
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2020-11-23

Exploration into the Use of a Software Defined Radio as a Low-Exploration into the Use of a Software Defined Radio as a Low-

Cost Radar Front-End Cost Radar Front-End

Andrew Michael Monk
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Engineering Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Monk, Andrew Michael, "Exploration into the Use of a Software Defined Radio as a Low-Cost Radar Front-
End" (2020). Theses and Dissertations. 8742.
https://scholarsarchive.byu.edu/etd/8742

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F8742&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=scholarsarchive.byu.edu%2Fetd%2F8742&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/8742?utm_source=scholarsarchive.byu.edu%2Fetd%2F8742&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Exploration into the Use of a Software Defined Radio

as a Low-Cost Radar Front-End

Andrew Michael Monk

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

David G. Long, Chair
Philip Lundrigan
Willie Harrison

Department of Electrical and Computer Engineering

Brigham Young University

Copyright © 2020 Andrew Michael Monk

All Rights Reserved

ABSTRACT

Exploration into the Use of a Software Defined Radio
as a Low-Cost Radar Front-End

Andrew Michael Monk
Department of Electrical and Computer Engineering, BYU

Master of Science

Inspection methods for satellites post-launch are currently expensive and/or dangerous.
To address this, BYU, in conjunction with NASA, is designing a series of small satellites called
CubeSATs. These small satellites are designed to be launched from a satellite and to visually
inspect the launching body. The current satellite revision passively tumbles through space and
is appropriately named the passive inspection cube satellite (PICS). The next revision actively
maintains translation and rotation relative to the launching satellite and is named the translation,
rotation inspection cube satellite (TRICS). One of the necessary sensors aboard this next revision
is the means to detect distance. This work explores the feasibility of using a software defined radio
as a small, low-cost front end for a ranging radar to fulfill this need.

For this work, the LimeSDR-Mini is selected due to its low-cost, small form factor, full
duplex operation, and open-source hardware/software. Additionally, due to the the channel char-
acteristics of space, the linear frequency modulated continuous-wave (LFMCW) radar is selected
as the radar architecture due to its ranging capabilities and simplicity. The LFMCW radar theory
and simulation are presented.

Two programming methods for the LimeSDR-Mini are considered: GNU Radio Compan-
ion and the pyLMS7002Soapy API. GNU Radio Companion is used for initial exploration of the
LimeSDR-Mini and confirms its data streaming (RX and TX) and full duplex capabilities. The
pyLMS7002Soapy API demonstrates further refined control over the LimeSDR-Mini while pro-
viding platform independence and deployability.

This work concludes that the LimeSDR-Mini is capable of acting as the front end for a
ranging radar aboard a small satellite provided the pyLMS7002Soapy API is used for configuration
and control. GNU Radio Companion is not recommended as a programming platform for the
LimeSDR-Mini and the pyLMS7002Soapy API requires further research to fine tune the SDR’s
performance.

Keywords: software defined radio (SDR), radar, linear frequency modulated continuous wave
(LFMCW), application product interface (API)

ACKNOWLEDGMENTS

I would like to thank first and foremost my wife, Kate. Without her, this work would not be

a thing and I would likely not even be pursuing a graduate degree. Also, I would like to thank my

children, Andie and Killian, who reminded me over and over to take breaks and enjoy what really

matters. Lastly, I would like to thank Dr. Long for the time and endless words of encouragement

that he used to keep me going when the road seemed too long.

TABLE OF CONTENTS

TABLE OF CONTENTS . iv

LIST OF TABLES . vi

LIST OF FIGURES . vii

Chapter 1 Introduction and Background . 1
1.1 Digital Signal Processing . 2
1.2 Hardware . 5
1.3 Takeaway . 8

Chapter 2 LFMCW Radar and Simulation . 10
2.1 Simulation Requirements . 10
2.2 Signal Analysis and Generation . 11
2.3 IQ Modulation . 12
2.4 Range Detection . 17
2.5 Nonidealities . 23

2.5.1 Maximum Detectable Range . 23
2.5.2 Channel Noise . 24
2.5.3 Antenna Crosstalk . 25

2.6 Simulation Contribution . 26

Chapter 3 GNU Radio and gr-radar . 29
3.1 GNU Radio Companion . 29

3.1.1 Toolboxes and Blocks . 30
3.1.2 Toolbar Functions . 34

3.2 Flow Graph Topology . 36
3.3 Pros and Cons . 37
3.4 GNU Radio Contribution . 39

Chapter 4 LimeSuite GUI and Python3 API . 41
4.1 LimeSDR-Mini Hardware . 41
4.2 Programming the LMS7002M FPRF . 44

4.2.1 LimeSuite GUI . 45
4.2.2 LimeSDR Python3 API . 47

4.3 LimeSuite GUI and API Contribution . 50

Chapter 5 Conclusion . 58
5.1 Work Summary . 58
5.2 Conclusion . 59
5.3 Future Work . 59

iv

REFERENCES . 61

Appendix A SDR Comparison and Selection . 62
A.1 Considerations and Selection . 62
A.2 SDR Comparisons . 63

Appendix B LFMCW Simulation MatLab Script . 65
B.1 Main Code . 65
B.2 Helper Function . 71

Appendix C GNU Radio and gr-radar Installation . 73
C.1 Preface . 73
C.2 Installation . 73

C.2.1 Basic Installation . 73
C.2.2 Additional Steps for VirtualBox . 75
C.2.3 Installation Verification . 76

C.3 Resources . 77

Appendix D GNU Radio Exploration through Flow Graphs 79
D.1 Flow Graphs . 79

Appendix E PiSDR Installation . 84
E.1 Required Hardware . 84
E.2 PiSDR Installation . 84
E.3 pyLMS7002Soapy API Installation . 86
E.4 Verification . 86
E.5 Recommendations . 87

E.5.1 ipython3 . 87
E.5.2 PuTTY . 87
E.5.3 GUI Applications through SSH . 88
E.5.4 Raspberry Pi IP Emailer . 89

E.6 Resources . 89

Appendix F LimeSuite GUI and API . 90
F.1 LimeSuite GUI Tabs . 90
F.2 API Libraries . 91
F.3 Unused API Libraries . 93
F.4 Other Useful Acronyms . 94

Appendix G Generate LFMCW Waveform MatLab Script 95

Appendix H Example API Script . 99

v

LIST OF TABLES

A.1 A comparison of six different software defined radios. Green squares indicate best or
good, uncolored squares are acceptable, and red squares indicate bad or outside project
restrictions. 64

vi

LIST OF FIGURES

2.1 Convolution example shown in frequency domain. Input is a 500 MHz signal, the local
oscillator frequency is 3 kHz, and the output signal is the input signal centered around
each local oscillator delta. 13

2.2 Block diagram of a general IQ modulator with two input data streams output to a single
antenna. 14

2.3 Block diagram of general IQ demodulator with input antenna and resultant data streams. 15
2.4 Example FFTs of sinusoidal waves. The small spikes below and above the deltas are

artifacts from actualizing the FFTs with a finite number of samples. Left: FFT of
cos(2π f); Right: FFT of j sin(2π f). 16

2.5 Example of a simple demodulation using the output signal from Fig. 2.1 with the same
local oscillator frequency of 3 kHz. 17

2.6 General DSP process for LFMCW radar range detection. 18
2.7 Example doppler time plot of arbitrary transmit and receive (LFMCW) signals with

frequency and time deltas marked (δ and τ respectively). 19
2.8 Example complex input signals (real portions) over one second. Left: complex si-

nusoid with a frequency of 10 Hz. Right: complex sinusoid with a frequency of 7
Hz. 20

2.9 Resulting signal (real portion) of the conjugate multiplication of the signals in Fig. 2.8. 21
2.10 Example of constant wave resulting from transmitted and received signal conjugate

multiplication. The high frequency noise (located just right of 7 µs) is a result of the
chirp restart. 22

2.11 Example PSD of a given signal generated from the conjugate multiplication between
transmit and receive signals. 23

2.12 Example conjugate product of transmit receive pair with added uniform channel noise
fifty times greater than transmit signal. 25

2.13 Example PSD of a given signal generated from the complex product between transmit
and receive signals with uniform white channel noise at fifty times the transmit amplitude. 26

2.14 Comparison of non-cooperative (left) and cooperative (right) radar topologies. The
color of the arrow indicates the carrier frequency, while the color of the box around
TX or RX indicates the frequency the radio is tuned to transmit/receive. 27

2.15 Example conjugate product with antenna crosstalk at a 4:1 crosstalk to signal ratio. . . 27
2.16 Example PSD of the same data from Fig. 2.15. 28

3.1 Full window view of GNU Radio Companion with simple flow graph example. Key
areas of the GUI are outlined and labeled. 30

3.2 Visualization of the transmit block from the LimeSuite toolbox. Here it is depicted
without any connections and none of the parameters, save the default ones, are pro-
vided. As such, the block is throwing an error, which is visible from the red title. . . . 31

3.3 The data types and their corresponding colors used within GNU Radio. 32
3.4 Properties dialog for the LimeSuite transmit block. The options tabs include general,

CH A, CH B, and advanced. The documentation tabs include documentation and gen-
erated code. 33

vii

3.5 View of special GNU Radio toolbar functions found at the top of the main program
window. 34

3.6 Example flow graph of an FSK radar provided by the gr-radar toolbox with the simu-
lated transmit and receive pair replaced with the LimeSuite transmit and receive blocks,
respectively. 40

4.1 High level block diagram of the LimeSDR-Mini hardware. The notable components
are the FPGA (Intel MAX 10) and RF transceiver (LMS7002M). 42

4.2 Block diagram of MyriadRF LMS7002M FPRF. 51
4.3 Focused view of the MyriadRF LMS7002M receive block diagram. Data flow is from

left to right, from antenna to ADC output. 52
4.4 Focused view of the MyriadRF LMS7002M transmit block diagram. Data flow is from

right to left, from DAC input to antenna. 52
4.5 Screenshot of the LimeSuite GUI tabs with half of the tabs wrapped around for easier

viewing. Tabs outlined with a yellow rectangle correspond directly to an API library
and the orange tabs loosely correspond to one or more API libraries. 52

4.6 Block diagram of the API include structure. Each of the rectangular libraries within the
dotted outline are individually imported by the LMS7002 library. The yellow libraries
directly correspond to a LimeSuite GUI tab and the orange libraries loosely correspond
to a LimeSuite GUI tab. 53

4.7 View of the LimeSuite GUI opened to the calibrations tab (default upon launch). The
bottom console currently displays information about the newly connected SDR. 54

4.8 LimeSuite GUI radio selection dialog to connect/disconnect an SDR. 54
4.9 Subsection of the SXR (SXT has similar options) tab indicating the carrier frequency

selection textbox and tuning button. 55
4.10 LimeSuite GUI FPGA controls dialog window used to feed data into the transmit por-

tion of the SDR. 55
4.11 LimeSuite GUI FFT viewer currently running showing transient, constellation, and

FFT representations of the received data. 56
4.12 Example terminal for a successful SDR connection using the pyLMS7002Soapy API. . 56
4.13 Example of traversing the API using the ipython3 tab completion feature to show all

available functions and classes from the LMS7002 library. 57

D.1 Small flow graph to explore the gr-radar toolbox’s CW signal generator and target/chan-
nel simulator. 79

D.2 Small flow graph to explore the gr-radar toolbox’s FMCW signal generator. 80
D.3 Simple transmit flow graph using FM modulation to explore using the LimeSuite trans-

mit block as well as a few other blocks. 80
D.4 Simple receive flow graph using FM modulation to explore using the LimeSuite receive

block as well as a number of other blocks. Note that this flow graph has quite a few
extra blocks for GUI sink control. 81

D.5 This flow graph attempted to combine the transmit and receive flow graphs (Figs. D.3
and D.4). Operation did not throw any errors, however the data that did come through
had issues. The most likely issue is sample rate mismatching. 82

viii

D.6 Full FSK radar simulation. The original flow graph is provided in the gr-radar exam-
ples folder. The flow graph was modified to use the LimeSuite’s transmit and receive
blocks instead of a channel simulator block (located in the gr-radar toolbox). 83

E.1 Example of successful verification terminal outputs. 87

ix

CHAPTER 1. INTRODUCTION AND BACKGROUND

Visually inspecting satellites to ensure that they do not have any structural or exterior disre-

pair is quite difficult once they are in orbit. Currently people are sent on space walks or in the case

of the ISS, a large mechanical arm is maneuvered to take pictures of the outside. In both cases, the

procedure can be costly and/or dangerous [1]. In conjunction with NASA, BYU is developing a

series of small satellites called CubeSATs that are 10 x 10 x 10 cm in size. These CubeSATs are

designed to inspect the exterior of the launching body. The CubeSAT currently in development

is called the PICS (passive inspection cube satellite). As the name suggests, it passively tumbles

through space after being ejected. Cameras are located on each face of the PICS to ensure that no

matter the rotation or translation it has view of the launching satellite. The images can be stitched

together using minimal post-processing to obtain the necessary views.

The next version of CubeSAT, which is still in the proposal phase, is called the TRICS

(translation, rotation inspection cube satellite). The TRICS has control over its translation and

rotation with respect to the launching satellite. This is achieved through magnotorquers and small

thrusters. This reduces the number of cameras to one, which leaves more space, power, and money

for other systems. TRICS requires information about the deploying satellite including, orienta-

tion and distance. Orientation is not explored in this work; however, solving the distance problem

is. This work explores the feasibility of using a software defined radio (SDR) to create a small,

low-cost, ranging radar suitable for use in a small spacecraft. Such a radar would need to have

short range detection (between 50 to 2000 meters), fine range resolution (at most 20 meters), while

being space efficient, cheap, and low power. In order to better understand and fulfill these require-

ments, background information concerning digital signal processing (DSP) and radar hardware is

necessary.

1

1.1 Digital Signal Processing

The understanding and selection of different radar system architectures is crucial to this

work as it determines how the SDR is programmed. In the case of radar systems, the architecture

can vary from simple continuous frequency transmission to modulated signals [2].

Ranging radars can detect distance by transmitting a signal and waiting for the signal to

come back also known as time of flight (TOF). The TOF can be measured since the waves travel

at the speed of light, providing a relationship between distance and time. The distance d to the

detected object can be calculated according to d = ct
2 where c = 2.998 ∗ 108 m/s (the speed of

light) and t is the measured TOF. The result is divided by two since the signal has to travel the

distance twice (to and from). Due to the fact that the speed of light is so fast, measuring this time

can be difficult with low-cost hardware and many techniques have been developed to address this

problem. Here we consider a number of DSP aspects that play a part in radars.

1. Channel characteristics - The channel is the space that the signals travel through. On Earth,

it is polluted with physical objects (clutter) and other electromagnetic signals (interference),

which can have negative effects on the signal propagation, fidelity, and amplitude. Some

physical objects can be opaque to the signal and absorb the signal, causing the radar to detect

nothing. Other electromagnetic signals can be detected by the radar receiver and give false

positives, constructively or deconstructively couple to the signal fundamentally altering the

signal. In addition to these obstacles, each channel has a has an intrinsic attenuation based on

the contents of the channel. As an electromagnetic signal passes through the channel, there

is calculable attenuation that depends on frequency and travelled distance [3]. For example,

on earth the channel is filled with air, which is nitrogen and oxygen gas. In space the channel

is different due to the lack of obstacles and atmosphere. Without these factors, a signal can

propagate in free space with negligible attenuation and interference and targets are easier to

detect since there is no clutter.

2. Signal characteristics - The capabilities of a radar are largely determined by the kind of

signal it transmits. For example, the simplest radar technique is to transmit a pure sinusoid.

Since the signal itself does not have any special features other than repeating every period,

it is difficult to extract timing information from the signal [4]. It is tempting to think that

2

it is possible to tell distance if the received signal is less than one half period delayed; the

distance data could be calculated since the instantaneous differential voltage would be non-

zero, but this is not true since the possibly complex nature of the channel can introduce phase

attenuation and skew.

However a simple, single frequency radar is most useful for detecting velocity according

to the Doppler effect. If the detected object is moving fast relative to the radar, then the return

signal has a higher frequency. This difference in frequency from transmit to receive is pro-

cessed to detect velocity. The concept of the Doppler radar, called a continuous wave (CW)

radar, is logically expanded to the linear frequency modulated continuous wave (LFMCW)

radar.

The signal produced by an LFMCW radar changes steadily from an initial to target fre-

quency (typically low to high) and repeats. The unique characteristic in this signal is that

the frequency difference versus time is related to the target distance. This can be used to

detect the distance to an object since the radar is transmitting one frequency and receiv-

ing another frequency simultaneously. The difference in these frequencies is correlated to

the TOF. Other more complicated signals are often used in other applications where signal

integrity is necessary or where there are other special needs.

3. Maximum range - Channel attenuation and signal processing constraints both have limiting

affects on a ranging radar’s maximum detectable range. Channel attenuation affects maxi-

mum range by swallowing the signal in noise if the object is too far away. The strength of

a signal drops off quadratically because the transmit energy is spread over an quadratically

increasing area as the radius, or distance of travel, increases linearly according to r−2 [3].

As the energy spreads out thinner and thinner, so too does the return signal.

The transmit signal also affects the maximum usable range. As previously noted, range

is often detected by measuring the time difference between the transmit and receive signals,

for example with frequency modulation. The frequency modulation needs to restart as the

trend cannot continue indefinitely, as that would require infinite memory or bandwidth/mixed

signal IC resolution respectively. When the pattern repeats, the time defining characteristic

is also lost. Often the maximum range can also be increased, by increasing the time duration

3

of the frequency modulation or the length of the bitstream. This phenomenon of not knowing

the the actual distance due to chirp or bitstream repeats is known as range ambiguity [5].

4. Range resolution - Lastly, range resolution is essentially the countable distances that the

radar can detect. Each increment in range resolution can be called a bin, a quantized value.

If a detected object is eleven meters away, but the radar’s range resolution is ten meters, the

radar reports that it is ten meters away. On the other hand, if the object is sixteen meters away

and its range resolution is still ten meters, the reported distance is twenty meters. Therefore

necessary resolution needs to be considered. If the radar is expected to detect objects ten

kilometers away, then a range resolution of ten to even one hundred meters may not be so

bad, but if it is expected to detect objects within one hundred meters, then a finer range

resolution is necessary. Range resolution is determined by the bandwidth of transmitted

data. Higher bandwidth results in finer range resolution. There are techniques involving

overlapping bins, but their complexity and applications are outside the scope of this work.

Because this work focuses primarily on space applications, many of these considerations

can be simplified. Channel characteristics are simplified as there is nearly zero channel attenua-

tion and interference is small since other electromagnetic sources are minimal. Due to the lack

of interfering communications, much simpler transmission schemes can be employed. As such,

an LFMCW radar is considered a good choice due to its simplicity and ability to detect range,

fitting the requirements for the TRICS. Maximum range and range resolution in LFMCW radars

are considered in the simulation chapter, but it is sufficient to say that in LFMCW radars the chirp/-

modulation duration and bandwidth of the signal need to be balanced. As one increases, the slope

of the corresponding Doppler time plot (frequency vs time) of the chirp changes. A steep slope

necessitates higher resolution mixed signal hardware, while a shallower slope requires a higher

bandwidth radio. Both of these can become quite expensive. In order to keep the cost down,

range resolution and maximum range need to be carefully considered in tandem with hardware

constraints.

4

1.2 Hardware

Radar hardware can be simplified to a radio transmitter and receiver operating together con-

nected by a processor for control and calculations. The core building blocks are signal generators,

oscillators, mixers, analog to digital and digital to analog converters (ADCs and DACs), filters, and

amplifiers. Transmitters and receivers both use these components but vary slightly in underlying

architecture and use. In addition to using the basic radio hardware requirements, a radar needs to

perform DSP on the transmit and receive signals in order to determine velocity, distance, or both.

To do this, typically a digital processor of some sort is also available in the system. Some of the

fundamentals components are discussed here.

1. Signal generators/Synthesizers - In CW radars, the signal generator may seem fairly trivial

as a simple sinusoid wave is all that is needed. However, even this simple signal can be dif-

ficult to generate. There are many different techniques for generating simple sinusoids from

analog oscillators to digitization. When more complex radar transmit signals are needed, the

signal generation design problem similarly becomes more complex.

Regardless of the signal generation method, there are a few metrics, most notably stability

and spectral purity, which are distinct yet related [6]. The stability of a sinusoid is essentially

how much the signal deviates from the signal’s formula, excluding noise. For example, a

CW signal is defined as V = e jωt (note that in this thesis, signals are written in complex

form for simplicity). If the signal’s amplitude varies, but still has the expected period, the

signal is considered to have poor signal stability even though it is technically the correct

frequency. Spectral purity, is fundamental. Ideally the FFT of a CW signal (V = e jωt) is a

delta function at ω . When this signal is generated and measured using a spectrum analyzer

or the FFT function on an oscilloscope, we see a spike at ω surrounded by a skirt. A skirt

is the sloping off from the point of interest off to the noise floor. This means that the power

in the signal is not purely concentrated in the desired frequency, but instead has some power

leakage to the surrounding frequencies.

2. Amplifiers - Amplifiers in radars are needed to boost signal strength for transmission and

processing. Typically there are two notable amplifiers. On the transmit side, a power am-

plifier (PA) is used to boost the power of the signal before feeding it into the antenna. It is

5

important to emphasize that a power amplifier boosts power instead of voltage since many

amplifiers only boost voltage with relatively little current behind it. Antennas need power

to transmit a strong signal and voltage alone does not afford this as P = V I. Conversely,

the receive side of the radar uses a low noise amplifier (LNA). These are specially designed

amplifiers that increase the signal with minimal noise. This increases the signal to noise ratio

(SNR) which in turn makes it easier for the DSP to correctly process the desired signal.

3. Mixed-signal hardware - The choice of analog to digital converters (ADCs) and digital to

analog converters (DACs) within a radar system is crucial as it largely defines the bandwidth

of the transmit and receive signals. This is due to the Nyquist theorem. Nyquist states that it

is only possible to deterministically reconstruct a signal from periodic sampling if the sample

rate exceeds the maximum signal frequency by a factor of two (fsamp > 2 fmax) [4]. ADCs

tend to be the slower of the two mixed signal circuits, since they often operate by sequentially

generating the corresponding bits detailing the input analog voltage. Architectures exist to

address this problem such as pipeline and flash [7]. These architectures have the problem

that as the bit resolution becomes higher, the circuits become non-linearly larger and power

hungry. As such, modest bit resolution (12 to 16 bits) are usually selected as they provide

sufficient resolution while running at speeds that afford acceptable frequency bandwidth.

4. Filters - One of the unfortunate side effects of modern transceivers is the generation of

aliased signals. One special case is called an image frequency. These are generated when

downmixing a signal from its carrier frequency to baseband [8]. Fortunately, if the bandwidth

and carrier frequencies are chosen carefully, the image frequency can be removed with a

filter. Filters find place in a number of places along the signal pipeline, both to and from

the channel. Filters can be either analog or digital. The simplest analog filter is an RC filter

consisting of a resistor and capacitor [9]. Depending on the desired configuration, it can be

either a high or low pass. A simple digital filter architecture is a finite impulse response

(FIR) filter [10]. Both analog and digital filters have their place and are used at different

points in a radar.

5. Processor - Choosing a processor is a crucial decision. The processor needs to meet the de-

mands of the rest of the system while simultaneously having all the other hardware interface

6

and correctly work in tandem. There are three main groups of contenders to fill this need:

microcontrollers, microprocessors, and computers.

Microcontrollers are the simplest of the three choices. They are typically categorized as a

chip that has general purpose input/output (GPIO) pins that can be controlled through code.

The code that is programmed to the chip then runs on loop indefinitely as long as it is pow-

ered. Another attractive aspect is that they are typically self-contained chips, needing very

few external components such as memory or additional specialized compute units. Typically,

the only external necessary components are quartz crystals that provide tight oscillation for

the internal clock. While this does provide ease and flexibility in design and budget, they

tend to be on the lower end of compute capability as well as on-the-fly reconfigurability.

Microprocessors encompass a large gray area between microcontrollers and computers

as they are usually small, low power, and sport GPIO akin to microcontrollers, but boast

higher compute performance and complexity like computers. Perhaps the most prolific mi-

croprocessor is the Raspberry Pi. Microprocessors tend to be more difficult to use in systems,

when not packaged as a single board computer (SBC) like the Raspberry Pi, since they re-

quire more external hardware as it is not provided on the die. This means that external

memory and IO ports (aside from GPIO) such as USB and ethernet often need dedicated

controller ICs. In addition to the hardware difficulties, many microprocessors are capable

of running full operating systems effectively turning them into mini computers. The power

that this provides is staggering as a scheduler can be run as part of the kernel allowing for

multiple processes to run simultaneously. Unfortunately, this can add additional overhead

since the operating system must be suited for the instruction set of the processor, such as x86

(Intel proprietary), ARM (ARM proprietary), RISC-V (open-source), etc.

The final processor option is to use a computer. The advantage that a computer has over

microcontrollers and microprocessors is most notably its instructions per clock (IPC) and

clock rate. Computer processor designers maximize their IPC and push clock rates since

these two metrics correlate to the amount of data it can process in a given amount of time.

Clock rates on computer processing units (CPUs) are significantly higher than that of micro-

controllers and microprocessors. Further widening the performance gap, computers often

7

have additional hardware that can substantially increase data throughput such as graphics

cards, for parallelized duplicate operations. All of this comes with a price - computers have

significantly higher cost, power consumption, and lack of GPIO.

1.3 Takeaway

Since this work is focused on determining whether an SDR can cover the hardware needs

of a radar, nearly all of the hardware considerations can be abstracted into the SDR with the ex-

ception of the processor. This does not mean that knowledge of these pieces is unnecessary; in

actuality such knowledge is quite useful. SDRs are not magic boxes that produce and receive sig-

nals mysteriously. Instead they have all of the components previously described, but are designed

in a manner to generalize operation and make said operation programmable. As such, the under-

standing of these core components supports an intelligent SDR selection and details which “knobs

and buttons” to push with code.

In addition to hardware abstraction, the electromagnetics involved in typical radar designs

are not considered as they fall outside the scope of this work. Antenna design and signal condi-

tioning, outside the SDR, fall within the realm of radar actualization. As such, with the DSP and

hardware in mind, a number of selections can be set to guide our exploration.

1. The SDR selected for this work is the LimeSDR-Mini by MyriadRF. For details why this

SDR was selected, refer to Appendix A.

2. Any processor can be used since the processor is not pertinent to the proposed work. As

such, the processor changes a few times through the work and is discussed as encountered.

3. The LFMCW radar architecture is used since it is the simplest ranging radar [11] and inter-

ferers (physical and electromagnetic) are not problematic in space.

With that in mind, the following chapters explore the feasibility of using the LimeSDR-

Mini as an LFMCW radar. Chapter 2 covers radar principles and LFMCW radar techniques

through MatLab simulation for DSP understanding; Chapter 3 examines GNU Radio Companion

8

and its suitability as a programming platform for the SDR; and Chapter 4 explores the LimeSDR-

Mini hardware more closely and how to use the Python API provided by MyriadRF. Supplemental

information and scripts/code are found in the appendices.

9

CHAPTER 2. LFMCW RADAR AND SIMULATION

Radars work on the same principles as radio communication, such as AM or FM. They

differ from the traditional concept of radio communication by receiving the transmitted signal back

as an echo. The echo that is received can be processed and analyzed, which can then determine the

distance and velocity of the object off which the signal reflected. The simplest way to conceptualize

this operation is that the signal takes time to travel through space, reflect off the object, and return

to the radar. This time can be measured and used to determine the distance of flight. Determining

the distance is not actually this simple. Designing and building a timer that runs fast enough with

sufficient resolution for a short range radar is quite difficult and expensive. Instead, clever signal

design and digital signal processing is typically used to determine actual range and velocity.

2.1 Simulation Requirements

In order to understand where to begin designing a radar using a software defined radio, we

first turn our attention to the underlying concepts and signal processing. To fully grasp these con-

cepts a MatLab simulation was written to provide a sandbox wherein variables could be changed

and the corresponding output observed. To ensure that it is useful, the simulation follows a few

requirements outside typical radar characteristics.

The simulation generates and transmits a linear frequency modulated continuous wave

(LFMCW). The LFMCW is selected for this application as it is one of the simplest forms of radar

capable of detecting distance. Such radars can have issues with the signal getting corrupted due to

its simple nature, but these effects are not a problem as this work is intended for space application

where interferers and channel attenuation are minimal.

In addition to the LFMCW, the script modulates and demodulates the signal for radio com-

munication using an inphase-quadrature (IQ) modulator. IQ modulators are ubiquitously used in

10

SDRs since they can generate any modulation scheme by changing a few parameters. This enables

the SDR to be configurable through code with fixed hardware.

2.2 Signal Analysis and Generation

The starting point of any radar is generation of the transmit signal. For this work, we use

an LFMCW (often called a chirp). Its mathematical model is

VLFMCW(t) = e j(αt2+β t+φ◦) (2.1)

where α , β , and φ◦ are the chirp bandwidth, the base frequency, and initial phase, respectively. To

understand this formula and decide what the parameters are, consider

V (t) = Acos(2π f t) (2.2)

= Acos(φ(t)). (2.3)

Eq. 2.2 is a sinusoid continuing from t =−∞ to t = ∞ at the constant frequency f . Eq. 2.3 states

that the sinusoid can also be described by the phase function φ(t) described as

φ(t) = φo +2π

∫ t

0
f (τ)dτ (2.4)

where f (τ) is the desired frequency, which is not necessarily constant. To have the signal change

linearly, we use f (τ) = ct + f◦. Ultimately, after working through the math, the final formula

comes out as

V (t) = cos
(

f1 − f◦
T

πt2 +2π f◦t +φ◦

)
(2.5)

where f◦ is the chirp starting/base frequency, f1 is the chirp ending frequency, T is the chirp

duration in seconds, and φ◦ is the initial phase. Comparing Eqs. 2.1 and 2.5, we define α , β , and

φ◦. The difference between Eqs. 2.1 and 2.5 becomes apparent when comparing the two equations

after using Euler’s identity on Eq. 2.1,

VLFMCW(t) = cos(αt2 +β t +φ)+ j sin(αt2 +β t +φ). (2.6)

11

Eq. 2.5 is a purely real signal whereas Eq. 2.1 has both a real and imaginary part. In addition, the

real and imaginary portions of Eq. 2.6 are 90◦ out of phase from each other. This means that the

real and imaginary parts are orthogonal or in quadrature. The fact that there is a real and imaginary

portion to Eq. 2.1 is one of the reasons we choose to use Eq. 2.1 over Eq. 2.5, as discussed at the

end of the chapter.

1 alpha = fbw*pi/T;

2 beta = 2*pi*f0;

3 phi = 0;

4 bb_lfmcw = exp(1j*(alpha.* t_part .^2 + beta.* t_part + phi));

Listing 2.1: Simulation Chirp Generation

Listing 2.1 gives a MatLab code snippet that generates the LFMCW. Note that f1− f◦ from

Eq. 2.5 is replaced with fbw = f1 − f◦ since it is the bandwidth of the chirp signal. In the case

of an LFMCW radar, as the bandwidth increases, the range resolution of the radar also increases

according to

Sr =
c

fbw
. (2.7)

In the case of the LimeSDR-Mini, the maximum possible bandwidth is 30.62 MHz. Since a finer

range resolution is desirable, the maximum bandwidth of the LimeSDR-Mini is used in our simu-

lation.

Note that on line 3 of Listing 2.1, φ◦ = 0. This is because the receive signal is processed in

relation to the transmitted signal. Any phase offset in the transmit signal is the same in the return

signal, thus the initial phase is irrelevant.

2.3 IQ Modulation

As stated previously, SDRs are able to generate any radio signal thanks to IQ modulation.

This enables any modulation scheme through easily changed parameters and fixed hardware. To

understand IQ modulation, an understanding of mixing is necessary.

At its core, mixing is simply multiplying one signal by another in the time domain. We

know from digital signal processing that if two signals are multiplied in the time domain then they

12

are convolved in the frequency domain. If one of the signals is a sinusoidal, convolution essentially

copies one signal centered around the other (instead of the origin).

-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000

Frequency (f)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
ig

n
a
l
(V

)

Input

Output

Local Oscillator

Figure 2.1: Convolution example shown in frequency domain. Input is a 500 MHz signal, the local
oscillator frequency is 3 kHz, and the output signal is the input signal centered around each local
oscillator delta.

Fig. 2.1 shows the fast Fourier transform (FFT) of an input, mixing, and output signal. The

input signal is a 500 Hz cosine, the mixing signal is a 3 kHz cosine, and the resulting signal is a

copy of the input cosine copied about the two deltas of the mixing signal. The four deltas of the

upmixed signal have a lower amplitude than the original signal since the input power of the signal

split between four deltas, instead of the original two deltas. The difference in power levels can be

even more drastic in a realized system since there is no such thing as a perfectly efficient system

where no power is lost.

It is very rare that a pure sinusoid is transmitted in an actual communication system. In an

actual communication or system, the transmitted or input signal to the mixer has some bandwidth.

In this case, each blue delta shown in Fig. 2.1 is replaced with the signal spectrum, e.g. a rectan-

13

gle. The width of the rectangle shows the bandwidth of the signal. When mixing a signal with

bandwidth, the resulting FFT shows the original rectangles (one positive and one negative), copied

about the mixing signal, just the same as if the input were a single frequency.

IQ Modulation is similar to the mixing method discussed above, but instead of mixing with

a single oscillator frequency, the signal is mixed with one oscillator and another oscillator 90◦ out

of phase from the first. These two oscillators are called inphase and quadrature, respectively. The

basic IQ transmitter is shown in Fig. 2.2 and the basic IQ demodulator is shown in Fig. 2.3.

Figure 2.2: Block diagram of a general IQ modulator with two input data streams output to a single
antenna.

If the local oscillator is outputting a cosine wave, then the same signal with 90◦ offset is a

sine wave. Looking at the FFT for a cosine and sine wave in Fig. 2.4, we can see that both have

a positive delta in the positive frequency space, but in the negative frequency space, they have op-

posite signs. If these two signals are added together, the negative frequency deltas cancel, leaving

14

Figure 2.3: Block diagram of general IQ demodulator with input antenna and resultant data
streams.

only a positive frequency delta. This resultant signal can be described using Euler’s Identity:

V = cos(ωt)± j sin(ωt) (2.8)

= e± jωt . (2.9)

1 tx_inph = real(bb_full).*cos (2*pi*flo.* t_full);

2 tx_quad = imag(bb_full).*sin (2*pi*flo.* t_full);

3 tx = tx_inph + tx_quad;

Listing 2.2: LFMCW upmixing using inphase-quadrature modulator as depicted in Fig. 2.2.

Listing 2.2 provides a MatLab script to produce an upmixed complex signal using an IQ

modulator. The complex signal is split by using the real and imag functions. These two parts are

treated as the inphase and quadrature data streams into the IQ modulator. Each are multiplied with

the respective portion of the complex modulator and added together.

15

-0.1 -0.05 0 0.05 0.1

-0.2

0

0.2

0.4

0.6

0.8

1

-0.1 -0.05 0 0.05 0.1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.4: Example FFTs of sinusoidal waves. The small spikes below and above the deltas are
artifacts from actualizing the FFTs with a finite number of samples. Left: FFT of cos(2π f); Right:
FFT of j sin(2π f).

Similar to how the signal is modulated using an IQ oscillator, the demodulator, or receiver,

works through the same principles. When the signal is received at the antenna, the signal is fed

into both the inphase and quadrature channels of the receiver. With careful design, the signals can

be recovered without ambiguity.

Demodulating is done through the same process as modulating. This is helpful because it

can utilize the same hardware and techniques used for modulating. Unfortunately it also generates

unwanted high frequency signals. Fig. 2.1 shows the FFT of a modulated signal. Fig. 2.5 shows

that when a modulated signal is mixed with the same local oscillator again, for demodulation, extra

signals are produced at high frequency. These frequencies are called image frequencies. To remove

the unwanted signals, the signal is put through a low pass filter.

In the case of the IQ modulator, the process of mixing with the local oscillator and filtering

is done twice, once for the inphase and quadrature channels, as shown in Fig. 2.3. Once the signal

is demodulated and filtered, the original data stream is restored at baseband, with some attenuation.

16

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Frequency (f) 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
ig

n
a
l
(V

)

Output

Local Oscillator

Figure 2.5: Example of a simple demodulation using the output signal from Fig. 2.1 with the same
local oscillator frequency of 3 kHz.

1 rx_inph = rx.*cos (2*pi*flo.* t_full);

2 rx_quad = rx.*sin (2*pi*flo.* t_full);

3 bb_inph = lowpass(rx_inph , 2*fbw , fmax/T);

4 bb_quad = lowpass(rx_quad , 2*fbw , fmax/T);

Listing 2.3: LFMCW demodulation using an IQ modulator and per channel low pass filtering.

Listing 2.3 shows the signal rx being demodulated using the inphase mixer on line one

and the quadrature mixer on line two. Then lines three and four show the signal being filtered to

remove the image frequencies, resulting in the baseband inphase and quadrature signals.

2.4 Range Detection

As stated in the background to this chapter, by employing clever signal design, range esti-

mation can be done through digital signal processing. The overall range detection process is shown

in Fig. 2.6.

17

Figure 2.6: General DSP process for LFMCW radar range detection.

It is possible to detect the range of an object by observing the power spectral density (PSD)

of the product between the transmitted and received signals due to the changing frequency charac-

teristic of the chirp. When the signal travels and reflects off an object, it returns with some delay.

Due to this delay and the changing frequency of the chirp, the received instantaneous frequency is

a fixed difference from the current transmit frequency. This frequency difference, as well as the

corresponding time delta, is visible in the doppler time plot of an arbitrary chirp in Fig. 2.7 as δ

and τ , respectively.

Noting that
δ

τ
=

fbw

T
(2.10)

it is possible to convert between δ and τ .

The first step in finding the range of the target is multiplying the received signal with the

transmitted signal. Since they are complex, it is a conjugate multiplication. This is the point that

the characteristics of the LFMCW are important. The fact that the transmit and receive signals are

the same differing only by a sample delay (which directly correlates to a time delay), if the two

signals are multiplied together, the result is a constant frequency equaling the difference of the two

input frequencies.

18

Figure 2.7: Example doppler time plot of arbitrary transmit and receive (LFMCW) signals with
frequency and time deltas marked (δ and τ respectively).

To help visualize this point, consider the following equations.

x(t) = e j2π10t (2.11)

y(t) = e j2π7t (2.12)

z(t) = x(t)y(t) (2.13)

where x(t) and y(t) are the input signals to our conjugate multiplication and z(t) is the output.

Note that signal x(t) has a frequency of 10 Hz and signal y(t) has a frequency of 7 Hz. Both input

signals are shown in Fig. 2.8 and the resulting signal z(t) is shown in Fig. 2.9. As expected, signal

z(t) has a frequency of 3 Hz, which is the difference between signals x(t) and y(t).

When this principle is extended to the LFMCW, despite being a non-constant frequency,

the result is the same since the frequency delta between the signals is constant, as depicted in

Fig. 2.7, and the constant frequency output from our simulation is shown in Fig. 2.10.

19

0 0.5 1

Time (s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A
m

p
lit

u
d
e

0 0.5 1

Time (s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A
m

p
lit

u
d
e

Figure 2.8: Example complex input signals (real portions) over one second. Left: complex sinusoid
with a frequency of 10 Hz. Right: complex sinusoid with a frequency of 7 Hz.

The fact that the conjugate multiplication between two complex signals differing by a con-

stant δ is the reason that the LFMCW is considered a clever signal. As the distance that the signal

travels increases, the time delay increases as well. The delay in time results in a greater frequency

difference, which then translates to a higher constant frequency.

The next step in range detection is to find the PSD of the signal. The PSD, or power

spectral density, is the amount of signal power/energy there is for a given frequency. Theoretically,

the frequency with the most energy is the detected range of the target in terms of frequency.

To find the PSD, first the FFT of the constant frequency from the conjugate multiplication

is taken. The output from the FFT is a complex signal and to see the energy in a given frequency,

the magnitude of the signal is taken at the frequency in question. In other words, the PSD is the

magnitude of the FFT which is given by

PSD =

√
real(FFT)2 + imag(FFT)2. (2.14)

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A
m

p
lit

u
d
e

Figure 2.9: Resulting signal (real portion) of the conjugate multiplication of the signals in Fig. 2.8.

The PSD of the constant frequency depicted in Fig. 2.10 is given in Fig. 2.11.

It may seem counterintuitive that the detected frequency is negative; however, remember

that a negative delta is indicative of a complex sinusoid with a negative in the exponent such as

e−1 jωt . Using Euler’s Identity, we know that this just means that the imaginary sine portion is

negated. As such, it is a 180◦ phase rotation in the imaginary portion.

From here, to detect the range, it is just a matter of detecting the peak frequency and

converting it to distance, rather than frequency. Detecting the strongest frequency through code is

trivial, so it is not discussed here. To find the detected range is just a matter of manipulating units

given our chirp rate and the speed of light. Using the following equation results in the detected

range

Range =− ftarget
T

fbw
c (2.15)

where ftarget is the maximum power frequency detected by using the PSD, T
fbw

is the chirp rate

of the LFMCW, and c is the speed of light. The negative is to account for our negative detected

frequency due to our phase rotated imaginary signal.

21

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time 10-4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

S
ig

n
a
l
A

m
p
lit

u
d
e

Figure 2.10: Example of constant wave resulting from transmitted and received signal conjugate
multiplication. The high frequency noise (located just right of 7 µs) is a result of the chirp restart.

The following code snippet is from the MatLab simulation to detect the simulated range.

1 delta_r = c/fbw;

2 tx_sampled = bb_full(index +1: index+sample_window);

3 rx_sampled = bb_reconst(index+ch_delay +1: index+sample_window+

ch_delay);

4

5 range_data = tx_sampled .*conj(rx_sampled);

6 [f, fft] = plottableFFT(range_data , T, 0);

7 fft_power = abs(fft)/max(abs(fft));

8

9 max_power = max(fft_power);

10 tgt_bin = find(fft_power == max_power);

11 tgt_freq = f(tgt_bin);

22

-5 -4 -3 -2 -1 0 1 2 3 4 5

Frequency (Hz) 10
5

-80

-70

-60

-50

-40

-30

-20

-10

0

N
o

rm
a

liz
e

d
 S

ig
n

a
l
P

o
w

e
r

(d
B

)

Figure 2.11: Example PSD of a given signal generated from the conjugate multiplication between
transmit and receive signals.

12 range = -tgt_freq*T*delta_r;

Listing 2.4: Matlab simulation code to implement LFMCW range detection.

2.5 Nonidealities

There are a number of things to consider when designing an LFMCW outside the theoreti-

cal aspects; however, only two are discussed here due to the thesis focus: the maximum detectable

range and channel noise.

2.5.1 Maximum Detectable Range

It is tempting to say, when observing Fig. 2.7, that the maximum detectable range is when

the receive signal returns just before the next chirp is about to transmit. If the receive signal were

to arrive just after the following chirp started, then the signal processing would not be able to tell

23

the difference between a close object and a far object. If this were the case, the maximum range

would be given by

Rangemax =
cT
2
. (2.16)

This, unfortunately, is not quite the case. The system has to be actualizable, and as such, the

receiver of the system needs to digitize the signal coming back in with an analog to digital converter

(ADC). The ADC has a maximum sample rate, and due to Nyquist. This adds another stipulation

on the maximum range. The actual maximum range equation is given by

Rangemax =
cT
2

fadc

fbw
(2.17)

where fadc is the maximum sample rate of the ADC and fbw is the bandwidth of the transmit signal.

In almost all cases, the ratio of the bandwidth to ADC sample rate reduces the actual maximum

detectable range. In unusual cases where the ratio is greater than one, Eq. 2.16 is used.

2.5.2 Channel Noise

When the signal is transmitted from the radar, the signal travels through the channel to the

target where it is reflected back to the radar. The received signal includes noise from the channel.

In this MatLab simulation, three cases can be considered: 1) no noise, 2) gaussian white noise,

and 3) uniform white noise. In addition to the noise, the amplitude of the noise is configurable.

Fig. 2.10 shows the conjugate multiplication of a transmit receive pair without noise, whereas

Fig. 2.12 shows the same but with added uniform white noise with an amplitude fifty times greater

than the transmitted signal.

Note that for each of these scenarios, the signal amplitude is the same. As the noise power

increases the signal is completely drowned in the noise. The method described in this chapter

accounts for noise and handles it without additional processing. When the signal is received, it is

put through a low pass filter. This attenuates the noise power outside the desired signal bandwidth,

since the noise is white and uniform across all frequencies. Fig. 2.6 shows the PSD for range

detection without channel noise, and Fig. 2.13 shows the PSD for range detection with uniform

white channel noise at fifty times the transmit amplitude.

24

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time 10-4

-50

-40

-30

-20

-10

0

10

20

30

40

50

S
ig

n
a
l
A

m
p
lit

u
d
e

Figure 2.12: Example conjugate product of transmit receive pair with added uniform channel noise
fifty times greater than transmit signal.

2.5.3 Antenna Crosstalk

The radar simulated in this chapter is a non-cooperative. All of a non-cooperative radar’s

hardware is located on a single body. As such, the radar body both transmits and detects the same

carrier frequency. Consider a non-cooperative radar that utilizes isotropic antennas. As the signal

travel distance increases linearly, the signal power decreases quadratically, according to r−2. This

means that the signal travelling directly from one antenna to the other, due to the isotropic nature

of the antennas, has significantly higher strength than the signal that reflects off the target.

There are a few ways to resolve this issue such as the use of a cooperative radar. Coop-

erative radars have transceivers on both the main body as well as the target body, as shown in

Fig. 2.14. In this way, one transceiver can transmit one frequency and detect another while the

target body receives the one and transmits the second. This work explores only non-cooperative

radar as it reduces the amount of hardware needed and also allows the radar to detect any object.

25

-5 -4 -3 -2 -1 0 1 2 3 4 5

Frequency (Hz) 10
5

-40

-35

-30

-25

-20

-15

-10

-5

0

N
o

rm
a

liz
e

d
 S

ig
n

a
l
P

o
w

e
r

(d
B

)

Figure 2.13: Example PSD of a given signal generated from the complex product between transmit
and receive signals with uniform white channel noise at fifty times the transmit amplitude.

This flexibility is desirable for a CubeSAT as it can be deployed from any satellite without the

satellite needing any modifications.

The other way to remove the effects of crosstalk is through high pass filtering. This is

because crosstalk manifests in the DSP as a DC signal. This is apparent in Fig. 2.15 as a DC offset

and in Fig. 2.16 as a delta at zero hertz. By understanding the general distance of object and having

a high-order high pass filter (HPF), these effects can be removed.

2.6 Simulation Contribution

The LFMCW simulation detailed in this chapter, despite being idealized in many regards,

provides this work many important insights including, but not limited to, the effects of RF band-

width, chirp duration, and noise on the operation of an LFMCW radar. By consulting this simu-

lation and playing with its parameters, a more intelligent configuration of the LimeSDR-Mini is

achievable.

26

Figure 2.14: Comparison of non-cooperative (left) and cooperative (right) radar topologies. The
color of the arrow indicates the carrier frequency, while the color of the box around TX or RX
indicates the frequency the radio is tuned to transmit/receive.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time 10-4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

S
ig

n
a
l
A

m
p
lit

u
d
e

Figure 2.15: Example conjugate product with antenna crosstalk at a 4:1 crosstalk to signal ratio.

27

Fi
gu

re
D

.6
:F

ul
lF

SK
ra

da
rs

im
ul

at
io

n.
T

he
or

ig
in

al
flo

w
gr

ap
h

is
pr

ov
id

ed
in

th
e

gr
-r

ad
ar

ex
am

pl
es

fo
ld

er
.T

he
flo

w
gr

ap
h

w
as

m
od

ifi
ed

to
us

e
th

e
L

im
eS

ui
te

’s
tr

an
sm

it
an

d
re

ce
iv

e
bl

oc
ks

in
st

ea
d

of
a

ch
an

ne
ls

im
ul

at
or

bl
oc

k
(l

oc
at

ed
in

th
e

gr
-r

ad
ar

to
ol

bo
x)

.

83

APPENDIX E. PISDR INSTALLATION

PiSDR is a custom Raspbian image for the Raspberry Pi developed by Luigi Freitas. It is

designed to support a range of common SDRs with a variety of useful SDR software applications

out of the box. This is helpful to this work as it supports the LimeSDR-Mini and -USB as well as

having all of the necessary software, with the exception of the pyLMS7002Soapy API, installed

by default. Additionally, it runs on the Raspberry Pi rather than a computer which is more akin to

the solution that will likely be implemented on the TRICS.

E.1 Required Hardware

• Raspberry Pi 3B+ or 4 (I used a 4, 1GB variant)

• Appropriate Raspberry Pi power supply

• Micro SD card between 8 and 32GB

• Another computer, preferably Windows, to setup microSD card

• Appropriate microSD card adapter to desktop

• Monitor with appropriate video cable

• USB keyboard and mouse

E.2 PiSDR Installation

If you know how to set up a Raspberry Pi with a custom image and enable SSH, skip ahead

to the next section (pyLMS7002Soapy API Installation).

On a computer other than the Raspberry Pi:

1. Insert micro SD card

84

2. Download, install, and run the SD card formatter utility

3. Format the inserted SD card

4. Download, install, and run the Raspberry Pi Imager tool

5. Download the PiSDR image

6. Click “Choose OS”

7. From the Operating System dialog, select “Raspbian (other)”

8. Browse to and select the downloaded PiSDR image

9. Click “Choose SD Card” and select the newly formatted SD card from the dialog window

10. Click “Write”

At this point, the micro SD card is ready. Insert the micro SD card into the Raspberry Pi

and hook up the monitor and USB peripherals. Connect the display before booting the Raspberry

Pi to ensure that the display is recognized and enabled. Once the Raspberry Pi has boot:

1. Open a terminal and type sudo raspi-config

2. Change the user password - this is for the user “pi”

3. Under “Network Options,” change the hostname to something easily recognizable on the

network

4. Under “Network Options,” set the WiFi credentials - if the WiFi credentials are set but upon

opening a browser no pages load, this is likely due to incorrect local time inhibiting the

browser from authenticating. To resolve this, type sudo date --set ’<year>-<month>-<day>

<hour>:<min>:<sec>’ replacing each of the < >s with the appropriate number. Being per-

fect to the millisecond is not required as WiFi authentication allows some play in time. Also,

once the Raspberry Pi has access to the internet with proper authentication, it can update the

time accordingly.

5. Under “ Interfacing Options,” enable SSH

85

Now the Raspberry Pi is set up to work in headless mode. You can now reboot and remove

all of the peripherals. To access the Raspberry Pi, from another computer’s terminal type ssh

pi@<ip-address>. You will then be prompted for the user password.

E.3 pyLMS7002Soapy API Installation

1. Navigate to the desired location for the API. I chose ∼/PiSDR/Software/.

2. Type git clone https://github.com/myriadrf/pyLMS7002Soapy. This will clone the

API repository to the current directory.

3. Navigate into the pyLMS7002Soapy directory created by the git.

4. Type python3 setup.py install.

E.4 Verification

1. Plug in the LimeSDR-Mini

2. Open a terminal and type the following commands:

$ LimeUtil --find

$ SoapySDRUtil --find

$ python3

>>> from pyLMS7002Soapy import *

>>> exit()

The outputs from these commands should look similarly to Fig. E.1. If either of the find

commands do not return the LimeSDR-Mini’s credentials, then something installed after the fresh

PiSDR install ruined either the LimeSuite or SoapySDR architectures. If the Python import throws

an error, then the API was installed incorrectly or was not completed.

Due to the ease and speed of installation of PiSDR, if you have either of these issues, a full

reinstall is recommended while installing the basics described in this appendix first. Additional

installations are recommended after verifying that all of the utilities and API work.

86

Figure E.1: Example of successful verification terminal outputs.

E.5 Recommendations

E.5.1 ipython3

ipython3 is a Python terminal similar to typing python3 into a terminal. The difference is

that ipython3 supports color coding, tab completion, and tab suggestions. Navigating the API is

significantly easier with these features and makes writing and debugging code that uses the API

significantly faster.

To install, type sudo apt install ipython3. To run, type ipython3.

E.5.2 PuTTY

If you are working on a Windows computer, I recommend using PuTTY. To access an SSH

machine through PuTTY, select the SSH radio button and input the target device’s IP address into

87

the “Host Name (or IP address)” textbox and click “Open.” You will then be prompted to input the

user (pi) and password.

E.5.3 GUI Applications through SSH

X11 Forwarding

Since this work relies on the LimeSuite GUI for API exploration, another way to access the

software is needed if headless operation is desired. This can be done through SSH with the help of

an x server. On windows machines, Xming is a good solution. To use it, launch the server (using

the Xlaunch program) and then enabling x11 forwarding in PuTTY. If PuTTY is not being used,

then an SSH connection can be made with x11 forwarding from the terminal by adding the “-X”

parameter to the SSH command. For example, ssh -X pi@<ip address> connects to the given

IP address as the user pi with x11 forwarding.

VNC Server/Viewer

My recommendation is to use VNC as Raspberry Pis come with a free dedicated VNC

server. This allows the user to pull up the Raspberry Pi desktop on any computer and work re-

motely. To do this, enable VNC through the interfacing options within raspi-config, as ex-

plained earlier.

VNC works by piping the current display(s) over a network. Due to how the Raspberry Pi

handles displays, if no display is plugged in, then no display data is rendered. As such, no display

data is available to send over the network. HDMI spoofers exist which are HDMI dongles that plug

into the port and trick the machine into thinking that there is a display connected. These, however,

are not available in micro-HDMI format, which the Raspberry Pi 4 uses. Instead, it is possible to

modify the Raspberry Pi’s boot configuration to force HDMI output even when there is no detected

display.

To do so, open and modify the ∼/boot/config.txt file and enable the HDMI hotplug

by uncommenting the line hdmi force hotplug = 1. Now, the Raspberry Pi will run the VNC

88

server and correctly forward the display even when no monitor is connected. To access the Rasp-

berry Pi from a remote computer, download and install VNC viewer and create a new connection.

E.5.4 Raspberry Pi IP Emailer

Since IP addresses are allocated by the router and are subject to change, without setting

a static IP within the router’s settings, it can often be frustrating to find the IP address for the

Raspberry Pi running headless. To remedy this, I found and expanded a script to automatically

email the Pi’s IP address upon boot to a given email address.

E.6 Resources

• Raspberry Pi Imager - https://www.raspberrypi.org/downloads/

• SD Card Formatter - https://www.sdcard.org/downloads/formatter/

• PiSDR - https://pisdr.luigifreitas.me/

• pyLMS7002Soapy github - https://github.com/myriadrf/pyLMS7002Soapy

• Xming - https://sourceforge.net/projects/xming/

• VNC Viewer - https://www.realvnc.com/en/connect/download/viewer/

• Raspberry Pi IP Emailer - https://github.com/joebobs0n/rpi_ip_mailer

89

https://www.raspberrypi.org/downloads/
https://www.sdcard.org/downloads/formatter/
https://pisdr.luigifreitas.me/
https://github.com/myriadrf/pyLMS7002Soapy
https://sourceforge.net/projects/xming/
https://www.realvnc.com/en/connect/download/viewer/
https://github.com/joebobs0n/rpi_ip_mailer

APPENDIX F. LIMESUITE GUI AND API

Most of the acronyms used in the LimeSuite GUI and pyLMS7002Soapy API are found in

the documentation on the MyriadRF website (https://myriadrf.org/projects/component/

limesdr-mini/), but require hunting through multiple datasheets and resources as not all acronyms

are defined in each document. Since MyriadRF assumes that the user of their devices automat-

ically know their acronyms, despite often being different from the commonly accepted ones,

herein are included the unabbreviated forms of many acronyms used in the LimeSuite GUI and

pyLMS7002Soapy API.

F.1 LimeSuite GUI Tabs

• Calibrations - gain and phase calibration options for the receiver and transmitter

• RFE - receiver front end, particularly biasing and antenna data path selection

• RBB - receiver base band options

• TRF - transmit radio frequency options

• TBB - transmit base band options

• AFE - analog front end options (ADC and DAC controls)

• BIAS - bias options not covered elsewhere

• LDO - low drop out voltage regulator options

• XBUF - various buffer and reference options

• CLKGEN - clock generator parameters and options

• SXR - receiver synthesizer configuration and options

90

https://myriadrf.org/projects/component/limesdr-mini/
https://myriadrf.org/projects/component/limesdr-mini/

• SXT - transmitter synthesizer configuration and options

• LimeLight & PAD - input and output data stream options (LimeLight) and power amplifier

driver options

• TxTSP - transmitter transceiver signal processor options

• RxTSP - receiver transceiver signal processor options

• CDS - clock distribution service options

• BIST - built in systems test options

• TRX Gain - alternative transmit and receive amplifier options

• MCU - direct control of on-chip microcontroller

• R3 Controls - fine tuning controls including compare voltages, RSSI options, and tempera-

ture compensation

F.2 API Libraries

• ADF4002.py - Analog Devices phase detector/synthesizer programming and control (chip

datasheet: https://www.analog.com/media/en/technical-documentation/data-sheets/

ADF4002.pdf

• LMS7002.py - gateway to lower level API calls specific to the LMS7002M FPRF

• LMS7002 AFE.py - analog front end functions (ADC and DAC control/configuration)

• LMS7002 base.py - low level functions such as type conversion

• LMS7002 BIAS.py - bias functions

• LMS7002 calibration.py - high level calibration functions (calculates and sets parameters

to comply with higher level configurations)

• LMS7002 CDS.py - clock distribution system functions

91

https://www.analog.com/media/en/technical-documentation/data-sheets/ADF4002.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADF4002.pdf

• LMS7002 CGEN.py - clock generator functions

• LMS7002 CHIP.py - general functions

• LMS7002 DCCAL.py - DC calibration functions

• LMS7002 EVB.py - used to control/program LMS7002 evaluation board at a high level (not

the LimeSDR-Mini)

• LMS7002 GFIR.py - general finite impulse response filter functions (imported by each

GFIR# class)

• LMS7002 GFIR1.py - first general finite impulse response filter class

• LMS7002 GFIR2.py - second general finite impulse response filter class

• LMS7002 GFIR3.py - third general finite impulse response filter class

• LMS7002 IO.py - input output functions (chip pads)

• LMS7002 LimeLight.py - limelight functions (IQ digital interface)

• LMS7002 mSPI.py - microcontroller serial protocol interface functions (for reading/writing

internal memory registers)

• LMS7002 NCO.py - numerically controlled oscillator functions

• LMS7002 RBB.py - receive base band functions

• LMS7002 regDataStructs.py - register class

• LMS7002 REGDESC.py - multiline comment (very long) describing each register

• LMS7002 REGDESC MR3.py - multiline comment (very long) describing each register.

seems to have more than REGDESC.

• LMS7002 RFE.py - receiver front end functions

• LMS7002 RxTSP.py - receive transceiver signal processor functions

92

• LMS7002 SX.py - synthesizer (transmitter and receiver) functions

• LMS7002 TBB.py - transmit base band functions

• LMS7002 TRF.py - transmit radio frequency functions

• LMS7002 TxTSP.py - transmit transceiver signal processor functions

• LMS7002 XBUF.py - transmit and receive buffer settings (unrelated to LimeLight)

• pyLMS7002Soapy.py - high level chip functions/parameters

• Si5351.py - Silicon Labs i2c programmable any frequency clock generator programming and

control (chip datasheet: https://www.silabs.com/documents/public/data-sheets/

Si5351-B.pdf)

• weakproxy.py - roxy object to help garbage collection

F.3 Unused API Libraries

The following libraries, included with the pyLMS7002Soapy API, are not part of the im-

port tree stemming from the pyLMS7002Soapy.py library. This is due to their specialized nature

pertaining to different hardware (boards other than the LimeSDR-Mini or -USB), other chips, or

are merely register documentation. Descriptions of these libraries are found in the previous section.

• ADF4002

• LMS7002 EVB

• LMS7002 regDataStructs

• LMS7002 REGDESC

• LMS7002 REGDESC MR3

• Si5351

93

https://www.silabs.com/documents/public/data-sheets/Si5351-B.pdf
https://www.silabs.com/documents/public/data-sheets/Si5351-B.pdf

F.4 Other Useful Acronyms

The following are a few useful acronyms that are used heavily throughout the LimeSDR-

Mini documentation and LMS7002M datasheet, but are not immediately defined.

• TIA - trans-impedance amplifier (current in, voltage out)

• PAD - power amplifier driver

• ZIF - zero intermediate frequency

• AGC - adaptive gain control

94

APPENDIX G. GENERATE LFMCW WAVEFORM MATLAB SCRIPT

This script generates a binary waveform file useable by the LimeSuite GUI. The waveform

created is an LFMCW signal, however, it can be easily modified to generate any signal. The

structure of the resultant file is interleaved real and imaginary 16 bit big endian samples. Since the

LimeSDR-Mini has 12 bit DACs and ADCs, the maximum value stored in each 16 bit sample is

212−1. At the end of the script, three figures are generated alongside the output .wfm file for signal

verification. Displayed are one period of the inphase transient signal, one period of the quadrature

transient signal, and the power spectral density of one period of the signal. To use the file, the only

parameters that should be changed are:

• samples per second - the current sample rate of the analog front end (ADCs and DACs

which should be matched)

• f0 - the starting frequency of the LFMCW signal (at baseband/ZIF)

• fbw - the chirp distance (i.e. the final frequency minus the starting frequency)

• T - the chirp duration

• periods - the number of periods included in the waveform (if the chirp duration is long,

decrease this number to keep file size low)

These parameters are all found within the first thirteen lines of the script.

1 clear; clc; close all;

2

3 %% Parameters of Waveform Sampling

4 samples_per_second = 240000 * 128 / 2.44233; % sdr sample rate

from waveform file

95

5 seconds_per_sample = 1 / samples_per_second; % time for each

sample from waveform file

6 bits = 12; % sample depth

7

8 %% Signal Generation Params

9 f0 = 1e6; % base frequency for signal

10 fbw = 6e6; % bandwidth of linear chirp

11 Gs = (2^ bits - 1); % signal amplitude

12 T = 100e-6; % chirp time

13 periods = 10; % number of periods to include in waveform

14

15 %% Signal Generation

16 t = 0 : seconds_per_sample : periods*T - seconds_per_sample; %

time variable (correlates sample rate to signal time)

17 alpha = fbw*pi/T; % chirp rate for lfmcw in rad/s

18 beta = 2*pi*f0; % base frequency for lfmcw in rad/s

19 phi = 0; % initial phase for lfmcw in radians

20 bb_lfmcw = Gs*exp(1j*(alpha .*t.^2 + beta.*t + phi)); % baseband

lfmcw signal

21 I_lfmcw = real(bb_lfmcw); % pull out real portion as inphase

data

22 Q_lfmcw = imag(bb_lfmcw); % pull out imaginary portion as

quadrature data

23

24 %% Waveform File Generation

25 % interleve two signals (I and Q)

26 wfm = zeros(1, length(I_lfmcw)*2); % initialize waveform

variable

27 for i = 1 : 1 : length(I_lfmcw) % work through each sample of I

and Q

96

28 wfm(i*2 - 1) = I_lfmcw(i); % write in I

29 wfm(i*2) = Q_lfmcw(i); % write in Q

30 end

31

32 %% Write Waveform File

33 fid = fopen(’lfmcw.wfm’, ’w’, ’b’); % open file in big -endian

format

34 fwrite(fid , wfm , ’int16’); % write wfm variable as 2-byte

chunks

35 fclose(fid); % close file

36

37 %% Display One Period of Data

38 figure (); % open new figure

39 plot(t(1: floor(length(t)/periods)), I_lfmcw (1: floor(length(t)/

periods))); % plot one period of signal

40 grid on;

41 xlabel(’Sample in Time (s)’);

42 ylabel(’Code (binary)’);

43 title(’Baseband LFMCW Inphase Signal ’);

44

45 figure (); % open new figure

46 plot(t(1: floor(length(t)/periods)), Q_lfmcw (1: floor(length(t)/

periods))); % plot one period of signal

47 grid on;

48 xlabel(’Sample in Time (s)’);

49 ylabel(’Code (binary)’);

50 title(’Baseband LFMCW Quadrature Signal ’);

51

52 [f, fft] = plottableFFT(bb_lfmcw (1: floor(length(t)/periods)), T

, 0); % calculate fft for one lfmcw period

97

53 fft_power = abs(fft)/max(abs(fft)); % convert fft to power

spectral density

54 fft_power = 10* log10(fft_power .^2); % convert psd to log scale

55 fmhz = f / 1e6; % convert frequency range to mhz

56 figure (); % open new figure

57 plot(fmhz , fft_power , ’LineWidth ’, 2); % plot the PSD

58 psd_max = max(fft_power); % find maximum power

59 psd_min = min(fft_power); % find minimum power

60 psd_range = psd_max - psd_min; % find power range

61 axis tight; % remove empty space in x and y axes

62 ylim([psd_min - psd_range /25, psd_max + psd_range /25]); %

dynamically add y buffer for viewability

63 grid on;

64 xlabel(’Frequency (MHz)’);

65 ylabel(’Normalized Signal Power ’);

66 title(’Power Spectral Density of Generated Baseband LFMCW’);

98

APPENDIX H. EXAMPLE API SCRIPT

This is a very simple example script to show a few reading and writing operations using

the pyLMS7002Soapy API. Additionally, the sdrSnapshot function can be useful when debugging

high level configuration.

1 from pyLMS7002Soapy import pyLMS7002Soapy as pylmss

2

3 # function to printout high level configuration of a given SDR

4 def sdrSnapshot(sdr):

5 print(f’\n****** ALL INFORMATION STORED IN CLASS OBJECT

******\n{sdr}’)

6 print(f’ Board Name:\t {sdr.boardName}’)

7 print(f’ Clock Gen Freq: {round(sdr.cgenFrequency / 1e6,

2)} MHz’)

8 print(f’ Channel :\t {sdr.channel} (only applicable on

LimeSDR -USB)’)

9 print(f’ Freq Ref:\t {round(sdr.fRef / 1e6, 2)} MHz’)

10 print(f’ Previous Band: {sdr.previousBand}’)

11 print(f’ TDD Mode:\t {sdr.tddMode}’)

12 print(f’ Verbose Mode:\t {sdr.verbose }\n’)

13 print(f’ RX Gain:\t {sdr.rxGain}’)

14 rxBW = -1

15 unset = True

16 if sdr.rxBandwidth != rxBW:

17 unset = False

18 rxBW = round(sdr.rxBandwidth / 1e6, 2)

99

19 print(f’ {"*" if unset == True else " "}RX Bandwidth :\t {

rxBW} MHz’)

20 rxNCOfreq = 0

21 unset = True

22 if sdr.rxNCOFreq is not None:

23 unset = False

24 rxNCOfreq = round(sdr.rxNCOFreq / 1e6 , 2)

25 print(f’ {"*" if unset == True else " "}RX NCO Freq:\t {

rxNCOfreq} MHz’)

26 rxRFfreq = 0

27 unset = True

28 if sdr.rxRfFreq is not None:

29 unset = False

30 rxRFfreq = round(sdr.rxRfFreq / 1e6, 2)

31 print(f’ {"*" if unset == True else " "}RX RF Freq:\t {

rxRFfreq} MHz’)

32 rxSampRate = 0

33 unset = True

34 if sdr.rxSampleRate is not None:

35 unset = False

36 rxSampRate = round(sdr.rxSampleRate / 1e6, 2)

37 print(f’ RX Sample Rate: {rxSampRate} MHz\n’)

38 txGain = sdr.txGain

39 unset = True

40 if sdr.txGain != txGain:

41 unset = False

42 txGain = sdr.txGain

43 print(f’ {"*" if unset == True else " "}TX Gain:\t {

txGain}’)

44 txBW = -1

100

45 unset = True

46 if sdr.txBandwidth != txBW:

47 unset = False

48 txBW = round(sdr.txBandwidth / 1e6, 2)

49 print(f’ {"*" if unset == True else " "}TX Bandwidth :\t {

txBW} MHz’)

50 print(f’ TX NCO Freq:\t {round(sdr.txNCOFreq / 1e6, 2)}

MHz’)

51 print(f’ TX RF Freq:\t {round(sdr.txRfFreq / 1e6, 2)}

MHz’)

52 print(f’ TX Sample Rate: {round(sdr.txSampleRate / 1e6,

2)} MHz\n’)

53

54 if __name__ == "__main__":

55 # select first device by serial alphanumeric order

56 mysdr = pylmss.pyLMS7002Soapy ()

57 # printout SDR (high level) configuration

58 sdrSnapshot(mysdr)

59

60 # modify the receive mixing frequency

61 mysdr.rxRfFreq = 900e6

62 # modify the receive bandwidth (ADC sample rate)

63 mysdr.rxBandwidth = 30e6

64

65 # modify the transmit mixing frequency

66 mysdr.txRfFreq = 900e6

67 # modify the transmit bandwidth (DAC sample rate)

68 mysdr.txBandwidth = 30e6

69 # modify the transmit gain

70 mysdr.txGain = 2

101

71

72 # store the LMS7002 object

73 LMS7002 = mysdr.LMS7002

74 # run transmit calibration

75 LMS7002.calibration.txCalibration

76

77 # printout SDR configuration to see if changes were set

78 sdrSnapshot(mysdr)

79

80 # pause script

81 input()

82

83 # close out script

84 exit()

102

