

Now if we look at the region where a+ d− h1 is the largest, we get

δ =
(1− h1)2 + (h1 + h2)2

2(ad+ cb− ab)
=

1− 2h1 + 2h2
1 + 2h1h2 + h2

2

2ad+ 2cb− 2ab
.

Let us now look at how these two functions will interact. The two are equal when

1− 2h1 + 2h2
1 + 2h1h2 + h2

2 = 1− 2h2 + h2
1 + 2h1h2 + 2h2

2.

This happens when

−2h1 + h2
1 = −2h2 + h2

2.

Note that this gives the two possibilities that h2 = h1 or h2 = 2−h1. As 2−h1 = 2(a+d)−h1,

we need not worry about the second option. So these two agree when h1 = h2. Notice that

the density is expressed in terms of hi, so will be the distance in the negative direction from

the corner (a, d). Note that this will result in a region of a similar shape to the rectangular
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case. However, we also note that rather than just looking at how far back in each direction

the displacement is from the outermost corner, we also worry about what the diameter of

the second corner is. Now we look at what happens if c+ b is the greatest value of the three.

We now have that the base simplex will have a diameter of c + b. This is fixed, even if we

vary the displacement slightly. So our density then becomes

δ =
(c+ b)2 + (h1 + h2)2

2(ad+ bc− ab)
.

Now we note that if we want δ to be less than a constant number m,

m >
(c+ b)2 + (h1 + h2)2

2(ad+ bc− ab)

2m(ad+ bc− ab) > (c+ b)2 + (h1 + h2)2

2m(ad+ bc− ab)− (c+ b)2 > (h1 + h2)2√
2m(ad+ bc− ab)− (c+ b)2 > h1 + h2.

We must obviously choose the positive root for the left, if it is a real number. Note that

any combination of h1 and h2 which satisfy this will lie above a translation of the line

y = −x. So, we note that this precludes any options that we have that would lie below

the line y = −x + 1 −
√
x2m(ad+ bc− ab)− (c+ b)2. This further restricts our region of

a given density. So our density function is determined by the Manhattan distance from our

displacement to the outermost corner when c+ b is the diamter of the base tile. We get the

piecewise function

δ =



(c+b)2+(h1+h2)2

2(ad+bc−ab) if c+ b ≥ 1− hi

1−2h1+2h21+2h1h2+h22
2ad+2cb−2ab

if 1− h1 > c+ b and h1 < h2

1−2h2+h21+2h1h2+2h22
2ad+2cb−2ab

if 1− h2 > c+ b and h2 < h1.

To see this region, let us work out an example. We will only look at the region of the
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Figure 4.2: L-tile generated by (0.4,0.2) and (-0.2, 0.6)

tile that has y values greater than or equal to that of the squinch. Let us take the lattice

generated by v1 = (0.4, 0.2) and v2 = (−0.2, 0.6) We note that the tile generated by this will

have area 0.28 or 7
25

. Now we note that the outermost corner of this tile will lie at (0.4, 0.6).

The second corner will be at (0.6, 0.2). Figure 4.2 illustrates this tile.

If we place a displacement at the point (0.2, 0.4) we obtain the minimum density possible

with one displacement. This density is 10
7

. However, instead of 10
7

, what if I wanted a density

of 8
5
? The lattice covering results in a density higher than this. So we now look at the region

of this tile that would result in a density of 1.6 or less. To do this we first look at when

h1 ≥ h2 and 1− h1 > 0.8. The formula for density here is

1− 2h2 + h2
1 + 2h1h2 + 2h2

2

0.56
.

Next we note that if h2 ≥ h1 and 1− h2 > 0.8, we get

1− 2h1 + h2
2 + 2h1h2 + 2h2

1

0.56
.

Finally we note that if 0.8 ≥ 1− hi, we get

0.64 + (h1 + h2)2

0.56
.
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Figure 4.3: Region to pull back one corner

Figure 4.4: Boundary for h1 + h2

When we solve for when each of these is at most 1.6, we get the following. Notice that as

we begin, we have that the possible displacements must lie in the highlighted portion of the

tile in Figure 4.3.

When 0.8 ≥ 1− hi,

1.6 ≥ 0.64 + (h1 + h2)2

0.56

0.896 ≥ 0.64 + (h1 + h2)2

0.256 ≥ (h1 + h2)2

√
0.256 ≥ h1 + h2.

This limits the possible values of our tile to be above the line y = −x + 1 −
√

0.256. This

line is drawn on the tile in Figure 4.4.

Now if we look at when h1 ≥ h2, and 1− h2 > 0.8, the density is 1.6 when

1.6 =
1− 2h2 + h2

1 + 2h1h2 + 2h2
2

0.56

0.896 = 1− 2h2 + h2
1 + 2h1h2 + 2h2

2.

66



If we solve for h1, we get

h1 =
√
−h2

2 + 2h2 − 0.104− h2.

When h2 > h1, the density is 1.6 when

1.6 =
1− 2h1 + h2

2 + 2h1h2 + 2h2
1

0.56

0.896 = 1− 2h1 + h2
2 + 2h1h2 + 2h2

1.

Solving this for h2 we get

h2 =
√
−h2

1 + 2h1 − 0.104− h1.

We note that these are symmetric about the line y = x+ 0.2, or the line that passes through

(a, d) with a slope of 1. We note that

√
−h2

1 + 2h1 − 0.104− h1 = −x+
√

0.256

when h1 = 0.2. So we note that these three curves will bound the region of density. Figure

4.5 illustrates the pieces of the density function shown, together with the plane z = 1.6.

It may not always be the case that an decrease in covering density results from a mul-

tilattice whose displacement simplex covers only the corner (a, d). It may be the case that

the displacement simplex covers both (a, d) and (c, b). If we choose y to be small enough,

specifically y < d− b, then y < b, and the point (c, b) will be covered by our simplex placed

at (x, y). Thus we pull back two corners with one displacement. We have already shown

that this will not be the best density possible with the given number of displacements, but

it still may give a covering with a lower density than that of the lattice covering.

Proposition 4.4. Let L be a lattice such that the tile T obtained from the subtraction

construction is an L-shaped tile and Mdiam (T ) = 1. Then let c be a constant. Let C be the
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Figure 4.5: Region of density 1.6 or less

curve defined by

c =


1+d2−2db+b2+(−2+2d−2b)Γ1+2Γ1Γ2+2Γ2

1+(2d−2b)Γ2+Γ2
2

2(ad+bc−ab) if 1− Γ1 ≥ c+ b− Γ2

d2−2bd+2b2+2cb+c2+(2d−2b)Γ1+(2d−4b−2c)Γ2+Γ2
1+2Γ1Γ2+2Γ2

2

2(ad+bc−ab) if c+ b− Γ2 > 1− Γ1.

Choose any Γ1,Γ2 such that (Γ1,Γ2) lies on the interior of C. Let D = {0, (a−Γ1, b−Γ2)}.

Then the multilattice covering density δL+D < c.

Proof. Let a + d = 1, so that the lattice covering will have a simplex of diameter 1. Then

to pull back both corners, we must place our displacement such that it has coordinates

(a − Γ1, b − Γ2) such that Γ1 > 0 and Γ2 > 0. Let us first find the displacement that will

give the minimum covering density and will cover (a, d) and (c, b). To minimize the density,

we want to choose Γ1 and Γ2 in such a way that a + d − Γ1 = b + c − Γ2. This will ensure

that the corners of the prototile covered by the base simplex will have the same Manhattan

diameter. We also note that this will cause the highlighted region in Figure 4.7 to be where

our displacement may be. We know this as Γ1 ≥ Γ2. Note that the density of the multilattice
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(a,b)

(a,d)

(c,b)

Γ1

Γ2

Figure 4.6: Γ1 and Γ2 on L-tile

Figure 4.7: Region to pull back both corners optimally
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will then become

δ =
(a+ d− Γ1)2 + (Γ1 + Γ2 + d− b)2

2(ad+ bc− ab)

=
a2 + 2ad+ 2d2 − 2db+ b2 + 2Γ1Γ2 + (−2a− 2b)Γ1 + 2Γ2

1 + (2d− 2b)Γ2 + Γ2
2

2(ad+ bc− ab)

=
1 + d2 − 2db+ b2 + (−2 + 2d− 2b)Γ1 + 2Γ1Γ2 + 2Γ2

1 + (2d− 2b)Γ2 + Γ2
2

2(ad+ bc− ab)
.

This is dependent on the distance from the outermost corner to the squinch, the Manhattan

diameter of the tile, and the area of the tile. We also note that by our choices, Γ2 =

b+ c− 1 + Γ1. So we may express density as

δ =
(1− Γ1)2 + (2Γ1 + c− a)2

2(ad+ bc− ab)

=
1 + c2 − 2ac+ a2 + (4c− 4a− 2)Γ1 + 5Γ2

1

2(ad+ bc− ab)
.

Taking the derivative of the density function with respect to Γ1 we get

δ′ =
4c− 4a− 2 + 10Γ1

2(ad+ bc− ab)
.

We note that 1−2c+2a
5

is the only critical number we get. Now we note that for Γ1 less than

this value, δ′ returns negative numbers. If Γ1 is greater then we get positive numbers. Thus

this is a local minimum. So the best density we can get by covering an L-shaped tile will

be achieved when we place the displacement at
(

3a+2c−1
5

, 4−3c−2a
5

)
. We note that this point

must lie behind the squinch. So we also note that a > 3a+2c−1
5

and also that b > 4−3c−2a
5

. If

this is not the case, we cannot improve the density by placing a displacement which covers

an L-shaped portion of the tile.

Moving forward, let us assume that we may improve the density of our multilattice

covering with a displacement that covers an L-shaped portion of our tile. In other words, a

and b satisfy the previous inequalities. Now rather than achieving the best possible density,

let us look at the region that will give us a multilattice covering below a certain value. We
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note that the Manhattan diameter of the base simplex will be max{1− Γ1, c+ b− Γ2}. We

also note that the diameter of the displacement simplex will be Γ1 + Γ2 + d − b. So our

density function will be

δ =
(max{1− Γ1, c+ b− Γ2})2 + (Γ1 + Γ2 + d− b)2

2(ad+ bc− ab)
.

Let us consider when 1− Γ1 ≥ c+ b− Γ2. Then we have

δ =
1 + d2 − 2db+ b2 + (−2 + 2d− 2b)Γ1 + 2Γ1Γ2 + 2Γ2

1 + (2d− 2b)Γ2 + Γ2
2

2(ad+ bc− ab)
.

Now let us consider when c+ b− Γ2 > 1− Γ1. Our density function is now given by

δ =
(c+ b− Γ2)2 + (Γ1 + Γ2 + d− b)2

2(ad+ bc− ab)

=
d2 − 2bd+ 2b2 + 2cb+ c2 + (2d− 2b)Γ1 + (2d− 4b− 2c)Γ2 + Γ2

1 + 2Γ1Γ2 + 2Γ2
2

2(ad+ bc− ab)
.

We note that these two functions will agree when

1− Γ1 = c+ b− Γ2

Γ2 = c+ b+ Γ1 − 1.

This will be the line of slope 1 that passes through the point
(

3a+2c−1
5

, 4−3c−2a
5

)
. So we

once again get a shape that is symmetric about the line of slope 1 passing through the

displacement that gives a local minimum covering density.

Let us work out an example of this type. In order to improve the covering density of

a given tile, we need the corners to be relatively close together. Let us take the lattice

generated by v1 =
(

6
16
, 8

16

)
and v2 =

(−1
16
, 10

16

)
. The covolume of the lattice will be 68

256
. The

corners of the tile will be at
(

6
16
, 10

16

)
and

(
7
16
, 8

16

)
. By our above calculations, the best density

will result when our displacement is at
(

1
5
, 31

80

)
. This density will be about 1.60147. Now

let us look at the region behind the squinch that will give us a density of 1.65. First let
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1− Γ1 >
15
16
− Γ2. The density will be

δ =
(1− Γ1)2 +

(
2
16

+ Γ1 + Γ2

)2

2
(

68
256

)
=

260− 448Γ1 + 64Γ2 + 512Γ2
1 + 512Γ1Γ2 + 256Γ2

2

136
.

If we want this to be equal to 1.65, then we get

1.65 =
260− 448Γ1 + 64Γ2 + 512Γ2

1 + 512Γ1Γ2 + 256Γ2
2

136

Γ2 =
8
√
−Γ2

1 + 2Γ1 − 0.123438− 8Γ1 − 1

8
.

Now if we have 15
16
− Γ2 > 1− Γ1, the density is

δ =

(
15
16
− Γ2

)2
+
(

2
16

+ Γ1 + Γ2

)2

2
(

68
256

)
=

229 + 64Γ1 − 416Γ2 + 256Γ2
1 + 512Γ1Γ2 + 512Γ2

2

136
.

To get this to be 1.65, we get

1.65 =
229 + 64Γ1 − 416Γ2 + 256Γ2

1 + 512Γ1Γ2 + 512Γ2
2

136

Γ2 =
−16

√
−Γ2

1 − 17
8

Γ1 + 0.624− 16Γ1 + 13

32
.

So we get

Γ2 =


8
√
−Γ2

1+2Γ1−0.123438−8Γ1−1

8
if Γ1 ≤ 1

16
+ Γ2

−16
√
−Γ2

1−
17
8

Γ1+0.624−16Γ1+13

32
if Γ1 >

1
16

+ Γ2.

The point (a − x, b − y) for any (x, y) that lies on the interior of the region defined by the

above will result in a multilattice covering density of at most 1.65.
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Chapter 5. Further Research

While these results may be a good start for someone interested in multilattices, there is still

much to be explored.

One question that is closely related but is still unexplored is that of how to choose optimal

generators given a certain number of displacements. For example, if I take 5 displacements,

what two generators should I choose for a group of size k? We have shown that the most

efficient generators of the group will not in general be the best generators to use to obtain

a multilattice covering of lowest density.

Another question that would require a little more time and resources is that of deter-

mining the best covering in n = 2 for a low number of displacements. This problem may

be approached using multivariate calculus, but quickly grows in complexity. One approach

we may use is to cover a square region as efficiently as possible, then use this to bound the

density for any tile type.

It would also be interesting to explore the multilattice covering where instead of only

taking dilations of the right regular simplex, we allowed for different simplices. While it is

obvious that there is a choice for getting to a density of 1, it is not as obvious how rotations

of a right regular simplex may form a packing or a covering. With regard to the group

problem, this would be to use a different set of generators with each displacement. What

would happen if we were to choose elements that did not generate the whole group in our

displacement sums? Is there a bound above 1 that may be set in this instance?

Additionally, the lattice covering problem has an equivalent problem in groups. We can

extend this problem to the multilattice case as well. It may be easier in this context to

determine the density based on the problem in finite groups.
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