Mean Square Displacement for a Discrete Centroid Model of Cell Motion and a Mathematical Analysis of Focal Adhesion Lifetimes and Their Effect on Cell Motility

Mary Ellen Furner Rosen

Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Physical Sciences and Mathematics Commons

BYU ScholarsArchive Citation
Rosen, Mary Ellen Furner, "Mean Square Displacement for a Discrete Centroid Model of Cell Motion and a Mathematical Analysis of Focal Adhesion Lifetimes and Their Effect on Cell Motility" (2021). Theses and Dissertations. 8780.
https://scholarsarchive.byu.edu/etd/8780

This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact ellen_amatangelo@byu.edu.
One of the characteristics that distinguishes living things from non-living things is motility. On the cellular level, the motility or non-motility of different types of cells can be life building, life-saving or life-threatening. A thorough study of cell motion is needed to help understand the underlying mechanisms of motion in order to be able to inhibit or promote cell motion [1]. We introduce a discrete centroid model of cell motion in the context of a generalized random walk. We find an approximation for the theoretical mean square displacement (MSD) that uses a subset of the state space to estimate the MSD for the entire space. We give some intuition as to why this is an unexpectedly good estimate. A lower and upper bound for the MSD is also given. We extend the centroid model to an ODE model and use it to analyze the distribution of focal adhesion (FA) lifetimes gathered from experimental data. We found that in all but one case a unimodal, non-symmetric gamma distribution is a good match for the experimental data. We use a detach-rate function in the ODE model to determine how long a FA will persist before it detaches. A detach-rate function that is dependent on both force and time produces distributions with a best fit gamma curve that closely matches the data. Using the data gathered from the matching simulations, we calculate both the cell speed and mean FA lifetime and compare them. Where available, we also compare this relationship to that of the experimental data and find that the simulation reasonably matches it in most cases. In both the simulations and experimental data, the cell speed and mean FA lifetime are related, with longer mean lifetimes being indicative of slower speeds. We suspect that one of the main predictors of cell speed for migrating cells is the distribution of the FA lifetimes.

Keywords: cell motion, focal adhesions, biology, dynamical systems, stochastic process, random walk, generalized random walk, mean square displacement, gamma distribution, detach-rate function
Acknowledgments

Thanks to my husband and my children and their spouses for all of their encouragement and support. Thanks to my parents for instilling in me a love of learning. Thanks to my advisor, John Dallon, for being patient and guiding me through the process. Finally, thanks to God who helped me every step of the way. “I can do all things through Christ which strengtheneth me.” (Philippians 4:13)
CONTENTS

Contents iv

List of Tables vi

List of Figures viii

1 Introduction to Cell Motion 1

2 Mean Square Displacement for a Discrete Centroid Model of Cell Motion 2
 2.1 Introduction to the Mean Square Displacement 3
 2.2 Random Walks 6
 2.3 Finding an Estimate for the Theoretical MSD for a Specific Generalized Random Walk 8
 2.4 Lower Bound 19
 2.5 Upper Bound 22
 2.6 MSD as a Function of Tau 27
 2.7 Discussion 28

3 A Mathematical Analysis of Focal Adhesion Lifetimes and Their Effect on Cell Motility 29
 3.1 FA Lifetimes are Gamma Distributed 29
 3.2 Mathematical Model of Cell Motion Mimics FA Lifetime Distributions 36
 3.3 Focal Adhesion Lifetime Regulates Cell Speed 47
 3.4 Discussion 49

4 Conclusion 51

A Units and Parameters 53
List of Tables

2.1 Centroid Model (n=2) for \(j \geq 1\). The projected state is the state space considering only the indicated number of attached FAs at event \(j\). ... 11

2.2 Centroid Model (n=5). The superscripts are an event counter, and the subscript on \(\eta\) for an attach event is the \(k\)th outreach and for a detach event is the outreach order in the creation story of the sequential configuration. *The starred values are only valid for sequential attachments. (For the purposes of finding an estimate for the MSD, the probabilities on the table are for the entire state space even though the random variables for a detach event are only valid for a sequential configuration.) .. 15

3.1 Different cell types with their associated FA lifetime statistics. The double horizontal lines split the table into three categories: raw data and estimated raw data, histogram data, and central tendency and/or dispersion statistics only. *IQR is interquartile range. ... 30

3.2 This table finds the Kullback-Leibler Divergence (KL-Divergence) between the experimental data and different standard distributions for several cell types. For the Astrocytes, the first line is information for the leader cells and the second line is for the follower cells. The term N.A. indicates that the KL Divergence is not available because the support of the experimental distribution is not a subset of the comparing distribution, and the KL Divergence cannot be computed in this case. ... 35

3.3 The detach-rate function for the simulation is \(r(t, f) = h(t) \cdot g(f)\). Different functions for \(h(t)\) and \(g(f)\) are given with the resulting distributions. Both \(F\) and \(T\) are force and time thresholds, respectively, when the nature of \(h\) and \(g\) changes. Both \(c\) and \(a\) are constants. The total number of FAs for the simulation is 10 with 5 attached on average. ... 39
3.4 Different cell types with the parameters used in Equation 3.1. The double horizontal line splits the table into two categories: Raw data and estimated raw data, and histogram data. The average speed was computed by taking the average of the distance traveled in each time increment and dividing it by the time increment. Speed was computed by taking the distance between the centroid at the beginning of the simulation and the end of the simulation and dividing it by the total time. *MSD is measured in μm^2, and the speeds in $\mu m/min$. **wound assay

B.1 Distributions for different detach-rate functions, $r(t, f) = h(t) \cdot g(f)$, are shown in the above Tables. Distributions for the FA lengths are also shown in the first three tables.
List of Figures

2.1 This figure from Dallon, et.al. [2] depicts the way the cell is being modeled mathematically. The cell is a center location (nucleus) with attached springs. The other ends of the springs correspond to the different FAs that are attached to the extracellular matrix at “x”.

2.2 Visualization of Centroid Model (n=2). The left column shows the three possible initial conditions: No attached FAs, one attached FA and 2 attached FAs (in any configuration). The arrows point to possible transitions. Distance is measured vertically. The open dots indicate a detached adhesion site and a black dot represents an attached adhesion site. An “x” indicates the centroid. When the centroid is in the same position as a dot, then it is indicated to the right of the dot.

2.3 For the left panel, the experimental MSD (Equation 2.2 with $\tau = 1$) is computed from a simulated trajectory with 10,000,000 events and is marked with a red “x” for different values of FAs. It is compared to the estimated theoretical MSD found in Equation 2.11, given by the solid lines. The highest graph is for $r = 1/3$, the middle for $r = 1$, and the lowest for $r = 10$. The right panel shows the relative error between the experimental and theoretical MSD for different values of r. For this simulation and all reported simulations the angle of outreach is from -30 to 30 degrees, and the length of outreach is from 0 to 10. Generating more data will smooth out the curves.

2.4 The experimental MSD computed from Equation 2.2 with $\tau = 1$ (red x’s) compared against Equation 2.11, the estimated theoretical MSD (black line), and the lower bound for the MSD (blue line) found in Equation 2.15. For this graph, a trajectory of 10,000 events was used for the experimental MSD with $r=1$.

viii
2.5 This shows the maximum displacement for a given number of total FAs that are all attached. Each line is composed of asterisks that represent $c^{j+1} - c^j$ where c^j is the location of the centroid with the initial FA attached at 0 and all other FAs located further and further from 0 as described in the text. The value c^{j+1} is the location of the centroid after 0 detaches. The change from dark to light is indicative of an increase in the number of FAs. Notice that the darkest horizontal line is at 1/2 (n=2), the next darkest horizontal line is at 2/3 (n=3) and so on. Notice that more iterations are required to reach the steady state as the number of attached FAs increases.

2.6 Upper bound for the experimental MSD. A trajectory of 100,000 events with $r = 1$ was used to compute the experimental MSD defined in Equation 2.2.

2.7 This figure visualizes the difference between the theoretical MSD vs. tau (assuming the process is the sum of iids) and the model’s MSD vs. tau (which is not a sum of iids). The lines represents the relationship between tau and the experimental MSD. The “x” uses the estimated theoretical MSD (Equation 2.11) and expectation (Equation 2.5) to compute the MSD in Equation 2.4 for different values of tau. As the line changes from red to blue, the number of total FAs increases from 2 to 10. There were 1,000,000 events with $r=10$.

2.8 This figure visualizes the relative difference between the experimental MSD and the right side of Equation 2.4 for different values of τ, or the relative difference between the “x’s” and lines in Fig. 2.7. As the line changes from red to blue, the number of total FAs increases from 2 to 10. The magnitude of error being greater for two FAs could be explained by larger regions of random variable overlap and limited state choices, creating greater dependency. Parameters are per Figure 2.7.

3.1 Available FA lifetimes raw data histogram and gamma fit for keratinocytes from Stehbens et al. [3].
3.2 FA lifetimes raw data histogram and gamma fit for mouse embryonic fibroblasts from Cleghorn et al. [4] 32
3.3 FA lifetimes raw data histogram and gamma fit for fibroblasts from Berginski et al. [5] 32
3.4 FA lifetimes raw data histogram and gamma fit for cancer cells from Astro et al. [6] 33
3.5 FA lifetimes raw data histogram and gamma fit for cancer cells from Pascalis et al. [7] for both the leader cells (left panel) and follower cells (right panel). 33
3.6 FA lifetimes extracted from a histogram and gamma fit for cancer cells from Stricker et al. [8] 34
3.7 A comparison of best fit distributions to the Cleghorn et al. [4] data. The data was normalized and the "fitdist" MATLAB function was used to find the best fit for each type of distribution except the uniform distribution as discussed in the text. 36
3.8 In this figure the effect of changing T in the detach-rate function is shown. The red line is the gamma curve fit for the Cleghorn et al. [4] data for both panels. The other curves show how the nature of the curve changes as the value of T changes. For smaller values of T, the uptick of the curve starts sooner, as seen in the right panel magnification of the curve near the origin. The values of T start at 8.5 for the first uptick curve and increase to 12.5 for the last uptick curve. 41
3.9 In this figure, the effect of changing F in the detach-rate function is shown. The red line is the gamma curve fit for the Cleghorn et al. [4] data. Smaller values of F in Equation 3.3 produce a higher amplitude curve as seen in the solid black line. The amplitude decreases and the tail elongates as the value of F increases. The value of F increases from 5.077 for the tallest curve to 5.877 for the shortest curve. 42
3.10 These are distributions of the FA lifetimes generated by the model when simulating data for Stehbens et al. [3] (a), Cleghorn et al. [4] (b), Berginski et al. [5] (c), Astro et al. [6] (d), Pascalis et al. [7] (e) (leader cells), and Spanjaard et al. [9] (f). The parameters for the detach-rate function are taken from Table 3.4 and produce the best fit gamma curves that match those of the experimental data. The uptick at the beginning of some of the distributions appears to be an artifact of the model and is explained in Appendix C.

3.11 Experimental data gamma curves are matched by the mathematical model. The parameters used for the detach-rate function in the model are found in Table 3.4. The simulation was run for 4500 minutes with 40 total FAs for the cell with an average of 30 FAs attached over the duration of the simulation.

3.12 This figure shows how the average number of attached FAs changes the lifetime distribution. The total number of FAs is 100. The different colors are the averaged number of attached FAs. The values for the parameters for T and F are those listed on Table 3.4 for the mouse embryonic fibroblasts [4].

3.13 This figure shows a better fit for the astrocyte follower cells data found in [7]. The parameters for the followers cells are per Table 3.4, but the average number of attached FAs was increased from 30 to 38 out of 40.
3.14 This figure shows how the lifetime distribution changes if the average number of attached FAs remains constant, but the total number of FAs changes. For the left panel, the average number of attached FAs is 30 for every simulation. The different colored curves are gamma fits for the simulations, varying the total number of FAs. The values for the parameters for T and F are those listed on Table 3.4 for the mouse embryonic fibroblasts [4]. The black dotted line in the right panel is the average gamma fit of 20 simulations using the same parameter values that were used in the left figure. The error bars are the standard deviation of the 20 simulations. There are 40 total FAs with an average of 30 attached FAs for each simulation. The red line is the experimental data gamma fit.

3.15 This figure compares the cell speed with the mean FA lifetime of both the simulations and the experimental data. The asterisks represent information taken from the simulations using the model. The triangles are experimental data. When the asterisk and triangle agree in color, then the asterisk data comes from the simulation that has the best fit gamma curve that closely matches the best fit experimental gamma curve for the control cells. Except for the Meenderink et al. [6] data (red), the experimental and simulated data are reasonably close, although the actual speeds tend to be faster. When the means don’t align, it may be due to the fact that the experiment to find the speed was conducted on different cells than the experiment to find the FA lifetimes. For the Pascalis et al. [7] data, the FA lifetime mean and the speed were given for the follower and leader cells combined. Notice how that triangle fits between the simulations for the leader and follower cells. The squares are simulations where the time parameter T is changed as per Figure 3.8 and the pluses are simulations where the force parameter F is changed as per Figure 3.9.
C.1 This figure shows the distribution from the simulation that produced a gamma fit that best matched the Meenderink experimental gamma fit. Notice the spike at the beginning of the distribution. The redline is the best fit gamma curve to the simulation, and the blue vertical line is the minimum data value from the experimental data. This spike is an artifact of the model, and disappears when the length of outreach is smaller. For this simulation, there are 40 total FAs with 30 attached on average. The outreach is from 1 to 10.

C.2 This figure shows the distribution from the simulation using the Meenderink parameters from Table 3.4 with 40 total attachments and 30 attachments on average. The outreach is from 1 to 6. Notice the absence of the spike at the beginning.
Chapter 1. Introduction to Cell Motion

One of the characteristics that distinguishes living things from non-living things is motility. On the cellular level, the motility or non-motility of different types of cells can be life-building, life-saving or life-threatening. An example of life-building is embryogenesis when cells must move and differentiate in order for the embryo to grow and develop [10]. Consider the urgency for white blood cells to move to a new location in order to fight pathogens, or for fibroblasts to migrate to an area to facilitate wound healing - both examples of life-saving cell motion. The break off of a cancer cell from a group and movement to another location, metastasis, with the consequent formation of new tumors is an example of life-threatening cell motion. A thorough study of cell motion is needed to help understand the underlying mechanisms of motion in order to be able to inhibit or promote cell motion [1].

Cells are classified into three categories: prokaryotes, archaeabacteria and eukaryotes. Prokaryotic cells include bacteria and cyanobacteria and lack a distinct nucleus. Archaeabacteria ("old" bacteria) include many extremophile bacteria, and until recently were included in the prokaryote group [11]. Eukaryotic cells make up higher life forms and have a distinct nucleus [12]. There are differences in motility between these types of cells.

Prokaryotes can move across surfaces or through fluids by "swimming, swarming, gliding, twitching or floating" [13]. Some of the mechanisms for motion in prokaryotes are surface appendages, such as flagella, pili (which are hairlike structures that pull the cell), and large cell surface Gli proteins connected to the cytoskeleton that move *Mycoplasma mobile* in a centipede-like motion. Some prokaryotes such as *Listeria monocytogenes* and *Shigella flexneri* use polar polymerization of the actin filaments in a host eukaryotic cell to push them within and between cells [13]. Many bacteria and archaea use non-active transport such as buoyancy from gas vesicles [14] to move the cell vertically in the water column.

Eukaryotes mostly exhibit ciliary or flagellar motion and amoeboid motion [15]. The main mechanism of active transport for amoeboid cell motion is the creation and dismantling of
structures, called focal adhesions (FAs), which were first described in a paper in 1978 [16], and is unique to eukaryotes. The cell interacts with the extracellular matrix (ECM) through these integrin-based FAs, both on a mechanical and chemical level, thus giving the cell polarity and a mechanism to move [17]. (This type of motion need not happen on a surface, but can also happen in three dimensions [18],[19].) As the actin filaments at the leading edge of a cell increase, they form a protruding lamellipodia where the integrin-mediated nascent adhesions begin to form and attach to the ECM. These nascent adhesions either dismantle quickly, called adhesion turnover, or attach to the cytoskeleton and mature, forming a full FA complex which eventually dismantles at the back end of the cell in order to facilitate forward motion [5]. The process of motion, then, is the protrusion of the leading edge, the creation and attachment of adhesions at the leading edge and the disassembly and release of adhesions from the tail, and finally the contraction of the cell in the forward direction [20]. While there is non-FA amoeboid motion, FA structures are the most common and will be the main topic of cell motion study for this paper. In general, any motion where the cell gains traction by exerting forces at localized regions fits in the theoretical framework discussed here. (For a more thorough discussion of experimental and theoretical ideas of non-FA amoeboid motion, see Paluch et al. [21].)

In Chapter 2, we introduce the mean square displacement (MSD) in the context of a mathematical model for amoeboid cell motion. We find an estimate for the theoretical MSD that closely matches the experimental MSD. We then find an upper and lower bound for the experimental MSD.

In Chapter 3, we do some statistical analysis of experimental data for different cell types, in particular, data on FA lifetimes. We look at the different distributions of FA lifetimes and use a mathematical model to further analyze the mechanics and statistics behind the FA lifetimes. Using the simulated and experimental data, we look at the relationship between the speed of the cell and the mean FA lifetime for the different cell types.
Chapter 2. Mean Square Displacement for
A Discrete Centroid Model of Cell
Motion

2.1 Introduction to the Mean Square Displacement

The mean square displacement (MSD) is a statistical measure of the average distance a
particle travels over time. It can be thought of as a measure of overall drift. For instance, if
a particle has a lot of motion within a small radius, its displacement over time may not be a
good measure of overall motion, whereas the MSD will capture that. If the data available is
a sufficiently long time trajectory for a single particle, then the time averaged MSD, $M_N(\tau)$,
at lag time τ is commonly defined and calculated as follows:

$$M_N(\tau) = \frac{1}{N - \tau + 1} \sum_{i=0}^{N-\tau} |X(i + \tau) - X(i)|^2, \quad \tau = 1, 2, \ldots, N - 1, N$$ (2.1)

where N is the time length of the particle trajectory and X is the location of a particle at
a given time [22]. Thus, the MSD acts on a discrete time stochastic process and can be
extended to a continuous time stochastic process by means of the definition of the second
moment in the continuous case [23].

The advantages of the Equation 2.1 definition is that for small values of τ, there are
many displacements, and the MSD is well averaged. The disadvantage is that it complicates
any theoretical calculations when $\tau > 1$ because there is overlap between the displacements,
and successive displacements are not independent.

If the definition is restricted, so that no overlap is allowed between displacements then
the time averaged MSD is defined as
\[
\bar{M}_N(\tau) = \frac{1}{\lfloor (N/\tau) \rfloor} \sum_{i=0}^{\lfloor (N/\tau) \rfloor - 1} |X((i + 1)\tau) - X(i\tau)|^2, \quad \tau = 1, 2, \ldots, N - 1, N
\] (2.2)

where \(\lfloor \cdot \rfloor \) denotes the integer part. This allows displacements to be uncorrelated for theoretical calculations, but if \(\tau \) is large, it is a poor statistical measure due to fewer sample points. In the subsequent theoretical sections of this paper, this is the definition that will be used for the MSD, since our calculations assume there is independence between successive displacements.

If multiple particles of the same type are being tracked over a short period of time then the ensemble averaged MSD (EAMSD) at time \(\tau \) is defined as:

\[
EAMSD = \tilde{M}_P(\tau) = \frac{1}{P} \sum_{i=1}^{P} (|X^i(\tau) - X^i(0)|)^2
\]

where \(P \) is the number of particles and \(X^i(\tau) \) is the location of the \(i \)-th particle at time \(\tau \), and \(X^i(0) \) is the referenced position for the \(i \)-th particle. When both types of data are available and the system is ergodic (the time average and ensemble average are equivalent for large time) [24], then a simultaneous time and ensemble average is sometimes used, where a time average MSD is computed for each particle and then the average is computed over all of the time MSDs. This is especially helpful when lag times are long and improves the statistics [25].

In the year 1905, Einstein published his Annus Mirabilis (“extraordinary year”) papers, the second of which contained his research and results on Brownian motion [26]. From his work on the diffusion equation in one dimension he was able to find a linear, time dependent relationship between the MSD and the diffusion coefficient \(D \), which is a measure of the rate that a particle can move through a fluid that is in thermal equilibrium. The relationship is given by \(M_N(\tau) = 2D\tau \) in one dimension and is extended to \(M_N(\tau) = 2dD\tau \) for a \(d \)-dimensional system. It was a landmark paper and established the value of statistical
mechanics in research. The relationship for MSD was further extended to the viscosity of a purely viscous fluid at thermal equilibrium by research simultaneously developed by both Einstein and Sutherland, although Sutherland’s contributions were only recognized recently [27]. The relationship between the diffusion coefficient and the viscosity, η, of a fluid is given by the Stokes-Einstein-Sutherland relation $D = k_B T/(6\pi \eta R_p)$ where k_B is Boltzmann’s constant, T is the absolute temperature, and R_p is the radius of a particle, and the particle experiences Stokes drag [26] [28]. Thus, $M_N(\tau) = 2d\tau k_B T/(6\pi \eta R_p)$.

Further research has shown that the MSD can be used to determine features of the local rheology of non-Newtonian viscoelastic fluids. Thus, the complex shear modulus [25], the dynamic moduli [29], and the creep compliance [30] for these fluids can be found using the MSD. A power law tau dependence between the MSD and tau given by $M_N(\tau) = A\tau^\alpha$ is indicative that a particle is moving by nondiffusive transport when $\alpha \neq 1$. It also describes diffusion through a viscoelastic medium [31] [32]. The MSD scaling exponent, α, has values $0 \leq \alpha \leq 2$ for physical processes. When $\alpha < 1$ the process is considered subdiffusive, and for $\alpha > 1$, it is superdiffusive. When the MSD exhibits the relationship $M_N(\tau) = 4D\tau + (V\tau)^2$ with V being velocity, the particle exhibits directed motion with diffusive behavior. These different relationships indicate that the MSD, along with the diffusion coefficient, are helpful in revealing the mode of transport, but not all of the mechanisms driving the transport [33].

For living cells, the Stokes-Einstein-Sutherland relation and other equations derived to explain diffusive processes cannot immediately be applied, since living cells use thermal energy and active transport. Under certain conditions, such as active transport inhibition, they are still relevant and can provide information about transport. The time dependent power law is also a useful tool in understanding motion in living cells. Single and two-particle tracking of particles inside a cell have been done on a large number of cell types to find the MSD and hence the MSD scaling exponent [33]. For living cells, if the scaling exponent is in the subdiffusive range, then it may be indicative of a dense intracellular environment and/or there may be numerous reactions and obstacles inside the cell [34]. If the scaling
exponent is in the superdiffusive range, then active transport is present [35]. It was also found when tracking whole cells that there is an inverse relationship between the MSD and the stiffness of a cell [36]. This relationship was seen in cancerous cells when the stiffness of the cell decreased as the cell increased in metastatic potential [37]. So, in some cases the MSD can give information on specific behaviors, but in general it is only a good first indicator of transport type and mechanics in living cells [33].

In this paper we will first discuss the MSD for a simple random walk. We then discuss calculating the MSD for a specific generalized random walk, a mathematical model for cell motion. A good estimate for the MSD was found as well as an upper and lower bound for the MSD for this model. We then compare and contrast numerical results found for the simple random walk and our generalized random walk.

2.2 Random Walks

A random walk or drunkard’s walk was first referred to in 1905 in the journal *Nature* in a discussion between Pearson and Rayleigh, demonstrating the theorem, “the most likely place to find a drunken walker is somewhere near his starting point [38].” Since that time, random walk theory has been studied extensively, impacting many important fields, such as random processes, random noise, stochastic equations and spectral analysis. For a more thorough discussion of random walks in biology, see “Random Walk Models in Biology”, by Codling, et.al. [39].

A simple random walk refers to a stochastic process that is the equivalent of a succession of random steps in some space or on some grid. In one dimension on an integer grid, the walker starts at some point and with some probability p jumps $+1$ and with some probability q jumps -1 and with probability $1 - p - q$ stays in the same place. One feature of a random walk is that the jumps are independent. The process is Markov, since if $X(t)$ represent the location at time t where t is a non-negative integer, then $\mathbb{P}(X(t+1) = j \mid X(0), X(1), \ldots, X(t)) = \mathbb{P}(X(t+1) = j \mid X(t))$ [40]. Also note that a random walk is both time homogeneous
\(\mathbb{P}(X(t) = j \mid X(0) = a) = \mathbb{P}(X(s + t) = j \mid X(s) = a) \) and space homogeneous \(\mathbb{P}(X(t) = j \mid X(0) = a) = \mathbb{P}(X(t) = j + b \mid X(0) = a + b) \) \[40\]. Since the process is space homogeneous, we can assume that \(X(0) = 0 \), for our purposes. These properties of simple random walks then give that

\[
\mathbb{E}[(X(t + \tau) - X(t))^2] = \mathbb{E}[(X(\tau) - X(0))^2] = \mathbb{E}[X(\tau)^2].
\]

Since \(\text{Var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 \), then \(\mathbb{E}[(X(\tau) - X(0))^2] = \text{Var}[X(\tau)] + (\mathbb{E}[X(\tau)])^2 \). Each \(X(t) \) is the sum of random, independent, identically distributed variables (iids), so \(\text{Var}[(X(\tau)] = \tau \text{Var}[X(1)] \) and \(\mathbb{E}[X(\tau)] = \tau \mathbb{E}[X(1)] \). This with the fact that \(\mathbb{E}[X(1)] = p - q \) and \(\text{Var}[X(1)] = p + q - (p - q)^2 \) gives the following relationship:

\[
MSD = \mathbb{E}[(X(t + \tau) - X(t))^2] = \mathbb{E}[(X(\tau) - X(0))^2]
= \tau \text{Var}[X(1)] + (\tau \mathbb{E}[X(1)])^2 = \\
\tau[p + q - (p - q)^2] + \tau^2(p - q)^2.
\]

The MSD for a simple random walk is a quadratic function in \(\tau \). If there is no bias, \(p = q \), then the MSD is linear and indicative of a diffusive process.

For a two dimensional grid let the probabilities for walking right, left, up, down, and resting be \(p, q, u, d, \) and \(1 - p - q - u - d \) respectively. Per the method in the above paragraph, \(\mathbb{E}[X(\tau)^2 + Y(\tau)^2] = \tau[p + q + u + d - (p - q)^2 - (u - d)^2] + \tau^2[(p - q)^2 + (u - d)^2] \), giving a similar quadratic formula for two dimensions. This process can be extended to any finite dimension.

Consider the case where the walker steps randomly from the position at time \(t \) to a new location with probability \(p \) determined by a step vector \(\mathbf{y} \) taken from the distribution \(\rho \) or remains in the same location with probability \(1 - p \). Thus at the new time if the walker moves, the new location will move from \(\mathbf{X}(t) \) to \(\mathbf{X}(t) + \mathbf{y} \). The random variable, \(\mathbf{X} \) is a discrete-time continuous-space random Markov jump process. By the same reasoning as above \(\mathbb{E}[\mathbf{X}(1)] = p \int y \rho(dy) \), and \(\mathbb{E}[\mathbf{X}^2(1)] = p \int y^2 \rho(dy) \). Thus the mean squared displacement is \(\tau[p \int y^2 \rho(dy) - (p \int y \rho(dy))^2] + \tau^2(p \int y \rho(dy))^2 \).
In general, in a normed vector space, for any finite dimension, the theoretical MSD can be computed as follows

\[MSD = \mathbb{E}[\|X(t + \tau) - X(t)\|^2]. \] (2.3)

If, in addition, \(X \) is the sum of iids and the process is space and time invariant, then

\[MSD = \mathbb{E}[\|X(t + \tau) - X(t)\|^2] = \mathbb{E}[\|X(\tau) - X(0)\|^2] \]
\[= \tau \cdot \text{trace}(\text{Cov}(X(1))) + \tau^2 \cdot \|\mathbb{E}[X(1)]\|^2. \] (2.4)

2.3 Finding an Estimate for the Theoretical MSD for a Specific Generalized Random Walk

In a paper by John Dallon, et.al. [2], the authors introduce a mathematical model of individual cell migration. The model specifies discrete focal adhesion (FA) attachment sites with random switching terms for each site. The random switching terms determine if a FA is attached or detached. The time a FA remains attached or detached is taken from a given probability distribution. A detached site is reattached at a distance from the present cell center. The distance is taken from a given probability distribution. Forces exerted on the center of the cell by the different FAs are determined by Hooke’s Law. Using Newton’s second law of motion, and ignoring the acceleration due to the low Reynolds number, all of these forces together with the drag force which involves velocity are summed to produce a differential equation model that has the feature of different FAs attaching and detaching randomly and tracks the movement of the cell over time. See Figure 2.1. (This differential equation model will be explained in further detail in Chapter 3.)

In a further paper [41], the differential equation model from [2] is approximated heuristically by a problem that tracks the centroid of the cell, \(c^j \). This new problem was motivated by informally considering the limit of the differential equation model as the cell spring con-
Figure 2.1: This figure from Dallon, et.al. [2] depicts the way the cell is being modeled mathematically. The cell is a center location (nucleus) with attached springs. The other ends of the springs correspond to the different FAs that are attached to the extracellular matrix at “x”.

stants become very large. In this limit, the cell nucleus jumps from centroid to centroid. Let \(j \) denote the number of binding events (attach or detach events) that have occurred and \(n \) the number of FAs. The equation describing \(c^j \) is

\[
0 = \sum_{i=1}^{n} \alpha_i (c^j - v^j_i) \psi^j_i
\]

where \(v^j_i \) is the location of the \(i \)th attachment site at stage \(j \), \(\alpha_i \) is the spring constant for the \(i \)th attachment and \(\psi^j_i \) is either 1 if the \(i \)th attachment site is attached at event \(j \) or 0 if the \(i \)th attachment site is detached at event \(j \). Analysis of the centroid model by the authors produced an explicit formula for \(\mathbb{E}_\rho[c^{j+1} - c^j] \). It is given by the following:

\[
\mathbb{E}_\rho[c^{j+1} - c^j] = \left(1 + \sum_{k=1}^{n} \frac{(r^{k-1}(1-r)\binom{n-1}{k-1} + r^k\binom{n}{k})r(n-k)}{(k + r(n-k))(k+1)}\right) \frac{\mathbb{E}_\nu[\eta]}{2(1+r)^{n-1}}
\]

where \(\rho \) is a probability measure on the Borel sets of the state space which satisfies certain conditions, \(n \in \mathbb{N} \) is the number of adhesion sites, \(r > 0 \) is the scaling factor that relates detaching to attaching, \(\nu \) is a probability measure on the Borel sets of \(\mathbb{R}^2 \), and \(\eta \) is a \(\nu \)-distributed random vector describing the outreach from the centroid to find the location of an attaching FA. It is noted that the MSD of the centroid in this setting changes the meaning
of τ from a time shift to an event shift. We work to determine a similar formula for the MSD of one event shift ($\tau = 1$), i.e. $\mathbb{E}_\rho[\|c^{j+1} - c^j\|^2]$.

Case: $n = 1$

Consider $n = 1$ with $|\psi^j| = 0$ where $|\psi^j|$ is the number of attached sites at time j, and compute $c^{j+1} - c^j$. (If the initial configuration has no attachments, it is assumed that the centroid has an initial location.) In this case, the difference $c^{j+1} - c^j$ would be the outreach from the centroid on the next step, η^{j+1}. For $|\psi^j| = 1$, the only possibility for the next event would be going from one attachment to no attachments. (We assume that if all the FAs detach, then the location of the centroid does not move.) In this case the centroid does not move, so $c^{j+1} - c^j = 0$. Those two cases then give the only possible values for the random variables, $c^{j+1} - c^j$, in the stochastic process when $n = 1$.

Case: $n = 2$

For $n = 2$, $c^{j+1} - c^j$ (for any $j \geq 1$) can be computed for all scenarios of FA attachments/detachments. See Table 2.1. A visualization for $n = 2$ can be found in Figure 2.2. Note that the open dots indicate a detached adhesion site and a black dot represents an attached adhesion site. An “x” indicates the centroid.

Thus, for the two simple cases of $n = 1$ and $n = 2$ the MSD can be computed by substituting the values of the random variables and associated probabilities into Equation 2.3 with $\tau = 1$ and is $\frac{\mathbb{E}_\nu[\|\eta\|^2]}{2}$ and $\frac{\mathbb{E}_\nu[\|\eta\|^2]}{2(1 + r)} \left(1 + \frac{r}{2}\right)$, respectively.

Case: $n > 2$

When $n > 2$, we only consider cases that begin with no attached FAs to eliminate problems with the initial conditions. In order to find a good estimate for the theoretical MSD, we considered two features of the model:

(i) Only one event happens at a time.
The probability that a single FA (focal adhesion) remains attached for a long period of time is small.

These two features imply that the probability that the FAs will be fairly close together is greater than the probability that they will be far apart. If we assume that all FAs for any $k \leq n$, where n, is the total number of FAs, are sequential attachments then the FAs will be clustered together. By sequential attachments, we mean that for any $k \leq n$, the k attachments are sequential if they are in a configuration that can be arrived at by starting with a centroid and no attachments and then attaching one FA at a random outreach (ν-distributed) from the centroid. Then the new centroid location is computed and another FA attaches at a random outreach. Each new FA attaches in this same way until k are attached. The FAs are also considered sequential if they are in the configuration described above whether or not they arrived in that manner. In other words, FAs are in a sequential configuration if they have a sequential creation story. Assuming sequential attachments makes it possible to compute the displacement of the centroid when a detach event occurs.

Table 2.1: Centroid Model ($n=2$) for $j \geq 1$. The projected state is the state space considering only the indicated number of attached FAs at event j.

| Probability of Projected State | $|\psi^j|$ | $|\psi^{j+1}|$ | Possibilities | $c^{j+1} - c^j$ | Probability of Attach/Detach |
|-------------------------------|---------|-------------|---------------|-----------------|-------------------|
| $\pi_0 = \frac{1}{2(1+r)}$ | 0 | 1 | $\binom{2}{1}$ | η^{j+1} | $rp_0 = \frac{1}{2}$ |
| $\pi_1 = \frac{1}{2}$ | 1 | 2 | $\binom{1}{1}$ | $\frac{\eta^{j+1}}{2}$ | $rp_1 = \frac{r}{1+r}$ |
| | 1 | 0 | $\binom{1}{1}$ | 0 | $p_1 = \frac{1}{1+r}$ |
| $\pi_2 = \frac{r}{2(1+r)}$ | 2 | 1 | $\binom{2}{1}$ | $\pm \frac{\eta^j}{2}$ | $p_2 = \frac{1}{2}$ |

The values for $c^{j+1} - c^j$ are computed for $n = 5$ as shown in Table 2.2. The values for an attach event are valid for any configuration in the state space, but the ones for a detach event are only valid if the configuration is a sequential attachment. For the purposes of finding an estimate for the MSD, we assign the full probabilities of the state space to both
Figure 2.2: Visualization of Centroid Model (n=2). The left column shows the three possible initial conditions: No attached FAs, one attached FA and 2 attached FAs (in any configuration). The arrows point to possible transitions. Distance is measured vertically. The open dots indicate a detached adhesion site and a black dot represents an attached adhesion site. An “x” indicates the centroid. When the centroid is in the same position as a dot, then it is indicated to the right of the dot.
attach and detach events, even though the random variable for the detach events is only for a sequential configuration.

In general, for \(n \) total FAs

\[
c^{j+1} - c^j = \frac{\eta_{j+1}^i}{k}
\]

when going from \(|\psi^j| = k - 1 \) to \(|\psi^{j+1}| = k \) attached sites with \(1 \leq k \leq n \), where the superscripts are an event counter, and the subscript on \(\eta \) for an attach event is the \(k \)th outreach and for a detach event is the outreach order in the creation story of the sequential configuration.

In order to understand \(c^{j+1} - c^j \) when the event \(j + 1 \) is a detachment, we use the example of \(n = 5 \) total FAs, and at event \(j \) there are 3 attachments in a sequential configuration, and at event \(j + 1 \) there are 2 attachments. (See the fourth row of Table 2.2). At event \(j \), let \(v_{1}^{j}, v_{2}^{j} \) and \(v_{3}^{j} \) be the location of each of the FAs in the creation story of the sequential configuration. The computation of \(c^{j+1} - c^j \) is not dependent on the location of the centroid at the outreach for \(v_{1}^{j} \), so we locate it at the origin. The location for \(v_{1}^{j}, v_{2}^{j} \) and \(v_{3}^{j} \) is \(\eta_{j}^1, \eta_{j}^1 + \eta_{j}^2 \) and \(2\eta_{j}^1 + \eta_{j}^2 + \eta_{j}^3 \), respectively. Computation of the centroid at event \(j \) yields

\[
c^{j} = \frac{6\eta_{j}^1 + 3\eta_{j}^2 + 2\eta_{j}^3}{6}.\]

If the first FA detaches, then

\[
c^{j+1} = \frac{4\eta_{j}^1 + 3\eta_{j}^2 + 2\eta_{j}^3}{4}, \quad \text{and} \quad c^{j+1} - c^j = \frac{1}{2}\left(\frac{\eta_{j}^2}{2} + \frac{\eta_{j}^3}{3}\right).\]

If the second FA detaches, then

\[
c^{j+1} = \frac{4\eta_{j}^1 + \eta_{j}^2 + 2\eta_{j}^3}{4}, \quad \text{and} \quad c^{j+1} - c^j = \frac{1}{2}\left(-\frac{\eta_{j}^2}{2} + \frac{\eta_{j}^3}{3}\right).\]

If the third FA detaches, then

\[
c^{j+1} = \frac{2\eta_{j}^1 + \eta_{j}^2}{2}, \quad \text{and} \quad c^{j+1} - c^j = -\frac{\eta_{j}^3}{3}.\]

In general, when going from \(|\psi^j| = k \) to \(|\psi^{j+1}| = k - 1 \) attached sites with \(2 \leq k \leq n \) there are \(\binom{k}{1} \) possibilities for \(c^{j+1} - c^j \). For \(\ell = 0 \) to \(k - 2 \), the \(\ell \)th possibility is

\[
\frac{1}{k - 1} \sum_{i=0}^{k-\ell-2} \eta_{k-i}^j \frac{k-i}{k} - \frac{\ell \eta_{k+1}^j}{(\ell + 1)}. \tag{2.7}
\]

The last possibility is

\[
-\frac{\eta_{k}^j}{k}. \tag{2.8}
\]

Thus, there are a total of \(\binom{k}{1} \) possibilities. Each of these possibilities corresponds to a
particular site in the creation story detaching.

If we consider the value of \(c^{j+1} - c^j \) for each configuration, where the number of attachments is known as is the nature of the next event (attach or detach), and consider the possible values of that difference as random variables which depend only on the distribution \(\nu \), then we can determine expectations. By using Equations 2.6, 2.7 and 2.8, we can determine expectations with respect to \(\nu \) that contribute to an MSD estimate of the full state space.

Configuration attach:

We find \(\mathbb{E}_\nu[\|c^{j+1} - c^j\|^2] \) for any number of attachments, \(k \), with the next event being an attachment by using Equation 2.6. Thus, for \(|\psi^j| = k - 1 \) and \(|\psi^{j+1}| = k \) and \(1 \leq k < n \) then

\[
\mathbb{E}_\nu \left[\|c^{j+1} - c^j\|^2 \right] = \frac{\mathbb{E}_\nu[\|\eta^{j+1}\|^2]}{k^2} = \frac{\mathbb{E}_\nu[\|\eta\|^2]}{k^2} \quad (2.9)
\]

where the norm is defined in terms of the inner product.

Configuration detach (assuming sequential configuration):

Similarly, we find \(\mathbb{E}_\nu[\|c^{j+1} - c^j\|^2] \) for any number of attachments, \(k \), with the next event being an detachment using Equations 2.7 and 2.8.

We use an example from Table 2.2. Consider the entries in the table on the third row corresponding to \(|\psi^j| = 3 \) and \(|\psi^{j+1}| = 2 \), under the heading \(c^{j+1} - c^j \). There are three possibilities. Examining the first, \(\frac{1}{2} \left(\frac{\eta^j_2}{2} + \frac{\eta^j_3}{3} \right) \), we compute the norm squared and then take the expectation. The norm squared gives

\[
\left\| \frac{1}{2} \left(\frac{\eta^j_2}{2} + \frac{\eta^j_3}{3} \right) \right\|^2 = \frac{1}{2^2} \left(\frac{\eta^j_2}{2^2} + \frac{\eta^j_3}{2 \cdot 3} + \frac{\eta^j_3 \cdot \eta^j_2}{2 \cdot 3} + \frac{\|\eta^j_3\|^2}{3^2} \right).
\]
| Probability of Projected State | $|\psi^j|$ | $|\psi^{j+1}|$ | Possibilities | $c^{j+1} - c^j$ | Probability of Attach/Detach |
|-------------------------------|---------|---------|--------------|-----------------|-----------------------------|
| $\pi_0 = \frac{1}{2(1+r)^r}$ | 0 | 1 | $\binom{2}{1}$ | η_1^{j+1} | $rp_0 = \frac{1}{2}$ |
| $\pi_1 = \frac{1+4r}{2(1+r)^r}$ | 1 | 2 | $\binom{3}{1}$ | $\frac{\eta_2^{j+1}}{2}$ | $rp_1 = \frac{r}{1+4r}$ |
| $\pi_2 = \frac{2r(3r+2)}{2(1+r)^r}$ | 2 | 1 | $\binom{2}{1}$ | $\pm \eta_2^{j+1}$ | $p_1 = \frac{1}{1+4r}$ |
| $\pi_3 = \frac{2r^2(2r+3)}{2(1+r)^r}$ | 3 | 2 | $\binom{3}{1}$ | $\frac{1}{2}(\eta_2^{j+1} + \eta_3^{j+1})^{*}$ | $rp_2 = \frac{r}{2+3r}$ |
| $\pi_4 = \frac{r^2(r+4)}{2(1+r)^r}$ | 4 | 3 | $\binom{1}{1}$ | $\frac{1}{3}(\eta_2^{j+1} + \eta_3^{j+1} + \eta_4^{j+1})^{*}$ | $p_3 = \frac{1}{3+2r}$ |
| $\pi_5 = \frac{r^4}{2(1+r)^r}$ | 5 | 4 | $\binom{5}{1}$ | $\frac{1}{4}(\eta_2^{j+1} + \eta_3^{j+1} + \eta_4^{j+1} + \eta_5^{j+1})^{*}$ | $p_4 = \frac{1}{4+r}$ |

Table 2.2: Centroid Model (n=5). The superscripts are an event counter, and the subscript on η for an attach event is the kth outreach and for a detach event is the outreach order in the creation story of the sequential configuration. *The starred values are only valid for sequential attachments. (For the purposes of finding an estimate for the MSD, the probabilities on the table are for the entire state space even though the random variables for a detach event are only valid for a sequential configuration.)
Given two independent random variables X and Y, then $\mathbb{E}(X \cdot Y) = \mathbb{E}(X) \cdot \mathbb{E}(Y)$. Since the η are independent if they have different subscripts, then

$$
\mathbb{E}_\nu \left[\left\| \frac{1}{2} \left(\frac{\eta_2^j}{2} + \frac{\eta_3^j}{3} \right) \right\|^2 \right] = \frac{1}{2^2} \left(\frac{\mathbb{E}_\nu[\|\eta\|^2]}{2} + \frac{\|\mathbb{E}_\nu[\eta]\|^2}{3} + \frac{\mathbb{E}_\nu[\|\eta\|^2]}{3^2} \right).
$$

Similarly, the expectations for the other two possibilities are

$$
\mathbb{E}_\nu \left[\left\| \frac{1}{2} \left(-\frac{\eta_2^j}{2} + \frac{\eta_3^j}{3} \right) \right\|^2 \right] = \frac{1}{2^2} \left(\frac{\mathbb{E}_\nu[\|\eta\|^2]}{2^2} - \frac{\|\mathbb{E}_\nu[\eta]\|^2}{3} + \frac{\mathbb{E}_\nu[\|\eta\|^2]}{3^2} \right)
$$

and

$$
\frac{\mathbb{E}_\nu[\|\eta\|^2]}{3^2}.
$$

Thus for $|\psi^j| = 3$ and $|\psi^{j+1}| = 2$, by summing up these three equally probable possibilities, then

$$
\mathbb{E}_\nu \left[\|c^{j+1} - c^j\|^2 \right] = \frac{1}{2^2} \left(\frac{2\mathbb{E}_\nu[\|\eta\|^2]}{2} + \frac{6\mathbb{E}_\nu[\|\eta\|^2]}{3} \right) = \frac{1}{2^2} \left(\frac{\mathbb{E}_\nu[\|\eta\|^2]}{2} + \frac{2\mathbb{E}_\nu[\|\eta\|^2]}{3} \right).
$$

In general, for $|\psi^j| = k$ and $|\psi^{j+1}| = k - 1$, with $2 \leq k \leq n$ ($c^{j+1} - c^j = 0$ when $k = 1$), then

$$
\mathbb{E}_\nu \left[\|c^{j+1} - c^j\|^2 \right] = \frac{1}{(k - 1)^2} \sum_{i=1}^{k-1} \frac{i\mathbb{E}_\nu[\|\eta\|^2]}{i + 1}.
$$

Using the expectations found in Equations 2.9 and 2.10, we derive an estimate for the MSD with respect to the initial distribution ρ (as described in [41]) where ρ is a distribution on the Borel sets of the possible cell states, $\mathcal{B}(X)$, where

$$
X := \left\{ ((\psi_1, \ldots, \psi_n), (v_1, \ldots, v_n), c) \in \{0, 1\}^n \times (\mathbb{R}^2)^n \times \mathbb{R}^2 : \sum_{i=1}^{n} \psi_i (v_i - c) = 0 \right\}.
$$
We give \(X \) the product topology with the discrete topology on \(\{0,1\} \) and the standard topology on \(\mathbb{R} \). We put a further restriction on \(\rho \), such that the probabilities of a projection of \(X \) onto the number of attachments \(|\psi| \) associated with any given configuration is consistent with the steady state distribution. This is given by the equation

\[
\rho(((\psi_1, \ldots, \psi_n) \times (\mathbb{R}^2)^n \times \mathbb{R}^2) \cap X) = \pi_{|\psi|}
\]

for every \((\psi_1, \ldots, \psi_n) \in \{0,1\}^n \) with \(\pi_{|\psi|} \) being the probability of the projected steady state. This steady state was computed in Dallon, et al. [41] and is shown in Equation 2.12.

Thus, for \(n > 1 \) adhesion sites the estimated theoretical MSD with respect to the initial distribution, \(\rho \), that is compatible with the projected steady state found in [41], assuming only a sequential configuration for a detach event with a full state space probability for all events, is given by

\[
E_{\rho}[\|c_{j+1} - c_j\|^2] \approx \frac{E_\nu[\|\eta\|^2]}{2(1+r)^{n-1}} \left(1 + \sum_{k=1}^{n-1} \binom{n-1}{k} \frac{r^k}{(k+1)^2} + \binom{n-1}{k} \frac{r^k}{(k+1)(k^2)} \sum_{i=1}^{k} \frac{i}{i+1}\right). \tag{2.11}
\]

To find this estimate for the MSD, Equation 2.9 is multiplied by \(\pi_k = \frac{r^k(k-1)}{2(1+r)^{n-1}k} \left[n - k + (n-k)r \right] \) (the probability of being in the projected state of \(k \) attachments for any configuration for \(0 < k \leq n \) with \(\pi_0 = 1/(2(1+r)^{n-1}) \)) and by \(rp_k \) (the probability of going from \(k \) to \(k+1 \) attachments) with

\[
p_k = \frac{1}{k + (n-k)r} \tag{2.13}
\]

[41] and by the number of possibilities \(n - k \), for \(0 \leq k \leq n - 1 \). Summing these products over \(k \) gives the first two terms in Equation 2.11 with \(\frac{E_\nu[\|\eta\|^2]}{2(1+r)^{n-1}} \) being factored out from all
terms. (The first term (“1”) is when \(k = 0 \).) Likewise multiplying Equation 2.10 by \(\pi_k \) and \(p_k \) (the probability of going from \(k \) to \(k-1 \) attachments) and summing over all \(k \) (\(1 \leq k \leq n \)), with an appropriate change of indices yields the third term in 2.11. In summary, the first term is for the attachment event when \(k = 0 \), the second term is for all other attachment events and the third term is for the detachment events.

Some numerical simulations were conducted to see how closely this formula compares to the experimental MSD (for the full state space - not just sequential attachments), where we assume that \(\tau = 1 \). For 10,000,000 simulations and fixed \(r \), the MSD was computed and compared to the number of FAs. The graph of the estimated theoretical MSD from Equation 2.11 was also computed for fixed \(r \) and number of FAs and was juxtaposed on the same graph, (see Figure 2.3). As seen from the graph, Equation 2.11, is a good estimate for the MSD.

The numerical simulation to determine the experimental MSD begins with the location of the FAs in a circle equally spaced around the origin at a random distance from 0 to 10 with all FAs attached. It proceeds as follows:

1. Generate a number from the standard uniform distribution.

2. If this number is less than \(r * p * (\text{number of detached FAs}) \) where \(p = 1 / (|\psi| + (n - |\psi|)r) \), then the event is an attachment. Using MATLAB’s random number generator, a random detached FA is selected and its length and angle of outreach is chosen from a random distribution, and it is attached at the chosen length and angle from the present centroid.

3. If #2 is not true, then the event is a detachment. A random attached FA is selected and detached.

4. The new location of the centroid is computed.

5. The location of the centroid is not recorded until a preset amount of events have happened. (This is done to “wash out” the initial conditions.)
6. The simulation continues until the specified number of events has happened.

7. The data file of the centroid locations at each event is then used to compute the MSD using Equation 2.2 with $\tau = 1$.

Figure 2.3: For the left panel, the experimental MSD (Equation 2.2 with $\tau = 1$) is computed from a simulated trajectory with 10,000,000 events and is marked with a red “x” for different values of FAs. It is compared to the estimated theoretical MSD found in Equation 2.11, given by the solid lines. The highest graph is for $r = 1/3$, the middle for $r = 1$, and the lowest for $r = 10$. The right panel shows the relative error between the experimental and theoretical MSD for different values of r. For this simulation and all reported simulations the angle of outreach is from -30 to 30 degrees, and the length of outreach is from 0 to 10. Generating more data will smooth out the curves.

2.4 LOWER BOUND

In order to find a lower bound for the experimental MSD, given n total FAs, we used the random variable values found in Equations 2.6, 2.7, 2.8, and for values that are unknown we use 0. For random variable values from Equations 2.7 and 2.8 (a detach event) we used the probability of being in a sequential configuration when the creation story and the actual history coincide (given n total FAs, we start with no attachments, then the next event is adding an attachment, the next event is adding an attachment, and so on, up to k attachments, and then detaching a FA). The probability of starting with no attachments is
The probability of attaching one FA is rp_0 multiplied by the number of possibilities of FAs to attach, which is n. The probability of attaching another FA is rp_1 multiplied by the number of possibilities, $n - 1$. We continue until we attach the kth FA, which has probability $rp_{k-1}(k - 1)$. Multiplying all of these probabilities together and then multiplying by $p_k(k)$ (the probability of being in the state of k attachments and detaching one of them) gives the probability of being in this particular sequential configuration of k attachments and then detaching one of the FAs. Thus, given n FAs, the probability of being in this particular sequential state of k attachments and then detaching one of them is

$$P_d^k(r) = \pi_0(r)p_0n(r)p_1(n-1)\ldots(rp_{k-1}(n-(k-1)))p_k(k)$$

$$= \pi_0r^kp_0p_1\ldots p_k\frac{n!}{(n-k)!}$$

$$= \frac{1}{2(1+r)^{n-1}}\left(\frac{r}{nr}\right)\left(\frac{r}{1+(n-1)r}\right)\ldots$$

$$\left(\frac{r}{(k-1)+(n-(k-1))r}\right)\left(\frac{k}{k+(n-k)r}\right)\left(\frac{n!}{(n-k)!}\right)$$

(2.14)

where $1 \leq k \leq n$. Using these adjusted probabilities for the detach event random variables, we can obtain a lower bound (LB) for the experimental MSD, and it is given by

$$LB = \frac{E\nu[||\eta||^2]}{2(1+r)^{n-1}}\left(1 + \sum_{k=1}^{n-1} \frac{(n-1)}{k}\frac{r^k}{(k+1)^2}\right)$$

$$r^k(k+1)\left(\prod_{i=1}^{k+1} \frac{1}{i+(n-i)r}\right)\left(\frac{n}{k}\right)\frac{k!}{k^2}\sum_{j=1}^{k} \frac{j}{j+1}\right).$$

(2.15)

The first two terms are the same as in Equation 2.11. The third term is found by using the expectations for a detachment event (assuming sequential configuration) computed in Equation 2.10, but using the probabilities from Equation 2.14. A graph of how it compares to the experimental MSD and estimated theoretical MSD can be seen in Figure 2.4.

The number of FAs is a finite number, n, so we can compute the probability of being in
the state of any number of attachments and then detaching. This is computed by summing over all \(1 \leq k \leq n\) the product \(\pi_k p_k k\) and using the values given in Equations 2.12 and 2.13. The sum is given by

\[
\sum_{k=1}^{n} \pi_k p_k k = \sum_{k=1}^{n} \left(\frac{r^{k-1} (n-1)}{k-1} \right) \left(\frac{1}{k + (n-k)r} \right)^k
\]

\[
= \frac{1}{2(1+r)^{n-1}} \sum_{k=1}^{n} \left(\frac{n-1}{k-1} \right) r^{k-1} = \frac{1}{2(1+r)^{n-1}} \cdot (1+r)^n - 1 = \frac{1}{2}
\]

with the next to last inequality being valid because of the binomial theorem. Similarly, the probability of being in a state of any number of attachments and attaching is also \(1/2\). Thus over a long enough simulation, on average, the probability of being in a state of any number of attachments and then detaching, and the probability of being in a state of any number of attachments and then attaching both approach \(1/2\).

For each \(k, 1 \leq k \leq n\), \(\lim_{r \to \infty} P_k^d(r) = 0\). The total probability of being in this particular sequential configuration for any number of attachments and then detaching is the sum over all \(k\) of \(P_k^d\), so as \(r\) increases sufficiently, the probability, \(\sum_{k=1}^{n} P_k^d\) decreases (approaching 0). So as \(r\) becomes large, the total probability of a detach event is dominated by detachments.
that are not of this particular sequential configuration. For \(k = 1 \), \(\lim_{r \to 0} P^d_k(r) = 0.5 \), but for
\(2 \leq k \leq n \), \(\lim_{r \to 0} P^d_k(r) = 0 \). Again, the total probability of being in this particular sequential
configuration for any number of attachments and then detaching is the sum over all \(k \) of
\(P^d_k \), so as \(r \) decreases sufficiently, the probability \(\sum_{k=1}^{n} P^d_k \) increases (approaching \(0.5 \)). So as
\(r \) becomes small, the probability of this particular sequential configuration dominates the
total probability for a detach event.

This helped us better understand why Equation 2.11 is such a good estimate for the
experimental MSD. Heuristically, as \(r \) decreases sufficiently, the number of attachments
decreases, and the sequential probability increases, implying that the random variable (RV)
values, \(c^{j+1} - c^j \), being used for a detachment event (Equations 2.7 and 2.8) are closer to the
actual values of the RVs. As \(r \) increases sufficiently, the number of attachments on average
approaches the total number of FAs. Because of our assumption that the initial condition
has no attachments, FAs quickly attach (\(r \) is large) until most are attached and the system
stays in a highly attached state. Because the majority of attachments happened quickly they
will be close to a sequential configuration. Thus the RVs being used for a detachment event
(Equations 2.7 and 2.8) are still a good estimate for the MSD. For the “middle” values of \(r \),
the estimate is not as good, but is still adequate.

2.5 Upper Bound

To postulate on the maximum value for \(\| c^{j+1} - c^j \| \), when event \(j + 1 \) is a detachment, we
start with our initial condition assumption of no attachments but position the centroid at
the origin. Assume the first FA, \(v_1 \), attaches at the origin. For simplicity and to obtain a
maximum combined outreach, we assume all incremental outreaches occur in one dimension
in the positive direction. The next FA, \(v_2 \), attaches at a maximum outreach, \(\eta_{max} \), from
the origin. Let each subsequent outreach be at a maximum outreach from the previously
attached FA until all \(n \) FAs are attached, the location of the \(i \)th FA given by \(v_i \), with \(v_1 = 0 \)
and \(v_n = \eta_{max}(n - 1) \). (This is a maximum outreach scenario that is more than the actual
model, since the outreach in the model for each new attaching FA is from the centroid.) By fixing \(v_1 \) at 0 for all events up through \(j \), and allowing \(v_d \) to detach \((v_d \in \{ v_i | 1 \leq i \leq n \})\) for the event \(j + 1 (j > n) \) we can find an upper bound for any \(\|c^{j+1} - c^j\| \).

\[
\|c^{j+1} - c^j\| = \sum_{i=1}^{n} v_i - v_d - \frac{\sum_{i=1}^{n} v_i}{n} - \frac{\sum_{i=2}^{n} v_i - nv_d}{n(n-1)} \leq \frac{\eta_{\text{max}}(n-1)(n-1)}{n(n-1)} = \frac{\eta_{\text{max}}(n-1)}{n} \tag{2.16}
\]

where the values after the inequality come from taking the max value for all \(v_i \) and taking the minimum value of 0 for \(v_d \).

In general, for \(k \) attachments \((1 \leq k \leq n)\) we find an upper bound for the displacement by using the upper bound configuration found in Equation 2.16, i.e. all nonzero FAs are \(\eta_{\text{max}}(n-1) \) units away from the origin. So for \(j > n \)

\[
\|c^{j+1} - c^j\| \leq \frac{\eta_{\text{max}}(n-1)(k-1)}{k-1} - \frac{\eta_{\text{max}}(n-1)(k-1)}{k} = \frac{\eta_{\text{max}}(n-1)}{k}. \tag{2.17}
\]

We now show that the maximum displacement bound found in Equation 2.16 can be achieved in the limit. Following the process described in the previous paragraph but with the constraints of the model, assume initially that for any given value of \(n \), the total number of FAs, there are no attachments and the centroid is at 0. The first event is a FA that attaches at 0. At the next event a FA attaches at a maximum outreach distance, \(\eta_{\text{max}} \), from 0 and the new centroid is computed. (Again, for simplicity and to obtain a maximum combined outreach, we assume all incremental outreaches occur in one dimension in the positive direction.) At the next event, another FA attaches at a maximum outreach distance, \(\eta_{\text{max}} \) from that centroid. The process is continued until all of the FAs are attached. Then the FA that is closest to zero, but not at zero, detaches and reattaches at a distance of \(\eta_{\text{max}} \) from the current centroid. Numerical simulations were done of this process with \(\eta_{\text{max}} = 1 \). At each step, the simulation computed the location of the centroid and subtracted it from the
location the centroid would be if the FA at zero was dropped. The results of this difference are shown in Figure 2.5. The numerical simulations indicate that a steady state for each value of \(n \) is achieved, so we analytically show how to find the steady state.

![Maximum Displacement](image)

Figure 2.5: This shows the maximum displacement for a given number of total FAs that are all attached. Each line is composed of asterisks that represent \(c^{j+1} - c^j \) where \(c^j \) is the location of the centroid with the initial FA attached at 0 and all other FAs located further and further from 0 as described in the text. The value \(c^{j+1} \) is the location of the centroid after 0 detaches. The change from dark to light is indicative of an increase in the number of FAs. Notice that the darkest horizontal line is at 1/2 (\(n=2 \)), the next darkest horizontal line is at 2/3 (\(n=3 \)) and so on. Notice that more iterations are required to reach the steady state as the number of attached FAs increases.

Given \(n \) FAs, there is a linear recurrence relation for the location of the next FA, given the location of the previous \(n - 1 \) FAs, given by

\[
x_t = \frac{(x_{t-1} + x_{t-2} + \ldots + x_{t-n+2} + x_1)}{n-1} + \eta_{max}
\]

where each \(x_i \) is the location of a FA and \(t \geq n \). Furthermore,

\[
x_t = \frac{(x_{t-1} + x_{t-2} + \ldots + x_{t-n+2})}{n-1} + \eta_{max}
\]

(2.18)

since \(x_1 = 0 \).

The steady state of this equation is found by setting all values of \(x \) to \(x^* \) and solving for
The steady state is then \(x^* = \eta_{max}(n - 1) \). In order to find if this is an attracting steady state, let \(y_t = x_t - x^* \), and Equation 2.18 becomes

\[
y_t = \frac{(y_{t-1} + y_{t-2} + \ldots + y_{t-n+2})}{n-1}.
\] (2.19)

The characteristic equation for this recurrence relation is

\[
(n - 1)\lambda^{n-2} = \lambda^{n-3} + \ldots + \lambda + 1.
\] (2.20)

For ease of computation consider the equivalent system

\[
(k + 1)\lambda^k = \lambda^{k-1} + \ldots \lambda + 1
\]

where \(k + 1 = n - 1 \). Thus the characteristic polynomial is \(\lambda^k - \lambda^{k-1} - \ldots - \frac{1}{k+1} = 0 \) or \(x^k \leq \frac{x^{k-1}}{k+1} + \ldots + \frac{x}{k+1} + \frac{1}{k+1} \) for all values of \(0 \leq x < \zeta \) and \(x^k - \frac{x^{k-1}}{k+1} - \ldots - \frac{x}{k+1} - \frac{1}{k+1} \geq 0 \) for \(x \geq \zeta \). Let \(z_0 \) be a complex root of the characteristic polynomial, then \(z_0^k - \frac{z_0^{k-1}}{k+1} - \ldots - \frac{z_0}{k+1} - \frac{1}{k+1} = 0 \). Using the triangle inequality, then \(|z_0|^k \leq \frac{|z_0|^{k-1}}{k+1} + \ldots + \frac{|z_0|}{k+1} + \frac{1}{k+1} \). This implies that \(0 < |z_0| < \zeta < 1 \). Since \(z_0 \) was arbitrary, then all of the complex roots of the characteristic polynomial have modulus less than one. Therefore, all roots of the characteristic polynomial lie within the unit circle in the complex plane, showing that the steady state, \(x^* = \eta_{max}(n - 1) \) is attracting, and the system will converge to it, since it is the only steady state. As the system approaches the steady state, then the displacement is maximal, and by extending to higher dimensions, is
Figure 2.6: Upper bound for the experimental MSD. A trajectory of 100,000 events with $r = 1$ was used to compute the experimental MSD defined in Equation 2.2

given by,

$$\lim_{j \to \infty} \|c^{j+1} - c^j\| = \frac{\eta_{\text{max}} (n-1)(n-1)}{n-1} - \frac{\eta_{\text{max}} (n-1)(n-1)}{n} = \frac{\eta_{\text{max}} (n-1)}{n}$$ \hspace{1cm} (2.21)

for n total FAs, which is the value seen in our numerical simulations and in Equation 2.16.

Since the upper bound of the displacement found in Equation 2.16 can be obtained in the limit (Equation 2.21), we now use the results found in Equations 2.16 and 2.17 to find an upper bound for the MSD. We partition the state space into three parts: $\{F^a_k\}$, $\{\tilde{F}^d_k\}$ and $\{F^d_k\}$. Each F^a_k, $0 \leq k \leq n-1$, represents arriving to a state of k attachments from any configuration and then attaching. Each \tilde{F}^d_k, $1 \leq k \leq n$ represents arriving to the state of k attachments from a sequential configuration and then detaching. Each F^d_k, $1 \leq k \leq n$, represents arriving to a state of k attachments from a non-sequential configuration and then detaching. We use the known values and associated probabilities for F^a_k, and we use the RV values in Equations 2.7 and 2.8 with probabilities from 2.14 for \tilde{F}^d_k in the computation of the MSD upper bound. We use the results from Equation 2.17, as a RV upper bound for the event of arriving at k attachments from a non-sequential configuration. For the upper bound for the probabilities in this case, we use $k\pi_k p_k - \pi_0 k r^k p_0 p_1 \ldots p_k \left(\frac{n!}{(n-k)!} \right)$ (sequential probability from 2.14 subtracted from the probability of being in a state of k attachments and then detaching). The resultant upper bound can be seen in Figure 2.6. For $\{F^d_k\}$, since
Figure 2.7: This figure visualizes the difference between the theoretical MSD vs. tau (assuming the process is the sum of iids) and the model’s MSD vs. tau (which is not a sum of iids). The lines represent the relationship between tau and the experimental MSD. The “x” uses the estimated theoretical MSD (Equation 2.11) and expectation (Equation 2.5) to compute the MSD in Equation 2.4 for different values of tau. As the line changes from red to blue, the number of total FAs increases from 2 to 10. There were 1,000,000 events with \(r=10 \).

we use a rare event for the upper bound of the displacement (one FA staying attached for a long time), and multiply it by a large probability, then this is the best estimate for an upper bound that can be found without partitioning the space into the many, many ways that the FAs can arrive at a state of \(k \) attachments and then have one FA detach.

2.6 MSD as a Function of Tau

Equation 2.4 is valid if a process is both time and space invariant and is the sum of iids. The centroid process we are modeling is both time and space independent. Table 2.1 indicates that the location of the centroid is not a sum of iids. Since the state space is the location of the centroid and does not include the number of attached FAs, the random variables, \(c^{j+1} - c^j \), for different values of \(j \), are not independent. For example, if there are 2 FAs and given some nonzero value for the random variable, \(c^{j+1} - c^j \), within an interval that would satisfy the state of going from none attached to one attached, or from two attached to one attached, or from one attached to two attached, then that probability would be greater than if it was conditioned on the previous random variable being 0.
Figure 2.8: This figure visualizes the relative difference between the experimental MSD and the right side of Equation 2.4 for different values of τ, or the relative difference between the “x’s” and lines in Fig. 2.7. As the line changes from red to blue, the number of total FAs increases from 2 to 10. The magnitude of error being greater for two FAs could be explained by larger regions of random variable overlap and limited state choices, creating greater dependency. Parameters are per Figure 2.7.

Numerical simulations were conducted to see how closely Equation 2.4 relates the experimental MSD to the variance and expectation when Equations 2.11 and 2.5 are used in the computation of the variance and expectation, given by

$$MSD = \tau (\|c^{j+1} - c^j\|^2) - \|\mathbb{E}_\rho[c^{j+1} - c^j]\|^2 + \tau^2 \|\mathbb{E}_\rho[c^{j+1} - c^j]\|^2$$

$$= \tau \mathbb{E}_\rho[\|c^{j+1} - c^j\|^2] + (\tau^2 - \tau) \|\mathbb{E}_\rho[c^{j+1} - c^j]\|^2.$$

Figure 2.7 uses this computation of the MSD versus τ. The relative error between the two computations are show in Figure 2.8.

2.7 Discussion

MSD is a measure of the overall drift of a particle and can be a useful tool for understanding cell motion. We introduced a mathematical model for cell motion and discussed it in the context of a generalized random walk and a centroid model. We were able to find a good estimate for the theoretical MSD of the centroid model by introducing the concept of a sequential configuration. We found the displacement of the centroid after an attach event for
all configurations and the displacement after a detach event when in a sequential configuration. Using the displacement for sequential configurations to approximate all detach events, we found an approximation for the MSD with a delay of one event. To further quantify the experimental MSD, we found a lower and upper bound for the experimental MSD. We surmised that the estimate for the theoretical MSD had a small relative error because the FA configuration frequently is in a sequential configuration or close to it.

Chapter 3. A Mathematical Analysis of Focal Adhesion Lifetimes and Their Effect on Cell Motility

In the introduction we emphasized the importance of cell motion and gave examples of how it can be life-building, life-saving or life-threatening. In this chapter we study FA lifetime distributions obtained from experimental data, relating it to cell motility. We first study the experimental FA lifetime distributions, showing that the gamma distribution is a good fit. We reintroduce the math model described in the previous chapter, supplying more details and introducing a detach-rate function that determines the lifetimes of the FAs. By changing certain parameters, the math model can produce a distribution that has a best fit gamma curve matching those of different data sets. We finally discuss the correlation between the cell speed and the mean FA lifetime in both the experimental and simulated data.

3.1 FA Lifetimes are Gamma Distributed

We first studied the data from various research groups to determine the distribution of FA lifetimes. Table 3.1 shows the statistical information for mean, standard deviation, median and interquartile range (IQR) for the control cells as recorded in the papers.

Stehbens et al. [3] tracked the FAs in cells expressing paxillin-mCherry. In the study they used a wound assay where a monolayer of epithelial cells, grown on fibronectin coated
<table>
<thead>
<tr>
<th>Cell Type</th>
<th>FA Lifetime (min) Median/IQR*</th>
<th>FA Lifetime (min) Mean/SD</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDA-231 Human Breast Cancer Cells [6]</td>
<td>~ 25/22</td>
<td>~ 27.8/15.3</td>
<td>Calculated from raw data that was estimated from given figures.</td>
</tr>
<tr>
<td>Astrocytes [7]</td>
<td>~ 24/16</td>
<td>~ 23/15.4</td>
<td>Estimated from a dot plot. First entry is for leader cells,</td>
</tr>
<tr>
<td></td>
<td>~ 70/60</td>
<td>~ 75/42.7</td>
<td>and the second entry is for followers.</td>
</tr>
<tr>
<td>U2OS Osteosarcoma Epithelial Cells [8]</td>
<td></td>
<td>~ 51/20</td>
<td>Mean and standard deviation were given. Histogram was also included.</td>
</tr>
<tr>
<td>Mouse Embryonic Fibroblasts [42]</td>
<td></td>
<td>~ 34.3/19.2</td>
<td>Estimated from a histogram.</td>
</tr>
<tr>
<td>Astrocytes [43]</td>
<td>~ 40/20</td>
<td></td>
<td>Estimated from a box and whisker plot.</td>
</tr>
<tr>
<td>HEK293 Embryonic Kidney Cells</td>
<td></td>
<td>~ 13</td>
<td>Estimated from a figure.</td>
</tr>
<tr>
<td>HT-1080 Fibrosarcoma</td>
<td></td>
<td>~ 22</td>
<td>Estimated from a figure.</td>
</tr>
<tr>
<td>Motile Fibroblasts [46]</td>
<td>~ 15/8</td>
<td></td>
<td>Estimated from a box and whisker plot.</td>
</tr>
</tbody>
</table>

Table 3.1: Different cell types with their associated FA lifetime statistics. The double horizontal lines split the table into three categories: raw data and estimated raw data, histogram data, and central tendency and/or dispersion statistics only. *IQR is interquartile range.
cover sheet, is scraped with a razor blade to remove half the cells [47]. They emphasized caution when using fully computerized image analysis with some of the pitfalls being an incomplete understanding of the algorithm, input errors if the images are not clear, the need for optimization of parameters and the possibility of coding errors. Figure 3.1 shows the distribution of a subset of their published data with a gamma curve fit to the data. (We used the “histfit” function from MATLAB to find the best fit gamma curve.) They mentioned in their paper that a Poisson distribution was a better fit than a normal distribution. We found the gamma curve to be a good fit as well. Although, the Poisson curve was a possible fit for this set of data, it was not a good fit for the rest of the data sets. We found that the gamma curve was a better fit for all of the other raw data that was collected.

Cleghorn et al. [4] tracked the FAs with GFP-paxillin. In this study double arrestin knockout mouse embryonic fibroblasts are plated on fibronectin or poly-D-lysine coated slides. We received the raw data for the WT cells and found the gamma curve to be a much better fit than the Poisson for this data set. See Figure 3.2.

Berginski et al. [5] introduced a fully computerized image analysis. They analyzed the focal adhesions of migrating NIH 3T3 fibroblasts plated on fibronectin. The advantage of this type of analysis is it allowed them to track a large volume of FAs ($10^3 - 10^4$ adhesions...
per cell), but it does have some drawbacks. They had a large amount of FAs with very short lifetimes, so they set a minimum lifetime of 20 minutes for their analysis. It is unknown, but seems unlikely, that these very short lived attachments have any impact on cell migration. By only counting the FA lifetimes that were greater than 20 minutes, a gamma curve loosely modeled the data as seen in Figure 3.3, but an exponential curve was a better fit when all of the data was included.

Astro et al. [6] provided figures that showed raw data. They tracked the FAs with mCherry-Zyxin as a marker in the free migration of MDA-231 breast cancer cells plated
Figure 3.4: FA lifetimes raw data histogram and gamma fit for cancer cells from Astro et al. [6]

Figure 3.5: FA lifetimes raw data histogram and gamma fit for cancer cells from Pascalis et al. [7] for both the leader cells (left panel) and follower cells (right panel). We estimated the FA lifetime data from the control cells (siLuc, GFP, and GFP-WT) shown in the figures, combined all the data and again found the gamma curve to be a good fit. See Figure 3.4.

Pascalis et al. [7] also provided figures that showed raw data. They used a wound migration assay by plating astrocytes and used a pipette to scratch the monolayer. We estimated the FA lifetime data from the control cell figures for both the leader and follower cells. The gamma curve was a reasonable fit for both as seen in Figures 3.5, but not as tight as some of the other fits, probably due to the inaccuracy of the estimates.

For Spanjaard et al. [9], Stricker et al. [8] and Meenderick et al. [42], we were not
Figure 3.6: FA lifetimes extracted from a histogram and gamma fit for cancer cells from Stricker et al. [8]

able to obtain raw data and therefore extracted data from the histograms represented in the papers. In the case of Spanjaard, where cells from a human prostate cancer cell line were plated on collagen coated plates and induced to migrate with HGF, the data looked exponential, but the coarseness of the data would mask a unimodal gamma distribution. Since the exponential distribution is a special case of the gamma, we were still able to fit the data with a gamma distribution. The gamma fit in all of these cases was not as tight as seen in the raw data fits, but the gamma fit is still consistent with the data. See a representative distribution that was taken from the data in Stricker et al. in Figure 3.6.

In the Stricker study, human osteosarcoma cells are plated on polyacrylamide substrates so force measurements are possible. Whereas in Meenderick, a wound assay is used where mouse embryonic fibroblasts are grown on fibronectin covered plates and a pipette is used to make a scratch wound.

To further quantify the validity of a gamma fit, we calculated the Kullback-Leibler divergence (KL divergence), using the experimental distribution and comparable uniform, normal, Poisson, and gamma distributions for the different cell types. For the uniform distribution, we matched the smallest interval containing the support of the experimental distribution. For the other distributions, we used the MATLAB “histfit” function to find the best fit. The
KL divergence comes from information theory and measures the relative entropy between two distributions. It is defined to be

\[D_{KL}(P||Q) = \sum_{i=1}^{N} P(x_i) \cdot (\log P(x_i) - \log Q(x_i)) \]

with \(P \) being a distribution and \(Q \) being a comparing distribution and \(N \) is the number of values for the random variable [48]. It measures how much information is lost when estimating one distribution with another distribution. For our computation of \(D_{KL} \), \(P \) is the experimental distribution and \(Q \), the comparing distributions. Our results are found in Table 3.2. The results show that the minimum divergence for all cell types is found when comparing the experimental distribution to the gamma distribution. Figure 3.7 gives a visual representation of the fitted distributions compared to the actual Cleghorn, et al. [4] data.

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>Uniform</th>
<th>Normal</th>
<th>Poisson</th>
<th>Gamma</th>
</tr>
</thead>
<tbody>
<tr>
<td>HaCaT Keratinocyte [3]</td>
<td>.9603</td>
<td>.2995</td>
<td>.9044</td>
<td>.2449</td>
</tr>
<tr>
<td>Mouse Embryonic Fibroblasts [4]</td>
<td>.8361</td>
<td>.2831</td>
<td>1.3933</td>
<td>.1878</td>
</tr>
<tr>
<td>NIH 3T3 Fibroblasts [5]</td>
<td>2.66</td>
<td>.6072</td>
<td>N.A.</td>
<td>.3323</td>
</tr>
<tr>
<td>U2OS Osteosarcoma Epithelial Cells [8]</td>
<td>2.3965</td>
<td>1.7917</td>
<td>3.7287</td>
<td>1.7604</td>
</tr>
</tbody>
</table>

Table 3.2: This table finds the Kullback-Leibler Divergence (KL-Divergence) between the experimental data and different standard distributions for several cell types. For the Astrocytes, the first line is information for the leader cells and the second line is for the follower cells. The term N.A. indicates that the KL Divergence is not available because the support of the experimental distribution is not a subset of the comparing distribution, and the KL Divergence cannot be computed in this case.

In summary, for the 9 data sets that we obtained, where there was enough information
given to reconstruct a distribution for the FA lifetimes, it was found that the gamma distribution was the best fit. The most common shape for the distribution was a unimodal non-symmetric curve. Gamma distributions have been used to model seismic inter-event times [49], avalanche inter-event times for certain material properties [50], and actual wait times at a bus stop [51]. The gamma distribution seems a reasonable fit for FA lifetimes as well.

3.2 Mathematical Model of Cell Motion Mimics FA Lifetime Distributions

3.2.1 The Model. In a paper by John Dallon et al. [2], the authors introduce a mathematical model of individual cell migration. This model was described briefly in the previous chapter with an emphasis on the centroid model, so we re-describe it here in more detail. The model specifies discrete focal adhesion (FA) attachment sites with random switching terms for each site. The random switching terms determine if a FA is attached or detached. The time a FA remains attached or detached is taken from a given probability distribution. A detached site is reattached at a distance from the present cell center. The distance is taken
from a given probability distribution. Forces exerted on the center of the cell by the different FAs are determined by Hooke’s Law. Using Newton’s second law of motion, and ignoring the acceleration due to the low Reynolds number, all of these forces together with the drag force, which involves velocity, are summed to produce a differential equation model that has the feature of different FAs attaching and detaching randomly and tracks the movement of the cell over time. The equation of motion for the cell location is given by

$$\mu \mathbf{x}' = - \sum_{j=1}^{n} \alpha_j (\| \mathbf{x} - \mathbf{v}_j \| - \ell_j) \frac{\mathbf{x} - \mathbf{v}_j}{\| \mathbf{x} - \mathbf{v}_j \|} \Psi_j(t).$$

The drag coefficient, $\mu = .101 \text{ g/h}$, is found using Stoke’s Law and calculating the drag on a 3 micron diameter sphere, the nucleus, through water. The spring constant $\alpha = .206 \text{ nN/\mu m}$ for all FAs, resulting in a force on average of .8 nN from each FA. (When simulating the Cleghorn, et. al [4] data, see Figure 3.11, a FA is, on average, approximately 4 \mu m from the centroid. Then by Hooke’s Law, each FA exerts a force of .806 nN on the centroid. Fibroblasts have been reported to exert forces of 2.2 nN per focal adhesion [52].) The total number of FAs is given by n. The location of the center of the cell is \mathbf{x}, with the location of the jth FA given by \mathbf{v}_j. The length of the spring at rest is ℓ_j, and is 0 for our simulations. The function $\Psi_j(t)$ determines if the jth FA is attached or detached at time t, being 1 or 0 respectively. The visualization of this model can be seen in Figure 2.1.

Initially we used the Gillespie Algorithm [53] to determine when a FA detaches. This algorithm was first developed to simulate stochastic chemical kinetics. It determines what time a reaction will occur, and which molecule will be affected. This algorithm saves computer time since it does not have to check at every time increment if a reaction has happened and only needs to evaluate when a reaction occurs. It seemed a good fit for our model since the reaction time for our model would be the lifetime of a FA, and the affected molecule would be the affected FA. Unfortunately, the assumption for this algorithm is that the chemical reactions are a Markov process, implying that the inter-event times are exponential. Since
the experimental data shows that the FA lifetimes distributions are not exponential then we had to look for a different algorithm to track the motion of the cell.

For our algorithm, we use a detach-rate function to determine when a FA detaches. Initially, all FAs are attached equally spaced around the origin, so the centroid begins at the origin. The simulation proceeds as follows:

1. At each time increment, Δt, the ODE is solved, and it is checked to see if an event occurs.

2. The order of the FAs is randomized and each detached FA is checked to see if its detached time has expired. If the time has expired for a FA, then an event has occurred and the FA reattaches at a random direction and outreach (r, θ) from the present location of the centroid. (For our simulation the outreach was directed, with theta ranging from $-\pi/3$ to $\pi/3$.)

3. If there is no attachment event, then a uniform random number is generated and the first FA from the new ordering is selected. If this random number is less than the value of a given detach-rate function (which is a function of the non-dimensionalized force from the given FA and/or time) times Δt, then an event has occurred and that FA detaches and is assigned a number from an exponential distribution with a given mean. This is the amount of time the FA will remain detached.

4. If an event does not happen, then time is incremented by another Δt and the process repeats itself continuing until a preset amount of time has expired.

The ODE was solved using Sundials ODE Solver [54].
<table>
<thead>
<tr>
<th>Function of Time</th>
<th>Function of Force</th>
<th>Resulting Distributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h(t) = c$</td>
<td>$g_1(f)$</td>
<td>Exponential</td>
</tr>
<tr>
<td></td>
<td>$\begin{cases} .1 & 0 \leq f \leq F \ (x - F) + .1 & f > F \end{cases}$</td>
<td></td>
</tr>
<tr>
<td>$g_2(f) = (f - F)^2$</td>
<td></td>
<td>Exponential</td>
</tr>
<tr>
<td>$g_3(f) = a \cdot f$</td>
<td></td>
<td>Exponential</td>
</tr>
<tr>
<td>$g_4(f) = c$</td>
<td></td>
<td>Exponential</td>
</tr>
</tbody>
</table>

Table 3.3: The detach-rate function for the simulation is $r(t, f) = h(t) \cdot g(f)$. Different functions for $h(t)$ and $g(f)$ are given with the resulting distributions. Both F and T are force and time thresholds, respectively, when the nature of h and g changes. Both c and a are constants. The total number of FAs for the simulation is 10 with 5 attached on average.
In order to manipulate the distribution for the FA lifetimes, we considered different possibilities for the detach-rate function which determines when an attached FA will detach. We constructed this function as a product of a time-dependent function and a force-dependent function. We first set the time-dependent function to a constant, so that the rate function only depended on force and not on time. We tried different possibilities for the force-dependent function: (1) A piece-wise linear function that is a small constant until it reaches a force threshold at which point it increases linearly, (2) A parabolic function that has its vertex at a positive force threshold on the x-axis, (3) A constant function, and (4) An increasing linear function. For all of the cases, the simulation distributions for the FA lifetimes best fit an exponential distribution instead of the gamma distribution seen in the experimental data. We next made the time-dependent function an increasing linear function, and tried the above options for the force-dependent function. We found that the piece-wise linear force function was the best match for the gamma function found in the experimental data, but also noted that the mean was too small and the tail too short to match the experimental data. We then defined the time-dependent function as a parabola with vertex at the origin, pointing up. Again, the best gamma distribution match came from the piece-wise linear force-dependent function with similar problems for the mean and tail. We found that a piece-wise logarithmic function for the time-dependent function slowed the rise of the curve and extended the tail. The product of this time-dependent function along with the piece-wise force-dependent function created a detach-rate function that produced data that best matched the experimental data. Thus the detach-rate function that produced the best FA lifetime data match was

$$ r(t, f) = h(t) \cdot g(f) $$

(3.1)

where the time-dependent function, $h(t)$, is defined as

$$ h(t) = \begin{cases}
0 & 0 \leq t \leq T \\
\ln (t - (T - 1)) & t > T
\end{cases} $$

(3.2)
and the force-dependent function, \(g(f) \), is defined as

\[
\begin{align*}
 g(f) = \begin{cases}
 1 & 0 \leq f \leq F \\
 (f - F) + 1 & f > F
 \end{cases}
\end{align*}
\]

(3.3)

A pairing of different time-dependent and force-dependent functions with the resulting distributions is summarized in Table 3.3. The actual distributions can be seen in Appendix B.

Figure 3.8: In this figure the effect of changing \(T \) in the detach-rate function is shown. The red line is the gamma curve fit for the Cleghorn et al. [4] data for both panels. The other curves show how the nature of the curve changes as the value of \(T \) changes. For smaller values of \(T \), the uptick of the curve starts sooner, as seen in the right panel magnification of the curve near the origin. The values of \(T \) start at 8.5 for the first uptick curve and increase to 12.5 for the last uptick curve.
Figure 3.9: In this figure, the effect of changing F in the detach-rate function is shown. The red line is the gamma curve fit for the Cleghorn et al. [4] data. Smaller values of F in Equation 3.3 produce a higher amplitude curve as seen in the solid black line. The amplitude decreases and the tail elongates as the value of F increases. The value of F increases from 5.077 for the tallest curve to 5.877 for the shortest curve.
<table>
<thead>
<tr>
<th>Cell Type</th>
<th>Time (T) and Force (F) Threshold</th>
<th>MSD*/Ave. Speed/Speed</th>
<th>Experimental Speed (µm/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HaCaT Keratinocyte [3]</td>
<td>$T = 14.2$ $F = 5.44$</td>
<td>.74/.36/.33</td>
<td>.2-.25 average (min .05, max .35) [55]</td>
</tr>
<tr>
<td></td>
<td>Follower $T = 10$ $F = 50$</td>
<td>.13/.13/.11</td>
<td></td>
</tr>
<tr>
<td>U2OS</td>
<td>$T = 20$ $F = 7$</td>
<td>.26/.19/.17</td>
<td>.24** [60]</td>
</tr>
<tr>
<td>Osteosarcoma Epithelial Cells [8]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse Embryonic Fibroblasts [42]</td>
<td>$T = 9$ $F = 6.05$</td>
<td>.45/.26/.22</td>
<td>1.52 [42]</td>
</tr>
</tbody>
</table>

Table 3.4: Different cell types with the parameters used in Equation 3.1. The double horizontal line splits the table into two categories: Raw data and estimated raw data, and histogram data. The average speed was computed by taking the average of the distance traveled in each time increment and dividing it by the time increment. Speed was computed by taking the distance between the centroid at the beginning of the simulation and the end of the simulation and dividing it by the total time. *MSD is measured in µm², and the speeds in µm/min. **wound assay
Changing the values of T in Equation 3.2 and F in Equation 3.3 changed the quality of the curve as seen in Figure 3.8 and Figure 3.9, respectively. By understanding how the two parameters change the shape of the distribution, we were able to find parameter values for F and T in the simulation that produce a distribution of FA lifetimes having a gamma fit that closely matches the experimental gamma fit. The values for the detach-rate function parameters, T and F, used to produce the matching curves are listed in Table 3.4. For all simulations, there were 40 FAs total with an average of 30 attached FAs. Figure 3.10 shows distributions along with a best fit gamma curve for data produced from the simulations using the parameters found in Table 3.4. Some of the simulation distributions show a spike at the beginning of the distribution. This appears to be an artifact of the model, and a further explanation is found in Appendix C. Figure 3.11 shows the experimental data best fit gamma curves for the FA lifetimes superimposed with a best fit gamma curve for the simulation data. We were not able to find parameters to find a close fit for the low amplitude astrocyte curve. This is the data from the follower cells in Pascalis et al. [7].

The number of attached focal adhesions changes the nature of the curve as seen in Figure 3.12. More attached FAs flattens out the curve and increases the mean FA lifetime. Using the parameters for T and F for follower cells in Table 3.4, we increased the number of attached FAs (on average) to 38 out of the 40 total FAs, and were able to get a good match as seen in Figure 3.13.

The total number of FAs does not affect the curve as seen in the left panel of Figure 3.14. In this figure, there are on average 30 attached FAs for each simulation [4]. Figure 3.14 also shows the variation that is due to the random process, as seen in the right panel. The right panel is the average of 20 simulations for the fibroblasts [4] data with the values for the parameters T and F as listed in Table 3.4. The error bars at different points reflect the standard deviation. Thus the slight variations in the left panel can be attributed to the random process.
Figure 3.10: These are distributions of the FA lifetimes generated by the model when simulating data for Stehbens et al. [3] (a), Cleghorn et al. [4] (b), Berginski et al. [5] (c), Astro et al. [6] (d), Pascalis et al. [7] (e) (leader cells), and Spanjaard et al. [9] (f). The parameters for the detach-rate function are taken from Table 3.4 and produce the best fit gamma curves that match those of the experimental data. The uptick at the beginning of some of the distributions appears to be an artifact of the model and is explained in Appendix C.

Figure 3.11: Experimental data gamma curves are matched by the mathematical model. The parameters used for the detach-rate function in the model are found in Table 3.4. The simulation was run for 4500 minutes with 40 total FAs for the cell with an average of 30 FAs attached over the duration of the simulation.
Figure 3.12: This figure shows how the average number of attached FAs changes the lifetime distribution. The total number of FAs is 100. The different colors are the averaged number of attached FAs. The values for the parameters for T and F are those listed on Table 3.4 for the mouse embryonic fibroblasts [4].

Figure 3.13: This figure shows a better fit for the astrocyte follower cells data found in [7]. The parameters for the followers cells are per Table 3.4, but the average number of attached FAs was increased from 30 to 38 out of 40.
Figure 3.14: This figure shows how the lifetime distribution changes if the average number of attached FAs remains constant, but the total number of FAs changes. For the left panel, the average number of attached FAs is 30 for every simulation. The different colored curves are gamma fits for the simulations, varying the total number of FAs. The values for the parameters for T and F are those listed on Table 3.4 for the mouse embryonic fibroblasts [4]. The black dotted line in the right panel is the average gamma fit of 20 simulations using the same parameter values that were used in the left figure. The error bars are the standard deviation of the 20 simulations. There are 40 total FAs with an average of 30 attached FAs for each simulation. The red line is the experimental data gamma fit.

3.3 Focal Adhesion Lifetime Regulates Cell Speed

Cell speed is correlated to the mean FA lifetime as can be seen in figure 3.15. Five of the papers we collected data from reported both the FA lifetime and cell speeds and the results are shown as triangles in figure 3.15. It is not always clear whether the data comes from the same experiment. For the best analysis, the focal adhesion data and the cell motion data would come from the same cell. The Meenderink et al. [42] experimental data is shifted away from the other data but still shows the same tendency - that the cell speed decreases with increasing FA lifetime.

Our simulations shows the same tendency (asterisks in figure 3.15). We plotted the speed of cells from simulations where the parameters of the FA detach-rate function produced the matching best fit gamma curves to the data (asterisks with the same color as the triangles). The match between the simulations and the actual data is close in most cases. The Meenderink et al. [42] experimental data was significantly different from the simulation. By
Figure 3.15: This figure compares the cell speed with the mean FA lifetime of both the simulations and the experimental data. The asterisks represent information taken from the simulations using the model. The triangles are experimental data. When the asterisk and triangle agree in color, then the asterisk data comes from the simulation that has the best fit gamma curve that closely matches the best fit experimental gamma curve for the control cells. Except for the Meenderink et al. [6] data (red), the experimental and simulated data are reasonably close, although the actual speeds tend to be faster. When the means don’t align, it may be due to the fact that the experiment to find the speed was conducted on different cells than the experiment to find the FA lifetimes. For the Pascalis et al. [7] data, the FA lifetime mean and the speed were given for the follower and leader cells combined. Notice how that triangle fits between the simulations for the leader and follower cells. The squares are simulations where the time parameter T is changed as per Figure 3.8 and the pluses are simulations where the force parameter F is changed as per Figure 3.9.
changing the parameters in the model (including outreach length, average number of attachments, and outreach angle) to increase the cell speed we could match the control cell data point, but the FA lifetime distribution for the simulation did not match that of the data.

3.4 DISCUSSION

We studied the distributions of FA lifetimes from different raw data sets received from researchers as well as data sets estimated from figures and histograms from research papers. We found that all the data could be modeled with a gamma distribution. In fact, all but one data set was a unimodal, non-symmetric curve.

Using a mathematical model we were able to create distributions whose gamma curves closely matched the best fit gamma curves for the experimental FA lifetime data. In order to replicate the data we had to assume both a time (meaning the time from first attaching) and force dependency in the detach-rate function for the FAs. The force dependency was expected. As more force is exerted on a FA it is natural to assume the cell reinforces the FA so it will persist, while FAs that have little or no force are not contributing to cell motion and can be disassembled. Yet when the FA is located in the back of the cell it will inhibit forward cell motion and thus should be dismantled regardless of the forces exerted on it. In fact, cells are known to leave pieces behind as they move forward [61, 62], as if FAs which are not fully dismantled are left behind as the membrane is ripped away. A simple method for the cell to accomplish this regulation of FAs would be for the cell to track the age of the FAs. New ones would have a lower rate of detachment and older ones would have a higher rate. Thus we hypothesize that FA’s detachment rate is both time and force dependent. It is possible that the reason for the time dependency in our model is an artifact of the model since the forces are Hookean, i.e., when the FA first attaches it immediately exerts a force since the spring is stretched. We do not believe this is the case, though, for two reasons. The first reason is that a more realistic force function might have a time component (new FAs cannot exert or support large forces), but this is mathematically the same, in terms of
the detach-rate function, as what we are modeling and would produce similar FA lifetime distributions. The difference would be in the forces on the cell and the cell’s motion and position if the time dependency was in the forces generated and not just the detach rate. The second reason is force measurements show that the largest forces exerted by a cell are at the front and back of a polarized cell [63, 64, 65]. Thus there are FAs at the front of the cell with significant forces. Of the time dependencies we tried, only the logarithmic dependency fit the data well, suggesting the time contribution initially inhibits FA detachment with its effect slowly diminishing.

The simulations’ suggestion that the detach-rate function depends both on force and time means the cell has some mechanism to determine how long a FA has been attached. It may be as simple as once a focal adhesion is attached there is a minimum time necessary to disassemble it. From Table 3.4 it would seem this would be somewhere between 7 and 20 minutes for the cell data we examined. Yet for the prostate cancer cells, which moved significantly faster than the majority of the other cells, the minimum time to disassemble the FA seems to be an order of magnitude smaller. This suggests new ways to control and investigate cell migration.

An alternate mechanism which we did not investigate would be for the detach rate to be space (relative to the front and back of the the cell) and force dependent. Thus FAs in the front of the cell would be less likely to release and the FAs in the back of the cell would be more likely to release.

Finally, we observed a correlation between the mean lifetime of FAs and the speed of cells. The data indicates that the longer the mean lifetime the slower the cells move. This is consistent with previous theoretical work where a mathematical model (similar to the one used here but with a fixed distribution for the FA lifetime) showed that cell speed was determined by mean FA lifetime [2]. Modifying the model by adding a FA detach-rate function and not prescribing the FA lifetime distribution, we were able to replicate similar data to the experimental data with regards to mean FA lifetime and cell speed.
It seems clear that FA dynamics are fundamental to cell migration. We suspect that one of the main predictors of cell speed for migrating cells is the distribution of the FA lifetimes. To better understand this relationship more study and data regarding the dynamics of FAs and how it influences cell motion is needed. By learning to manipulate the cell to change these distributions we can gain better control of cell migration.

Chapter 4. Conclusion

In the first chapter we described different types of cell motion and made a case for the importance of a thorough study of cell motion. Such a study is needed to help understand the underlying mechanisms of motion in order to be able to inhibit or promote cell motion [1].

In the second chapter, we found an approximation to the mean square displacement for a generalized random walk. The generalized random walk is a discrete-time jump process which approximates a force based model for cell motion. The key to finding the approximation was to find the mean square displacement for a subset of the state space and use it as an approximation for the entire state space. We gave some intuition as to why this is an unexpectedly good approximation. A lower bound and upper bound for the mean squared displacement were also given. We showed that, although the upper bound is far from the computed mean squared displacement, in rare cases the large displacements are approached.

In the third chapter, by analyzing the distributions of focal adhesion (FA) lifetimes from different cell types, we found that a gamma distribution best matched the experimental distributions. In all but one case, it was a unimodal, non-symmetric gamma distribution. We used a mathematical model of cell motion to help understand the mechanics and data behind the FA lifetime distributions. The model uses a detach-rate function to determine how long a FA will persist before it detaches. The detach-rate function that produced distributions with a best fit gamma curve that closely matched that of the data was both force and time
dependent. Using the data gathered from the matching simulations, we calculated both the cell speed and mean FA lifetime and compared them. Where available, we also compared this relationship to that of the experimental data and found that the simulation reasonably matches it in most cases. In both the simulations and experimental data, the cell speed and mean FA lifetime are related, with longer mean lifetimes being indicative of slower speeds. We suspect that one of the main predictors of cell speed for migrating cells is the distribution of the FA lifetimes.

For immediate further research, we hope to find the relationship between the speed of the cell and the standard deviation of the experimental data distribution and compare it to that same relationship using data gathered from the mathematical model. In addition, we found a relationship between the cell speed and the spring coefficient in preliminary studies, and plan to explore that further. Looking to the future, we plan to model the focal adhesion dynamics on a molecular scale.
Appendix A. Units and Parameters

(i) Stoke’s Law

\[F_d = 6\pi \eta Rv \]

\(F_d\) is the force of viscosity on a small sphere moving through a viscous fluid. It is measured in nanonewtons or \(10^{-9}\) N, where newtons are measured in \(\frac{\text{kg} \cdot \text{m}}{\text{s}^2}\). The variable \(\eta\) is the dynamic viscosity that is measured in Pa\(\cdot\)s which translates to kg/m\(\cdot\)s. In water, \(\eta = 10^{-3}\) kg/(m \(\cdot\) s). The radius of the sphere is \(R\), measured in microns, \(\mu\text{m}\), or \(10^{-6}\) m. The flow velocity, \(v\), is measured in microns per second.

Dallon et al. [2] states \(6\pi \eta R\) is equal to \(0.101\) g/h. They assume a cell of diameter of 3 microns with the viscosity being that of water. To find the origin of this number, we use these parameters in Stoke’s Law.

\[
F_d = 6\pi \cdot 10^{-3} \frac{\text{kg}}{\text{m} \cdot \text{s}} \cdot 1.5\mu\text{m}
\]

\[
= 6\pi \cdot 10^{-3} \frac{\text{kg}}{\text{m} \cdot \text{s}} \cdot \frac{1000\text{g}}{1\text{kg}} \cdot \frac{3600\text{s}}{1\text{hr}} \cdot 10^{-6} \cdot 1.5\text{m}
\]

\[
= 0.10178760197 \frac{\text{g}}{\text{h}} \approx 0.101 \frac{\text{g}}{\text{h}}
\]

(ii) Hooke’s Law

The force (\(F\)) needed to extend or compress a spring by some distance \(X\) is proportional to that distance.

\[F = \alpha X \]
\(F = \) force, measured in \(nN \)
\(\alpha = \) the spring constant, measured in \(\text{nN/\mu m} \)
\(X = \) the length of deformation, measured in \(\mu m \)

(iii) **Conversion to similar units**

We convert all units to grams, minutes and microns for \(\mu = .101 \ \text{g/h} \) and \(\alpha = .206 \ \text{nN/\mu m} \)

\[
\alpha = 0.206 \frac{nN}{\mu m} = 0.206 \frac{10^{-9} \cdot kg \cdot m}{s^2 \cdot 10^{-6} \cdot m} \cdot \frac{(60s)^2}{(1min)^2} \cdot \frac{1000 g}{1kg} = 741.6 \ \frac{g}{\text{min}^2}
\]

\[
\mu = .101 \ \frac{g}{\text{hr}} \cdot \frac{1 \text{hr}}{60 \text{min}} \approx .0017 \ \frac{g}{\text{min}}
\]
Appendix B. Resulting Distributions from Different Detach-Rate Functions

In the following tables, we show the simulation-produced FA lifetime distributions for different detach-rate functions, \(r(t, f) = h(t) \cdot g(f) \). We tried different functions for both the time component, \(h(t) \), and force component, \(g(f) \).

Distributions for the Detach-Rate Function \(r(t, f) = h(t) \cdot g(f) \)

<table>
<thead>
<tr>
<th>Function of Time and Force</th>
<th>Attach Times</th>
<th>FA Lengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h(t) = c)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g(f) = \begin{cases} \frac{1}{10} & 0 \leq f \leq F \ (f - F) + \frac{1}{10} & f > F \end{cases})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g(f) = (f - F)^2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g(f) = c)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g(f) = a \cdot f)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

55
<table>
<thead>
<tr>
<th>Function of Time and Force</th>
<th>Attach Times</th>
<th>FA Lengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h(t) = t$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$$g(f) = \begin{cases}
 .1 & 0 \leq f \leq F \\
 (f-F) + .1 & f > F
\end{cases}$$

$$g(f) = (f-F)^2$$

$$g(f) = c$$

$$g(f) = a \cdot f$$

<table>
<thead>
<tr>
<th>Function of Time and Force</th>
<th>Attach Times</th>
<th>FA Lengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h(t) = t^2$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$$g(f) = \begin{cases}
 .1 & 0 \leq f \leq F \\
 (f-F) + .1 & f > F
\end{cases}$$

$$g(f) = (f-F)^2$$

$$g(f) = c$$

$$g(f) = a \cdot f$$
<table>
<thead>
<tr>
<th>Function of Time and Force</th>
<th>Attach Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h(t) = c$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>$g(f) = (f - 5)^2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>$g(f) = (f - 10)^2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>$h(t) = (t - 2)^2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>$g(f) = \begin{cases} .1 & 0 \leq f \leq F \ (f - F) + .1 & f > F \end{cases}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>$g(f) = a \cdot f$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>$h(t) = (t - 4)^2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>$g(f) = \begin{cases} .1 & 0 \leq f \leq F \ (f - F) + .1 & F > F \end{cases}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>$g(f) = a \cdot f$</td>
<td></td>
</tr>
<tr>
<td>Function of Time and Force</td>
<td>Attach Times</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>(h(t) = \begin{cases} 0 & 0 \leq t \leq T \ \ln(t - (T - 1)) & t > T \end{cases})</td>
<td>(g(f) = \begin{cases} .1 & 0 \leq f \leq F \ (f - F) + .1 & f > F \end{cases})</td>
</tr>
<tr>
<td>(g(f) = (f - F)^2)</td>
<td>(g(f) = a)</td>
</tr>
<tr>
<td>(g(f) = a \cdot f)</td>
<td>(g(f) = a \cdot f)</td>
</tr>
</tbody>
</table>

Table B.1: Distributions for different detach-rate functions, \(r(t, f) = h(t) \cdot g(f) \), are shown in the above Tables. Distributions for the FA lengths are also shown in the first three tables.
APPENDIX C. MODEL ARTIFACTS

Some of the simulated distributions had histograms that had a spike at the beginning of the distribution. We ran 10 simulations for the Astro, et al. [6] data each with the parameters for T and F as found in Table 3.4, and found that about two-thirds of them had this anomaly. The Meenderink et al., [42] data also showed this spike as seen in Figure C.1. This spike disappears if the length of outreach is reduced. The explanation is that the Hookean forces will be greater when a FA of longer length attaches, and since the detach-rate function is dependent on force as described in Equation 3.3, there is a greater likelihood of a quick detachment. Figure C.2 shows the distribution and gamma fit using the Meenderink parameters listed in Table 3.4, but with an outreach from 1 to 6 as opposed to the original simulation with outreach from 1 to 10. Notice that there is no spike.
Figure C.1: This figure shows the distribution from the simulation that produced a gamma fit that best matched the Meenderink experimental gamma fit. Notice the spike at the beginning of the distribution. The redline is the best fit gamma curve to the simulation, and the blue vertical line is the minimum data value from the experimental data. This spike is an artifact of the model, and disappears when the length of outreach is smaller. For this simulation, there are 40 total FAs with 30 attached on average. The outreach is from 1 to 10.

Figure C.2: This figure shows the distribution from the simulation using the Meenderink parameters from Table 3.4 with 40 total attachments and 30 attachments on average. The outreach is from 1 to 6. Notice the absence of the spike at the beginning.
D.1 EXPERIMENTAL MSD CODE

D.1.1 Main Code.

%%This program computes experimental MSD using the time measure of MSD and plots
%%it versus my formula. It plots nint versus the MSD.

global average_length;
global icounter;
Relative_error = figure;
MSD_vs_r = figure;
iterationend = 30;
MSD = zeros(1, iterationend);
%nint = zeros(1,iterationend+1);
nintvector = zeros(1, iterationend);
MSD_formula = zeros(1, iterationend);
for m = 1:3
 if m == 1
 r = 10;
 elseif m == 2
 r = 1;
 elseif m == 3
 r = 1 / 3;
 end
 for j = 1:iterationend
 nint = j;
 nintvector(j) = j;
 %nint=10;
 counter = 10000000;
 min_length = 0;
 max_length = 10;

APPENDIX D. CODE
angle = 60;
tau = 1;
average_length = 0;
icounter = 0;
final_data = zeros(counter, 2);
[x, y, site_state, cx, cy] = Initialize(min_length, max_length, nint, angle);
for i = 1:50
 [cx, cy] = Compute_Centroid(x, y, nint, site_state, cx, cy);
 [x, y, site_state] = Update_Integrins(x, y, nint, site_state, min_length, max_length, angle, cx, cy, r);
end
for k = 1:counter
 [cx, cy] = Compute_Centroid(x, y, nint, site_state, cx, cy);
 [x, y, site_state] = Update_Integrins(x, y, nint, site_state, min_length, max_length, angle, cx, cy, r);
 final_data(k, :) = [cx, cy];
end

[MSD(j)] = Compute_MSD(tau, counter, final_data);

%figure(MSD_vs_r);
%hold on;
%plot(r, MSD,'*','Color', 'r', 'LineWidth', 1.5, 'DisplayName', 'Experimental MSD');
%xlabel('"r"');
%set(gca, 'FontSize', 14);
ylabel('MSD');
%set(gca, 'FontSize', 14);
title('MSD vs. "r"');
%set(gca,'FontSize', 18);

sum1 = 0;
if nint == 1
MSD_formula(j) = (1 / (2 * 3 * (max_length - min_length)))
* (max_length ^ 3 - min_length ^ 3);

% MSD_formula(j) = (max_length+min_length)^2/(8);

else

for ii = 1:nint - 1
 sigma = 0;
 for jj = 1:ii
 sigma = sigma + jj / (jj + 1);
 end
 sum1 = nchoosek(nint - 1, ii) * (r ^ ii / ((ii + 1) ^ 2))
 * (1 + (sigma * (ii + 1)) / (ii ^ 2)) + sum1;
end

% MSD_formula(j) =
(max_length + min_length)^2*(1+sum1)/(8*(1+r)^(nint-1));

MSD_formula(j) = (1 / (3 * (max_length - min_length)))
* (max_length ^ 3 - min_length ^ 3) * (1 + sum1)
/ (2 * (1 + r) ^ (nint - 1));
end

% pause;
% plot(r, MSD_formula,'*', 'Color', 'b', 'LineWidth', 1.5,
 % 'DisplayName', 'Formula MSD')

% legend
% average_length/icounter
end

figure(MSD_vs_r);
hold on;
plot(nintvector, MSD, 'x', 'Color', 'r', 'LineWidth', 1.5,
 % 'DisplayName', 'Experimental MSD')
xlabel('Number of FAs');
set(gca, 'FontSize', 14);
ylabel('MSD');
set(gca, 'FontSize', 14);
title({'MSD vs. Number of FAs'; ''});
D.1.2 Initialize Integrins.

This program is a function that initializes the center and i-sites in the centroid model. Input is the minimum and maximum outreach length, the number of integrins (nint), and the angle in degrees on either side of zero for the
%outreach (angle). All integrins are initialized as attached.

function[x, y, site_state, cx, cy] =
Initialize(min_length, max_length, nint, angle)
 cx = 0;
 cy = 0;
 x = zeros(1, nint);
 y = zeros(1, nint);
 site_state = zeros(1, nint);
 for i = 1:nint
 %length = min_length + (max_length-min_length)*rand;
 length = (min_length + max_length) / 2;
 theta = 360 / nint * i * pi / 180;
 %theta=0;
 %length=(min_length + max_length)/2;
 x(i) = length * cos(theta);
 y(i) = length * sin(theta);
 site_state(i) = 1;
 end
end

D.1.3 Update Integrins.

This program is a function that updates the integrins. It determines what
kind of event happened, and changes the status of an attached or detached site.
Inputs for the function are: The x and y coordinates of the i-sites (x,y),
the number of integrins (nint), the site status vector (site_state),
in minimum and max length of outreach, angle of outreach, location of the
centroid, (c) and the value of "r" as described in "Cell Speed is
Independent of Force ...", by Dallon, et. al.

function[x, y, site_state] = Update_Integrins(x, y, nint, site_state,
min_length, max_length, angle, cx, cy, r)
 global average_length;
global icounter;
psi = sum(site_state);
p = 1 / (psi + (nint - psi) * r);
random = rand;
umdet = nint - psi;
if random < r * p * (numdet)
 temp = randi([1 numdet], 1, 1);
 idx = find(site_state == 0, temp, 'first');
 which_integrin = idx(end);
 site_state(which_integrin) = 1;
 length = min_length + (max_length - min_length) * rand;
 theta = - angle * pi / 180 + 2 * angle * rand * pi / 180;
 x(which_integrin) = length * cos(theta) + cx;
 y(which_integrin) = length * sin(theta) + cy;
else
 temp2 = randi([1 psi], 1, 1);
 idx = find(site_state == 1, temp2, 'first');
 which_integrin = idx(end);
 site_state(which_integrin) = 0;
end

D.1.4 Compute Centroid.

% This program is a function that computes the centroid. Input given is the
%i-site location (x,y), the number of integrins (nint), and the site status
%(site_state) which equals one if attached and 0 if not attached.

function[cx, cy] = Compute_Centroid(x, y, nint, site_state, cx, cy)
 sumx = 0;
 sumy = 0;
 psi = 0;
 for i = 1:nint
if site_state(i) == 1
 sumx = sumx + x(i);
 sumy = sumy + y(i);
 psi = psi + 1;
end
end
if psi == 0
 cx = cx;
 cy = cy;
else
 cx = sumx / psi;
 cy = sumy / psi;
end

D.1.5 Compute MSD.

%This program is a function that computes the MSD, given data from the
%centroid model. Input is the number tau, or lag time between points to be
%compared. The variable counter is how many centroids were computed. Also,
"c" is the location of the centroid

function[MSD] = Compute_MSD(tau, counter, final_data)
 n = 0;
 sum_msd = 0;
 for i = 1:tau:((counter - mod(counter, tau)) - tau)
 %for i=1:counter-tau
 n = n + 1;
 ss(n, 1) = (final_data(i + tau, 1) - final_data(i, 1));
 ss(n, 2) = (final_data(i + tau, 2) - final_data(i, 2));
 tt(n) = (final_data(i + tau, 1) - final_data(i, 1))^2 + (final_data(i + tau, 2) - final_data(i, 2))^2;
 sum_msd = tt(n) + sum_msd;
 end
MSD = sum_msd / n;
MSD_STD = std(tt);
VAR = sum(var(ss));
EXP = mean(ss);
norm_squared = dot(EXP, EXP);
clear tt;

D.2 ODE Model Code

//Units are microns and minutes and grams.
#include <cmath>
#include <iostream>
#include <cstdlib>
#include <fstream>
#include <vector>
#include <algorithm>
#include "randomc.h"
#include "cellclass.h"
#include "stocc.h"
#include <cvode/cvode.h>
#include <sunlinsol/sunlinsol_spgr.h>
#include <nvector/nvector_serial.h>
#include <sundials/sundials_types.h>

int check_flag(void *flagvalue, char *funcname, int opt);
int move_nodes(double t, N_Vector cc, N_Vector fval, void *f_data);
unsigned
const num_of_integrins = 40; //number of integrins
double min_length = 1;
double max_length = 10;
unsigned
const realizations = 10;
unsigned
const output_counter = 20; //frequency of data collection
int psi[num_of_integrins];
double attach_times[num_of_integrins];
double detach_times[num_of_integrins];
double detach_times_hold[num_of_integrins];
double theta; //random angle to find new integrin site
double radius; //random radius of length between min_length and max_length
int v[num_of_integrins]; //shuffle vector
double alpha[num_of_integrins]; //spring constants
double s1[num_of_integrins], s2[num_of_integrins]; //location of integrins
int length[num_of_integrins]; // length of each spring at rest
double intpart; //integer part of a floating point
int mm; //dummy variable for argument to load up length, spring constant and sites
double tt, ff; //dummy variables for time and force function

int seed = (unsigned int) time(NULL);
//StochasticLib1 rg1(seed); //Poisson number generator
CRandomMersenne rg(seed); //library containing uniform number generator
double mu = .101 / 60; // .101 g/hr, changed to g/min
void load_length(int mm);
void load_attach_times(int mm, double current_time);
void load_detach_times(int mm, double one_over_lambda);
void load_alpha(int mm);
void load_sites(int mm);
double force_mag[num_of_integrins];
double length_of_FAs[num_of_integrins];
double function_of_force_and_time(double ff, double tt);
//describes relation between forces and speed of detachment
double one_over_lambda = 8.; //mean of exponential
using namespace std;
static
const double pi = 3.14159265358979323846264338327950288419716939937510;
string filenames(int i, string file)
{
 string num = to_string(i);
 file += num;
 file += ".dat";
 return file;
}

int main()
{
 int flag;
 int nnmax = 2;
 double rtol = 1e-6;
 double atol = 1e-6;
 double tstart = 0;
 double deltat;
 double tempend;
 ofstream myfile;
 ofstream attach_times_file;
 ofstream detach_times_file;
 ofstream cell_center;
 ofstream lengths_of_FA;

 load_alpha(num_of_integrins);
 load_length(num_of_integrins);

 for (int k = 0; k < realizations; k++)
 {
 myfile.open(filenames(k, "naive_algorithm_data"));
 attach_times_file.open(filenames(k, "naive_algorithm_attach_times"));
 detach_times_file.open(filenames(k, "naive_algorithm_detach_times"));
cell_center.open(filenames(k, "naive_algorithm_cell_center"));
lengths_of_FA.open(filenames(k, "naive_algorithm_lengths"));

load_sites(num_of_integrins);
load_attach_times(num_of_integrins, tstart);
load_detach_times(num_of_integrins, one_over_lambda);
v[0] = 0;
for (int i = 1; i < num_of_integrins; i++)
{
 v[i] = v[i - 1] + 1;
}

int jj = 1;
for (int i = 0; i < num_of_integrins; i++)
{
 psi[i] = 1;
}

void *kmem;
if (check_flag((void*) kmem, " CVodeCreate ", 0)) return (1);

kmem = CVodeCreate(CV_BDF); // for stiff problems
// kmem = CVodeCreate(CV_ADAMS,CV_FUNCTIONAL); // for non stiff problems
if (check_flag((void*) kmem, " CVodeCreate ", 0)) return (1);
flag = CVodeInit(kmem, move_nodes, tstart, sc);
if (check_flag((void*) kmem, " CVodeInit ", 0)) return (1);

int maxstep = 1e5;
flag = CVodeSetMaxNumSteps(kmem, maxstep);
if (check_flag(&flag, "CVodeSetMaxNumSteps", 1)) return (1);

int ord = 5;
flag = CVodeSetMaxOrd(kmem, ord);
if (check_flag(&flag, "CVodeSetMaxOrd", 1)) return (1);

int ord = 5;
flag = CVodeSetMaxOrd(kmem, ord);
if (check_flag(&flag, "CVodeSetMaxOrd", 1)) return (1);

flag = CVodeSStolerances(kmem, rtol, atol);
if (check_flag(&flag, "CVodeSStolerances", 1)) return (1);

const int mmax = 5; //dimension of krylov space
LS = SUNLinSol_SPGMR(sc, PREC_NONE, mmax);
flag = CVodeSetLinearSolver(kmem, LS, NULL);
if (check_flag(&flag, "CVSpgr", 1)) return (1);

double tend = 4500;
double tret = 0;

myfile << tstart << " " << NV_Ith_S(sc, 0) << " " << NV_Ith_S(sc, 1)
<< " " << "0" << "\n";
//myfiletimes << tstart << "\n";

cell_center << tstart << " " << NV_Ith_S(sc, 0) << " " << NV_Ith_S(sc, 1) << "\n";

for (int i = 0; i < num_of_integrins; i++)
{
 myfile << tstart << " " << s1[i] << " " << s2[i] << " " << psi[i] << "\n";
}

deltat = .1;
tempend = tstart + deltat; //solve ODE at increments of deltat and output to a file
double total_attached;
double total_detached;
total_attached = 0;
total_detached = 0;
double count_events;
count_events = 0;

while (tempend <= tend)
{
for (int i = 0; i < num_of_integrins - 1; i++)
{
int j = i + rand() % (num_of_integrins - i);
std::swap(v[i], v[j]);
}

for (int i = 0; i < num_of_integrins; i++)
{
length_of_FAs[i] = sqrt(pow(NV_Ith_S(sc, 0) - s1[i], 2) + pow(NV_Ith_S(sc, 1) - s2[i], 2));
force_mag[i] = alpha[i] * length_of_FAs[i];
}

double test_number = rg.Random();
int ii = 0;
while (ii < num_of_integrins)
{
if (psi[v[ii]] == 0 && detach_times[v[ii]] <= 0)
{
detach_times_file << detach_times_hold[v[ii]] << "\n";
for (int ss = 0; ss < num_of_integrins; ss++)
{
if (psi[ss] == 1)
{
lengths_of_FA << length_of_FAs[ss] << "\n";
psi[v[ii]] = 1;
attach_times[v[ii]] = tempend;
theta = rg.Random() *(2 * pi / 3) - pi / 3;
radius = rg.Random() *(max_length - min_length) + min_length;
s1[v[ii]] = NV_Ith_S(sc, 0) + radius* cos(theta);
s2[v[ii]] = NV_Ith_S(sc, 1) + radius* sin(theta);
for (int q = 0; q < num_of_integrins; q++)
{
 total_attached = total_attached + psi[q];
}

count_events = count_events + 1;

ii = num_of_integrins;
}
else
{
 if (psi[v[ii]] == 1 && test_number <= function_of_force_and_time(force_mag[v[ii]] / alpha[v[ii]], tempend - attach_times[v[ii]]) *deltat)
 {
 for (int ss = 0; ss < num_of_integrins; ss++)
 {
 if (psi[ss] == 1)
 {
 lengths_of_FA << length_of_FAs[ss] << "\n";
 }
 }
 }
 psi[v[ii]] = 0;
detach_times[v[ii]] = -one_over_lambda* log(rg.Random());
detach_times_hold[v[ii]] = detach_times[v[ii]];
attach_times_file << tempend - attach_times[v[ii]] << "\n";

for (int q = 0; q < num_of_integrins; q++)
{
 total_attached = total_attached + psi[q];
}

count_events = count_events + 1;

ii = num_of_integrins;
}

ii = ii + 1;

flag = CVodeReInit(kmem, tempend - deltat, sc);
if (check_flag((void*) kmem, " CVodeInit ", 0)) return (1);
int maxstep = 1e5;
flag = CVodeSetMaxNumSteps(kmem, maxstep);
if (check_flag(&flag, "CVodeSetMaxNumSteps", 1)) return (1);
int ord = 5;
flag = CVodeSetMaxOrd(kmem, ord);
if (check_flag(&flag, "CVodeSetMaxOrd", 1)) return (1);
flag = CVodeSStolerances(kmem, rtol, atol);
if (check_flag(&flag, "CVodeSStolerances", 1)) return (1);
const int mmax = 5; //dimension of krylov space

flag = CVode(kmem, tempend, sc, &tret, CV_NORMAL);
/*/Call KINSol and print output concentration profile */
if (check_flag(&flag, "CVode", 1)) return (1);

if (jj % output_counter == 0)
{
 myfile << tempend << " " << NV_Ith_S(sc, 0) << " "
 << NV_Ith_S(sc, 1) << " " << "0" << "\n";
 cell_center << tempend << " " << NV_Ith_S(sc, 0)
 << " " << NV_Ith_S(sc, 1) << "\n";

 for (int i = 0; i < num_of_integrins; i++)
 {
 myfile << tempend << " " << s1[i] << " " << s2[i] << " " << psi[i] << "\n";
 }
}

tempend = tempend + deltat;
jj = jj + 1;
for (int i = 0; i < num_of_integrins; i++)
{
 detach_times[i] = detach_times[i] - deltat;
}

total_attached = total_attached / count_events;
cout << "average number of attached FAs " << total_attached << "\n";
cout << "number of events is " << count_events << "\n";
CVodeFree(&kmem);
myfile.close();
attach_times_file.close();
detach_times_file.close();
cell_center.close();
lengths_of_FA.close();
// defines the nonlinear system using springs i.e. \(F(x) = k(|x| - l)x/|x| + F \)
// assumes we can neglect acceleration

int move_nodes(double t, N_Vector cc, N_Vector fval, void *f_data)
{
 int nn = NV_LENGTH_S(cc);
 double u[nn];
 double savf[nn];
 double a[num_of_integrins]; // 1st coordinate of the center minus each node
 double b[num_of_integrins]; // 2nd coordinate of the center minus each node
 double distance[num_of_integrins]; // distance from center to nodes
 double force_magnitude[num_of_integrins]; // magnitude of force on each node

 for (int i = 0; i < nn; i++) // initialize the arrays since we only use part of them
 {
 u[i] = 0;
 savf[i] = 0;
 }

 for (int i = 0; i < nn; i++)
 {
 u[i] = NV_Ith_S(cc, i);
 }

 for (int i = 0; i < num_of_integrins; i++)
 {
 // Set the vectors a and b
 a[i] = ...;
 b[i] = ...;
 distance[i] = ...;
 force_magnitude[i] = ...;
 }

 // Calculate the forces for each node
 for (int i = 0; i < num_of_integrins; i++)
 {
 // ... Calculate forces...
 }

 // Update the state vectors
 for (int i = 0; i < nn; i++)
 {
 savf[i] = u[i];
 u[i] = NV_Ith_S(cc, i);
 }

 // ... Further calculations...
}

return 0;
a[i] = u[0] - s1[i];
b[i] = u[1] - s2[i];
distance[i] = sqrt(pow(a[i], 2) + pow(b[i], 2));
force_magnitude[i] = alpha[i] * (distance[i] - length[i]);
savf[0] = (-1 / mu) * (alpha[i]) * (u[0] - s1[i]) * psi[i] + savf[0];
savf[1] = (-1 / mu) * (alpha[i]) * (u[1] - s2[i]) * psi[i] + savf[1];
}

for (int i = 0; i < nn; i++)
{
 NV_Ith_S(fval, i) = savf[i];
}

return (0);
}

void load_sites(int mm) //loads up the integrin sites
{
 for (int i = 0; i < mm; i++)
 {
 double fractpart = modf(360 / num_of_integrins, &intpart);
 s1[i] = (max_length + min_length) / 2 * cos(intpart * pi / 180 * i);
 s2[i] = (max_length + min_length) / 2 * sin(intpart * pi / 180 * i);
 }
}

void load_alpha(int mm)
{
 //loads up the spring constants
 for (int i = 0; i < mm; i++)
alpha[i] = 741.6;

void load_length(int mm)
{
 //loads up resting length of spring
 for (int i = 0; i < mm; i++)
 {
 length[i] = 0;
 }
}

void load_attach_times(int mm, double current_time)
{
 //initializes times to 0
 for (int i = 0; i < mm; i++)
 {
 attach_times[i] = current_time;
 }
}

void load_detach_times(int mm, double one_over_lambda)
{
 //initializes detach times
 for (int i = 1; i < mm; i++)
 {
 detach_times[i] = -one_over_lambda* log(rg.Random());
 detach_times_hold[i] = detach_times[i];
 }
}
double function_of_force_and_time(double x, double t)
{
 // specifies the relation between attachment forces, time and speed of detachment
 double f;
 // f = (t - 4) * (t - 4);
 // f = 1.;
 // f = t;
 double starttime = 7.25;
 if (t < starttime)
 {
 f = 0;
 }
 else
 {
 f = log(t - (starttime - 1));
 }
 // f = t * t;
 double g;
 double constant = 1.;
 double upper_threshold = 5.634;
 double y;
 if (x <= upper_threshold)
 {
 g = .1;
 }
 else
 {
 g = constant * (x - upper_threshold) + .1;
 }
 // g = (x - 5) * (x - 5);
 // g = (x - constant * max_length) * (x - constant * max_length);
/ *
*/
check_flag(0, "funcname", 0)
{
 int *errflag;
 /* Check if SUNDIALS function returned NULL pointer - no memory allocated */
 if (opt == 0 && flagvalue == NULL) {
 fprintf(stderr, "SUNDIALS_ERROR: %s() failed - returned NULL pointer \n\n", funcname);
 return (1);
 }

 else if (opt == 1) {
 errflag = (int*) flagvalue;
 if (*errflag < 0) {
 fprintf(stderr, "SUNDIALS_ERROR: %s() failed with flag = %d \n\n", funcname, *errflag);
 }
 }

}
funcname, *errflag);
return (1);
}

/*Check if function returned NULL pointer - no memory allocated*/
else if (opt == 2 && flagvalue == NULL)
{
fprintf(stderr,
"\n MEMORY_ERROR : %s() failed - returned NULL pointer \n\n", funcname);
return (1);
}

return (0);
}
Bibliography

SUNDIALS: SUite of Nonlinear and DIfferential/ALgebraic Equation Solvers, January 2016.

