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ABSTRACT

Controller Design for Coordinated Encirclement of Moving Targets

Puneet Jain
Department of Electrical and Computer Engineering, BYU

Master of Science

This thesis presents controllers that use relative range and bearing measurements to steer
unmanned aerial vehicles (UAVs) to circular trajectories around stationary, constantly moving and
constantly accelerating targets. The range and bearing to the target, along with their derivaties are
estimated. These, along with the estimated local heading of the UAVs, are used in the control law,
and to estimate the velocity of the target. In this work, six controllers are presented. The controller
for a stationary target is derived using Lyapunov’s direct method, and feedback linearization is
used for the constant velocity and accelerating targets. A new controller is proposed to control the
direction of encirclement for moving targets, using Lyapunov’s direct method. Additional terms
are introduced to maintain a temporally equi-spaced formation around the targets. Theoretical
proofs are provided for all controllers using Lyapunov theory.

Numerical simulations show vehicles converging to circular formations around both sta-
tionary and moving targets. Results are shown using MATLAB simulations with Gaussian noise
added to the measurements. Further, a technique is proposed for information exchange between
UAVs, with bounds provided for the time taken to dissipate information throughout the system in
a scenario with multiple groups of UAVs tracking multiple targets.

Keywords: encirclement, stability, simulations, feedback linearization
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CHAPTER 1. INTRODUCTION

With the increasing demand of UAVs for various tasks such as tracking, surveillance, de-

livery, defense, photography, and even entertainment, research is being done to make the UAVs

better at executing these tasks. In this thesis, we focus on a limited use case; encirclement of a

target using estimated relative measurements. In this chapter, we will motivate the work done in

this thesis, discussing earlier work done in the domain of target encirclement and summarize our

contributions in the field.

1.1 Motivation

Encirclement using UAVs is applicable to tasks like the tracking and surveillance of pro-

tected areas such as those used to prevent illegal poaching or fishing. UAVs provide a great plat-

form for surveillance and detection of these activities without posing a risk to researchers or ani-

mals, and with minimal disturbance to the environment [2]. Encirclement using relative measure-

ments can also be applicable to fly over military vehicles in the warfield, encircling a scout or

group, and giving them situational awareness of an area [3]. This method can also be used to make

a UAV follow a hiker on a trail through the grasslands, recording adventures and making it easier

for search and rescue missions in case of mishaps [4].

Keeping the target in the field of view of a sensor, like a camera or radar, is an essential

element of target tracking [5]. Doing so improves the predictions of where the target is with respect

to the UAV. Target encirclement helps to achieve this goal by keeping the target in the center of a

fixed radius trajectory, and thus giving the UAV time to adjust to the target’s estimated motion.

In GPS-denied environments, target encirclement can be achieved using range and bearing

measurements from sensors like radar and LIDAR [6], [7]. A camera is commonly used with UAVs

for target identification and tracking in GPS-denied environments [8], since it is cost-effective,

lightweight, and less energy consuming. It can also be adapted with IMU measurements to get

1



bearing and an estimated range from the target. We can get the range using depth estimation

approaches for monocular cameras [9–12], stereo cameras [13], combined camera and laser range

finders [14–16] and using radars with cameras [17]. This thesis provides an approach to track and

encircle moving targets in a way that applies to UAVs carrying only cameras, focusing only on the

control aspect of the problem.

Target encirclement is a widely discussed topic in the literature. Zhang et al. [18] proposed

an encirclement approach for moving targets based on sliding mode control, but they assumed a

common inertial frame for tracking. Frew et al. [19] used Lyapunov guidance vector fields and

proved stable convergence to a circular trajectory around a stationary target. They also assumed

that the vehicle knew its position in a local inertial frame relative to the target. In [20], [21],

range and range-rate based controllers were proposed for encircling stationary targets. Matveev et

al. [22] proposed a sliding mode controller based on range and range-rate for a circumnavigating

using a ground robot with a Dubins model. They further provided proof of convergence for a sta-

tionary target but their controller lacks global convergence. In [23], target tracking was presented

using bearing-only measurements from the target. Their method stabilized circular formations for

stationary targets and mildly perturbed targets. These works on target encirclement assume perfect

knowledge of the target and the UAV’s inertial position or the distances and angles between them

in a common local frame.

Research that proposes controllers for noisy sensor data includes [24–26]. In [24], Hashemi

et al. discussed additive sensor noise but did not propose an estimator. They showed that their con-

troller for stationary targets could achieve a constant radius circle with the noise. The Lyapunov

vector field approach is further explored by Summers et al. [25]. In this work, the authors pro-

posed a variable airspeed controller to stabilize circular motion for constant velocity targets with

estimated measurements of range and bearing. Oh et al. [26] also discussed the vector field guid-

ance approach and focused on tangential vector fields with estimation of target motion. They

proposed using a ground moving target indicator (GMTI) sensor with a decentralized extended

information filter for updating the UAV states and sharing them with other UAVs. For multiple

vehicles, they assumed knowledge of a common local frame.

Other related work in target encirclement includes: [27], which discussed different ap-

proaches to target encirclement like a Helmsman behaviour and Lyapunov vector field based guid-
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ance laws, controlled collective behaviour, and real-time optimized model predictive control. They

compare results using simulations with noise added to the system. In [28], a camera is used to

guide a UAV to a given target viewing angle and then spiral around the target with a changing

radius. They focus on a stationary target and maintaining a given camera angle for the sensing

aspect of tracking while changing the radius for maintaining the best field of view.

Most of the earlier works either do not talk about maneuvering targets or use perfect knowl-

edge of the target. Many of them also assume knowledge of a common frame of reference for

tracking and communication.

1.2 Contribution

The work in this thesis takes inspiration from [22], [25] and [29] who all provide encir-

clement of targets moving with constant velocity. However, in this work, the control algorithms

are framed assuming no information of the UAV positions in a global or local inertial frame com-

mon to all UAVs. The UAV has knowledge of it’s heading change at every time step, which is

commanded by our controller, to estimate the heading in a local frame. For better readability and

ease of understanding, we also assume that all the UAVs move with a constant, unit speed. This

velocity represents either the UAV’s maximum speed or it’s most energy efficient speed. This

assumption does not change the dynamics, and the work is applicable to UAVs moving with any

constant speed. Stability of the controllers to drive the UAVs to a constant radius circle around the

target is proven. Figure 2.1 describes the scenario we use in this thesis, with k UAVs having their

own frame. Each UAV gets bearing and range measurements from the target.

For stationary targets, we design a controller which uses only the estimated values of range

and bearing to the target, to steer the UAVs. Even knowledge of the local inertial frame is not

needed for stationary target encirclement. This work is extended to targets moving with constant

velocity using a feedback linearization control law. In this case, the relative range, bearing, and

UAV’s change in heading are used to compute the control law. We estimate both the target motion

and relative UAV-target measurements and use those estimates in the control algorithms. Results

are provided for encircling targets with estimated motion using noisy measurements of range and

bearing.
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This proposed controller, although it makes the UAVs converge to loiter circles, does not

give us control over the direction of encirclement. Earlier works do not explicitly talk about di-

rection of encirclement, except [29]. Some works ([25], [30]) show only one direction of encir-

clement. This is not explicitly stated, but might be due to the initial conditions, or their proposed

controller converging the vehicles in a single direction only. Control over the direction is important

for real applications to avoid collisions and help us maintain certain formations, like equi-spaced or

equi-temporally spaced UAVs around a circle, as we will discuss in Section 4.1. We show results

for a controller which is able to specify the direction of encirclement while encircling constant

velocity targets.

We further propose a controller which encircles targets moving with constant acceleration

using feedback linearization, and one using Lyapunov’s direct method to control the direction of

encirclement. Simulation results for the accelerating targets with noisy measurements but known

acceleration are provided. As far as we know, target encirclement for accelerating targets has not

been explored in a relative framework, except a locally stable controller in [22] and a controller

based on a stochastic approach with no stability proofs or guarantees of convergence to a desired

radius [31].

Even though in our work, each UAV has its own frame of reference, we extend the work

from [29], [32] to arrange the UAVs in a constant-time-separation (time-splay) formation for effi-

cient coverage on the circle using the estimated local heading of each UAV and their estimate of

the target velocity. A rotationally symmetric potential function dependant on the relative heading

in the moving target frame is used to maintain the splay formation. This enables the UAV forma-

tions to robustly re-arrange themselves in cases of UAV injection or attrition, while still encircling

targets.

We further propose a solution for applications such as tracking and search in large areas

like forests and oceans. In these scenarios, UAVs are much farther from each other than their

communication range, and do not have a central network. Thus, it is difficult to communicate

the status of the tasks between the UAV groups. Reliable communication and information spread

between multiple groups of UAVs can help us complete the given task efficiently.

Inspired from the model of the spread of epidemics in [33], and gossip algorithms, which

are widely used in relaying information and optimization for homogenous autonomous groups [34],
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[35], we use a probabilistic inter-group movement model for inducing travel of UAVs between

different groups. A UAV that is sharing information by travelling between groups is called a

messenger UAV. UAVs are assumed to have a fixed, circular radio communication range which

enables them to share the latest information they have about all the other UAVs. We present

results of information dispersion times throughout the system for the stationary target case when

varying the frequency of inter-group UAV travel, assuming the travellers know the position of the

current groups. Future work will include incorporating the relative-measurement and estimation

framework into inter-group travel.

The specific contributions of this thesis include:

• An asymptotically stable controller to drive UAVs to encircle a stationary target using only

range and bearing measurements from the target.

• Two theoretically stable control algorithms to encircle a constant velocity target (one with

direction control, one without) using the UAV’s change in heading and relative UAV-target

measurements.

• Two theoretically stable control algorithms to encircle a constantly accelerating target (one

with direction control, one without) using the UAV’s change in heading and relative UAV-

target measurements.

• An estimator to approximate variables used in the control algorithms for constant velocity

and stationary target cases including relative measurements of range and bearing, the local

heading, and the target velocity.

• A controller to encircle constant velocity targets in a time-splay formation without global

knowledge of other UAVs.

• A bound on the time-to-spread information in the scenario of multiple groups of UAVs using

messenger vehicles to communicate between grouops.

This thesis proceeds as follows. In Chapter 2, we describe the UAV and target models.

Chapter 3 proposes controllers for stationary, constant velocity and constantly accelerating targets,

5



and gives proofs of their convergence to encircle a target. The multi-UAV time-splay and multi-

group information spread time bounds are presented in Chapter 4. We present the sensor noise

considerations and an estimation framework in Chapter 5. In Chapter 6, we present results from

numerical simulations for our proposed controllers and estimator. Conclusions and future work are

given in Chapter 7.
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CHAPTER 2. DYNAMIC MODELS OF UAV AND TARGET

In this chapter, the models and assumptions for both the UAV (Section 2.1) and the target

(Section 2.2) are described. We use a unicycle model to represent the dynamics of the UAV, and

different models: stationary, constant velocity and constant acceleration, for the target.

2.1 UAV Model

This work uses a unicycle model in a two dimensional plane to represent the UAV motion.

This type of model has been used frequently in the literature [36–38]. In this model, the UAV is

able to control its turn-rate and travels at a constant unit speed. The constant speed represents a

constant airspeed UAV, and thus there is no control effort to regulate the speed, but only the lateral

motion. The dynamics in the complex plane for the kth UAV at position rk are

ṙk =eiθk = cos(θk)+ isin(θk)

θ̇k =uk,
(2.1)

where i is the unit imaginary number, ṙk is the velocity and θk is the heading of UAVk in its local

frame. Note the implied one in front of the exponent of the velocity following our assumption that

all the UAVs travelling at unit speed. In a multi-UAV scenario, the local frame of reference for

each UAV is set arbitrarily using the UAV’s initial heading. Figure 2.1 shows the local frame where

Xk is aligned with the UAVk’s initial heading. The range and bearing to the target are βk and αk,

respectively. The heading of the target is ψk in the kth UAV’s local frame. In this frame the target

has a velocity vxk + ivyk . The input control uk is used to change the UAVk’s heading.

7



Figure 2.1: The axes represent the local frame of UAVk. All definitions are in this local frame. The
current heading of the target at position pk is ψk and its velocity is vxk + ivyk .

Additionally, we place a turn-rate constraint on each UAV to mimic its bank angle limit, by

saturating the control with umax.

uk =


−umax, uk <−umax

uk, −umax ≤ uk ≤ umax .

umax, uk > umax

(2.2)

2.2 Target Model

The heading of the target in the kth UAV’s local frame is ψk. In this frame the target has

position pk. The position of the target is the desired center of the circle. We use three different

models for target motion: 1. stationary targets, 2. constant velocity targets, and 3. constant

8



acceleration targets. The target acceleration is defined as

p̈k = axk + iayk ,

and the target velocity is defined as

ṗk = vxk + ivyk .

In the case of stationary targets axk = ayk = vxk = vyk = 0 . For constant velocity targets, vxk and vyk

are constants. In case of accelerating targets, axk and ayk are constants and velocities and positions

of the target are calculated using

vk = v−k +ak∆t

pk = v−k ∆t +
(∆t)2

2
ak,

where v−k is the initial velocity, and ∆t = t− t0, where t0 is the starting time.

For this thesis, we assume that the speed of the target vk =
√

v2
xk
+ v2

yk
is always less than

the speed of the UAVs (unit speed), even in the case of accelerating targets vk < 1. We enforce this

in the simulations by always keeping the acceleration low enough that the speed doesn’t go above

one in the given simulation time.
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CHAPTER 3. CONTROLLER DESIGN

In this chapter, we propose provably stable controllers for encirclement of stationary, con-

stant velocity, and constantly accelerating targets. For stationary targets, the controller uses only

range and bearing from the target to encircle it. For moving targets, the controllers use the range

and bearing from the target, along with the UAVs local heading to encircle the moving target. We

also propose controllers to incorporate a desired direction of encirclement for moving targets. The

controllers assume that the UAVs travel at unit speed for the ease of understanding and simplicity

of the equations. A controller with a non-unit speed UAV that encircles a stationary target is de-

scribed in Appendix A. Also in this chapter, because the control algorithms operate on each UAV

individually, the subscript k for the UAV index is removed, and the control behavior is demon-

strated for a single UAV.

The instantaneous circle center for the UAV is [29]

c = r+dω
−1
0 ieiθ , (3.1)

where ω0 > 0 is the angular speed of the UAV and the direction of encirclement is governed by

d =±1 (d =−1 indicates a clockwise direction and d = 1 a counter-clockwise direction). Figure

3.1 depicts the current center of the UAV traveling in a clockwise direction. Since the UAV has

unit speed, ω
−1
0 is the circle’s radius. The parameter ω

−1
0 is used to set the radius of the loiter

circle. The desired center of the circle is the target position, which is denoted by p in the inertial

frame. The target is at a distance β and at an azimuth angle α from the UAV. This is denoted by

p = r+βei(θ+α),

where α and β are

α = tan−1(
py− ry

px− rx
)−θ (3.2)
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 (imag)

Figure 3.1: Instantaneous circle center of UAV moving at speed one and for radius ω
−1
0 .

and

β =
√

(p− r)H(p− r) = ||p− r||2. (3.3)

The complex conjugate transpose (or Hermitian) is denoted by [.]H , and ||.||2 is the Euclidean 2-

norm. The real and imaginary part of the desired circle center (target position) are px and py and

the UAV’s X and Y positions are rx and ry.

Choosing the error e = p− c to be the difference between the desired circle center and the

actual circle center gives

e = p− c = βei(θ+α)−dω
−1
0 ieiθ , (3.4)

with error dynamics given by taking the derivative with respect to time,

ė = ṗ− ċ

= β̇ei(α+θ)+ iβei(α+θ)(α̇ + θ̇)+dω
−1
0 eiθ

θ̇ .
(3.5)
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The time derivatives of bearing and range from Equations (3.2) and (3.3) are

α̇ =
(px− rx)(vy− ṙy)− (py− ry)(vx− ṙx)

(px− rx)2 +(py− ry)2 −u, (3.6)

and

β̇ =
(px− rx)(vx− ṙx)+(py− ry)(vy− ṙy)√

(px− rx)2 +(py− ry)2
. (3.7)

The geometric relationships between the target and UAV measurements as described in Figure 2.1

are
px− rx =βcos(α +θ)

py− ry =β sin(α +θ),
(3.8)

and
ṙx = cos(θ)

ṙy = sin(θ).
(3.9)

Substituting Equations (3.8) and (3.9) into Equations (3.6) and (3.7) for α̇ and β̇ yields

α̇ = β
−1(vy cos(α +θ)− vx sin(α +θ)+ sin(α))−u, (3.10)

β̇ = vx cos(α +θ)+ vy sin(α +θ)− cos(α). (3.11)

These equations for the heading α and range β do not have any inertial frame information.

3.1 Lyapunov Based Control for Stationary Targets

In this section, we use a Lyapunov-based controller to show global asymptotic convergence

of a UAV to a circle of fixed radius around the stationary target using relative sensor measurements.

Theorem 1. All trajectories of a UAV following the dynamics of Equations (2.1) and using control

law

u = dω0(1−βcos(α)) (3.12)

will globally asymptotically converge to a circle centered at a stationary target (vx = vy = 0) with

radius ω
−1
0 .
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Proof. Consider the Lyapunov function V = 1
2eHe whose derivative with respect to time is V̇ =

real(eH ė).

Let S = {(e,0),(0, ė),(0,0)} be the set where V̇ (e, ė) = 0 and E ⊂ S be the largest invariant

set in S. We will show that E = {(0,0)} and in this set a UAV will encircle the stationary target.

Solving Equation (3.5) for ė = 0 provides two cases: β = 0 or cos(α) = 0. The first case,

β = 0, is not part of the invariant set; the UAV travels at unit speed and cannot stay indefinitely

over the stationary target.

In the second case, when cos(α) = 0, the range-rate is β̇ = 0, and thus β is constant. The

controller (Equation (3.12)) is constant, u = dω0, and the bearing-rate α̇ = β−1− dω0 is also a

constant and must equal zero since cos(α)≡ 0. This implies that the range is β = dω
−1
0 .

Furthermore, with values β = dω
−1
0 and α = ±π/2, e = 0 (Equation (3.4)). Thus, under

the conditions when ė = 0 is invariant, then e = 0. It can similarly be shown that the invariant case

for e = 0 yields the same conditions on α and β and requires that ė = 0. Therefore, E = {(0,0)}

is the largest invariant set.

According to the Lasalle’s invariance theorem ([39], Theorem 4.4, Corollary 4.1), the sys-

tem will asymptotically converge to E where β = ω
−1
0 and α = ±π/2 with the sign determined

by the sign of d.These are the conditions required for a UAV following dynamics from Equation

(2.1) to encircle a stationary target with radius ω
−1
0 and the direction determined by d.

Figure 3.2 shows convergence of a UAV to a 30m radius circle around a stationary target.

The blue “+” shows the target, the pink “+” shows the initial position of the UAV, and the dashed

line shows the trajectory of the UAV.

Note that the control (Equation (3.25)) is only a function of the relative measurements α

and β , therefore no inertial or even local UAV frame information is needed to command the UAV

to encircle the target.

3.2 Encirclement of Constant Velocity Targets

In this section, we present a feedback linearization approach to find an exponentially stable

controller to encircle moving targets. We consider a constant velocity target where ṗ 6= 0. The
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Figure 3.2: UAV encirclement of a stationary target with a desired radius of 30m.

error dynamics are defined as in Equation (3.5). For the purpose of encircling moving targets, we

start by defining the state vector for each UAV as

q =

q1

q2

=

 α

β −ω
−1
0

 . (3.13)

From Equations (3.10) and (3.11)

q̇ =

α̇

β̇


=

β−1(vy cos(α +θ)− vx sin(α +θ)+ sin(α))

vx cos(α +θ)+ vy sin(α +θ)− cos(α)


︸ ︷︷ ︸

f (q)

+

−1

0


︸ ︷︷ ︸

g(q)

u.

(3.14)
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The system q̇ = f (q)+g(q)u is feedback linearized assuming known constant velocities vx and vy

of the target. In Chapter 5 this assumption will be removed using a method to estimate them.

The system is feedback linearizable if the following holds ([39], Theorem 13.2): 1. ∆ =

span{g(q),ad f g(q), ...,adm−2
f g(q)} is involutive and 2. G(q) =

[
g(q),ad f g(q), ...,adm−1

f g(q)
]

has rank m, where m is the number of states in the system. The Lie bracket ad f g(q) is defined as

[ f ,g](q) = ∂g
∂q f (q)− ∂ f

∂q g(q). For this system, m = 2.

The first condition, ∆ = span{g(q)} is involutive because [g,g] ∈ ∆ [39]. Proving the

second condition requires that we compute G(q) =
[
g(q),ad f g(q)

]
. In this case,

ad f g(q) =−d f (q)
dq

−1

0

 ,
where

∂ f (q)
∂q

=

∂ f1(q)
∂α

∂ f1(q)
∂β

∂ f2(q)
∂α

∂ f2(q)
∂β

=

 f1α
f1β

f2α
f2β

 .
The derivative of the first element of f with respect to α is defined as f1α

. Note that the Jacobian

requires a partial derivative with respect to q2 = (β −ω
−1
0 ). However, since the derivatives are the

same with respect to β , we use that variable to simplify the notation. The partial derivatives are

defined as
f1α

=β
−1(−vy sin(α +θ)− vx cos(α +θ)+ cos(α))

f2α
= − vx sin(α +θ)+ vy cos(α +θ)+ sin(α)

f1β
= − (β )−2(vy cos(α +θ)− vx sin(α +θ)+ sin(α))

f2β
=0.

The partial derivative of g with respect to q is

dg(q)
dq

= 0.

Therefore,

ad f g(q) =

 f1α

f2α

 ,
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and

G(q) =
[
−1 β−1(−vy sin(α+θ)−vx cos(α+θ)+cos(α))

0 −vx sin(α+θ)+vy cos(α+θ)+sin(α)

]
. (3.15)

This matrix G(q) is rank 2 if f1(q) =−vx sin(α +θ)+ vy cos(α +θ)+ sin(α) 6= 0. There are two

cases when f1(q) = 0. First, when the UAV is moving at the same speed and has the same direction

as the target. Under the assumption that the speed of the UAV is greater than speed of the target,

this case cannot be true. Second, the cases where the UAV has one component of it’s velocity equal

to the same component of the velocity of the target, i.e. ṙx = vx or ṙy = vy. The UAV remains in this

state only when u = 0, since vx and vy are constant. Figure 3.3 illustrates this case where ṙx = vx,

α +θ = π

2 and ṙy 6= vy since speed of the UAV is greater than the target. The dynamics for these

cases are not invariant, as we will see in Equation (3.17). For the rest of the states of the system,

rank(G(q)) = 2 and the system is feedback linearizable. Let h(x) = q2 from Equation (3.13). We

target

Figure 3.3: Figure that depicts transient cases where the matrix G(q) is not full rank. This happens
when one component, the X or the Y, of the velocity of the UAV and target are equal, and α +θ =
±π

2 . Here, the X component is equal and the UAV is directly below the target, with α + θ = π

2 .
This degenerate case could also occur if ṙy = vy.
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define the linearizable states as

z =

 h(q)

L f h(q)


=

 β −ω
−1
0

vx cos(α +θ)+ vy sin(α +θ)− cos(α)

 ,
where L f h(q) = ∂h(q)

∂q f (q) is the Lie derivative of h with respect to f . Driving z to zero drives β to

the desired radius ω
−1
0 and α to the desired angle for a circle around the moving target. Since β̇ is

a function of α , driving β̇ to zero implicitly ensures that the α angle is driven to the desired value.

Thus, driving these error states to zero will cause the UAV to encircle the constant velocity target.

The derivatives of the error states with respect to time are

ż1 = β̇

=vx cos(α +θ)+ vy sin(α +θ)− cos(α)

=z2,

ż2 = − vx sin(α +θ)(α̇ + θ̇) + sin(α)α̇

+ vy cos(α +θ)(α̇ + θ̇).

(3.16)

The error state dynamics become

ż =

ż1

ż2

=

 z2

β ( f 2
1 (q))− sin(α)u

 ,
where f1(q) is given in Equation (3.14).

Theorem 2. All trajectories of a UAV following the dynamics of Equations (2.1) and using the

control law

u =
β ( f 2

1 (q))−η

sin(α)
, (3.17)

where η =−K1z1−K2z2 is the negated error states with gains K1 > 0 and K2 > 0 and f1 defined

in Equation (3.14), will globally exponentially converge to a circle with radius β = ω
−1
0 around a
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target moving with constant velocity and the speed of the target always less than the speed of the

UAV.

Proof. With the proposed control, the error dynamics are

ż =

 z2

−K1z1−K2z2

=

 0 1

−K1 −K2

z.

Choosing K1 > 0 and K2 > 0 will ensure ż is exponentially stable and the control (Equation (3.17))

will drive the UAV to a constant radius circle around the moving target. The denominator goes to

zero only when the UAV is pointing directly towards or away from the target, which is a subset of

the cases described when rank(G(q)) 6= 2, and are transient due to the dynamics. The controller

design does not let the UAV drive itself into such a scenario, since the controller pushes the UAV

away from the center (the angular rate u = θ̇ pushes the UAV away so that α goes away from 0 or

π), to achieve α oscillating near π

2 and the range β = ω
−1
0 . When the UAV starts at that position,

or reaches it due to errors in measurements (Chapter 5), we saturate the control with a maximum

value as in Equation (2.2), and it gets out of that state.

Thus the controller given in Equation (3.17) directs the UAV, which is following dynamics

in Equation (2.1), to travel in a constant radius circle given by β =ω
−1
0 around the constant velocity

moving target, moving with speed less than the speed of the UAV.

Figure 3.4 shows convergence of the UAV trajectories to a loiter circle around a target

moving with constant velocity. The blue line shows the motion of the target, with the dashed

line showing the trajectory of the UAV. The pink “+” is the initial position of the UAV. The UAV

encircles the target depending on the starting conditions, which in this case is counter-clockwise.

To gain intuition on how the encircling direction is determined, consider the control law u=

K1(β −ω
−1
0 )+K2(β̇ ), which is similar to a PD controller, where the sign of K1 and K2 (assuming

both are same sign) determines whether the UAV will converge to a clockwise or counter-clockwise

circle. In the controller proposed in Equation (3.17), there is a sin(α) term dividing the PD portion

of the controller. This cancels with the sign of K1 and K2 and ensures that UAVs moving in

both the clockwise and counter-clockwise direction converge to a loiter circle. So although in the
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case of positive gains K1 and K2 which exponentially stabilizes the circular trajectories, we are

unable to control the direction of the convergence, since for both positive and negative α , we get

convergence. This poses a number of problems, such as, collision avoidance becomes difficult,

UAVs cannot maintain a formation following each other, and coordinate frames for information

exchange and estimation may be reversed. The following section proposes a controller which

provides direction control.

-100 0 100 200 300 400
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UAV trajectories

UAV initial position

target position

Figure 3.4: Constant velocity target encirclement. Velocity of the target is vx+ ivy = 0.4− i0.1m/s.

3.3 Direction Control While Encircling Constant Velocity Targets

In this section, we present a controller which enables us to specify the direction of encir-

clement for a constant velocity target. The controller in the previous section does not allow control

of the direction of encirclement. We know that when the UAV is on the circle with radius ω
−1
0 ,

β̇ = 0. Using Equation (3.11) for range-rate β̇ = 0, we get

tan(α) =
1− vx cos(θ)− vy sin(θ)

vy cos(θ)− vx sin(θ)
. (3.18)

19



Therefore the desired relative angle αd , when the range-rate is zero, is given by

αd = atan2
(

d(1− vx cos(θ)− vy sin(θ)),d(vy cos(θ)− vx sin(θ))
)
= atan2

(
dαy,dαx

)
, (3.19)

where αx and αy are the X and Y components of the vector defining the angle αd and d defines the

direction, with d =−1 being clockwise and d =+1 being counter-clockwise. Note that we do not

cancel out d from the fraction in order to specify the quadrant of the angle α for atan2.

Consider the error state vector

e =

β −ω
−1
0

α−αd

 . (3.20)

Its derivative with respect to time is

ė =

 β̇

α̇− α̇d

=

vx cos(α +θ)+ vy sin(α +θ)− cos(α)

A
β
−u( αy

α2
x +α2

y
)

 , (3.21)

where

A = vy cos(α +θ)− vx sin(α +θ)+ sin(α). (3.22)

Theorem 3. All trajectories of a UAV following the dynamics of Equations (2.1) and using the

control law

u =
α2

x +α2
y

αy

(
A
β
+

(β −ω
−1
0 )β̇

α−αd
+K1(β −ω

−1
0 )2(α−αd)+K2(α−αd)

)
, (3.23)

will globally asymptotically converge to a circle with radius β = ω
−1
0 around a target moving with

constant velocity and the speed of the target less than the speed of the UAV.

Proof. Using error states from Equation (3.20), we take the Lyapunov function as V = 1
2eHe. The

derivative is thus V̇ = real(eH ė), given by

V̇ = (β −ω
−1
0 )β̇ +

(
A
β

)
(α−αd)−u(α−αd)

(
αy

α2
x +α2

y

)
.

The set where the derivative of the Lyapunov function is zero is S = {(e,0),(0, ė),(0,0)}.
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We define the largest invariant set E ⊂ S, with E = {(0,0)}. We know in E, ė = 0. Thus

ė1 = α̇ − α̇d = 0 and ė2 = β̇ = 0. This shows β is a constant, and also by definition of αd in

Equation (3.19), we get α = αd . Substituting these values in the control from Equation (3.23)

yields

u =
α2

x +α2
y

αy

(
A
β
+(β −ω

−1
0 )

)
.

Substituting this control u in ė2 = α̇− α̇d = 0, results in β = ω
−1
0 . Thus, in Equation (3.20), e = 0.

Therefore trajectories that start in the set E stay in E and E = {(0,0)} is invariant.

According to the Lasalle’s invariance theorem ([39], Theorem 4.4, Corollary 4.1), the con-

troller is globally asymptotically stable in driving the error states to zero. This implies that it drives

β to ω
−1
0 and α to αd asymptotically, which are the conditions necessary to drive a UAV to encircle

a target moving with constant velocity at a radius of ω
−1
0 .
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Figure 3.5: Target encirclement in clockwise direction for target moving with velocity vx = 0.4m/s.

Figure 3.5 shows convergence of the UAV in clockwise direction. The UAV inittialy started

going in the counter-clockwise direction, but is forced to converge in the clockwise direction with

d = −1. The dashed lines denote the UAV trajectory and the blue line denotes the motion of the

target. The pink “+” marks the UAV initial position. The radius is set to ω
−1
0 = 30m.
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3.4 Encirclement of Constantly Accelerating Targets

In this section, we extend the feedback linearization controller from Section 3.2 to find an

exponentially stable controller to encircle targets moving with constant acceleration. We assume

that although the speed of the target is constantly changing, it still remains less than the speed of

the UAV. The linearization approach carries over from the constant velocity controller, except the

derivatives of the error states with respect to time change. We use the feedback linearizable states

from Equation (3.16) as

z =

 h(q)

L f h(q)


=

 β −ω
−1
0

vx cos(α +θ)+ vy sin(α +θ)− cos(α)

 ,
where L f h(q) = ∂h(q)

∂q f (q). Driving z to zero drives β to the desired radius ω
−1
0 and α to the

desired relative angle for a UAV to encircle the target moving with constant acceleration and speed

less than one. In the case of an accelerating target, the derivatives of the error states, differently

from Equation (3.16) are

ż1 = β̇

=vx cos(α +θ)+ vy sin(α +θ)− cos(α)

=z2,

ż2 = − vx sin(α +θ)(α̇ + θ̇) + sin(α)α̇

+ vy cos(α +θ)(α̇ + θ̇)

+ax cos(α +θ)+ay sin(α +θ).

Thus, the error state dynamics become

ż =

ż1

ż2

=

 z2

β ( f 2
1 (q))− sin(α)u+ax cos(α +θ)+ay sin(α +θ)

 , (3.24)

where f1(q) is given in Equation (3.14).
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Theorem 4. All trajectories of a UAV following the dynamics of Equations (2.1) and using the

control law

u =
β ( f 2

1 (q))+ax cos(α +θ)+ay sin(α +θ)−η

sin(α)
, (3.25)

where η =−K1z1−K2z2 is the negated error states with gains K1 > 0 and K2 > 0 and f1 defined

in Equation (3.14), will globally exponentially converge to a circle with radius β = ω
−1
0 around a

target moving with constant acceleration and the speed of the target always less than the speed of

the UAV.

Proof. With this control, the error dynamics are

ż =

 z2

−K1z1−K2z2

=

 0 1

−K1 −K2

z.
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Figure 3.6: Encirclement of a constantly accelerating target with ax + iay = (−0.0001 +
i0.0001)m/s2 and initial velocity vx + ivy = (0.4− i0.1)m/s.

Choosing K1 > 0 and K2 > 0 will ensure ż is exponentially stable and the control (Equation

(3.25)) will drive the error states to zero which are the conditions for a UAV to encircle a target

moving with constant acceleration with constant radius ω
−1
0 . The denominator of the control goes

to zero only when the UAV is pointing directly towards or away from the target, which is a subset
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of the cases described when rank(G(q)) 6= 2 (Section 3.2), and are transient due to the dynamics.

This case is depicted in Figure 3.3 and discussed in the proof of Theorem 3.2.

Figure 3.6 shows the convergence of the UAV (dashed lines) to a loiter circle of radius

30m around the constantly accelerating target (blue line), with acceleration ax+ iay = (−0.0001+

i0.0001)m/s2. The pink “+” marks the initial position of the UAV. The direction is decided by the

initial position and heading of the UAV which is counter-clockwise in this case.

3.5 Direction Control While Encircling Constant Acceleration Targets

Following the rationale from the directional controller for constant velocity targets in Sec-

tion 3.3, we include acceleration in the formulation. For the error in Equation (3.20), the new error

dynamics are defined as

ė =

 β̇

α̇− α̇d

=

vx cos(α +θ)+ vy sin(α +θ)− cos(α)

A
β
−u
(

αy
α2

x +α2
y

)
+ ν

α2
x +α2

y

 , (3.26)

where ν = αx(ax cos(θ)+ay sin(θ))+αy(ay cos(θ)−ax sin(θ)) are the acceleration terms, and A

is defined as in Equation (3.22).

Theorem 5. All trajectories of a UAV following the dynamics of Equations (2.1) and using the

control law

u =
α2

x +α2
y

αy

(
A
β
+

(β −ω
−1
0 )β̇

α−αd
+K1(β −ω

−1
0 )2(α−αd)+K2(α−αd)

)
+

ν

αy
, (3.27)

will globally asymptotically converge to a circle with radius β = ω
−1
0 around a target moving with

constant acceleration and the speed of the target always less than the speed of the UAV.

Proof. Using error states from Equation (3.20), we take the Lyapunov function as V = 1
2eHe.

Differentiating with respect to time yields

V̇ = real(eH ė) = (β −ω
−1
0 )β̇ +

(
A
β
+

ν

α2
x +α2

y

)
(α−αd)−u(α−αd)

(
αy

α2
x +α2

y

)
.
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The set where the derivative of the Lyapunov function is zero is S = {(e,0),(0, ė),(0,0)}. We

define the largest invariant set E ⊂ S, with E = {(0,0)}. We will show that this is the largest

invariant set. We know in E the dynamics must be zero. For dynamics ė = 0, ė1 = α̇− α̇d = 0 and

ė2 = β̇ = 0. This shows β is a constant, and also by definition of αd in Equation (3.19), we get

α = αd . Substituting these values in the control from Equation (3.27), we get

u =
α2

x +α2
y

αy

(
A
β
+(β −ω

−1
0 )

)
+

ν

αy
. (3.28)

Substituting Equation (3.28) in α̇ − α̇d = 0 from Equation (3.26), we get β = ω
−1
0 . Thus, in

Equation (3.20), e = 0. Therefore trajectories that start in set E, stay in the set E, and the set

E = {(0,0)} is the largest invariant set. According to Lasalle’s invariance theorem ([39], Theorem

4.4, Corollary 4.1), the controller is globally asymptotically stable in driving the error states to

zero. Thus, it drives β to ω
−1
0 and α to αd , which are the conditions necessary to drive a UAV to

encircle a target moving with constant acceleration and speed less than one, at a radius of ω
−1
0 .

Figure 3.7 shows convergence of the UAV (dashed) to a clockwise circle of radius 30m

around a constantly accelerating target (solid). The pink “+” shows the initial position of the UAV.
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Figure 3.7: Target encirclement in clockwise direction for target moving with initial velocity vx +
ivy = (0.4− i0.1)m/s and acceleration ax + iay = (−0.0001+ i0.0001)m/s2.

25



CHAPTER 4. MULTI-AGENT COORDINATION

For more efficient completion of tasks with better coverage of the task area, communication

and coordination is important among all the UAVs performing the tasks. In this chapter, we discuss

two different approaches: The first arrangement of UAVs to a desired formation, and the second

for multi-UAV communication in large systems.

First, we define a method to arrange the UAVs in a symmetric formations in a circle around

the target, specifically the temporally equi-spaced (time-splay) formation. Using the controller

proposed in 3, and inspired from the work in [29], [32], we explore the arrangement of UAVs in

symmetric formations using the relative frame information. Splay formations help in providing

good coverage of a target [40].

We also discuss a way to relay information between multiple groups of UAVs. Using

messenger UAVs, we discuss the effect of sending UAVs at a higher frequency between groups

on information spread time within the whole system. This approach is useful when the groups

of UAVs are too far apart to communicate directly, such as in search missions over oceans or

forests. Previous works [34], [35] have discussed information sharing using gossip algorithms

among nearby robots in search tasks. Taking inspiration from the epidemic model in [33] and

work in [34], [35], we study the bounds on time-to-spread information in a system with multiple

groups of robots encircling targets.

4.1 Time-Splay Formations

In a constant velocity moving target scenario, the UAVs must turn at different rates around

different parts of the circle, to be able to maintain a constant distance from the target, i.e., θ̇k 6=

constant, which is different from the stationary target case. In case of stationary targets, equi-

temporal-spacing is equivalent to equal spatial distance, but it is different in case of moving targets.

Our aim is to arrange the UAVs around the target in a circle such that they are temporally equi-
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distant from each other, i.e., at any instant, an observer on the circle would see the UAVs pass at a

constant rate. This helps us have more robust tracking and re-arrangement in case of UAV attrition

or addition. In this section, to arrange the UAVs in a time-splay formation, we build upon the work

from [1], [29], [32], which assume inertial fram information for the UAVs and the target. The

proposed controller arranges the UAVs in locally stable circularly symmetric states. The different

symmetric states are: Symmetric: time-splay, Coordinated: all on top of each other, and everything

in between – clubbed as two vehicles on each spot, three on each spot, etc, dependant on how many

formations can exist for the given number of UAVs. An example is shown in Figure 4.1. Depending

on the gain Ksplay in Equation (4.11) and initial conditions, we can control which symmetric state

we end up in. We are interested in the time-splay state, where the UAVs are spread around the

circle, and is thus more practically useful.

Figure 4.1: Different symmetric formations for a four UAV scenario in a stationary target case:
(left) Coordinated, (middle) Two-tuple, (right) Symmetric. See also [1].

As in the previous chapter, the information known to the UAVs about the target is the range

βk, the bearing to the target αk, and their own local heading angle θk. We also assume a constant

velocity UAV, with just commanding the turn-rate, and assume the speed of the UAV is greater

than that of the target. To maintain a symmetric formation amongst the encircling UAVs, we need

a metric to track where the UAV is on the circle around the target.Although αk is periodic, we

cannot use it as the metric, since the position on the circle and the bearing αk do not have a one-to-

one mapping, i.e., there are multiple positions on the circle with the same value of αk. We cannot

use θk directly either, since the frame of reference of the measurement of θk is different for each

of the UAVs.
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We know that for every UAVk with their local bearing θk, there is an angle of the target

motion ψk = tan−1
(

vyk
vxk

)
in their local frame. Since each UAV has it’s own reference frame, we

use the vector of the relative motion of the UAV with respect to the target’s motion frame for

achieving the symmetric formations. Let γk = arg(eiθk−veiψk) be the relative heading of the UAVk

in the moving target frame, where v is the speed of the target. Since this frame is common for all

UAVs (assuming no noise), γk may be used to track the progress around the circle. The speed of

the UAV in the target frame is defined as sk = |eiθk − veiψk |, where |.| denotes the magnitude. For

this section, we assume a target moving only in the X direction, without any loss of generality, as

the direction of motion for a constant velocity target is just a function of the frame of reference.

The relationship between γ̇k and the control uk is obtained by differentiating γk = arg(eiθk− veiψk)

with respect to time to get

γ̇k =
1− vcos(θk)

s2
k

θ̇k. (4.1)

We define which UAVs communicate with each other, using the Laplacian topology matrix LN×N

for the N UAVs in formation. The diagonal element Lkk represents how many other UAVs are

connected to the kth UAV, and the row elements Lkl =−1 for every UAVl that UAVk is connected to.

We assume bi-directional connections and thus the matrix is symmetric. As an example topology,

we consider a ring topology, where each UAV is able to communicate with the UAVs immediately

preceding and following it in the graph, as in [1]. Note that this topology is static and does not

represent a spatially constructed ring. For a seven UAV scenario, L is given by

L =



2 −1 0 0 0 0 −1

−1 2 −1 0 0 0 0

0 −1 2 −1 0 0 0

0 0 −1 2 −1 0 0

0 0 0 −1 2 −1 0

0 0 0 0 −1 2 −1

−1 0 0 0 0 −1 2


. (4.2)

28



The time period T for a UAV to encircle the moving target once is defined as [32]

T =
1

ω0

∫ 2π

0

dγk

sk
. (4.3)

The time phase φk is defined in [32] as

φk =
2π

ω0T

∫
γk

0

dγk

sk
, (4.4)

and is a measure of how far the UAV has progressed around the circle.

As was done in [29], we add a rotationally symmetric potential U to the potential function

V = 1
2eHe, where e is defined in Equation (3.20). The rotationally symmetric potential is defined as

U = ∑
M
m=1 KmUm, with Um = N

2 |pm|2 and pm = 1
mN ∑

N
k=1 eimφk , and is symmetric around the circle

with respect to φk. The symmetric potential U is thus defined as

U =
M

∑
m=1

Km
1

2m2N

∣∣∣∣∣ N

∑
k=1

eimφk

∣∣∣∣∣
2

. (4.5)

The potential U is rotationally symmetric, i.e., U(γk(t)) = U(γk(t− T
N )), where U(γk(t)) is the

value of the potential evaluated with the value of γk at time t. The augmented Lyapunov potential

function is

Vsplay =V +
T
2π

U. (4.6)

Thus we get the derivative of the potential function

V̇splay = V̇ +
T
2π

∂U
∂φk

φ̇k, (4.7)

where V̇ is the time derivative of the potential function from Equation (3.3) and

φ̇k =
2π

T
(ω0sk)

−1
γ̇k. (4.8)
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Thus, we get the time derivative of the augmented potential function as

V̇splay = (βk−ω
−1
0 )β̇k +

(
Ak

βk

)
(αk−αkd)−u(αk−αkd)

(
αky

α2
kx
+α2

ky

)
+(ω0sk)

−1 ∂U
∂φk

(1− vcos(θk))

s2
k

uk.

(4.9)

The partial of the rotationally symmetric potential U with respect to φk [1] is defined as

∂U
∂φk

= real([(ieiφ )◦Leiφ ]k), (4.10)

where (.̄) denotes a complex conjugate, ◦ denotes a Hadamard product (or element-wise product)

[41], and [.]k denotes the kth element of the vector in the square brackets. This derivative goes

to zero when φ̇k is a constant and the vehicles are in a symmetric state.. Thus, the potential U

is a constant when φ̇k is a constant, and is minimized when the UAVs arrange themselves in a

symmetric formation around the circle [1].

Theorem 6. All trajectories of the UAVs following the dynamics of Equations (2.1) and using the

control law

usplayk =
s2

k(αk−αkd)

(1− vcos(θk))((αk−αkd)−
∂U
∂φk

ω0sk
)

(
A
βk

+
(βk−ω

−1
0 )β̇k

αk−αkd

+

K1(βk−ω
−1
0 )2(αk−αkd)+K2(αk−αkd)

)
+Ksplay

(1− vcos(θk))((αk−αkd)−
∂U
∂φk

ω0sk
)

s2
k

(4.11)

will globally asymptotically converge to a circle with radius β = ω
−1
0 around a target moving with

constant velocity whose speed is always less than the speed of the UAV, while arranging the UAVs

in a locally symmetric formation around the circle.

Proof. Substituting the control law from Equation (4.11) into the Equation (4.9), gives V̇splay =

−K1(βk −ω
−1
0 )2(αk − αkd)

2 −K2(αk − αkd)
2 −Ksplay

(
(1−vcos(θk))((αk−αkd )−

∂U
∂φk

ω0sk
)

s2
k

)2

, which is a

negative semi-definite function, and V̇splay = 0 when αk = αkd and ∂U
∂φk

= 0, for all values of βk.

Following the proof of Theorem3.3, we know that driving αk = αkd drives the UAV to a

constant radius circle with βk = ω
−1
0 . For this, error e in Equation (3.20) is zero, and ė = 0, which
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means we are on circle and the derivative of the potential becomes V̇splay =
1

ω0s3
k

∂U
∂φk

. Thus, when

we are on the circle, V̇splay = 0 only when ∂U
∂φk

= 0. From Equation (4.10), we get φk is a constant

when the derivative of the symmetric potential is zero. This is also supported by the fact that

γ̇k = ω0sk when going on a circle, and thus φ̇k =
2π

T in Equation (4.8), which is a constant. The set

S = {V̇splay = 0} is invariant only at the origin E = {(e = 0, ė = 0, ∂U
∂φk

= 0)}.

Thus, according to the Lasalle’s invariance theorem ([39], Theorem 4.4, Corollary 4.1),

the controller is globally asymptotically stable in driving the error states to zero, and thus UAVs

to a constant radius circle around the moving target, while arranging the UAVs in a symmetric

formation. Note that there are multiple symmetric formations for which ∂U
∂φk

= 0, each of which

are locally stable.

Note that the splay state has a large region of attraction but there are cases when the UAVs

arrange themselves in different symmetric states, including synchronized formations, i.e. on top of

each other, etc. Analysis of when the UAVs enter which of these formations will be addressed in

future work. For the time-splay formation shown in Figure 4.2, the gain of Ksplay =−N is chosen,

where N is the number of UAVs [29].

Figure 4.2 (left) shows the UAVs in an inertial frame around the constant velocity target

converging to the time-splay formation. Figure 4.2(right) shows the angle γk varying uniquely (but

not linearly) in the range [−π,π]. We can see that in this figure that the UAVs slowly arrange

themselves such that the phases don’t overlap, but are equi-spaced, i.e., the distance between the

angles in the horizontal axis is constant. This happens in the time-splay formations.

4.2 Gossip Algorithms for Inter-Group Communication

In a scenario with multiple targets being tracked by multi groups of UAVs, or multiple

groups of vehicles searching a large area, inter-group communication enables the task to be ex-

ecuted in a more homogenous and efficient manner. In [35], the authors propose a method for

information exchange in a multi-UAV routing problem using gossip algorithms. Inspired from

this, we use the epidemic spread model from [33] to study the how information spreads among

different groups and what are the upper bounds on the time to spread information to all the UAVs.
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Figure 4.2: (left) Seven UAVs in the inertial frame in a time-splay formation around a constant
velocity target moving with velocity vx + ivy = (0.4) m/s and (right) the local angle γk of the UAV
evolving from random positions to a time-splay formation.

We test how quickly information spreads among groups using a scenario with five different groups

encircling five different stationary targets, as shown in Figure 4.3. We assume a common frame

for all the UAVs and the targets, and assume all UAVs know the position of all the groups in the

system. We set up communication between n groups by assigning a probability to every UAV to

leave a group and go to another. The probability at every time step for a UAV to leave group i

is µi and it chooses amongst the n− 1 groups with equal probability ρ = 1
n−1 . Differently from

[33], which looks at heterogenous groups of agents, and thus consider both joining and leaving

probabilities for each group, we are interested only in the leaving probability of the UAV from a

group, since all UAVs are equivalent.

We can find the upper time bound on the information dissipation using this approach of

sending UAVs from one group to another, where groups are farther than the communication range

of the UAVs. The placement of the groups can affect how quickly the information dissipates. For

example, if all the groups are in a straight line, the movement of one UAV from the first to the

last group will make it encounter the rest of the groups, and the information will spread quickly.

If all the groups are in a star or ring formation, the UAVs will not encounter other groups while

travelling, providing a worst-case scenario. To get the upper bounds on time for the information

spread throughout the system, we consider evenly spaced ring formation for our simulations.

32



Target 
Group 
1

Target 
Group 
2

Target 
Group 
5

Target 
Group 
4

Target 
Group 
3

𝜇"

𝜌

𝜌
𝜌

𝜌

Figure 4.3: Mobility process linking five groups of UAVs with an example three UAVs in every
group, µi is the probability at every time step for a UAV to leave group i. Denoted is an example
with UAV leaving Group 1. ρ = 1

n−1 =
1
4 is the probability that a person who leaves region i travels

to region j, which is evenly distributed for all other four groups.

Group mobility can be expressed in terms of the number of UAVs moving between different

groups as
dNi

dt
= ∑

j

µi

n−1
N j−µiNi, (4.12)

where Ni is the number of UAVs in group i. This describes how the group sizes are changing,

based on UAVs leaving and joining the group i. Groups with positive mobility have more vehicles

joining them than leaving, and vice versa. Note that the group mobility can be low even when a lot

of UAVs are joining and leaving the groups simultaneously.

Each UAV interacts with UAVs in a circular region of 50m, exchanging the following

information about itself: ID, position, velocity, circle center (target position) of former and current

group, IDs of other UAVs in it’s former and current group, and the time instance of the information.

We will evaluate how quickly the information is spread to all the UAVs using Monte Carlo

simulations. In the simulations, new information is given to a single UAV and the time-to-spread

this information throughout the system of five groups is recorded. We use the stationary target

tracker, and add the ability to send UAVs to different groups, depending on the probability of group
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movement, µi. We assume the group positions are known to the UAVs. Once a UAV leaves it’s

group (referred to as messenger UAV), it may encounter new UAVs, until it encounters somebody

from the group it is supposed to join. In this venture, all the UAVs who come in contact with the

messenger UAV exchange information with it, getting the latest information. This messenger UAV

follows the new group, until it leaves again with probability µi.

We ran 100 simulations for each value of µi which varies from 0.00004 to 0.0012 in steps of

0.00004, i.e., the probability that any UAV leaves a group at any time step (every 1
100

th
of a second)

varies from 0.00004 to 0.0012. We record the time taken for the information to spread over the

whole system, with multiple groups and plot the mean and standard deviation over the 100 runs

for each value of µi. There were five groups distributed in a star formation with five vehicles per

group (initially).

Figure 4.4 shows the distribution of the time taken for information to spread compared with

probability µi. We can see that after a certain movement probability, the time it take to spread the

information plateaus, and we do not need to send the UAVs more frequently between groups. The

scale of the graph would vary for different applications, but the qualitative trend of the time for

dissipation of information vs the probability of leaving the groups would be the same.

34



Figure 4.4: Time for information dissipation decreases with increasing probability of movement
between groups. The x-axis denotes the probability of movement of UAVs between groups, and
y-axis shows the time-to-spread the information, which is averaged over 100 simulation runs.
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CHAPTER 5. ENCIRCLEMENT USING ONLY RELATIVE MEASUREMENTS: NOISE
CONSIDERATIONS AND ESTIMATION

Thus far we have assumed noise-free measurements of the target and perfect knowledge of

its velocity and/or acceleration. This is unrealistic for application in real-world scenarios. So in

this section, we propose a framework using an Extended Kalman Filter (EKF) to estimate the non-

linear states of the system. We estimate the measured states, αk, βk, along with their derivatives.

We also estimate the local heading angle of each UAV, θk. We assume Gaussian noise in our

measurements.

5.1 Noise Considerations

Cameras are a typical UAV sensor because of their low cost and weight and the ever-

improving computer vision techniques available for detection and tracking of objects in images.

Using monocular vision on a UAV, a depth estimate of the target can be obtained with a standard

deviation of 3m [12] from the true depth. Thus, the standard error deviation for range measure-

ments βk is defined to be 3m. The error in bearing depends on the error in the detection of the

target in the camera, and the errors in the attitude of the aircraft. Adding the standard deviations

from [12] in yaw and azimuth measurements of the target (being more conservative, so not taking

the square root), we assume π/120rad standard deviation in error for bearing measurements αk.

We use these noisy measurements for encirclement of a target in the local frame of the UAV.

For the EKF, the error covariance matrix is initialized to P = 10 I5×5, where I5×5 is the

identity matrix of size 5×5. The covariance of the measurement noise is

R =

(π/120)2 0

0 (3)2

 ,
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and the process noise is [42]

Q =



π

9
∆t2

3 0 π

9
∆t
2 0 0

0 4∆t2

3 0 4∆t
2 0

π

9
∆t
2 0 π

9 0 0

0 4∆t
2 0 4 0

0 0 0 0 π

18
(∆t)2

3


.

For the process noise, the maximum change in βk and αk is considered, which is β̇k < 2m/s and

α̇k < 2(max{uk}) = π

9 rad/s, respectively. For θ̂k, the same noise as αk is considered. For our case,

this resulted in a filter that was too conservative, so we multiplied our process noise matrix by a

factor of 5×10−6. The consistency results are discussed later in this section. Sensor measurements

occur every 0.5s. The values for R are inspired by the noise in measurement of the bearing and

range using a camera, as discussed earlier.

5.2 Estimation for Constant Velocity Targets

We assume that the UAV receives noisy measurements of the relative bearing and range

from the target. An EKF is used to estimate the relative bearing, range, and their derivatives. Our

EKF states are

q̂k =



α̂k

β̂k

˙̂αk

˙̂
βk

θ̂k


,

where ˆ(.) indicates an estimated value. Note that the change of heading of the UAV is the control

command uk = θ̇k, and is assumed to be known.
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The prediction equations for our states are

α̂k = α̂
−
k + ˙̂α−k ∆t,

β̂k = β̂
−
k +

˙̂
β
−
k ∆t,

˙̂αk = (β̂−k )−1(v̂−yk
cos(α̂k

−+ θ̂
−
k )

− v̂−xk
sin(α̂k

−+ θ̂
−
k )+ sin(α̂k

−))−u−k ,

˙̂
βk = v̂−xk

cos(α̂k
−+ θ̂

−
k )

+ v̂−yk
sin(α̂k

−+ θ̂
−
k )− cos(α̂k

−)

θ̂k = θ̂
−
k +uk∆t,

where (·)− denotes the variable at the previous time step. Estimated values of the target velocity,

v̂x and v̂y are calculated from the geometry of the UAV and the target as

v̂x =
˙̂
βkcos(α̂k + θ̂k)− β̂ksin(α̂k + θ̂k)( ˙̂αk + θ̇k)+ cos(θ̂k)

v̂y =
˙̂
βksin(α̂k + θ̂k)+ β̂kcos(α̂k + θ̂k)( ˙̂αk + θ̇k)+ sin(θ̂k).

The error covariance Pk updates as

Pk = FqkP−k F>qk
+Q.

The Jacobian matrix Fqk for the kth UAV with states q̂k is

Fqk =



1 0 ∆t 0 0

0 1 0 ∆t 0
∂ ˙̂αk
∂ α̂k

∂ ˙̂αk
∂ β̂k

1 ∂ ˙̂αk

∂
˙̂
βk

∂ ˙̂αk
∂ θ̂k

∂
˙̂
βk

∂ α̂k

∂
˙̂
βk

∂ β̂k

∂
˙̂
βk

∂ ˙̂αk
1 ∂

˙̂
βk

∂ θ̂k

0 0 0 0 1


,
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where

∂ ˙̂αk

∂ α̂k
=
−v̂−yk

sin(α̂−k + θ̂
−
k )− v̂−xk

cos(α̂−k + θ̂
−
k )− ∂ v̂xk

∂ α̂k
sin(α̂−k + θ̂

−
k )+

∂ v̂yk
∂ α̂k

cos(α̂−k + θ̂
−
k )+ cos(α̂−k )

β̂
−
k

∂ ˙̂αk

∂ β̂k
=
−∂ v̂xk

∂ β̂k
sin(α̂−k + θ̂

−
k )+

∂ v̂yk
∂ β̂k

sin(α̂−k + θ̂
−
k )− ˙̂α−u−k

β̂
−
k

∂ ˙̂αk

∂
˙̂
βk

=
−∂ v̂xk

∂
˙̂
βk

sin(α̂−k + θ̂
−
k )+

∂ v̂yk

∂
˙̂
βk

cos(α̂−k + θ̂
−
k )

β̂
−
k

∂ ˙̂αk

∂ θ̂k
=
−v̂−yk

sin(α̂−k + θ̂
−
k )− v̂−xk

cos(α̂−k + θ̂
−
k )− ∂ v̂xk

∂ θ̂k
sin(α̂−k + θ̂

−
k )+

∂ v̂yk
∂ θ̂k

cos(α̂−k + θ̂
−
k )

β̂
−
k

∂
˙̂
βk

∂ α̂k
= − v̂−xk

sin(α̂−k + θ̂
−
k )+ v̂−yk

cos(α̂−k + θ̂
−
k )+

∂ v̂xk

∂ α̂k
cos(α̂−k + θ̂

−
k )+

∂ v̂yk

∂ α̂k
sin(α̂−k + θ̂

−
k )+ sin(α̂−k )

∂
˙̂
βk

∂ β̂k
=

∂ v̂xk

∂ β̂k
cos(α̂−k + θ̂

−
k )+

∂ v̂yk

∂ β̂k
sin(α̂−k + θ̂

−
k )

∂ β̂k

∂ ˙̂αk
=

∂ v̂xk

∂ ˙̂αk
cos(α̂−k + θ̂

−
k )+

∂ v̂yk

∂ ˙̂αk
sin(α̂−k + θ̂

−
k )

∂
˙̂
βk

∂ θ̂k
= − v̂−xk

sin(α̂−k + θ̂
−
k )+ v̂−yk

cos(α̂−k + θ̂
−
k )+

∂ v̂xk

∂ θ̂k
cos(α̂−k + θ̂

−
k )+

∂ v̂yk

∂ θ̂k
sin(α̂−k + θ̂

−
k ).

Only αk and βk are measured which implies the observation matrix is

H =

1 0 0 0 0

0 1 0 0 0

 .
Using the estimated values, the controller for stationary targets in Equation (3.12) becomes

uk = ω0(1− β̂kcos(α̂k)). (5.1)

For constant velocity targets, the controllers from Equations (3.17) and (3.23) become

uk =
β̂k( f 2

1k(q̂k))−K1(β̂k−ω
−1
0 )−K2(

˙̂
βk)

sin(α̂k)
(5.2)
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and

uk =
α̂2

kx
+ α̂2

ky

α̂ky

(
Âk

α̂k
+

(α̂k−ω
−1
0 )

˙̂
βk

α̂k− α̂kd

+K1(β̂k−ω
−1
0 )2(α̂k− α̂kd)+K2(α̂k− α̂kd)

)
. (5.3)

For constantly accelerating targets, the controllers in Equation (3.25) and (3.27) become

uk =
β̂k( f 2

1k(q̂k)+axkcos(α̂k + θ̂k)+ayksin(α̂k + θ̂k))−K1(β̂k−ω
−1
0 )−K2(

˙̂
βk)

sin(α̂k)
(5.4)

and

uk =
α̂2

kx
+ α̂2

ky

α̂ky

(
Âk

β̂k
+

(β̂k−ω
−1
0 )

˙̂
βk

α̂k− α̂kd

+K1(β̂k−ω
−1
0 )2(α̂k− α̂kd)+K2(α̂k− α̂kd)

)
+

αkx(axkcos(θ̂k)+ayksin(θ̂k))+αky(aykcos(θ̂k)−axksin(θ̂k))

αky

.

(5.5)

In Equations (5.4) and (5.5), ax and ay are the known true accelerations. These values are not

estimated as the errors in estimating the acceleration are too high for unit speed simulations and

the proposed errors, and will be addressed in future work with UAVs flying at higher speeds.

The parameters from Equations (3.22), (3.19) and (3.21), Âk, α̂kd and α̂kd , are evaluated at

estimated values α̂k, β̂k and θ̂k. The controllers thus use estimated values of bearing α̂k and range

β̂k to calculate the desired change in heading uk of the UAVk at every time step.

In Chapter 6 simulations are shown that use controllers from Equations (5.1)-(5.4) to show

the UAVs converge to circular trajectories using estimated values.
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CHAPTER 6. SIMULATIONS AND RESULTS

In this chapter, results are presented for the encirclement of stationary and moving targets.

We run simulations with different random initial positions of three UAVs encircling a target.

The parameters for all the simulations are the same, with the starting positions of the three

UAVs defined randomly in an area of 60×60m2 and the headings, relative to a global frame, de-

fined randomly in the range [−π,π] radians. The estimated values of bearing α̂k and range β̂k are

also initialized randomly in ranges of [−π,π] radians and [−60,60]m respectively. We run the sim-

ulations for 10,000s, with a timestep ∆t = 0.01s for the stationary target. For the constant velocity

and accelerating targets, we run the simulations for 1,000s and 1,400s, respectively, with the same

timestep, ∆t = 0.01s. We define the angular speed of the UAV as ω0 = 1
30 radians/s which gives

a radius of ω
−1
0 = 30m. We also saturate the UAVs turn-rate to mimic a constraint on it’s bank

angle. In [43], the authors describe a maximum bank angle of 69.1◦ for a fixed-wing. We use a

more conservative approach and put a limit of 10◦/s on the turn rate, considering a coordinated turn

with a maximum bank angle of 45◦. This puts a saturation constraint on control uk, with umax =
π

18

in Equation (2.2). Each experiment is seeded with the same starting conditions so that the results

of the different controllers may be compared.

In the results for constant velocity and accelerating targets, we estimate all the variables,

including range βk, bearing αk and their derivatives, as well as the local heading θk and the velocity

of the target vxk + ivyk . For the accelerating targets, the acceleration axk + iayk used in the controller

Equation (3.27) is assumed to be known for the control, since we are not estimating acceleration

of the target in Chapter 5.

6.1 Stationary Targets

Figure 6.1 shows a target encirclement simulation using the Lyapunov controller presented

in Section 3.1 and revised with estimated parameters as in Equation (5.1). In this figure, the target
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location is shown as a blue plus sign in the center of the frame. The random starting positions of

each UAV are given by the three pink plus signs and each UAV trajectory is shown by a colored

dashed line. As can be seen, regardless of their starting positions, all UAVs converge to a circular

formation with a desired radius around the target.

Figure 6.1: Trajectory of UAV encircling a stationary target for simulation time t = [0,10000]s.
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Figure 6.2: Bearing αk (left) and range βk (right) of the target with respect to the UAVs as a
function of time for a stationary target.
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Figure 6.2 (left) shows that αk, the angle of the target with respect to the UAV, is constant

for all UAVs at π

2 radians. The UAVs converge to the 30m radius circle, as seen in Figure 6.2

(right). The error in achieving the desired radius is < 3m, due to noisy measurements. The solid

lines show the actual range/bearing of the target from the UAV, and the dashed lines show the

estimated values from the EKF. The black dashed lines show the 3m bounds from the desired

radius.

6.2 Constant Velocity Moving Targets

In the following simulations, the target moves at a constant velocity vxk = 0.4m/s and vyk =

−0.1m/s in an inertial frame. The gains for the estimated moving controller in Equation (5.2) are

set to K1 = 0.01 and K2 = 0.05. These gains are chosen by looking at the relative scale of the

feedback linearized controller terms and the states, and then tuning for desired performance.
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Figure 6.3: Trajectory of UAVs encircling a target moving with constant velocity vx + ivy =
(0.4−i0.1)m/s for simulation time t = [1,1000]s in the inertial frame (left) and target moving frame
(right).

Figure 6.3 (left) shows the encirclement of moving targets using the estimated moving

controller. The blue line shows the true target position, with the dashed lines being the trajectories

of the UAVs in an inertial frame while encircling the target. Figure 6.3 (right) shows the UAV’s

trajectories in a moving body frame centered at the target’s location.
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We can see from Figure 6.4 (left) that the bearing from the target for each UAV oscillates

around ±π

2 radians. The oscillations in the bearing are necessary for the UAV to compensate for

the target motion (Equation (3.10)) and maintain a constant radius.

Figure 6.4 (right) illustrates that the distance of the target from the UAV converges to the

desired radius ω
−1
0 = 30m. Also shown in this figure is the difference between the estimated range

(dashed colored lines) and true range (solid colored lines). The UAV estimates converge to the true

range values as the UAV encircles the target while mostly staying within 3m of the desire radius,

marked by the black dashed lines.
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Figure 6.4: Bearing αk (left) and range βk (right) to the target with respect to the UAV as a function
of time for a moving target with velocity vx + ivy = (0.4−i0.1)m/s.

6.3 Directional Control with Constant Velocity Targets

We show results for the controller in Equation (3.23) proposed in Section 3.3. In Figure

6.5, we see that the UAVs start at random positions and headings, but always converge to a given

direction. In the following results, the direction is clockwise for d = −1. The gains can be used

to weight the convergence to the desired radius and bearing as defined in Equation (3.20), and are

set to K1 = 0.1 and K2 = 10. These correspond to the scale of the error in αk and βk. Figure 6.6

shows that the bearing oscillates around −π

2 (left), and the distance from the target converges to

30m (right).
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Figure 6.5: Constant velocity target encirclement with direction control in an inertial (left) and
target moving frame (right) with velocity vx + ivy = (0.4− i0.1)m/s.
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Figure 6.6: Bearing (left) and range (right) from target for a constant velocity target encirclement
with direction control with velocity vx + ivy = (0.4− i0.1)m/s.

6.4 Consistency of the Filter and Target Velocity Estimates for Constant Velocity Targets

We also validate the consistency of the filter by verifying that the values of the true range

and bearing (βk and αk) lie within 2σ bounds of the estimated values 95% of the time. We show

the consistency of a single simulation in Figure 6.7. Running 200 simulations for 1000s each, for

a constant velocity target with the controller in Equation (5.2), we find that the range βk lies within

the bounds 96.54% of the time, and the bearing αk lies within the bounds 94.80% of the time.

This shows that the filter is close to consistent, since approximately 95% values lie within the 2σ
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bounds when estimating the range and bearing while tracking the target, and the noise we are using

is Gaussian.

For the 200 Monte Carlo simulations, we also calculate the error between the estimated and

true values of bearing and range, and find that the error has a mean of 0 radians and 0.85m, and

standard deviation of approximately π

120 radians and 2m, respectively. This depicts that the range

estimates are slightly biased, accounting for the bias visible in Figure 6.4.

Figure 6.7: Consistency test for bearing (left) and range (right) for a random UAV. The red solid
line shows the real bearing αk. The shaded region shows the 2σ covariance bounds from the
estimate shown with the blue solid line. The left figure shows the first 20s window to better see the
real αk enclosed by the bounds.

We can also see that the velocity estimates in Figure 6.8, corresponding to the controller

from Equation (5.2) are noisy, but the controller still handles them well and converges to the loiter

circle.

6.5 Constantly Accelerating Targets

We show results for the controller in Equation (3.25) proposed in Section 3.4. We see that

the UAVs in Figure 6.9 start at random positions and headings, and converge to a circle around

the accelerating target. Two UAVs converge clockwise, and one UAV converges to the counter-

clockwise direction. The gains are set to K1 = 0.01 and K2 = 0.05. Figure 6.10 shows that the
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Figure 6.8: Estimated velocities (left: v̂x, right: v̂y) in an inertial frame, for a constant velocity
target. The estimates have about 10 times the noise levels of the magnitude of the actual target
velocities. The dashed blue line is the true value of the velocities in the inertial frame.

bearing oscillates around π

2 and −π

2 (left), and the distance from the target converges roughly to

30m (right).
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Figure 6.9: Constantly accelerating target encirclement in an inertial (left) and target moving
frame (right) with initial velocity vx+ ivy = (0.4−i0.1)m/s and acceleration ax+ iay = (−0.0001+
i0.0001)m/s2.

6.6 Constantly Accelerating Targets with Direction Control

We show results for the controller in Equation (3.27) proposed in Section 3.5. We see that

the UAVs in Figure 6.11 start at random positions and headings, and converge to a circle around the
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Figure 6.10: Bearing (left) and range (right) from a constantly accelerating target with initial ve-
locity vx + ivy = (0.4− i0.1)m/s and acceleration ax + iay = (−0.0001+ i0.0001)m/s2.

accelerating target in one direction. The gains are set to K1 = 0.1 and K2 = 10. Figure 6.12 shows

that the bearing oscillates around −π

2 (left), and the distance from the target converges roughly to

30m (right).
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Figure 6.11: Constantly accelerating target encirclement with direction control in an inertial (left)
and target moving frame (right) with initial velocity vx + ivy = (0.4− i0.1)m/s and acceleration
ax + iay = (−0.0001+ i0.0001)m/s2.
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Figure 6.12: Bearing (left) and range (right) from a constantly accelerating target with direction
control. The initial velocity is vx+ ivy = (0.4− i0.1)m/s and acceleration is ax+ iay = (−0.0001+
i0.0001)m/s2.
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CHAPTER 7. CONCLUSION

This work designs controllers for target encirclement using relative information of range

and bearing from the target, and knowledge of the local heading of the UAV. Each UAV starts in

its own frame of reference and then converges to a loiter circle around a target. We also present a

framework to estimate and filter these measurements along with the velocity of the UAV, and use

these in the controller. Simulation results show that the controller is able to work well with noise

levels inspired from literature involving real field tests.

7.1 Control Strategies

We present a controller that encircles stationary targets, using only range and bearing mea-

surements from the target. We show that the control will stabilize all UAVs to the circular formation

with a constant radius. We also propose a feedback linearized controller to encircle targets moving

with a constant velocity and show that the constant radius circle is stable. In both cases, we show

convergence to a fixed radius circle with numerical simulations using noisy measurements of range

and bearing. We show that we can control the direction of encirclement as well.

We show encirclement of a constantly accelerating target, with known acceleration using

a feedback linearized controller and Lyapunov’s direct method for controlling the direction of

encirclement of accelerating targets. We also show proofs of stability for both these controllers.

Future work would include overcoming the challenge of estimating the small acceleration

values. We also want to be able to use only relative measurements of range and bearing to drive

the UAVs in circles around the constantly accelerating targets while estimating the target motion.

Currently the velocity estimates also have a high amount of noise, about ten times the actual target

velocities, due to the error margins we consider inspired from literature with real-world experi-

ments, and our assumption only considering unit UAV speed. In the future, we would extend the

controllers to incorporate a constant, higher UAV velocity, which will be more realistic with the
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noise used in range and bearing, and thus give us better estimates. This will also enable us to test

the controller in more realistic situations, for flight tests and high-fidelity simulations.

7.2 Multi-Agent Coordination

We extend the constant velocity controller to arrange the UAVs in symmetric formations

around the circle, focusing on an equal temporal spacing. These formations, called time-splay [29]

allow us to have a better coverage around the target at all time. This would be useful in cases of

UAV injection or attrition. Here the time-splay formation would reduce the time to re-arrange the

UAVs around the target. Future work will include discussion and inclusion of a deeper analysis of

region of attraction for each symmetric formation.We also discuss how inter-group communication

is feasible and can be used for spreading information in cases where groups are too far for direct

communication. In this case, we assume knowledge of group locations. In our analysis, we see that

after a certain frequency of travel times, the time taken for the information to dissipate plateaus.

Future work would include exploring the extension of this to estimated group positions to enable

group communication in the relative information only scenario. We also aim to study the scenarios

where the information is noisy, and multiple groups have different information, and incorporate

a ”rest” period for the UAVs who joined a new group. Future work would also include studying

group leaving patterns for UAVs to maintain roughly equal number of UAVs on all targets, thus

dividing the work-load equally.

Since we are estimating values of the local heading, range and bearing to the target, com-

munication between UAVs could be used to improve the estimates, assuming there is some infor-

mation that the UAVs have in common. Future work will also include incorporating an observer to

estimate each UAV’s change in heading and eliminate the need for UAVs to know their orientation

relative to a local frame. Additionally, we aim to incorporate measurements from peer UAVs, using

only their relative range to improve each UAV’s estimate of the target velocity. The scenario in

Figure 7.1 is a proposed framework that is under work for sharing between two UAVs in commu-

nication range, where they are with respect to the target using only range between the UAVs and

their noisy range and bearing from the target.

In our case, this communication protocol requires us to consider the moving target as the

common frame, and the angle Z (refer Figure 7.1) is calculated as
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Z = sgn(Z)(|αk1 +θk1|+ |αk1 +θk1|− (ψ1−ψ2)),

where sgn is defined as

sgn(Z) =


−1, sgn(Z)< 0

0, sgn(Z) = 0

1, sgn(Z)> 0.

Z

Figure 7.1: Communication setup for an example two UAVs

This setup may yields imaginary results (invalid input in inverse trigonometric functions),

due to the noisy range and bearing of the system causing the UAV to have a false sense of where

it is. We resalize that this setup is un-suitable for high noise systems for sharing information

between UAVs. We plan to further explore this to find a suitable method to share information with

knowledge of just the range between the UAVs. Finding noise margins for our system for which

information sharing is possible is our next step into multi-group decentralized target encirclement

with formation control.
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APPENDIX A. STATIONARY TARGET ENCIRCLEMENT WITH SPEED CONTROL

To generalize our control algorithms and incorporate them with real scenarios (high-fidelity

simulations, hardware tests), we need to take into consideration the airspeed of the UAV. We

present an example here for the stationary case, of how the airspeed s can be incorporated in

the proposed control algorithms. The new dynamics become

ṙk = seiθk . (A.1)

Equation (3.1) changes to

ck = rk + sω
−1
0 ieiθk , (A.2)

where sω0 is the radius of the circle. Thus our error dynamics, using the error from Equation (3.4)

become

ė =−ċk =−seiθk + sω
−1
0 eiθk θ̇k. (A.3)

Our new controller is given by

uk = ω0(1− sβkcos(αk)). (A.4)

Figure A.1 shows a UAV converging to a loiter circle with radius sω
−1
0 = 30m. Here s = 5 and

ω
−1
0 = 6.
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Figure A.1: (left) The UAV converges to the loiter circle. (right) The range converges to 30m.
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