Effects of Performance Feedback on the Technical Adequacy of Behavior Intervention Plans

Rebecca M. Cramer
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Education Commons

BYU ScholarsArchive Citation
https://scholarsarchive.byu.edu/etd/8760

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact ellen_amatangelo@byu.edu.
Effects of Performance Feedback on the Technical Adequacy of Behavior

Intervention Plans

Rebecca M. Cramer

A thesis submitted to the faculty of
Brigham Young University
in partial fulfillment of the requirements for the degree of

Educational Specialist

Cade T. Charlton, Chair
Ellie L. Young
Randall S. Davies

Department of Counseling Psychology and Special Education
Brigham Young University

Copyright © 2020 Rebecca M. Cramer
All Rights Reserved
ABSTRACT

Effects of Performance Feedback on the Technical Adequacy of Behavior Intervention Plans

Rebecca M. Cramer
Department of Counseling Psychology and Special Education, BYU
Educational Specialist

Behavior Intervention Plans (BIPs) are legally binding documents required by the Individuals with Disabilities Education Act (IDEA) for students with disabilities. These plans are intended to help teachers use positive, function-based interventions to decrease problem behaviors and promote functionally-equivalent appropriate social behaviors. The Behavior Intervention Plan Quality Evaluator (BIP-QE II) identifies six components of BIP technical adequacy including behavior function, situation specificity and behavior change, reinforcement tactics, reactive team strategies, team coordination and goals and objectives. Unfortunately, in practice BIPs often lack these key components, which can lead to ineffectiveness of plans, as well as lack of communication among team members and low implementation fidelity, leading to poor student outcomes. In this study, the research team evaluated the effects of providing feedback to plan developers on the technical adequacy of BIPs, using the BIP-QE II. The study employed a waitlist control group experimental design where five participants in the treatment group received feedback immediately and four the control group received feedback after a short delay. In addition, previous research suggests that feedback is only as valuable as participants perceive it to be so. A social validity interview confirmed that feedback was valuable to participants but there was a perception that external reviewers did not appreciate some important contextual factors impacting participants’ work. Feedback to support the technical adequacy of BIPs is a promising practice that appears both effective and efficient and deserves further research, refinement, and exploration.

Keywords: technical adequacy, performance feedback, behavior intervention plans
ACKNOWLEDGMENTS

First, I would like to acknowledge my husband Derek, who has taken over so many things within our home life in order to support me in the pursuit of my degree. This degree required at least as much sacrifice from him as it did from me.

Second, I want to thank my kids for putting up with long days without their mom around and growing so much more independent and mature in the last few years.

I’d like to also thank Dr. Cade Charlton for serving as chair to this project and being so patient through so many edits and changes to the project. I’d also like to thank Drs. Ellie Young and Randall Davies for serving on my committee. I appreciate the faculty who have been so willing to listen throughout this journey.
TABLE OF CONTENTS

TITLE PAGE ... i

ABSTRACT ... ii

ACKNOWLEDGMENTS ... iii

TABLE OF CONTENTS .. iv

LIST OF TABLES .. vi

LIST OF FIGURES ... vii

DESCRIPTION OF THESIS STRUCTURE AND CONTENT ... viii

Introduction ... 1

Effectiveness of Behavior Intervention Plans ... 1

Improving Technical Adequacy .. 2

Feedback and Social Validity .. 4

Purpose of This Study .. 4

Method .. 5

Participants .. 5

Completers .. 5

Non-Completers ... 7

Measures ... 8

Behavior Intervention Plan Quality Evaluator II .. 8

Semi-Structured Interview .. 9

Research Design .. 9

Procedures .. 10

BIP Feedback .. 11
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Integrity</td>
<td>12</td>
</tr>
<tr>
<td>Social Validity</td>
<td>12</td>
</tr>
<tr>
<td>Interview</td>
<td>12</td>
</tr>
<tr>
<td>Ethical Considerations</td>
<td>13</td>
</tr>
<tr>
<td>Data Analysis</td>
<td>14</td>
</tr>
<tr>
<td>Results</td>
<td>15</td>
</tr>
<tr>
<td>The Effects of Feedback on Technical Adequacy</td>
<td>15</td>
</tr>
<tr>
<td>Participant Perspectives on Social Validity</td>
<td>18</td>
</tr>
<tr>
<td>Discussion</td>
<td>22</td>
</tr>
<tr>
<td>Limitations</td>
<td>23</td>
</tr>
<tr>
<td>Implications for Research</td>
<td>25</td>
</tr>
<tr>
<td>Implications for Practitioners</td>
<td>26</td>
</tr>
<tr>
<td>Conclusion</td>
<td>27</td>
</tr>
<tr>
<td>References</td>
<td>29</td>
</tr>
<tr>
<td>APPENDIX A: Review of the Literature</td>
<td>33</td>
</tr>
<tr>
<td>Functional Behavior Assessments and Behavior Intervention Plans</td>
<td>34</td>
</tr>
<tr>
<td>A Problem-Ridden Process</td>
<td>38</td>
</tr>
<tr>
<td>Hope for Success</td>
<td>42</td>
</tr>
<tr>
<td>Improving Technical Adequacy</td>
<td>44</td>
</tr>
<tr>
<td>References</td>
<td>50</td>
</tr>
<tr>
<td>APPENDIX B: Consent and IRB Approval Letter</td>
<td>56</td>
</tr>
<tr>
<td>APPENDIX C: Measures</td>
<td>60</td>
</tr>
<tr>
<td>APPENDIX D: Sample Plan and Feedback</td>
<td>66</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1 Participant Demographics ..7
Table 2 Treatment Schedule ...11
Table 3 Changes in BIP Quality Rating After Feedback ..18
Table 4 Interview Themes ...19
Table A1 Summary of Training Studies ..48
LIST OF FIGURES

Figure 1. Average Technical Adequacy Before and After Feedback ..15

Figure 2. Percentage of BIPs by Quality Rating ...16
DESCRIPTION OF THESIS STRUCTURE AND CONTENT

This thesis is written in a hybrid format. The format includes traditional thesis requirements in a journal-ready format. The goal is to submit the finished journal manuscript portion of this thesis to a journal for publication, although the journal has not yet been determined.

The literature review is included in Appendix A. Appendix B includes the consent forms and the Institutional Review Board (IRB) approval letter. Appendix C includes all measures. Appendix D includes a sample behavior intervention plan with feedback.
Introduction

Research indicates that classroom management within inclusive classrooms is a pervasive challenge for educators. Ntinas and colleagues (2006) found that teachers, across levels of experience, reported feeling unprepared and untrained to deal with problem behavior from individuals with and without disabilities. Students with disabilities are reported in higher numbers as the perpetrators of problem behavior according to federal school climate data and are suspended at twice the rate of their peers without disabilities (Bureau of Justice Statistics, 2017).

Behavior intervention plans (BIPs) are a part of the individualized education programs (IEP). When a student who is being served by an IEP has been suspended for 10 days, the IEP team is legally required by IDEA (§ 300.324) to consider whether a functional behavior assessment (FBA) be performed and from there, whether to write a BIP (Dragsow & Yell, 2001). In some cases, these plans are implemented as part of a coordinated set of interventions of varying levels of intensity to prevent problem behavior, teach new skills, and engage all students in meaningful opportunities to learn and grow, called a Multi-Tiered System of Supports (Horner, 2000; Sugai & Horner, 2009). This is often done using a multi-tiered system of support, where interventions applied at Tier 1 are the most universal and interventions applied at Tier 3 are the most individual and intensive. Functional Behavior Assessments (FBA) and Behavior Intervention Plans (BIP) are included at the Tier 3 level.

Effectiveness of Behavior Intervention Plans

Effective BIPs utilize a systematic assessment procedure to identify the function of the problem behavior, the FBA, and establish procedures to prevent the problem behavior and promote positive replacement behaviors (Dragsow & Yell, 2001; Yell et al., 2000). This process of using functional behavior assessment data to inform the creation of a BIP has been shown to
be an effective process for a wide variety of student behaviors including social skills (McKenna et al., 2015). In other words, if a BIP is tailored to the specific needs, and behavior problems of the student, the plan is more likely to be successful, especially when the BIP is based on sound FBA data.

To help clarify the required elements of a BIP, Browning-Wright, et al. (2007) developed the Behavior Intervention Plan Quality Evaluation Scoring Guide (BIP-QE II). The BIP-QE II defines a technically adequate BIP as having six components including: behavior function, situation specificity, behavior change, reinforcement tactics, reactive team strategies, and team coordination and communication. The BIP-QE II includes a rating rubric that defines the elements in each of the aforementioned categories that must be present to be rated as a high-quality, or technically adequate, BIP. Cook and colleagues (2012) demonstrated that when BIPs are technically adequate they are likely to improve student behavior as reported by BIP developers and implementers.

Unfortunately, research confirms that many BIPs are not technically adequate regardless of who writes the plan (Blood & Neel, 2007; Strickland-Cohen & Horner, 2015; Van Acker et al., 2005). Plans may be written just to fulfill the legal requirement to have a plan but are not sufficiently tailored to the needs of the student or the context into which it will be used (Blood & Neel, 2007). Poorly conceptualized BIPs may fail to align intervention procedures with the function of problem behavior, poorly operationalize the target behavior, or omit important information about the evaluation of the procedures in the BIP (Van Acker et al., 2005).

Improving Technical Adequacy

Several studies have evaluated the effects of training professionals to write better BIPs (Browning-Wright et al., 2007; Kraemer et al., 2008; Strickland-Cohen & Horner, 2015; Van
Acker et al., 2005). Each of these studies used a relatively brief training, ranging from four hours to three days. Training focused on the logic of function-based intervention, special education policy, technical adequacy of BIPs, and implementation procedures. Unfortunately, it is unclear how much training and support is necessary to improve the technical adequacy of plans. Also, many teachers report having received multiple trainings on functional assessment and BIPs (Cooper et al., 2018), yet they struggle to integrate the trainings they received into practice or these trainings may not have been of sufficient quality to prevent problems with the BIP process, both in the creation and implementation of the BIP. Teachers were not asked about whether coaching and feedback was included as part of the post-training process.

Codding and colleagues (2005) conducted a multiple baseline study in which teachers were using BIPs that addressed both antecedents and consequences surrounding negative behaviors. The BIPs had been in place an average of four months each. The teachers received training on implementing BIPs and behavioral analysis, regularly from the school where they were employed. Each teacher received two weeks of training on the specific plan they were implementing, including modeling, detailed review of the written plan, and the plan developer being present in the classroom during the first two weeks of implementation of the plan to offer feedback. Observations were conducted by the research team about every two weeks, separately from the observations of the plan developer. Observers provided feedback to the teachers on whether they were addressing the antecedent and consequences contained in the BIPs. The results showed an improvement in implementation fidelity when feedback was used, and in some cases that improvement lasted for 15 weeks. These results suggest that targeted feedback may improve the effectiveness and implementation fidelity of BIPs, but whether targeted feedback on technical adequacy improves plan writing has yet to be established.
Feedback and Social Validity

Along with these elements, research indicates that considering the value, from the perspective of participants, of new processes being implemented is important. Wolf (1978) argued that research should consider three goals: is the goal of the study the same as the goal of the participants -- is it significant to the participants? Is it appropriate, do the participants find the process valuable and worth their time? Finally, have all results been considered from the participant’s point of view? These questions help answer if the research is considered to have social validity, they answer if the research has met the goals of the participants, is the procedure something they would be willing to continue, even after researchers are not present and do the participants perceive the same results as the researchers. Leko (2014) used a series of questions to answer if System 44, a reading program for secondary students, was valuable to the teacher implementing the program. The feedback they received indicated in this project that the goals and process were valuable but that teachers found some parts of the procedure difficult and that type of feedback could lead to changes on how any program is implemented in the future.

Purpose of This Study

In the current study, the research team explored the effects of feedback on the technical adequacy of BIPs. In addition, the research team also sought out the perspective of participants on the value of the feedback process on their BIPs. The research will answer the following questions:

1. To what extent does immediate feedback influence the technical adequacy of BIPs?

2. From the perspective of participants, was the feedback process useful in their work?
Method

Participants

Participants were recruited from school psychologists, behavior specialists, and special educators who had the primary responsibility for writing a BIP. This responsibility included drafting the intervention plan and may have involved coordinating the work of the IEP team, disseminating the BIP to the teachers/staff, and communicating the plan to parents for approval. These individuals will be referred to as BIP developers. To participate, BIP developers were required to a) have written at least one BIP in the district in which they are currently employed, b) were the primary author of all BIPs shared with the research team, and c) voluntarily consented to participate.

To identify individuals who met these inclusion criteria, the research team worked with five partnering school districts in the Northwest United States. School district administrators reviewed their job descriptions and personnel files to identify individuals who might be interested in participating. The names and emails of these individuals were shared with the research team who contacted prospective participants via email or information meetings held at school district offices. During initial meetings with approximately 50 prospective participants, a member of the research team presented the research objectives, described the risks/benefits of participating, and answered relevant questions for all potential participants at the meetings held. All participant recruitment and study procedures were conducted with the approval of the university and school district institutional review boards.

Completers

Out of 13 participants who consented to participate in the study, only nine submitted a pre- and post-feedback BIP over the course of the study. Four participants failed to complete the
study. Only these nine participants are included in the analysis. Table 1 contains detailed information of participant demographics, separating into treatment, and control groups. Of the participants, 84.7% were female, 15.3% male. Out of all of the participants, 30.7% had completed a bachelor’s degree and were working towards a master’s degree or specialist degree, while the other 69.3% had completed a masters or specialist level degree. The treatment group had obtained higher levels of education than the control group. However, all participants who had only obtained a bachelor’s degree at the time of the study were enrolled in a higher degree program, and were in their final year, the internship year, so they were actively practicing at the time of the study. The participants were asked about their experience using a scale of none, low, moderate, and high. The scale was not defined by the question beyond that, and it was the participants’ point of view of their own experience among those choices, which gives us some insight into how participants view themselves in terms of their work experience, instead of just looking at the degree obtained. All participants had some experience in special education and all participants had received some training in FBAs and BIPs and two of the participants participated in district level leadership in some form and were both in the treatment group. The pre-treatment scores for each group are also an important area to note and averaged 5.2 for the treatment group and 5 for the control group. In total, 9 study participants returned a post-feedback BIP.
Table 1

Participant Demographics

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Highest Degree %</th>
<th>SPED Experience %</th>
<th>Leadership % Y</th>
<th>Training %</th>
<th>Mean Pre-treatment BIP-QE II Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>5</td>
<td>BS 0 L</td>
<td>20</td>
<td>40</td>
<td>FBA 100</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MS 40 M</td>
<td>40</td>
<td></td>
<td>Writing a BIP 100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EdS 60 H</td>
<td>40</td>
<td></td>
<td>Plan implementation 100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Evaluate implementation 80</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>4</td>
<td>BS 50 L</td>
<td>25</td>
<td>0</td>
<td>FBA 100</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MS 0 M</td>
<td>50</td>
<td></td>
<td>Writing a BIP 100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EdS 50 H</td>
<td>25</td>
<td></td>
<td>Plan implementation 100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Evaluate implementation 75</td>
<td></td>
</tr>
</tbody>
</table>

Note. %Y = the percent of participants who indicated that they currently held a leadership role in their school. Low (L), moderate (M) and high (H) were not defined by the demographic survey and were determined by the participants’ points of view. Pre-treatment technical adequacy score is the average score of BIP 1. BIP 1 was written by the participant, prior to agreeing to participate in the research study. Non-Completers

There were four non-completers who started the study as well. Each turned in at least BIP 1, and a BIP for potential feedback. Two were assigned to the treatment group and two the control group. Of the non-completers in the control group, both turned in the BIP 1 and a second BIP. One turned in a third BIP and received one round of feedback, but never turned in a post-study BIP. Of the two assigned to the treatment condition, they each received one round of feedback. This group was similar to the treatment and control groups, with 25% having earned their bachelor’s degree and enrolled in a higher degree program and 75% having earned their education specialist degree. None of the non-completers rated themselves as having a high level of experience. Their average pre-treatment plan score averaged 4.25. Although multiple attempts
were made to receive more BIPs from these participants, none were received, so none of these participants’ data were included in the analysis.

Measures

Behavior Intervention Plan Quality Evaluator II

To measure technical adequacy of BIPs, the research team coded plans using the Behavior Intervention Plan Quality Evaluator II (BIP-QE II; Browning-Wright et al., 2007). The BIP-QE II was developed by members of Positive Environments, Network of Trainers (PENT) in California, Special Education Local Plan Area (SELPA) directors, and administrators at the California Department of Education. This measure has been used to evaluate the technical adequacy of BIPs by rating them across six key components: (a) behavior function, (b) situation specificity, (c) behavior change, (d) reinforcement tactics, (e) reactive team strategies, (f) team coordination and communication.

Behavior Intervention Plans were scored by this research team. Each member of the team was trained on the BIP-QE II until 80% inter-rater agreement on total score was reached. One-third of plans were also double scored, to ensure continuous inter-rater-reliability (IRR), which was calculated at 93% agreement.

BIPs were scored using a Likert-like scale from 0-2 on the presence of the six key components. A score of 0 represents that the component was not present in the plan at all, a score of 1 represents a partial or incomplete treatment of the component, and a score of 2 indicates that all elements of the component were present in the plan. BIPs receiving a score of 0-5 points are considered Weak plans, 6-8 points Underdeveloped, 9-11 points Good, and 12-14 points Superior. Cook and colleagues (2007) found the reliability of the BIP-QE II to be .79-.81 using Cronbach’s alpha for internal consistency across each of the six key component rating items and
inter-rater reliability was determined to be .80-.84 using two raters in 51% of the plans scored to determine this. The BIP-QE II has established face validity through its use in multiple studies (Browning-Wright et al., 2007; Cook et al., 2012; Kraemer et al., 2008).

Semi-Structured Interview

Wolf (1978) suggested that research answer three questions: is the goal of the study, the same as the goal of the participants, does it have meaning for participants? Do participants feel that the project is an appropriate use of their time? Finally, have all results been considered from the participant’s point of view? These questions help answer if the research is considered to have social validity. These questions answer, if the procedure is something participants would be willing to continue, even after researchers are not present and whether participants perceived as much value in the project as the researchers did. Leko (2014) interviewed participants to see if System 44, a reading program for secondary students was valuable to the teacher implementing the program. The feedback they received indicated in this project that the goals and process were valuable but that teachers found some parts of the procedure difficult. The interview sought to answer the questions that Wolf (1978) suggested should be asked and gave the researchers ideas that could change the future implementations of the project. A semi-structured interview based on the work of Leko (2014) was conducted to review the social validity of the feedback process from the BIP developers’ perspectives.

Research Design

This study employed a randomized, wait-list control experimental design (Horner et al., 2009). BIP developers were randomly assigned to either the treatment or control group. Regardless of group assignment, all participants submitted BIPs to the research team for scoring using the BIP-QE II. Those assigned to the experimental group received feedback from the
research team and those assigned to the control group did not receive feedback on the first BIP submitted but did receive feedback on the second and third BIPs submitted (see Table 2). Equivalence at baseline will be assessed by scoring the technical adequacy of a BIP written by the plan developer in the last six months, with training being taken into consideration secondarily.

Procedures

Every developer submitted a BIP they wrote in the last six months for scoring. The research team scored these plans using the BIP-QE II to establish baseline scores. At this time, each developer was assigned to the treatment or control group. No feedback was sent on the baseline BIP. After submitting a baseline BIP, every developer submitted the first BIP written after joining the study. The developer was responsible for removing the student’s identity from the plan. The plans were submitted via a Box.com link unique to each participant. The developers only had access to uploading the documents and were not able to view the contents of the folder to ensure privacy for all the other developers and students. The BIPs in the control and treatment groups were scored, and feedback was sent to the BIP developers assigned to the treatment group within two business days. All participants were invited to submit a second BIP. On the second BIP submitted all participants received feedback (see Table 2), and the scored BIPs became part of the treatment group analysis. Not all participants submitted five BIPs, however if participants submitted at least one post-treatment BIP, they were included in the analysis. One-third of plans were double-scored, with IRR being calculated at 93%.
Table 2

Treatment Schedule

<table>
<thead>
<tr>
<th></th>
<th>BIP 1</th>
<th>BIP 2</th>
<th>BIP 3</th>
<th>BIP 4</th>
<th>BIP 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>O</td>
</tr>
<tr>
<td>Treatment</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

Note. BIP 1 was collected from participants and was written prior to participation in the study. O=No feedback X= feedback given. BIP 2 was used for comparative analysis. BIP 3 was for the wait-list to begin receiving feedback. BIP 4 was to ensure those on the waitlist have the opportunity to have 2 BIPs scored with feedback as well. 4th and 5th BIPs were scored if available and feedback was provided based on the schedule above.

BIP Feedback

The plan developers received feedback within two business days using a form developed by www.pent.ca.gov and modified by Rigby et al. (2018). The form is a one-page document so that the BIP writer could review the document quickly. The upper section includes the score received in each of the six key areas of the BIP-QE II, with a section below with suggestions of changes for the plan to raise the score. The suggested changes are based on what the BIP-QE II suggests for raised technical adequacy scores, as it contains detailed description of each factor. Each of the six areas are color-coded with the written feedback matching the color code. The corresponding color is highlighted within the BIP where changes might make sense. The team was available by email contact if any developers had questions or concerns regarding the feedback. The feedback form also contains a descriptive definition of each score ranging from weak plan at a score of less than 5 to a superior plan at a score of 12-14 points.

Study Integrity

To track integrity of the study parameters promised to participants, the research team checked email date and time stamps to verify that feedback was sent within 48 hours each time and met 100% integrity on that measure. Each score sheet sent also contained a score for each key area. Feedback was offered in any area scoring below the full two points for every BIP that received feedback. In the area of color coding, this could only be done when the BIP was sent as a word document. If the document was sent in PDF format or as a screenshot, our team was unable to color code the BIP to match the score sheet, however this did not affect the content of the feedback offered.

Social Validity

Interview

A semi-structured interview was conducted with plan developers. The interview questions were based on Leko’s (2014) study where Leko examined the social validity of an academic intervention by interviewing participants after the intervention. The goal of the study was to answer what the bigger and smaller goals of participants were, how they used the intervention to achieve the goal and what the outcomes were for the students they worked with. The interview in this study aimed to answer if the process of feedback obtains the same goals as the participants, was the process valuable to them and were the results what they expected and of value to them as well. At the completion of submitting BIPs, the specialists were interviewed by the research team. All interviews were recorded, and data was examined for themes from participants as well as outliers of exceptionally positive or negative experiences.
Ethical Considerations

Teachers have an ethical obligation to parents and students as defined in the Utah Educators Professional Standards, which states that student information must stay confidential (Utah State Board of Education, 2013). One of the ethical issues that was foreseen is the BIPs often contain sensitive information about a student. The research team hoped to avoid any breaches to student confidentiality by training the plan developers to de-identify the BIP before submitting it to the research team. To make sure the BIP was only seen by those who need to see it, a Box.com folder was created, and a link sent to the developer. The plan writer was also able to use that link to upload content only and was not able to see any other documents added to box.

Another potential ethical dilemma that could have arisen was delays caused by the feedback process. For example, if participants felt the need to intervene immediately with a student, rather than wait for feedback, they could feel conflicted between their professional responsibilities to put a plan in action, potentially before it’s technically adequate, and their commitment to the research process. To avoid this issue, feedback was provided in a timely manner, that was cost effective for schools, and consistent with the most recent and rigorous research on the technical adequacy of BIPs. Direct involvement of the research team was not required.

This study attempted to meet as many of the best practice standards as possible. Any limitations or shortcomings identified as the study was conducted are acknowledged in the final thesis document and summarized in a brief presentation of our findings to district partners and participants.
Data Analysis

All pre- and post-feedback technical adequacy scores were averaged across the control and treatment groups. Quality ratings were then applied to each submitted BIP and the percentage of plans for each group pre- and post-feedback were calculated. To answer research question one, to what extent does immediate feedback on BIP quality influence the technical adequacy of BIPs, a repeated measures Analysis of Variance (ANOVA) was run using IBM SPSS Statistics (Version 26) to determine if there was a significant difference between groups and across time. This allowed us to examine the unadjusted group, time, and group by time effects with limited data consistent with previously published research (Horner et al., 2009; Murray et al., 2018). Second, the research team evaluated the differences between the percentage of BIPs at each rating level using the chi square goodness of fit test. To run this test, all pre-feedback BIPs across both groups were aggregated and compared to all of the post-feedback BIPs across groups.

To answer the second question, a semi-structured interview that leads to qualitative answers describing participants experience was conducted. The research team hypothesized most participants would find the process valuable. The research team also predicted it would give insight into the best way to make changes to the feedback process in the future and predicted there would likely be some outliers who found the process exceptionally valuable and some who found it to have little or no value. The participant answers also helped us to evaluate the best way to move forward in the future with using feedback to improve BIPs. In order to analyze the qualitative data, a thematic analysis was performed using the steps recommended by Braun and Clarke (2006). These steps include getting familiar with the data by reading over it several times,
generating initial codes, looking for patterns in the data, searching for themes, defining themes and reporting on those themes.

Results

The results section is organized by research questions. The data and accompanying analyses including figures presented in each section provides evidence to support our findings for each research question.

The Effects of Feedback on Technical Adequacy

Figure 1 displays the technical adequacy for BIPs collected before and after feedback. The average score of the treatment group pre-feedback was 5.20 with a standard deviation of 2.06, and post-treatment was 9.20, with a standard deviation of 3.03. The scores of the control group pre-treatment averaged 5 and post-treatment, 8.25, with a standard deviation of 2.44 on the pre-treatment plan, and on the post-treatment plan was 2.28.

Figure 1

Average Technical Adequacy Before and After Feedback

![Average Technical Adequacy Before and After Feedback](image)

Note. Horizontal bars indicate the average technical adequacy score before feedback. Solid bars indicate post feedback technical adequacy averages.
Figure 2 displays the percentage of plans that were rated as Weak (0-5 points), Underdeveloped (6-8 points), Good (9-11 points), and Superior (12-14) before and after treatment. The treatment group received scores of 30% of plans were Weak and 70% of plans were Underdeveloped pre-treatment. Post-treatment 14% were Weak, 72% were Good, and 14% were Superior. In the control group, 25% of plans were Weak, 67% were Underdeveloped, and 8% were Good pre-treatment. Post-treatment 14% were weak, 43% were Underdeveloped, 29% were Good and 14% were Superior.

Figure 2

Percentage of BIPs by Quality Rating

While not all plans moved into the next category of quality rating, post-feedback, elements of the plans did improve in some cases. In the treatment group, team coordination scores improved the most over the course of receiving feedback, with pre-treatment BIPs scoring no points in the areas of team coordination and averaging 1.28 points post-treatment. Teaching strategies improved .65 points with average scores starting at 1.35 and ending at 2. Goals and
objectives was a subcategory that averaged 0 pre-treatment and scored .57 post treatment. In the control group, teaching strategies showed the most growth, averaging .88 pretreatment and 2 post-treatment. Interestingly, team coordination scored 0 pre-treatment, and only .33 post-treatment.

Beyond descriptive statistics, the research team conducted a repeated measures ANOVA to evaluate the differences between the two groups over time. The within-subjects contrasts included group, time, and an interaction effect. All three contrasts were statistically significant. The group comparison was significant $F(1) = 111.04, p < .05$. The time comparison was also significant $F(1) = 12.90, p < .05$. The interaction between group and time was significant $F(1) = 11.76, p < .05$. Unfortunately, the assumption of normality was not met. The Shapiro-Wilk tests conducted on the pre-feedback BIP technical adequacy scores for the treatment and control groups were statistically significant ($p<.05$) resulting in a rejection of the null hypothesis or the assumption that the data were normally distributed. The Shapiro-Wilk test for the post-feedback scores was not statistically significant ($p>.05$), thus supporting the normality of those data. However, Mauchly's Test of Sphericity indicated that the assumption of sphericity was not violated ($p < .05$).

In addition to the repeated measures ANOVA, we explored changes in the proportion of plans at each quality rating level after feedback using a chi square goodness of fit test. The results of the chi square goodness of fit test indicated that feedback improved the overall quality rating of BIPs. The statistical rating for the test was $X^2 (3, N=9)=1960416.3, p<.001$. A detailed breakdown of the percentage of plans pre and post-feedback at each quality rating is provided in Table 3. In summary, pre-feedback approximately 27% of BIPs were rated weak, whereas post-feedback less than 15% were weak. Pre-feedback, 68% of BIPs were scored in the
Underdeveloped category and post-feedback 22%. Pre-feedback, 5% of BIPs were rated Good or Superior compared to 64% post-feedback.

Table 3

Changes in BIP Quality Rating After Feedback

<table>
<thead>
<tr>
<th></th>
<th>Weak</th>
<th>Under-developed</th>
<th>Good</th>
<th>Superior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre</td>
<td>27</td>
<td>68</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Post</td>
<td>14</td>
<td>22</td>
<td>50</td>
<td>14</td>
</tr>
</tbody>
</table>

Note. Each number indicates the percent of plans in each quality rating category.

Participant Perspectives on Social Validity

An interview was conducted with participants who were willing to share about their experience and included five questions. Thematic analysis was used in reporting the results to the questions. Five themes seemed to come up throughout the process and are summarized in Table 4. The first theme apparent was BIPs can always be improved. Five participants, in their answer to question one, were able to articulate their BIPs had improved as a result of feedback and twice more in question four, it was mentioned that BIPs improving benefitted students. Theme two was a criticism of the study that came up in questions one, two and three, mentioned a total of seven times over the interview: feedback coming from a removed source is challenging in some way, including primarily not knowing the student, though twice it was mentioned that a back-and-forth conversation of some kind with the person giving feedback could be beneficial. A third theme that arose was that the BIP process is a time-consuming and extremely detail-oriented process, coming up six different times across questions two, four and five. Theme four was the individual student should be the priority, with the answers seeming to imply that processes like feedback, district requirements and the BIP process in general seem to forget that at the center of
the plan is a student the team is trying to help succeed. This was mentioned four times, in question one, two and five. The final theme that arose was implementation fidelity with two mentions of it improving post-feedback in response to question four and three mentions of implementation fidelity being the most challenging part of writing a BIP in response to question five.

Table 4

Interview Themes

<table>
<thead>
<tr>
<th>Question</th>
<th>BIPs can always improve</th>
<th>Feedback should be personalized</th>
<th>BIP process is time consuming/detailed</th>
<th>Individual student should be the priority</th>
<th>Implementation Fidelity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question 1</td>
<td>5</td>
<td>2</td>
<td>NA</td>
<td>1</td>
<td>NA</td>
</tr>
<tr>
<td>Question 2</td>
<td>NA</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>NA</td>
</tr>
<tr>
<td>Question 3</td>
<td>NA</td>
<td>2</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Question 4</td>
<td>2</td>
<td>NA</td>
<td>2</td>
<td>NA</td>
<td>2</td>
</tr>
<tr>
<td>Question 5</td>
<td>NA</td>
<td>NA</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Note. Each number represents the number of times a theme was mentioned in response to a question.

Each of the questions’ responses can be summarized individually as well. Question one asked, what was helpful about the feedback you received on your BIPs? What was not helpful? To summarize question one answers, respondents said BIPs can always be improved and specific feedback is helpful in that improvement process, as well as having someone else review the BIP. Two of the respondents did not indicate any areas that were not helpful about the feedback process. One participant summarized it by saying, “specific examples were helpful and explanations. Because I don’t feel like my school psych program was really strong in behavioral intervention. I mean we had classes on it but…We didn’t have to write BIPs very often. We would do FBAs but usually the teachers would do a lot of it. It was really helpful for me because
I feel like since moving (here), I’ve had to teach myself a lot and I don’t know that I’ve had the best examples thus far, so it was really good for me receiving feedback because I felt like I was benefitting from free, like, training.” Two of the respondents indicated that not having the person giving feedback present is a limiting factor. With one saying, “The trouble with an outside source is…reading over it thinking “yeah, ideally that’s a good thing but with this teacher or this kid, that’s not going to work.” Another participant indicated the scores were not helpful information to include in the feedback.

Question two asked what has been challenging about receiving feedback. Three of the of respondents indicated that having a research team removed from the student giving feedback had limitations. One person indicated that the challenge of receiving feedback was realizing that the plans written needed to be more detailed, saying “I think the most challenging thing is just looking at…well it’s hard to write a good BIP, so I could do what I usually do and it’ll be what it is but to really make it more effective, it takes a lot more work to be a lot more detail oriented.” One person indicated not having enough time to make changes to the plan was the most challenging part of feedback.

Question three, what do you think could be done to improve the feedback process, had varying results. Two of the respondents indicated wanting more interaction with the person offering feedback, with one participant suggesting a virtual format for that interaction, “Something that I’ve learned with school dismissal (due to the Covid-19 school closure) is really the use and benefit of virtual meetings. Where I think there’s so much complication in trying to meet with people and, traditionally, we’ve always been we need to meet together in the same room. So, I think a recommendation I would have is wouldn’t it be nice to have a virtual meeting where there’s some sharing of a screen back and forth?” One participant indicated wanting even
more concrete examples than the ones offered, though he did not specify further, saying “Maybe giving some examples, like concrete examples or BIPs with examples with this is an idea of how you can fix that. I think, I mean, there was some of that, but even more concrete examples might be helpful.” One participant did not understand that he was in the control group and expected feedback on an earlier BIP and another participant indicated that having training on BIP writing and the BIP-QE II before receiving feedback would be helpful.

For question 4, participants answered, how have the students, who you wrote BIPs for, benefitted from the feedback. Respondents in 40% of the cases indicated implementation fidelity was improved on BIPs, saying, “I think like I said just a second ago, that fidelity has improved, so I think student behavior has improved. So, I guess, they’ve improved in that they are getting more specific skills taught to them through this BIP process.” Another two participants indicated they reflected more on how to improve the BIP process for the next students they worked with and another indicated that they improved in goal writing for BIPs, which allowed them to have specific action steps to get to that goal.

Question 5, what is the most challenging part of the BIP process, was not about the feedback received, but about the BIP process in general. Two of the participants mentioned that paperwork or guidelines required by the district seemed to get in the way of the student being the top priority, with one saying, “I think being compliant with the district, ‘cause you look it over and think ‘wow this is a great BIP’ and then you have to think, ok does this cover everything that the district needs and I hate that’s the thought, when it should be about the student.” While another, two mentioned trouble with team consistency in implementing the BIP, and someone else mentioned not having consistency across teams in writing BIPs in several school settings, as well as not having solid tier one supports in behavior.
Discussion

The BIP writing and implementation process is complicated, with the quality of each BIP subject to the nuances of individual teams, access to training, attitudes towards intervention procedures, and resources to support implementation. Many studies have attempted to train plan writers on writing more technically adequate BIPs (Browning-Wright et al., 2007; Kraemer et al., 2008; Strickland-Cohen & Horner, 2015; Van Acker et al., 2005), but none have offered immediate feedback as the sole source of support. This study was focused on just one component of this complex process, namely technical adequacy. Like previous researchers, this study found that many plans were rated as Weak or Underdeveloped before feedback (Blood & Neel, 2007; Strickland-Cohen & Horner, 2015; Van Acker et al., 2005). To improve technical adequacy, we developed and implemented a feedback system to provide timely, tailored guidance to participants writing BIPs. Participants were allowed to view targeted feedback with extensive examples of technically adequate BIPs. Our results indicated that targeted feedback can improve BIP quality.

However, there were some subareas of the rubric, that continued to score low, in some cases preventing plans from changing quality ratings. When looking at a breakdown of technical adequacy scores, pre-treatment plans scored low in teaching strategies; reinforcement; team coordination; and goals and objectives. Within the control group, team coordination and goals and objectives were not present in any of their plans. From the scores that were seen on post-treatment plans, most participants seemed to employ at least some of the feedback around teaching strategies, and team coordination. Goals and objectives and reinforcement both showed improvement, however that improvement was not as drastic. In the control group, no team coordination was present in the original plans and very little was added, even after feedback.
Participants indicated that they found value in the process of the feedback, overall, with suggestions of areas that could improve the process of feedback. The research team believes these findings support the effectiveness of feedback for several reasons. First, even with a small sample size, we found a significant effect. The improvement in scores for the control group was not as drastic, however, as a reminder, participants were not aware they were in the control group until after they submitted a BIP for feedback. It’s possible this was due to reactivity (Gall et al., 2007). In other words, participants were aware that they were being observed and may have put greater emphasis on preparing and writing the BIPs they would submit for potential feedback. If participants were more likely to scrutinize their work prior to submitting the BIP then it might have accounted for the observed differences in BIP quality between the first and second BIPs submitted to the team by members of the control group.

The feedback process was helpful to participants, overall. One participant even used the feedback to create her own template for writing plans. Another interviewee indicated, at the end of the interview, “I think this is great. There’s a school psych over BIPs in our district and he told me that my BIPs were very impressive and my professors are all behavioral people and your study helps to break everything down into those specific areas too.” It seems, from the participants’ perspectives, the most limiting factor to doing this kind of feedback process, is that the team offering feedback does not know the students or the team. More research into implementing the feedback on a more personalized level, in a school or district, by personnel within the organization is still needed.

Limitations

Over the course of the study, it was difficult to have participants complete the study. Some were not writing enough BIPs, others did not respond to requests for more BIPs, many left
the profession or changed positions while enrolled in the study and could not complete it. Some professionals were not writing as many BIPs per year, as a study like this would need. All of these factors contributed to a small sample size and when a smaller sample size is used to run statistics, the results are less likely to show the impact that a measure can have. Several participants did not complete the study and that contributed to an incomplete data set, where the pre-treatment scores were obtained, but there was not anyway to see if feedback would have impacted the technical adequacy of future plans, because despite repeated efforts to reach participants, they did not turn in anymore BIPs.

One of the biggest limiting factors was one that could not have been foreseen, was the nationwide shutdown of schools during 2020 due to Covid-19. This was unprecedented in history and no one was writing or making changes to BIPs that no data could be collected on. This contributed largely to the small sample size of this study and to the ability of some participants to complete the study. Strickland-Cohen and Horner (2015) had similar issues, with only six participants moving into the second phase of their study on BIPs. Due to the small sample size, the results of the repeated measures ANOVA should be interpreted with caution.

Another limiting factor is that our team was only looking at the technical adequacy of the BIPs without considering the FBAs where all the data for writing a plan are created. The BIP should be based on the function of the behavior as determined by the FBA. (O’Neill et al., 2015), which cannot be determined by looking at the BIP alone. In the original plans for this study, the research team was conducting a survey that looked at implementation fidelity and contextual fit. It would have required plan-writers to make sure the survey was sent on to plan implementers. None of our participants were following through with this piece of the study. Due to not having data in this area, the research team could not answer those questions. It seemed the demands of
the study were too much on participants and those questions may need to be answered in a more simplified study. Caution is warranted when drawing any conclusions based on the interview data as well, because the sample size was so small.

Implications for Research

There are many implications for future research in this area. Case studies, looking at how feedback improves technical adequacy, contextual fit and implementation fidelity could be conducted with feedback being offered by someone who knows the team and is trained on the elements of a technically adequate BIP. Along with feedback for the plan writer, feedback could be given to teachers and other implementers on the implementation of the plan to see if implementation fidelity can also be improved through feedback.

Other research collecting the FBA and examining the function of the behavior, which is critical to writing an effective plan (O’Neill et al., 2015), is needed as well. Blood and Neel (2007) indicated in their study, only 15 of the 43 files reviewed contained FBAs. Yet there were 37 behavior plans. There are clearly holes in the FBA process and it is an area that deserves further exploration in relationship to BIPs and their technical adequacy. Iovannone et al. (2015) at the University of South Florida also developed a tool called the Technical Adequacy Tool for Evaluation (TATE) that examines the FBA and BIP in conjunction and could be considered as an alternative to the BIP-QE II.

We suggest future researchers explore the way technology is influencing the collection of FBA data and the development of BIPs, especially if other research can be linked to show that plans with higher technical adequacy have better implementation fidelity. Often guided software is being used, but the question remains whether or not the prompts are sufficient to encourage the creation of technically adequate BIPs. Alternatively, researchers could answer the question, how
can BIP writers improve and still meet the standards of using the software that their district
deems necessary to support the BIP process?

Researchers should also consider interviewing even more BIP implementers and
developers to find out more about how and if the process of writing BIPs, is interfering with the
student being the priority, as was implied in the interviews. Interviewees mentioned that it was
difficult to have the kind of time that would be needed to implement the changes our team was
suggesting to a BIP. It requires an entire IEP team to sit down and agree to the changes. Some
interviews indicated that because the research team did not know the teacher or the student, the
changes the team suggested were not feasible, despite being researched based, that viewing the
data on the individual student was more important. Essentially, does technical adequacy of a plan
actually lead to better outcomes for students?

Implications for Practitioners

Writing BIPs can be a difficult process, even for the most experienced practitioners.
Often the writer might find themselves feeling responsible for the outcome of the plan and that
can be a heavy burden to carry. More technically adequate BIPs encourage a process of team
coordination and because each team member’s responsibilities are listed on the plan, it
encourages collaboration among team members to make sure that each person knows their role
clearly and can implement that role with fidelity. This protects any individual team member from
feeling like the entire process is an individual responsibility. This is something that training
programs for school psychologists, special educators and behavior analysts could improve. Of
the subareas, team coordination addresses team roles in data collection particularly. Team
coordination did show some improvement, but not vast improvement and data collection is
essential to knowing how and when to make changes to a plan. If it is not clear who is playing
which roles in the data collection process, it is going to be hard to do it effectively. The sub-area that improved the least was goals and objectives, and as one interviewee suggested, if the goals and objectives improved, then it is possible to outline the steps in the plan, that are needed to get there. Training programs could also focus in more on teaching how to write specific, obtainable goals for BIPs as well.

A feedback process among teams can be highly valuable. A feedback process can contribute to team collaboration, as the feedback is discussed and then implemented in plan writing and executing. One of the themes of the interviews was that the person offering feedback had no experience with the student or the particular nuances of the case. If there is a team member trained on reviewing BIPs for their technical adequacy, this type of feedback can happen easily and quickly within a team. Using researched-backed ideas to create technically adequate plans and create an environment where feedback and collaboration are the norm, teams are more likely to see success in writing these plans, implementing the plans and ultimately benefitting the student.

Practitioners are under many time constraints, as well as pressure to meet district standards when writing plans, another theme from the interviews. Often research participation feels like another burden in their time. However, based on what the interviews discovered in this study, considering participating in research in areas where a practitioner may not feel fully trained, may be beneficial to them and to students they work with now and in the future.

Conclusion

BIP planning and writing is a process that involves many team members all working together to try and create a plan and an environment where a student can succeed. There are many challenges within the process of implementing a BIP and making sure all team members
understand their various roles in that process. Improving technical adequacy of BIPs through feedback might be one piece of that puzzle. Our study concluded that technical adequacy can be improved through feedback. Participant interviews revealed that in some cases it improved the perception of implementation fidelity of those plans. Implementing a feedback process for BIPs within districts may help the plans improve the quality of BIPs and ultimately their benefit to our students.
References

APPENDIX A

Review of the Literature

Research indicates that classroom management, and dealing with behavior problems in classrooms, is a pervasive problem for educators. Ntinas et al. (2006) interviewed teachers and found teachers, across levels of experience from less than five years to more than 15, report feeling unprepared and untrained to deal with these types of behavior issues that arise. According to the Bureau of Justice Statistics (2016) there were 48 school-associated violent deaths between July 1, 2014, and June 30, 2015. In that same period of time there were 841,100 reports of victimization in schools and over 500,000 outside of schools. The Bureau of Justice Statistics (2016) also reports up to 21% of students, report being bullied at school as well. A 2016 Gallup poll showed that 28% of parents surveyed feared for their student’s safety while they were at school (Auter, 2016). These problems are amplified for students with disabilities. Browne, Deyman, and Ahga (2014) prepared a report for National Institute of Justice and indicated rates of reported violent victimization among people with disabilities are more than three times higher for females and twice as high for males. They claimed in the same report however, these numbers may be low estimates, because people with disabilities may not readily identify and report victimization to official sources. Along with higher rates of victimization in general, students with disabilities are reported in higher numbers as the perpetrators of problem behavior at school. For instance, students with disabilities are suspended at twice the rate of their peers without disabilities (Bureau of Justice Statistics, 2017).

Gardner and colleagues (2000) showed that high school size was directly correlated to pressing educational issues including discipline problems, absenteeism, and low rates of parent involvement. The same students that are facing discipline problems are often the ones who have
truancy issues and low rates of parent involvement that could be caused for a variety of reasons. With growing school sizes, school leaders need evidence-based strategies that can address these problems efficiently and effectively for all students. One option available to educators and supported by legislation is to conduct a Functional Behavior Assessments (FBA) and develop a Behavior Intervention Plans (BIP). In some cases, these plans are implemented as part of a coordinated set of interventions of varying levels of intensity to prevent problem behavior, teach new skills, and engage all students in meaningful opportunities to learn and grow called a Multi-Tiered System of Supports (Horner, 2000; Sugai & Horner, 2009). This is often done using a multi-tiered system of support, where interventions applied at Tier 1 are the most universal and interventions applied at Tier 3 are the most individual and intensive. Functional Behavior Assessments (FBA) and Behavior Intervention Plans (BIP) are included at the Tier 3 level.

Functional Behavior Assessments and Behavior Intervention Plans

Students with disabilities emit problem behavior more frequently than most of their peers and are being suspended at higher rates (Krezmien et al., 2017). The Individuals with Disabilities Education Improvement Act (IDEA, 2004) requires that schools be safe for all students and that school personnel use evidence-based discipline practices to reduce problem behavior and promote appropriate behavior. These parameters are the foundations of a free and appropriate education (FAPE). In IDEA, lawmakers sought to prevent the use of suspension and other punishments to resolve student behavioral problems. The use of suspension, in some cases, actually reinforces problem behavior if the student is seeking escape from school. Positive behavior support (PBS) should be used to intervene whenever possible. PBS is a framework with many components, including assessing behavior in the environment it occurs in, looking at addressing environmental concerns that may be leading to the behavior, teaching new positive
skills, reducing the reinforcement of negative behaviors while increasing rewards for positive behaviors, and using data to support changes to any implementations (Brown et al., 2015; Carr et al., 2002; Sailor et al., 2009).

IDEA also stipulates that students with disabilities who engage in problem behavior related to their disability, and that interferes with their access to an appropriate education, are required to have a Behavior Intervention Plan (BIP). An Individualized Education Program (IEP) team must consider a BIP after a student with a disability has been suspended ten consecutive days within a school year or for a series of removals that total more than ten days and constitute a pattern. In particular, the BIP should be written to address the problem behaviors using positive replacement behaviors and other forms of PBS (Dragsow & Yell, 2001; Yell et al., 2000). BIPs should direct implementers (in schools, the implementer is usually the teachers) on how they should change their approaches with the student. The BIP should be based on the function of the behavior as determined by the functional behavior assessment (FBA). The BIP should also reach standards of technical adequacy which include using evidence-based treatments and applied behavior analysis. Finally, it should have good contextual fit which includes the plan matching to the values, resources, and skills of the plan implementers (O’Neill et al., 2015).

When a BIP is required, the IEP team must convene to discuss the results of the FBA. Afterward, the BIP is written, this is often done by an individual on the IEP team, but schools differ in how this responsibility is taken care of. The FBA specifically needs to look at the setting in which the behavior occurs, the events leading up to the behavior, and any consequences that occur following the target behavior (Dragsow & Yell, 2001). In the past, behavior modification was often used, which ignored the conditions under which the behavior might occur or its antecedents (Sasso et al., 2001). Despite the repression of unwanted behavior, a behavior
modification approach rarely teaches positive skills to be used in outside settings. BIPs should have a goal to look at the negative behavior and teach a new positive replacement behavior that still meets the student’s needs. However, one of the challenges faced by schools is that most successful research surrounding the development of BIPs have been in more controlled situations, such as residential treatment facilities, and not in the classroom, the latter of which presents many uncontrollable variables (Sasso et al., 2001).

The purpose of the FBA is to identify the function of the behavior. The function of the behavior could be loosely defined as the “why” behind a student’s actions. For example, a student might engage in problem behavior to escape difficult assignments or get attention from peers. The reasons behind problem behavior vary and defining the why is important for developing positive replacement behaviors that will be written into the BIP. A replacement behavior is a desired behavior that still accesses the function of the negative behavior. For example, a student seeking the attention of the teacher may act out by kicking another student because he is quickly rewarded by attention from the teacher and possibly from the principal as well, if he is kicked out of class. In other words, the function of the kicking is getting attention from educators, even if that attention isn’t positive. A positive replacement would be the student raising his hand to get attention from the teacher. His BIP would include rewards for using this positive behavior, such as lunch with the teacher after raising his hand a predetermined number of times.

If the function is not determined accurately, it is unlikely that the resulting BIP will be helpful. If behavior analysis and PBS are being applied, then determining the function is essential in the BIP (O’Neill et al., 2015). A BIP should include positive replacement behavior that meets the function of the negative behavior. For example, a teacher may have a student who
dislikes reading in front of the class and acts out in order to avoid reading out loud. A possible solution to this problem would be to have that student meet with the teacher at a separate time to do his reading. Thus, he avoids the embarrassment of reading out loud, skips the negative outburst, and still gets the assignment done. The most detailed FBAs, from which BIPs will be written, will focus on the student across multiple classrooms to see where the behavior is most likely to be triggered. From these multiple angles, a hypothesis will be formed regarding what will best serve the student and help him or her use a positive replacement behavior (Scott & Nelson, 1999).

Although BIPs are intended to be used as a proactive approach to keep a child in school as much as possible (Dragsow & Yell, 2001), research suggests a proactive approach predicts students who were referred with behaviors that have not become a habit yet, will be more likely to discontinue negative behaviors when early intervention of an FBA and BIP is applied (Scott et al., 2005). A preventative approach is more likely to help students avoid punitive consequences and ensure that they access appropriate educational opportunities.

Once the BIP is in place for a time, it should be reviewed for effectiveness in meeting best practice standards and for compliance with IDEA (§ 300.530 (f)(ii)). The identity of the reviewer should ideally be written into the plan along with details on how to communicate this information among team members (Browning-Wright et al., 2007). If the IEP team fails to address the problem behaviors within the plan, they could be held liable for violating FAPE (Dragsow & Yell, 2001). Scott and Nelson (1999) state that accurate data should be collected and evaluated. The BIP should be reviewed, through the data collection, to assess its effectiveness, to change the elements that are not working, or to reevaluate the FBA to discover if the function of the problem has been inaccurately assessed. Without proper data, evaluation
will prove ineffective and a waste of time. Most students are unlikely to have a turnaround in one day, but through data collection, the team can accurately evaluate if improvement is being made. If the BIPs are ineffective, the IEP team members should meet and modify the plan to better meet the student’s needs (Browning-Wright et al., 2007). However, without high implementation fidelity, tracked through data, accurately assessing the effectiveness of the BIP becomes difficult. Writing a detailed FBA followed by an effective BIP is only the beginning of the process; not until it has been implemented can real change even begin for the student (Couvillon et al., 2009).

Advantages abound when using the FBA/BIP process to help minimize negative behavior. Chandler and colleagues (1999) suggest the following advantages: first, the BIP includes procedures to teach children a positive replacement behavior rather than just stopping the negative behavior. Secondly, the BIP includes strategies to prevent problem behavior by altering antecedent conditions or setting events to evoke appropriate behavior. Third, when data from the FBA are used to train an entire teaching team so that the team understands the function of the problem behaviors before implementing the BIP, they develop a common language to discuss issues related to students. If all of these aspects are addressed, the positive replacement behavior is less likely to fail in helping the student overcome the difficult behavior. This method can be applied, regardless of the level of maturity of the student or the setting of application. These steps give teams a consistent way to intervene based on known functions of the student's behaviors. BIPs should always have an end-goal of reducing problem behavior and increasing appropriate behavior.

A Problem-Ridden Process

Research by Conroy et al. (1999) shows that, although mandated by federal law, the BIP process is replete with logistical problems including BIPs failing to include required components
like a function-based intervention, availability of financial and training resources, and implementation factors. Before being federally mandated, the FBA/BIP process was only being used in controlled environments (like residential treatment facilities) and not in the less predictable setting of the classroom. At that time, there was a lack of research into the process being used as a tool for students with emotional/behavioral disorders (EBD) and students with other behavioral issues, like drug use.

Another barrier that many schools face is that special education needs, including the FBA/BIP process can be draining on resources. These processes require professional development, as well as academic and behavioral supports if they want to see progress in the students. Additionally, there are often many roadblocks to obtaining any federal funding to provide sufficient training (Oram et al., 2016). The time educators spend in training is also time spent away from the classroom and from the students, and time is a precious resource when teacher shortages are already a problem, particularly within special education. Scott and colleagues (2005), also proposed that timing of this training is an issue as well; when should training be implemented? And who should be trained, the teacher implementing the plans, or the school psychologist and others who may be serving on the IEP team?

Utah has tried to solve some of these issues by creating the Least Restrictive Behavior Interventions manual (LRBI, Utah State Board of Education, 2015). Utah's regulations surrounding the FBA and BIP are available in the LRBI, but they are not legally binding. The state’s LRBI guidelines specifically state they are best practice but not legally binding and the FBA and BIP forms fall under that umbrella (Zirkel, 2017). However, the original guidelines of IDEA were left open-ended intentionally. Within Utah, policy makers left freedom for the districts to use a form of their choosing to write the FBA and BIP. The federal lawmakers wanted
the IEP team to assess and determine which behaviors needed to be included as part of the IEP or
the BIP. In general, behaviors that disrupt learning for the student or peers, that are
noncompliant, that are abusive in anyway, or that are destructive or aggressive should be
reviewed (Dragsow & Yell, 2001). Open-endedness on the part of the law allows these plans to
become individualized or interpreted by districts to best suit their needs. The question becomes:
Are the forms that are available to BIP writers sufficient to meet technical adequacy standards?

Browning-Wright et al., (2007) worked to develop the Behavior Intervention Plan
Quality Evaluation (BIP-QE) Scoring Guide, which evaluates a BIP’s technical adequacy. They
recognized six key components in a high-quality BIP including: behavior function, situation
specificity, behavior change, reinforcement tactics, reactive team strategies, team coordination,
and communication (Browning-Wright et al., 2007).

However, the research seems to indicate schools are not meeting these standards. In an
extensive study examining FBAs and BIPs, Van Acker and coauthors (2005), found that the
majority of researched BIPS were missing specific language, and some were lumping several
behaviors that occurred in different situations under one category. One of the most significant
findings was that some BIPs altogether missed using the function, identified in the FBA, when
designing goals for the target behavior. In almost two-thirds of BIPs reviewed there was no
evidence that the function was reviewed or used in developing the replacement behaviors. In one
example, a student was being suspended for skipping class. Alarmingly, this consequence was
applied to a student who reported high anxiety and engaged in problem behavior to escape
school.

Van Acker and colleagues (2005) also reported that less than half of the FBA/BIPs in this
particular study were written by a full IEP team. However, teams with a member trained in the
FBA/BIP process were more likely to produce a document that included a hypothesis as to the function of the behavior, use that hypothesis to develop a clearly written BIP that referred back to the function of the behavior, and use positive behavior supports to address the behavior.

Blood and Neel (2007) reviewed the use of FBA data to develop BIPs for students with emotional/behavior disturbance (EBD). The study included reviewing files for all students within the district that were spending their days in a self-contained special education classroom for children with EBD. Each of the students’ files were reviewed to examine their FBAs and BIPs. Teacher interviews were conducted at the beginning of the school year to find out how the BIP was affecting classroom plans, such as set up of the classroom and lesson planning. Follow-up interviews asking about details of the plan and progress of the student were held two months later as well. In this district, the most common type of BIP was a hierarchical stock list of positive and negative behaviors, with only 21.4% consisting of some type of personal element. Personal elements, when included, were things like desired behaviors with positive consequences—for example, being able to spend time with a favored teacher.

Only 15 of the 43 files reviewed contained FBAs. Yet there were 37 behavior plans. Only one of the 15 with an FBA included a hypothesis and replacement behavior in the BIP. Almost all included the setting, antecedent and consequence though. A noteworthy observation of the researchers was that in almost every FBA, listed under setting, every box had been checked. This would indicate that the student was having the problem in every possible condition listed. In the interviews that were conducted none of the teachers could talk about the goals within the IEP or describe the BIPs. Blood and Neel (2007) surmised that any BIPs within the classroom were being developed without knowledge of the teachers and were likely being done just to follow the law. This would indicate a problem with communicating the developed
interventions with the teachers that are implementing them and may also indicate that BIP developers are not using vital information from the teachers.

The Blood and Neel study (2007) also found holes within the process for developing and utilizing BIPs. These students were in classrooms designed for individualized supports, but the BIPs that were developed by special educators were not being used, and, even more concerning, teachers were unaware of their existence. Equally concerning was the fact that many of the teachers participated in some piece of the observations that led to the FBA. Perhaps they were going about the motion of meeting legal standards, yet even a legal excuse may be arguable considering that teachers were unaware of the plans.

Once the BIP is written it could be said that the hardest part is still to come: implementing the plan with fidelity. The Blood and Neel (2007) study indicated that in some cases teachers are unaware of the plan, so plans cannot possibly be implemented with fidelity. It would also indicate a problem with plan writers’ communication and training of teachers on the plan. Finally, contextual fit of the plan isn’t being reviewed to see if it would even work in the classroom. If it was, teachers likely would have been able to articulate plan details in the interview. FBAs and BIPs have been shown to work in controlled environments (Sasso et al., 2001), but the natural environment of the classroom has presented problems, evidenced by the fact that plans are not even meeting technical adequacy standards (Blood & Neel, 2007; Van Acker et al., 2005).

Hope for Success

Pinkelman and Horner (2017) found improved fidelity includes school administrator support. When the administration team backs up the effort, the whole school environment improves. They also found that staff support or staff buy-in plays a role in this as well. When the
staff support the measures, they're more likely to effectively use them within their classrooms. All of these pieces play a role in the contextual fit of a plan or how well the plan matches up with the particular classroom it’s being used in. Finally, training and professional development, teaming or being on the same page as a staff, and a consistent approach, including using the same language as a team, all contribute to overall fidelity. However, concerns do exist in this area. In one study BIP developers reported that they often felt they did not have the time, team support or support from administration (Strickland-Cohen et al., 2018).

Plan implementation was found to be improved when immediate feedback is being used for teachers. Codding and colleagues (2005) conducted a multiple baseline study in which teachers were using BIPs that addressed both antecedents and consequences surrounding negative behaviors. The teachers received training on implementing the BIPs and behavioral analysis. Observers provided feedback to the teachers on whether they were addressing the antecedent and consequences contained in the BIPs. The results showed an improvement in making sure those elements were addressed when feedback was used, and in some cases that improvement lasted for 15 weeks.

Another study by Cook et al. (2012), revealed that evidence-based BIPs were also more likely to be implemented with fidelity, as well as see positive results among the students, than those that failed to meet the standards of the BIP-QE II. The study also found that when higher treatment fidelity was reported, the outcomes were also improved over those plans that reported a lower treatment fidelity. The implications for this study are if educators can produce evidence-based plans, and carry them out with fidelity, then this process will become more successful within schools.
Improving Technical Adequacy

Researchers have sought to find a way to improve the quality of BIPs. One way is by educating those who are most involved in this process, including BIP developers, such as school psychologists, behaviorists, and other specialists that write the plans and BIP implementers, who are usually classroom teachers. In the study by Van Acker et al. (2005), educators were trained over a period of three years on using data to identify target behaviors, the function of the targeted behavior, developing the BIP, and following up with data measurement. The first training seminar lasted one day and encompassed functional assessment and development of BIPs using PBS. A two-day follow-up, training also occurred with more focus on identifying function of the behavior and developing the BIP based on the function. There was no indication in the published article of how long after the first training, the second training occurred. Schools were then invited to submit FBAs and BIPs as well as any accompanying data for review to the research team. For this project the researchers developed a rating scale that ranged from 0 (missing the element) to 5 (excellent) in several areas including:

(a) the make-up and training of the members of the IEP team responsible for FBA/BIP development; (b) the identification of the target behavior(s); (c) the identification of the hypothesized function(s); (d) data collection procedures; (e) examination of context variables that impact the behavior; (f) verification of the hypothesized function; (g) connection of the Behavior Intervention Plan (BIP) to the FBA; (h) use of positive behavioral supports; and, (i) monitoring of implementation and effectiveness of the BIP.

(Van Acker et al., 2005 p. 39-40)

The researchers found that the teams that reported having at least one member who was “extensively trained” in the FBA/BIP process, including the training offered by this study as well
as extensive training in applied behavior analysis, were able to produce better BIPs than those teams that did not include individuals with extensive training. There was one area where this did not prove to be true. Neither teams with training or without showed any improvement in identifying the target behavior clearly. This problem stemmed from the FBA. Seventy percent of the FBAs performed either did not specify the targeted behavior or included vague definitions of the behavior and those behaviors were written into the BIPs using the language from the FBAs.

In another training study, Browning-Wright and colleagues (2007) trained behavior specialists, including school psychologists and resource specialists, on conducting FBAs and writing BIPs. Each participant submitted a BIP they helped write pre- and post-training. These plans were rated using the BIP-QE II. The trainings consisted of two sessions of six hours. The attendees spent the first nine of the total 12 hours reviewing key concepts of behavior function, situational specificity, behavior change, reinforcement tactics, reactive strategies, and team coordination and communication. Activities, using four specific case examples, were also provided to practice learning to identify the function of behaviors. The last three hours of training included training on the BIP-QE II plus reinforcing the key concepts. The researchers found that ratings—using the BIP-QE II to score BIPs written after training compared with those written before training—improved with training, specifically in the area of the key concepts.

In another study, Strickland-Cohen and Horner (2015) trained typical school personnel chosen based on the role they served in writing BIPs. First, the professionals were given a 50-question exam related to BIP critical features and reviewing behavior scenarios. Afterward, they participated in a training that consisted of four one-hour sessions over four weeks. Participants were trained on identifying if BIPs were using functionally appropriate replacement behaviors in the first session. These sessions were followed by a session of modeling and having participants
then demonstrate positive behavior support development. In the third training the participants were instructed on the importance of contextual fit and discussed implementation fidelity. Finally, the last training consisted of teaching specific skills to lead a team through behavior interventions and role-playing with feedback to demonstrate their newly learned skills. Then those trained took a post-version of the test taken earlier which showed an improvement from 64% on the pretest to 90% on average on the post-test. In a follow-up study, one year later it was found that most of the knowledge stuck with the participants. All educators still working took the test another time and scored an average of 86% on the third try (Strickland-Cohen et al., 2018).

The first study was a two-phase study and only six participants moved into phase two. The researcher came to the school and conducted an FBA on a student. The trained participant, using the FBA conducted by the researcher, wrote a BIP, with consultation from other IEP team members. The IEP teams then completed a Self-Assessment of Contextual Fit in Schools (Strickland-Cohen & Horner, 2015). Plans were also rated using the Behavior Support Plan (BSP) Critical Features Checklist, each expert rated the extent to which the plans included (a) a functionally equivalent replacement behavior; (b) preventive, teaching, and consequence strategies that directly addressed the function of the problem behavior; and (c) plans for implementing and evaluating plan implementation and effectiveness. (p. 88)

Observation of the plan in action then occurred. Plans developed by the teams were rated as more than adequate, scoring an average score of 19.9 out of 20 points on the Critical Features Checklist. However, no pre-training scores were available. All students showed a decrease in problem behavior and an increase in academic engagement.
In a study by Kraemer and colleagues (2008), the researchers trained graduate students enrolled in a special education program. Training in this study used the same format as the Browning-Wright et al. study (2007) and had the same requirement of submitting a plan before and after receiving training. In this particular study, most of the participants’ pre-training plans were in the good category, as rated by the BIP-QE II already; however, training still showed an improvement in their plans. Overall, there is a benefit to training, even for those experienced in the area of writing BIPs.

The overall results of these trainings (see Table A1) show that offering training to those who are writing and those who are implementing the BIPs will benefit the teams in terms of being able to create clear plans, which makes for easier implementation. Training also helps the writers create plans that are based on the function of the behavior with functionally equivalent replacement behaviors being utilized to teach new skills. Training individuals, experienced and new, to BIP writing may be one piece of the puzzle to solving some of the issues within this process.
Table A1

Summary of Training Studies

<table>
<thead>
<tr>
<th>Study and Measure Used</th>
<th>Training Time</th>
<th>Follow-up</th>
<th>Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van Acker et al. (2005) used their own measure they developed for this study</td>
<td>3-day seminar</td>
<td>None, except submission of BIPs for rating</td>
<td>Teams with a trained member produced more technically adequate BIPs. However, teams with or without trained members were not better at identifying target behaviors.</td>
</tr>
<tr>
<td>Browning-Wright et al. (2007) BIP-QE II</td>
<td>12-hour seminar</td>
<td>None, except submission of BIPs for rating</td>
<td>Mean score before training (out of a possible 24): 14.91. After: 17.47</td>
</tr>
<tr>
<td>Strickland-Cohen and Horner (2015) Intensive Individualized Interventions Critical Features Checklist and Self-Assessment of Contextual Fit in Schools</td>
<td>4 one-hour sessions over 4 weeks</td>
<td>6 participants had a researcher conduct an FBA from which they wrote a BIP. Then observation of the implemented BIP occurred.</td>
<td>Test scores improved from 64% before the training to 90% after the training. 19.9/20 on the Critical Features checklist, post training. No Pre-training scores available.</td>
</tr>
<tr>
<td>Kraemer et al. (2008) BIP-QE II</td>
<td>12-hour seminar</td>
<td>None, except submission of BIPs for rating</td>
<td>Mean score before training (out of a possible 24): 17.06 After: 21.06</td>
</tr>
</tbody>
</table>

There is also a clear need locally for help in the area of BIP writing. Rigby and colleagues (2018) found in four districts in the Northwestern United States that schools particularly struggled in areas of team coordination and goal setting when BIPs were rated using the BIP-QE II. Each of the four districts had other areas with room for improvement as well, but it varied district to district. Team coordination is particularly relevant to findings in other studies, which the BIP-QE II specifically addresses. In a study of 248 educators Cooper and colleagues
(2018) found that 68% of teachers reported using function-based interventions, and only 54% reported ever being trained on them. This disconnect creates issues of being able to implement with fidelity.

However, it could be argued that training is costly, in both time and money. Those hours spent training BIP plan developers are hours spent away from the duty of their jobs. They require hiring someone to do the training that has extensive enough knowledge to provide it and paying staff during the training time. Training may also set up for initial success, but none of these studies went back and found out if plans were still being written with high technical adequacy, after training, in the long term. With the exception of Strickland-Cohen and Horner (2015), none of the training studies addressed if the plans were meeting contextual fit within the classroom either or if the plans were implemented with better fidelity once their technical adequacy improved. And even in the case of the Strickland-Cohen and Horner study (2015) these aspects were only examined in six cases.

Effective feedback to plan writers may present a solution to some of these problems. Using the BIP-QE II rating scale, plans could be offered feedback for improvement, with quick turnaround and no requirement to train plan implementers further. The feedback process could easily be taught to appropriate personnel within a district and continued to be used after researchers are no longer available. A survey of contextual fit and implementation fidelity can also be used with plan implementers as well and contributes to the data of making sure the plan is working for the student.

In this study, the research team hopes to answer the following research questions:

1. To what extent does immediate feedback influence the technical adequacy of BIPs?
2. From the perspective of participants, was the feedback process useful in their work?
References

https://ncvc.dspacedirect.org/handle/20.500.11990/24

https://doi.org/10.1353/etc.2007.0017

https://www.bjs.gov/content/pub/pdf/capd0915st.pdf

https://www.bjs.gov/content/pub/pdf/iscs16.pdf

https://doi.org/10.1177/019874290102600407

https://doi.org/10.1177/019874291103600405
APPENDIX B

Consent and IRB Approval Letter

Consent to be a Research Subject

Introduction This research study is being conducted by Rebecca M. Cramer, EdS candidate, Cade Charlton, PhD., Ellie Young, PhD., and Randall Davies, PhD., at Brigham Young University to determine how feedback effects the quality of behavior intervention plans (BIPs). You were invited to participate because you currently write BIPs for the students in your caseload.

Procedures If you agree to participate in this research study, the following will occur:
• You will submit a BIP that you wrote in the previous school year for review, with all student information removed.
• You will submit the first two BIPs you write during the school year via a private dropbox after student names have been removed by you.
• If your first BIP is placed in the treatment group you will receive feedback within 48 hours to make changes to the BIP. In most cases these changes should be brief and not consume a large amount of your time.
• If your first BIP is placed in the control group, you will not receive feedback on the first one, but on the second one you will receive feedback. Submitting de-identified BIPs and responding to feedback will take 40-60 minutes.
• After each BIP has been implemented, you will be invited to complete an online survey concerning how the plan has been implemented. We anticipate that this survey will take approximately 5-10 minutes to complete.
• After the last BIP has been submitted you will be contacted to complete a recorded interview over the phone about your experiences in the study. This will take approximately 30-40 minutes.
• Total time commitment will be approximately 75-110 minutes (i.e., de-identifying student information, uploading the documents, reviewing the feedback, taking the survey, and completing the interview).

Risks/Discomforts Risks include that you will be spending more time writing the BIP than you might typically because of the time spent editing as well as a brief loss of time to complete the recorded interview. The researchers will try to limit this time by making the feedback as clear and concise as possible and getting the feedback back to you as soon as possible as well.

Benefits Benefits may include an improvement in the writing of the BIPs. It is also hoped that the researchers will learn whether improving BIPs is related to how well they are implemented in the classroom.

Confidentiality The research data will be kept on a password protected computer and only the researcher will have access to the data. At the conclusion of the study, all identifying information will be removed and the data will be kept in the researcher's locked office. Each BIP and survey will be given a unique alphanumeric ID to keep them paired together but not reveal your identity.
Compensation You will receive a $20 gift card upon submitting all BIPs.

Participation Participation in this research study is voluntary. You have the right to withdraw at any time or refuse to participate entirely without affecting your employment or standing with your school or district.

Questions about the Research If you have questions regarding this study, you may contact Dr. Cade Charlton (cade_charlton@byu.edu) or Rebecca M. Cramer at (cramer.rebecca@gmail.com) for more information.

Questions about Your Rights as Research Participants If you have questions regarding your rights as a research participant contact IRB Administrator at (801) 422-1461; irb@byu.edu.

Statement of Consent I have read, understood, and received a copy of the above consent and desire of my own free will to participate in this study.

Name (Printed): Signature Date:

Approval Letter

To: Professor Cade Charlton
Department: CP&SE
College: EDUC
From: Sandee Aina, MPA, IRB Administrator
Bob Ridge, PhD, IRB Chair
Date: October 23, 2018
IRB#: E18396

Title: “The Effects of Performance Feedback on the Technical Adequacy of Behavior Intervention Plans”

Brigham Young University’s IRB has approved the research study referenced in the subject heading as exempt level, category 1. The approval period is from October 23, 2018 to October 22, 2019. Please reference your assigned IRB identification number in any correspondence with the IRB. Continued approval is conditional upon your compliance with the following requirements:

1. A copy of the informed consent statement is attached. No other consent statement should be used. Each research subject must be provided with a copy or a way to access the consent statement.
2. Any modifications to the approved protocol must be submitted, reviewed, and approved by the IRB before modifications are incorporated in the study.
3. All recruiting tools must be submitted and approved by the IRB prior to use.
4. In addition, serious adverse events must be reported to the IRB immediately, with a written report by the PI within 24 hours of the PI's becoming aware of the event. Serious adverse events are (1) death of a research participant; or (2) serious injury to a research participant.
5. All other non-serious unanticipated problems should be reported to the IRB within 2
 weeks of the first awareness of the problem by the PI. Prompt reporting is important, as
 unanticipated problems often require some modification of study procedures, protocols,
 and/or informed consent processes. Such modifications require the review and approval
 of the IRB.
6. A few months before the expiration date, you will receive a continuing review form.
 There will be two reminders. Please complete the form in a timely manner to ensure that
 there is no lapse in the study approval.

IRB Secretary
A 285 ASB
Brigham Young University
(801)422-3606

Memo From IRIS Extending Study Approval

To: Cade Charlton
Department: BYU - EDUC - Counseling, Psychology, & Special Education
From: Sandee Aina, MPA, HRPP Manager
Wayne Larsen, MAcc, IRB Administrator
Bob Ridge, PhD, IRB Chair
Date: February 05, 2020
IRB#: IRB2020-011
Title: The Effects of Performance Feedback on the Technical Adequacy of Behavior Intervention
 Plans
Brigham Young University’s IRB has approved the research study referenced in the subject
heading as exempt level, categories 1 & 2.
This category does not require an annual continuing review. Each year near the anniversary of
the approval date, you
will receive an email reminding you of your obligations as a researcher and to check on the
status of the study. You
will receive this email each year until you close the study.
The study is approved as of 02/05/2020. Please reference your assigned IRB identification
number in any
correspondence with the IRB.
Continued approval is conditional upon your compliance with the following requirements:
1. A copy of the approved informed consent statement can be found in iRIS. No other consent statement should be used. Each research subject must be provided with a copy or a way to access the consent statement.
2. Any modifications to the approved protocol must be submitted, reviewed, and approved by the IRB before modifications are incorporated in the study.
3. All recruiting tools must be submitted and approved by the IRB prior to use.
4. Instructions to access approved documents, submit modifications, report adverse events, can be found on the IRB website, iRIS guide: http://orca.byu.edu/irb/iRIS/story_html5.html
5. All non-serious unanticipated problems should be reported to the IRB within 2 weeks of the first awareness of the problem by the PI. Prompt reporting is important, as unanticipated problems often require some modification of study procedures, protocols, and/or informed consent processes. Such modifications require the review and approval of the IRB. Please refer to the IRB website for more information.
APPENDIX C

Measures

BEHAVIOR INTERVENTION PLAN QUALITY

EVALUATION SCORING GUIDE II

Based on the version by Diana Browning Wright, M.S., G. Roy Mayer, Ed.D., with contributions from Dru Saren, Ph.D. the PENT Research Associate Team, PENT Research Team, PENT Cadre and 2006 PENT Research Associates Team

Formed by Danielle Rigby for research purposes

<table>
<thead>
<tr>
<th>Components to Evaluate</th>
<th>Scoring</th>
<th>Examples: All examples below relate to the same student and same behavior</th>
<th>Key Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. PROBLEM BEHAVIOR (Baseline Data of Problem Behavior and/or Target Behavior(s)) Problem behavior(s) in observable and measurable terms</td>
<td>2 = All identified problem behavior(s) are observable and measurable. If a behavioral category is listed, e.g., aggression, it is subsequently defined in observable, measurable terms. 1 = Some of the identified problem behavior(s) are not observable and measurable. 0 = No problem behavior is stated in observable and measurable terms, e.g., The student’s inner attributes are hypothesized instead of a description of behavior.</td>
<td>2 = “Defiance: Billy ignores teacher requests to independently complete a written assignment and continues self-selected activity” (this includes observable/measurable examples) Defiance sequence: Billy continues with a self-selected activity, ignoring teacher requests to complete an assignment; when prompted, he shrugs his shoulders and does not comply, if prompted again, he swears and continues with his activity. (This sequence is in observable/measurable terms) 1 = “Billy ignores teacher requests to independently complete a written assignment and continues with self-selected activity” is listed, but an additional behavior, “Aggressive behavior” is listed (but no further description is given) 0 = “Billy is defiant” (but no further description; therefore this is not observable or measurable); “Billy has a low self-concept and he dislikes the subject” (attributes rather than behaviors are given).</td>
<td>Define the problem behavior clearly so you can measure progress. If you use general behavioral category terms such as “defiance”, give examples of what the student actually does so everyone understands what the problem looks like when it occurs. If you are addressing more than one behavior, number each behavior to correlate with matched functions, matched interventions and reactive strategies later in the plan. It can be difficult to address more than two behaviors per each BIF form because the plan will become confusing and difficult to implement. However, if the behaviors form an escalation pattern that occurs in sequence (e.g., student swears under his/her breath, then rocks in chair, then tears paper, then pushes over the chair) they can be readily addressed in the plan.</td>
</tr>
</tbody>
</table>

In the process of developing a behavior plan, the team may decide to list multiple behaviors, but then proceed to address only one or a few. It can be helpful, then, to bracket the behaviors not covered, with a note stating: (Other problem behaviors not addressed in this plan include: xxx, xxx) For the purpose of scoring, it can be helpful to bracket behaviors identified in the “Target Behavior(s) or Problem Behavior(s) section that are not covered later in the plan if that has not already been done by the writers.
<table>
<thead>
<tr>
<th>Components to Evaluate</th>
<th>Scoring</th>
<th>Examples: All examples below relate to the same student and same behavior</th>
<th>Key Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. FUNCTION OF BEHAVIOR IS LOGICALLY RELATED TO PREDICTORS (Summary Statement of Problem Behavior)</td>
<td>Identified function of the behavior
• “Team believes behavior occurs because…” (Summary Statement of Problem Behavior) is logically related to “What are the predictors or ‘triggers’ for behavior.” (plus in the Summary Statement of Problem Behavior)</td>
<td>2 - All identified function(s) specify WHY the behavior occurs in terms of what the student: 1) gets or 2) rejects, e.g., escapes, presents or avoids AND each identified function is logically related, i.e., consistent with the predictor(s) that address each of the problem behaviors.
Contaminants: “revenge, vengeance, control, power.” Score 0 if present.
Note: There can be multiple functions for one behavior (e.g., student uses one behavior for attention and the same behavior to escape) OR the student may use multiple behaviors for the same function (e.g., screams, kicks, bites, runs to avoid work) Number behaviors, functions and predictors to aid in scoring.
Note: A plan may attempt to address multiple problem behaviors with multiple distinct functions. Score 2 points ONLY if each function is logically related to a predictor for each behavior. Number all behaviors and match all functions and predictors. It makes it easier to check it when you see a behavior. 1 - All identified function(s) are identified in terms of 1) getting something or 2) escaping, protesting, or avoiding something (Summary Statement of Problem Behavior). OR all not all are logically related to identified predictors for behavior (also Summary Statement) AND no contaminants are present (see above).
0 - One or more identified function(s) are not specified in terms of either: (1) to get something or (2) to reject something (escape, present, or avoid) (Summary Statement of Problem Behavior). OR contaminants are present (see above: revenge, power, control, vengeance).</td>
<td>Although the Functional Assessment/FERB section of the behavior plan is written by the team after the environmental sections, one must have hypothesized the function before deciding on environmental changes. Hypotheses of function help guide examination of supporting environmental variables to identify causation and need for change. The function is a summative conclusion about remaining variables and how the consequence of the behavior is related to the antecedents (A-B-C). All behavior is purposeful. When a behavior’s purpose is understood, alternative FERBs can be identified and taught. Building a plan requires identifying positive behaviors we ultimately want, barriers we need to remove and/or supports we will need in order to achieve our goals, and any FERB that we can accept as an alternative to the problem behavior. This FERB still allows the student to get his/her desired outcome, yet now in a more adaptive and socially acceptable manner. Analyzing the function of the behavior requires examining what is happening right before, during, and after the behavior. Look at the student’s affect and his/her verbal and non-verbal responses in addition to staff and peer responses. This is a critical step in identifying potential predictors and developing a hypothesis about the function of the behavior. Contaminants: revenge, vengeance, power and control are not functions that can be used to develop a functionally equivalent replacement behavior (FERB). FERB require a plan in all cases, e.g., how to get vengeance in a better way would not have social validity. The function should be observable, and not a construct on internal feelings of the student. Consider alternatives: (a) instead of vengeance: function= prominent past action of a peer; (b) instead of control: function= gain choice of activities and pacing of activities; (c) instead of power: functions= gain sustained peer attention, etc.</td>
</tr>
<tr>
<td>Caution: Simply identifying the function of the problem behavior, e.g., “the behavior is a protest” is not sufficient. WHY is a protest? BECAUSE... Dig deeper E.G., Is the assignment too long for this student? Or is the assignment too difficult? Or, does the problem behavior occur to protest that the work looks long and/or hard? Or, has the student stated that he does not want others to see why he struggles? Thus, he chooses to state that he is protesting the length or difficulty of an assignment so as to prevent peers from knowing about his skill deficit. Careful functional analysis is critical if we are to identify an adequate Functionally Equivalent Replacement Behavior (FERB) and environmental intervention(s) to eliminate or reduce the student’s use of the problem behavior.</td>
<td>3 - “Billy is avoiding independent paper-pencil assignments and protests termination of self-selected activity with retaliation because he states he prefers working with a partner on requested activity,” when compared to predictors of avoidance: “Whenever Billy is requested to do work without peer support, occurring after recess, when he is by himself, when there is a substitute teacher, or for any work that is longer than 10 minutes. This demonstrates a logical relationship between function and predictor(s). 1 - “Pat is doing all avoid assignments,” when compared to “When Pat is seated next to certain students” This does not demonstrate a logical relationship between function and predictor. (If a key predictor is the presence of certain students, the “Summary Statement of Problem Behavior” or “Baseline Data” should specify why he avoids written assignments when next to certain students. WHY should be observable and measurable, and not a hypothesis of internal states, E.G., ...because Pat states he doesn’t want others to see he struggles, NOT...because Pat has low self-esteem. 0 - “The function is to express a low self-concept.” “The function of the behavior is to demonstrate his poor parenting.” “The function of the behavior is to demonstrate he doesn’t understand verbal directions.” “The function is to gain power.” “The function is revenge.”</td>
<td>Building a plan requires identifying positive behaviors we ultimately want, barriers we need to remove and/or supports we will need in order to achieve our goals, and any FERB that we can accept as an alternative to the problem behavior. This FERB still allows the student to get his/her desired outcome, yet now in a more adaptive and socially acceptable manner. Analyzing the function of the behavior requires examining what is happening right before, during, and after the behavior. Look at the student’s affect and his/her verbal and non-verbal responses in addition to staff and peer responses. This is a critical step in identifying potential predictors and developing a hypothesis about the function of the behavior. Contaminants: revenge, vengeance, power and control are not functions that can be used to develop a functionally equivalent replacement behavior (FERB). FERB require a plan in all cases, e.g., how to get vengeance in a better way would not have social validity. The function should be observable, and not a construct on internal feelings of the student. Consider alternatives: (a) instead of vengeance: function= prominent past action of a peer; (b) instead of control: function= gain choice of activities and pacing of activities; (c) instead of power: functions= gain sustained peer attention, etc.</td>
<td></td>
</tr>
<tr>
<td>C. TEACHING STRATEGIES ADEQUATELY SPECIFY HOW TO TEACH AND OR PROMPT FUNCTIONALLY EQUIVALENT REPLACEMENT BEHAVIOR (FERB)</td>
<td>Specify how the replacement behavior, that allows the student to meet functional needs in an acceptable way, will be systematically taught.</td>
<td>2 - “Teacher will instruct, provide practice sessions, and cue Billy to request buddy assignment assistance using the attached request language and the speech/language teacher will practice these requesting skills in small group.” This includes some detail about requesting a peer buddy as an acceptable protest of the requirement to work independently. No other FERBs are present to evaluate and no cathartic strategy for aggression is described. 1 - “Teacher will instruct Billy on how to request peer assistance.” (This directly relates to protesting lack of assistance on seatwork but does not have at least one detail on how to teach him to request assistance. OR “Adam will be taught how to follow a schedule,” (see attached document: Teaching of a Schedule Routine) in order to increase tolerance for non-desired activities. A desired activity will occur periodically in the schedule. (approximately every 30 min.) (No strategy for teaching a FERB to Adam for appropriate protesting is given, but an adequately written teaching strategy to increase general positive behaviors is provided with at least one detail and therefore scores 1.) 0 - “Student sent to the office when he protests inappropriately.” (Not a teaching strategy for a general positive behavior or for a FERB, OR “Sam will go to the play room to stash dolls, not pears, with a pencil.” (Cathartic strategy for aggression)</td>
<td>A plan to teach or prompt the FERB must be carefully thought out, with materials or strategies given with enough detail so that all team members will remember what they have agreed to do. It is acceptable to minimally mention the teaching strategy and then refer the reader to an attached skill teaching sequence or to a specific curriculum available for plan implementers. The teaching section can include identification of strategies for increasing general positive behavior skills. Some credit is given for this, but full credit requires specific strategies for teaching FERB(s). FERB is a core component of any well-designed behavior plan and therefore, methods of teaching this should be specified with some detail. Contaminants: Cathartic strategies for aggression have been extensively researched and are shown to foster or promote further aggression and therefore contaminate the plan.</td>
</tr>
</tbody>
</table>
D. REINFORCERS
Specified reinforcers the student is known to seek

A reinforcer is a consequence that increases or maintains a behavior. It "reinforces" the probability of the behavior being repeated.

A reinforcer can be a tangible or an event delivered as a conditional consequence: If X behavior occurs, Y consequence will occur; AND for which you have evidence that the student will use X behavior to get Y consequence.

A reward is a tangible or an event delivered conditionally for which you hope the student will strive to earn it, but for which you do not yet have evidence that this has worked in the past or for which evidence does not currently exist that she will strive to attain the reinforcer.

2. Reinforcer for FERB is complete and any other reinforcer for positive behavior is also complete: (a) specifically stated, (b) contingently given, (c) effectiveness data (d) frequency, AND one additional variable is listed: either a (c) choice-within variety or (f) immediacy, AND the following contaminant is not present: student loses or reduces access to some reinforcer if the FERB is used in lieu of the problem behavior.

(a) Specifically stated: What the student will receive, e.g., verbal praise, NOTBE positive during interactions.
(b) Contingently given: If X behavior occurs, then Y reinforcer or takeaway, etc., is given.
(c) Effectiveness: There is evidence that this reinforcer has frequently been sought by the student, or there is current evidence that she will actively seek this potential reinforcer. (See line on BIP: reinforcer based on...). (f) Frequency: How often a reinforcer or token is to be given.
(e) Choice within Variety: two or more reinforcers for student selection are specified.
(f) Immediate = reinforcer(s) or token symbolizing a reinforcer are delivered immediately after the desired behavior(s).

1. A through D is given but neither E or F is present OR no FERB reinforcer is identified BUT no contaminant is present

2. Q-contaminant is present OR A, B, C, D is missing

E. REACTIVE STRATEGIES
Reactive strategies are clearly communicated and understood by all implementers

- Analysis: "Reactive strategy employ/debriefing procedures to use if problem behavior occurs again." OR
- Four components are considered: Prompting, Managing Safely, Debriefing, and Consequences

All implementers should be consistent in their approach when problem behavior occurs. All stakeholders, e.g., parents, teachers, therapists, specialists, should approve of the reactive strategies. If the student can comprehend the plan, she should be aware of all parts of the plan, including what strategies will be used for problem behavior across all problem behavior phases.

Note: For scoring purposes if multiple behaviors are addressed, find one complete reactive sequence for a problem behavior on the plan to score.

2. A Strategy for Managing at least one Problem Safety must be present, AND any two other components below are present for that behavior, AND no contaminant is described on the plan. cathearsis for aggression, or no managing safety strategy given on the plan for aggression listed.

1. A Strategy for Managing at least one Problem Safety must be present, but any two other reactive strategy components for that behavior are not given AND no contaminant is described elsewhere in the plan: cathearsis for aggression, or no managing safety strategy given on the plan for aggression listed.

0. A Strategy for Managing at least one Problem Safety is absent OR a contaminant is present on the plan: (see above)

Reactive Strategy Components:
1) Prompting to the FERB, or redirecting to task with additional support:
 Key: What staff actions are specified to (a) redirect student to the new behavior being taught and reinforced, or (b) staff actions to redirect to the task with additional supports (e.g., reminder of next break, directed activity earned, praise)
2) Strategies for Managing the Problem Safely when problem behavior does not respond to redirection is described. Safety for the student, implementers, and peers must be maintained. Caution: Never force compliance through a physical means. Approved physical restraints are only used to maintain safety of student, peers, or adults, never for any other reason.
3) Debriefing and/or additional practice of the FERB after the problem is over.
 Key: What staff do after the problem behavior episode to process or practice with the student what happened? Information on

2-2) Managing the problem safely: During Billy's problem behavior episode (task refusal and profanity) the teacher will sit very close to him, present two choices of which work folder to complete with a peer, using a non-emotional tone, waiting for swearing to end and Billy to choose a task.

AND

Other components for that problem behavior are described (2 or more required):

a) 1) Prompting FERRB: "Teacher will non-verbally cue Billy to switch to the FERB, a peer assistance request, using the five hand signals of "stop," "think," "you can make a good choice," "you can make a bad choice," what will you do?" as taught to the student and practiced previously and followed by hand signal "put yourself on the hook" if student signals "good choice" and switches behavior. OR

b) Prompting to Redirect, e.g., severe disability example: "If Mary begins to rock, a weak protest, typically occurring prior to screaming and moving, show her the "what I'm working for card," then redirect her gently to finish only the immediate task before terminating instructional session and providing desired activity.

3) Debriefing method(s):
 "Teacher and Billy will analyze the problem behavior occurrence using the attached: "My Inappropriate Behavior Worksheet. Process will occur after student is observed to be calm and ready to talk."

4) Consequences or Punishment: "Billy will not receive tokens for the period due to lack of completing the task which would have earned approximately 5 toward the computer game. or, "If Billy engages in dangerous behavior, such as pushing, hitting or throwing objects during the present, he will be referred for immediate school disciplinary response."

Well-designed reactive strategies consider the progression phases in specifying how to respond to a problem behavior.

1) Prompting: Can continuation or escalation of problem be averted by using a prompt? Remember the student of how to get desired outcome with the FERB?

2) Managing Safety: how will staff maintain safety of everyone during escalated behavior? This is critical.

3) Debriefing: What procedures, after calm is restored, help identify how to prevent further occurrences and restore rapport and rule-following behavior?

4) Consequences may or may not be required or recommended. Do school safety requirements, outside agency or parent requests require specific consequences? Does the team believe a consequence will result in the student avoiding the problem behavior in the future?

Debriefing can be a dialogue or a written process or a behavior practice session. For younger or less cognitively able students, verbal problem solving has not yet proven successful, "debriefing" cannot be a session to model replacement behavior, or guided practice with the student of how to use the FERB, or a review of a picture sequence depicting alternative behavior steps or other teaching procedures designed to achieve skill fluency, if that is in question, after the behavior episode.

Punishment is a consequence the student finds aversive and results in elimination or reduction in problem behavior because the student is motivated to avoid that consequence in the future. Caution: Avoid reinforcing negative behavior, as the student may actually find it reinforcing!

Hint: A student screams (function of scream determined to be to escape a task). If student's task is terminated by the scream, this behavior will become reinforced. Do not allow escape following the scream. Instead, require a very
Components to Evaluate

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P. PROGRESS MONITORING, ELEMENT ONE:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Team Coordination</td>
<td>EVIDENCE OF TEAM COORDINATION IN STRATEGY IMPLEMENTATION, MONITORING SYSTEM, COMMUNICATION PROVISIONS</td>
<td></td>
</tr>
<tr>
<td>The plan identifies all personnel to implement, monitor and evaluate information.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The communication segment of the 36P details</td>
<td></td>
<td></td>
</tr>
<tr>
<td>process monitoring during the plan's implementation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Who will participate in exchanging information?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Reciprocally exchanging information to monitor progress. Different communication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>channels (exchange-dials) may require different communication content.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Under what conditions? Conditional or Continuous? Each</td>
<td></td>
<td></td>
</tr>
<tr>
<td>exchange-dial can require data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>about behavior under different conditions, e.g., conditional if a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dangerous behavior occurs, and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a communication: Continuous summaries of daily or weekly check behavior matrix and to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>communicate, etc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Manner of exchange of student progress and staff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>implementation data (how will data go back and forth?)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Content of data to exchange on student progress and staff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>implementation: Include what</td>
<td></td>
<td></td>
</tr>
<tr>
<td>exchange-dials to exchange, under which conditions, and what</td>
<td></td>
<td></td>
</tr>
<tr>
<td>information is to be exchanged in each section of the</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AND One data exchange for one specified and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>includes components (who, conditions, manner, content,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>frequency, reciprocity-two way or beyond receipt signature)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) a complete exchange for a FEB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. No team member responsibilities are identified in each</td>
<td></td>
<td></td>
</tr>
<tr>
<td>section OR no team members are identified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AND No complete data exchange (who, conditions, manner,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>content, frequency, reciprocity-two way, beyond receipt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>signature) for any goal is present.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scoring

1 = Not all implementations and those who will be		
exchanging information are identified or new		
responsibilities are describable in each section		
of the plan		
AND One data exchange for these specified and		
includes components (who, conditions, manner,		
content, frequency, reciprocity-two way or beyond		
receipt signature) but a simple exchange for a FEB		
is absent.		
2 = All implementations and those who will be		
monitoring and exchanging information are		
describable in each section of the plan. FEB data		
exchange with all components must be present for		
(a) who, (b) conditions, (c) manner, (d) content, (e)		
frequency, (f) reciprocity-two way or beyond receipt		
signature and each receiving party must qualify.		
*Key Concept: Two-way exchanges for all		
communication specify both outbound data to exchange		
and expected inbound response to the data. It cannot		
be simply a signature and a report of data.		
*Key Concept: Semantic Implementation: Well-designed		
and specific communication exchanges result in more		
consistent implementation of behavior plan and		
plan for enhanced ongoing progress monitoring and		
adequate determination of response to the		
interventions.		

Examples:

All examples below relate to the same student and same behavior

Examine to determine if interventions or data are described and all are correlated with specific assigned team members. For example, teaching strategies clearly state who is responsible for each action.

"The teacher will instruct, provide practice sessions, and collect data to use as a baseline to determine student progress." (Sample: B.1.3.1.2)

Key Concepts

All implementations must be clear on their responsibilities which are assigned throughout the plan. For each intervention or duty, consider adding team member's initials, names, or positions throughout the description so responsibilities be clearly determined. Sample responsibility assignment types:

1. Initials: DWB, GBM
2. Name: Diana Browning, Weight, Roy Mayer
3. Borks, Teacher, Aide, Consultant

Establish to ensure effective communication requires a team approach among all stakeholders, people who desire to support positive outcomes for the student, e.g., school staff, family, agencies, and support groups, the students themselves, and others. Active exchanges among all stakeholders require each partner to provide information to one another, as no one member supplying information to a passive recipient. Exchanges can occur through phone calls, email, notes home, data log copies, etc. Behavior plans frequently fail when assigning communication is not well designed. Simply waiting for a quarterly report or unit in an annual IEP meeting is not sufficient to ensure the plan is being completely implemented.

Continuous to ensure communication on goal progress is necessary to assure all stakeholders have input and continuous teaching occurs. Whenever there are many stakeholders, or when there is doubt that all implementations will continue interventions for the time required to change the behavior, it is especially necessary to clearly describe how the communication will occur and how each player will respond to the communication that is received. For example, what communication will the parent send back to the teacher after reviewing a daily report card? How will the principal respond back to the counselor when a report of problem behavior is received? This requires considering the communication process, method, frequency, context, and manner of the exchange. This well-designed system provides prompting and reinforcement to continue program implementation.
<table>
<thead>
<tr>
<th>Components to Evaluate</th>
<th>Scoring</th>
<th>Examples: All examples below relate to the same student and same behavior</th>
<th>Key Concepts</th>
</tr>
</thead>
</table>
| **G. PROGRESS MONITORING, ELEMENT TWO:**
GOALS AND OBJECTIVES | 2 = One FERB goal, that clearly represents a FERB, and that includes all six components is used and it is not simply a general positive behavior.
Key Concept: Progress monitoring of the FERB is critical and requires all components to be an example of full adequacy.
1 = One complete monitoring goal, either
"increase general positive behavior", or
"decrease problem behavior goal", is present AND a FERB is targeted in the IEP to be specifically taught, though no complete FERB goal is present for monitoring.
Key Concept: Progress monitoring capability is essential for at least one goal and presence of FERB is minimally required to be a partial example adequacy.
0 = No complete goals of any type.
Key Concept: Progress monitoring capability is not adequately present.
Scoring for more than one behavior on the plan:
- Multiple behaviors, different functions:
 There must be a FERB goal for each behavior for a score of two.
- Multiple behaviors, same function:
 One complete FERB goal required for a score of two. | 2 = FERB: By 6/03, on 3 out of 4 weeks, Billy, instead of being defiant (i.e., ignoring teacher request to complete a written assignment independently and continuing a self-selected activity or using profanity—words related to toileting, sex, or death for the purpose of escaping written work required to be performed independently) will use a FERB. He will verbally request a peer buddy for the purpose of avoiding independent work. This behavior will occur when there is a substitute teacher, or for seatwork longer than 10 minutes, or after recess when he is by himself. Event behavioral data, using the attached form, will be collected daily during these conditions, by the teacher or aide, with weekly summary sheets distributed to counselor and parent. DECREASE: By 6/03, on 4 out of 5 days, behavior report cards, Billy will have exhibited no task refusal, including proximity (defined as above in FERB) under conditions, measurement method and personnel described in FERB goal above. (These are not repeated in this example due to space limitations.) INCREASE: By 6/03, as reported on 3 out of 4 weekly summaries, Billy will have demonstrated completion of 95% of all written assignments for all subjects, times of day and all teachers, with or without peer assistance, with no eearing or defiance, (see above) FERB for definitions, measurement methods, and personnel which are not repeated in this example due to space limitations.) 1 = One complete goal is related to problem behavior. (see above) 0 = "Billy will stop wasting time."
"Billy will feel less frustrated." (Analysis: No goals meeting all necessary parts) | Six required components for goals in any order:
1. By whom? (final date to achieve desired results)
2. Who? (the student)
3. Will do or not do what? (must be observable, measurable, specific behaviors desired, or not desired by team)
4. Under what conditions/situations? (e.g., location, circumstances, presence or absence of certain people or materials)
5. At what level of proficiency? (e.g., skill accuracy, frequency-number of times in a time period, degree of prompting, duration-number of minutes, intensity)
6. How measured and by whom? (e.g., observation, data recording, event or duration recording, permanent product, momentary time sampling; measured by a specific person)
A Sample FERB goal format to make behavioral functional equivalence readily apparent (note capitol):
1. By whom?
2. Who?
3. INSTEAD OF WHAT PROBLEM BEHAVIOR?
4. FOR WHAT HYPOTHESIZED PURPOSE OR FUNCTION?
5. WILL DO WHAT? (the FERB)
6. FOR WHAT HYPOTHESIZED PURPOSE OR FUNCTION? (Repeat the hypothesized function here to make the functional relationship clear.)
7. Under what conditions/situations?
8. At what level of proficiency?
9. How measured and by whom?
Note: A FERB may have only 6 parts if analysis demonstrates the desired behavior IS a FERB. |
Semi-Structured Interview

Introduction: Hi, thanks for taking some time to chat with me today. Is it still a good time to talk for about 20 min? Before we start, I just wanted to refresh your memory about our goals for this study and the activities we completed. First, our goal was to offer feedback that improved the technical adequacy of your BIPs. We also would like to find out about your experience in receiving feedback, which is the goal of this interview. Before we proceed, I want to let you know the interview will be recorded. If you have any objections, please let us know.

1. What was helpful about the feedback you received on your BIPs? What was not helpful?
2. What has been challenging about receiving feedback?
3. What do you think could be done to improve the feedback process?
4. How have students, who you wrote BIPs for, benefited from the feedback?
5. What is the most challenging part of the BIP process?

Conclusion: Thank you so much for your time. This has been really useful. Do you have any questions for me before our time is up?

Notes to interviewer: Prompt to have participant tell you more about their answer until they don’t have anything left to say on the topic.
Dear plan developer,

Please find our feedback in the table below. The scores are inconsequential to you at this point. If there is no feedback, the element was present in the BIP. Feedback is highlighted on the record sheet and we highlighted the same color within the BIP document (if possible) where changes could be made. Please make changes that are helpful to you and send back the edited BIP to our team. Thank you for your time!

On any areas that you want an example of what it should look like, click here for the entire document or click on individual hyperlinks in each area reviewed to be taken straight to a specific example.

Plan Total Score: _____/14

<table>
<thead>
<tr>
<th>Area Reviewed</th>
<th>Problem Behavior</th>
<th>Function</th>
<th>Teaching Strategies</th>
<th>Reinforcement</th>
<th>Reactive Strategies</th>
<th>Team Coordination</th>
<th>Goals and Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score (0-2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feedback</td>
<td>Here are the changes we’d suggest…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please note that we have highlighted each column and highlighted suggested areas in the BIP where changes could occur in coordinating colors. If there are questions about the feedback given, please reach out to our team.
Sample Plan with completed Feedback Form

School: Elementary
Student Age: 10
Grade: 5th Grade

Student demonstrates defiant behavior towards adults almost every day; this includes talking back, not following directions, bothering other students, as well as aggressive behavior (physical and verbal). He has made verbal threats, has kicked things and left the designated area- and the school building. Work completion is averaging about 20%. This was determined by conducting 3 classroom observations in his general education classroom.

Antecedent:
Academic Request:
[x] Too difficult
[x] Too long
[] Too easy
[] Too short
Behavior request (i.e. line up, clean area, sit in seat, etc.)
[] Preferred activity has ended
[x] Non-preferred activity has begun
[] Less structured/unstructured time
[] Alone/no attention
[] Reinforcement delivered
[x] Consequences imposed
[] Preferred item/toy has been taken away
[x] Teacher reprimands/consequence imposed
[x] A request from student is denied (the student wants something, but teacher says no)
[] Negative peer interaction
[] Positive peer interaction
[] Other

Proactive Antecedent Strategies: Reminder of rules and consequence, school psychology meetings daily as a behavior reinforce, cognitive behavioral therapy, functional communication training, tracker-level system, token economy, social reinforcement, relaxation strategies, parent communication.

Definition of Problem Behavior and Data:
Verbal aggression: A combination of arguing threatening, hitting the desk, yelling, breaking school supplies, throwing school supplies. Occurs 3-4 times a week and lasts approximately 2-3 minutes
Not following directions: telling adults no, talking/yelling out, not staying where he is supposed to be, making noises. Occurs 2-3 times per minute and lasts approximately 5 minutes.
Refusal to do work: Says no, puts his head down, says I can’t, goes to restroom, walks around the room, forgetting items, finds reasons to leave the room. Occurs 2-3 times per days and lasts approximately 15-45 minutes.
Replacement Behavior: Student will follow the “say OK” procedure when asked to cooperate with a request. This will be taught during counseling services five times a week by school
psychologist and reinforced by all authorities that interact with him. When he uses these strategies, he will be positively reinforced.

Student will be provided with instructions on how to enter a room and be ready to learn

Student will use a timer to work for a set period of time determined by him before taking a break and getting a reinforcement.

Desired Behavior: Cooperate with a request without verbal aggression towards authority figures. Follow directions the first time 90% of the time and complete all academic tasks given to him.

Data collection method:
- [] Frequency
- [] Durations
- [] ABC recording
- [] Intensity
- [] Other

Consequence-Based Strategies:

Function of Behavior:

Escape or Avoid:
- [x] Teacher demands
- [x] Teacher reprimands
- [] Peer social contact
- [x] Tasks (hard, long, easy)
- [] Other

Get Attention:
- [] From peers
- [] From teacher/adult
- [] Other

Get tangible (Activity or Item):
- [] Access to game
- [] Access to toy
- [] Access to food
- [] Access to item
- [] Access to task or activity
- [] Other

Description of Function: Escape or avoid undesirable activity: academic work

Consequences for Problem Behavior: Level drop to bronze or safety level, loss of privileges, removal from class

Consequences for Replacement/desired behavior: Extra points on tracker, verbal praise, tickets, reward room, level up on tracker, social reinforcement

Behavior Intervention Plan steps:
Cooperate with request without verbal aggression towards authority figures and follow directions the first time 90% of the time.

1. All team members will become familiar with the “say ok” program
2. Gen. Ed. Teacher will teach the “say ok” program to general education classroom
3. School psychologist will explicitly teach student the “say ok” program individually
4. School psychologist will use social stories to teach appropriate skills for school routines
5. Gen. ed. Teacher will give additional instruction to student on what he is supposed to do when coming into the room
6. This will be reinforced and rewarded in all settings by all team members as appropriate.

Complete all academic tasks given to him:

1. School psychologist will explicitly teach how to use the time to be on task for a certain amount of time. After the time expires, if he has been on task the whole time, he will be reinforced (verbal, tickets, two additional bonus points on tracker)
2. This will be reinforced in all settings by all members as appropriate
BIP Quality Evaluation Record Sheet

Plan ID: ______

BIP-QE II Evaluator: Becky ___________________ Date of Evaluation: 3/17/18

Dear plan developer,
Please find our feedback in the table below. The scores are inconsequential to you at this point. If there is no feedback, the element was present in the BIP. Feedback is highlighted on the record sheet and we highlighted the same color within the BIP document (if possible) where changes could be made. Please make changes that are helpful to you and send back the edited BIP to our team. Thank you for your time!

On any areas that you want an example of what it should look like, click here for the entire document or click on individual hyperlinks in each area reviewed to be taken straight to a specific example.

Plan Total Score: 5 /14

<table>
<thead>
<tr>
<th>Area Reviewed</th>
<th>Problem Behavior</th>
<th>Function</th>
<th>Teaching Strategies</th>
<th>Reinforcement</th>
<th>Reactive Strategies</th>
<th>Team Coordination</th>
<th>Goals and Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score (0-2)</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Feedback</td>
<td>Removal from class seems counterproductive since the behavior function was identified as wanting to escape</td>
<td>Reinforcement could be improved by adding evidence that rewards listed are effective and giving specific direction to when he will receive the rewards and how often.</td>
<td>Reactive strategies should include way to address problem behaviors safely. There may be a school-wide policy in place, but it must be mentioned in some way to receive points here</td>
<td>There was no evidence of team coordination in the form of communicating data about how the interventions are working. Data should be collected and it should be directed that, as well as evidence of communication of that data should be present in the BIP</td>
<td>goals were specific but would be improved with a completion date and evidence of who is keeping track of how the student is meeting that goal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Please note that we have highlighted each column and highlighted suggested areas in the BIP where changes could occur in coordinating colors. If there are questions about the feedback given, please reach out to our team.