
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2020-07-30

Age-Suitability Prediction for Literature Using Deep Neural Age-Suitability Prediction for Literature Using Deep Neural

Networks Networks

Eric Robert Brewer
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Physical Sciences and Mathematics Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Brewer, Eric Robert, "Age-Suitability Prediction for Literature Using Deep Neural Networks" (2020). Theses
and Dissertations. 8665.
https://scholarsarchive.byu.edu/etd/8665

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F8665&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/114?utm_source=scholarsarchive.byu.edu%2Fetd%2F8665&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/8665?utm_source=scholarsarchive.byu.edu%2Fetd%2F8665&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu

Age-Suitability Prediction for Literature Using Deep Neural Networks

Eric Robert Brewer

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Yiu-Kai Ng, Chair
Deryle W. Lonsdale

Kent Seamons

Department of Computer Science

Brigham Young University

Copyright c© 2020 Eric Robert Brewer

All Rights Reserved

ABSTRACT

Age-Suitability Prediction for Literature Using Deep Neural Networks

Eric Robert Brewer
Department of Computer Science, BYU

Master of Science

Digital media holds a strong presence in society today. Providers of digital media
may choose to obtain a content rating for a given media item by submitting that item to
a content rating authority. That authority will then issue a content rating that denotes to
which age groups that media item is appropriate. Content rating authorities serve publishers
in many countries for different forms of media such as television, music, video games, and
mobile applications. Content ratings allow consumers to quickly determine whether or not a
given media item is suitable to their age or preference. Literature, on the other hand, remains
devoid of a comparable content rating authority. If a new, human-driven rating authority for
literature were to be implemented, it would be impeded by the fact that literary content is
published far more rapidly than are other forms of digital media; humans working for such an
authority simply would not be able to issue accurate content ratings for items of literature at
their current rate of production. Thus, to provide fast, automated content ratings to items of
literature (i.e., books), we propose a computer-driven rating system which predicts a book’s
content rating within each of seven categories: 1) crude humor/language; 2) drug, alcohol,
and tobacco use; 3) kissing ; 4) profanity ; 5) nudity ; 6) sex and intimacy ; and 7) violence
and horror given the text of that book. Our computer-driven system circumvents the major
hindrance to any theoretical human-driven rating system previously mentioned—namely
infeasibility in time spent. Our work has demonstrated that mature content of literature can
be accurately predicted through the use of natural language processing and machine learning
techniques.

Keywords: machine learning, neural net, document classification, book content rating

ACKNOWLEDGMENTS

Barbara, Joy, Mom, Dad, Dr. Ng, Alisha Banskota.

Table of Contents

1 Introduction 1

2 Related Work 4

2.1 Human Analysis of Mature Content . 4

2.2 Computer Analysis of Mature Content . 4

3 Document Classification 6

3.1 Tokenization . 6

3.2 Bag-of-words . 7

3.3 Word Vectors . 8

3.4 Learning Algorithms—Bag-of-words . 9

3.4.1 K-Nearest Neighbors . 9

3.4.2 Logistic Regression . 9

3.4.3 Multi-layer Perceptron . 10

3.4.4 Multi-nomial Näıve Bayes . 11

3.4.5 Random Forest . 12

3.4.6 Support Vector Machine . 12

3.5 Learning Algorithms—Word Vectors . 13

3.5.1 Recurrent Neural Networks . 13

3.5.2 Convolutional Neural Networks . 14

3.5.3 Self-attention . 16

3.5.4 Hierarchical Attention Networks . 16

iv

4 Methodology 17

4.1 Data Collection . 17

4.2 Content Rating Levels . 20

4.3 Ordinal Regression . 21

4.4 Text Pre-processing . 22

4.5 Bag-of-words Classifiers . 22

4.6 Neural Networks . 23

4.6.1 Paragraph Encoder—Recurrent Neural Network 24

4.6.2 Paragraph Encoder—Convolutional Neural Network 26

4.6.3 Aggregation Module . 27

5 Experimental Results 30

5.1 Classify Mature Content in Entire Books . 30

5.2 Detect Mature Content in Paragraphs . 32

6 Conclusion 35

References 36

A Classify Mature Content in Entire Books - All Results 40

B Detect Mature Content in Paragraphs - All Results 41

v

1 INTRODUCTION

In order to inform consumers about the presence of mature content in digital me-

dia, various content rating authorities have been established. Examples of content rating

authorities which operate in the US include the Motion Picture Association (MPA)1 and the

Entertainment Software Rating Board (ESRB)2. These authorities primarily listen to, watch,

and rate media items—films, television, video games, music, or mobile applications—according

to their level of maturity. A content rating is meant to be objective and unbiased and is

not to be construed as a judgment on the quality of that media item. Then, the assigned

content rating is prominently displayed alongside the media item, designed to be visible to a

consumer at the point of purchase. An authorized content rating for a particular media item

informs consumers about the level of maturity of that item’s content and ultimately helps

consumers decide whether or not to view or listen to that media.

Publishers of most forms of digital media may request (or are required to obtain) a

content rating from a rating authority in the country where that media is published. For

example, the MPA issues content ratings to films based on age-appropriateness as depicted

in Table 1.1.

Rating Name Description

G General Audiences All ages admitted
PG Parental Guidance Suggested Some material may not be suitable for children

PG-13 Parents Strongly Cautioned Some material may be inappropriate for children under 13
R Restricted Under 17 requires accompanying parent or adult guardian

NC-17 No One 17 and Under Admitted

Table 1.1: Possible content ratings given to films by the MPA.

1MPA, https://www.motionpictures.org/film-ratings/
2ESRB, https://www.esrb.org/ratings/

1

https://www.motionpictures.org/film-ratings/
https://www.esrb.org/ratings/

When determining which rating a particular media item will receive, content rating

authorities consider to what degree mature content is present in that media across different

themes. Themes which are commonly considered when determining a content rating include:

drug, alcohol, and tobacco use; use of profanity and crude humor/language; sex, intimacy, and

nudity ; and violence/horror. In the case of films in the U.S., for a film to be rated G, it must

contain virtually no content related to any of these mature themes. A film that significantly

exhibits some of the mentioned mature themes would be assigned a more stringent rating,

such as R. Any reasons for a given content rating are commonly displayed alongside the

rating itself. Examples of content ratings for various media are shown in Figure 1.1.

Figure 1.1: Authoritative content ratings for a movie (left), a video game (center), and a
television program (right)—LV stands for language & violence.

In an organization that issues content ratings, such as the MPA, it is typical for human

advisory boards to view, listen to, and/or read media content to determine its rating. In

terms of time spent, human-based advisory is satisfactory because members of these advisory

boards are able to view, discuss, and issue content ratings for media items in a timely manner,

i.e., at least as quickly as the media itself is produced. For example, fewer than eight hundred

films were rated by the MPA3 in 2013. Likewise, Internet Movie Database (IMDB) lists eight

hundred video games released in the same year4, each of which has been issued a content

rating by the ESRB. However, the International Publishers’ Association (IPA) reported that

over 400,000 books were published in 2013 in the United States alone5. Thus, to analyze

3https://www.the-numbers.com/market/2013/mpaa-ratings
4https://www.imdb.com/search/title?title_type=video_game&year=2013-01-01,2013-12-31&

view=simple
5https://www.internationalpublishers.org/images/aa-content/ipa-reports/

ipa-annual-report-2013-14.pdf

2

https://www.the-numbers.com/market/2013/mpaa-ratings
https://www.imdb.com/search/title?title_type=video_game&year=2013-01-01,2013-12-31&view=simple
https://www.imdb.com/search/title?title_type=video_game&year=2013-01-01,2013-12-31&view=simple
https://www.internationalpublishers.org/images/aa-content/ipa-reports/ipa-annual-report-2013-14.pdf
https://www.internationalpublishers.org/images/aa-content/ipa-reports/ipa-annual-report-2013-14.pdf

literature manually (i.e., by humans) would not be feasible in amount of time spent due to

the large quantity of books to be rated.

Currently, literature is freely published without any unified rating system. This means

that consumers may not be clearly informed of any mature content in a book before they

read it. Though several third-party book rating organizations exist (discussed in Section 4.1),

none have become an industry standard to which book publishers can turn.

It is reasonable to consider the use of computers instead of humans to analyze literary

content because computer algorithms run quickly, thus overcoming the relatively slow speed

at which humans are able to read literature. However, a computer-aided text analysis system

must also classify mature content with a near-human level of accuracy.

In this work, we scratch the surface of computer-aided literary content analysis through

the use of natural language processing and machine learning techniques. We framed the

problem as a traditional supervised machine learning problem, specifically, text classification.

Our model takes as its input the text of a book and predicts that book’s maturity rating

levels across seven categories: 1) crude humor/language; 2) drug, alcohol, and tobacco use;

3) kissing ; 4) profanity ; 5) nudity ; 6) sex and intimacy ; and 7) violence and horror. We

collected the texts and quantifiable maturity rating levels for over six thousand books and

compiled them into a novel data set. We used a neural network architecture to classify items

of literature and to detect which parts of the book contain mature content. We adapted

this network to be able to classify and detect mature content in considerably long texts, i.e.,

entire fictional novels.

Our work exhibits a practical application of leveraging existing human-annotated

labels (treated as ground-truth) to predict labels for novel instances. We feel that our work

could benefit the reading community as a whole, specifically parents and children. Further,

relating to the field of machine learning as a whole, we feel that our work is a significant

example of overcoming the challenge of extracting meaningful features from textual data

within very large documents.

3

2 RELATED WORK

This chapter discusses previous work in the context of literary analysis of mature

themes as performed by humans and by computers. It ends with a discussion on the field of

document classification in general.

2.1 Human Analysis of Mature Content

Various researchers have successfully detected the presence of substance use [11], profanity [13],

sexuality [5, 39], and violence [12] in adolescent and young adult literature. In each of these

studies, mature contents were coded, i.e., classified, by human annotators trained “by jointly

coding non-sample examples and openly discussing coding protocols as they were applied” [12].

Then, each annotator independently read and coded the contents of five to seven books.

These studies are useful in that they shed light on the prevalence of mature content in popular

literature and underscore the need to inform interested readers of any mature themes in

a book without having to read it. Further, these studies highlight the relative slowness of

humans in comparison to computers of reading and annotating literature. To us, these studies

provoke the question, “can computers repeat these analyses with comparable accuracy?”

2.2 Computer Analysis of Mature Content

A study similar to ours has been conducted by Wanner et al. [37] who not only quantified the

mature contents of a book, but also considered its readability, story complexity, and other

elements in order to answer the question, “is this book suitable for children?”. In their study,

Wanner et al. estimate mature contents of books by compiling a hand-picked list of sensitive

4

terms for each of six topics: war, crime, sex, horror, fantasy, and science fiction. They then

extend their lists of sensitive words with synonyms and hypernyms taken from WordNet [15].

Wanner et al. developed a heuristic score function where a higher score denotes a greater

magnitude of mature content. This work was exciting to us in that it showed us how other

researchers are working on the same problem.

Chen et al. [6] have investigated the discrepancies between maturity ratings for

applications published through two of the largest mobile application services, Apple App

Store and Google Play. In their study, they build a novel maturity rating classifier using a

vocabulary of human-selected terms extracted from user reviews. Their work showed promise

in that mature content can indeed be accurately detected in text.

Following the work done by Chen et al., Hu et al. [19] performed an analysis of mature

content in mobile applications. They used textual descriptions of apps collected from the

Apple App Store and Google Play to predict their maturity levels. They first trained a

word2vec [28] embedding over their corpus of app descriptions to obtain a word vector for

each unique word token in the vocabulary. Next, they hand-picked sensitive words from the

App Store and Google Play maturity rating policy descriptions that directly refer to mature

content such as violence, horror, humor, profanity, sex, nudity, mature, alcohol, tobacco,

drugs, gambling, etc. Then, for each word in the list of sensitive words, they find the two

hundred words whose vector representations are most similar to that word as measured by

cosine similarity as augmented sensitive words. Finally, they use the sensitive words, the

augmented sensitive words, and a TF-IDF-weighted bag-of-words vector model to predict

maturity levels and calculate an overall maturity rating. Their results and approach were

significant contributions to the subject of text analysis. However, their data set significantly

differs from ours in terms of size—an app description for an app is on the order of a few

paragraphs whereas a typical book in our data set contains hundreds of paragraphs.

5

3 DOCUMENT CLASSIFICATION

We first discuss in this chapter the necessary pre-processing step of tokenization (not

to be confused with the concept with the same name in the field of computer security) over

a text corpus. We then discuss and compare two different methods of representing textual

tokens to learning algorithms—bag-of-words and word vectors. Finally, we briefly summarize

the current state of the art in document classification algorithms for both of the representation

methods mentioned.

3.1 Tokenization

Our task qualifies as document classification, since it is to classify the level of maturity for a

book given a textual input—the text of the book. In order to perform numerical analysis

on text, i.e., presenting the text to a machine learning classifier, the entirety of the text

must be transformed into numerical values. To a computer, a document is simply an ordered

sequence of symbols where each symbol is represented by a unique byte value (or sequence of

byte values). Before using either of the bag-of-words or word vector approaches, an ordered

sequence of symbols must be divided into smaller, more meaningful parts, usually as an

ordered sequence of markers, i.e., punctuation, and words, collectively called tokens. Consider

the trivial document ‘Her handbag wasn’t returned to her.’. In the English language,

words are separated by a space; thus, a simple first step would be to divide the document into

parts by splitting on one or more whitespace symbols. To further tokenize this document,

other, smaller decisions may be made such as: whether or not to convert the first word,

‘Her’, to lower case; whether the contraction ‘wasn’t should been treated as a single token

6

or as two (‘was’, ‘n’t’) or three (‘wasn’, ‘’’, ‘t’); or whether the end of sentence marker

(period) should be joined with the final word as ‘her.’, treated as a separate token ‘.’, or

omitted altogether. Each tokenization decision can directly affect the size of the vocabulary,

or the total number of unique tokens among all documents, as well as the representations of

documents as bag-of-words or word vectors. Popular algorithms for tokenizing documents

include Stanford1 and Treebank2.

For large corpora, it is usually not reasonable to uniquely represent all word tokens in

the vocabulary, since, according to Zipf’s law [27], tokens that appear less frequently in a

corpus tend to appear at an exponentially decreasing rate. Thus, it is common to choose a

fixed vocabulary size v when tokenizing a corpus, where only the most frequently-occurring v

tokens are uniquely represented. Tokens that appear less frequently than the v-th token can

either be omitted entirely, or represented with a OOV, or out-of-vocabulary placeholder value.

For our task, we wanted to reduce the size of the vocabulary as much as possible, which

would, in turn, increase the probability that any particular token in a document could be

uniquely represented. Hence, we converted all text to lowercase to avoid duplicate lowercase

and uppercase spellings of the same word. We also used the Stanford Tokenizer which treats

end-of-sentence markers as separate tokens and splits common two-part contractions into its

parts as ‘wasn’t’ becomes ‘was’ and ‘n’t’.

3.2 Bag-of-words

There are two classes of approaches to quantify a textual document. The first approach is

to represent the entire document as a bag-of-words. The second is to represent all of the

individual word (or character) tokens in the document as vectors in Rn.

A simple way to represent a document is to count the number of occurrences of each

unique word token in that document [17]. If the vocabulary among all documents was, for

example, {‘give’, ‘handbag’, ‘her’, ‘returned’, ‘the’, ‘to’, ‘wasn’t’, ‘.’}, then the document

1https://nlp.stanford.edu/static/software/tokenizer.shtml
2ftp://ftp.cis.upenn.edu/pub/treebank/public_html/tokenization.html

7

https://nlp.stanford.edu/static/software/tokenizer.shtml
ftp://ftp.cis.upenn.edu/pub/treebank/public_html/tokenization.html

from the previous section would be represented as a vector of the frequency of occurrence for

each token, {0, 1, 2, 1, 0, 1, 1, 1}, since the tokens ‘give’ did not appear at all, ‘handbag’

appeared once, ‘her’ appeared twice, etc. Aside from using the raw frequency of occurrence

of each token, a binary representation could be used, where a ‘1’ indicates that a token exists

in the document, and a ‘0’ indicates its absence. Alternatively, the vector of counts can be

weighted using TF-IDF (term frequency, inverse-document frequency) [34].

One appealing factor of bag-of-words representations is their simplicity to calculate.

One of their main drawbacks, however, is their general sparsity—for most documents, many

tokens in the vocabulary will not appear at all, but must be represented as a zero in the

vector. The sparse vector may result in increased computational complexity in space and/or

time. Another significant oversight of bag-of-word models is their inability to capture the

context of a document, since word order is not preserved. This means that two documents

with different word orderings and/or different semantics may have the same token frequencies,

and thus, will have the same bag-of-words representation. Because we want our classifier

to capture contextual clues in texts, we chose to represent documents as sequences of word

vectors rather than as a bag-of-words.

3.3 Word Vectors

A collection of static word vectors, also called a word embedding, can be obtained using

algorithms such as word2vec [28], GloVe [29], or fastText [2] over a text corpus. Such

algorithms construct vectors, or an embedding, for word tokens by first creating a mapping

from tokens to arbitrary points in an n-dimensional space, then iteratively optimizing these

vectors in such a way that tokens which frequently occur in similar contexts (as measured by

the probability of co-occurrence of surrounding tokens within a fixed-size window) should

have similar vector representations by cosine similarity or Euclidean distance or both. After

word vectors are sufficiently optimized, one would expect that different tokens which are used

in similar contexts such as car and automobile should have similar vector representations

8

(i.e., a cosine similarity close to 1, and/or a small Euclidean distance). Although they

are commonly phrased word vectors, any token or symbol that is not a word (such as a

punctuation symbol) may have its own vector representation.

A word embedding serves as a mapping from unique tokens to their corresponding

vectors in Rd where d is chosen as the number of dimensions in each word vector. Certain

classes of machine learning algorithms are able to utilize sequences of word vectors in place

of the token sequences. One advantage to doing so is that the ordering of the tokens in the

original text can be preserved. Thus, patterns that occur sequentially in the text can be

observed by the classifying algorithm.

3.4 Learning Algorithms—Bag-of-words

This section includes a variety of general purpose machine learning algorithms which are able

to effectively process large textual inputs represented as a bag-of-words.

3.4.1 K-Nearest Neighbors

K-Nearest Neighbors [10] is unique from other supervised learning algorithms in that it does

not construct a formal model through iterating over a training set. Instead, the class for a

novel instance is simply predicted as the majority class among the k (≥ 1) instances in the

training set that are nearest to the novel instance. To quantify ‘nearest to the novel instance’,

a distance function d(x, y) must be defined. Typical distance functions include Euclidean,

Manhattan (city block), or cosine similarity. It is recommended to choose a k that avoids

ties during polling, for example, one that is relatively prime to the number of classes.

3.4.2 Logistic Regression

Linear regression attempts to find a best-fit line through a series of data points with any

number of independent variables ~x and a free, or dependent variable y. Logistic regression,

on the other hand, attempts to find a best-fit logistic curve through a similar series of data

9

points on the condition that y is binary, meaning it either occurs (denoted by a 1) or does

not (0). A logistic curve in the form of p = 1
1+e−(~m·~x+b) guarantees that the output will fall in

the bounds [0, 1] and allows its output to be treated as a probability. Figure 3.1 compares

linear regression and logistic regression.

Figure 3.1: A linear model and a logistic model fit to the same data set. Where a linear
regression model can exceed 1 or fall below 0, the logistic function is bounded by [0, 1]. For
classification tasks, a threshold is typically set to 0.5.

3.4.3 Multi-layer Perceptron

Also called a feed-forward neural network, a multi-layer perceptron [31] is made up of ordered

layers of nodes (sometimes called neurons in reference to the nervous system of animals)

starting from the input layer and ending at the output layer where each node represents a

single input value. Between successive layers of nodes, ~x and ~z, lies a complete bipartite

graph of edges W termed weights or a weight matrix, where each weight Wj,i represents the

relative importance of the input value ~xi to the corresponding output value ~zj . The values of

a given layer ~z are calculated as the product of the weight matrix W and the input values ~x,

or ~z = W~x. All subsequent layers are calculated in the same way until the final output layer

is reached. Figure 3.2 depicts a basic neural network.

The network is trained via a process called backpropagation [33], a class of stochastic

gradient descent [22, 30]. For a given input vector, the gradient at all layers is calculated

10

Layer
Input

W hidden

Layer
Hidden

W output

Layer
Output

Figure 3.2: The architecture of a very simple multi-layer perceptron with one hidden layer
and a single output node. One may imagine that more hidden layers precede the output
layer, resulting in increasing complexity.

according to a minimizing loss function. Then, the weights are adjusted a tiny step in the

direction of the gradient, approximating a descent toward some minimum—ideally the global

minimum—in the convex loss landscape. In practice, each cycle of backpropagation occurs

with a batch, or random sample, of inputs (rather than with a single input) where the gradient

from which weights are adjusted is averaged over the gradients calculated for each input

in the batch. Training with small batches better approximates descent and can be orders

of magnitude faster than calculating the gradient over the entire data set, i.e., the ”true”

gradient [38].

The multi-layer perceptron serves as the backbone of each of the algorithms that

utilize word vectors described in Section 3.5 in that each algorithm is itself a neural network

with special layers designed for handling sequences of tokens as their input.

3.4.4 Multi-nomial Näıve Bayes

For classification tasks, standard Näıve Bayes computes the posterior probability of a

particular data point ~x ∈ Rn belonging to the class Ck as p (Ck|~x) = p(Ck)p(~x|Ck)
p(~x)

based on

the general Bayes’ theorem p (A|B) = p(A)p(B|A)
p(B)

. Because Näıve Bayes assumes that the

evidence p (~x) is constant, it is omitted, giving p (Ck|~x) ∝ p (Ck) p (~x|Ck). The class prior

p (Ck) is easily calculated as the probability of a data point belonging to the class Ck. And

the likelihood is calculated with the “näıve” assumption that all dimensions of ~x occur

independently as p (~x|Ck) =
∏n

i=1 p (xi|Ck) where p (xi|Ck) is the probability of xi among

11

all data points whose class is Ck. To predict which class a particular data point belongs to,

the posterior is calculated for each class Ck, 1 ≤ k ≤ K, where K is the number of distinct

classes, and the most probable class wins.

In the context of text classification, multi-nomial Näıve Bayes [21] extends the tradi-

tional Näıve Bayes approach by considering the frequency of tokens occurring in a document

(as a continuous value), not merely whether it exists or not (as a binary value).

3.4.5 Random Forest

A Random Forest [4] classifier is an ensemble of many independent decision trees. An ordinary

decision tree model is built by recursively choosing decision boundaries represented by decision

nodes for features in the input ~x that cause the data points to be divided most evenly. Leaf

nodes in the tree represent the most likely class for data points which would traverse there by

following decision paths starting from the root. A simple decision tree is shown in Figure 3.3.

Has hooves?

Weight?

Cat

≤ 15

Dog

> 15

No

Weight?

Pig

≤ 800

Horse

≤ 1, 200

Cow

> 1, 200

Yes

Figure 3.3: A decision tree to classify animals using two features. Decision nodes are denoted
by rectangular nodes. Leaf nodes are denoted by circular nodes. During prediction time, an
unknown instance representing an animal would traverse the tree starting at the root until it
reaches a leaf node.

3.4.6 Support Vector Machine

A support vector machine [9] is a binary linear classifier which deterministically finds the

multi-dimensional hyperplane that divides data points in the positive class from those in

the negative class such that the margin between the nearest data points to the hyperplane

12

Figure 3.4: The maximally-dividing decision boundary (solid line) found by a support vector
machine. The support vectors (circled points) are equidistant from the decision boundary.

and the hyperplane itself are maximized. Finding the maximally-dividing hyperplane among

a training set of data points tends to decrease the likelihood of misclassifying novel data

points. The data points which are equidistant from the maximally-dividing hyperplane,

termed support vectors, are found through an optimization method. Figure 3.4 depicts such a

hyperplane between two classes of data points. Because SVM is inherently a linear classifier,

input values may be need to be transformed via a kernel function to a higher-dimensional

space where a hyperplane can sufficiently divide data points of different classes.

3.5 Learning Algorithms—Word Vectors

Each algorithm which we describe below happens to be a neural network that is able to

process variable-sized textual input.

3.5.1 Recurrent Neural Networks

In general, recurrent neural networks process sequential input, x, from the beginning of the

sequence to the end, meaning they are able to capture patterns that can only be observed in

13

the context of neighboring elements [20, 33]. For each token vector xt that is processed at

time t, 1 ≤ t ≤ T , where T is the number of tokens in the sequence, a new vector ht—called

the hidden state, or context vector, at time t—is computed as a function of the previous

hidden state and the current input, or, ht = f(ht−1;xt). A unique hidden state vector is

produced for every item in the sequence.

Two popular variants of RNNs are the Long-Short Term Memory (LSTM) [18] and the

Gated Recurrent Unit (GRU) [7]. Both the LSTM and the GRU are specific implementations

of the recurrent function f . They have both been shown to perform well on a variety of

sequential learning tasks [8].

RNNs tend to be particularly effective for solving text classification tasks, since, when

given a sequence of word vectors, an RNN continually updates its hidden state, or context

vector, based on the next word in the sequence in a manner similarly to the way humans

process a textual passage.

3.5.2 Convolutional Neural Networks

In the context of text classification, a convolution operation works as follows. The input to

the operation is a sequence of T word vectors x1 through xT in Rd. A filter size, or kernel

size, r (≤ T), is chosen as the number of words in the sequence to process at a time. A

filter with r rows and d columns is instantiated containing adjustable weights which will

be optimized during training. First, the filter produces one scalar output as the sum of

element-wise products between each element in the filter and each element in the first r word

vectors x1 through xr. Then, another scalar output is produced from the sum of element-wise

products between the filter and the next sequence of r word vectors—x2 through xr+1. New

scalar outputs are iteratively produced in this fashion until the filter has passed over all

r-length sequences of word vectors, ending on the word vectors xT−r+1 through xT . Thus, a

total of T − r + 1 scalar values are produced by the convolution operation. This operation

14

can be thought of as a fixed-sized window of width r “sliding” from the beginning of each

input sequence to its end. An example is shown in Figure 3.5.

128 x 300

Vectors
Word

x1I
x2stare
x3down
x4at
...

xT.
3 x 300

(filter)
Matrix
Weight

126

Output

Figure 3.5: A single convolution operation. These operations are performed on sequences
of word vectors. The filter contains floating point-valued weights that are optimized during
training. The output for a single operation is a scalar. In this example, the input paragraph
contains T = 128 tokens and the filter has size = 3; thus, the length of the output vector is
T − r + 1 = 128− 3 + 1 = 126.

In practice, one convolution operation of a filter containing r rows upon a sequence

of T word vectors produces a single vector with T − r + 1 dimensions. Typically following

a convolutional layer in a neural network is a max-pooling layer, which simply outputs the

maximum scalar value from its input. A max-pooling layer in a neural network is strictly

functional, i.e., it contains no trainable weights. The intuition behind these two types of

layers is that the convolutional layer captures the semantics of every group of r consecutive

word tokens, while the max-pooling layer extracts the strongest “signal”, or what is assumed

to be the most informative group of word tokens among the entire sequence.

Convolutional layers in deep neural networks are highly effective in the field of image

classification [25] and have more recently been adopted for text classification [23].

Recurrent layers and convolutional layers differ in that a recurrent layer is theoretically

able to capture relationships in input sequences over long distances, whereas convolutional

layers can only process short spatial localities within a sequence.

15

3.5.3 Self-attention

A self-attention mechanism is an extension of a recurrent neural network where subsequent

hidden state vectors ht are not produced solely based on the previous hidden state vector

ht−1 and the current input xt, but also on a weighted combination of all previous hidden

state vectors produced by the RNN [1]. The weighting function can be learned through

backpropagation along with the rest of the network. This approach prevents the neural

network from having to encode the context of an entire sequence into a single fixed-length

vector. Self-attention has gained popularity in recent years for tasks such as machine

translation [26, 36] since the self-attention mechanism “emulates searching through a source

sentence during decoding a translation”.

3.5.4 Hierarchical Attention Networks

Another type of network which has increased in popularity in recent years is the Hierarchical

Attention Network, or HAN [40]. A HAN works in two phases: first, the features of each

sentence are extracted from word tokens by a shared self-attention mechanism, called the

word encoder; then, features of each sentence of the document are extracted from the outputs

of the word encoder via another self-attention mechanism, called the sentence encoder.

16

4 METHODOLOGY

We define our problem as a traditional supervised machine learning problem: our

input datum for a single book consists only of its text; our targets are distinct rating levels,

one for each maturity category. To give consumers insight toward the suitability of the book

as a whole, an overall maturity rating is also derived from the categorical maturity rating

levels.

In addition to predicting the content rating for a book as a whole, we also predicted

the content rating levels of each paragraph of each book in order to detect the paragraphs in

those books that contain mature content.

This chapter is split into four parts. First, we briefly discuss how input and output

data was obtained. Second, we describe the nature of our categorical rating levels and how

we manipulate them into labels used as the ground-truth by our machine learning model.

Third, we explain in detail the baseline classifiers we used to classify maturity rating levels.

Finally, we introduce the neural network that we designed for this task.

4.1 Data Collection

Before we built a predictive model, we obtained both the input and output data. We began

by collecting the output data, namely, content ratings for books.

After searching through various third-party, online rating systems for literature, we

settled on the one that was the most robust and complete—Book Cave1. As of June 2020,

the publicly available Book Cave database contains over seventeen thousand books, each of

1https://mybookcave.com/mybookratings/

17

https://mybookcave.com/mybookratings/

which has been assigned at least one overall content rating. Ratings for books on Book Cave

are issued by users of the website who have acknowledged that they have read through the

entire book at least once. For this reason, we were fairly confident in treating the ratings as

‘ground-truth’, though we were aware that the data would be unavoidably skewed by some

amount of human subjectivity. We assumed that user bias would be present in our data

regardless of the online rating system we would adopt.

We investigated other third-party rating systems, but dismissed them in favor of

Book Cave. CommonSenseMedia’s2 database contains primarily books written for young

children, adolescents, and teens, whereas we are interested in books for all audiences. The

rating data for both of Rated Reads3 and Parental Book Reviews4 are more qualitative than

quantitative—users post feedback for books in the form of reviews, noting any mature themes,

but lacking a discrete level of maturity across categories. Further, the number of obtainable,

rated books on each of these sites was too few (on the order of hundreds of books compared

to Book Cave’s thousands) for our purposes of machine classification.

Book Cave users assign content ratings to books across the following seven categories:

crude humor/language; drug, alcohol, and tobacco use; kissing ; profanity ; nudity ; sex and

intimacy ; violence and horror. An overall rating for a book is determined by the maximum

overall rating level yielded by the assigned categorical rating levels over all categories as

shown in Table 4.1. The possible overall ratings for books are, in order of severity: All Ages,

Mild, Mild+, Moderate, Moderate+, Adult, and Adult+. If more than one user has rated a

particular book, all of the overall ratings assigned by those users are averaged, rounding up

to the nearest overall rating. An example user rating from the Book Cave website is shown

in Figure 4.1. We collected the overall ratings and categorical rating levels for all books in

the Book Cave database.

2https://www.commonsensemedia.org/
3http://ratedreads.com/
4https://sites.google.com/site/parentalbookreviews/

18

https://www.commonsensemedia.org/
http://ratedreads.com/
https://sites.google.com/site/parentalbookreviews/

Category Rating Level
Overall
Rating

Base
Overall
Rating

Crude
humor/
language

None All Ages All Ages
Mild crude humor Mild Mild
Moderate crude humor/language Moderate

Moderate
Significant crude humor/language Moderate+
Extensive crude humor/language Adult+ Adult

Drug,
alcohol,

&
tobacco

use

None All Ages All Ages
Mild substance use Mild

Mild
Some substance use Mild+
Moderate substance use by adults and/or some use by minors Moderate

Moderate
Significant substance use Moderate+
Extensive substance abuse Adult Adult

Kissing
None All Ages All Ages
Mild kissing Mild

Mild
Passionate kissing Mild+

Profanity

None All Ages All Ages
Mild language Mild+ Mild
Some profanity (6 to 40) Moderate

Moderate
Moderate profanity (41 to 100) Moderate+
Significant profanity (101 to 200) Adult

AdultSignificant profanity (201 to 500) Adult
Extensive profanity (501+) Adult+

Nudity

None All Ages All Ages
Brief (nonsexual) nudity Mild

Mild
Brief nudity Mild+
Some nudity Moderate Moderate
Extensive nudity Adult Adult

Sex
&

intimacy

None All Ages All Ages
Mild sensuality Mild+ Mild
Non-graphic sexual references Moderate

ModerateNon-detailed fade-out sensuality Moderate
Fade-out sensuality with details or significant sexual discussion Moderate+
Semi-detailed onscreen love scenes Adult

Adult
Detailed onscreen love scenes Adult
Repeated graphic sex Adult+
Menage or BDSM sex Adult+

Violence
&

horror

None All Ages All Ages
Mild (nonsexual) violence or horror Mild

Mild
Some violence or horror Mild+
Moderate violence or horror Moderate Moderate
Graphic violence or horror Adult

Adult
Extended gruesome and depraved violence or horror Adult+

Table 4.1: Categorical rating levels per maturity category and corresponding overall ratings
used by Book Cave. Base rating levels are shown and discussed in Section 4.2.

The next, more difficult step came when we set out to collect book texts. Luckily for

us, the web page for over 98% of books in the Book Cave database also includes a hyperlink

19

Figure 4.1: An overall maturity rating
with corresponding categorical rating lev-
els for a book on the Book Cave website.
This book has been rated Moderate+ and
Adult, respectively, by two different users
of the website (top right). The categor-
ical rating levels that correspond to the
Adult rating are shown in the popover
(light blue bars). The two distinct overall
ratings have been averaged and rounded
up, resulting in the book’s overall Adult
rating (top left).

to the Amazon Store web page for the Kindle (electronic) version of that book. From the

Amazon Kindle Cloud Reader5 web page we acquired complete texts for over six thousand

books6. The texts were already broken up into paragraphs, which is an important aspect

that we discuss further in Section 4.4. All textual data that we collected is in the English

language.

4.2 Content Rating Levels

The content of each book in the Book Cave database has been given a categorical rating

level in each of the seven maturity categories. The overall maturity rating for a book is

derived as the maximum overall rating over the seven categorical rating levels as seen in the

Overall Rating column in Table 4.1. In order to represent the categorical rating levels as

labels to our predictive model, we grouped together rating levels within each category that

have the same base (i.e., not including a ‘+’) overall maturity rating. For example, each

of ‘Significant profanity (101 to 200 [uses of profane terms])’, ‘Significant profanity (201 to

5https://read.amazon.com/
6Alongside the texts, we also collected a high-resolution front cover image for each of these books. We

decided not to use them as input to our classifiers, however, on the basis that the collected labels don’t
necessarily describe the book’s cover.

20

https://read.amazon.com/

500)’, and ‘Extensive profanity (500+)’ yield a base overall maturity rating of Adult. Thus,

books with any of these three rating levels were labeled as the same class (Adult) within the

profanity category. Rating levels for each other maturity category are also similarly merged

and are specified in the Base Overall Rating column in Table 4.1. We did this to simplify

the boundaries between categorical rating levels which yield identical or almost identical

overall ratings.

4.3 Ordinal Regression

Because the categorical rating levels naturally represent increasing magnitudes of mature

content rather than distinct topics or themes, we follow the approach described by Frank

et al. [16] by representing merged categorical rating levels ordinally, that is, as a binary

vector instead of as an integer, or nominal, value. More formally, an integer-valued merged

categorical rating level z is transformed into its vector representation ~y ∈ {0, 1}k−1 where k is

the number of distinct merged integer values for that category and ~yi = 1 if z ≤ i, else 0, for

1 ≤ i ≤ k − 1 as seen in Table 4.2 in the column labelled Class Represented Ordinally.

Rating Level
Overall
Rating

Class
ID

Class
Represented

Ordinally

None All Ages 0 0 0 0
Mild language Mild+ 1 1 0 0
Some profanity (6 to 40) Moderate

2 1 1 0
Moderate profanity (41 to 100) Moderate+
Significant profanity (101 to 200) Adult

3 1 1 1Significant profanity (201 to 500) Adult
Extensive profanity (501+) Adult+

Table 4.2: Example of merged rating levels and ordinal representation within the profanity
category. In this case, rating levels which yield an overall rating of Moderate or Moderate+
have been merged as well as those which yield overall ratings of Adult or Adult+. A class ID
value and derived ordinal class representation based on this ID are shown for each merged
rating level.

21

The intuition behind the binary ordinal representation is that books with relatively

high categorical rating levels may include harsher words in their vocabularies than those

with lower rating levels. In other words, vocabularies of books with higher rating levels

are assumed to be supersets of vocabularies of books with lower rating levels. Thus, for a

particular category for a book, each 1 in the binary vector expresses that that book contains

at least that magnitude of maturity for this category. A machine learning model will benefit

from this binary vector representation more so than from the original integer value because

the model is free to independently learn whether certain subsets of vocabulary terms are

associated with different elements in the vector. In contrast, a machine learning model which

is given only integer-valued labels may associate a mildly mature word or set of words with a

rating level which yields a ‘Mild’ overall rating but falsely dissociate that word from rating

levels which yield higher overall ratings.

4.4 Text Pre-processing

We pre-processed the text of each book by converting the text to lowercase and tokenizing

the text of each book using the Stanford Tokenizer7. We chose the Stanford Tokenizer, since

all punctuation marks are treated as separate tokens, aside from apostrophes when used in

contractions. This is desirable because our vocabulary is large and other tokenizers would

have treated a word immediately followed by an end-of-sentence marker (a period, question

mark, exclamation mark, etc.) as a single token. The Stanford tokenizer separates the

end-of-sentence marker and the last word of the sentence which decreases the redundancy of

the vocabulary.

4.5 Bag-of-words Classifiers

In order to acquire baseline results with which to compare our method, we tried a few

traditional machine learning algorithms using bag-of-words representations of texts. The

7https://nlp.stanford.edu/static/software/tokenizer.shtml

22

https://nlp.stanford.edu/static/software/tokenizer.shtml

bag-of-words vectors were weighted by TF-IDF. We chose six different classification algorithms

given identical TF-IDF-weighted bag-of-words vectors representing texts of books: K-Nearest

Neighbor [10]; Logistic Regression; Multi-layer Perceptron, [31] or shallow neural network

(i.e., with a single hidden layer); Multi-nomial Näıve Bayes [21]; Random Forest [4]; and

multi-class Support Vector Machine [9], as discussed in Section 3.4.

For our K-Nearest Neighbor classifier, we chose k = 5 since 5 is relatively prime to

the number of classes in each maturity category. As a distance metric, we chose Euclidean

distance as d(x, y) =
√∑n

i=1 (xi − yi)
2. We also chose to weigh the ‘vote’ of each of the

5 nearest neighbors inversely proportionally to its distance from the novel instance, thus

allowing nearer neighbors to more strongly influence the predicted class [14].

4.6 Neural Networks

We tested a few different configurations of neural networks for our approach. Each of our

network configurations contains two main components which we call modules. The first

module is the paragraph encoder, which takes as input a sequence of word tokens of a single

paragraph and produces a fixed-length vector. The second module is the aggregation module,

or the component which aggregates, or summarizes, all vectors produced by the paragraph

encoder for all paragraphs of a book.

The job of the paragraph encoder is to learn a representation of any fixed-length

token sequence as another fixed-length feature vector. The text of each book in the Book

Cave database was already divided into paragraphs for us. However, because we must pass

fixed-length token sequences to the paragraph encoder, we had to choose a fixed number of

tokens to process in each paragraph. We chose 128 as the number of tokens, since fewer than

four percent of paragraphs in our data set contained more than 128 tokens. If a paragraph

has fewer than 128 tokens, the sequence is padded with zeros as placeholder tokens; if a

paragraph has more than 128 tokens, it is truncated. We experimented with two different

neural network implementations as the paragraph encoder. The first is a recurrent neural

23

network, and the second is a convolutional neural network. Their specifics are described in

Sections 4.6.1 and 4.6.2, respectively.

For our word embedding, we chose pre-trained word vectors trained by the GloVe [29]

algorithm over a 6-billion word corpus8. We chose the highest-dimensional word embedding

available (300), since vectors with higher numbers of dimensions contain more information,

at the cost of computational efficiency.

The aggregation module is discussed in Section 4.6.3.

4.6.1 Paragraph Encoder—Recurrent Neural Network

A recurrent neural network used as the paragraph encoder is constructed as follows. The

structure of this network is depicted in Figure 4.2 and its properties are listed in Table 4.3.

128

Input

128 x 300

Embedding

256 x 64

+

Bi-directional GRU

64

attention
Self-

Figure 4.2: Output dimensions at each step of the
Recurrent Neural Network paragraph encoder.

Layer
Output
Size

Input 128

Embedding 128 x 300

Bi-directional GRU
256 x 64

[hidden size=64]

Self-attention 64

Table 4.3: Properties of the Recurrent
Neural Network paragraph encoder.

• Input. The input to the network is a sequence of 128 tokens representing a single

paragraph.

• Embedding Layer. This layer will simply map each word token in the sequence to

its corresponding vector representation in the 300-dimensional GloVe embedding. The

8https://nlp.stanford.edu/projects/glove/

24

https://nlp.stanford.edu/projects/glove/

result is a sequence of vectors each of length 300, or, a matrix with 128 rows and 300

columns.

• Bi-directional GRU Layer. This layer processes sequences of word tokens as pro-

duced by the embedding layer.

The Gated Recurrent Unit (GRU) [7] is a specific implementation of the recurrent

function f .

Unlike a standard GRU, a bi-directional GRU additionally processes the input sequence

in the backwards direction. Processing sequences of word vectors in both directions

tends to lead to better performance [35] with the intuition that contextual clues in text

may not always appear in the direction they are written.

We chose 64 as the number of dimensions of each hidden state vector ht, since it is

a reasonably small power of 2 and vectors with sizes that are powers of 2 may be

processed more efficiently by computer hardware. This hyper-parameter can be chosen

arbitrarily with consideration to the fact that adding more dimensions may capture

more latent features of tokens—which may improve accuracy overall—with the risk of

over-fitting the model to the training data. The result is a sequence of 128 + 128 = 256

vectors (128 from each of the forward and backward directions) each with 64 elements,

or, in practice, a matrix with 256 rows and 64 columns.

• Self-attention Layer. The output from the bi-directional GRU layer is a sequence

of vectors—essentially a matrix—which needs to be reduced to a vector in order to

perform classification at the last step of the network. The self-attention layer learns a

relative weighting function for all hidden state vectors produced by the bi-directional

GRU—where more informative vectors are given more weight—and returns a weighted

sum of those vectors. Its output is a single vector of size 64.

25

4.6.2 Paragraph Encoder—Convolutional Neural Network

Aside from using an RNN, we also experimented with a convolutional neural network as the

implementation of the paragraph encoder. Figure 4.3 shows the structure of the network;

Table 4.4 lists the configuration of each layer.

128

Input

128 x 300

Embedding 128

x 8
size = 1

with filter

operation
convolution

127

x 8

126

x 8

125

x 8

Convolutional

32

pooling
Max-

Figure 4.3: Output dimensions at each step of the
Convolutional Neural Network paragraph encoder.

Layer
Output
Size

Input 128

Embedding 128 x 300

Convolutional
[filter sizes=1,2,3,4;

filters=8]

128 (x 8),
127 (x 8),
126 (x 8),
125 (x 8)

Max-pooling 32

Table 4.4: Properties of the Convolu-
tional Neural Network paragraph en-
coder.

• Input. The input to the network is a sequence of 128 tokens representing a single

paragraph. (Identical to RNN implementation of the paragraph encoder.)

• Embedding Layer. Maps word tokens to word vectors in Rd, d = 300. Functionally

identical to that in RNN paragraph encoder. Output is a matrix with 128 rows and

300 columns.

• Convolutional Layer. The purpose of this layer is to extract important local sequences

of word vectors.

For this layer, we had to decide: (1) the number of filters, and (2) the size of the filters,

i.e., the number of consecutive word vectors to be convolved. Because it is possible

to choose variable filter sizes, we chose to use eight filters each of sizes 1, 2, 3, and 4.

26

These filter sizes correspond to convolving each word vector in isolation (size 1), as

well as each consecutive group of 2, 3, and 4 word vectors (sizes 2, 3, and 4) in the

entire sequence. The number of filters can be chosen arbitrarily with respect that larger

numbers may tend to cause overfitting.

Recall that the output from a single convolutional filter with size r given an input

sequence with length T is a vector of T − r + 1 elements. Because we process 128

tokens in each paragraph, or T = 128, our filter with size r = 1 will then produce a

vector with 128− 1 + 1 = 128 elements. Thus, given our filter sizes of 1, 2, 3, and 4,

the outputs from this layer are eight vectors with lengths 128, 127, 126, and 125.

• Max-pooling Layer. The convolutional layer produces a total of 32 vectors, and

some vectors vary in the number of dimensions. This layer pools the maximum scalar

value from each of the 32 vectors, producing a vector with 32 elements.

4.6.3 Aggregation Module

When predicting the maturity level of a particular book, we didn’t want to exclude any

paragraphs of that book (by random sampling of paragraphs or other means) because a

high level of maturity in just one paragraph may strongly influence the maturity level of the

entire book. Thus, we want our neural network to be able to draw information from every

paragraph of a given book during prediction. Our method to do so is described here. Figure

4.4 and Table 4.5 show the structure of the network and its properties respectively.

• Input Layer. Unlike the paragraph encoder, which accepts only a single paragraph

of a book, this module can take an arbitrary number of paragraphs as input. During

training, we passed to this layer all paragraphs from each book as input.

• Distributed Paragraph Encoder Layer. Either implementation of the paragraph

encoder outputs a fixed-length feature vector given a sequence of word tokens—a

paragraph. This layer simply invokes the same paragraph encoder over every paragraph

27

P x 128

Input
x1

z1

on x1

paragraph encoder

output from

xp

zp

xP
zP P x v

Encoder
Paragraph
Distributed

v

pooling
Max-

Global

v Global
Average-
pooling

{
{
2v

enation
Concat-

128

connected
Fully-

3

k-1

3

...

...

category
maturity

per
Output

Figure 4.4: Output dimensions at each step of the Aggrega-
tion Module.

Layer
Output
Size

Input P x 128

Distributed
P x vParagraph

Encoder
Global

v
Max-pooling

Global
v

Average-pooling
Concatenation 2v

Fully-connected
128

[size=128]

Output
3, 3, 1, 3
3, 3, 3

Table 4.5: Properties of the Ag-
gregation Module.

of a given book, producing P fixed-length feature vectors where P is the number of

paragraphs in that book. The length v of the feature vectors is 64 when the the

implementation of the paragraph encoder is the RNN, and 32 when it is the CNN.

• Global Max-pooling Layer. Global max-pooling, or max-over-time pooling, in

general, outputs the maximum value in each column of an input matrix, resulting in a

vector. If we consider the input to this layer to be a matrix with P rows and v columns

where v is the length of one vector produced by the paragraph encoder, then the output

from this layer is a single vector of size v.

The intuition behind global max-pooling is as follows: each vector produced by the

paragraph encoder zp is comprised of v elements where each element represents some

latent feature of books for paragraph p. When a particular latent feature is expressed

strongly in the paragraph (e.g., at the appearance of a profane word), then the i-th

element in zp, 1 ≤ i ≤ v, which represents that feature will be a relatively large number.

By taking the maximum values over every zp for each i, we presumably capture the

maximum level of expressiveness for each latent feature over the entire book.

28

• Global Average-pooling Layer. Similarly to global max-pooling, this layer outputs

the average value over all columns of a given input matrix. This layer produces a vector

with size v.

We used this layer with the intuition that the maturity content rating for a book may

be influenced not only by the most severe instance of mature content in that book, but

by prolonged mature themes, i.e., ones than appear throughout the book.

Both the global max-pooling and the global average-pooling layers are functional and,

therefore, contain no trainable parameters.

• Concatenation Layer. We concatenate the two vectors which came from the output

of the global max-pooling and global average-pooling layers to create one longer vector

of size 2v.

• Fully-connected Layer. A fully-connected, or dense, layer simply extracts more

hidden, or latent, features from the concatenation layer. The result is a vector with 128

elements.

• Output Layers. The final layers of the network output the prediction of the maturity

rating level as a binary ordinal vector (Section 4.2) for each maturity category.

Finally, the Adam optimization algorithm [3, 24], a commonly-used extension of

stochastic gradient descent, was chosen to minimize the binary cross-entropy loss for the

networks. Adam has been shown to perform well in comparison to other optimization

algorithms [32].

29

5 EXPERIMENTAL RESULTS

In this chapter, we describe the results of two different experiments. In the first

experiment, we attempted to classify the mature content of each book as a whole. The second

experiment was an effort to evaluate whether our classifier would be able to identify the

portions of the book that contained mature content.

For both experiments, we shuffled then divided the data set of books (6395 in total)

into a train, validation, and test set using a 60/20/20 distribution, resulting in 3837, 1279,

and 1279 books in their respective sets. We trained baseline and neural network models using

the same train data set. The neural networks were evaluated on the validation set during

each epoch of training to monitor their improvement over time. The neural networks quit

training when the loss measured on the validation set stopped improving. In this section, we

report the evaluation metrics of all classifiers on the test set.

In addition to the six baseline classifiers presented in Section 3.4, we compare the

results of the neural network models to the ‘Zero Rule’, or Zero R, benchmark, which simply

always predicts the majority class, ignoring all input values.

5.1 Classify Mature Content in Entire Books

We measured the mean squared error of the six baseline classifiers and our neural network

models on the same randomly-sampled test set for each maturity category and the overall

rating. The results after averaging the mean squared error over all maturity categories are

shown in Figure 5.1. The results for each maturity category individually can be found in

Appendix A.

30

Figure 5.1: Mean squared error of content rating levels for entire books for all classifiers
averaged over all maturity categories.

Our results show that the support vector machine outperforms each of our neural

network methods in mean squared error when averaged for average classification accuracy (as

the average of each classification accuracy score over all maturity categories) and average

F1-score, respectively. We found that the results of the SVM were shown to be statistically

significant by the Wilcoxon signed-rank test (all p < 0.05) when compared to each neural

network model. We hypothesize that this occurred because the bag-of-words representation,

which the SVM and the other baseline classifiers take as input, is actually quite dense and

informative, since the number of words in an entire book is large relative to the size of the

combined vocabulary of all books. These results suggest that, when classifying very long text

sequences, the order of words may not be as informative as the overall distribution of words.

31

5.2 Detect Mature Content in Paragraphs

We also wanted to evaluate whether or not our classifiers would be able to detect the portions

of books that contained mature content. Since both the baseline classifiers and the neural

network models were trained to classify the levels of mature content in texts of variable

size, it is valid to give as input to the classifiers only a portion of the book instead of the

entire book. We hypothesized that each of our classifiers would also be able to compute a

meaningful maturity content level for individual paragraphs and groups of paragraphs of

books.

Since the labels that we collected pertained only to entire books, we were unable to

definitively determine which paragraphs of those books contributed to their content rating

levels, i.e., which paragraphs actually contained profanity, scenes of violence, sexuality, etc.

Without ground-truth labels that specifically describe the mature content of paragraphs

of books, it was impossible for us to train new classifiers to predict mature content within

paragraphs. But, without training new classifiers, we were able to evaluate the effectiveness

of the trained models from the previous experiment to detect mature content in portions of

books via the following procedure.

For each book, we pulled out all ordered sequences of w paragraphs, called paragraph

windows, for a chosen window size, w. Then, for each book, we passed as input to our

classifiers each paragraph window of that book, resulting in a unique predicted content rating

level for every paragraph window. We then evaluated the maximum predicted content rating

level over all paragraph windows for each book against the ground-truth labels for those

books. From the maximum predicted content rating levels for books, we were able to measure

mean squared error and, thus, meaningfully compare the classifiers’ abilities to detect mature

content in smaller texts, i.e., paragraphs.

We feel that it is meaningful to aggregate the predictions of a given learning algorithm

by the max function over the paragraph windows of a book with a given maturity content

rating under the following two assumptions: (1) that book contains at least one scene, i.e.,

32

over the span of a few paragraphs, that contains content that is exactly as mature as the

content rating for that book as a whole; and (2) that book contains no scenes that contain

content that exceeds the maturity level of the book as a whole. For example, for a book that

is rated Mild in Violence and Horror, we assume that it contains at least one mildly violent

or horrific scene and contains no scenes that meet any of the Moderate or Adult criteria for

this category.

Figure 5.2 shows the results of this experiment averaged over all maturity categories.

Our neural network methods performed best when mean squared error scores for all categories

are averaged, though other classifiers performed better within certain categories. The full

results are shown in Appendix B. Further, the predictions of all three neural networks were

shown to be statistically significant by the Wilcoxon signed-rank test (all p < 0.05) when

compared to each baseline classifier.

Figure 5.2: Mean squared error of content rating levels after classifier predictions are
aggregated over paragraph windows of sizes 1, 3, 5, and 7 averaged over all categories.

We hypothesize that the neural network methods performed better on average than

the baseline methods because the networks trained in two steps—by first encoding each

paragraph of a given book, then aggregating an arbitrary number of encoded paragraph

33

vectors into an overall content rating prediction. The neural networks are able to capture

more semantic meaning in portions of text that are far shorter than the book itself, whereas

the baseline classifiers have no concept of portions of a text or of aggregation.

34

6 CONCLUSION

Although many forms of digital media are subject to content rating processes which

inform consumers of any content that is against their standards or preferences, literature has

never been able to call upon a robust system to rate its content. We feel that an automated

system to deterministically assess the level at which mature content is present in literature

would greatly benefit readers—especially children and parents. Since such a system is not

widely available or standardized, we present our method as a way for readers or distributors

to, for multiple maturity categories, (1) classify the maturity content level of an item of

literature as a whole, and (2) detect the portions of that item of literature which contain

mature content.

A real application of our method is that it could be implemented by Amazon for users

of their massive digital library, Kindle Books1, to optionally rate the content level of books

that they rent or purchase. Other large eBook retailers which could implement our method

include Apple Books2, Kobo3, Baker & Taylor4, Barnes & Noble5, and Google Play Books6.

To the field of natural language processing, our work displays an interesting victory

for neural network architectures in that they are actually able to reasonably detect semantic

meaning in portions of text that are far smaller than the input texts when only labels for the

input texts are present, i.e., even when ground-truth labels for the smaller portions of text

are not available.

1https://www.amazon.com/Kindle-eBooks
2https://www.apple.com/apple-books/
3https://www.kobo.com/
4https://www.baker-taylor.com/library.cfm
5https://www.barnesandnoble.com/b/nook-books
6https://play.google.com/store/books

35

https://www.amazon.com/Kindle-eBooks
https://www.apple.com/apple-books/
https://www.kobo.com/
https://www.baker-taylor.com/library.cfm
https://www.barnesandnoble.com/b/nook-books
https://play.google.com/store/books

References

[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation

by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[2] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word

vectors with subword information. Transactions of the Association for Computational

Linguistics, 5:135–146, 2017.

[3] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale

machine learning. SIAM Review, 60(2):223–311, 2018.

[4] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[5] Mark Callister, Sarah M Coyne, Lesa A Stern, Laura Stockdale, Malinda J Miller, and

Brian M Wells. A content analysis of the prevalence and portrayal of sexual activity in

adolescent literature. Journal of Sex Research, 49(5):477–486, 2012.

[6] Ying Chen, Heng Xu, Yilu Zhou, and Sencun Zhu. Is this app safe for children? A

comparison study of maturity ratings on Android and iOS applications. In Proceedings

of the 22nd International World Wide Web Conference (WWW), pages 201–212, 2013.

[7] KyungHyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using

RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078,

2014.

[8] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical

evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint

arXiv:1412.3555, 2014.

[9] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20

(3):273–297, 1995.

[10] Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE Transac-

tions on Information Theory, 13(1):21–27, 1967.

36

[11] Sarah M Coyne, Mark Callister, and James C Phillips. Getting boozy in books: Substance

use in adolescent literature. Health Communication, 26(6):512–515, 2011.

[12] Sarah M Coyne, Mark Callister, Talita Pruett, David A Nelson, Laura Stockdale, and

Brian M Wells. A mean read: Aggression in adolescent English literature. Journal of

Children and Media, 5(4):411–425, 2011.

[13] Sarah M Coyne, Mark Callister, Laura A Stockdale, David A Nelson, and Brian M Wells.

A helluva read: Profanity in adolescent literature. Mass Communication and Society, 15

(3):360–383, 2012.

[14] Sahibsingh A Dudani. The distance-weighted k-nearest-neighbor rule. IEEE Transactions

on Systems, Man, and Cybernetics, SMC-6(4):325–327, 1976.

[15] Christiane Fellbaum ed. WordNet: An electronic lexical database. MIT Press, 1998.

[16] Eibe Frank and Mark Hall. A simple approach to ordinal classification. In European

Conference on Machine Learning, pages 145–156. Springer, 2001.

[17] Yoav Goldberg. Neural network methods for natural language processing. Synthesis

Lectures on Human Language Technologies, 10(1):69, 2017.

[18] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation,

9(8):1735–1780, 1997.

[19] Bing Hu, Bin Liu, Neil Zhenqiang Gong, Deguang Kong, and Hongxia Jin. Protecting

your children from inappropriate content in mobile apps: An automatic maturity rating

framework. In Proceedings of the 24th ACM International on Conference on Information

and Knowledge Management, pages 1111–1120. ACM, 2015.

[20] Michael I Jordan. Serial order: A parallel distributed processing approach, ICS Report

8604. Institute for Cognitive Science, UCSD, La Jolla, 1986.

[21] Ashraf M Kibriya, Eibe Frank, Bernhard Pfahringer, and Geoffrey Holmes. Multinomial

naive bayes for text categorization revisited. In Australasian Joint Conference on

Artificial Intelligence, pages 488–499. Springer, 2004.

[22] Jack Kiefer and Jacob Wolfowitz. Stochastic estimation of the maximum of a regression

function. The Annals of Mathematical Statistics, 23(3):462–466, 1952.

[23] Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint

arXiv:1408.5882, 2014.

37

[24] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

[25] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. In Advances in Neural Information Processing

Systems, pages 1097–1105, 2012.

[26] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to

attention-based neural machine translation. arXiv preprint arXiv:1508.04025, 2015.

[27] Christopher D Manning and Hinrich Schütze. Foundations of statistical natural language

processing. MIT Press, 1999.

[28] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[29] Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vectors

for word representation. In Proceedings of the 2014 Conference on Empirical Methods in

Natural Language Processing (EMNLP), pages 1532–1543, 2014.

[30] Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals

of Mathematical Statistics, 22(3):400–407, 1951.

[31] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and

organization in the brain. Psychological Review, 65(6):386, 1958.

[32] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv

preprint arXiv:1609.04747, 2016.

[33] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal

representations by error propagation. Technical report, UCSD La Jolla Inst for Cognitive

Science, 1985.

[34] Gerard Salton and Michael J McGill. Introduction to modern information retrieval,

1986.

[35] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE

Transactions on Signal Processing, 45(11):2673–2681, 1997.

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in

Neural Information Processing Systems 30, pages 5998–6008, 2017.

38

[37] Franz Wanner, Johannes Fuchs, Daniela Oelke, and Daniel A Keim. Are my children

old enough to read these books? age suitability analysis. POLIBITS, 43:93–100, 2011.

[38] D Randall Wilson and Tony R Martinez. The general inefficiency of batch training for

gradient descent learning. Neural Networks, 16(10):1429–1451, 2003.

[39] Eleanor Wood. Pushing the envelope: Exploring sexuality in teen literature. Journal of

Research on Libraries and Young Adults, 1(1), 2010.

[40] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy.

Hierarchical attention networks for document classification. In Proceedings of the

2016 Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, pages 1480–1489, 2016.

39

A CLASSIFY MATURE CONTENT IN ENTIRE BOOKS - ALL RESULTS

Z
ero

R

K
-N

ea
rest

N
eig

h
b

o
rs

L
o
g
istic

R
eg

ressio
n

M
u

lti-la
y
er

P
ercep

tro
n

M
u

lti-n
o
m

ia
l

N
ä
ıv

e
B

a
y
es

R
a
n

d
o
m

F
o
rest

S
u

p
p

o
rt

V
ecto

r
M

a
ch

in
e

P
a
ra

g
ra

p
h

C
N

N

P
a
ra

g
ra

p
h

R
N

N

P
a
ra

g
ra

p
h

C
N

N
+

R
N

N

Crude Humor/Language 1.7905 0.7826 0.5145 0.5817 0.6669 0.8014 0.5356 0.5966 0.8194 0.5848
Drug, Alcohol & Tobacco 0.7811 0.5059 0.4105 0.4245 0.4887 0.5739 0.4191 0.4120 0.7811 0.4019

Kissing 0.2737 0.2025 0.1759 0.1689 0.2471 0.2346 0.1532 0.1697 0.1861 0.1564
Profanity 2.5027 0.6427 0.4269 0.5067 0.6763 0.6263 0.4073 0.3855 0.6028 0.3987

Nudity 1.0719 0.5035 0.3690 0.3221 0.6231 0.5950 0.2948 0.3675 0.4918 0.3284
Sex and Intimacy 2.8780 0.9930 0.6357 0.6865 0.8874 1.0367 0.6075 0.6935 0.8984 0.6927

Violence and Horror 0.8124 0.5496 0.4027 0.5403 0.5145 0.5754 0.3823 0.4480 0.5731 0.4504
Overall 0.7334 0.4754 0.3683 0.3667 0.4887 0.4863 0.3299 0.3737 0.6724 0.4034

Average 1.4443 0.5971 0.4193 0.4615 0.5863 0.6348 0.4000 0.4308 0.6281 0.4271

Figure/Table A.1: Mean squared error scores of all classifiers for predicted content rating
levels of entire books. All maturity categories are shown. Underlines denote the lowest score
within each maturity category. Classifiers were trained using the same training set and were
evaluated on the same test set.

40

B DETECT MATURE CONTENT IN PARAGRAPHS - ALL RESULTS

Figure B.1: Mean squared error of content rating levels after classifier predictions are
aggregated over paragraph windows of sizes 1, 3, 5, and 7, respectively, for each individual
category.

41

Z
ero

R

K
-N

ea
rest

N
eig

h
b

o
rs

L
o
g
istic

R
eg

ressio
n

M
u

lti-la
y
er

P
ercep

tro
n

M
u

ltin
o
m

ia
l

N
a
v
e

B
a
y
es

R
a
n

d
o
m

F
o
rest

S
u

p
p

o
rt

V
ecto

r
M

a
ch

in
e

P
a
ra

g
ra

p
h

C
N

N

P
a
ra

g
ra

p
h

R
N

N

P
a
ra

g
ra

p
h

C
N

N
+

R
N

N

Window
Size

Crude
Humor/

Language

1 1.7905 1.9679 0.6435 3.6841 0.9437 1.6896 1.7303 0.6693 0.8600 0.6755
3 1.7905 1.8554 0.7928 2.2674 0.7584 1.2674 1.3636 0.6091 0.6708 0.6278
5 1.7905 1.7881 0.9077 2.0680 0.6919 1.0242 1.2174 0.5934 0.6701 0.6450
7 1.7905 1.7443 0.9359 1.9633 0.6810 0.9234 1.1181 0.5841 0.6661 0.6349

Drug,
Alcohol

&
Tobacco

1 0.7811 0.9398 0.6294 4.7193 0.4996 0.7084 0.8303 0.7678 0.9969 0.5919
3 0.7811 0.7209 0.7576 2.5199 0.6779 0.7084 0.6888 0.6880 0.7123 0.6114
5 0.7811 0.6638 0.7670 2.0649 0.7131 0.6583 0.6388 0.6450 0.6927 0.6005
7 0.7811 0.6294 0.7694 1.7811 0.7334 0.6474 0.5958 0.6278 0.6880 0.6044

Kissing

1 0.2737 0.2737 0.4941 0.2737 0.2737 0.6919 0.2588 0.2017 0.2494 0.2103
3 0.2737 0.2674 0.5137 0.2729 0.2737 0.5246 0.2306 0.1916 0.2400 0.2768
5 0.2737 0.2588 0.4988 0.2729 0.2737 0.4324 0.2119 0.1892 0.2392 0.2791
7 0.2737 0.2510 0.4934 0.2713 0.2737 0.3487 0.2080 0.1869 0.2361 0.2776

Profanity

1 2.5027 1.9797 0.4996 3.9226 1.3667 1.1306 1.4918 0.5966 0.6099 0.7279
3 2.5027 1.8264 0.7873 2.5113 0.8233 1.0923 0.9875 0.5035 0.4738 0.5833
5 2.5027 1.7615 0.9719 2.0430 0.7475 1.0266 0.7787 0.4902 0.4762 0.5723
7 2.5027 1.7123 1.0305 1.7998 0.6982 1.0125 0.7021 0.4840 0.4793 0.5708

Nudity

1 1.0719 2.8084 0.5270 6.0938 0.5301 0.8882 1.7334 0.7076 0.7514 0.7256
3 1.0719 1.8163 0.5332 4.2088 0.6044 0.8256 1.0868 0.6036 0.4418 0.5364
5 1.0719 1.5238 0.5489 3.2713 0.6450 0.8124 0.8765 0.5723 0.4285 0.4793
7 1.0719 1.3745 0.5575 2.6974 0.6833 0.8311 0.7365 0.5528 0.4230 0.4550

Sex
and

Intimacy

1 2.8780 3.6849 1.8194 4.1509 1.3135 1.8780 1.4527 0.8186 1.1751 1.2314
3 2.8780 2.7389 2.1579 3.6794 0.9218 1.4785 0.9476 0.7959 0.8210 1.0672
5 2.8780 2.2424 2.1618 3.2299 0.8757 1.4793 0.9335 0.7615 0.8077 1.0414
7 2.8780 2.0758 2.0876 2.9398 0.8858 1.4644 0.9343 0.7412 0.8108 1.0367

Violence
and

Horror

1 0.8124 1.7303 1.8577 3.8491 0.6638 1.4183 0.7365 0.9984 1.1032 0.8217
3 0.8124 1.2869 1.8686 3.1032 0.6505 1.0133 0.6458 0.7983 0.7944 0.8679
5 0.8124 1.1181 1.7686 2.6568 0.6458 0.8647 0.6106 0.6943 0.7920 0.8608
7 0.8124 0.9844 1.6419 2.3206 0.6364 0.8014 0.6075 0.6575 0.7647 0.8327

Overall

1 0.7334 1.8170 1.9593 1.9132 0.6388 4.0141 0.7498 1.3980 0.8241 0.9758
3 0.7334 1.3831 2.1986 1.6263 0.6794 2.6990 0.6466 1.1282 0.5833 1.2346
5 0.7334 1.1423 1.9171 1.4277 0.6888 1.8061 0.6169 0.9922 0.5629 1.2447
7 0.7334 1.0790 1.6599 1.2776 0.6755 1.3698 0.5575 0.9148 0.5614 1.1931

Average

1 1.4443 1.9121 0.9244 3.8134 0.7987 1.2007 1.1763 0.6800 0.8208 0.7120
3 1.4443 1.5017 1.0587 2.6518 0.6729 0.9872 0.8501 0.5986 0.5934 0.6530
5 1.4443 1.3366 1.0892 2.2295 0.6561 0.8997 0.7525 0.5637 0.5866 0.6398
7 1.4443 1.2531 1.0737 1.9676 0.6560 0.8613 0.7003 0.5478 0.5811 0.6303

Table B.1: Mean squared error scores for all classifiers and all categories after content rating
level predictions are aggregated over paragraph windows of sizes 1, 3, 5, and 7, respectively.
Underlines denote the lowest score within each maturity category. Classifiers were trained
using the same training set and were evaluated on the same test set.

42

	Age-Suitability Prediction for Literature Using Deep Neural Networks
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Table of Contents
	1 Introduction
	2 Related Work
	2.1 Human Analysis of Mature Content
	2.2 Computer Analysis of Mature Content

	3 Document Classification
	3.1 Tokenization
	3.2 Bag-of-words
	3.3 Word Vectors
	3.4 Learning Algorithms—Bag-of-words
	3.4.1 K-Nearest Neighbors
	3.4.2 Logistic Regression
	3.4.3 Multi-layer Perceptron
	3.4.4 Multi-nomial Naïve Bayes
	3.4.5 Random Forest
	3.4.6 Support Vector Machine

	3.5 Learning Algorithms—Word Vectors
	3.5.1 Recurrent Neural Networks
	3.5.2 Convolutional Neural Networks
	3.5.3 Self-attention
	3.5.4 Hierarchical Attention Networks

	4 Methodology
	4.1 Data Collection
	4.2 Content Rating Levels
	4.3 Ordinal Regression
	4.4 Text Pre-processing
	4.5 Bag-of-words Classifiers
	4.6 Neural Networks
	4.6.1 Paragraph Encoder—Recurrent Neural Network
	4.6.2 Paragraph Encoder—Convolutional Neural Network
	4.6.3 Aggregation Module

	5 Experimental Results
	5.1 Classify Mature Content in Entire Books
	5.2 Detect Mature Content in Paragraphs

	6 Conclusion
	References
	A Classify Mature Content in Entire Books - All Results
	B Detect Mature Content in Paragraphs - All Results

