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abstract

Terwilliger Algebras for Several Finite Groups

Nicholas Lee Bastian
Department of Mathematics, BYU

Master of Science

In this thesis, we will explore the structure of Terwilliger algebras over several different
types of finite groups. We will begin by discussing what a Schur ring is, as well as providing
many different results and examples of them. Following our discussion on Schur rings, we will
move onto discussing association schemes as well as their properties. In particular, we will
show every Schur ring gives rise to an association scheme. We will then define a Terwilliger
algebra for any finite set, as well as discuss basic properties that hold for all Terwilliger
algebras. After specializing to the case of Terwilliger algebras resulting from the orbits of a
group, we will explore bounds of the dimension of such a Terwilliger algebra. We will also
discuss the Wedderburn decomposition of a Terwilliger algebra resulting from the conjugacy
classes of a group for any finite abelian group and any dihedral group.

Keywords: Terwilliger algebra, Wedderburn decomposition, association scheme, Bose-Mesner
algebra, Schur ring, representation theory, dihedral groups
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Chapter 1. Introduction

Association schemes (Definition 3.1) are a useful tool in studying many combinatorial prob-

lems. Commutative association schemes give rise to subalgebras of a matrix algebra with

complex entries, which are called Terwilliger algebras (Definition 4.1). By studying Ter-

williger algebras we can better understand the association schemes that they result from.

Doing so also allows further study into those combinatorial problems in which association

schemes are useful.

Terwilliger algebras were originally developed in the 1990’s by Paul Terwilliger to provide

a method for studying commutative association schemes. In particular he looked at P-

Polynomial (Definition 3.11) and Q-Polynomial (Definition 3.14) association schemes. Over

the course of the three papers [41, 42, 43] in which Terwilliger algebras were originally

introduced, Terwilliger manages to find a combinatorial characterization of thin (Definition

4.7) P-Polynomial and Q-Polynomial association schemes.

Since Terwilliger algebras were defined by Paul Terwilliger, others have studied them

with relation to various commutative association schemes. Terwilliger algebras have been

studied as they relate to Johnson schemes in [22, 25, 26, 40]. Extending this study of

Johnson schemes, the Johnson geometry was studied using Terwilliger algebras in [17, 27].

The Terwilliger algebra for Hamming schemes was studied in [23] and the incidence matrix of

the Hamming graph was studied in [47]. Another common place where Terwilliger algebras

are used is in looking at distance regular graphs, which also give rise to association schemes.

Papers that have studied this include [31, 38, 39, 44, 45]. In addition to distance regular

graphs, Terwilliger algebras have also been applied to bipartite distance-regular graphs in

[8, 29, 30], almost-bipartite distance-regular graphs in [7], and distance-biregular graphs in

[12]. Terwilliger algebras have also been studied for group association schemes in [1, 3, 14]. In

addition to these commonly studied areas, Terwilliger algebras have also been studied with

relation to wreath products of association schemes in [34, 37], the hypercube in [13], the latin
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square in [9], odd graphs in [18], a strongly regular graph in [48], quantum adjacency algebras

in [46], almost-bipartite P- and Q-polynomial association schemes in [6], Lee association

schemes over Z4 in [33], cyclotomic association schemes in [15], semidefinite programming in

[5], and generalized quadrangles in [24]. Generalizations of Terwilliger algebras can be found

in [11, 51].

The goal of this thesis is to study Terwilliger algebras that are created using finite groups.

In particular, we find the Wedderburn decomposition for several Terwilliger algebras created

from groups, which were previously unknown. This gives us the explicit structure of the

Terwilliger algebra, which is a very important tool in studying the Terwilliger algebra further.

Our primary focus of Terwilliger algebras created from groups is centered around those that

are created using the conjugacy classes of the group, however other Terwilliger algebras are

also considered.

In Chapter 2 of this thesis we will discuss an algebraic objected called a Schur ring

(Definition 2.9). We shall give many examples of these algebraic objects along with several

properties that they posses. Our motivation for this is that Schur rings give rise to (not

necessarily commutative) association schemes over a group (Theorem 3.10). Thus, by using

them we can immediately determine some association schemes that result from them. By

using the fact that the Terwilliger algebra comes from a Schur ring we are also able to place

our proofs in a more group theoretic setting.

In Chapter 3 we introduce association schemes. In that chapter we will provide three

different definitions of an association scheme (Definitions 3.1, 3.7, and 3.8) and show they

are equivalent. Many results and examples of association schemes will also be provided. The

definitions as well as examples of P-Polynomial and Q-Polynomial association schemes will

be provided in this section as well. For more complete information on association schemes

we recommend the reader see [2].

In Chapter 4 we will introduce Terwilliger algebras, as well as some basic results and

definitions that are related to them. We also prove the existence of an irreducible two-sided
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ideal possessed by all Terwilliger algebras with a specific base point created using orbit

Schur rings (Definition 2.14). See (Theorem 4.12) for this result. The existence of this ideal

allows us to easily find the Wedderburn decomposition of the Terwilliger algebra resulting

from several different orbit Schur rings (Theorem 4.15, and Theorem 4.16). The irreducible

two-sided ideal is later used when we find the complete Wedderburn decomposition of the

Terwilliger algebra of any dihedral group D2n where n is odd. (See Corollary 5.13, which is

the focus of Chapter 5).

This thesis also includes several appendices. The first of these covers results related to

semisimple algebras, which are used in showing that Terwilliger algebras are semi-simple

(Proposition 4.4). We also include tables in an appendix which provide the dimension of the

Terwilliger algebra created from a group algebra as well as the dimension of a subalgebra of

the Terwilliger algebra that is of interest, and the character degrees of the Terwilliger algebra

for all groups of orders 1 through 63. These calculations were done using Magma and the

code used for the calculations is provided in an appendix as well.

We now close with some notation that will be used throughout. Unless otherwise specified

G will be any group, F will be a field of characteristic 0, and F [G] will the group ring over

G with coefficients in F . Any other notation that is used, is provided over the course of the

thesis.
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Chapter 2. Schur Rings

In every group ring there is a collection of subrings that are of particular interest, which

are known as Schur rings (see Definition 2.9). Schur rings were developed by Schur [36] and

Wielandt [49] in the early part of the 20th century. They were created as an alternative way

to study permutations groups instead of character theory. Schur rings were later studied in

connection with algebraic combinatorics [16, 28]. In particular they have connections with

association schemes, strongly-regular graphs, and difference sets. The original definition was

for finite groups but was later extended to infinite groups in [4].

Two operations that are of particular interest when looking at a group ring F [G] are

the star operator and Hadamard product. We define these operations as follows. For α =∑
g∈G αgg and β =

∑
g∈G βgg in F [G] the star operator applied to α gives

α∗ =
∑
g∈G

αgg
−1

and the Hadamard product is given by

α ◦ β =
∑
g∈G

αgβgg.

If C is a finite subset of G, then we let C =
∑

g∈C g ∈ F [G] and call this a simple quantity.

These are one of the basic structures involved in defining Schur rings. Another natural thing

to look at when considering any element of a group ring is the set of elements of the group

that actually show up in the summation. For α ∈ F [G], we call this the support of α, denoted

supp(α). That is, if α =
∑

g∈G αgg then

supp(α) = {g ∈ G : αg 6= 0}.

For example, supp(C) = C.
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The underlying structure from which we create a Schur ring in a group ring F [G] is that

of a Schur module. For this reason we will now begin looking at Schur modules and discuss

results relating to them.

Definition 2.1 (Schur Module). Let G be a group, R be a ring, and let S be an R-submodule

of R[G]. We say that S is a Schur module (or an S-module) if there exists a partition D(S)

of G, with each set in D(S) having finite support, such that

S = SpanR{C : C ∈ D(S)}.

We call the sets C that appear in D(S) the primitive sets. We also call a simple quantity

C, where C ∈ D(S), a primitive quantity. Primitive quantities are the building blocks of

Schur modules.

If D ⊆ G happens to be such that D =
⋃
E∈E E for some E ⊆ D(S) then we say that D

is an S−set. If in addition to being just a subset, D is a subgroup of G, then D is called an

S-subgroup.

Wielandt proved the following basic properties of Schur modules over finite groups in

[49, 50]. Most of them extend to infinite groups using the same proof that Wielandt provided.

Proposition 2.2 ([50], Proposition 22.2). Let S be a Schur module over F [G]. Let α ∈ S.

Then supp(α) is an S-set.

Proposition 2.3 ([50], Proposition 22.3). Let S be a Schur module over a group G and let

α =
∑

g∈G αgg ∈ S. Let f : F → F be a function such that f(0) = 0. We define

f [α] =
∑
g∈G

f(αg)g.

Then f [α] ∈ S.

Proposition 2.4 ([50], Proposition 22.4). Schur modules are closed under the Hadamard

product.
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Proof. Suppose that we have a Schur module S. Let α, β ∈ S. Then α =
∑n

i=1 αiCi and

β =
∑m

j=1 βjDj where every Ci, Dj ∈ D(S). Let E = {C1, C2, . . . Cn, D1, D2, . . . Dm}. We

relabel all the distinct elements in E as E1, E2, . . . , Er. Then we can write α =
∑r

i=1 αiEi

and β =
∑r

i=1 βiEi using 0 coefficient for terms that didn’t originally appear. We then have

α ◦ β =

(
r∑
i=1

αiEi

)
◦

(
r∑
i=1

βiEi

)
=

r∑
i=1

αiβi(Ei ◦ Ei) =
r∑
i=1

αiβiEi.

Notice
∑r

i=1 αiβiEi ∈ S. Thus, S is closed under the Hadamard product.

We note that the above are true in the case when G is infinite.

Theorem 2.5 (Wielandt, [49]). Let F ⊆ R be a subfield and let G be a finite group. Every

F -subalgebra of F [G] which is closed under ∗ (called a ∗-subalgebra) is semisimple.

Proof. Suppose that S is a ∗-subalgebra of F [G], but not semisimple. Let J (S) denote the

Jacobson radical of S as given in Definition A.5. By Lemma A.11, J (S) 6= 0 and contains a

simple left ideal Sα, since S is Artinian. But α ∈ J (S), so α(Sα) = 0, and hence αα∗α = 0.

Then αα∗αα∗ = (αα∗)(αα∗)∗ = 0.

We now claim that the only solution β ∈ F [G] to the equation ββ∗ = 0 is 0 itself.

Suppose β =
∑

g∈G βgg. Then the coefficient of e in ββ∗ is
∑

g∈G β
2
g . Now, a sum of squares

is 0 in F if and only if βg = 0 for every g ∈ G. This means that β = 0.

By the above claim, αα∗ = 0. Again using the claim, we conclude that α = 0, which

contradicts J (S) 6= 0. Therefore, S is semisimple.

Proposition 2.6 ([50], Proposition 22.1). Let S be a Schur module over F [G]. Let α ∈ S

and write α =
∑

g∈G αgg. Then K(α, c) = {g ∈ G | αg = c} is an S-set for each c ∈ F ,

called the coefficient complex associated to α with respect to c.

Two further results about Schur modules that are of some interest come from [4] where

they are proven for the infinite case.
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Lemma 2.7 ([4], Lemma 2.6). If S is an F -subspace of F [G] closed under ◦ and f(x) ∈ F [x],

then f [α] ∈ S for all α ∈ S.

Lemma 2.8 ([4], Lemma 2.7). If S is an F -subspace of F [G] closed under ◦, then K(α, c) ∈

S for all α ∈ S and c ∈ F \ {0}.

Having now covered the preliminary information we can give the formal definition for a

Schur ring.

Definition 2.9 (Schur Ring). A Schur ring, S, over a group G is a Schur module over F [G]

such that

(i) {1} ∈ D(S)

(ii) if C ∈ D(S), then C∗ ∈ D(S)

(iii) for all C,D ∈ D(S),

C ·D =
∑

E∈D(S)

λCDEE,

where all but finitely many λCDE are equal to 0. The coefficients λCDE are called the

structure constants of S.

We use the same terminology of primitive sets, primitive quantities, S-sets, and S-

subgroups for Schur rings that we used for Schur modules. We say that a Schur ring is

symmetric if for all C ∈ D(S), we have C = C∗.

As by definition every Schur ring is a Schur module, all of the above results regarding

Schur modules also hold for Schur rings. One result related to Schur rings that is particularly

useful comes from Muzychuck [35].

Theorem 2.10 ([35], Lemma 1.3). Suppose that S is a F -subalgebra of F [G] for a finite

group G. Then S is a Schur ring if and only if S is closed under both ∗ and ◦ and contains

both 1 and G.
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This follows as a result of the semisimplicity of S. We know that S is semisimple as a

result of S being closed under ∗ and Theorem 2.5. Theorem 2.10 provides an alternative

definition of a Schur ring over a finite group. This definition does not extend to infinite

groups. Modifying it to some degree we do get an alternative definition for a Schur module

over infinite groups. This alternative definition is provided below.

Theorem 2.11 ([4], Theorem 2.8). Let G be a group and let S be an F -subspace of F [G].

Then S is a Schur module if and only if S is closed under ◦ and for all g ∈ G there exists

some α ∈ S such that g ∈ supp(α).

Proof. Sufficiency is immediate from Proposition 2.4 and the existence of the partition D(S).

For necessity, let D be the set of supports of all primitive quantities of S. We claim that

D is a partition of G. Let g ∈ G. By assumption, there exists some α ∈ S such that

g ∈ supp(α). By Lemma 2.8, we may assume that α is simple. If α is not primitive,

then there exists some simple quantity β such that α ◦ β 6= 0 and supp(α) 6⊆ supp(β). If

g ∈ supp(β), then g ∈ supp(α ◦ β). If g /∈ supp(β), then g ∈ supp(α − α ◦ β). In either

case, g is contained in a simple quantity whose support is strictly smaller than the support

of α. Repeating this process recursively, we see that there exists some primitive quantity

containing g in its support. Suppose next that α, β are primitive quantities of S such that

g ∈ supp(α)∩supp(β). But supp(α)∩supp(β) = supp(α◦β). If α 6= β, then supp(α◦β) = ∅,

a contradiction. Therefore, D is a partition of G. As D consists of all the supports of the

primitive quantities of S, we have S = SpanF{C | C ∈ D}.

We now give several basic examples of Schur rings.

Example 2.12 (Trivial Schur Ring). Suppose that G is a finite group. We can then partition

G into the sets {1}, G\{1}. The fact that this partition produces sets that satisfy the first two

conditions of a Schur ring is obvious. All that remains to check is that we have closure under

multiplication. Note that {1}·{1} = {1}, G \ {1}·{1} = G \ {1}, and {1}·G \ {1} = G \ {1}.

When doing G \ {1} · G \ {1} we note that we have G \ {1} · G \ {1} = (G − 1)(G − 1) =

8



GG− 2G + 1 = (|G| − 2)G + 1. This then confirms that we have closure of multiplication.

Then picking D(S) = {{1}, G \ {1}} produces a Schur ring. We call this Schur ring the

trivial Schur ring. This is often denoted F [G]0.

Example 2.13. Consider the group D8 = 〈r, s : r4 = s2 = 1, rs = s−1r〉. We partition this

group into classes based on conjugation by 〈s〉. That is we shall let

C1 = {1}, C2 = {r, r3}, C3 = {r2}, C4 = {s}, C5 = {rs, r3s}, C6 = {r2s}.

The fact that this is a partition of D8 which satisfies the first two conditions of a Schur ring

- namely {1} is a primitive set, and that we have closure under the star operator - are clear.

All that remains to be verified is that these sets are in fact closed under multiplication. By

direct computation we find that

C1 C2 C3 C4 C5 C6

C1 C1 C2 C3 C4 C5 C6

C2 C2 2C1 + 2C3 C2 C5 C3 + 2C4 + C6 C5

C3 C3 C2 C1 C6 C5 C4

C4 C4 C5 C6 C1 C2 C3

C5 C5 C3 + 2C4 + C6 C5 C2 2C1 + 2C3 C2

C6 C6 C5 C4 C3 C2 C1

With this we see that the sets are indeed closed under multiplication. This then verifies that

taking D(S) = {C1, C2, . . . C6} gives a Schur ring over the group D8.

The previous example is one of a more general type of Schur ring that can be constructed

over any group.

Definition 2.14 (Orbit Schur ring). Let G be a group and H ≤ Aut(G). Then we define

F [G]H = {α ∈ F [G] : σ(α) = α for all σ ∈ H}.

9



Then F [G]H is Schur ring over G called the Orbit Schur ring with respect to H, whose

primitive sets are the orbits of H over G.

Example 2.15 (Direct Product). Let S and T be Schur rings over groups G and H respec-

tively. We can naturally view G and H are subgroups of G × H; namely, as G × {1} and

{1} ×H. Let

P = {CD : C ∈ D(S), D ∈ D(T)},

that is, P is the partition of G×H generated by all the possible products of a primitive set

of S by a primitive set of T. We let S × T = SpanF{C · D : C ∈ D(S), D ∈ D(T)}, the

subalgebra of F [G×H] afforded by P . The fact that S× T is closed under the Hadamard

product follows directly from the fact that S and T are closed under the Hadamard product.

For every (g, h) ∈ G × H we have that g ∈ P for some P ∈ D(S) and h ∈ Q for some

Q ∈ D(T). Then (g, h) ∈ PQ as (g, 1)(1, h) = (g, h). Then P · Q ∈ S × T where (g, h) ∈

supp(P ·Q). Then we have by Theorem 2.11 that S× T is a Schur module. As both D(S)

and D(T) contain {1} we have {1} ∈ P . Let C ∈ D(S) and D ∈ D(T). Next we show

for any C ∈ D(S) and D ∈ D(T) that (CD)∗ = C∗D∗. Notice for any (g, h) ∈ (CD)∗, we

have (g−1, h−1) = (g, h)−1 ∈ CD. So g−1 ∈ C and h−1 ∈ D. Then g ∈ C∗ and h ∈ D∗. So

(g, h) ∈ C∗D∗. Thus, (CD)∗ ⊆ C∗D∗. If (a, b) ∈ C∗D∗, then a ∈ C∗ and b ∈ D∗ so a−1 ∈ C

and b−1 ∈ D. Thus, (a−1, b−1) = (a, b)−1 ∈ CD. This then gives that (a, b) ∈ (CD)∗. We

thus have (CD)∗ = C∗D∗. As C∗ ∈ D(S) and D∗ ∈ D(T) we conclude that (CD)∗ ∈ P

for any CD ∈ P . We lastly need to check for any C1, C2 ∈ D(S) and D1, D2 ∈ D(T) that

(C1 ·D1) · (C2 ·D2) ∈ S × T. We know that C1 · C2 ∈ S and that D1 ·D2 ∈ T since these

are Schur rings. As multiplication is done component-wise in G×H we have that

(C1 ·D1) · (C2 ·D2) = (C1 · C2)(D1 ·D2) ∈ S× T.

This then confirms that we have closure of multiplication. Thus, S × T is indeed a Schur

ring. We call S× T the direct product Schur Ring of S and T.
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Like Schur modules, many of the properties of Schur rings remain true when G is allowed

to be infinite. One property of all Schur rings is that as they are closed under ∗ by definition.

So we have by Theorem 2.5 that for a finite group they are semisimple. Some of these results

are included below, and are slight extensions of those given by Wielandt in [50], which only

dealt with finite groups.

Proposition 2.16 (cf. [50], Proposition 23.5). Let S be a Schur ring over a group G. Let

α ∈ S and Stab(α) = {g ∈ G | αg = α}. Then Stab(α) is an S-subgroup of G.

Lemma 2.17 ([4], Lemma 2.15). Let S be a Schur ring over a group G. Let g ∈ G such

that {g} ∈ D(S). Then gC,Cg ∈ D(S) for all C ∈ D(S).

Theorem 2.18 (cf. [19], Lemma 1.2). Suppose G is a finite group. Let ϕ : G → H be a

group homomorphism with kerϕ = K and let S be a Schur ring over G. Suppose that K is

an S-subgroup. Then

(i) If C ∈ D(S) such that

C = g1A1 ∪ g2A2 ∪ . . . ∪ gkAk

where A1, A2, . . . , Ak ⊆ K are non-empty, and g1K, g2K, . . . , gkK are distinct cosets,

then |A1| = |A2| = . . . = |Ak|.

(ii) If C,D ∈ D(S), then either ϕ(C)∩ ϕ(D) = ∅ or ϕ(C) = ϕ(D). In other words, if two

S-classes both intersect some coset of K, then they intersect all the same cosets of K.

(iii) The image ϕ(S) is a Schur ring over ϕ(G) where D(ϕ(S)) = {ϕ(C) | C ∈ D(S)}.

With Theorem 2.18 we can discuss an additional type of Schur ring. This is the wedge

product of Leung and Man [21]. Let H,K ≤ G be two nontrivial, proper subgroups such

that K ≤ H and K E G. Let S be a Schur ring over H with K as an S-subgroup. Suppose

ϕ : H → H/K is the natural quotient map. Then ϕ(S) is a Schur ring over H/K by

Theorem 2.18. Let T be a Schur ring over G/K such that TH/K = ϕ(S). Then we define
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the wedge product S ∧ T by the partition

D(S ∧ T) = D(S) ∪ {ϕ−1(D) | D ∈ D(T) \ D(TH/K)}.

Under these conditions, S ∧ T is a Schur ring over G (see [21] for details). Alternatively,

a Schur ring S over G is a wedge product if there exist nontrivial, proper S-subgroups

H,K ≤ G such K ≤ H, K E G, and every S-class outside of H is a union of K-cosets. In

this case, we say that 1 < K ≤ H < G is a wedge-decomposition of S. The wedge product

construction is valid for arbitrary groups so long as K is finite.

Example 2.19 (Wedge Product Example). Let H ≤ G and let S be the subspace of F [G]

given by the partition D(S) = {{1}, H \ 1, G \H}. Then S = SpanF 〈1, H − 1, G −H〉 =

SpanF 〈1, H,G〉. We see that H ·H = |H|H,H ·G = |H|G, and G
2

= |G|G. Also H
∗

= H.

Then by Theorem 2.10 S is a Schur ring. In fact, this is the wedge product Schur ring

F [H]0 ∧ F [G]0.

Having gone over some examples of Schur rings along with some basic results about them,

we can now look at an additional operation on Schur rings that is of particular importance.

This operation is the Frobenious map. For α =
∑

g∈G αgg ∈ F [G], we define the nth

Frobenius map of α for n ∈ Z as α 7→ α(n) =
∑

g∈G αgg
n. This was first studied by Wielandt

[50] in the context of Schur rings. The following identities are easily proven:

i) (aα + bβ)(m) = aα(m) + bβ(m),

ii) α(mn) = (α(m))(n),

iii) α(−1) = α∗,

iv) C
(m)

= C(m),

for all α, β ∈ F [G], a, b ∈ F , m,n ∈ Z, and C ⊆ G (for any arbitrary group G).

Theorem 2.20 ([50], Theorem 23.9). Suppose S is a Schur ring over G where G is an

abelian group. Suppose m is an integer coprime to the orders of all torsion elements of G.

Then for all α ∈ S we have that α(m) ∈ S. In particular, if G is torsion-free, then all Schur

rings over G are closed under all Frobenius maps.
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Proposition 2.21 ([50], Proposition 23.6). Let S be a Schur ring over G. Let α ∈ S, and

let H be the subgroup generated by supp(α). Then H is an S-subgroup of S.

Proof. Suppose S is a Schur ring over G. Let α ∈ S. Consider L = supp(α). So H = 〈L〉.

Letting K = L ∪ L∗, then also H = 〈K〉. This means that

H =
∞⋃
i=0

Ki.

Since L is the support of an element of S, it is a union of primitive sets. Thus, the same is

true for K. It follows, by induction, the same is true for Ki. That is, Ki is an S-set. As H

is a union of S-sets, we conclude that H is an S-subgroup.

The three major types of Schur rings that we have defined, namely orbit Schur rings,

direct product Schur rings, and wedge product Schur rings are called traditional Schur rings.

This name is inspired by the following classification theorem of Leung and Man.

Theorem 2.22 (Leung and Man, [20]). Every Schur ring over a finite cyclic group is either

a trivial Schur ring, orbit Schur ring, direct product Schur ring, or wedge product Schur ring.

That is every Schur ring over a finite cyclic group is a traditional Schur ring.
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Chapter 3. Association Schemes

Schur rings are examples of association schemes (Theorem 3.10). As mentioned before,

association schemes have applications in graph theory as well as combinatorics.

Consider a finite set Ω. An association scheme is created by looking at subsets of Ω×Ω.

If we let C ⊆ Ω× Ω then we say that the dual subset of C, denoted C ′, is

C ′ = {(b, a) : (a, b) ∈ C}.

If we have C = C ′ then we say that C is symmetric. There is one special symmetric subset

of a set Ω× Ω that is of particular interest for an association scheme. This set is called the

diagonal subset and is denoted diag(Ω). It is defined by

diag(Ω) = {(ω, ω) : ω ∈ Ω}.

With these ideas we can now give the first definition of an association scheme.

Definition 3.1 (Association Scheme). An association scheme of class d on a finite set Ω is

a partition of Ω× Ω into sets R0, R1, . . . , Rd such that

(i) R0 = diag(Ω);

(ii) for all i = 1, 2, . . . , d, R′i ∈ {R1, R2, . . . , Rd}; i.e., {R0, R1, . . . Rd} is closed under duals;

(iii) for all i, j, k ∈ {0, 1, 2, . . . , d} there is an integer pkij such that, for all (α, β) in Rk,

|{γ ∈ Ω: (α, γ) ∈ Ri and (γ, β) ∈ Rj}| = pkij.

A short hand notation that we will use to denote such an association scheme A is

A = (Ω, {Ri}0≤i≤d).
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In an association scheme, A, we call the sets R0, R1, . . . , Rd the associate classes of A. An

association scheme is said to be commutative if for all i, j, k we have that pkij = pkji. We

further have that an association scheme is said to be symmetric if each associate class is

symmetric. That is, R′i = Ri for each i. For a symmetric association scheme two elements

α, β ∈ Ω are called i-associates if (α, β) ∈ Ri. Following immediately from the symmetric

property is that the number of i-associates, for any given element of Ω, is given by p0
ii. For

this reason we often let ai = p0
ii and call this the valency of the ith associate class. For α ∈ Ω,

we let

Ri(α) = |{β ∈ Ω: (α, β) ∈ Ri}|.

The following is an obvious lemma, as the Ri partition all of Ω× Ω.

Lemma 3.2. For a symmetric association scheme A over a set Ω we have that

d∑
i=0

ai = |Ω|.

Example 3.3. Let |Ω| = n ≥ 2. We let R0 be the diagonal subset of Ω × Ω. Let R1 =

(Ω×Ω)\R0. Taking classes R0, R1 we get an association scheme called the trivial association

scheme on Ω. In this scheme it is easily checked that p0
11 = n− 1 and p1

11 = n− 2.

Example 3.4 (Triangular Association Scheme). Let Ω consist of all size 2 subsets of a set

of size n ≥ 2. For i = 0, 1, 2 let

Ri = {(α, β) ∈ Ω× Ω: |α ∩ β| = 2− i}.

Using these sets R0, R1, R2 we get an association scheme that is symmetric. For this

association scheme we have a1 = 2(n − 2), since we have two choices for which element a

1-associate β, of α shares with α, and we have n− 2 choices for the other element of β (as it

cannot be something in α). To compute a2 for a given α ∈ Ω we need to count the elements

of Ω that are disjoint from α. Such elements are constructed by picking two elements of our
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set of size n that are not in α. There are n−2 such elements, so a2 =
(
n−2

2

)
. This association

scheme is called the triangular association scheme.

The triangular association scheme is just a special case of the following type of association

scheme.

Example 3.5 (Johnson Scheme). Let Ω consist of all subsets of size m of a set with size n.

For i = 0, 1, . . . ,m define α and β to be ith associates if

|α ∩ β| = m− i.

Doing this creates an association scheme. In this association scheme we can compute ai by

counting all elements β that contain exactly m − i of the elements in any fixed α. There

are m elements in α and we must pick m − i of them. So we have
(
m
m−i

)
choices for which

elements are intersecting. For the other i elements of β, the only restriction is that they

must not be in α. We have n − m remaining elements to chose from and there are
(
n−m
i

)
ways to pick our remaining i elements. So this means that ai =

(
m
m−i

)(
n−m
i

)
. We call these

association schemes Johnson Schemes. We denote a particular Johnson Scheme by J(n,m).

Example 3.6. (Petersen Graph) Let Ω be the set of vertices of the Petersen graph in Figure

3.1.

Figure 3.1: Petersen Graph

Let C0 = diag(Ω). We will let C1 ⊆ Ω × Ω be the set of all pairs of vertices of the

graph, joined by an edge. Let C2 = (Ω × Ω) \ C1 \ C0. Clearly each Ci is symmetric.
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By directly inspecting the graph we can see that each vertex is joined by 3 edges to other

vertices. Thus, a1 = 3. Then this means that a2 = 10 − 3 − 1 = 6. Next we will let

Ci(α) = {β ∈ Ω: (α, β) ∈ Ci}. For any pair (α, β) ∈ C1, the number of γ ∈ Ci(α)∩Cj(β) is

given in the following table.

C0(β) C1(β) C2(β)
C0(α) 0 1 0 1
C1(α) 1 0 3
C2(α) 0 6

1 3 6 10

Table 3.1: Partial table for number of i-associates of α and j-associates of β for a pair
(α, β) ∈ C1 for the Petersen Graph

We know the row and column totals, since they are the number of i-associates of α and

β respectively. Then we can easily get the complete table, which follows:

C0(β) C1(β) C2(β)
C0(α) 0 1 0 1
C1(α) 1 0 2 3
C2(α) 0 2 4 6

1 3 6 10

Table 3.2: Table for number of i-associates of α and j-associates of β for a pair (α, β) ∈ C1

for the Petersen Graph

We next discuss the table for (α, β) ∈ C2 of the Petersen graph. Looking at the Petersen

graph, one can quickly tell that any two vertices which are not joined by an edge have

exactly one vertex in common. Thus, p2
11 = 1. With this and using subtraction with the row

and column totals we can complete the same type of table as above for (α, β) ∈ C2 of the

Petersen graph. (See Table 3.3).

With these two completed tables (Table 3.2 and Table 3.3), we can now easily see that

taking classes C0, C1, C2 we obtain an association scheme.

This previous example motivates another definition of a symmetric association scheme

using graphs.
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C0(β) C1(β) C2(β)
C0(α) 0 0 1 1
C1(α) 0 1 2 3
C2(α) 1 2 3 6

1 3 6 10

Table 3.3: Table for number of i-associates of α and j-associates of β for a pair (α, β) ∈ C2

for the Petersen Graph

Definition 3.7 (Symmetric Association Scheme (Graph Version)). A symmetric association

scheme of class d on a finite set Ω is a coloring of the edges of the complete undirected graph

with vertex set Ω by d colors such that:

(i) for all i, j, k ∈ {1, 2, . . . , d} there is an integer pkij such that whenever {α, β} is an edge

of color k, then

pkij = |{γ ∈ Ω: {α, γ} has color i and {γ, β} has color j}|,

(ii) every color is used at least once, and

(iii) there are integers ai for i ∈ {1, 2, . . . d} such that every vertex is contained in exactly

ai edges of color i.

This definition is not quite the same as Definition 3.1. Instead this gives an alternative

definition for a symmetric association scheme. Our association classes from the original

definition are obtained by letting Ri be the set of all points (α, β) and (β, α) such that

the edge {α, β} has color i. To construct R0 = diag(Ω) we simply add this as another

class, which is not given in the construction in Definition 3.7. Condition 3.1(ii) is satisfied

since in the graph version every edge is an undirected set of two points. So R′i = Ri for all i.

Conditions 3.7(i) and 3.7(iii) together give us that condition 3.1(iii) in the original definition

holds. Note 3.7(i) tells us what happens for all cases except the case of p0
ii that we had for

the original definition. The p0
ii terms are covered by 3.7(iii). We need condition 3.7(ii) as we

had a partition in the original definition, which requires each set to be non-empty.
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A third definition of an association scheme can be obtained by thinking in terms of

matrices. To do so we let F be any field and let FΩ be the set of all functions from Ω to F .

This is a vector space with addition defined by (f + g)(ω) = f(ω) + g(ω) for all f, g ∈ FΩ,

ω ∈ Ω and scalar multiplication defined for all λ ∈ F and f ∈ FΩ by (λf)(ω) = λ(f(ω)).

For any subset Λ ⊆ Ω we define the characteristic function χΛ as follows

χΛ(ω) =

{
1 if ω ∈ Λ

0 if ω 6∈ Λ
.

Fix an ordering on Ω. Doing this we can think of χΛ as a vector where the rows are indexed

by the elements of Ω, and get a 1 in position ω if that ω ∈ Λ, otherwise we get a 0. We now

extend this same idea to Ω× Ω by having for any Λ ⊆ Ω× Ω a function χΛ defined by

χΛ(x, y) =

{
1 if (x, y) ∈ Λ

0 otherwise
.

We can now think of this function χΛ as a matrix where we index the rows and columns

by the first and second entries in Ω × Ω, respectively. We then have a 1 in entry (x, y) if

(x, y) ∈ Λ, and 0 otherwise. If we have an association scheme A with classes R0, R1, . . . , Rd

we call χRi
the ith adjacency matrix of A and denote it by Ai.

Let A = (Ω, {Ri}0≤i≤d) be an association scheme with adjacency matrices A0, A1, . . . , Ad.

Let

A = SpanC(A0, A1, . . . , Ad). The fact the A matrices are all linearly independent is easy to

see. We then have that A is a d + 1 dimensional subalgebra of the matrix algebra M|Ω|(C).

We call A the Bose-Mesner Algebra.

Before continuing, we discuss entry-wise multiplication of matrices on M|Ω|(C), denoted

by ◦, and called the Hadamard product. It is easy to see that the Bose-Mesner Algebra A is

closed under Hadamard product. Further notice that A is commutative under the Hadamard

product.
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Now we let E0, E1, . . . , Ed be the primitive idempotents of A. As A is closed under

component-wise multiplication, we have Ei ◦ Ej ∈ A. Then there are complex numbers qkij,

called the Krein parameters, such that

Ei ◦ Ej =
1

|Ω|

d∑
k=0

qkijEk

There are matrices related to the Ai and Ei matrices that are defined as follows. We

define the diagonal matrices E∗i and A∗i with base point x ∈ Ω by

(E∗i (x))yy =

{
1 (x, y) ∈ Ri;

0 otherwise;

(A∗i (x))yy = |Ω|(Ei)xy.

Using these matrices we define the dual Bose-Mesner algebra with respect to x as

A∗(x) = SpanC(A∗0(x), A∗1(x), . . . , A∗d(x)) = SpanC(E∗0(x), E∗1(x), . . . , E∗d(x)).

Both the Bose-Mesner algebra and the dual Bose-Mesner algebra are of interest in their own

right. However, our interest will be in the subalgebra of M|Ω|(C) that they generate together,

which is a Terwilliger algebra. We shall study these in more detail in Chapters 4, 5.

We can define an association scheme using matrices that are similar to the Ai defined

above. In this case the matrices we used to create the association scheme are its adjacency

matrices. Doing this gives us our third definition for an association scheme.

Definition 3.8 (Association Scheme (Matrix Version)). An association scheme of class d

on a finite set Ω is a set of matrices A0, A1, . . . , Ad ∈M|Ω|(C), all of whose entries are equal

to 0 or 1 such that

(i) A0 = I|Ω|;

(ii) for all i = 1, 2, . . . , d we have Ati = Aj for some j = 1, 2, . . . , d;
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(iii) for all i, j ∈ {1, 2, . . . , d} we have AiAj =
∑d

k=1 p
k
ijAk;

(iv) none of the Ai is equal to 0|Ω| and
∑d

i=0 Ai is the all 1 matrix.

Note that this definition matches closely with Definition 3.1 where 3.1(i) corresponds

to 3.8(i), 3.1(ii) corresponds to 3.8(ii) and 3.1(iii) corresponds to 3.8(iii) between these two

definitions. Note that the pkij in this definition are the same as in Definition 3.1. We have

to add 3.8(iv) to this definition as we need a partition in the original definition and this

condition (iv) in the matrix definition provides us the equivalent condition.

To illustrate the three definitions of an association scheme we now look at an example

using all three definitions.

Example 3.9. Let G = D6 = 〈r, s : r3 = s2 = 1, rs = sr−1〉. Consider the conjugacy classes

of D6, which are

C0 = {1}, C1 = {r, r2}, C2 = {s, rs, r2s}.

We shall see in Theorem 3.10 that defining

Ri = {(x, y) : yx−1 ∈ Ci}

gives us an association scheme. This association scheme is called the group association

scheme for D6. We then use this to get associate classes

R0 = {(1, 1), (r, r), (r2, r2), (s, s), (rs, rs), (r2s, r2s)}

R1 = {(1, r), (r, 1), (r2, 1), (1, r2), (r, r2), (r2, r), (rs, s), (s, rs), (rs, r2s), (r2s, rs), (r2s, s), (s, r2s)}

R2 = {(1, s), (s, 1), (rs, 1), (1, rs), (r2s, 1), (1, r2s), (s, r), (r, s), (s, r2),

(r2, s), (r, rs), (rs, r), (r2s, r), (r, r2s), (rs, r2), (r2, rs), (r2s, r2), (r2, r2s)}.

The colored graph corresponding to this association scheme is the following graph
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Figure 3.2: Colored Graph of the Group Association Scheme of D6

The adjacency matrices for this association scheme are

A0 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


, A1 =



0 1 1 0 0 0

1 0 1 0 0 0

1 1 0 0 0 0

0 0 0 0 1 1

0 0 0 1 0 1

0 0 0 1 1 0


, A2 =



0 0 0 1 1 1

0 0 0 1 1 1

0 0 0 1 1 1

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0


.

These together give us the three different ways we can represent this same association scheme

for D6.

Something of particular interest to us is how Schur rings and association schemes are

related. From the similarity in the definitions it is reasonable to guess that many Schur rings

give rise to association schemes for the group they are defined over. This we will now show

to be the case.

Theorem 3.10. Every Schur ring over a finite group produces an association scheme for

the group. Further, commutative Schur rings give commutative association schemes, and

symmetric Schur rings give symmetric association schemes.

Proof. Let G be a finite group and let P0 = {1}, P1, P2, . . . , Pd be primitive sets for a Schur

ring S over G. For i = 0, 1, 2, . . . , d we define the relation Ri as follows:

Ri = {(x, y) : yx−1 ∈ Pi}.
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We note that as the Pi form a partition of G, defining the Ri as above provides us a

partition of G×G. Next we note that if (x, y) ∈ R0, then yx−1 = 1, so y = x. Furthermore

xx−1 = 1 so (x, x) ∈ R0 for all x. Thus, R0 = diag(G). For any Ri with i = 1, 2, . . . , d

suppose that (x, y) ∈ Ri. Then yx−1 ∈ Pi. This tells us that xy−1 ∈ P ∗i . We know that

P ∗i = Pj for some j. Thus, (y, x) ∈ Rj. So R′i ⊆ Rj. Similar reasoning gives that Rj ⊆ R′i.

So R′i = Rj. Thus, for any i = 1, 2, . . . , d there exists a j = 1, 2, . . . , d so that R′i = Rj.

Note that if Pi = P ∗i , we see that Ri = R′i, so once we have shown we do indeed get an

association scheme this tells us that a symmetric Schur ring gives a symmetric association

scheme. With this we have completed the proof that conditions (i), (ii) of an association

scheme are satisfied by these Ri.

For any i, j, k ∈ {0, 1, 2, . . . , d} consider (α, β) ∈ Rk. We will compute

|{γ ∈ G : (α, γ) ∈ Ri and (γ, β) ∈ Rj}|.

By hypothesis βα−1 ∈ Pk. Similarly if we have (α, γ) ∈ Ri and (γ, β) ∈ Rj then γα−1 ∈ Pi

and βγ−1 ∈ Pj. From the third condition of a Schur ring we know that in the support of

Pj · Pi each element of Pk shows up exactly the same number of times. We shall denote this

number as pkij. Having γα−1 ∈ Pi and βγ−1 ∈ Pj tell us that βα−1 appears in the product

of Pj · Pi exactly pkij times for each (α, β) that we pick. Thus the number of γ ∈ G so that

γα−1 ∈ Pi and βγ−1 ∈ Pj is the same for every (α, β) ∈ Rk, namely it is pkij. Hence, we have

|{γ ∈ G : (α, γ) ∈ Ri and (γ, β) ∈ Cj}| = pkij

for all (α, β) ∈ Rk. This confirms the third condition of an association scheme. Thus if S is

a Schur ring, then taking classes Ri = {(x, y) : yx−1 ∈ Pi} we get an association scheme.

If S is a commutative Schur ring then for all i and j, Pi · Pj = Pj · Pi. Then using the

same argument as above to find pkij and pkji from the Schur ring, we have that pkij = pkji for

all i, j, k. Thus, the association scheme is commutative.
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This theorem gives rise to the following way we can construct a symmetric association

scheme for any finite group G = Ω. Take Pi to be the conjugacy classes of G. These give

us an orbit Schur ring. We just proved that this Schur ring produces a related association

scheme A. An association scheme created in this way is called the group association scheme

of G. Note that when constructing such an association scheme we can partially order the

group elements using the conjugacy classes. The partial order is defined as follows: all of

the elements in the conjugacy class P0 come first, then all those in P1, and so on. Then the

adjacency matrices can be thought of as having blocks corresponding to conjugacy classes.

Two special types of association schemes that are of interest to us are called P−polynomial

and Q−polynomial schemes.

Definition 3.11 (P-polynomial association scheme). Let A be a symmetric association

scheme with associate classes R0, R1, . . . , Rd. Let A0, A1, . . . , Ad be its related adjacency

matrices. Then A is called a P−polynomial association scheme with respect to this ordering

of the Ai, if there exist complex coefficient polynomials vi(x) of degree i for each 0 ≤

i ≤ d such that Ai = vi(A1) for all i, where multiplication is done using standard matrix

multiplication.

Example 3.12. Let G = C5 = 〈t〉, the cyclic group of order 5 with generator t. We partition

G×G as

P0 = {0}, P1 = {t}, P2 = {t2}, P3 = {t3}, and P4 = {t4}.

This partition can quickly be verified to form a Schur ring over G. It is created using the

conjugacy classes of G to form the partition sets. Let A = (G, {Ri}0≤i≤4) be the resulting

association scheme from Theorem 3.10. Let A0, A1, A2, A3, A4 be the adjacency matrices

for associate classes R0, R1, R2, R3, R4 respectively. We define vi(x) = xi for all 0 ≤ i ≤ 4.

We now consider vi(A1) = Ai1. As a result of Theorem 3.10 we know the coefficients from

multiplying two adjacency matrices together are the same as those we get when multiplying

two primitive quantities from the related Schur ring together. We thus look at P1
i

for

0 ≤ i ≤ 4. It is obvious by looking at the primitive sets Pi that P1
i

= Pi for all i. Thus, we

24



have Ai1 = Ai for all i. Thus, vi(x) are polynomials of degree i with 0 ≤ i ≤ d, such that

Ai = vi(A1) for all i. Thus, our association scheme is a P−polynomial association scheme.

Remark: There is nothing particularly special about C5 in Example 3.12. By the same

reasoning we get that for any finite cyclic group G, the conjugacy classes of G give rise to a

P−polynomial association scheme.

Example 3.13. Now consider a cube labeled as shown in Figure 3.3.

Figure 3.3: Labelling of Cube for Association Scheme

We create an association scheme on the set Ω = {1, 2, . . . , 8} using this cube. Let d(x, y)

be the minimum number of edges one must move along to get from vertex x to vertex y.

Then we define

Ri = {(x, y) ∈ Ω× Ω: d(x, y) = i}.

Note that there are only four Ri classes, as three is the largest value d(x, y) takes for the

cube. We can easily see that R0, R1, R2, R3 form a partition of Ω × Ω. Now R0 = diag(Ω),

as the only point distance 0 from any given point is the point itself. Each of R0, R1, R2, R3

are symmetric since d(x, y) = d(y, x) so condition (ii) of an association scheme is satisfied.

Through direct inspection we also find that the third condition of an association scheme is

satisfied. Then A = (Ω, {Ri}0≤i≤3) is an association scheme. We let A0, A1, A2, A3 be the

related adjacency matrices for R0, R1, R2, R3. We find that
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A0 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



, A1 =



0 1 0 1 1 0 0 0

1 0 1 0 0 1 0 0

0 1 0 1 0 0 1 0

1 0 1 0 0 0 0 1

1 0 0 0 0 1 0 1

0 1 0 0 1 0 1 0

0 0 1 0 0 1 0 1

0 0 0 1 1 0 1 0



,

A2 =



0 0 1 0 0 1 0 1

0 0 0 1 1 0 1 0

1 0 0 0 0 1 0 1

0 1 0 0 1 0 1 0

0 1 0 1 0 0 1 0

1 0 1 0 0 0 0 1

0 1 0 1 1 0 0 0

1 0 1 0 0 1 0 0



, A3 =



0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0



.

With these matrices we now define the polynomials

v0(x) = x0, v1(x) = x, v2(x) =
1

2
x2 − 3

2
, and v3(x) =

1

6
x3 − 7

6
x.

Notice that clearly v0(A1) = A0, and v1(A1) = A1. By direct computation one can find that

v2(A1) = A2 and v3(A1) = A3. We then have that A is a P-polynomial scheme.

Definition 3.14 (Q-polynomial association scheme). Let A be a symmetric association

scheme and let Ei be the primitive idempotents of the Bose-Mesner algebra, created from

the adjacency matrices of A. Then A is called a Q-polynomial association scheme with

respect to the ordering E0, E1, . . . , Ed if there exists some complex coefficient polynomials
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v∗i (x) with degree i such that Ei = v∗i (E1), 0 ≤ i ≤ d, where multiplication is done using the

Hadamard product of matrices.

Example 3.15 (P-polynomial and Q-polynomial association scheme). Let us consider the

triangular association scheme for a set Ω with |Ω| = 5. Using sets R1, R2 as defined in

Example 3.4 along with R0 as the diagonal of Ω×Ω we get an association scheme; call it A.

The related adjacency matrices are

A0 =



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1



, A1 =



0 1 1 1 1 1 1 0 0 0

1 0 1 1 1 0 0 1 1 0

1 1 0 1 0 1 0 1 0 1

1 1 1 0 0 0 1 0 1 1

1 1 0 0 0 1 1 1 1 0

1 0 1 0 1 0 1 1 0 1

1 0 0 1 1 1 0 0 1 1

0 1 1 0 1 1 0 0 1 1

0 1 0 1 1 0 1 1 0 1

0 0 1 1 0 1 1 1 1 0



,

A2 =



0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 1 1 0 0 1

0 0 0 0 1 0 1 0 1 0

0 0 0 0 1 1 0 1 0 0

0 0 1 1 0 0 0 0 0 1

0 1 0 1 0 0 0 0 1 0

0 1 1 0 0 0 0 1 0 0

1 0 0 1 0 0 1 0 0 0

1 0 1 0 0 1 0 0 0 0

1 1 0 0 1 0 0 0 0 0



.
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With these matrices in this same ordering we take

v0(x) = x0, v1(x) = x, and v2(x) =
1

4
x2 − 3

4
x− 3

2
.

It is obvious that v0(A1) = A0 and v1(A1) = A1. We can also find through direct computation

that v2(A1) = 1
4
A2

1 − 3
4
A1 − 3

2
I = A2. Thus the triangular association scheme A is a P-

polynomial association scheme.

Next we find the primitive idempotents of the Bose-Mesner algebra generated by the

adjacency matrices for A. These are the Ei matrices for the association scheme.

E0 =
1

10
· (the all 1’s matrix),

E1 =



2/5 1/15 1/15 1/15 1/15 1/15 1/15 −4/15 −4/15 −4/15

1/15 2/5 1/15 1/15 1/15 −4/15 −4/15 1/15 1/15 −4/15

1/15 1/15 2/5 1/15 −4/15 1/15 −4/15 1/15 −4/15 1/15

1/15 1/15 1/15 2/5 −4/15 −4/15 1/15 −4/15 1/15 1/15

1/15 1/15 −4/15 −4/15 2/5 1/15 1/15 1/15 1/15 −4/15

1/15 −4/15 1/15 −4/15 1/15 2/5 1/15 1/15 −4/15 1/15

1/15 −4/15 −4/15 1/15 1/15 1/15 2/5 −4/15 1/15 1/15

−4/15 1/15 1/15 −4/15 1/15 1/15 −4/15 2/5 1/15 1/15

−4/15 1/15 −4/15 1/15 1/15 −4/15 1/15 1/15 2/5 1/15

−4/15 −4/15 1/15 1/15 −4/15 1/15 1/15 1/15 1/15 2/5



,
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E2 =



1/2 −1/6 −1/6 −1/6 −1/6 −1/6 −1/6 1/6 1/6 1/6

−1/6 1/2 −1/6 −1/6 −1/6 1/6 1/6 −1/6 −1/6 1/6

−1/6 −1/6 1/2 −1/6 1/6 −1/6 1/6 −1/6 1/6 −1/6

−1/6 −1/6 −1/6 1/2 1/6 1/6 −1/6 1/6 −1/6 −1/6

−1/6 −1/6 1/6 1/6 1/2 −1/6 −1/6 −1/6 −1/6 1/6

−1/6 1/6 −1/6 1/6 −1/6 1/2 −1/6 −1/6 1/6 −1/6

−1/6 1/6 1/6 −1/6 −1/6 −1/6 1/2 1/6 −1/6 −1/6

1/6 −1/6 −1/6 1/6 −1/6 −1/6 1/6 1/2 −1/6 −1/6

1/6 −1/6 1/6 −1/6 −1/6 1/6 −1/6 −1/6 1/2 −1/6

1/6 1/6 −1/6 −1/6 1/6 −1/6 −1/6 −1/6 −1/6 1/2



.

Now with these matrices we consider the following polynomials

v∗0(x) =
1

10
x0, v∗1(x) = x, and v∗2(x) =

9

2
x2 − 1

10
x− 9

50
.

Plugging E1 into each of these where multiplication is done by the Hadamard product, and

the identity is the all 1 matrix, we get v∗0(E1) = E0 and v∗1(E1) = E1. By direct computation

we find that v∗2(E1) = 9
2
E2

1− 1
10
E1− 9

50
E0

1 = E2. This then means that using these polynomials

we have that A is a Q-polynomial scheme. This then means that the triangular association

scheme for a set of size 5 is both a P-polynomial scheme and a Q-polynomial scheme.
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Chapter 4. Terwilliger Algebras

We now turn our attention to looking at Terwilliger algebras. In particular, we shall discuss

many basic results about them in this chapter as well as provide the Wedderburn decom-

position of several Terwilliger algebras. Terwilliger algebras are a subalgebra of the matrix

algebra Mn(C) that are defined using the Bose-Mesner algebra.

Definition 4.1 (Terwilliger Algebra). Let A be an association scheme over a finite set Ω.

We define the Terwilliger algebra of A with base point x, denoted T (x), to be the subalgebra

of M|Ω|(C) under matrix multiplication, generated by the Bose-Mesner algebra A and the

related dual Bose-Mesner algebra A∗(x) obtained from A.

The choice of the base point x determines A∗(x). Given different base points we can get

different Terwilliger algebras for the same association scheme. These different Terwilliger

algebras still have many of the same properties as can be seen in [42] where the results are

proven for any chose of base point. Examples of some of these properties follow. The first of

these is that Terwilliger algebras are almost always non-commutative. This is stated without

proof in [41].

Proposition 4.2. Suppose that |Ω| > 1. Then for any association scheme A = (Ω: {Ri}0≤i≤d)

and any x ∈ Ω the Terwilliger algebra T (x) is non-commutative.

Proof. Let A0, A1, A2, . . . , Ad be the adjacency matrices for our association scheme A. Let

y ∈ Ω such that y 6= x. As the sum of the Ai matrices is the all 1 matrix, there exists a

unique Ar such that the entry of Ar indexed by (x, y) is 1. Consider E∗0(x). There is a 1

in the entry of E∗0(x) indexed by (z, z) for each z ∈ Ω such that (x, z) ∈ R0. As R0 is the

diagonal of Ω × Ω the only term of the form (x, z) in R0 is (x, x) ∈ R0. So the entry of

E∗0(x) indexed by (x, x) is 1 and all other entries are 0. Thus E∗0(x)Ar, has the same xth

row as Ar and all other rows are zero. Note that the entry of Ar indexed by (x, y) is 1, so

the entry of E∗0(x)Ar indexed by (x, y) is 1. Looking at ArE
∗
0(x) we see that the column
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indexed by x of ArE
∗
0(x) equals the column indexed by x of Ar and all other entries are

0. In particular, the entry indexed by (x, y) is 0 as it is not in the column indexed by x.

Therefore, E∗0(x)Ar 6= ArE
∗
0(x). Hence, the Terwilliger algebra is non-commutative.

We next will show that T (x) is semisimple for any base point ([41], Lemma 3.4(i)). To that

end we start by proving the first part of Lemma 3.4(i) of [41] and then prove semisimplicity.

Lemma 4.3 ([41], Lemma 3.4(i)). A subalgebra of Mn(C) that is closed under the conjugate-

transpose is semi-simple.

Proof. Suppose B is a subalgebra of Mn(C) that is closed under conjugate-transpose, but is

not semisimple. Let J (B) denote the Jacobson radical of B. Since B is a left Artinian ring,

we have by Theorem A.11 that J (B) 6= 0. So J (B) contains a simple left ideal, say BA.

Note A ∈ J (B) since if it isn’t, then BA being simple is contradicted. So A(BA) = 0. As

B is closed under conjugate-transpose we have that At ∈ B. As B is an algebra that means

At
2 ∈ B. Then A(At

2
A) = 0, which means (AAt)(AtA) = (AAt)(AAt)t = 0.

We now claim that the only solution B ∈ Mn(C) to the equation BBt = 0 is the zero

matrix. Say B = (bij). Then the (i, i) entry of BBt is
∑n

j=1 bijbij. This must be 0. Note

that bijbij = |bij|2, the square of the modulus of bij. This is a non-negative real number. As∑n
j=1 bijbij = 0 we must have that |bij|2 = 0 for all j. This is only true if bij = 0 for all j.

We chose i arbitrarily. Thus, bij = 0 for all i and j. So, BBt = 0 implies B = 0.

As (AAt)(AAt)t = 0, we have AAt = 0. This then means that A = 0, which contradicts

the fact BA is simple. Therefore, B is semi-simple.

Proposition 4.4 ([41], Lemma 3.4). Let T (x) be a Terwilliger algebra for A = (Ω, {Ri}0≤i≤d)

with base point x ∈ Ω. Then T (x) is semi-simple.

Proof. Every matrix in T (x) is a linear combination of products of adjacency matrices Ai

and matrices E∗i (x). Both of these types of matrices only consist of 1’s and 0’s, so they are

unchanged by complex conjugation. Also the set of Ak’s is closed under transposes because of

condition 3.8(ii). Note that the E∗k(x) are diagonal, so they equal their transpose. Thus, the
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conjugate-transpose of Ak and E∗k(x) for any k is still in T (x). So the conjugate-transpose of

any sum of products of Ai’s and E∗i (x)’s is in T (x). So by Lemma 4.3 T (x) is semi-simple.

One result of some interest is that we can write each adjacency matrix as a sum of blocks

as follows.

Lemma 4.5. Let T (x) be a Terwilliger algebra with base point x for an association scheme

A = (Ω: {Ri}0≤i≤d). Let Ak be any adjacency matrix of A. Then Ak =
∑

i,j E
∗
i (x)AkE

∗
j (x).

Proof. We know that
∑d

i=1E
∗
i (x) = I = I|Ω|. Then IAkI =

∑
i,j E

∗
i (x)AkE

∗
j (x).

The above lemma motivates us to look at products E∗i (x)AkE
∗
j (x) as they form building

blocks for the adjacency matrix. To that end the following is a lemma proven in [3] that

will be of use in discussing a subspace of a Terwilliger algebra T (x) that has the matri-

ces E∗i (x)AkE
∗
j (x) as a basis. The following lemma also lets us look at a subspace of the

Terwilliger algebra with basis matrices EiA
∗
j(x)Ek.

Lemma 4.6 ([2],Lemma 1). For an association scheme A = (Ω, {Ri}0≤i≤d) with matrices

Ai, Ei, A
∗
i (x), and E∗i (x) we have

• tr(E∗i (x)AjE
∗
k(x)(E∗` (x)AmE∗n(x))T ) = δi`δjmδknp

k
ij|Rk|

• tr(EiA∗j(x)Ek(E`A∗m(x)En)T ) = δi`δjmδknq
k
ij rankEk

where δij represents the Kronecker-delta function, pkij are the structure constants of the as-

sociation scheme A, and the qkij are the Krein parameters.

A Terwilliger algebra T (x) with base point x over the association schemeA = (Ω, {Ri}0≤i≤d)

has two subspaces of particular interest that have dimensions that are closely related to that

of the Terwilliger algebra itself. They are defined as follows:

T0(x) = SpanC(E∗i (x)AjE
∗
k(x) : 0 ≤ i, j, k ≤ d),

T ∗0 (x) = SpanC(EiA
∗
j(x)Ek : 0 ≤ i, j, k ≤ d).
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Notice that E∗i (x)AjE
∗
k(x) will give the rows of Aj indexed by elements Ri and the columns of

Aj indexed by elements of Rk. Then the entry of E∗i (x)AjE
∗
k(x) indexed by (y, z) is nonzero

if and only if (x, y) ∈ Ri, (y, z) ∈ Rj and (x, z) ∈ Rk. By definition of pkij, (x, y) ∈ Ri,

(y, z) ∈ Rj and (x, z) ∈ Rk if and only if pkij 6= 0. We thus have E∗i (x)AjE
∗
k(x) 6= 0 if and

only if pkij 6= 0. This means that

dimT0(x) = |{(i, j, k) : pkij 6= 0}|, (4.1)

It is proven in ([41], Lemma 3.2) using Lemma 4.6 that EiA
∗
j(x)Ek 6= 0 if and only if qkij 6= 0.

We thus have

dimT ∗0 (x) = |{(i, j, k) : qkij 6= 0}|. (4.2)

Definition 4.7. Let T (x) be a Terwilliger algebra, where x is the base point, for an

association scheme over a finite set Ω. If W is an irreducible T (x)−module such that

dimE∗i (x)W ≤ 1 for all i, then we say that W is thin. We say that an association scheme

is thin with respect to x if each irreducible T (x)−module is thin. An association scheme is

thin if it is thin with respect to every x ∈ Ω.

As it would happen, every Terwilliger algebra has at least one irreducible module that

is thin ([41]), which we now prove. To do so we first let W = Cn and let 〈, 〉 denote the

Hermitean form 〈u, v〉 = utv. We then call W, 〈, 〉 the standard module of Mn(C). Since a

Terwilliger algebra T over a set of size n is a subalgebra of Mn(C) we have that W is also a

T−module for any Terwilliger algebra T over a set of size n ([41]).

Proposition 4.8 (Lemma 3.6, [41]). Let Ω be a finite set and A = (Ω, {Ri}0≤i≤d). Let

x ∈ Ω be any element of Ω. Suppose that A is the Bose-Mesner algebra of A and A∗(x) is

the dual Bose-Mesner algebra of A. We write E∗i = E∗i (x), A∗i = A∗i (x), A∗ = A∗(x), and

T = T (x). Then

Aix̂ = E∗j v (0 ≤ i ≤ d), where Ati = Aj,

A∗i v = |Ω|Et
i x̂ (0 ≤ i ≤ d),
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where v is the all 1’s vector in the standard module and x̂ is the vector (0, 0, . . . , 1, 0, . . . 0)t

where the entry indexed by x is the only nonzero entry. In particular, Ax̂ = A∗v is a thin

irreducible T−module of dimension d+ 1.

Proof. As x̂ is a vector with 1 in the entry indexed by x and 0 elsewhere we have that Aix̂

is just the column of Ai indexed by x. Thus, an entry of Aix̂ indexed by y is 1 if (x, y) ∈ Ri

and is 0 otherwise. We know that Rj = {(b, a) : (a, b) ∈ Ri}, so E∗j is a diagonal matrix

where an entry indexed by (y, y) is 1 if (x, y) ∈ Ri and 0 otherwise. Then as v is the all 1

vector we have that E∗j v is a vector that corresponds exactly to the main diagonal of E∗j .

Thus, an entry of E∗j v indexed by y is 1 if (x, y) ∈ Ri and is 0 otherwise. We thus have

that Aix̂ = E∗j v for any (0 ≤ i ≤ d) where Ati = Aj. The proof that A∗i v = |Ω|Et
i x̂ for any

0 ≤ i ≤ d is similar using the fact that (A∗i )yy = |Ω|(Ei)xy for all y ∈ Ω.

From these two facts above we have by the definition of A and A∗ that Ax̂ = A∗v. Since

Ax̂ is A−invariant and A∗v is A∗−invariant, we have that Ax̂ is a T−module. As the standard

module can be decomposed into an orthogonal direct sum of irreducible T−modules, there

exists an irreducible T−module U that is not orthogonal to x̂. Then x̂ ∈ E∗0U ⊆ U . Then as

U is a T−module containing x̂ and A = SpanC(A0, A1, . . . Ad) we have Ax̂ ⊆ U . Since U is

irreducible we must have Ax̂ = U . So Ax̂ is a irreducible T−module. As Aix̂ = E∗j v where

Ati = Aj for all i we know that dim(E∗i (Ax̂)) = 1 for all i. Thus, Ax̂ is a thin T−module,

which clearly has dimension d+ 1.

Now that we have covered some of the basic information about Terwilliger algebras we

turn our attention to proving the existence of a certain irreducible ideal of any Terwilliger

algebra created using an orbit Schur ring over any finite group G. Note we can do this

as, by Theorem 3.10, every Schur ring gives rise to an association scheme. We shall let

P0, P1, . . . , Pd be the primitive classes of G and T (G) be the Terwilliger algebra created with

base point e. We begin by constructing the elements of T (G) that will serve as a basis for

the ideal.
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Notice that by construction E∗0 is a matrix with 1 in position (1, 1) and all other entries

are 0. It follows immediately that E∗0Ai is a matrix with the same first row as Ai and all

other rows are zero. Similarly we have that AiE
∗
0 is a matrix with the same first column as

Ai and all other columns are zero. Let Xi = E∗0Ai and Yi = AiE
∗
0 .

As Xi consists only of the first row of Ai and the first row of Ai has 1 in the entry indexed

by (e, g) for those g ∈ G such that ge = g ∈ Pi, we have that Xi’s first row consists exactly

of 1’s in positions indexed by (e, g) for the g ∈ Pi. Looking at Yi, since its nonzero entries

are just the first column of Ai we have that its first column consists of 1′s in entries indexed

by (g, e) for those g ∈ G such that g−1e ∈ Pi. This is the same as saying g ∈ P ∗i . So Yi

has 1’s exactly in the entries indexed by (g, e) corresponding to elements g ∈ P ∗i . In fact

Yj = X t
i , where Aj = Ati.

Let Xb∗ and Yb∗ denote respectively the Xi, and Yi matrices with their only nonzero

entries corresponding to the elements of P ∗b . Note that Xb∗ = E∗0A
t
b and Yb∗ = AtbE

∗
0 . As

we have ordered G by the primitive sets, rows and columns corresponding to elements of

primitive sets Pi and Pj are all grouped together. We will then say that the Pi, Pj block of

a matrix D is the block of D with entries indexed by (x, y) corresponding to x ∈ Pi and

y ∈ Pj.

Lemma 4.9. Let Xi, Yj be defined as above. Then YjXi is a matrix whose P ∗j , Pi block is all

1’s and all other entries are 0.

Proof. The matrix Yj has 1’s in the entries indexed by (u, 1) with u ∈ P ∗j and 0’s elsewhere.

Xi has 1’s in the entries indexed by (1, v) with v ∈ Pi and 0’s elsewhere. We then see that

YjXi is a matrix with 1’s in every position indexed by (u, v) where u ∈ P ∗j and v ∈ Pi, and

all other entries are 0. Thus, the P ∗j , Pi block of YjXi is all 1’s and all other entries are 0.

We now let vij be the the matrix with the all 1’s Pi, Pj block and all other entries 0.

Lemma 4.9 tells us vij = Yi∗Xj. As an additional note we know that the sum of all the

adjacency matrices is the all 1’s matrix. Then Yi∗Xj is just the Pi, Pj block of the sum
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of all the adjacency matrices. So if A0, A1, . . . , Ad are all the adjacency matrices we have

Yi∗Xj = E∗i (A0 + A1 + · · ·+ Ad)E
∗
j =

∑d
k=0E

∗
iAkE

∗
j .

We next shall prove a lemma that will be helpful in demonstrating that SpanC(vij) is

closed under multiplication by Ak for any k.

Lemma 4.10. Given an adjacency matrix Ak for an orbit Schur ring over a finite group G

of order n with orbits P0, P1, . . . , Pd, the number of 1’s in every row of the Pi, Pj block of Ak

does not depend on the row. The number of 1’s in every column of the Pi, Pj block of Ak

does not depend on the column.

Proof. Let H ≤ Aut(G) be the subgroup of Aut(G) that gives the orbits used for the orbit

Schur ring over G. Suppose that the Pi, Pj block of Ak has rows corresponding to group

elements h1, h2, . . . , hm and columns corresponding to group elements f1, f2, . . . , fn. Note

every hu ∈ Pi and every fv ∈ Pj by construction of the Pi, Pj block. As Pi is an orbit of G,

for any hu ∈ Pi there exists some α ∈ H such that hu = α(h1). For any fv ∈ Pj we have

that the Pi, Pj block of Ak has a 1 in the entry indexed by (h1, fv) if and only if f−1
v h1 ∈ Pk.

Applying α to f−1
v h1 we get

α(f−1
v h1) = α(f−1

v )α(h1) = α(fv)
−1hu.

Since Pj is an orbit resulting from H, α(fv) ∈ Pj. Thus, α(fv)
−1hu corresponds to some

nonzero entry in the hu row of the Pi, Pj block of Ak. Since Pk is an orbit, α(f−1
v h1) ∈ Pk if

and only if f−1
v h1 ∈ Pk. Thus the entries of Ak indexed by (h1, fv) and (hu, α(fv)) will have

the same value. Doing this for every entry indexed by (h1, fv), (1 ≤ v ≤ n) we see that the

entries indexed by (h1, fv) and (hu, α(fv)) will have the same value. This is because elements

of H map elements of Pj to Pj. Thus, the row indexed by h1 and the row indexed by hu

must have the same number of 1’s as the entries are in one-to-one correspondence. We chose

hu arbitrarily so every row of the Pi, Pj block of Ak must have the same number of 1’s. By

similar reasoning all the columns of this block also have the same number of 1’s.
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We now prove a lemma that will be very helpful in proving that a certain subspace of a

Terwilliger algebra is in fact a two-sided ideal of the Terwilliger algebra.

Lemma 4.11. Let A = (Ω, {Ri}0≤i≤d) be an association scheme over a nonempty set Ω.

For any x ∈ Ω, let T (x) be the Terwilliger algebra with base point x for A. Suppose that W

is a subspace of T (x) that is closed under transposition, and is a left ideal of T (x). Then W

is a two-sided ideal of T (x) .

Proof. Let A0, A1, . . . , Ad be the adjacency matrices of A. Let Ak be any adjacency matrix

of A. Then Atk = Ab for some b, by definition of an association scheme. Now let w ∈ W .

Then wt ∈ W as well. By assumption we know that Abw
t ∈ W as W is a left ideal of T (x).

Since V is closed under transposition we have that (Abw
t)t = wAtb = wAk ∈ W . Thus, for

any w ∈ W we have that wAk ∈ W . For any E∗k(x) we know that it is diagonal and thus

symmetric. As W is a left ideal of T (x) we have that E∗k(x)wt ∈ W . Then as W is closed

under transposition we have that (E∗k(x)wt)t = wE∗k(x) ∈ W for any w ∈ W . Hence, W

is closed under multiplication by any Ak and E∗k(x) matrix on both the right and the left.

Therefore, as T (x) is generated by the matrices Ak, E
∗
k for 0 ≤ k ≤ d, we have that W is a

two-sided ideal of T (x).

At this point we can now show that SpanC(vij : 0 ≤ i, j ≤ d) is a two-sided ideal of T (G).

Theorem 4.12. Let T (G) be the Terwilliger algebra related to an orbit Schur ring for a

finite group G. Then V = SpanC(vij : 0 ≤ i, j ≤ d) is a two-sided ideal of T (G).

Proof. Note that vij = Yi∗Xj =
∑d

k=0 E
∗
iAkE

∗
j and thus is in T (G). Then V ⊆ T (G).

The fact that we are taking the span of a set gives that we have a nonempty set, closure

under addition, and closure under additive inverses. Thus, all that remains to be checked

is closure under multiplication by any element of T (G). As T (G) is generated by A =

SpanC(A0, A1, . . . , Ad) and A∗ = SpanC(E∗0 , E
∗
1 , . . . , E

∗
d) it suffices for us to check that V is

closed under multiplication by each Ai and E∗i . Let vrs be an arbitrary spanning element of

V .
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We first consider E∗i vrs. We know that E∗i is a diagonal matrix with 1’s in the Pi, Pi

block and 0’s in all other diagonal entries. By definition vrs has a block of all 1’s in the

Pr, Ps block with all other entries being 0. We then have

E∗i vrs =

 vrs if Pi = Pr

0 if Pi 6= Pr .

We now turn our attention to Akvrs. Using block notation and letting at,i be the Pt, Pi

block of Ak, with ∗ symbolizing an unknown value, we have

Akvrs =



∗ · · · a0,r ∗ · · ·

∗ · · · a1,r ∗ · · ·
...

...
...

...
...

∗ · · · at,r ∗ · · ·
...

...
...

...
...

∗ · · · an,r ∗ · · ·





0 · · · 0 0 · · ·

0 · · · 0 0 · · ·
...

...
...

...
...

0 · · · drs 0 · · ·
...

...
...

...
...

0 · · · 0 0 · · ·


=



0 · · · a0,rdrs 0 · · ·

0 · · · a1,rdrs 0 · · ·
...

...
...

...
...

0 · · · at,rdrs 0 · · ·
...

...
...

...
...

0 · · · an,rdrs 0 · · ·


(4.3)

where drs is the all 1 matrix in the Pr, Ps block. We now consider at,sdrs for any at,s.

As drs is the all 1’s matrix and since by Lemma 4.10 every row and column in the Pt, Pr

block of Ak has the same number of 1’s, the product at,rdrs is just the number of 1’s in a row

of at,r multiplied by the all 1’s matrix of appropriate dimensions, namely |Pt| × |Ps|. Let qt,r

be the number of 1’s in a row of at,r. We then have that since vts has dts as its Pt, Ps block

with all other entries being 0, that Akvrs =
∑n

t=0 qt,rvts ∈ V .

With the fact that E∗i vrs ∈ V and Akvrs ∈ V for all i, k, r, s we see that V is a left ideal of

our algebra. We now proceed show that (vrs)
t ∈ V . Notice that (vrs)

t = (Yr∗Xs)
t = X t

sY
t
r∗ =

Ys∗Xr = vsr. Thus, we have that (vrs)
t = vsr. From this and the fact that V is the span of

all vrs we have that V is closed under transposition. Then as V is a left ideal of T (G) that is

closed under transposition we have by Lemma 4.11 that V is a two-sided ideal of T (G).
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We have shown that V is a two-sided ideal. In fact, it is irreducible. To prove this we

will need the following lemma.

Lemma 4.13. Let Aa ∈ V be any of the A matrices with a nonzero Pk, Pi block. Then

E∗kAavij = λvkj for some nonzero constant λ and vjkAaE
∗
i = µvji for some nonzero constant

µ.

Proof. We begin by noting that we found in the proof of Theorem 4.12 that Aavij =∑
b qb,ivbj, where qb,i is the number of 1’s in each row of the Pb, Pi block of Aa. This re-

sults in a matrix where the only nonzero columns correspond to the Pj block. We note that

by assumption the Pk, Pi block of Aa is nonzero, thus qk,i 6= 0. Then qk,ivkj 6= 0, so the

Pk, Pj block of Aavij is a nonzero multiple of the all 1 matrix. Now we multiply by E∗k . As

E∗k is a diagonal matrix with 1’s in its Pk, Pk block, and 0’s elsewhere we have that E∗kAavij

will just have nonzero elements in the Pk row block of Aavij and those entries will be the

entries of Aavij. The only nonzero column block of Aavij is the Pj column block. Thus, the

only nonzero block in E∗kAavij is the Pk, Pj block, which we found to be qk,i multiplied by

the all 1 matrix. This means that E∗kAavij = qk,ivkj. Thus, as claimed, E∗kAavij is a nonzero

multiple of vkj.

The second claim follows by essentially the same reasoning.

Now using this lemma we are ready to show that V is not only a two-sided ideal of T (G),

but is in fact irreducible as well.

Corollary 4.14. Let S be an orbit Schur ring over a finite group G with primitive sets

P0, P1, . . . , Pd. Let T (G) be the related Terwilliger algebra with base point e. Then the two-

sided ideal V is an irreducible two-sided ideal of T (G) whose dimension is (d+ 1)2.

Proof. Let α ∈ V be any nonzero element of V . We show that I = 〈α〉 = V . We can write

α =
∑

i,j ci,jvij as it is in V . Since α 6= 0, there is a ci,j 6= 0. Then the Pi, Pj block of α is

nonzero. We note that E∗i α has the same Pi row block as α and all other row blocks are 0.

We now multiply this by E∗j on the right which will zero out all the column blocks of E∗i α
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except for the Pj column block. Thus, E∗i αE
∗
j has the same Pi, Pj block as α and all other

entries are 0. As we know α =
∑

i,j ci,jvij we have that every entry in the Pi, Pj block of α

is ci,j 6= 0. Then this means that E∗i αE
∗
j = ci,jvij. So vij ∈ I.

Since vij ∈ I and we have by Lemma 4.13 for all k that E∗kAavij = λvkj and λ 6= 0. Since

vij ∈ I this then means that λvkj ∈ I and thus vkj ∈ I for all k. Now for each k we fix vkj

and use Lemma 4.13 once again to get that vkjAaE
∗
m = µvkm for all m with µ 6= 0. This

then tells us that vkm ∈ I for all m. Doing this for all k we have vkm ∈ I for all k and all m.

This means the spanning set for V is in I. Thus, V ⊆ I. Then as I ⊆ V we have I = V . So

V has no proper nonzero subideals and thus is irreducible.

We now find the dimension of V . We know P0, P1, P2, . . . , Pd are our partition sets for

our Schur ring. Then there are (d+ 1)2 different Pi, Pj blocks in any matrix in V . So there

are (d+ 1)2 different vij. As each vij is only nonzero in its Pi, Pj block the set of all the vij

must be linearly independent. As V = SpanC(vij : 0 ≤ i, j ≤ d) we have that the vij form a

basis for V . There are (d+ 1)2 of them so dim(V ) = (d+ 1)2.

With the existence of this irreducible component of the Terwilliger algebra created using

any orbit Schur ring over a finite group now proven, we turn our attention to several specific

types of Schur rings and the Terwilliger algebras resulting from them.

Theorem 4.15. Let G be a finite group. Let S be the orbit Schur ring created by acting by

the identity. Let T (G) be the resulting Terwilliger algebra. Then T (G) has dimension |G|2

and V is the only component in the Wedderburn decomposition of T (G).

Proof. As we act by the identity to get our primitive sets for S each element of G is in its own

primitive set, so there are |G| primitive sets. We know that V ⊆ T (G). By Corollary 4.14 we

have that dim(V ) = |G|2. We also know that T (G) ⊆M|G|(C) and that dim(M2(C)) = |G|2.

Then we have that V = T (G) = M|G|(C) in this case and T (G) has dimension |G|2, with V

clearly being the only component in the Wedderburn decomposition of T (G).

Theorem 4.16. Let G be a finite group of order n with n ≥ 3. Let S be the trivial Schur

ring over G. Let T (G) be the resulting Terwilliger algebra. Then T (G) has dimension 5.
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Proof. As S is the trivial Schur ring over G, the primitive classes of S are {e}, G \ {e}.

Then the resulting adjacency matrices for T (G) are the identity matrix I, call it A0, and

A1 = J − I, where J is the all 1 matrix. Let B1 = E∗0A1, B2 = A1E
∗
0 , B3 = E∗0 , B4 = E∗1 ,

and B5 = E∗1(A0 + A1)E∗1 . It is easy to express each of these matrices in block form using

blocks based on our two primitive sets. We shall use Im for the m×m identity matrix and

Jm,k for the m× k all 1’s matrix in expressing these matrices. We then have

B1 =

0 J1,n−1

0 0

 , B2 =

 0 0

Jn−1,1 0

 , B3 =

I1 0

0 0

 , B4 =

0 0

0 In−1

 , B5 =

0 0

0 Jn−1,n−1

 .
We claim B = {B1, B2, B3, B4, B5} is a basis for T (G). The fact that B is linearly

independent is clear. Thus, we need only verify that B spans T (G). Notice that A0 = B3+B4,

A1 = B5 − B4, E∗0 = B3, E∗1 = B4. Thus, all of the Ai, E
∗
i matrices are in Span(B). Since

T (G) is generated by the Ai, E
∗
i matrices as long as Span(B) is closed under multiplication

we have that every element of T (G) is in Span(B). To this end we provide the multiplication

table (Table 4.1) for the elements of B below.

B1 B2 B3 B4 B5

B1 0 (n− 1)B3 0 B1 (n− 1)B1

B2 B5 0 B2 0 0
B3 B1 0 B3 0 0
B4 0 B2 0 B4 B5

B5 0 (n− 1)B2 0 B5 (n− 1)B5

Table 4.1: Multiplication table of basis for Terwilliger algebra resulting from Trivial Schur
ring

We can clearly see from Table 4.1 that Span(B) is closed under multiplication. Thus,

we then have that T (G) is spanned by B. Thus, B is a basis for T (G). Hence, T (G) has

dimension 5 as claimed.

Before continuing with our next proof we note that the map defined by 〈A,B〉 =∑
i,j aijbij for all A = (aij), B = (bij) ∈ Mn(C) is an inner product. We call this the

Hadamard inner product on Mn(C).
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Corollary 4.17. Let G be a finite group of order n with n ≥ 3. Let S be the trivial Schur ring

over G. Let T (G) be the resulting Terwilliger algebra. Then the Wedderburn decomposition

for T (G) is T (G) = V ⊕ I where I = SpanC(B5− (n−1)B4) and V is defined as in Theorem

4.12.

Proof. We start by showing that V as defined in Theorem 4.12 is an ideal of T (G). Using

the notation from Theorem 4.12 we see that v00 = B3, v10 = B2, v01 = B1, and v11 = B5.

From this and the fact that T (G) = Span(B), we immediately see that V is closed under

multiplication by elements of T (G) on the left and right. It obviously has dimension 4. We

now show that it is irreducible. Let α ∈ V be any nonzero element of V . We will show

that K = 〈α〉 = V . As α ∈ V we have that α = a0v00 + a1v01 + a2v10 + a3v11, for some

a0, a1, a2, a3 ∈ C. We know at least one of these ai 6= 0. Without loss of generality say it is a0.

As K is a two-sided ideal of T (G) and Jn ∈ T (G) we have that Jnα ∈ K as well as αJn ∈ K.

Simple calculations show that αJn = (a0+a1)v00+(a0+a1)v01+(a2+a3)v10+(a2+a3)v11 and

Jnα = (a0 +a2)v00 +(a1 +a3)v01 +(a0 +a2)v10 +(a1 +a3)v11. If a1 = 0, then αJn is an element

of K that has a nonzero v00 and v01 component, namely both having coefficient a0. We then

can proceed with this matrix calling it β. If a1 6= 0, but a2 = 0 we let β = Jnα. Notice

that β has a nonzero v00, v10 component as both have coefficient a0. If a1 6= 0, a2 6= 0, but

a3 = 0 we let β = Jnα. This β has nonzero v01 and v11 components both having coefficient

a1. We can then repeat this process using β. Doing so we can produce elements of K, where

between all of them we can find an element with nonzero vij component for i, j ∈ {0, 1}.

Now as K is two-sided ideal we know E∗i γE
∗
j ∈ K for i, j ∈ {0, 1}. Doing so isolates the vij

component of γ. Applying this to the set of matrices we created above we see that each of

v00, v10, v01, v11 ∈ K. Thus, V ⊆ K. So K = V . Any nonzero subideal of V must contain

some α 6= 0 and we just found that such an ideal is V itself. Thus, V has no proper nonzero

subideals and is thus irreducible.

As T (G) has dimension 5 and V has dimension 4 we have that T (G) = V ⊕ J for some

one-dimensional ideal J . We now show that I is this ideal. It is clear that I ⊆ T (G). We
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need now check only closure under multiplication. To do so we need only check that I is

closed under multiplication by each of the E∗i and Ai matrices. As A0 = In = B3 + B4,

A1 = B5 − B4, E∗0 = B3, E∗1 = B4 we need only check closure under multiplication by the

Bi’s. We do this now using Table 4.1.

B1(B5 − (n− 1)B4) = (n− 1)B1 − (n− 1)B1 = 0 = (B5 − (n− 1)B4)B1,

B2(B5 − (n− 1)B4) = 0 + 0 = 0 = (n− 1)B2 − (n− 1)B2 = (B5 − (n− 1)B4)B2,

B3(B5 − (n− 1)B4) = 0 + 0 = 0 = 0 + 0 = (B5 − (n− 1)B4)B3,

B4(B5 − (n− 1)B4) = B5 − (n− 1)B4 = (B5 − (n− 1)B4)B4,

B5(B5 − (n− 1)B4) = (n− 1)B5 − (n− 1)B5 = (B5 − (n− 1)B4)B5.

From this we see that I is indeed closed under multiplication. Thus, it is a two-sided ideal of

T (G). It is clearly dimension one and thus irreducible. We can also see that I is orthogonal

to v00, v10, v01 under the Hadamard inner product on Mn(C). Thus, for it to be orthogonal to

V we need only check 〈B5− (n−1)B4, v11〉. Since the row sum of each row of B5− (n−1)B4

is 0 in the P1, P1 block, and v11 is the all 1 matrix in the P1, P1 block and 0 elsewhere, we

have that 〈B5 − (n − 1)B4, v11〉 = 0. Hence, I is orthogonal to V . Therefore, we have that

T (G) = V ⊕ I as claimed.

Our above proof only dealt with the trivial Schur ring for groups of order n ≥ 3. We now

consider when |G| = 2. The Terwilliger algebra T (G) using the trivial Schur ring in this case

is the same Schur ring that we get when we act on the group by the identity, so by Theorem

4.15 we have dim(T (G)) = 4 and T (G) = V = M2(C).

We next look at G = Zn × Zm, and partition the group using the cosets of {1} × Zm.

Splitting the coset {1} × Zm into {(1, 1)}, {1} × (Zm \ {1}) we get a partition of G that

results in a Schur ring. Notice that when n = 1 this is just the group ring (Theorem 4.15)

and when m = 1 this gives the trivial S-ring (Theorem 4.16 and Corollary 4.17).
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Proposition 4.18. Let G = Zn × Zm = 〈a〉 × 〈b〉, n,m ≥ 2. Let S be the Schur ring

resulting from the partition of G as P0 = {(1, 1)}, P1 = {1} × (Zm \ {1}), P2 = a× Zm, P3 =

a2×Zm, . . . , Pn = an−1×Zm. Let T (G) be the resulting Terwilliger algebra from this partition.

Then we have the following:

(a) T (G) has, for each i with 2 ≤ i ≤ n, an irreducible one dimensional ideal Ii = SpanC(Di)

where the Pi, Pi block of Di is

−1

m− 1
J +

m

m− 1
I =



1 −1
m−1

· · · −1
m−1

−1
m−1

1
. . . −1

m−1

...
. . .

. . .
...

−1
m−1

−1
m−1

· · · 1


(4.4)

and Di only has 0’s outside this block.

(b) When m > 2, T (G) has an irreducible one dimensional ideal I1 = SpanC(D1) where the

P1, P1 block of D1 is

−1

m− 2
J +

m− 1

m− 2
I =



1 −1
m−2

· · · −1
m−2

−1
m−2

1
. . . −1

m−2

...
. . .

. . .
...

−1
m−2

−1
m−2

· · · 1


(4.5)

and D1 only has 0’s outside this block.

Proof. Notice that (y, br)(x, bs)−1 ∈ P1 if and only if y×Zm = x×Zm and (y, br) 6= (x, bs). So

for (y, br)(x, bs)−1 ∈ P1 we must have (x, bs) 6= (y, br) but they are in the same partition class.

This tells us that the only nonzero entries of A1 are in its Pj, Pj blocks for each j. Further

in the Pj, Pj block of A1 all non-diagonal entries must be 1 as these are entries indexed by

(u, v) where u 6= v and u, v ∈ Pj. The diagonal entries must all be 0 as these are entries

indexed by (u, v) with u = v, so vu−1 = 1 6∈ P1. For all other Ai with 2 ≤ i ≤ n the entry
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indexed by ((ar, bs), (aj, bk)) is 1 in Ai if and only if (ar, bs)(a−j, b−k) = (ar−j, bs−k) ∈ Pi.

This is true if and only if ar−j = ai−1 (it does not depend on the second coordinate at all).

From this we then have that the Pj, Pr block of Ai is all 1’s if and only if ar−j = ai−1, and

is the all zero matrix otherwise.

We start by proving (a). We show that for any i with 2 ≤ i ≤ n we have that Di ∈ T (G).

As we know that A0 = Inm and we just found what A1 looks like we can easily see that

Di = E∗i (A0 − 1
m−1

A1)E∗i . Thus, Di ∈ T (G). So Ii = SpanC(Di) ⊆ T (G).

Since Ii is clearly closed under scaling and addition, we need only check multiplication

by elements of T (G). To do this we need only check that AkDi, DiAk, E
∗
kDi, DiE

∗
i ∈ Ii for

all i and k. Using the fact that Di = E∗i (A0 − 1
m−1

A1)E∗i we can immediately see that

DiE
∗
k = Di = E∗kDi if k = i

DiE
∗
k = 0 = E∗kDi if k 6= i.

Thus, DiE
∗
k , E

∗
kDi ∈ Ii for any choice of i and k. Now consider AkDi for any 0 ≤ k ≤ n.

Using block notation and letting at,i be the Pt, Pi block of Ak with ∗ symbolizing an unknown

value we have essentially the same multiplication (with different letters for the indices, and

a different size matrix) as in equation (4.3) except that Di replaces vrs and drs is the matrix

in (4.4). We now consider three cases based on what k is.

Case 1: k = 0. In this case Ak = Imn, so AkDi = Di ∈ Ii and we are done.

Case 2: k = 1. In this case the only at,i 6= 0 is ai,i. Here the Pi, Pi block of A1Di equals



0 1 · · · 1

1 0
. . . 1

...
. . .

. . .
...

1 1 · · · 0





1 −1
m−1

· · · −1
m−1

−1
m−1

1
. . . −1

m−1

...
. . .

. . .
...

−1
m−1

−1
m−1

· · · 1


=



−1 1
m−1

· · · 1
m−1

1
m−1

−1
. . . 1

m−1

...
. . .

. . .
...

1
m−1

1
m−1

· · · −1


.

This is just the negative of the Pi, Pi block of Di. Since that is the only nonzero block of

Di, we have A1Di = −Di ∈ Ii.
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Case 3: 2 ≤ k ≤ n. In this case each at,i is either the all 0 or all 1 matrix. Clearly at,idi = 0

if at,i is the all 0 matrix. Since the row and column sum of di is 0 we have that if at,i is the

all 1 matrix then at,idi = 0. So for all t we have at,idi = 0. Thus, AkDi = 0 ∈ Ii in this case.

From these three cases we see that for all k we have AkDi ∈ Ii. Thus, Ii is a left ideal

of T (G). Notice that clearly Dt
i = Di since the only nonzero block is a diagonal block,

which is symmetric. Thus, Ii is closed under transposition. As Ii is a left ideal of T (G)

that is closed under transposition we have by Lemma 4.11 that Ii is a two-sided ideal of

T (G) for all 2 ≤ i ≤ n. The fact that it is one dimensional is clear. Since it is one

dimensional it must be irreducible. This completes the proof of (a). For part (b) notice

that D1 = E∗1(A0 − 1
m−2

A1)E∗1 , so it is in T (G). The proof that it is an irreducible one

dimensional ideal of T (G) is essentially the same as the proof for part (a).
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Chapter 5. Terwilliger Algebras for

Group Association Schemes

Among Terwilliger algebras resulting from orbit Schur rings, there is one particular type of

said Terwilliger algebra that has been more thoroughly researched than others. These are

the Terwilliger algebras resulting form using the conjugacy classes a group G, to create our

Schur ring. Recall the related association scheme created in this way is called the group

association scheme. (See [1, 3, 14] additional research done on these types of Terwilliger

algebras.)

Using the group association scheme for a group G we can generate a Terwilliger algebra

T (x) where x ∈ G. From this point on, unless otherwise specified, A is the group association

scheme for a group G and T (x) is a Terwilliger algebra related to it with base point x ∈ G.

We will take C0, C1, . . . Cd to be the conjugacy classes of G, which also serve as our partition

sets. Additionally, if no base point x is specified we assume it to be the identity, e, of the

group. We shall denote a Terwilliger algebra created in this way as T (G). We shall also let

T0(G) and T ∗0 (G) denote the subspaces of T (G) defined after Lemma 4.6.

Let T̃ = EndG(C[G]) be the centralizer algebra of the permutation representation of G

acting on G by conjugation. This is the centralizer algebra of the Bose-Mesner algebra for

A. The dimension of T̃ is the number of orbits of G acting on G × G by simultaneous

conjugation. This is just equal to the average of the number of fixed points, which means

dim T̃ =
1

|G|
∑
a∈G

|CG(a)|2 =
d∑
i=0

|G|
|Ci|

. (5.1)

Theorem 5.1 (Theorem 2, [3]). Let G be a finite group. Given the Terwilliger algebra

T (G) resulting from the group association scheme on G we have the following bounds on its

dimension:

(i) |{(i, j, k) : pkij 6= 0}| ≤ dimT (G);
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(ii) |{(i, j, k) : qkij 6= 0}| ≤ dimT (G);

(iii) dimT (G) ≤
∑d

i=0 |G|/|Ci|.

Proof. Clearly T0(G) ⊆ T (G) and T ∗0 (G) ⊆ T (G) so dimT0(G) ≤ dimT (G) and dimT ∗0 (G) ≤

dimT (G). Thus we have by equations (4.1) and (4.2) that |{(i, j, k) : pkij 6= 0}| ≤ dimT (G)

and |{(i, j, k) : qkij 6= 0}| ≤ dimT (G).

To prove (iii) we will show that T (G) ⊆ T̃ . To do so we define the matrices B(g) with

g ∈ G where the entries are indexed by the elements of G with B(g)x,y = 1 if gxg−1 = y

and is 0 otherwise. Then T̃ = EndG(C[G]) is just the set of all matrices that commute with

B(g) for all g ∈ G ([2], Chapter 2, Theorem 1.3).

Now we note that for any matrix D where the entries correspond to elements of G,

that (B(g)DB(g)−1)x,y = Dgxg−1,gyg−1 . Thus, D commutes with B(g) if and only if Dx,y =

Dgxg−1,gyg−1 for all entries (x, y). Now we look at Ai for any i. For Ai we have 1 in the

entry indexed by (x, y) if and only if yx−1 ∈ Ci. As Ci is a conjugacy class yx−1 ∈ Ci means

for all g ∈ G, gyx−1g−1 ∈ Ci. So gyg−1(gxg−1)−1 ∈ Ci, and the entry of Ai indexed by

(gxg−1, gyg−1) is also 1. Thus the entry of Ai indexed by (x, y) is 1 if and only if the entry

of Ai indexed by (gxg−1, gyg−1) is 1. Therefore, (Ai)x,y = (Ai)gxg−1,gyg−1 for all x, y. As g is

arbitrary this is true for all g ∈ G as well. Therefore, Ai commutes with B(g) for all g ∈ G.

Thus, Ai ∈ T̃ . As Ai was chosen arbitrarily we have that every Ai ∈ T̃ .

Next we show every E∗i ∈ T̃ . Notice that (E∗i )x,y is 1 if and only if x = y and y ∈ Ci.

Then for any g ∈ G we have that (E∗i )gxg−1,gyg−1 = 1 if and only if gxg−1 = gyg−1 and

gyg−1 ∈ Ci. This is true if and only if x = y and y ∈ Ci. Therefore, (E∗i )x,y = (E∗i )gxg−1,gyg−1

for all g ∈ G and for all entries indexed by (x, y). Therefore, E∗i ∈ T̃ .

We have shown that every Ai and every E∗j is in T̃ . Since T (G) is generated by the

Ai and E∗j this means that T ⊆ T̃ . Thus, dimT ≤ dim T̃ =
∑d

i=0 |G|/|Ci|. This proves

(iii).

Proposition 5.2. If G is an abelian group and T (G) is a Terwilliger algebra for the group

association scheme of G then dimT (G) = |G|2.
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Proof. As G is abelian, conjugating by any element is the same as acting by the identity.

Thus, the group association scheme in this case corresponds to the orbit Schur ring created

by acting by the identity. Then by Theorem 4.15, we have dimT (G) = |G|2.

There are two additional properties that Terwilliger algebras of group association schemes

can have which are of interest.

Definition 5.3. Let G be a finite group with conjugacy classes C0, C1, . . . , Cd. If G acts

transitively by conjugation on the set

Sijk = {(g, h) ∈ Ci × Cj : gh ∈ Ck}

for any i, j, k ∈ {0, 1, 2, . . . , d} where Sijk 6= ∅, then G is said to be triply transitive.

Definition 5.4. We say that a finite group G is triply regular if T (G) = T0(G). Also, G is

dually triply regular if T ∗0 (G) = T (G).

Lemma 5.5. Let G be a finite group. Then G is triply transitive if and only if dimT0(G) =

dim T̃ . In this case T0(G) = T (G) = T̃ .

Proof. Let C0, C1, . . . , Cd be the conjugacy classes of G. These are also the partition sets for

the Schur ring, that we create an association scheme from. Now Sijk 6= ∅ if and only if there

is some (g, h) ∈ Ci × Cj such that gh ∈ Ck. This is true if and only if Ck has a nonzero

coefficient in the product Ci · Cj. This coefficient is pkij. So Sijk 6= ∅ if and only if pkij 6= 0.

This fact and equation (4.1) tell us that dimT0(G) = |{(i, j, k) : Sijk 6= ∅}|.

If G is triply transitive then G acts transitively by conjugation on Sijk for all Sijk 6= ∅.

This fact and the fact that G×G =
⋃
i,j,k Sijk tell us that each of the orbits of G acting on

G×G by simultaneous conjugation come from a union of nonempty Sijk. Then the number

of orbits is less than or equal to the number of nonempty Sijk. So dim T̃ ≤ |{(i, j, k) : Sijk 6=

∅}| = dimT0(G). By Theorem 5.1 we have dimT0(G) ≤ dim T̃ . Thus, in this case dim T̃ =

dimT0(G).
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If dim T̃ = dimT0(G), then the number of orbits of G acting on G×G by simultaneous

conjugation equals the number of nonempty Sijk. Clearly the Sijk are closed under conjuga-

tion, so each one must lie in some orbit of G acting on G×G by simultaneous conjugation.

As there are the same number of orbits as there are nonempty Sijk we see that the Sijk are

the orbits of G acting by conjugation. A group acts transitively on each of its orbits, so G

acts transitively by conjugation on Sijk for all i, j, k ∈ {0, 1, 2 . . . , d} where Sijk 6= ∅. So G

is triply transitive.

As T0(G) ⊆ T (G) ⊆ T̃ and each is finite dimensional, dimT0(G) = dim T̃ implies that

T0(G) = T (G) = T̃ .

Note that Lemma 5.5 immediately shows that if a group is triply transitive, then it is

triply regular.

Example 5.6. One group of interest that is not triply regular is S4. To show this we order

our conjugacy classes as follows:

C0 = {(1)},

C1 = {(1 3)(2 4), (1 2)(3 4), (1 4)(2 3)},

C2 = {(1 2), (1 4), (3 4), (2 3), (1 3), (2 4)},

C3 = {1 2 3), (1 3 4), (2 4 3), (1 2 4), (2 3 4), (1 4 3), (1 4 2), (1 3 2)},

C4 = {1 4 3 2), (1 2 3 4), (1 3 4 2), (1 4 2 3), (1 3 2 4), (1 2 4 3)}.

Using this ordering of elements and classes we can create the matrices Ak, E
∗
k . We shall show

that

(E∗3A4E
∗
4)(E∗4A4E

∗
3) = E∗3(A4E

∗
4A4)E∗3

is not in T0(S4). It is clear the only nonzero block of this matrix is the C3, C3 block. So if

it were in T0(S4) it would be a linear combination of matrices of the form E∗3AkE
∗
3 where

0 ≤ k ≤ 4. Direct computation shows that E∗3A3E
∗
3 has 1’s in entries (1 2 3), (1 4 3) and
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(1 2 3), (1 3 2). All other E∗3AkE
∗
3 has 0 in both these positions. Therefore any linear combi-

nation of these matrices must have the same value in the (1 2 3), (1 4 3) and (1 2 3), (1 3 2)

entries. Computing (E∗3A4E
∗
4)(E∗4A4E

∗
3) shows it has 2 in entry (1 2 3), (1 4 3) and 0 in

entry (1 2 3), (1 3 2). Therefore it is not a linear combination of the E∗3AkE
∗
3 . As it is not

a linear combination of these matrices it is not in T0(S4). Clearly it is in T (S4). Therefore

T0(S4) 6= T (S4). Hence, S4 is not triply regular.

Using Terwilliger algebras we can now show the existence of a class of association schemes

related to the group association scheme for a triply regular group.

Proposition 5.7. Let G be a finite, triply regular group with conjugacy classes C0, C1, . . . , Cd.

Let A be the group association scheme for G with adjacency matrices A0, A1, . . . , Ad. Let

E∗i = E∗i (e) where e is the identity of the group. Let T (G) be the Terwilliger algebra resulting

from these matrices. Then for any 0 ≤ i, k ≤ d, we let αi,k be the Ci, Ci block of Ak. For

any 0 ≤ i ≤ d let

AS(Ci) = {αi,k : 0 ≤ k ≤ d, αi,k 6= 0}.

Then AS(Ci) is an association scheme over Ci × Ci.

Proof. We shall show that AS(Ci) satisfies the conditions in definition 3.8. First note that

the Ci, Ci block of A0 is diagonal with 1’s along the diagonal as A0 is the identity matrix

of size |G|. So αi,0 is the identity matrix of size |Ci|. Then condition (i) of an association

scheme is met. For any 1 ≤ k ≤ d as A is an association scheme we know Atk = Aj for some

j = 1, 2, . . . , d. The Ci, Ci block of Atk, is αti,k as αi,k is a block along the diagonal. So αti,k is

the Ci, Ci block of Aj. Thus, αti,k = αi,j. This means condition (ii) of an association scheme

is met by AS(Ci). By construction none of the αi,k are 0 matrices. The sum of all the Ak

matrices is the all 1 matrix. So the sum of all the Ci, Ci blocks of the Ak matrices must be

the all 1 matrix of size |Ci| × |Ci|. That is
∑d

k=1 αi,k = J|Ci| where J|Ci| is the all 1 matrix of

size |Ci| × |Ci|. Then ∑
{αi,k : αi,k 6=0}

αi,k = J|Ci|.
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This proves that condition (iv) of an association scheme is met.

To prove that condition (iii) is met we will look at (E∗iAmE
∗
i )(E

∗
iAnE

∗
i ). Multiplying by

E∗i on the left and right just isolates the Ci, Ci block of Am and An respectively. That is

E∗iAmE
∗
i =



0 0 · · · 0 · · · 0

0 0 · · · 0 · · · 0

...
... · · ·

... · · ·
...

0 0 · · · αi,m · · · 0

...
... · · ·

... · · ·
...

0 0 · · · 0 · · · 0


where the only nonzero block is the Ci, Ci block which we have been calling αi,m. Then

(E∗iAmE
∗
i )(E

∗
iAnE

∗
i ) =



0 0 · · · 0 · · · 0

0 0 · · · 0 · · · 0

...
... · · ·

... · · ·
...

0 0 · · · αi,mαi,n · · · 0

...
... · · ·

... · · ·
...

0 0 · · · 0 · · · 0


.

Recall that G is triply regular, so T (G) = T0(G). As T (G) = T0(G) has {E∗jAkE∗t : 0 ≤

j, k, t ≤ d} as a basis, we know that the only matrices in T (G) that are nonzero in the Ci, Ci

block and zero outside of this block are of the form
∑d

k=0 βkE
∗
iAkE

∗
i . So (E∗iAmE

∗
i )(E

∗
iAnE

∗
i ) =∑d

k=0 β
k
mnE

∗
iAkE

∗
i . That is αi,mαi,n =

∑d
k=0 β

k
mnαi,k. Therefore condition (iii) of an associa-

tion scheme is met. We therefore have that AS(Ci) is an association scheme.

We now will begin studying the Terwilliger algebra for the group association scheme for

dihedral groups. We begin by showing that all dihedral groups are triply transitive.
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Theorem 5.8 (Theorem 5, [3]). Let

D2n = 〈r, s : rn = s2 = 1: rs = sr−1〉

be the dihedral group of order 2n. Then D2n is triply transitive.

Proof. Let T be the Terwilliger algebra over D2n resulting from the group association scheme.

We consider first if n is odd. Say that n = 2m+ 1. In this case the conjugacy classes of D2n

are

C0 = {e}, Ci = {ri, r−i} (for 1 ≤ i ≤ m), and Cm+1 = s〈r〉.

Using equation (5.1) we compute the dimension of T̃ to be

dim T̃ =
2(2m+ 1)

1
+

2m(2m+ 1)

2
+

2(2m+ 1)

2m+ 1
= 2m2 + 5m+ 4.

To compute the dimension of T0 we will look at the product CiCj. If 1 ≤ i ≤ m, then

CiCj =



Ci if j = 0,

C0 ∪ C2i if j = i,

Ci+j ∪ Ci−j if 1 ≤ j ≤ m and j 6= i,

Cm+1 if j = m+ 1,

subscripts are taken (mod m) as needed. Also we have

Cm+1Cj =

 Cm+1 if 0 ≤ j ≤ m,

C0 ∪ C1 ∪ · · · ∪ Cm if j = m+ 1.

With this we now count the number of triples (i, j, k) such that (CiCj) ∩ Ck 6= ∅. Note this

is exactly when pkij 6= 0, which will give dimT0. If i = 0, then any choice of Cj will work

as long as we pick Cj = Ck. This gives m+ 2 different triples (i, j, k) with nonzero pkij. For

each 1 ≤ i ≤ m we get from the above that if j = 0 we have 1 choice of Ck, for j = i we
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have 2 choices for Ck, and if j = m+ 1 we have 1 choice of Ck. For 1 ≤ j ≤ m and j 6= i we

have 2 choices for Ck based on what Cj is. There are m− 1 possible choices of Cj here. All

together we get 1 + 1 + 2 + 2(m − 1) = 2m + 2 triples (i, j, k) such that pkij 6= 0 for each i.

As there are m choices of i this gives a total of m(m+ 2) triples.

We now consider when i = m+ 1. If 0 ≤ j ≤ m then as long as Ck = Cm+1 any choice of

Cj will work. This gives m+1 triples. If j = m+1 we can pick Ck to be any of C0, C1, · · · , Cm.

This gives m + 1 choices. Thus, when i = m + 1 we have 2m + 2 triples (i, j, k) such that

pkij 6= 0. Putting all of this together we get dimT0 = (m + 2) + m(2m + 2) + 2m + 2 =

2m2 +5m+4 = dim T̃ . As dimT0 = dim T̃ we have by Lemma 5.5 that T is triply transitive.

We now assume that n is even, with n = 2m. Then the conjugacy classes of D2n are

C0 = {e}, Ci = {ri, r−i}( for 1 ≤ i ≤ m−1), Cm = {rm}, Cm+1 = s〈r2〉, and Cm+2 = sr〈r2〉.

We compute that

dim T̃ =
4m

1
+

4m

2
(m− 1) +

4m

1
+

4m

m
+

4m

m
= 2m2 + 6m+ 8.

We now compute CiCj as we did in the previous case to determine dimT0. For 1 ≤ i ≤ m−1

CiCj =



Ci if j = 0,

C0 ∪ C2i if j = i,

Ci+j ∪ Ci−j if 1 ≤ j ≤ m− 1 and j 6= i,

Cm+i if j = m,

Cm+1 if j = m+ 1 and i is even,

Cm+2 if j = m+ 1 and i is odd,

Cm+2 if j = m+ 2 and i is even,

Cm+1 if j = m+ 2 and i is odd,
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with subscripts taken (mod m− 1) as needed. For i = m with m even we get

CmCj =



Cm if j = 0,

Cm+i if 1 ≤ j ≤ m− 1,

C0 if j = m,

Cm+1 if j = m+ 1,

Cm+2 if j = m+ 2.

Note if m is odd we get the same things other than Cm+1 and Cm+2 switch places on the

last two lines.

Next we look at i = m+ 1 and i = m+ 2. As with Cm depending on if m is even or odd

determines what Cm+1Cm and Cm+2Cm look like. We only write it for m even as the only

difference comes in what Cm+1Cm, Cm+2Cm equal with one being Cm+1 and the other Cm+2.

Cm+1Cj =



Cm+1 if j = 0,

Cm+1 if 1 ≤ j ≤ m− 1 and j is even,

Cm+2 if 1 ≤ j ≤ m− 1 and j is odd,

Cm+1 if j = m,⋃
k evenCk if j = m+ 1,⋃
k oddCk if j = m+ 2.

Cm+2Cj =



Cm+2 if j = 0,

Cm+1 if 1 ≤ j ≤ m− 1 and j is odd,

Cm+2 if 1 ≤ j ≤ m− 1 and j is even,

Cm+2 if j = m,⋃
k oddCk if j = m+ 1,⋃
k evenCk if j = m+ 2.

With these we now count the number of triples (i, j, k) such that (CiCj) ∩ Ck 6= ∅ as we
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did before. If i = 0, then CiCj = Cj so we need to pick k = j. This is for any j. Thus, we

get m + 3 possible triples here. We now assume 1 ≤ i ≤ m− 1 is fixed. Going through the

possible j’s as we did in the odd case we find there are 2m + 2 possible nonzero triples for

each i. There are m − 1 possible i’s we could choose so we get (m − 1)(2m − 2) different

triples in this case. Next consider i = m. Running through the possible j’s we have m + 3

nonzero triples with i = m. Next we consider m = i+ 1. There are 2m+ 2 possible nonzero

triples when i = m+ 1. When i = m+ 2 the counting is identical to that of when i = m+ 1

so we get 2m+ 2 nonzero triples in this case as well.

We now put all of this together to find that

dimT0 = m+ 3 + (m− 1)(2m+ 2) +m+ 2 + 2m+ 2 + 2m+ 2 = 2m2 + 6m+ 8 = dim T̃ .

Thus, we have that dimT0 = dim T̃ in this case. Then by Lemma 5.5 this means T is triply

transitive. So regardless of whether n is even or odd we have that D2n is triply transitive.

As a direct consequence of Theorem 5.8 and Lemma 5.5 we have the following corollary.

Corollary 5.9. If T (G) is a Terwilliger algebra for the group association scheme over D2n

we have

dimT (G) =

{
2m2 + 5m+ 4 if n = 2m+ 1,

2m2 + 6m+ 8 if n = 2m.

We now turn our attention to finding the Wedderburn decomposition for group associa-

tion schemes over dihedral groups. Let D2n = 〈r, s : rn = s2 = 1, r−1s = sr〉 be a dihedral

group. The two-sided ideal V (Theorem 4.12) is one of the irreducible Wedderburn compo-

nents for the Terwilliger algebra of the group association scheme of D2n. To determine the

others we will consider cases based on if n is odd or even.

Let us first consider the case when n is odd, n = 2m + 1, m ∈ Z. As a reminder, the

conjugacy classes for D2n are C0 = {e}, Ci = {ri, r−i} for 1 ≤ i ≤ m and Cm+1 = s〈r〉.

For any Ci, Cj with 1 ≤ i ≤ m and 1 ≤ j ≤ m we construct matrices Zij whose entries

56



corresponding to (ri, rj) and (r−i, r−j) are 1 and whose entries corresponding to (r−i, rj) and

(ri, r−j) are −1. All other entries 0.

Theorem 5.10. Let T (G) be the Terwilliger algebra created from the group association

scheme for G = D2n where n = 2m+1, for any m ∈ N. Then Z = SpanC{Zij : 1 ≤ i, j ≤ m}

is a two-sided ideal of T (G).

Proof. We start by showing that Z is a subset of T (G). Notice for any x, y ∈ G the (x, y)

entry of Ai is 1 if and only if yx−1 ∈ Ci. All of the conjugacy classes of D2n are closed under

inverses, so (yx−1)−1 = xy−1 is in Ci. Then the (y, x) entry of Ai is also 1. As the sum of

all the Ak matrices is the all 1’s matrix we know for any choice of i, j ∈ {1, 2, . . . ,m} there

exists a unique Ak whose (ri, rj) entry is 1 and a unique As whose (r−i, rj) entry is 1. Note

that rj−i ∈ Ck as (ri, rj) is a nonzero entry of Ak. Then Ck = {rj−i, ri−j}. Similarly we

know Cs = {r−i−j, ri+j}. Clearly Ck and Cs are not the same, so Ak 6= As. The (r−i, rj)

and (ri, r−j) entries of Ak must be 0 as As is the unique adjacency matrix with 1’s in these

entries. Similarly As has 0’s in entries (ri, rj) and (r−i, r−j). Then E∗iAkE
∗
j has 1’s in entries

(ri, rj) and (r−i, r−j) with 0’s elsewhere and E∗iAsE
∗
j has 1’s in entries (r−i, rj) and (ri, r−j)

with all other entries being 0. We then notice that Zij = E∗iAkE
∗
j − E∗iAsE∗j ∈ T (G) for all

i, j. So Z ⊆ T (G).

The fact that Z is closed under addition and scaling is clear. We now are left with showing

that Z is closed under multiplication by an element of T (G). As T (G) is generated by the

set of all Ai, E
∗
i for 0 ≤ i ≤ m+ 1 we need only check that Z is closed under multiplication

by the Ak and E∗k for any k. Starting with E∗k we have as E∗k is a diagonal matrix with 1’s

along the diagonal in the entries corresponding to Ck that

E∗kZij =

{
Zij if i = k,

0 if i 6= k,
and ZijE

∗
k =

{
Zij if j = k,

0 if j 6= k.

So Z is closed under multiplication by E∗k . We now must check that Z is closed under

multiplication on the left by Ak for any 0 ≤ k ≤ m + 1. Using block notation and letting
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at,i be the Ct, Ci block of Ak, with ∗ symbolizing an unknown value, we have the same

multiplication as seen in Equation (4.3) replacing vrs with Zij where in this case

dij =

 1 −1

−1 1

 .
We now consider the possible at,i we could have for Ak. Doing so we will determine what

the Cj column of AkZij looks like. In the C0, Ci block of Ak we have a 1 × 2 matrix. If

either entry is 1, that means either ri or r−i is in Ck. Either way Ck = Ci in this case and

both entries are nonzero in Ak. So the C0, Ci block of Ak is either (0, 0) or (1, 1). Notice

(0, 0)dij = 0 and (1, 1)dij = 0. So a0,idij = 0.

Next we consider am+1,idij. Note am+1,i is a m× 2 matrix. Every entry of Cm+1 is of the

form rbs for some 0 ≤ b ≤ m − 1. So if am+1,i has 1 in an entry this means ri(rbs)−1 ∈ Ck

or r−i(rbs)−1 ∈ Ck. Either way Ck = Cm+1. If Ck = Cm+1 then ri(rbs)−1, r−i(rbs)−1 ∈ Ck

for all b. Thus, am+1,i is the all 1’s matrix in this case. So if am+1,i has a nonzero entry it

is the all 1’s matrix. Thus, am+1,i is either the 0 matrix or the all 1’s matrix. Either way

am+1,idij = 0.

We now look at at,idij for 1 ≤ t ≤ m. Now at,i has a 1 in the entry corresponding to

(rt, ri) if and only if ri−t ∈ Ck, which is true if and only if r−i+t ∈ Ck. This is true if and

only if the (r−t, r−i) entry of at,i is 1. Note in this case ri+t, r−i−t 6∈ Ck so the (r−t, ri) and

(rt, r−i) entries of at,i are 0. Similarly at,i has 1 in the (rt, r−i) entry if and only if the (r−t, ri)

entry is 1. In this case both the entries of at,i indexed by (rt, ri) and (r−t, r−i) must be 0.

This tells us that at,i is one of three matrices

0 0

0 0

 ,
1 0

0 1

 ,
0 1

1 0

 .
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Then at,idij is one of the following

0 0

0 0


 1 −1

−1 1

 =

0 0

0 0

 ,
1 0

0 1


 1 −1

−1 1

 =

 1 −1

−1 1

 ,
or 0 1

1 0


 1 −1

−1 1

 =

−1 1

1 −1

 .
We now know that AkZij is a matrix with 0’s in all entries not in the Cj column block.

Within this block the only potentially nonzero blocks are the Ct, Cj where 1 ≤ t ≤ m. In

the case where the Ct, Cj block is nonzero it is either dij or −dij. We then have AkZij =∑m
t=1 cijtZtj where

cijt =


0 if at,idij = 0,

1 if at,idij = dij,

−1 if at,idij = −dij.

So AkZij ∈ Z for all k. Thus, we have that Z is a left ideal of T (G).

We now show Z is closed under transposition. For any 1 ≤ i, j ≤ m we have that Zij has

1 in entries corresponding to (ri, rj) and (r−i, r−j), −1 in entries corresponding to (r−i, rj)

and (ri, r−j), and all other entries are 0. Then Zt
ij has 1 in entries corresponding to (rj, ri)

and (r−j, r−i), −1 in entries (r−j, ri) and (rj, r−i), and all other entries are 0. Thus Zt
ij = Zji.

As Z is the span of all the Zij we have that Z is then closed under transposition. Then by

Lemma 4.11 we have that Z is a two-sided ideal of T (G).

Corollary 5.11. Consider D2n where n = 2m + 1. The two-sided ideal Z is an irreducible

two-sided ideal of T (G) whose dimension is m2 = (n−1
2

)2.

Proof. Note each Zij is nonzero only in the Ci, Cj block. The set of all Zij is then linearly

independent as they are each nonzero in different blocks. Thus, the set of all Zij is a basis

for Z. There are m different choices for both i and j. We get an element of the basis for Z
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for any choice of 1 ≤ i, j ≤ m. So there are a total of m2 elements of the basis for Z. Note

m = n−1
2

, so dimZ = (n−1
2

)2.

Now we show Z is irreducible. Let α ∈ Z be any nonzero element of Z. We show that

I = 〈α〉 = Z. We can write α =
∑

i,j ci,jZij as it is in Z. Since α 6= 0, we can chose i, j so

that ci,j is nonzero. Then the Ci, Cj block of α is nonzero. As E∗i is diagonal with 1’s only in

the Ci, Ci block and E∗j is diagonal with 1’s only in the Cj, Cj block we have E∗i αE
∗
j has the

same Ci, Cj block as α and all other entries are 0. Then this means that E∗i αE
∗
j = ci,jZij.

So Zij ∈ I. We now show for any 1 ≤ x, y ≤ m that Zxy ∈ I. As the sum of the A matrices

is the all 1’s matrix there exists an At such that the Cx, Ci block of At is nonzero. Using the

notation from the proof of Theorem 5.10 this means

ax,i =

1 0

0 1

 , or

0 1

1 0

 .
We then know from Theorem 5.10 that AtZij =

∑m
k=1 cijkZkj where cijk = 0, 1,−1. We also

know that cijx 6= 0 as ax,i 6= 0. So Zxj has a nonzero coefficient in this sum. Computing

E∗x(AtZij) we note this gives the Cx row block of AtZij and everything else is 0. The only

entry in the Cx row block of AtZij is cijxZxj as all of the other Zkj are 0 in this row block

for all k. Thus, E∗x(AtZij) = cijxZxj, so Zxj ∈ I. We know there is an Aw that has a nonzero

Cy, Cj block. We consider ZxjAw. Note that AwZjx =
∑m

k=1 cjxkZkx. As ay,j 6= 0 we know

that cjxy 6= 0. Note from the proof of Theorem 5.10 that

ZxjAw = (AwZjx)
t =

(
m∑
k=1

cjxkZkx

)t

=
m∑
k=1

cjxkZxk.

So ZxjAw =
∑m

k=1 cjxkZxk. Since cjxy 6= 0 we see that Zxy has a nonzero coefficient in this

sum. Computing (ZxjAw)E∗y we get only the Cy column block of ZxjAw which is cjxyZxy.

This implies that Zxy ∈ I. As we chose 1 ≤ x, y ≤ m arbitrary we have for all 1 ≤ x, y ≤ m

that Zxy ∈ I. Thus, Z ⊆ I and we have Z = I. Any nonzero ideal of Z must contain some
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α 6= 0 and the ideal generated by such an α is Z itself. Hence, Z has no proper nonzero

subideals and is thus irreducible.

From Corollaries 4.14 and 5.11 we have found two irreducible components of D2n where n

is odd. Using the same notation as before these components are V and Z. We now consider

the Hadamard inner product 〈vij, Zrs〉 for any basis element vij, (0 ≤ i, j ≤ m+ 1) of V and

Zrs, (1 ≤ r, s ≤ m) of Z. Recall vij is the all 1’s matrix in the Ci, Cj block and all 0 outside

the Ci, Cj block. Similarly Zrs is all 0 outside the Cr, Cs block, where Cr and Cs are size

two conjugacy classes. The Cr, Cs block of Zrs is of the form

 1 −1

−1 1

 .
If vij and Zrs have different nonzero blocks, that is (i, j) 6= (r, s), then we have that 〈vij, Zrs〉

is a sum of zeros, which is 0. This is because vij is all 0’s in its Cr, Cs block and Zrs is all

0’s in its Ci, Cj block. If vij and Zrs have the same nonzero block, that is (i, j) = (r, s),

we have 〈vij, Zrs〉 = 1(1) + 1(−1) + 1(−1) + 1(1) = 0. Hence for all i, j, r, s we have that

〈vij, Zij〉 = 0. Extending this we get that V and Z are orthogonal. Now we can write the

Terwilliger algebra of D2n as T (D2n) = V ⊕ Z ⊕ R where R is the orthogonal complement

of V ⊕ Z in T (D2n). We shall show in Theorem 5.12 that R is commutative and thus is a

direct sum of irreducible one dimensional components.

Theorem 5.12. Let D2n = 〈a, b : an = b2 = 1, ab = ba−1〉 be a dihedral group with n odd.

Let T (D2n) be the Terwilliger algebra of the group association scheme of D2n. Then writing

T (D2n) = V ⊕ Z ⊕R we have that R is commutative.

Proof. Let r ∈ R. We begin by determining what r looks like. As T (D2n) is triply regular

by Theorem 5.8 and r ∈ T (D2n) we know that r =
∑

i,k,j λi,k,jE
∗
iAkE

∗
j where each λi,k,j ∈ C.

We begin determining the form of r by looking at the λi,k,j terms. We do this in cases.

Before beginning we note that because of the way the Ak matrices are created for each entry
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(x, y) there exists a unique Ak matrix that has a nonzero value in that entry. This implies

that for a linear combination
∑

k λi,k,jE
∗
iAkE

∗
j for fixed i, j to be the 0 matrix all of the

coefficients λi,k,j where E∗iAkE
∗
j 6= 0 must be 0. If E∗iAkE

∗
j is the 0 matrix we may, and will,

assume λi,k,j = 0. So if the Ci, Cj block of r is the 0 matrix we have that λi,k,j = 0 for all k.

We shall use this in all of the following cases.

Case 1: Suppose Ci and Cj are both conjugacy classes of size 2. Notice that in this

case the (ai, aj) entry of E∗iAkE
∗
j is 1 if and only if aj−i ∈ Ck, which is true if and only if

ai−j ∈ Ck. This is true if and only if the (a−i, a−j) entry of Ak is 1. So the (ai, aj) and

(a−i, a−j) entries of the Ci, Cj block of r must be the same. Similar reasoning gives that the

(ai, a−j) and (a−i, aj) entries of r must also be the same. Thus, the Ci, Cj block of r looks

like c d

d c


for some c, d ∈ C. We consider 〈vij, r〉 = 1c + 1d + 1d + 1c = 2c + 2d. This must be 0 as

r ∈ R, so 2c + 2d = 0. Then c = −d. Similarly 〈Zij, r〉 = 0, so c − d − d + c = 0. That is

2c− 2d = 0, so c = d. We thus have d = −d. Therefore, d = 0 = c. Hence, the Ci, Cj block

of r is all 0’s. So λi,k,j = 0 for all k in this case.

Case 2: Ci = C0 = {1} and Cj is a conjugacy class of size 2. The (1, aj) entry of

E∗0AkE
∗
j is 1 if and only if aj ∈ Ck, which is true if and only if a−j ∈ Ck. In this case the

entry of r indexed by (1, a−j) is also 1. Thus, in the C0, Cj block of r both entries have the

same value. Call it c. Taking 〈v0,j, r〉 we get 2c. As this must be 0, we have c = 0. Thus,

the C0, Cj block of r is the 0 matrix, so λ0,k,j = 0 for all k.

Case 3: Ci is a conjugacy class of size 2 and Cj = C0. This is similar to case 2 and we

get λi,k,0 = 0 for all k.

Case 4: Ci = C0 and Cj = Cn+1, where Cn+1 is the conjugacy class of size n. For any

0 ≤ ` ≤ n−1, the (1, a`b) entry of E∗0AkE
∗
n+1 is 1 if and only if a`b ∈ Ck, which is true if and

only if atb ∈ Ck for all 0 ≤ t ≤ n − 1 as these elements are all conjugate. So every element
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of the C0, Cn+1 block of r must have the same value. Call this value c. Then as 〈vij, r〉 = nc

and must be 0, so c = 0. Thus, the C0, Cn+1 block of r is all 0’s. So λ0,k,n+1 = 0 for all k.

Case 5: Ci = Cn+1 and Cj = C0. The same argument as in Case 4 can be used here to

get λn+1,k,0 = 0 for all k.

Case 6: Ci be a conjugacy class of size 2 and Cj = Cn+1. For any 0 ≤ ` ≤ n − 1 the

(ai, a`b) entry of E∗iAkE
∗
n+1 is 1 if and only if a`ba−i ∈ Ck. This is just saying that a`+ib ∈ Ck.

This is true if and only if Ck = Cn+1. In this case for all 0 ≤ t ≤ n− 1 we have at+ib ∈ Ck

and at−ib ∈ Ck. Then the entry (ai, a`b), for some 0 ≤ ` ≤ n − 1, is 1 if and only if we

have the (ai, atb) and (a−i, atb) entries are also 1 for all 0 ≤ t ≤ n − 1. This tells us that

every entry in the Ci, Cn+1 block of r must be the same value. Say that value is c. Then we

consider the fact that 〈vi,n+1, r〉 = 0. We also know it equals the sum of the entries of the

Ci, Cn+1 block of r. So it equals 2nc. Thus, 2nc = 0. Then c = 0. So the Ci, Cn+1 block of

r is all zeroes. Then λi,k,n+1 = 0 for all k.

Case 7: Ci = Cn+1 and Cj is a conjugacy class of size 2. This case can be done the same

way as Case 6 to get λn+1,k,j = 0 for all k.

Case 8: Ci = C0 and Cj = C0. In this case the C0, C0 block of r has a single entry. Call

it c. Since 〈v00, r〉 = 0 and also equals c we have that c = 0. So λ0,k,0 = 0 for all k.

Having done all of these cases we have shown that the only potentially nonzero λi,k,j are

of the form λn+1,k,n+1. This means we can write r =
∑

k λkE
∗
n+1AkE

∗
n+1. This was done for

an arbitrary r ∈ R.

Now let r, s ∈ R. We have r =
∑

i λiE
∗
n+1AiE

∗
n+1, and s =

∑
j µjE

∗
n+1AjE

∗
n+1. Then to

show rs = sr it suffices to show (E∗n+1AiE
∗
n+1)(E∗n+1AjE

∗
n+1) = (E∗n+1AjE

∗
n+1)(E∗n+1AiE

∗
n+1)

for all i, j.

First we show that E∗n+1AjE
∗
n+1 is symmetric for all j. As the E∗n+1 matrices are diagonal

clearly they are symmetric. In Aj the entry (x, y) is 1 if and only if yx−1 ∈ Cj. As in D2n

every element and its inverse are in the same conjugacy class we have yx−1 ∈ Cj if and

only if xy−1 ∈ Cj which is true if and only if the (y, x) entry of Aj is 1. Thus, the (x, y)
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and (y, x) entries of Aj must the be the same for all x, y. Therefore, Aj = Atj. Then

(E∗n+1AjE
∗
n+1)t = (E∗n+1)tAtj(E

∗
n+1)t = E∗n+1AjE

∗
n+1. So as claimed it is symmetric.

Next we note that (AiE
∗
n+1)(E∗n+1Aj) ∈ T (D2n). Recall by Lemma 5.5 and Theorem 5.8

we have T (D2n) = T0(D2n). Then (AiE
∗
n+1)(E∗n+1Aj) ∈ T0(D2n) and we can write it as a

sum of basis elements. That is

(AiE
∗
n+1)(E∗n+1Aj) =

∑
i,j,k

βi,j,kE
∗
iAjE

∗
k .

Then multiplying on each side of this by E∗n+1 and using the fact that E∗iE
∗
j = δijE

∗
i (where

δij is 1 if i = j and 0 if i 6= j) we have

(E∗n+1AiE
∗
n+1)(E∗n+1AjE

∗
n+1) =

∑
i,j,k

βi,j,kE
∗
n+1E

∗
iAjE

∗
kE
∗
n+1 =

∑
j

βn+1,j,n+1E
∗
n+1AjE

∗
n+1.

Therefore we have

[(E∗n+1AiE
∗
n+1)(E∗n+1AjE

∗
n+1)]t =

(∑
k

βn+1,k,n+1E
∗
n+1AkE

∗
n+1

)t

=
∑
k

βn+1,k,n+1(E∗n+1AkE
∗
n+1)t =

∑
k

βn+1,k,n+1E
∗
n+1AkE

∗
n+1 = (E∗n+1AiE

∗
n+1)(E∗n+1AjE

∗
n+1).

However, we also know that

[
(E∗n+1AiE

∗
n+1)(E∗n+1AjE

∗
n+1)

]t
= (E∗n+1AjE

∗
n+1)t(E∗n+1AiE

∗
n+1)t = (E∗n+1AjE

∗
n+1)(E∗n+1AiE

∗
n+1).

We thus have (E∗n+1AiE
∗
n+1)(E∗n+1AjE

∗
n+1) = (E∗n+1AjE

∗
n+1)(E∗n+1AiE

∗
n+1) for all i, j. As

noted before this is sufficient for us to show that rs = sr for all r, s ∈ R. Therefore R is

commutative.

Corollary 5.13. Let D2n be a dihedral group with n = 2m+1. Let T (D2n) be the Terwilliger

algebra of D2n. Then T (D2n) = V ⊕ Z ⊕ I1 ⊕ · · · ⊕ Im where each Ii is an irreducible ideal

of T (D2n) of dimension 1.
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Proof. We have already seen that we can write T (D2n) = V ⊕ Z ⊕ R. By Corollary 5.9 we

have that dim(T (D2n) = 2m2 + 5m + 4. We further know from Corollaries 4.14 and 5.11

that dim(V ) = (m + 2)2 and dim(Z) = m2. As the sum of the dimensions of V, Z,R must

be dim(T (D2n)) we have dim(R) = 2m2 + 5m+ 4− (m+ 2)2 −m2 = m. By Theorem 5.12

we know that R is commutative. Then R is a direct sum of irreducible ideals each with

dimension 1. That is R =
⊕m

i=1 Ii where each Ii has dimension 1. Therefore, we have that

T (D2n) = V ⊕ Z ⊕ I1 ⊕ I2 ⊕ · · · ⊕ Im.

We now move onto looking at D2n when n is even. Let n = 2m for some m ∈ N. In this

case the conjugacy classes are

C0 = {e}, Ci = {ri, r−i} (for 1 ≤ i ≤ m−1), Cm = {rm}, Cm+1 = s〈r2〉, and Cm+2 = sr〈r2〉.

For any Ci, Cj, where 1 ≤ i, j ≤ m− 1 we shall create the Zij matrices the same way as we

did in the n odd case.

Theorem 5.14. Let T (G) be the Terwilliger algebra created from the group association

scheme for D2n where n = 2m, for any m ∈ N. Then Z = SpanC{Zij : 1 ≤ i, j ≤ m− 1} is

a two-sided ideal of T (G).

Proof. The proof that Z is a subset of T (G) is nearly identical to the proof of this fact for

Theorem 5.10. It is also clear that Z is closed under addition and scaling. We just need to

show closure under multiplication by elements of T (G). As T (G) is generated by the set of

all Ak, E
∗
k for 0 ≤ k ≤ m+ 2 we need to only check that Z is closed under multiplication by

the Ak and E∗k for any k. Starting with E∗k we have

E∗kZij =

{
Zij if i = k,

0 if i 6= k,
and ZijE

∗
k =

{
Zij if j = k,

0 if j 6= k.

So Z is closed under multiplication by E∗k . We now must check that Z is closed under

multiplication by Ak for any 0 ≤ k ≤ m + 2. We shall do this in much the same as we
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did for Theorem 5.10. Using block notation and letting at,i be the Ct, Ci block of Ak, with

∗ symbolizing an unknown value, we have the same multiplication as in Equation (4.3)

replacing vrs with Zij and having

dij =

 1 −1

−1 1

 .
We now consider the possible at,i we could have for Ak. Doing so we will determine what

the Cj column of AkZij looks like. In the C0, Ci block of Ak we have a 1 × 2 matrix. If

either entry is 1, that means either ri or r−i is in Ck. Either way Ck = Ci in this case both

entries are nonzero in Ak. So the C0, Ci block of Ak is either (0, 0) or (1, 1). (0, 0)dij = 0

and (1, 1)dij = 0, so a0,idij = 0.

Next we consider am,idij. Note that am,i is a 1×2 matrix. If either entry is 1, that means

that rm−i or rm+i is in Ck. We note that rm is its own inverse, so ri+m = ri−m = (rm−i)−1.

Thus, if either entry of am,i is 1 then Ck = Cm−i. In this case both entries are nonzero.

So the Cm, Ci block of Ak is either (0, 0) or (1, 1). Note (0, 0)dij = 0 and (1, 1)dij = 0, so

am,idij = 0.

We now look at at,idij for 1 ≤ t ≤ m − 1. Using the same argument as in the proof of

Theorem 5.10 we have at,idij = 0, dij or −dij.

Next we consider am+1,idij which is a m×2 matrix. Every entry of Cm+1 is of the form r2bs

for some 0 ≤ b ≤ m− 1. So if am+1,i has 1 in an entry this means ri(r2bs)−1 = r2b+is ∈ Ck,

or r−i(r2bs)−1 = r2b−is ∈ Ck. If i is even both of these would imply Ck = Cm+1. If i is odd

both of these statements imply Ck = Cm+1. If Ck = Cm+1, then ri(r2bs)−1, r−i(r2bs)−1 ∈ Ck

for all b. Similarly if Ck = Cm+2, then ri(r2bs)−1, r−i(r2bs)−1 ∈ Ck for all b. Thus, am+1,i is

the all 1’s matrix in this case. So if am+1,i has a nonzero entry it is the all 1’s matrix. Thus,

am+1,i is either the 0 matrix, or the all 1’s matrix. Either way am+1,idij = 0. Nearly identical

reasoning can be applied to get am+2,idij = 0.
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From these computations we have AkZij =
∑m−1

t=1 cijtZtj where

cijt =


0 if at,idij = 0,

1 if at,idij = dij,

−1 if at,idij = −dij.

So AkZij ∈ Z for all k. Thus, Z is a left ideal of T (G). The proof that Z is closed under

transposition is the same as in the proof of Theorem 5.10. Then by Lemma 4.11 we see that

Z is a two-sided ideal of T (G).

Corollary 5.15. Consider D2n where n = 2m. The two-sided ideal Z is an irreducible

two-sided ideal of T (G) whose dimension is (m− 1)2.

Proof. The proof that Z is irreducible is the same as in the proof of Corollary 5.11. The

proof that the Zij are linearly independent is also the same as in the proof of Corollary 5.11.

We have a basis element of Z for any choice of 1 ≤ i, j ≤ m−1. So in total there are (m−1)2

basis element for Z. Thus, dim(Z) = (m− 1)2 = (n
2
− 1)2.

We shall continue to order the conjugacy classes of D2n as in the proof of Theorem 5.8.

Now we specify the order of the elements in Cm+1 and Cm+2. We order them by increasing

powers of r. That is Cm+1 = {s, r2s, r4s, · · · }, Cm+2 = {rs, r3s, r5s, · · · }. Doing this gives

rise to the following result.

Lemma 5.16. Let G = D2n = 〈r, s : rn = 1 = s2, r−1s = sr〉, where n = 2m. Let T (G)

be the Terwilliger algebra of the group association scheme of G created using the conjugacy

classes ordered as discussed above. Then for all 0 ≤ i ≤ m+ 2 we have that the Cm+1, Cm+1

and Cm+2, Cm+2 blocks of Ai are equal.

Proof. Let ai,m+1 be the Cm+1, Cm+1 block of Ai and ai,m+2 be the Cm+2, Cm+2 block of Ai

for any 0 ≤ i ≤ m + 2. Both of ai,m+1 and ai,m+2 are m × m matrices. Due to our fixed

ordering of Cm+1 and Cm+2 the (rps, rqs) entry of ai,m+1 corresponds to the (rp+1s, rq+1s)

entry of ai,m+2. Note the entries of ai,m+1 and ai,m+2 are all either 0 or 1, being part of
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Ai. The (rps, rqs) entry of ai,m+1 is 1 if and only if (rqs)(rps)−1 = rq−p ∈ Ci. Notice

that rq−p = (rq+1s)(rp+1s)−1. Therefore, rq−p ∈ Ci if and only if (rq+1s)(rp+1s)−1 ∈ Ci.

Therefore, the (rps, rqs) entry of ai,m+1 is 1 if and only if (rq+1s)(rp+1s)−1 ∈ Ci, which is

true if and only if the (rp+1s, rq+1s) entry of ai,m+2 is 1. As we chose the entry (rps, rqs)

of ai,m+1 arbitrarily we have that each of the corresponding entries of ai,m+1 and ai,m+2 are

equal. Therefore, ai,m+1 = ai,m+2. As we chose i arbitrarily this is true for all i.

This preceding lemma simplifies the study of what the Wedderburn decomposition of the

Terwilliger algebra resulting from the group association scheme of D2n when n is even. From

Table C.11 in Appendix C it is clear that the decomposition for such a Terwilliger algebra

depends on if 4 | n or not. This thesis has described what two of the components will be.

Namely V from Theorem 4.12 and Z from Theorem 5.14. We now provide the structure of

two irreducible dimension 1 components when 4 | n.

Lemma 5.17. Let G = D2n = 〈r, s : rn = 1 = s2, r−1s = sr〉, where n = 2m and 4 | n.

Let T (G) be the Terwilliger algebra of the group association scheme of G created using the

conjugacy classes ordered as discussed above. Let D be the following m×m matrix,

D =



0 · · · 0 1

1
. . . 0 0

...
. . .

. . .
...

0 · · · 1 0


. (5.2)

Then the Cm+1, Cm+1 and Cm+2, Cm+2 blocks of A2i (0 < i < m
2

) equal Di + D−i. Also

the Cm+1, Cm+1 and Cm+2, Cm+2 blocks of Ak with k = 0 and k = m are D0 and Dm/2

respectively.

Proof. First notice that D is just the image under the permutation representation of the

generator of the cyclic group of order m.
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We now consider what the Cm+1, Cm+1 block of an Ai matrix can look like. The definition

of how we create the Ai matrices tells us that the entry indexed by (a, b) is 1 if and only if

b−1a ∈ Ci. Using this we can create a grid of what value must be in Ci in order for Ai to

have a 1 in the entry indexed by (x, y) where x is the row term and y is the column term in

the grid. Note we create this grid so that the elements are ordered as we specified before.

See Table 5.1 for this grid.

s r2s r4s · · · r−2s

s 1 r2 r4 · · · r−2

r2s r−2 1 r2 · · · r−4

r4s r−4 r−2 1
... r−6

...
...

. . .
. . .

. . .
...

r−2s r2 r4 · · · · · · 1

Table 5.1: Grid for Cm+1, Cm+1 block of an Ai matrix in D2n where 4 | n

Using this grid we can immediately determine the value of the entry of the Cm+1, Cm+1

block of Ai indexed by (rjs, rks) for any i. By way of quick observation it is easy to see

that the 1’s in Dk line up with those entries in this grid that are r−2k. Then Di + D−i has

1’s in the entries corresponding to the grid entries that are in the set {r2i, r−2i}. So for A2i

for any 0 < i < m
2

the entries of the Cm+1, Cm+1 block that are 1 correspond exactly to the

entries that are 1 in Di+D−i. That is as claimed the Cm+1, Cm+1 block of A2i for 0 < i < m
2

equals Di + D−i. We know that D0 is the m ×m identity matrix which is the Cm+1, Cm+1

block of A0. We also know that Dm/2 has 1’s in exactly the same entries that Am has 1’s

since from the grid we already know that Dm/2 has 1’s exactly where the grid has an entry

r−m = rm, which is the only element of Am. Therefore, the claim is true for the Cm+1, Cm+1

block of A2i for 0 ≤ i ≤ m
2

. By Lemma 5.16 we then have it is true also for the Cm+2, Cm+2

blocks.

It immediately follows from the previous lemma that the Cm+1, Cm+1 block of
∑n/4

i=0(−1)iA2i

and the Cm+2, Cm+2 block of
∑n/4

i=0(−1)iA2i both equal
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1 −1 1 · · · −1

−1 1 −1 · · · 1

... · · ·
. . . · · ·

...

−1 1 −1 · · · 1


.

We will now show that isolating the Cm+1, Cm+1 block of
∑n/4

i=0(−1)iA2i and taking the

C−span of this matrix gives an irreducible ideal of T (G). The same is true if we instead

isolate the Cm+2, Cm+2 block.

Proposition 5.18. Let G = D2n = 〈r, s : rn = 1 = s2, r−1s = sr〉, where n = 2m and

4 | n. Let T (G) be the Terwilliger algebra of the group association scheme of G. Then

Jm+1 = SpanC

(∑n/4
i=0(−1)iE∗m+1A2iE

∗
m+1

)
and Jm+2 = SpanC

(∑n/4
i=0(−1)iE∗m+2A2iE

∗
m+2

)
are one dimensional irreducible ideals of T (G).

Proof. The fact that Jm+1 and Jm+2 are one dimensional is clear. It is also obvious that

these sets are closed under addition, scaling, and are subsets of T (G). All that is left to

show is closure under multiplication. We start with Jm+1 and note that Jm+2 being closed

under multiplication will follow by similar reasoning. Since T (G) is generated by the set of

all Ai, E
∗
i for 0 ≤ i ≤ m+ 2, we need only check that Jm+1 is closed under multiplication by

the Ak and E∗k . Starting with E∗k we note that

E∗k

n/4∑
i=0

(−1)iE∗m+1A2iE
∗
m+1 =

{ ∑n/4
i=0(−1)iE∗m+1A2iE

∗
m+1 if k = m+ 1,

0 if k 6= m+ 1.

So Jm+1 is clearly closed under multiplication by E∗k on the left. We now turn our attention

to multiplying by Ak on the left. Using block notation and letting at,i be the Ct, Ci block of

Ak we have the same multiplication structure as in Equation (4.3) where vrs is replaced by∑n/4
i=0(−1)iE∗m+1A2iE

∗
m+1 and
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dm+1,m+1 =



1 −1 1 · · · −1

−1 1 −1 · · · 1

... · · ·
. . . · · ·

...

−1 1 −1 · · · 1


.

We now consider the possible at,m+1 we could have for Ak. Then we look at at,idm+1,m+1.

In the C0, Cm+1 block of Ak we have a 1 ×m/2 matrix. If any of the entries is nonzero

then that means rts ∈ Ck for some even t. For this to be the case we must have that

Ck = Cm+1. In this case every entry in the C0, Cm+1 block of Ak is 1. So the C0, Cm+1 block

of Ak is either all 0’s or all 1’s. As the row sum of dm+1,m+1 is 0, we have in either case that

a0,m+1dm+1,m+1 = 0.

Next we consider at,m+1dm+1,m+1 for 1 ≤ t ≤ m − 1. As at,m+1 is the Ct, Cm+1 block of

Ak we have that its entries are indexed by elements of the form (rt, ras) and (r−t, ras) where

a is even. An entry of Ak indexed by (rt, ras) is 1 if and only if rasr−t = rt+as ∈ Ck. An

entry of Ak indexed by r−t, ras is 1 if and only if rasrt = ra−ts ∈ Ck. Since a is even, a + t

and a − t have the same parity, so ra+ts and ra−ts are in the same conjugacy class of G.

Then for any even a we have that the entries of Ak indexed by (rt, ras) and (r−t, ras) have

the same value. We next see that if t is even then a+ t is even for every even a. In this case

ra+ts ∈ Cm+1 for every a, so the entry of Ak indexed by (rt, ras) for any even a is 1 if and

only if Ck = Cm+1. This tells us that if t is even then every entry in the rt row of am+1,m+1

is the same. Since for any even a we have that the entries of Ak indexed by (rt, ras) and

(r−t, ras) have the same value, we have that if Ck 6= Cm+1 then am+1,m+1 is the 0 matrix and

if Ck = Cm+1 then am+1,m+1 is the all 1’s matrix. If t is odd similar reasoning can be applied

to show that if Ck 6= Cm+2 then am+1,m+1 is the 0 matrix and if Ck = Cm+2 then am+1,m+1 is

the all 1’s matrix. Hence, at,m+1 is the 0 matrix, or the all 1’s matrix. Direct computation

shows that if at,m+1 is the all 1’s matrix then at,m+1dm+1,m+1 = 0. Clearly if at,m+1 is the 0

matrix then, at,m+1dm+1,m+1 = 0. Hence, at,m+1dm+1,m+1 = 0 for all 1 ≤ t ≤ m− 1.
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Looking at am,m+1dm+1,m+1, we have that am,m+1 is a 1 ×m/2 matrix. Then entries of

Ak in the Cm, Cm+1 block are indexed by elements of the form (rm, rts) for even t. If any of

the entries in am,m+1 is nonzero then that means rtsr−m = rt+ms ∈ Ck for some even t. As

m is even, t + m is even. Then for rt+ms ∈ Ck we must have that Ck = Cm+1. In this case

every entry in the C0, Cm+1 block of Ak is 1. So the Cm, Cm+1 block of Ak is either all 0’s or

all 1’s. As the row sum of dm+1,m+1 is 0, we have in either case that am,m+1dm+1,m+1 = 0.

Now we consider am+2,m+1dm+1,m+1. As am+2,m+1 is the Cm+2,m+1 block of Ak we have

that its entries are indexed by elements of the form (ras, rbs) for odd 1 ≤ a < n and even

0 ≤ b < n. An entry indexed by (ras, rbs) of Ak is 1 if and only if rbs(ras)−1 = rb−a ∈ Ck.

As b is even and a is odd b − a is odd. Then since m is even we know that b − a 6= m.

Thus, if rb−a ∈ Ck, then Cm 6= Ck. So for A to have a nonzero entry in its Cm+2, Cm+1 block

we must have that Ck = {rk, r−k}. If A has no nonzero entry in its Cm+2, Cm+1 block then

am+2,m+1 is the all 0’s matrix and am+2,m+1dm+1,m+1 = 0.

Now assume that Ck = {rk, r−k} for some 1 ≤ k ≤ m − 1. For any fixed odd value

1 ≤ a < n, we know there exists a unique value 0 ≤ b < n such that b − a ≡ k(mod n),

namely a + k(mod n). As a, k are both odd and n is even, we have that b is even. Similar

reasoning gives that there exists a unique even integer 0 ≤ c < n such that c−a ≡ −k(mod n).

Then we have that rb−a ∈ Ck and rc−a ∈ Ck. We therefore have that the entries indexed

by (ras, rbs) and (ras, rcs) are both 1 in Ak. By the uniqueness of b and c these are the

only nonzero entries in the row of Ak indexed by ras. Notice that b ≡ a + k(mod n) and

c ≡ a − k(mod n), so b − c ≡ 2k(mod n). As k is odd and n is divisible by 4 we then have

that b and c must differ by a value not divisible by 4. Namely the difference between b and

c is 2` for some odd integer `. This tells us in the ras row of Ak, there is an even number

of 0’s between the 1 in the entry indexed by ras, rbs and the entry indexed by ras, rcs. All

of these computations have been done for an arbitrary odd 1 ≤ a < n. Therefore, we have

that every row of Ak in the Cm+2, Cm+1 block has exactly two entries that are 1, which have

an even number of 0’s between them.
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We now consider the product am+2,m+1dm+1,m+1. To get the (x, y) entry of am+2,m+1dm+1,m+1

we take the dot product of the xth row of am+2,m+1 with the transpose of the yth column

of dm+1,m+1. We found that the xth row of am+2,m+1 has exactly two nonzero entries, which

are both 1 and they have an even number of 0’s between them. The yth column of dm+1,m+1

is a vector with entries that alternate between 1 and −1. Direct observation gives that en-

tries in the yth column of dm+1,m+1 that have an even number of entries between them have

different values. Then in the dot product of the xth row of am+2,m+1 and the yth column of

dm+1,m+1, one of the nonzero entries of the xth row of am+2,m+1 will be multiplied by 1 and

the other will be multiplied by −1. Then the dot product of the xth row of am+2,m+1 and

the transpose of the yth column of dm+1,m+1 is (1)(1) + (1)(−1) = 0. Hence, the (x, y) entry

of am+2,m+1dm+1,m+1 is 0. Since we chose this entry arbitrary we have that every entry of

am+2,m+1dm+1,m+1 is 0. Hence, am+2,m+1dm+1,m+1 = 0.

To this point we have considered at,m+1dm+1,m+1 for every t except t = m+1 and found in

all these cases that at,m+1dm+1,m+1 = 0. We now look at am+1,m+1dm+1,m+1. This is the prod-

uct of the Cm+1, Cm+1 block of Ak with the Cm+1, Cm+1 block of
∑n/4

i=0(−1)iE∗m+1A2iE
∗
m+1.

Let D be the matrix in Equation (5.2). We shall show that Dkdm+1,m+1 = dm+1,m+1 for even

k and Dkdm+1,m+1 = −dm+1,m+1 for odd k. Recall that

dm+1,m+1 =



1 −1 1 · · · −1

−1 1 −1 · · · 1

... · · ·
. . . · · ·

...

−1 1 −1 · · · 1


.

Each row is the negative of the previous one. Now then looking at Dkdm+1,m+1 as we know

that Dk = (1 2 · · · m)k · Im, where the action is permuting the rows of the matrix, we have

that Dkdm+1,m+1 is the same as (1 2 · · ·m)kdm+1,m+1. If we act by (1 2 · · ·m) an even number

of times we will get dm+1,m+1 back since every other row of dm+1,m+1 is equal. If we act by

(1 2 · · ·m) an odd number of times we get −dm+1,m+1 as each row is the negative of the row
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below it. So as claimed Dkdm+1,m+1 = dm+1,m+1 if k is even and Dkdm+1,m+1 = −dm+1,m+1

if k is odd.

By Lemma 5.17 we know that the Cm+1, Cm+1 block of Ak is D0 if k = 0, Dm/2 if k = m

and Dk/2 +D−k/2 if 0 < k < m. Thus we have

am+1,m+1dm+1,m+1 =



dm+1,m+1 if k = 0,

dm+1,m+1 if m/2 is even and k = m/2,

−dm+1,m+1 if m/2 is odd and k = m/2,

2dm+1,m+1 if k is even and 0 < k < m/2,

−2dm+1,m+1 if k is odd and 0 < k < m/2.

As we have shown this is the only nonzero block in Ak
∑n/4

i=0(−1)iE∗m+1A2iE
∗
m+1 and∑n/4

i=0(−1)iE∗m+1A2iE
∗
m+1 equals dm+1,m+1 in this block and has all 0’s outside of this block

we have

Ak
n/4∑
i=0

(−1)iE∗m+1A2iE
∗
m+1 =



∑n/4
i=0(−1)iE∗m+1A2iE

∗
m+1 if k=0, or k=m/2 is even,

−
∑n/4

i=0(−1)iE∗m+1A2iE
∗
m+1 if m/2 is odd and k=m/2,

2
∑n/4

i=0(−1)iE∗m+1A2iE
∗
m+1 if k is even and 0 < k < m/2,

−2
∑n/4

i=0(−1)iE∗m+1A2iE
∗
m+1 if k is odd and 0 < k < m/2.

In all cases we have that this is in Jm+1. Thus, Jm+1 is closed under multiplication on

the left. Notice that in D2n the conjugacy classes are closed under inversion of elements.

That is x ∈ Ci if and only if x−1 ∈ Ci. The (x, y) entry of Ai is 1 if and only if yx−1 ∈ Ci,

which is true if and only if (yx−1)−1 ∈ Ci. This is true if and only if xy−1 ∈ Ci, which is true

if and only if the (y, x) entry of Ai is 1. This tells us that the Ai matrices are symmetric.

Clearly the E∗i matrices are symmetric. We then have that

 n/4∑
i=0

(−1)iE∗m+1A2iE
∗
m+1

t

=

n/4∑
i=0

(−1)i(E∗m+1A2iE
∗
m+1)t =

n/4∑
i=0

(−1)i(E∗m+1)T (A2i)
t(E∗m+1)t
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=

n/4∑
i=0

(−1)iE∗m+1A2iE
∗
m+1.

As every element of Jm+1 is a scalar multiply of
∑n/4

i=0(−1)iE∗m+1A2iE
∗
m+1 we thus conclude

that Jm+1 is closed under transposition. Then by Lemma 4.11 we have that Jm+1 is a

two-sided ideal of T (G). The fact that it is one dimensional means it must be irreducible.

The proof that Jm+2 is a one dimensional irreducible two-sided ideal of T (G) is essentially

the same as that for Jm+1 replacing E∗m+1 by E∗m+2 everywhere. This is largely because of

Lemma 5.16. This then concludes the proof.
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Appendix A. Semisimple Algebras

Definition A.1. Let R be a ring with unity. Let x ∈ R. We say that x is nilpotent if

there exists some positive integer n such that xn = 0. If I is a subset of R, we say that I is

nilpotent if there exists some positive integer n such that In = 0,

Proposition A.2. Suppose that x is a central element in a ring R such that xn = 0 for

some positive integer n. Then Rx is a nilpotent 2-sided ideal of R with (Rx)n = 0.

Proof. Let si ∈ R for some 1 ≤ i ≤ n. Then we have that (s1x)(s2x) · · · (snx) = (s1s2 · · · sn)xn =

0, where the first equality holds as x is central. Therefore, (xR)n = 0.

Definition A.3. A commutative ring R is said to be Artinian if there is no infinite decreasing

chain of ideals in R. That is whenever

I1 ⊇ I2 ⊇ I3 ⊇ · · ·

is a decreasing chain of ideals of R, then there is a positive integer m such that Ik = Im for

all k ≥ m.

Definition A.4. Let R be a ring and M be a left R−module. Then M 6= 0 is simple if it

has no nontrivial, proper submodules.

Definition A.5. Let R be a ring. We define the Jacobson Radical of R, denoted by J (R),

to be the intersection of all maximal left (or equivalently right) ideals of R.

Note that a simple left R-module M is of the form M ∼= R/I for a maximal left ideal I

of R. That is I is the annihilator of M . So J (R) is the intersection of all the annihilators of

simple left R−modules. So we have that J (R) is a 2−sided ideal of R since the annihilators

of left modules are 2-sided ideals.

Proposition A.6. If I is a nilpotent left ideal of R, then I ⊆ J (R).
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Proof. Since I is nilpotent, there exists some positive integer m such that Im = 0. Let U

be a simple left R−module. If IU 6= 0, then by the irreducibility of U , we have U = IU .

Repeating this process to we get

U = IU = I2U = · · · = ImU = 0.

This contradicts U being simple. Thus, IU = 0. Since U was an arbitrary simple module,

I ⊆ J (R).

Lemma A.7 (Nakayama’s Lemma). Let V be a finitely generated nonzero R−module. Then

J (R)V ( V.

Proof. Assume V ′ is a maximal submodule of V . Such a maximal submodule exists by the

fact that V is a nonzero, finitely generated module and a Zorn’s Lemma argument. So V/V ′

is a simple module. So J (R)(V/V ′) = 0, which implies that J (V ) ⊆ V ′ ( V .

Theorem A.8. Let A be a left Artinian ring. Then J (A) is the maximal nilpotent left ideal

of A.

Proof. Let J = J (A). Consider the descending chain of left ideals of A

J ⊇ J 2 ⊇ J 3 ⊇ · · ·

Since A is Artinian, there exists some n such that J n = Jm for all m ≥ n. Since A is

Artinian, A is Noetherian. This implies that J (A) is finitely generated. Then by Nakayama’s

Lemma, J n = 0. So J is nilpotent. Then by Proposition A.6, J is the maximal nilpotent

left ideal.

Definition A.9. Let R be a ring and M be a left R−module. Then we say M is semisimple

if it is the direct sum of simple left modules. A ring R is semisimple if it is semisimple as a

module over itself.
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Theorem A.10 ([10], Theorem 15.3). The following are equivalent for a left R−module M .

1. M is semisimple

2. M is a sum of simple modules.

3. Every submodule of M is a direct summand of M .

Theorem A.11 ([32], Theorem A.12). Let A be a left (or right) Artinian ring. Then A is

semisimple if and only if J (A) = 0.

Proof. Suppose that A is semisimple. Then there exists a left ideal I of A such that A =

I ⊕ J (A). If J (A) 6= 0, then I is contained in a maximal left ideal M . However, as I ⊆M

and J (A) ⊆ M , we have that M = R by maximality of J (A). This contradicts M being

simple. Thus, J (A) = 0.

Conversely, suppose that J (A) = 0. Let L1 be a minimal left ideal of A. As J (A) = 0,

there exists a maximal left ideal M1 6= 0 which does not contain L1. Note, L1 + M1 = A,

by the maximality of M1. By the minimality of L1, we have that L1 ∩ M1 = 0. Thus,

A = L1 ⊕M1. Since M1 6= 0, it must contain a minimal left idea L2. We then have, that

there exists a maximal left ideal M2 which does not contain L2 and

A = L1 ⊕ L2 ⊕ (M1 ∩M2).

Repeating this process, we may define Lk and Mk recursively as long as ∩k−1
j=1Mj 6= 0. If

∩k−1
j=1Mj 6= 0 for all k. Doing this we get an infinite descending chain of left ideals of A

M1 )M1 ∩M2 )M1 ∩M2 ∩M3 ) .

This contradicts A being Artinian. Thus, A = L1 ⊕ L2 ⊕ · · · ⊕ Lk for some k. Thus, A is

semisimple.

Corollary A.12. Let F be a field. Let A be a semisimple F -algebra and let B be a finite-

dimensional central F -subalgebra of A. Then B is semisimple.
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Proof. Suppose that B is not semisimple. Since B is a finite-dimensional F -algebra, B is

Artinian. Then it must be that J (B) 6= 0. So there exists some x ∈ J (B) that is nonzero.

Thus, x is a nilpotent element of A. By Proposition A.2, Ax is a nonzero nilpotent ideal of

A. So by Proposition A.6, Ax ⊆ J (A) 6= 0. This however contradicts Theorem A.11.

Definition A.13. An element ε of a ring R is idempotent if ε2 = ε. A pair of central

idempotents δ, ε is orthogonal if δε = 0. A central idempotent is primitive if it cannot be

expressed as a sum of two nonzero orthogonal central idempotents. If the sum of a set of

orthogonal idempotents is 1, we say that set of idempotents is complete.
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Appendix B. Unanswered Questions

• What is the dimension of T (Sn) and T0(Sn) for any n where we use the group association

scheme to create T (Sn)?

• What is the complete Wedderburn decomposition for the Terwilliger algebra for the

group association scheme of D2n for even n?

• Where do the one dimensional Wedderburn components of the Terwilliger algebra for

the group association scheme of D2n for odd n come from?

• What impact does the base point have on the Terwilliger algebra for a group when

looking at the group association scheme? What about for other association schemes?

• Can the Wedderburn component V (Theorem 4.12) for a Terwilliger algebra resulting

from an orbit Schur ring be generalized beyond orbit Schur rings?

• Can the Wedderburn component Z(Theorems 5.10,5.14) for a Terwilliger algebra re-

sulting from the group association scheme for a dihedral group be generalized beyond

dihedral groups.

• Is the association scheme in Proposition 5.7 always commutative?

• For which commutative Schur rings over a group G is the association scheme created

thin?

• For which commutative Schur rings over a group G is the association scheme created

a P−polynomial scheme?

• For which commutative Schur rings over a group G is the association scheme created

a Q−polynomial scheme?

• Let G be a group and H be a subgroup. When partitioning G be the orbits under

conjugation by elements of H, which resulting association schemes are P−polynomial?
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Appendix C. Terwilliger Algebra Dimension

Tables for Group Association Schemes

Group Dimension T Dimension T0 Dimension T ∗0 character degrees of T
G1,1 1 1 1 1
G2,1 4 4 4 2
G3,1 9 9 9 3
G4,1 16 16 16 4
G4,2 16 16 16 4
G5,1 25 25 25 5
G6,1 11 11 11 1, 1, 3
G6,2 36 36 36 6
G7,1 49 49 49 7
G8,1 64 64 64 8
G8,2 64 64 64 8
G8,3 28 28 28 1, 1, 1, 5
G8,4 28 28 28 1, 1, 1, 5
G8,5 64 64 64 8
G9,1 81 81 81 9
G9,2 81 81 81 9
G10,1 22 22 22 1, 1, 2, 4
G10,2 100 100 100 10
G11,1 121 121 121 11
G12,1 44 44 44 2, 2, 6
G12,2 144 144 144 12
G12,3 19 19 19 1, 1, 1, 4
G12,4 44 44 44 2, 2, 6
G12,5 144 144 144 12
G13,1 169 169 169 13
G14,1 37 37 37 1, 1, 1, 3, 5
G14,2 196 196 196 14
G15,1 225 225 225 15

Table C.1: Terwilliger algebra dimension table orders 1-15
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Group Dimension T Dimension T0 Dimension T ∗0 character degrees of T
G16,1 256 256 256 16
G16,2 256 256 256 16
G16,3 112 112 112 2, 2, 2, 10
G16,4 112 112 112 2, 2, 2, 10
G16,5 256 256 256 16
G16,6 112 112 112 2, 2, 2, 10
G16,7 64 64 64 1, 1, 2, 3, 7
G16,8 64 64 64 1, 1, 2, 3, 7
G16,9 64 64 64 1, 1, 2, 3, 7
G16,10 256 256 256 16
G16,11 112 112 112 2, 2, 2, 10
G16,12 112 112 112 2, 2, 2, 10
G16,13 112 112 112 2, 2, 2, 10
G16,14 256 256 256 16
G17,1 289 289 289 17
G18,1 56 56 56 1, 1, 1, 1, 4, 6
G18,2 324 324 324 18
G18,3 99 99 99 3, 3, 9
G18,4 56 56 56 1, 1, 1, 1, 4, 6
G18,5 324 324 324 18
G19,1 361 361 361 19
G20,1 88 88 88 2, 2, 4, 8
G20,2 400 400 400 20
G20,3 29 29 29 1, 1, 1, 1, 5
G20,4 88 88 88 2, 2, 4, 8
G20,5 400 400 400 20
G21,1 37 35 35 1, 1, 1, 1, 2, 2, 5
G21,2 441 441 441 21
G22,1 79 79 79 1, 1, 1, 1, 1, 5, 7
G22,2 484 484 484 22
G23,1 529 529 529 23
G24,1 176 176 176 4, 4, 12
G24,2 576 576 576 24
G24,3 75 75 73 1, 5, 7
G24,4 116 116 116 1, 1, 2, 2, 5, 9
G24,5 176 176 176 4, 4, 12
G24,6 116 116 116 1, 1, 2, 2, 5, 9
G24,7 176 176 176 4, 4, 12
G24,8 116 116 116 1, 1, 2, 2, 5, 9
G24,9 576 576 576 24
G24,10 252 252 252 3, 3, 3, 15

Table C.2: Terwilliger algebra dimension table orders 16-24
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Group Dimension T Dimension T0 character degrees of T
G24,11 252 252 3, 3, 3, 15
G24,12 43 42 1, 2, 2, 3, 5
G24,13 76 76 2, 2, 2, 8
G24,14 176 176 4, 4, 12
G24,15 576 576 24
G25,1 625 625 25
G25,2 625 625 25
G26,1 106 106 1, 1, 1, 1, 1, 1, 6, 8
G26,2 676 676 26
G27,1 729 729 27
G27,2 729 729 27
G27,3 137 137 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11
G27,4 137 137 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11
G27,5 729 729 27
G28,1 148 148 2, 2, 2, 6, 10
G28,2 784 784 28
G28,3 148 148 2, 2, 2, 6, 10
G28,4 784 784 28
G29,1 841 841 29
G30,1 275 275 5, 5, 15
G30,2 198 198 3, 3, 6, 12
G30,3 137 137 1, 1, 1, 1, 1, 1, 1, 7, 9
G30,4 900 900 30
G31,1 961 961 31
G32,1 1024 1024 32
G32,2 448 448 4, 4, 4, 20
G32,3 1024 1024 32
G32,4 448 448 4, 4, 4, 20
G32,5 448 448 4, 4, 4, 20
G32,6 142 142 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 11
G32,7 142 142 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 11
G32,8 142 142 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 11
G32,9 256 256 2, 2, 4, 6 14
G32,10 256 256 2, 2, 4, 6 14
G32,11 256 256 2, 2, 4, 6 14
G32,12 448 448 4, 4, 4, 20
G32,13 256 256 2, 2, 4, 6 14
G32,14 256 256 2, 2, 4, 6 14
G32,15 256 256 2, 2, 4, 6 14
G32,16 1024 1024 32

Table C.3: Terwilliger algebra dimension table order 24-32
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Group Dimension T Dimension T0 character degrees of T
G32,17 448 448 4, 4, 4, 20
G32,18 184 184 1, 1, 2, 2, 2, 7, 11
G32,19 184 184 1, 1, 2, 2, 2, 7, 11
G32,20 184 184 1, 1, 2, 2, 2, 7, 11
G32,21 1024 1024 32
G32,22 448 448 4, 4, 4, 20
G32,23 448 448 4, 4, 4, 20
G32,24 448 448 4, 4, 4, 20
G32,25 448 448 4, 4, 4, 20
G32,26 448 448 4, 4, 4, 20
G32,27 256 256 2, 2, 2, 2, 2, 2, 6, 14
G32,28 256 256 2, 2, 2, 2, 2, 2, 6, 14
G32,29 256 256 2, 2, 2, 2, 2, 2, 6, 14
G32,30 256 256 2, 2, 2, 2, 2, 2, 6, 14
G32,31 256 256 2, 2, 2, 2, 2, 2, 6, 14
G32,32 256 256 2, 2, 2, 2, 2, 2, 6, 14
G32,33 256 256 2, 2, 2, 2, 2, 2, 6, 14
G32,34 256 256 2, 2, 2, 2, 2, 2, 6, 14
G32,35 256 256 2, 2, 2, 2, 2, 2, 6, 14
G32,36 1024 1024 32
G32,37 448 448 4, 4, 4, 20
G32,38 448 448 4, 4, 4, 20
G32,39 256 256 2, 2, 4, 6, 14
G32,40 256 256 2, 2, 4, 6, 14
G32,41 256 256 2, 2, 4, 6, 14
G32,42 256 256 2, 2, 4, 6, 14
G32,43 142 142 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 11
G32,44 142 142 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 11
G32,45 1024 1024 32
G32,46 448 448 4, 4, 4, 20
G32,47 448 448 4, 4, 4, 20
G32,48 448 448 4, 4, 4, 20
G32,49 304 304 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17
G32,50 304 304 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17
G32,51 1024 1024 32
G33,1 1089 1089 33
G34,1 172 172 1, 1, 1, 1, 1, 1, 1, 1, 8, 10
G34,2 1156 1156 34
G35,1 1225 1225 35

Table C.4: Terwilliger algebra dimension table 32-35
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Group Dimension T Dimension T0 character degrees of T
G36,1 224 224 2, 2, 2, 2, 8, 12
G36,2 1296 1296 36
G36,3 171 171 3, 3, 3, 12
G36,4 224 224 2, 2, 2, 2, 8, 12
G36,5 1296 1296 36
G36,6 396 396 6, 6, 18
G36,7 224 224 2, 2, 2, 2, 8, 12
G36,8 1296 1296 36
G36,9 48 48 1, 1, 1, 1, 1, 1, 1, 1, 2, 6
G36,10 121 121 1, 1, 1, 1, 3, 3, 3, 3, 9
G36,11 171 171 3, 3, 3, 12
G36,12 396 396 6, 6, 18
G36,13 224 224 2, 2, 2, 2, 8, 12
G36,14 1296 1296 36
G37,1 1369 1369 37
G38,1 211 211 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 11
G38,2 1444 1444 38
G39,1 89 85 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 7
G39,2 1521 1521 39
G40,1 352 352 4, 4, 8, 16
G40,2 1600 1600 40
G40,3 116 116 2, 2, 2, 2, 10
G40,4 268 268 1, 1, 2, 2, 2, 2, 9, 13
G40,5 352 352 4, 4, 8, 16
G40,6 268 268 1, 1, 2, 2, 2, 2, 9, 13
G40,7 352 352 4, 4, 8, 16
G40,8 268 268 1, 1, 2, 2, 2, 2, 9, 13
G40,9 1600 1600 40
G40,10 700 700 5, 5, 5, 25
G40,11 700 700 5, 5, 5, 25
G40,12 116 116 2, 2, 2, 2, 10
G40,13 352 352 4, 4, 8, 16
G40,14 1600 1600 40
G41,1 1681 1681 41
G42,1 55 55 1, 1, 1, 1, 1, 1, 7
G42,2 148 140 2, 2, 2, 2, 4, 4, 10
G42,3 539 539 7, 7, 21
G42,4 333 333 3, 3, 3, 9, 15
G42,5 254 254 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 12
G42,6 1764 1764 42
G43,1 1849 1849 43

Table C.5: Terwilliger algebra dimension table orders 36-43
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Group Dimension T Dimension T0 character degrees of T
G44,1 316 316 2, 2, 2, 2, 2, 10, 14
G44,2 1936 1936 44
G44,3 316 316 2, 2, 2, 2, 2, 10, 14
G44,4 1936 1926 44
G45,1 2025 2025 45
G45,2 2025 2025 45
G46,1 301 301 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 13
G46,2 2116 2116 48
G47,1 2209 2209 47
G48,1 704 704 8, 8, 24
G48,2 2304 2304 48
G48,3 124 119 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 8
G48,4 704 704 8, 8, 24
G48,5 464 464 2, 2, 4, 4, 10, 18
G48,6 368 368 1, 1, 2, 2, 2, 2, 2, 11, 15
G48,7 368 368 1, 1, 2, 2, 2, 2, 2, 11, 15
G48,8 368 368 1, 1, 2, 2, 2, 2, 2, 11, 15
G48,9 704 704 8, 8, 24
G48,10 464 464 2, 2, 4, 4, 10, 18
G48,11 704 704 8, 8, 24
G48,12 464 464 2, 2, 4, 4, 10, 18
G48,13 464 464 2, 2, 4, 4, 10, 18
G48,14 464 464 2, 2, 4, 4, 10, 18
G48,15 233 233 1, 1, 1, 3, 3, 4, 4, 6, 12
G48,16 233 233 1, 1, 1, 3, 3, 4, 4, 6, 12
G48,17 233 233 1, 1, 1, 3, 3, 4, 4, 6, 12
G48,18 233 233 1, 1, 1, 3, 3, 4, 4, 6, 12
G48,19 464 464 2, 2, 4, 4, 10, 18
G48,20 2304 2304 48
G48,21 1008 1008 6, 6, 6, 30
G48,22 1008 1008 6, 6, 6, 30
G48,23 2304 2304 48
G48,24 1008 1008 6, 6, 6, 30
G48,25 576 576 3, 3, 6, 9, 21
G48,26 576 576 3, 3, 6, 9, 21
G48,27 576 576 3, 3, 6, 9, 21
G48,28 130 130 1, 2, 3, 4, 6, 8
G48,29 130 130 1, 2, 3, 4, 6, 8
G48,30 172 168 2, 4, 4, 6, 10
G48,31 304 304 4, 4, 4, 16
G48,32 300 300 2, 10, 14

Table C.6: Terwilliger algebra dimension table orders 44-48
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Group Dimension T Dimension T0 character degrees of T
G48,33 300 300 2, 10, 14
G48,34 464 464 2, 2, 4, 4, 10, 18
G48,35 704 704 8, 8, 24
G48,36 464 464 2, 2, 4, 4, 10, 18
G48,37 464 464 2, 2, 4, 4, 10, 18
G48,38 308 308 1, 1, 1, 1, 1, 1, 3, 3, 3, 5, 5, 15
G48,39 308 308 1, 1, 1, 1, 1, 1, 3, 3, 3, 5, 5, 15
G48,40 308 308 1, 1, 1, 1, 1, 1, 3, 3, 3, 5, 5, 15
G48,41 308 308 1, 1, 1, 1, 1, 1, 3, 3, 3, 5, 5, 15
G48,42 704 704 8, 8, 24
G48,43 464 464 2, 2, 4, 4, 10, 18
G48,44 2304 2304 48
G48,45 1008 1008 6, 6, 6, 30
G48,46 1008 1008 6, 6, 6, 30
G48,47 1008 1008 6, 6, 6, 30
G48,48 172 168 2, 4, 4, 6, 10
G48,49 304 304 4, 4, 4, 16
G48,50 124 119 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 8
G48,51 704 704 8, 8, 24
G48,52 2304 2304 48
G49,1 2401 2401 49
G49,2 2401 2401 49
G50,1 352 352 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 12, 14
G50,2 2500 2500 50
G50,3 550 550 5, 5, 10, 20
G50,4 352 352 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 12, 14
G50,5 2500 2500 50
G51,1 2601 2601 51
G52,1 424 424 2, 2, 2, 2, 2, 2, 12, 16
G52,2 2704 2704 52
G52,3 85 76 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 7
G52,4 424 424 2, 2, 2, 2, 2, 2, 12, 16
G52,5 2704 2704 52
G53,1 2809 2809 53

Table C.7: Terwilliger algebra dimension table order 48-53
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Group Dimension T Dimension T0 character degrees of T
G54,1 407 407 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 15
G54,2 2916 2916 54
G54,3 504 504 3, 3, 3, 3, 12, 18
G54,4 891 891 9, 9, 27
G54,5 127 127 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 10
G54,6 127 127 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 10
G54,7 407 407 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 15
G54,8 216 208 4, 5, 5, 5, 5, 10
G54,9 2916 2916 54
G54,10 548 548 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 22
G54,11 548 548 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 22
G54,12 891 891 9, 9, 27
G54,13 504 504 3, 3, 3, 3, 12, 18
G54,14 407 407 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 15
G54,15 2916 2916 54
G55,1 73 63 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 7
G55,2 3025 3025 55
G56,1 592 592 4, 4, 4, 12, 20
G56,2 3136 3136 56
G56,3 484 484 1, 1, 2, 2, 2, 2, 2, 2, 13, 17
G56,4 592 592 4, 4, 4, 12, 20
G56,5 484 484 1, 1, 2, 2, 2, 2, 2, 2, 13, 17
G56,6 592 592 4, 4, 4, 12, 20
G56,7 484 484 1, 1, 2, 2, 2, 2, 2, 2, 13, 17
G56,8 3136 3136 56
G56,9 1372 1372 7, 7, 7, 35
G56,10 1372 1372 7, 7, 7, 35
G56,11 71 71 1, 1, 1, 1, 1, 1, 1, 8
G56,12 592 592 4, 4, 4, 12, 20
G56,13 3136 3136 56
G57,1 165 159 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 6, 9
G57,2 3249 3249 57
G58,1 466 466 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 14, 16
G58,2 3364 3364 58
G59,1 3481 3481 59

Table C.8: Terwilliger algebra dimension table order 54-59
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Group Dimension T Dimension T0 character degrees of T
G60,1 1100 1100 10, 10, 30
G60,2 792 792 6, 6, 12, 24
G60,3 548 548 2, 2, 2, 2, 2, 2, 2, 14, 18
G60,4 3600 3600 60
G60,5 73 71 1, 2, 3, 3, 5, 5
G60,6 261 261 3, 3, 3, 3, 15
G60,7 143 132 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 5, 9
G60,8 242 242 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 6, 12
G60,9 475 475 5, 5, 5, 20
G60,10 792 792 6, 6, 12, 24
G60,11 1100 1100 10, 10, 30
G60,12 548 548 2, 2, 2, 2, 2, 2, 2, 14, 18
G60,13 3600 3600 60
G61,1 3721 3721 61
G62,1 529 529 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 15, 17
G62,2 3844 3844 62
G63,1 333 315 3, 3, 3, 3, 6, 6, 15
G63,2 3969 3969 63
G63,3 333 315 3, 3, 3, 3, 6, 6, 15
G63,4 3969 3969 63

Table C.9: Terwilliger algebra dimension table order 60-64
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Group Dimension T Dimension T0

G21,1 37 35
G24,12 43 42
G39,1 89 85
G42,2 148 140
G48,3 124 119
G48,30 172 168
G48,48 172 168
G48,50 124 119
G52,3 85 76
G54,8 216 208
G55,1 73 63
G57,1 165 159
G60,5 73 71
G60,7 143 132
G63,1 333 315
G63,3 333 315
G64,32 226 223
G64,33 226 223
G64,34 226 223
G64,35 226 223
G64,36 226 223
G64,37 226 223
G64,41 376 361
G64,42 376 361
G64,43 376 361
G64,46 376 361
G64,134 376 367
G64,135 376 367
G64,136 376 367
G64,137 376 367
G64,138 376 367
G64,139 376 367
G64,152 376 361
G64,153 376 361
G64,154 376 361
G64,190 376 361
G64,191 376 361
G64,257 592 583
G64,258 592 583
G64,260 592 583

Table C.10: Non triply regular groups of order 1-64
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Group Dimension T Dimension of Components
D6 11 1, 1, 9
D8 28 1, 1, 1, 25
D10 22 1, 1, 4, 16
D12 44 4, 4, 36
D14 37 1, 1, 1, 9, 25
D16 64 1, 1, 4, 9, 49
D18 56 1, 1, 1, 1, 16, 36
D20 88 4, 4, 16, 64
D22 79 1, 1, 1, 1, 1, 25, 49
D24 116 1, 1, 4, 4, 25, 81
D26 106 1, 1, 1, 1, 1, 1, 36, 64
D28 148 4, 4, 4, 36, 100
D30 137 1, 1, 1, 1, 1, 1, 1, 49, 81
D32 184 1, 1, 4, 4, 4, 49, 121
D34 172 1, 1, 1, 1, 1, 1, 1, 1, 64, 100
D36 224 4, 4, 4, 4, 64, 144
D38 211 1, 1, 1, 1, 1, 1, 1, 1, 1, 81, 121
D40 268 1, 1, 4, 4, 4, 4, 81, 169
D42 254 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 100, 144
D44 216 4, 4, 4, 4, 4, 100, 196
D46 301 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 121, 169
D48 368 1, 1, 4, 4, 4, 4, 4, 121, 225
D50 352 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 144, 196
D52 424 4, 4, 4, 4, 4, 4, 144, 256
D54 407 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 169, 225
D56 484 1, 1, 4, 4, 4, 4, 4, 4, 169, 289
D58 466 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 196, 256
D60 548 4, 4, 4, 4, 4, 4, 4, 196, 324
D62 529 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 225, 289
D64 616 1, 1, 4, 4, 4, 4, 4, 4, 4, 225, 361

Table C.11: Terwilliger algebra dimension table of Dihedral Groups of orders 6 to 64
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Appendix D. Magma Code

The following is the magma code that was used in computing the tables in Appendix C. It

is broken into several parts with each part being explained to some degree. One thing worth

noting is that in each separate section of the code, the same thing may be done. For example

the A−matrices for the association scheme are created in many of these pieces of code. In

using several pieces of the provided code at the same time, redundant parts like this can be

removed, so they are only done once.

The first piece of code is magma code that creates the conjugacy classes for a given group.

This code creates them and stores them as a sequence of sets.

orbsc:=function(g);

cc:=Classes(g);

sc:=[Class(g,x[3]):x in cc];

ga:=GroupAlgebra(RationalField(),g);

psga:=PowerSet(ga);

UU:=[&+(psga!x):x in sc ];

return UU;

end function;

The next piece of code is magma code that creates the Terwilliger algebra with base

point e and finds the dimension for the group association for a given group that is called g

in the code. It also creates the Wedderburn components for the Terwilliger algebra, which

are given in a sequence called I and gives the dimension of each of them. Changing the first

line of the code to the group that you want to look at will allow this code to be used to find

the explained information for any group that magma is capable of handling.
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//Create Terwilliger Algebra

//Forms the associate classes from the conjugacy classes.

g:=SmallGroup(6,1);

o:=orbsc(g);

q:=#g/2;

ssc:=o;

ga:=Parent(ssc[1]);g:=Group(ga);

F:=CyclotomicField(Floor(#g));

FC:=QuadraticField(Floor(q));

F1:=Compositum(F,FC);

r:=CosetImage(g,sub< g| >);

m:=GModule(r,F1);

ag:=ActionGenerators(m);

mg:=MatrixGroup< #g, F1|ag >;

mr:=MatrixRing(F1,#g);

so:=[Support(x):x in o];

eg:= [ ];

for i:=1 to #so do

so2:=SetToSequence(so[i]);

eg:= eg cat so2;

end for;

//Creates the A-matrices using the ordering of the associate classes in eg.

A:=[ ];

for i:=1 to #so do

D:=ZeroMatrix(F1,#g,#g);

for j:=1 to #eg do

for k:=1 to #eg do
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if eg[k]*eg[j]∧-1 in so[i] then

D[j][k] :=1;

end if;

end for;

end for;

A:= A cat [D];

end for;

//Creates the E∗ matrices using the A-matrices

ES:=[ ];

for i:=1 to #o do

m:=mr!0;

for j:=1 to #g do

m[j,j]:= A[i][1,j];

end for;

ES:=ES cat [m];

end for;

//Creates the Terwilliger algebra and finds its dimension.

TC:=sub< mr|A,ES >;

Dimension(TC);

//Creates the E-matrices and uses them to find the Wedderburn components.

sumc:=sub< mr|TC >;

EC:=CentralIdempotents(sumc);

I:=[ideal< sumc|EC[i] > : i in [1.. #EC]];

for i:=1 to #EC do

i,Dimension(I[i]);

end for;

94



The next section of magma code is code that will create T0(g) for a given group g. It

also computes the dimension of T0(g).

//Create T0 basis

//Forms the associate classes from the conjugacy classes.

g:=SmallGroup(6,1);

o:=orbsc(g);

q:=#g/2;

ssc:=o;

ga:=Parent(ssc[1]);g:=Group(ga);

F:=CyclotomicField(Floor(#g));

FC:=QuadraticField(Floor(q));

F1:=Compositum(F,FC);

r:=CosetImage(g,sub< g| >);

m:=GModule(r,F1);

ag:=ActionGenerators(m);

mg:=MatrixGroup< #g, F1|ag >;

mr:=MatrixRing(F1,#g);

so:=[Support(x):x in o];

eg:= [ ];

for i:=1 to #so do

so2:=SetToSequence(so[i]);

eg:= eg cat so2;

end for;

//Creates the A-matrices using the ordering of the associate classes in eg.

A:=[ ];

for i:=1 to #so do

D:=ZeroMatrix(F1,#g,#g);
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for j:=1 to #eg do

for k:=1 to #eg do

if eg[k]*eg[j]∧-1 in so[i] then

D[j][k] :=1;

end if;

end for;

end for;

A:= A cat [D];

end for;

//Creates the E∗ matrices using the A-matrices

ES:=[ ];

for i:=1 to #o do

m:=mr!0;

for j:=1 to #g do

m[j,j]:= A[i][1,j];

end for;

ES:=ES cat [m];

end for;

//Computes a basis for T0. Then T0 is created and its dimension is found.

t0:=[ ];

for i:= 1 to #ES do;

for j:= 1 to #A do;

for k:= 1 to #ES do;

t1:=ES[i]*A[j]*ES[k];

if t1 ne 0 then

t0:= t0 cat [t1];

end if;

96



end for;

end for;

end for;

MR:=KMatrixSpace(F1,#g,#g);

T0:=sub< MR|t0 >;

Dimension(T0);

This next piece of code creates T ∗0 (g). It then computes its dimension.

//Create T0* basis //Forms the associate classes from the conjugacy classes.

//Forms the associate classes from the conjugacy classes. g:=SmallGroup(6,1);

o:=orbsc(g);

q:=#g/2;

ssc:=o;

ga:=Parent(ssc[1]);g:=Group(ga);

F:=CyclotomicField(Floor(#g));

FC:=QuadraticField(Floor(q));

F1:=Compositum(F,FC);

r:=CosetImage(g,sub< g| >);

m:=GModule(r,F1);

ag:=ActionGenerators(m);

mg:=MatrixGroup< #g, F1|ag >;

mr:=MatrixRing(F1,#g);

so:=[Support(x):x in o];

eg:= [ ];

for i:=1 to #so do

so2:=SetToSequence(so[i]);

eg:= eg cat so2;
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end for;

//Creates the A-matrices using the ordering of the associate classes in eg.

A:=[ ];

for i:=1 to #so do

D:=ZeroMatrix(F1,#g,#g);

for j:=1 to #eg do

for k:=1 to #eg do

if eg[k]*eg[j]∧-1 in so[i] then

D[j][k] :=1;

end if;

end for;

end for;

A:= A cat [D];

end for;

//Creates the Bose-Mesner Algebra from the A-matrices. It then finds the E-matrices.

BM:=sub< mr|A >;

E:=CentralIdempotents(BM);

//Creates the A∗ matrices.

AS:=[ ];

for i:=1 to #o do

m:=mr!0;

for j:=1 to #g do

m[j,j]:= #g*E[i][1,j];

end for;

AS:=AS cat [m];

end for;

//Creates a basis for T ∗0 (g) as well as creating T ∗0 (g). Its dimension is then calculated.
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t0S:=[ ];

for i:= 1 to #AS do;

for j:= 1 to #E do;

for k:= 1 to #AS do;

t1:=E[i]*AS[j]*E[k];

t0S:= t0S cat [t1];

end for;

end for;

end for;

MR:=KMatrixSpace(F1,#g,#g);

T0S:=sub< MR|t0S >;

Dimension(T0S);

By using the three pieces of code above, one can find all of the values that are included

in the first 7 tables in Appendix C.

The next section of code is code that has been specifically written for the group association

scheme for dihedral groups. This code orders the conjugacy classes as well as the elements

that appear in the conjugacy classes.

//Dihedral Group code

//Create the conjugacy classes with the desired ordering of elements.

n:=8;

g:=DihedralGroup(n);

q:=#g/2;

F:=CyclotomicField(Floor(#g));

FC:=QuadraticField(Floor(q));

F1:=Compositum(F,FC);

r:=CosetImage(g,sub< g| >);

m:=GModule(r,F1);
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ag:=ActionGenerators(m);

mg:=MatrixGroup< #g, F1|ag >;

mr:=MatrixRing(F1,#g);

so:=[Id(g)];

eg:=[Id(g)];

so2:={ };

so3:={ };

if IsOdd(n) then

m:=Floor((n-1)/2);

for i:=1 to m do

so:=so cat [g.1∧i,g.1∧-i];

eg:=eg cat [g.1∧i];

eg:=eg cat [g.1∧-i];

end for;

for i:= 0 to n-1 do

so2:= so2 join g.1∧i*g.2;

eg:= eg cat [g.1∧i*g.2];

end for;

so:= so cat [so2];

else

m:=Floor(n/2);

for i:=1 to m-1 do

so:=so cat [g.1∧i,g.1∧-i];

eg:=eg cat [g.1∧i];

eg:=eg cat [g.1∧-i];

end for;

so:=so cat [g.1∧m];
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eg:=eg cat [g.1∧m];

for i:=0 to m-1 do

so2:= so2 join g.1∧(2*i)*g.2;

eg:= eg cat [g.1∧(2*i)*g.2];

end for;

so:= so cat [so2];

for i:=0 to m-1 do

so3:= so3 join g.1∧(2*i+1)*g.2;

eg:= eg cat [g.1∧(2*i+1)*g.2];

end for;

so:= so cat [so3];

end if;

A:=[ ];

for i:=1 to #so do

D:=ZeroMatrix(F1,#g,#g);

for j:=1 to #eg do

for k:=1 to #eg do

if eg[k]*eg[j]∧-1 in so[i] then

D[j][k] :=1;

end if;

end for;

end for;

A:= A cat [D];

end for;

ES:=[ ];

for i:=1 to #so do

m:=mr!0;
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for j:=1 to #g do

m[j,j]:= A[i][1,j];

end for;

ES:=ES cat [m];

end for;

TC:=sub< mr|A,ES >;

Dimension(TC);

sumc:=sub< mr|TC >;

EC:=CentralIdempotents(sumc);

I:=[ideal< sumc|EC[i] > : i in [1.. #EC]];

for i:=1 to #EC do

i,Dimension(I[i]);

end for;
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