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abstract

Optimal Learning Rate for Neural Networks

Tyler Moncur
Department of Mathematics, BYU

Master of Science

Neural networks have long been known as universal function approximators and have
more recently been shown to be powerful and versatile in practice. But it can be extremely
challenging to find the right set of parameters and hyperparameters. Model training is both
expensive and difficult due to the large number of parameters and sensitivity to hyperpa-
rameters such as learning rate and architecture. Hyperparameter searches are notorious for
requiring tremendous amounts of processing power and human resources.

This thesis provides an analytic approach to estimating the optimal value of one of the
key hyperparameters in neural networks, the learning rate. Where possible, the analysis
is computed exactly, and where necessary, approximations and assumptions are used and
justified. The result is a method that estimates the optimal learning rate for a certain type
of network, a fully connected CReLU network.

Keywords: neural network, learning rate, crelu
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Chapter 1. Introduction

The field of machine learning, especially neural networks, has made remarkable progress in

recent years. Researchers continually surpass goals and previous record-holding benchmarks

as we learn what is possible and how to more effectively build and train various models.

This progress is steady and measurable, but this progress is often lacking a solid mathemat-

ical foundation. There is a growing effort to add rigor and understanding to the current

methodology of building and training neural networks.

This problem was identified in a memorable talk by Ali Rahimi, where he stated that

“machine learning has become alchemy”. There is always a lot of guesswork that goes into

choosing the many hyperparameters for a neural network such as the number of layers,

learning rate, activation function and so on. While these decisions are guided by experience

and trial and error, we would like to analyze these hyperparameters in more depth, and find

mathematical foundations to help expedite the process of developing a neural network for

solving a specific challenge.

Neural networks are both theoretically and practically very powerful function approxi-

mators. This is especially true in computer vision. Before 2012, the leading computer vision

algorithms for object recognition generated feature vectors in a predefined fashion, like the

SIFT algorithm. But the results from the 2012 ImageNet competition showed that a deep

neural network, which can learn its own filters, could surpass these methods by a wide mar-

gin. This stunning result spurred on much of the current interest and research in the field,

and it popularized many techniques that are still widely used in deep neural networks. This

includes the ReLU activation function, which is so common that most deep learning practi-

tioners use it without a second thought. And while it does work quite well, a more rigorous

analysis on how to train a network is desirable.

My focus will be in analytically estimating the optimal learning rate for specific types of

neural networks. Through a combination of direct calculation, and numerical approximation,
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I attempt to estimate the optimal starting learning rate of a specific network at a lower cost

than actual training. This work is in part an extension of the work by Chris Hettinger in

this area. But we will diverge from his assumptions and results as we attempt to derive a

more accurate estimation of the key values for training. Because of this, the final results do

not agree with his conjectured formula.

1.1 Contributions

These results are primarily of theoretical value, but this is only because we limit the analysis

to fully connected networks. My main contributions are:

• Using spherical symmetry to calculate the expectation of expressions involving the

ReLU function and random matrices.

• Clearly identifying the assumptions made during the process of calculation.

• A new method of estimating the optimal learning rate of a particular type of neural

network.

Chapter 2. Background

This section will briefly review the building blocks of a neural network and help develop

the required notation. This section also presents a form of the expressions that must be

evaluated later in this paper.

2.1 Neuron

The smallest component of a neural network is a single neuron. A neuron is composed

of three parts, which are the linear transformation, the bias, and the non-linear activation

function. We will use similar ideas and notation to Hettinger [1]. Let w ∈ Rn be the weights
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of the linear transformation, the bias b ∈ R, and a : R → R the non-linear activation

function. Then let x ∈ Rn be the input to the neuron, and ŷ ∈ R the output.

ŷ = a(wTx + b)

Each layer of a network is composed of one or more neurons. And in the case of a fully

connected (dense) neural network, the input to all of the neurons in a given layer is the same.

And the vector output of each layer feeds into the next layer. The number of neurons in a

layer is the width.

I1

I2

I3

O1

Input
layer

Ouput
layer

Figure 2.1: Single Neuron Network

Figure 2.1 above shows a visual representation of a single neuron, where the squares are

the values of the input vector, and the circle is the only neuron. There are a variety of

machine learning algorithms that are equivalent to a neural network with a single neuron

and some preprocessing steps for the input. These single neuron networks work quite well

on a range of problems, which may seem surprising because of how simple these methods

are. This includes support vector machines and logistic regression, both of which have many

variants. But the representative power of a model can be increased by stacking neurons

together into larger networks. Consider the network in Figure 2.2.

This network has a what is called a hidden layer. This is the set of neurons that are
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I1
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I4

H1

H2

H3

O1

Input
layer

Hidden
layer

Ouput
layer

Figure 2.2: Hidden Layer Network

neither input nor output. This idea of a hidden layer is important to the representative power

of a neural network, which we will return to while discussing the training of a network. The

output from the neurons in this hidden layer is simply the input to the neurons in the final

layer. The number of neurons contained in a layer is called its width, so in this case the

hidden layer has a width of three neurons.

When building a network, only the input and output layers have a fixed size. These sizes

are of course determined by the dimension of the input data values and target values in the

dataset. Whereas the number of hidden layers and the size of each hidden layer is not fixed.

This is part of what is called the architecture of a network, which includes the number and

sizes of the layers used. The architecture is a key part of the hyperparameters that must be

chosen when solving a specific problem.

2.2 Loss Notation

We will work with the loss function in many different forms throughout this paper, and the

notation is slightly different based on which form is needed. Here I present the different

notations and their definitions.

4



Notation Guide

M(x, λ) Network M applied to x after
one step of gradient descent using λ.

xki Output of layer i when the network is evaluated
on the kth element of the dataset.

L(ŷ,y) The loss function applied to ŷ and y.
L(xn,y) Equivalent to the above.
L(xn) Shorthand for the above.
 LM The total loss of network M.

(
1
s

∑s
k=1 L(xkn)

)
 LM(λ) Total loss after one step of gradient descent

using λ.
(

1
s

∑s
k=1 L(M(xk0, λ))

)
Table 2.1: Data Features

2.3 Looking Ahead

As stated earlier, the goal of this paper is using analytical methods to estimate the optimal

learning rate of a network. This learning rate is specific to a particular architecture and

dataset. Once we get through all of the calculus and linear algebra, we find that most of

the required expressions can be evaluated directly, though it is often tedious. There are two

expressions, however, that are unlike the others, and they result from the activation function

that is chosen. Here are simplified forms of the expressions that must be evaluated. Let

A ∈ Rp×q be a random matrix such that aij ∼ N (0, 1). Then the expressions of interest are

the following.

E
[
ReLU

(
(xTATz)(zTAy)

)]
(2.1)

E
[
ReLU

(
(xTATu)(uTAy)

)
ReLU

(
(xTATv)(vTAz)

)]
(2.2)

These expressions prove difficult because ReLU is not linear, and therefore we cannot

move the expectation inside of the ReLU function. Likewise, we cannot move the summations

(resulting from the linear algebra) outside the ReLU function. We are forced to evaluate the

expression without breaking it down into simpler terms. We find that (2.1) can be evaluated

5



exactly by using a trick involving spherical symmetry to reduce the dimension. In this case,

it goes from p × q down to 2 dimensions. This calculation is shown in Lemma 4.11. The

same trick can be applied to (2.2), however the results are still difficult to evaluate, and

therefore, we assume many of the vectors are orthogonal in order to approximate the value.

This assumption is explored in Lemma 4.3 and it is used to help estimate (2.2) in Lemma

4.19.

Chapter 3. Crelu Networks

In this section, we define the CReLU activation function and explain its practical and an-

alytical advantages. We introduce more notation and calculate the derivatives needed for

backpropagation in a CReLU network.

3.1 Crelu Activation Function

We have previously mentioned the need for a non-linear function when building a neural

network. By far, the most widely used activation function for deep learning is the rectified

linear unit, commonly referred to as the ReLU. It is defined as

ReLU(x) =


x x > 0

0 otherwise.

Here, the definition is written for a scalar x, but we often apply it element-wise to vectors.

With that in mind, we will use the concatenated ReLU, or CReLU. This function is defined

as

CReLU(x) =

 ReLU(x)

ReLU(−x)


Notice that this definition avoids the information loss that normally occurs with ReLU.
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Rather than eliminating negative values, it separates the positive and negative components

and treats them separately. The CReLU was developed multiple times with varied forms,

names, and motivations. The name “concatenated ReLU” comes from Shang et. al.[2], who

observed that the weights in AlexNet often developed opposite pairs. Published in the same

year, Blot et. al. [3] developed an equivalent idea with the goal of maintaining information,

and Kim et. al. [4] proposed using biologically inspired MaxMin maps to preserve both

the positive and negative activations. And since then CReLU, has shown merit both for its

simplification in analysis and its practical benefits.

In terms of practical benefits, we first need something to compare to. The ResNet is

an excellent baseline. It does not fit the vanilla definition of a neural network, but its

introduction in 2015 was nearly as dramatic as AlexNet was in 2012. The architecture

allowed much deeper networks to train effectively, and the resulting networks won 1st place

in several categories of the 2015 ImageNet Large Scale Visual Recognition Challenge [5].

With its success, a lot of work has gone into explaining why the architecture works. One

explanation shows that making a ReLU network deeper turns the gradients into white noise

where each value appears to be independent of its neighbors. This was termed the shattered

gradients problem. In contrast, the ResNet produced gradients where neighboring activations

were not independent. In 2017, Balzduzzi et. al. showed that CReLU compares favorably

against the ResNet Architecture because it also solves the shattered gradients problem. But

this practical benefit of CReLU is not the only reason to favor it. The CReLU function also

simplifies the analysis of neural networks, especially when the network is initialized using

the symmetric initialization, which will be discussed later.

Now we will show that CReLU networks have the same representative power as ReLU

networks. To do this, we first review the statement of universality of neural networks.

Theorem 3.1. (Hornik) Let a : R → R continuous and nonpolynomial. Let X ⊂ Rd be

compact, and let C(X) be the set of continuous function from X to R. Let F be the set of

functions of the form

7



n∑
i=1

cia(wT
i x + bi)

where wi ∈ Rdand bi, ci ∈ R. The closure of F with respect to the uniform topology

contains C(X).

Proof. See [6]

Since the ReLU activation function is both continuous and nonpolynomial, Lemma 3.1

shows that neural networks with a hidden layer and ReLU are univeral function approxi-

mators. Or in other words, for any continuous f : X → R, there exists a single hidden

layer network which approximates f with arbitrarily small error. Unfortunately, it is not a

constructive proof, but rather it is only a proof of existence.

The proof does not immediately apply to a CReLU network as it does with ReLU. In

the one dimensional case, we have CReLU : R → R2. Indeed, CReLU always doubles the

dimensionality.

Proposition 3.2. (Hettinger) The CReLU networks are universal function approximators.

Proof. To show that CReLU networks are universal function approximators, we need only

show that the collection of all ReLU networks form a subset of the collection of all CReLU

networks. These two networks types are actually equivalent, but this is not required. Con-

sider the single hidden layer network MReLU : Rd → R with the form

ŷ = W2ReLU(W1x + b). (3.1)

The ReLU network is discarding negative values; whereas, the CReLU network operates

on the positive and negative values separately. To get the desired result, we must show that

MReLU is equivalent to some CReLU network.

Let the CReLU network MCReLU : Rd → R take the following form

8



ŷ =

[
P2 −N2

]
CReLU(W ′

1x + b)

=

[
P2 −N2

] ReLU(W ′
1x + b)

ReLU(−W ′
1x− b)


= P2ReLU(W ′

1x + b)−N2ReLU(−W ′
1x− b)

Choose W ′
1 = W1, P2 = W2, and N2 = 0. This makes this CReLU network equivalent to

(3.1), and thus every ReLU layer can be converted into a CReLU layer. So ReLU networks

form a subset of the collection of all CReLU networks and this implies that CReLU networks

are also universal function approximators.

3.2 Biases

For the sake of simplifying notation, we will use a common trick that hides the bias term

inside the weight matrix. Consider the following expression

z = Wx + b

Now define

x′ =

x

1

 W ′ =

W b

0 1

 z′ =

z

1


Note this trick requires an extra an dimension be added to the input vector. For a multi-

layer network this only occurs with the initial input layer. The extra dimension is carried

through to every following layer. The simplified expression is

z′ = W ′x′

9



From now on we will use this trick to avoid writing the bias and dealing with it separately.

3.3 CReLU Backpropagation

Much of the work done here is to simplify the notation for later on. We make use of the

Heaviside function

h(x) =


0 x < 0

1
2

x = 0

1 x > 0

Note that h(x) only accepts scalar inputs. Several times, we have abused notation and

allowed scalar functions to operate elementwise on vector inputs. That approach does not

work in this case. Let Hv(x) be defined as following.

Hv(x) =



h(x1) 0 . . . 0

0 h(x2) . . . 0

...
...

. . .
...

0 0 . . . h(xn)


(3.2)

Layer Notation. Let xi be the output after evaluating the first i layers of a network.

xi =

[
Pi −Ni

]
CReLU(xi−1)

= PiReLU(xi−1)−NiReLU(−xi−1)

= PiHv(xi−1)xi−1 +NiHv(−xi−1)xi−1

=
(
PiHv(xi−1) +NiHv(−xi−1)

)
xi−1

Let Wi = PiHv(xi−1) +NiHv(−xi−1), thus xi = Wixi−1. This form appears simpler, but

10



Wi is unfortunately defined in terms of xi−1. This brings us to the symmetric initialization.

We will consider the initialization more carefully later, but the symmetric initialization

is simply setting Pi = Ni upon initialization of the network. This makes the network

linear upon initialization, and makes analysis of the first step of gradient descent possible.

Symmetric initialization also improves neural network training and performance [7]. For the

remainder of the paper, we will assume a symmetric initialization. When Pi = Ni, we get

the following simplification.

Wi = (PiHv(xi−1) +NiHv(−xi−1))

= Pi(Hv(xi−1) +Hv(−xi−1))

= Pi

The last step follows from h(x) + h(−x) = 1 =⇒ Hv(x) + Hv(−x) = I. Thus Wi

is independent of xi−1 when evaluating the network on initialization. We use the following

notation for convenience.

Definition 3.3. For a ≥ b, let

Wa,b = WaWa−1 · · ·Wb

And for a < b , let Wa,b = 1.

With this new notation we have xi = Wi,1x0. To calculate the gradients of the network,

we apply the chain rule repeatedly. Therefore, we need all of the intermediate derivatives.

11



Lemma 3.4. The following relations hold:

∂
∂Pi
L(ŷ,y) = ∂

∂xi
L(ŷ,y)ReLU(xi−1)T = ∂

∂xi
L(ŷ,y)xTi−1Hv(xi−1) (3.3)

∂
∂Ni

L(ŷ,y) = − ∂
∂xi
L(ŷ,y)ReLU(−xi−1)T = ∂

∂xi
L(ŷ,y)xTi−1Hv(−xi−1) (3.4)

∂
∂xi
L(ŷ,y) = (Wi+1)T ∂

∂xi+1
L(ŷ,y) = (Pi+1Hv(xi) +Ni+1Hv(−xi))

T ∂
∂xi+1

L(ŷ,y).

(3.5)

Proof. Note the following

xi = PiReLU(xi−1)−NiReLU(−xi−1) (3.6)

xi+1 = Wi+1xi (3.7)

We start with ∂
∂Pi
L(ŷ,y). Note that this expression is a matrix with the same dimension

as Pi. We perform the computation on a single element at a time. Note that

(
∂
∂Pi
L(ŷ,y)

)
jk

= ∂
∂Pijk

L(ŷ,y)(
∂
∂xi
L(ŷ,y)

)
j

= ∂
∂xij

L(ŷ,y)

We have

(
∂
∂Pi
L(ŷ,y)

)
jk

= ∂
∂Pijk

L(ŷ,y)

= ∂
∂xij

L(ŷ,y) ∂
∂Pijk

xij Chain rule

= ∂
∂xij

L(ŷ,y)ReLU(xi−1,k) Derivative of (3.6)

=
(
∂
∂xi
L(ŷ,y)

)
j

(
ReLU(xi−1)

)
k

Note that for the outer product uvT , we have (uvT )jk = ujvk. Also note ReLU(x) =

Hv(x)x. Thus we have

12



(
∂
∂Pi
L(ŷ,y)

)
jk

=
(
∂
∂xi
L(ŷ,y)

)
j

(
ReLU(xi−1)

)
k(

∂
∂Pi
L(ŷ,y)

)
jk

=
(
∂
∂xi
L(ŷ,y)ReLU(xi−1)T

)
jk

∂
∂Pi
L(ŷ,y) = ∂

∂xi
L(ŷ,y)ReLU(xi−1)T = ∂

∂xi
L(ŷ,y)xTi−1Hv(xi−1)

Similar manipulations give the second result

∂
∂Ni

L(ŷ,y) = − ∂
∂xi
L(ŷ,y)ReLU(−xi−1)T = ∂

∂xi
L(ŷ,y)xTi−1Hv(−xi−1).

For the third result, note that xi+1 depends on all elements of xi, which gives us the

following when applying the chain rule:

(
∂
∂xi
L(ŷ,y)

)
j

= ∂
∂xij

L(ŷ,y)

=
n∑
k=1

∂
∂xi+1,k

L(ŷ,y) ∂
∂xij

xi+1,k Chain rule

=
n∑
k=1

∂
∂xi+1,k

L(ŷ,y)Wi+1,k,j Derivative of (3.7)

=
n∑
k=1

( ∂
∂xi+1

L(ŷ,y))k(W
T
i+1)jk

Note that (Av)j =
∑n

k=1Ajkvk. Thus we have

(
∂
∂xi
L(ŷ,y)

)
j

=
n∑
k=1

( ∂
∂xi+1

L(ŷ,y))k(W
T
i+1)jk

(
∂
∂xi
L(ŷ,y)

)
j

= (W T
i+1

∂
∂xi+1

L(ŷ,y))j

∂
∂xi
L(ŷ,y) = W T

i+1
∂

∂xi+1
L(ŷ,y) = (Pi+1Hv(xi) +Ni+1Hv(−xi))

T ∂
∂xi+1

L(ŷ,y)

13



Recall that a neural network is updated using the gradient according to the rule

W ← W − λ∂LM

∂W

Since we are dealing with a dataset of inputs, we now will use superscript notation xk0 to

denote the kth element of the dataset. Also let xki and yk be corresponding outputs from

xk0. The total loss is LM = 1
s

∑s
k=1 L(ŷk,yk), so the total gradients take the form

∂LM

∂Pi
= 1

s

s∑
k=1

∂
∂Pi
L(ŷk,yk)

and

∂LM

∂Ni
= 1

s

s∑
k=1

∂
∂Ni

L(ŷk,yk).

A full update step will be

Pi ← Pi − λ∂LM

∂Pi

Ni ← Ni − λ∂LM

∂Ni
.

Now, we make one more simplification to the notation. We will no longer use ŷ to denote

the output of the network. Instead we use xn, since it is also the output of the nth layer.

We also shorten the notation for the loss.

Definition 3.5. We write

L(xkn) = L(xkn,y
k).

We need this shorthand to make some of the later formulas fit on the page.
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3.4 Loss Function

The analysis does not require a specific loss function. It only requires that the loss function

be twice differentiable. Presented below are two of the most common loss functions.

Cross Entropy. Cross entropy is generally used for classification problems. Let n be

the number of classes.

Define softmax : Rn → Rn as

softmax(x) =
1

ex1 + · · ·+ exn


ex1

...

exn

 .
Define CrossEntropy : Rn × Rn → Rn as

CrossEntropy(y, ŷ) = −
n∑
i=1

yi log(ŷi).

With classification problems, the target for each sample is the correct class, which is

represented by a vector of zeros except for a single one at the index corresponding to the

correct class. This is called one-hot encoding. It also requires that the output of network

represent a probability, hence it is often preceded by a softmax layer, which converts the

outputs to positive values which sum to one.

Mean Squared Error. Mean Squared Error is used for regression problems where a

real valued number is the target.

Define MSE : Rn → R as

MSE(y, ŷ) = 1
n

n∑
i=1

(yi − ŷi)2 = 1
n
‖y − ŷ‖2

2

One challenge with loss functions used in regression is dealing with outliers. The Mean

Squared Error Loss is particularly affected by outlier target values, and this should be con-

sidered when choosing it as a loss function.
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Note that both loss functions presented are twice differentiable. This is essential because

we rely on the gradient of the loss to train the weights of a network. Fortunately, the analysis

does not require a particular loss function. All we require is that it be twice differentiable.

Chapter 4. Hyperparameter Optimization

In this section, we show how to approximate the optimal learning rate, in terms of derivatives

of the total loss LM(λ). We define the optimal learning rate, λoptimal, as the learning rate

which minimizes the total loss of the function after one step of gradient descent. We show

in Section 4.2 that Newton’s method gives the following approximation to λoptimal.

λoptimal ≈ −
d
dλ
LM(0)

d2

dλ2
LM(0)

.

Then we evaluate the expectations of the numerator and denominator over the random

initialization. In Theorem 4.13 we show

E

[
d

dλ
LM(0)

]
≈ − 1

s2

n∑
i=1

√
didi−1√
d0dn

s∑
k=1

s∑
l=1

∂
∂xl

n
L(xln)T ∂

∂xk
n
L(xkn)

‖xk
0‖‖xl

0‖
π

((π−θkl) cos θkl+sin θkl)

And E
[
d2

dλ2
LM(0)

]
is available in Theorem 4.24.

4.1 Initialization

A good set of initial weights is important to training a neural network. I will present the

method shown by Hettinger and compare it to other common initializations. But first, let’s

review simpler, though less useful, initializations.

In terms of notation, we use wijk to refer to the element of Wi at the jth row and kth

column. The size of the forward signal at a given layer refers to magnitude of the xi, and
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the backward signal refers to the magnitude of d
dxi
L(xi).

Zero Initialization. Using all zeros (wijk = 0) is generally not recommended because it

brings symmetry into a nonconvex optimization problem. With neural network optimization,

saddle points are points where the gradient is nearly zero in all directions, but it is not a

local minimum. Randomness can be helpful in avoiding and leaving saddle points, whereas

symmetry can be problematic.

Normal Initialization. Letting wijk ∼ N (0, 1) seems like a reasonable solution to the

saddle points, and it works well in small networks. However, in deep networks, if the layers

are not scaled properly, they can cause either exponential growth or decay in the forward

and backward signals. This makes gradient descent unstable.

Scaled Normal Initializations. The following methods of initialization are each a

version of a properly scaled normal initialization. Consider a layer with weight matrix Wi.

Let Wi have dimensions di × di−1, so the input dimension of this layer is di−1.

The Xavier Initialization is wjk ∼ N (0, 1/di−1). This initialization is created for a neural

network using a particular activation function, the tanh function.

The He Initialization is wijk ∼ N (0, 2/di−1). This initialization is created for a neural

network using the ReLU activation function. The factor of 2 is used because approximately

half of incoming dimensions are zero thanks to ReLU.

Both of these initialization schemes were created to manage the growth of signals in the

forward pass of their respective network type, thus preventing exponential growth or decay.

Similar results are achieved by managing the signals of the backward pass [8].

For a CReLU network, we use the Hettinger initialization, which attempts to balance the

signal growth of both the forward and backward pass. Hettinger uses the following

wijk ∼ N (0, 1√
di−1di

)

Pi = Ni.
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As shown by Hettinger in Theorem 4.6 [1], this choice of initialization gives the following

property

E

[∥∥∥ d
dPi
L(xn)

∥∥∥2
]

E

[∥∥∥ d
dPj
L(xn)

∥∥∥2
] =

E
[
‖Pi‖2]

E
[
‖Pj‖2] E

[∥∥∥ d
dNi

L(xn)
∥∥∥2
]

E

[∥∥∥ d
dNj

L(xn)
∥∥∥2
] =

E
[
‖Ni‖2]

E
[
‖Nj‖2]

This property shows the balance between the forward and backward signals. And when

the full network is considered, one can show that the magnitude of the forward signal (and

hence also the backward signal) is independent of the network depth and width. We use the

Hettinger initialization in the analysis.

4.2 Quadratic Approximation

Let’s define the function we want to optimize. We intend to minimize the loss of the network

by choosing the best learning rate. To make an analysis possible, we will search for the

learning rate that minimizes the loss after a single step of gradient descent. Therefore we

need a function that describes the loss after the first step in terms of a given learning rate.

Since we already use N for the negative activation matrix, let M be a network. Let M(xk0, λ)

return the output for xk0 after optimizing M with one step of gradient descent with learning

rate λ. Note that M(xk0, 0) gives the output of the initial network. Denote the total loss

after one step as

LM(λ) = 1
s

s∑
k=1

L(M(xk0, λ),yk).

Neural networks are nonconvex and nonpolynomial, which makes optimization signifi-

cantly more challenging. In this case, Newton’s method is a reasonable approach to mini-

mizing the total loss function with respect to λ. Newton’s method is generally considered a

powerful optimizer since it minimizes a quadratic approximation rather than a linear one. It
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is not used for neural network optimization because the computational space scales as O(n2)

with the dimension of the problem, and most neural networks have millions of parameters.

But this minimization problem is 1-dimensional since it is only with respect to λ. Newton’s

method of optimization is iterative, using the following formula:

xi+1 = xi −
f ′(xi)

f ′′(xi)
.

We require an initial guess of λ = 0 since this is equivalent to starting out with the initial

network. Thus we have the following approximation for λoptimal.

λoptimal ≈ −
d
dλ
LM(0)

d2

dλ2
LM(0)

This equation is made more useful by focusing on the expectation of these expressions.

Since the initialization is randomized, we can take the expectation E
[
d
dλ
LM(0)

]
over the

possible initial weight values.

Thus, we must now calculate or estimate the values E
[
d
dλ
LM(0)

]
and E

[
d2

dλ2
LM(0)

]
. The

next two sections produce important tools for calculating these expectations.

4.3 Spherical Symmetry

Lemma 4.1. Let h : Rr×s → Rr×s be invertible, differentiable, and volume preserving. Let

X be a random variable with dimension r × s and probability density function fX(x). Let

Y = h(X) have probability density function fY (y). If fX(x) = fX(h−1(x)) for all x, then the

distributions of X and Y are identical.

Proof. We must show fX(x) = fY (x). Note that

Y = h(X) =⇒ fY (y) = fX(h−1(y))

∣∣∣∣det
( d
dy
h−1(y)

)∣∣∣∣ .
Since h(x) is volume preserving, this simplifies to fY (y) = fX(h−1(y)). By the hypothesis,
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fX(x) = fX(h−1(x)), therefore fX(x) = fX(h−1(x)) = fY (x).

Lemma 4.2. Let A ∈ Rr×s be a random matrix such that aij ∼ N (0, σ2), and all aij are

independent. Let P ∈ Rr×r and Q ∈ Rs×s be orthonormal matrices. Then A and PAQ are

identically distributed.

Proof. Let f : Rr×s → R be the probability density function for A. Define h(A) = PAQ.

Since h(A) only involves multiplying by rotational matrices, it is volume preserving. Then

by Lemma 4.1, we need only show that f(A) = f(h−1(A)). The inverse function is simply

h−1(A) = P TAQT . This is clearly seen by

h−1(h(A)) = h−1(PAQ) = P TPAQQT = A

h(h−1(A)) = h(P TAQT ) = PP TAQTQ = A.

This is true because P and Q are orthonormal which implies P TP = PP T = I and

QTQ = QQT = I.

Now we find f(A). Because the entries of A are independent, the joint probability

distribution is simply a product of the probability distribution functions of each individual

entry.

f(A) =
r∏
i=1

s∏
j=1

1√
2πσ2

exp(− a2ij
2σ2 ) (4.1)

= (2πσ2)−
rs
2 exp(−

r∑
i=1

s∑
j=1

a2ij
2σ2 ) (4.2)

= (2πσ2)−
rs
2 exp(−‖A‖

2
F

2σ2 ) (4.3)

So f(A) depends only on the square of the Frobenius norm of A. Therefore, we need only

show ‖A‖2
F = ‖h−1(A)‖2

F . The square of the Frobenius norm is given by ‖A‖2
F = Tr(ATA).
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Note the cyclic property of the trace gives Tr(ABC) = Tr(BCA). Thus

∥∥h−1(A)
∥∥2

F
=
∥∥P TAQT

∥∥2

F

= Tr(QATPP TAQT )

= Tr(ATPP TAQTQ)

= Tr(ATA)

= ‖A‖2
F

Another interpretation of this result is that the distribution of the matrix A is spherically

symmetric. This is true because an orthonormal matrix is also a rotational matrix. Since

each weight matrix in a CReLU network is initialized with normal, independent values, we

can immediately apply this lemma with any of the weight matrices in the network. This

lemma is most useful for reducing the dimensions to simplify an expectation. We have few

other options for simplifying the expectations when they involve the ReLU function. But

because ReLU(r · x) = r · ReLU(x) for r ≥ 0, we can always factor out the radius after

converting to spherical coordinates. This lemma is used for computations in Lemma 4.11,

Lemma 4.19, and Lemma 4.20.

4.4 Orthogonality

One of the key approximations needed for later calculations is that large random vectors

tend to be nearly orthogonal to each other. The previous statement is vague. The following

lemma provides a rigorous statement on the matter to clarify when it can be assumed that

two random vectors are nearly orthogonal. Further treatment of the subject can be found

in [9].

Lemma 4.3. Let x,y ∈ Rn be vectors of random variables whose elements are mutually

independent and normally distributed as N (0, 1). Let θ = cos−1( xTy
‖x‖‖y‖). Then we have the
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following for the probability density function of θ.

fθ(θ0) ∝ sinn−2 θ0

Proof. Here is a sketch of the proof. We by start by calculating the cumulative density

function. So we want to calculate P (θ ≤ θ0). First, we make several simplifications. Note

that the magnitudes of x and y do not influence θ, so we can replace them with x̂ = x
‖x‖

and ŷ = y
‖y‖ . Since x and y were both spherically symmetric, we know that x̂ and ŷ are

uniformly distributed on the surface of a unit n-sphere. Because of this symmetry and since

we only care about the angle between x̂ and ŷ, we can proceed assuming x̂ = e1 without

loss of generality.

First note that x̂T ŷ = cos θ. Since we are restricted to 0 ≤ θ ≤ π, we have that

θ ≤ θ0 ⇐⇒ x̂T ŷ ≥ cos θ0. Thus we want P (x̂T ŷ ≥ cos θ0). Since we can assume x̂ = e1,

we have

P (θ ≤ θ0) = P (x̂T ŷ ≥ cos θ0)

= P (eT1 ŷ ≥ cos θ0)

= P (ŷ1 ≥ cos θ0)

=

∫
{ŷ∈Sn|ŷ1≥cos θ0}

dP

=

∫
{ŷ∈Sn|ŷ1≥cos θ0}

fŷ(ŷ)dy1dy2 · · · dyn

Here, Sn is the surface of the unit n-sphere. Fortunately, since ŷ is uniform, we know

fŷ(ŷ) is constant. Thus the integral above is simply a constant times the hyper-volume of

the region {ŷ ∈ Sn|ŷ1 ≥ cos θ0}. Let’s switch to hyperspherical coordinates.
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∫
{ŷ∈Sn|ŷ1≥cos θ0}

f(ŷ)dy1 · · · dyn ∝
∫
{ŷ∈Sn|ŷ1≥cos θ0}

dy1 · · · dyn

=

∫
{ŷ∈Sn|φ1≤θ0}

sinn−2 φ1 · · · sinφn−2dφ1 · · · dφn−1

=

∫ θ0

0

sinn−2 φ1dφ1

∫
{ŷ∈Sn}

sinn−3 φ2 · · · sinφn−3φ2dφ2 · · · dφn−1

∝
∫ θ0

0

sinn−2 φ1dφ1

In the last line, we drop the second integral since it is constant with respect to θ0. Thus

we have shown

P (θ ≤ θ0) ∝
∫ θ0

0

sinn−2 φ1dφ1

But since we are interested in the probability density function of θ, we take the derivative

of both sides with respect to θ0.

∂

∂θ0

P (θ ≤ θ0) ∝ ∂

∂θ0

∫ θ0

0

sinn−2 φ1dφ1

fθ(θ0) ∝ sinn−2 θ0

Now let’s consider the meaning of this result. As n increases, the sine curve becomes

more peaked around the value π
2
. Thus it becomes increasingly likely for x and y be nearly

orthogonal.

Figure 4.1 shows the probablity density function for θ for various dimensions. In its

scaled form the pdf is f(θ0) = 1√
π

Γ(
n
2

)

Γ(
n−1

2
)
sinn−2(θ0). While this is interesting, note that we

are not working with datapoints that are distributed in a uniform spherically symmetric

pattern. Just because the datapoints of CIFAR100 each have 3072 dimensions does not

mean we can state they are all almost surely pairwise nearly orthogonal. Usually, the data

we are concerned with falls on a manifold of much lower dimension. For example, through

23



0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75 n=2
n=3
n=4
n=5
n=10
n=20

Figure 4.1: Theta Distributions Comparison

numerical experiment, I found the distribution of angles in the CIFAR100 dataset was fit

quite well by the curve above when n = 14.9. This suggests the dataset is approximately 15

dimensional. The comparison is shown in Figure 4.2.
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Figure 4.2: CIFAR100 Theta Distribution

Therefore, we should be cautious when we assume that large vectors are nearly orthog-

onal. Generally, we would desire more information before making this assumption. Despite

this, we make this assumption in Lemma 4.19, Lemma 4.20, and Lemma 4.21. And the

approximation works well enough as we will see in the testing.
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4.5 First Derivative Expectation

The following helps us by simplifying an expression that appears in the calculation of both

the first and second derivatives.

Lemma 4.4. For x,y ∈ Rn we have

n∑
i=1

ReLU(xiyi) = xT (Hv(x)Hv(y) +Hv(−x)Hv(−y))y

where Hv(x) was defined in (3.2).

Proof. Note that

xT (Hv(x)Hv(y) +Hv(−x)Hv(−y))y =
n∑
i=1

xi(h(xi)h(yi) + h(−xi)h(−yi))yi.

Thus it is sufficient to show that ReLU(xiyi) = xi(h(xi)h(yi)+h(−xi)h(−yi))yi. By symmetry

we need only consider the following cases.

Case xi, yi > 0:

ReLU(xiyi) = xiyi

xi(h(xi)h(yi) + h(−xi)h(−yi))yi = xi(1 + 0)yi = xiyi

Case xi > 0, yi < 0:

ReLU(xiyi) = 0

xi(h(xi)h(yi) + h(−xi)h(−yi))yi = xi(0 + 0)yi = 0
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Case xi, yi < 0:

ReLU(xiyi) = xiyi

xi(h(xi)h(yi) + h(−xi)h(−yi))yi = xi(0 + 1)yi = xiyi

Case xi = 0 or yi = 0: Then clearly both expressions go to 0.

Definition 4.5. (Modified from Hettinger) Recall that di is the number of rows in Wi. We

define the following scalar values, which appear repeatedly.

αikl =

di∑
m=1

ReLU
(
(xl0)T (Wi−1,1)TemeTmWi−1,1x

k
0

)
(4.4)

ωikl = ∂
∂xk

n
L(xkn)TWn,i+1(Wn,i+1)T ∂

∂xl
n
L(xln)T (4.5)

The scalars defined above are chosen because they form the most natural way to break up

the computation of the first derivative. Now we derive an expression for the first derivative.

Lemma 4.6. (Modified from Hettinger)

d

dλ
LM(λ)

∣∣
λ=0

= − 1
s2

s∑
k=1

n∑
i=1

s∑
l=1

αiklωikl

Proof.

d

dλ
LM(λ)

∣∣
λ=0

=
1

s

s∑
k=1

d

dλ
L(M(xk0, λ),yk)

∣∣
λ=0

=
1

s

s∑
k=1

d

dx
L(x,yk)T

∣∣
x=M(xk

0 ,0)

d

dλ
M(xk0, λ)

∣∣
λ=0

=
1

s

s∑
k=1

d

dx
L(x,yk)T

∣∣
x=xk

n

d

dλ
M(xk0, λ)

∣∣
λ=0

which we denote by

=
1

s

s∑
k=1

d

dxkn
L(xkn)T

d

dλ
M(xk0, λ)

∣∣
λ=0
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The second line comes from applying the chain rule. We continue by focusing on the

summand. The first term, d
dxk

n
L(xkn)T , does not simplify. For the second term, note that

M(x, λ) =
∏n

i=1(Wi − λ∂LM

∂Wi
)x. Therefore by the generalized product rule,

d

dx

n∏
j=1

fj(x) =
n∑
i=1

n∏
j=i+1

(
fj(x)

)
f ′i(x)

i−1∏
k=1

(
fk(x)

)
we have

d

dλ
M(xk0, λ)

∣∣
λ=0

= −
n∑
i=1

n∏
j=i+1

(
Wj − λ∂LM

∂Wj

)
∂LM

∂Wi

i−1∏
l=1

(
Wl − λ∂LM

∂Wl

)
xk0
∣∣
λ=0

= −
n∑
i=1

Wn,i+1

(
∂LM

∂Wi

)
Wi−1,1x

k
0

= −
n∑
i=1

Wn,i+1

(
∂LM

∂Pi
Hv(xki−1) + ∂LM

∂Ni
Hv(−xki−1)

)
Wi−1,1x

k
0

= −
n∑
i=1

Wn,i+1

(
1
s

s∑
l1=1

∂
∂Pi
L(xl1n )Hv(xki−1) + 1

s

s∑
l2=1

∂
∂Ni

L(xl2n )Hv(−xki−1)
)
xki−1

= −
n∑
i=1

Wn,i+1

(
1
s

s∑
l=1

∂
∂Pi
L(xln)Hv(xki−1) + ∂

∂Ni
L(xln)Hv(−xki−1)

)
xki−1

= −1
s

n∑
i=1

Wn,i+1

s∑
l=1

∂
∂xl

i+1
L(xln)(xli−1)T

(
Hv(xli−1)Hv(xki−1) +Hv(−xli−1)Hv(−xki−1)

)
xki−1

= −1
s

n∑
i=1

Wn,i+1

s∑
l=1

∂
∂xl

i+1
L(xln)

di∑
m=1

ReLU((xli−1)TemeTmxki−1)

The last step follows from Lemma 4.4. Combining everything gives
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d

dλ
LM(λ)

∣∣
λ=0

= − 1
s2

s∑
k=1

∂
∂xk

n
L(xkn)

n∑
i=1

Wn,i+1

s∑
l=1

∂
∂xl

i+1
L(xln)

dn∑
m=1

ReLU((xli−1)TemeTmxki−1)

= − 1
s2

s∑
k=1

n∑
i=1

s∑
l=1

∂
∂xk

n
L(xkn)TWn,i+1(Wn,i+1)T ∂

∂xl
n
L(xln)T

di∑
m=1

ReLU((xli−1)TemeTmxki−1)

= − 1
s2

s∑
k=1

n∑
i=1

s∑
l=1

ωikl

di∑
m=1

ReLU
(
(xl0)TW T

i−1,1emeTmWi−1,1x
k
0

)
= − 1

s2

s∑
k=1

n∑
i=1

s∑
l=1

αiklωikl

Later in Theorem 4.13, we will apply the expectation to this summation, and also split

E[αiklωikl] into E[αikl] and E[ωikl]. The next few lemmata will be used to evaluate E[ωikl].

Lemma 4.7. (Hettinger) Let A ∈ Rp×q be a random matrix such that aij ∼ N (0, 1). Then

E
[
ATA

]
= pI

Proof. Let Ai be the ith column of A. Then the diagonal elements of ATA are ATi Ai and

the non-diagonal elements are ATi Aj for i 6= j. Since ATi Ai is the sum of the squares of

p independent standard normal variables, we have E
[
ATi Ai

]
= p. For ATi Aj = a1ia1j +

a2ia2j + · · · + apiapj, each term is the product of independent normal values, so E[akiakj] =

E[aki] E[akj] = 0.

Lemma 4.8. Let A ∈ Rp×q be a random matrix such that aij ∼ N (0, 1). Let x,y ∈ Rq.

Then

E
[
xTATAy

]
= pxTy
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Proof.

E
[
xTATAy

]
= xT E

[
ATA

]
y

= xT (pI)y Lemma 4.7

= pxTy

The following lemma is the evaluation of E[ωikl] if all layers are initialized as the standard

normal. The scaled result is shown in Lemma 4.10.

Lemma 4.9. Let mq−1,mq, . . . ,ms ∈ N. For q ≤ r ≤ s, let Ar be an mr×mr−1 matrix. Let

all of the elements of Ar be independent and identically distributed as the standard normal

distribution. Let Bk,l = AkAk−1 · · ·Al for k ≥ l. Let x,y ∈ Rm0. Then

E
[
xTBs,q(Bs,q)

Ty
]

= mq−1mq · · ·ms−1x
Ty

Proof. We use induction. For convenience, the base case is q = s, and the inductive step is

performed by decrementing q. The base case is when there is a single ATs matrix. Since ATs

has dimensions ms−1×ms, we have by Lemma 4.8 that E
[
xTAsA

T
s y
]

= ms−1x
Ty as desired.

For the inductive hypothesis, assume

E
[
xTBs,q+1(Bs,q+1)Ty

]
= mq · · ·ms−1x

Ty

Apply Adam’s Law to separate Aq, and let v = (Bs,q+1)Tx and w = (Bs,q+1)Ty. Then
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E
[
xTBs,q(Bs,q)

Ty
]

= E
[
E
[
xTBs,q+1AqA

T
q (Bs,q+1)Ty|Bs,q+1

]]
= E

[
E
[
vTAqA

T
q w|Bs,q+1

]]
Lemma 4.8

= E
[
mq−1v

Tw
]

= mq−1 E
[
xTBs,q+1(Bs,q+1)Ty

]
Inductive Hypothesis

= mq−1mq · · ·ms−1x
Ty

Lemma 4.10. Consider the statement of Lemma 4.9, except that each element of Ai is

distributed as N (0, σ2
i ). We have

E
[
xTBs,q(Bs,q)

Ty
]

= σ2
q · · ·σ2

smq−1 · · ·ms−1x
Ty,

and when σi = (mimi−1)−1/4, we have

E
[
xTBs,q(Bs,q)

Ty
]

=

√
mq−1√
ms

xTy.

Proof. Note that if x ∼ N (0, 1), then σx ∼ N (0, σ2). Thus we need only scale the result

from Lemma 4.9 by the appropriate factor. Each matrix Aq, . . . , As appears twice in the

expression, thus the factor is σ2
q · · ·σ2

s , which immediately gives us the first result. Now we

make the substitution σi = (mimi−1)−1/4.

E
[
ReLU(xTBs,q(Bs,q)

Ty)
]

= σ2
q · · ·σ2

smq−1 · · ·ms−1x
Ty

=
mq−1 · · ·ms−1√

mq−1mq · · ·ms−1
√
ms

xTy

=

√
mq−1√
ms

xTy

The following lemma is evaluating E[αikl]. In my opinion, this following calculation is
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the most interesting one of this paper. It was complicated by the ReLU function, but we

can still compute the expectation exactly.

Lemma 4.11. Let m0, . . . ,ms ∈ N. For 1 ≤ q ≤ s, let Aq be an mq × mq−1 matrix. Let

all of the elements of Aq be independent and identically distributed as the standard normal

distribution. Denote by aqij the element in the ith row and the jth column of Aq. Let

Bq,r = Aq · · ·Ar for q ≥ r. Let 1 ≤ k ≤ ms. Let x,y ∈ Rm0. Let θ be the angle between x

and y such that 0 ≤ θ ≤ π. Then

ms∑
k=1

E
[
ReLU(xT (Bs,1)Teke

T
k (Bs,1)y)

]
= m1m2 · · ·ms

‖x‖ ‖y‖
π

(
(π − θ) cos θ + sin θ

)
.

Proof. We first work on the summand using Adam’s Law to split this expectation between

A1 and Bs,2:

E
[
ReLU(xT (Bs,1)Teke

T
k (Bs,1)y)

]
= E

[
E
[
ReLU(xT (Bs,1)Teke

T
k (Bs,1)y)|Bs,2

]]
. (4.6)

We focus on the inner expectation first. Let z = (Bs,2)Tek.

E
[
ReLU(xT (Bs,1)Teke

T
k (Bs,1)y)|Bs,2

]
= E

[
ReLU(xTAT1 (Bs,2)Teke

T
k (Bs,2)A1y)|Bs,2

]
= E

[
ReLU(xTAT1 zzTA1y)|Bs,2

]
By Lemma 4.2, we have that for orthonormal P and Q, PA1Q has the same distribution

as A1. Thus, we can replace A1 with PA1Q in the expectation for any particular choice of

P and Q. Choose P such that P Tz = ‖z‖ e1. And choose Q such that Qx = ‖x‖ e1 and

Qy = ‖y‖w where w = [cos θ, sin θ, 0, . . . , 0]T . These P and Q exist and can be constructed

with the Full QR decomposition algorithm. Specifically, P is the resulting orthonormal
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matrix from using Full QR on just the vector z, and Q is the transpose of the resulting

orthonormal matrix from using Full QR on [x|y].

Also note that ReLU(ax) = a · ReLU(x) for a ≥ 0.

E
[
ReLU(xTAT1 zzTA1y)|Bs,2

]
= E

[
ReLU(xTQTAT1 P

TzzTPA1Qy)|Bs,2

]
= ‖x‖ ‖y‖E

[
‖z‖2 |Bs,2

]
E
[
ReLU(eT1A

T
1 e1e

T
1A1w)|Bs,2

]
= ‖x‖ ‖y‖E

[
‖z‖2 |Bs,2

]
E[ReLU(a111(a111 cos θ + a112 sin θ))]

= ‖x‖ ‖y‖E
[
‖z‖2 |Bs,2

]
E
[
ReLU(a2

111 cos θ + a111a112 sin θ)
]

= ‖x‖ ‖y‖E
[
‖z‖2 |Bs,2

]
1

2π

∫
R2

ReLU(x2 cos θ + xy sin θ)e−
x2+y2

2 dxdy

= ‖x‖ ‖y‖E
[
‖z‖2 |Bs,2

]
1

2π

∫ 2π

0

∫ ∞
0

ReLU(r2 cos2 φ cos θ + r2 sinφ cosφ sin θ)e−
r2

2 rdrdφ

= ‖x‖ ‖y‖E
[
‖z‖2 |Bs,2

]
1

2π

(∫ ∞
0

r3e−
r2

2 dr
)(∫ 2π

0

ReLU(cos(2φ− θ) + cos θ)dφ
)

= ‖x‖ ‖y‖E
[
‖z‖2 |Bs,2

]
1

2π
(2)
(

2

∫ π
2

θ−π
2

cos(2φ− θ) + cos θdφ
)

= ‖x‖ ‖y‖E
[
‖z‖2 |Bs,2

]
1
π

(
(π − θ) cos θ + sin θ

)

Now we evaluate the outer expectation from Equation 4.6. Note that E
[
‖z‖2 |Bs,2

]
is

the only term that depends on Bs,2, so everything else factors out of the outer expectation.

Thus, we need only evaluate E
[
‖z‖2] since E

[
E
[
‖z‖2 |Bs,2

]]
= E

[
‖z‖2]. By Lemma 4.9, we

have

E
[
‖z‖2] = E

[
eTkBs,2(Bs,2)Tek

]
= m1m2 · · ·ms−1e

T
k ek

= m1m2 · · ·ms−1
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Thus we have the result

ms∑
k=1

E
[
ReLU(xT (Bs,1)Teke

T
k (Bs,1)y)

]
=

ms∑
k=1

m1m2 · · ·ms−1
‖x‖ ‖y‖

π

(
(π − θ) cos θ + sin θ

)
= m1m2 · · ·ms

‖x‖ ‖y‖
π

(
(π − θ) cos θ + sin θ

)
Corollary 4.12. Consider the statement of Lemma 4.13, except each element of Aq is dis-

tributed as N (0, σ2
q ), then

E
[
ReLU(xT (Bs,1)Teke

T
k (Bs,1)y)

]
= σ2

1σ
2
2 . . . σ

2
nm1m2 · · ·ms

‖x‖ ‖y‖
π

(
(π − θ) cos θ + sin θ

)
,

and when σq = (mqmq−1)−1/4, we have

E
[
ReLU(xT (Bs,1)Teke

T
k (Bs,1)y)

]
=

√
ms√
m0

‖x‖ ‖y‖
π

(
(π − θ) cos θ + sin θ

)
.

Proof. Note that if x ∼ N (0, 1), then σx ∼ N (0, σ2). Thus we need only scale the result

from Lemma 4.13 by the appropriate factor. Each matrix A1, . . . , As appears twice in the

expression, thus the factor is σ2
1σ

2
2 . . . σ

2
s , which immediately gives us the first result. Now

we make the substitution.

E
[
ReLU(xT (Bs,1)Teke

T
k (Bs,1)y)

]
= σ2

1σ
2
2 . . . σ

2
sm1m2 · · ·ms

‖x‖ ‖y‖
π

(
(π − θ) cos θ + sin θ

)
=

m1m2 · · ·ms√
m0m1 . . .ms−1

√
ms

‖x‖ ‖y‖
π

(
(π − θ) cos θ + sin θ

)
=

√
ms√
m0

‖x‖ ‖y‖
π

(
(π − θ) cos θ + sin θ

)
Theorem 4.13. Let θkl be the angle between xl0 and xk0. Then
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E

[
d

dλ
LM(0)

]
≈ − 1

s2

n∑
i=1

√
didi−1√
d0dn

s∑
k=1

s∑
l=1

∂
∂xl

n
L(xln)T ∂

∂xk
n
L(xkn)

‖xk
0‖‖xl

0‖
π

((π−θkl) cos θkl+sin θkl)

Proof. From Lemma 4.6, we have

E

[
d

dλ
LM(0)

]
= − 1

s2

n∑
i=1

s∑
k=1

s∑
l=1

E[αiklωikl]

Now we need only evaluate the summand. Here we make the only assumption in the

calculation of the first derivative expectation. We treat ∂
∂xl

n
L(xln) and ∂

∂xk
n
L(xkn) as random

variables. This is only reasonable for a network early in its training. That is when we expect

the network to produce meaningless output. We have that αikl depends only on Wi−1,1, and

under this assumption we have that ωikl depends only on Wn,i+1. Thus αikl is approximately

independent of ωikl

E[αiklωikl] ≈ E[αikl] E[ωikl]

By Lemma 4.12, we have

E[αikl] =

√
di−1√
d0

‖xk
0‖‖xl

0‖
π

((π − θkl) cos θkl + sin θkl).

By Lemma 4.10, we have

E[ωikl] =

√
di√
dn

∂
∂xl

n
L(xln)T ∂

∂xk
n
L(xkn).

Combining these with the summation gives

E

[
d

dλ
LM(0)

]
≈ − 1

s2

n∑
i=1

√
didi−1√
d0dn

s∑
k=1

s∑
l=1

∂
∂xl

n
L(xln)T ∂

∂xk
n
L(xkn)

‖xk
0‖‖xl

0‖
π

((π−θkl) cos θkl+sin θkl).
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4.6 Second Derivative Expectation

Now we get the expression for the second derivative.

Definition 4.14. Let H(x) be the hessian of the loss function with respect to x, so

H(x) = d2

dx2L(x)

We borrow the following convenient expressions used by Hettinger.

Definition 4.15. (Hettinger) Define the following scalar values

γijklm = (xl0)TW T
i−1,1

(
Hv(xli−1)Hv(xki−1) +Hv(−xli−1)Hv(−xki−1)

)
Wi−1,j+1(Wn,j+1)T d

dxm
n
L(xmn )

χijklm = d
dxm

n
L(xmn )TWn,j+1W

T
n,j+1H(xkn)Wn,i+1W

T
n,i+1

d
dxl

n
L(xln)

These scalar values are chosen because they form the most natural way to break down

the later computations.

Lemma 4.16. (Hettinger)

d2

dλ2
LM(0) =

2

s3

n∑
i=1

i−1∑
j=1

s∑
k=1

s∑
l=1

s∑
m=1

αjklγijklmωikl

+
1

s3

n∑
i=1

n∑
j=1

s∑
k=1

s∑
l=1

s∑
m=1

αjkmχijklmαikl

Proof. See Hettinger’s Lemma 4.16 [1]. In his proof, Hettinger starts with

d2

dλ2
LM(0) =

1

s

s∑
k=1

d
dxk

n
L(xkn)T

(
d2

dλ2
xkn(0)

)
+

1

s

s∑
k=1

( d
dλ

xkn(0)
)T
H(xkn)

( d
dλ

xkn(0)
)
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and proceeds to show

1

s

s∑
k=1

d
dxk

n
L(xkn)T

(
d2

dλ2
xkn(0)

)
=

2

s3

n∑
i=1

i−1∑
j=1

s∑
k=1

s∑
l=1

s∑
m=1

αjklγijklωikl

and

1

s

s∑
k=1

( d
dλ

xkn(0)
)T
H(xkn)

( d
dλ

xkn(0)
)

=
1

s3

n∑
i=1

n∑
j=1

s∑
k=1

s∑
l=1

s∑
m=1

αjkmχijklmαikl.

Lemma 4.17. (Hettinger) When a CReLU network is initialized with the Hettinger initial-

ization, the expected value of the first sum from Lemma 4.16 is zero.

E

[
1
s

s∑
k=1

d
dxk

n
L(xkn)T

(
d2

dλ2
xkn(0)

)]
= 0

Proof. See Hettinger’s Lemma 4.17 [1]. In his proof, Hettinger shows that E[αjklγijklωikl] = 0,

hence the entire first summation goes to zero.

Now we prepare to evaluate the expectation E[αjkmχijklmαikl], which is how we evaluate

the expectation of the second summation. The challenge in this evaluation comes from

the two α terms, which both contain a ReLU function. The full computation is broken

down in the following manner. To compute E[αjkmχijklmαikl], we use Adam’s Law to get

E[αjkmχijklmαikl] = E[χijklm E[αjkmαikl|χijklm]]. We work on E[αjkmαikl|χijklm] by taking the

expectation with respect to one weight matrix at a time. We start with Ai−1 as the base case,

which is solved in Lemma 4.19. The expectation with respect to each subsequent matrix

from Ai−2 to A1 is evaluated by applying Lemma 4.20 once per matrix. These two lemmata

are combined in Lemma 4.21, where we also use Hettinger’s work to finish the evaluation of

the outer expectation. The final result is given in Theorem 4.24.

Lemma 4.18. Let a, b ∼ N (0, 1) where a and b are independent. Then
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E[ReLU(ab)|a] = |a|√
2π

Proof. We prove by cases. If a ≥ 0, then

E[ReLU(ab)|a] = aE[ReLU(b)|a]

= a√
2π

∫ ∞
0

be−
b2

2 db

= a√
2π

= |a|√
2π

If a < 0, then

E[ReLU(ab)|a] = −aE[ReLU(−b)|a]

= −a√
2π

∫ 0

−∞
−be−

b2

2 db

= −a√
2π

= |a|√
2π

Thus E[ReLU(ab)|a] = |a|√
2π

Lemma 4.19. Let A ∈ Rq×s. Let all of the elements of A be independent and identically

distributed as the standard normal distribution. Let x,y, z ∈ Rs such that x, y, and z are

mutually orthogonal. Let u,v ∈ Rq. Let θ be the angle between u and v.

E
[
ReLU(xTATuuTAy)ReLU(xTATvvTAz)

]
=
‖x‖2 ‖y‖ ‖z‖ ‖u‖2 ‖v‖2

2π2

(
(π−2θ) cos θ+2 sin θ

)
Proof. By Lemma 4.2, we have that for orthonormal P and Q, PAQ has the same dis-

tribution as A. Thus, we can replace A with PAQ in the expectation for any particu-
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lar choice of P and Q. Choose P such that P Tu = ‖u‖ e1 and P Tv = ‖v‖w where

w = [cos θ, sin θ, 0, . . . , 0]T . And choose Q such that Qx = ‖x‖ e1, Qy = ‖y‖ e2, and

Qz = ‖z‖ e3. These P and Q exist and can be constructed by a Full QR decomposition.

Specifically, P is the orthonormal matrix resulting from the Full QR decomposition of the

matrix [u|v]. And Q is the transpose of the orthonormal matrix resulting from a Full QR De-

composition of the matrix [x|y|z]. In particular, note that this Q has the specified property

because we assume that x, y, and z are mutually orthogonal.

Also, let A = [a1|a2| · · · |as]

E
[
ReLU(xTATuuTAy)ReLU(xTATvvTAz)

]
= E

[
ReLU(xTQTATP TuuTPAQy)ReLU(xTQTATP TvvTPAQz)

]
= ‖x‖2 ‖y‖ ‖z‖ ‖u‖2 ‖v‖2 E

[
ReLU(eT1A

Te1e
T
1Ae2)ReLU(eT1A

TwwTAe3)
]

= ‖x‖2 ‖y‖ ‖z‖ ‖u‖2 ‖v‖2 E
[
ReLU(a11a12)ReLU(aT1 wwTa3)

]
= ‖x‖2 ‖y‖ ‖z‖ ‖u‖2 ‖v‖2 E

[
E[ReLU(a11a12)|a1, a3]ReLU(aT1 wwTa3)

]

In the last step we applied Adam’s Law. We now examine the inner expectation E[ReLU(a11a12)|a1, a3].

Since all elements are mutually independent, we know E[ReLU(a11a12)|a1, a3] = E[ReLU(a11a12)|a11].

Thus by Lemma 4.18, E[ReLU(a11a12)|a1, a3] = |a11|√
2π

.

Let Q2 be an orthonormal matrix such that QT
2 w = e1 and QT

2 e1 = w. This Q2 can be

constructed as a Householder Reflector that takes w to e1. This works since w is already of
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unit length. Thus by Lemma 4.2, we replace A with Q2A

E
[
E[ReLU(a11a12)|a1, a3]ReLU(aT1 wwTa3)

]
= 1√

2π
E
[
|a11|ReLU(aT1 wwTa3)

]
= 1√

2π
E
[∣∣eT1Ae1

∣∣ReLU(eT1A
TwwTAe3)

]
= 1√

2π
E
[∣∣eT1Q2Ae1

∣∣ReLU(eT1A
TQT

2 wwTQ2Ae3)
]

= 1√
2π

E
[∣∣wTAe1

∣∣ReLU(e1A
Te1e

T
1Ae3)

]
= 1√

2π
E[|a11 cos θ + a21 sin θ|ReLU(a11a13)]

= 1√
2π

E[|a11 cos θ + a21 sin θ|E[ReLU(a11a13)|a11, a21]]

= 1
2π

E[|a11 cos θ + a21 sin θ| |a11|]

Now we can evaluate E[|a11 cos θ + a21 sin θ| |a11|] using polar coordinates.

E[|a11 cos θ + a21 sin θ| |a11|] = 1
2π

∫ 2π

0

∫ ∞
0

|r cosφ cos θ + r sinφ sin θ| |r cosφ| e−
r2

2 rdrdφ

= 1
2π

(∫ ∞
0

r3e−
r2

2 dr
)(∫ 2π

0

|cosφ cos θ + sinφ sin θ| |cosφ| dφ
)

= 1
π

(∫ 2π

0

|cos(φ− θ)| |cosφ| dφ
)

= 2
π

(∫ π
2

θ−π
2

cos(φ− θ) cosφdφ−
∫ θ+

π
2

π
2

cos(φ− θ) cosφdφ
)

=
1

π

(
(π − 2θ) cos θ + 2 sin θ

)
Thus

E
[
ReLU(xTATuuTAy)ReLU(xTATvvTAz)

]
=
‖x‖2 ‖y‖ ‖z‖ ‖u‖2 ‖v‖2

2π2

(
(π−2θ) cos θ+2 sin θ

)
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Lemma 4.20. Let A ∈ Rq×s (where q, s ≥ 3) be a random matrix such that aij ∼ N (0, 1).

Let x,y, z ∈ Rs such that x,y, and z are mutually orthogonal. Then

E
[
‖Ax‖2 ‖Ay‖ ‖Az‖

]
≈ ‖x‖2 ‖y‖ ‖z‖ q2

Proof. We start by apply Lemma 4.2 using an orthonormal Q which satisfies Qx = ‖x‖ e1,

Qy = ‖y‖ e2, and Qz = ‖z‖ e3. This Q exists because x,y, and z are mutually orthogonal,

and it can be constructed by applying the Full QR decomposition to the matrix [x|y|z].

Thus we can replace A with AQ in the expectation. Also let A = [a1| · · · |as]

E
[
‖Ax‖2 ‖Ay‖ ‖Az‖

]
= E

[
‖AQx‖2 ‖AQy‖ ‖AQz‖

]
= ‖x‖2 ‖y‖ ‖z‖E

[
‖Ae1‖2 ‖Ae2‖ ‖Ae3‖

]
= ‖x‖2 ‖y‖ ‖z‖E

[
‖a1‖2 ‖a2‖ ‖a3‖

]
= ‖x‖2 ‖y‖ ‖z‖E

[
‖a1‖2]E[‖a2‖] E[‖a3‖]

Since E[‖a2‖] = E[‖a3‖], we need only evaluate E
[
‖a1‖2] and E[‖a2‖].

E
[
‖a1‖2] = E

[
aT1 a1

]
= E

[
q∑
i=1

a2
i1

]

=

q∑
i=1

E
[
a2
i1

]
=

q∑
i=1

1

= q

For the second computation, we will use the following notation to deal with the spher-
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ical coordinates. Let Sn−1 be the hypervolume on the edge of the unit hypersphere in

n-dimensions. So Sn−1 = nπ
n
2

Γ(
n
2

+1)
= 2π

n
2

Γ(
n
2

)
. And let dSn−1 be the relevant jacobian when

integrating to get Sn−1, hence dSn−1 = sinn−2 φ1 sinn−3 φ2 · · · sinφn−2dφ1dφ2 · · · dφn−1.

E[‖a2‖] = E

[√
aT2 a2

]
= (2π)−

q
2

∫
Rq

√
aT2 a2e

−
aT
2 a2

2 da2

= (2π)−
q
2

∫
Rq

√
r2e−

r2

2 rq−1drdSq−1

= (2π)−
q
2

∫
dSq−1

∫ ∞
0

rqe−
r2

2 dr

= (2π)−
q
2Sq−12

q−1
2 Γ( q+1

2
)

=

√
2Γ( q+1

2
)

Γ( q
2
)

≈ √q

Thus

E
[
‖Ax‖2 ‖Ay‖ ‖Az‖

]
= ‖x‖2 ‖y‖ ‖z‖E

[
‖a1‖2]E[‖a2‖] E[‖a3‖]

≈ ‖x‖2 ‖y‖ ‖z‖ (q)(
√
q)(
√
q)

= ‖x‖2 ‖y‖ ‖z‖ q2

Lemma 4.21. Let m0, . . . ,mn ∈ N. For 1 ≤ q ≤ n, let Aq be an mq ×mq−1 matrix. Let

all of the elements of Aq be independent and identically distributed as the standard normal

distribution. Denote by aqij the element in the ith row and the jth column of Aq. Let

Bq,r = Aq · · ·Ar for q ≥ r. Let 1 ≤ i ≤ j ≤ n, 1 ≤ k ≤ mi and 1 ≤ l ≤ mj. Let

x,y, z ∈ Rm0. Let w,v ∈ Rmn and let P ∈ Rmn×mn be symmetric. We must assume that

Bp,1x, Bp,1y, and Bp,1z are large and random enough to be approximated as orthogonal for all
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1 ≤ p ≤ i− 2. Similarly, we assume that (Bj−1,i)
Tel and ek are approximately orthogonal.

Define

X =
(
wTBn,j+1(Bn,j+1)TPBn,i+1(Bn,i+1)Tv

)
fij =

1

π2
‖x‖2 ‖y‖ ‖z‖

i−1∏
r=1

m2
r

gij =
2wTPv + Tr(P )wTv

3

n−1∏
r=j

mr(mr + 2) +
wTPv − Tr(P )wTv

3

n−1∏
r=j

mr(mr − 1)

hij =
1

3

j−1∏
r=i

mr(mr + 2) +
2

3

j−1∏
r=i

mr(mr − 1)

Then

mi−1∑
k=1

mj−1∑
l=1

E
[
ReLU

(
xT (Bi−1,1)Teke

T
kBi−1,1y

)
ReLU

(
xT (Bj−1,1)Tele

T
l Bj−1,1z

)
X
]
≈ fijgijhij

Proof. We first work on evaluating the summand by using Adam’s Law to split this expec-

tation.

E
[
ReLU

(
xT (Bi−1,1)Teke

T
kBi−1,1y

)
ReLU

(
xT (Bj−1,1)Tele

T
l Bj−1,1z

)
X
]

(4.7)

= E
[
E
[
ReLU

(
xT (Bi−1,1)Teke

T
kBi−1,1y

)
ReLU

(
xT (Bj−1,1)Tele

T
l Bj−1,1z

)
|Bn,i

]
X
]

(4.8)

We focus on the inner expectation first. To evaluate this expectation, we must first apply

Lemma 4.19 with the following assignments:

A := Ai−1 x := Bi−2,1x

u := ek y := Bi−2,1y

v := (Bj−1,i)
Tel z := Bi−2,1z

Then by applying Lemma 4.19, we get
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E
[
ReLU

(
xT (Bi−1,1)Teke

T
kBi−1,1y

)
ReLU

(
xT (Bj−1,1)Tele

T
l Bj−1,1z

)
|Bn,i

]
=
‖Bi−2,1x‖2 ‖Bi−2,1y‖ ‖Bi−2,1z‖ ‖Bj−1,iel‖2

2π2

(
(π − 2θ) cos θ + 2 sin θ

)
where θ is the angle between (Bj−1,1)Tel and ek. To proceed, we will assume that these

vectors are sufficiently large and therefore will very likely be close to orthogonal (see Lemma

4.3). Hence we will assume θ = π
2
. So this simplifies to

‖Bi−2,1x‖2 ‖Bi−2,1y‖ ‖Bi−2,1z‖ ‖Bj−1,iel‖2

π2

Now we evaluate the outer expectation from (4.8). We perform this expectation in an

iterated fashion, which relies on repeated use of Adam’s Law, such that we start evaluating

with Ai−2 and work sequentially down to A1. Here we must again make an assumption

regarding orthogonality, specifically we assume that Bp,1x, Bp,1y, and Bp,1z are mutually

orthogonal for all 1 ≤ p ≤ i − 2. Each iteration can be computed using Lemma 4.20 since

each Ap term is only found in ‖Bi−2,1x‖2 ‖Bi−2,1y‖ ‖Bi−2,1z‖. This iteration results in a

product.
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mi−1∑
k=1

mj−1∑
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ReLU

(
xT (Bi−1,1)Teke

T
kBi−1,1y

)
ReLU
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xT (Bj−1,1)Tele

T
l Bj−1,1z

)
X
]

≈ 1
π2

mi−1∑
k=1

mj−1∑
l=1

E
[
‖Bi−2,1x‖2 ‖Bi−2,1y‖ ‖Bi−2,1z‖ ‖Bj−1,iel‖2X

]
≈ 1

π2 ‖x‖2 ‖y‖ ‖z‖
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(
m2
p

)mi−1∑
k=1

mj−1∑
l=1

E
[
‖Bj−1,iel‖2X

]
= 1

π2 ‖x‖2 ‖y‖ ‖z‖
i−2∏
p=1

(
m2
p

)
mi−1 E

[
mj−1∑
l=1

‖Bj−1,iel‖2X

]

= 1
π2 ‖x‖2 ‖y‖ ‖z‖

i−2∏
p=1

(
m2
p

)
mi−1 E

[
‖Bj−1,i‖2

F X
]

= 1
π2 ‖x‖2 ‖y‖ ‖z‖

i−1∏
p=1

(
m2
p

)
E

[
‖Bj−1,i‖2

F

mi−1

X

]

= fij E

[
‖Bj−1,i‖2

F

mi−1

X

]

We can partially evaluate the remaining expectation by using Adam’s Law and then

applying Hettinger’s Lemma A.13 [1].

E

[
‖Bj−1,i‖2

F

mi−1

X

]

= E

[
‖Bj−1,i‖2

F

mi−1

(
wTBn,j+1(Bn,j+1)TPBn,i+1(Bn,i+1)Tv

)]

= E

[
‖Bj−1,i‖2

F

mi−1

E
[
wTBn,j+1(Bn,j+1)TPBn,i+1(Bn,i+1)Tv|Bj−1,i

]]

=
(2wTPv + Tr(P )wTv

3

n−1∏
r=j

mr(mr + 2) +
wTPv − Tr(P )wTv

3

n−1∏
r=j

mr(mr − 1)
)

E

[
‖Bj,i+1‖2

F

mj

‖Bj−1,i‖2
F

mi−1

]

= gij E

[
‖Bj,i+1‖2

F

mj

‖Bj−1,i‖2
F

mi−1

]
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At last, we can finish the remaining expectation by applying Lemma A.12 from Hettinger

[1], which states that

E

[
‖Bj,i+1‖2

F

mj

‖Bj,i−1‖2
F

mj−1

]
=

1

3

j−1∏
r=i

mr(mr + 2) +
2

3

j−1∏
r=i

mr(mr − 1) = hij.

Thus we have the result

mi−1∑
k=1

mj−1∑
l=1

E
[
ReLU

(
xT (Bi−1,1)Teke

T
kBi−1,1y

)
ReLU

(
xT (Bj−1,1)Tele

T
l Bj−1,1z

)
X
]
≈ fijgijhij

Corollary 4.22. Consider the statement of Lemma 4.21, except Aqij ∼ N (0, σ2
q ), then

mi−1∑
k=1

mj−1∑
l=1

E
[
ReLU

(
xT (Bi−1,1)Teke

T
kBi−1,1y

)
ReLU

(
xT (Bj−1,1)Tele

T
l Bj−1,1z

)
X
]

≈ σ4
1σ

4
2 . . . σ

4
n

σ2
i σ

2
j

fijgijhij

and when σq = (mqmq−1)−1/4, then

mi−1∑
k=1

mj−1∑
l=1

E
[
ReLU

(
xT (Bi−1,1)Teke

T
kBi−1,1y

)
ReLU

(
xT (Bj−1,1)Tele

T
l Bj−1,1z

)
X
]

≈
√
mimi−1mjmj−1

m0m2
1 . . .m

2
n−1mn

fijgijhij

Proof. Note that if x ∼ N (0, 1), then σx ∼ N (0, σ2). Thus we need only scale the result from

Lemma 4.21 by the appropriate factor. Each matrix A1, . . . , An appears four times in the

expression, with the exception that Ai and Aj only appear twice. Thus the factor is
σ4
1σ

4
2 ...σ

4
n

σ2
i σ

2
j

,

which immediately gives us the first result. Now we make the substitution σi = (mimi−1)−1/4.
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Definition 4.23. (Modified from Hettinger) Let N be an n-layer CReLU network with input

dimension d0 and layer widths d1, d2, . . . , dn. Let 1 ≤ i, j ≤ n.

φcd = 2
3

d−1∏
q=c

(
1 + 2

dq

)
+ 1

3

d−1∏
q=c

(
1− 1

dq

)
ψcd = 1

3

d−1∏
q=c

(
1 + 2

dq

)
− 1

3

d−1∏
q=c

(
1− 1

dq

)

Let a = min(i, j) and b = max(i, j). Define

Aklm = 1
π2

∥∥xk0∥∥2 ∥∥xl0∥∥ ‖xm0 ‖
Bij = φab − ψab

Cijklm = φbn
d
dxl

n
L(xln)TH(xkn) d

dxk
n
L(xkn) + ψbnTr(H(xln)) d

dxl
n
L(xln)T d

dxm
n
L(xmn )

Theorem 4.24. Assume that d
dxp

n
L(xpn) and H(xpn) may be treated as independent of the rest

of the network. Then in the notation of Definition 4.23, we have

E
[
d2

dλ2
LM(0)

]
≈

n∑
i=1

n∑
j=1

√
di−1didj−1dj

d0dn
1
s3

s∑
k=1

s∑
l=1

s∑
m=1

AjklBijCijklm.

Proof. We expressed the second derivative as a summation in Lemma 4.16. The first term

of the summation goes to zero as shown in Lemma 4.17. We must evaluate the expectation

on the second term, whose summand is E[αjkmχijklmαjkl]. First, we assume that we can
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treat d
dxp

n
L(xpn) and H(xpn) as independent of the rest of the network, like we did in Theorem

4.13. This is reasonable since the network output is meaningless on initialization. Then the

result is obtained in Corollary 4.22, though most of the calculations are shown in Lemma

4.19, Lemma 4.20, and Lemma 4.21. Numerous approximations are used to comes to this

formula, all of which pertain to the term Aklm.

Chapter 5. Testing

We now have estimates for E

[
d

dλ
LM(0)

]
and E

[
d2

dλ2
LM(0)

]
. From the earlier quadratic

approach with Newton’s method, we expect that the optimal learning rate is approximated

by

λoptimal ≈ −
E

[
d

dλ
LM(0)

]
E

[
d2

dλ2
LM(0)

] .
We now attempt to use this formula in a small scale setting. There are a few practical

challenges that we now deal with. Note that the approximation for E

[
d2

dλ2
LM(0)

]
has

five nested summations, and its term count is n2s3 for a network with n layers and s data

samples. This is computationally infeasible to evaluate for any interesting problem, and even

the toy problem will be troublesome. Therefore, we approximate the summation by sampling

uniformly over the indices and adding the samples. In doing so, the only adjustment we need

to make is scaling appropriately for the number of samples. This factor is n2s3

#samples
. We can

similarly estimate the first derivative by sampling and scaling by ns2

#samples
.

5.1 First Step Testing

For the dataset, we use the diabetes dataset which is commonly available for machine learn-

ing. It consists of only 8 features, shown in Table 5.1.

We choose this dataset partly because the features have no spatial connections, and
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Feature Description

Pregnancies Number of times pregnant
Blood Pressure Diastolic blood pressure
Glucose Plasma glucoes concentration
Skin Thickness Tricep skin fold thickness
Insulin 2-hour serum insulin
Diabetes Pedigree Function a score based on family history of diabetes
Age years
BMI Body mass Index
Diabetes Whether the patient has diabetes

Table 5.1: Data Features

therefore a fully connected network is a sensible choice. This is not the ideal dataset to work

with because it is low dimensional, but higher dimensional data would prove challenging

to run the tests on. Thus, we also choose this dataset for computational reasons. To test

the formula for a given network, we apply the sampling technique using 4,000 samples to

estimate the first and second derivatives.

In Figure 5.1, we compare the true optimal learning rate against the numerical estimate.

These numerical results fit pretty well with our expectations. Notice how smaller networks

have a large discrepancy between the true optimal value, and the estimated one. This is

expected because the calculation of the second derivative relies heavily on the fact that large

random vectors tend to be orthogonal. So the larger the network is, the more accurate the

estimate should become. Indeed, the graph shows a converging trend between the estimated

value and the true value.

The result is excellent validation for the provided formula, however, it necessarily a prac-

tical method. The primary challenge is that we are restricted to fully connected networks.

And while there are cases where fully connected networks are a good choice, those cases

almost always involve relatively small networks. Large fully connected networks are rather

uncommon, and that is the main case where this method of optimizing the learning rate is

applicable.
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Figure 5.1: Estimated vs True Optimal Learning Rates (Each dot is an estimated optimal
learning rate. Each plus is a true optimal learning rate. Each color is a different network
depth.)

5.2 More Steps

To this point, we have only considered how the learning rate impacts the first step of op-

timization. The analysis says nothing about the optimal learning rate after the first step,

but we will continue training with the same learning rate for a few more steps and com-

pare results to see how the optimal learning rate for the first step compares. In practice, a

learning rate schedule is chosen, which is usually based on the initial learning rate and the

amount of improvement in the loss, but we will use a constant learning rate since we are

only considering the first 5 steps.

Figure 5.2 shows the results of training for 5 steps on 4 different architectures. Each

graph corresponds to a specific network architecture. The green solid line shows the loss

when using the optimal learning rate computed above. Blue dotted lines correspond to

using smaller learning rates, while red dotted lines are larger than the optimal learning rate.
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Figure 5.2: Multiple Steps of Training (Each graph is a different architecture. Green line is
using the optimal learning rate. Red line is using a larger learning rate. Blue line is using a
smaller learning rate.)

All learning rates were chosen by multiplying or dividing the optimal rate by a power of two.

On average, we expect the green line to have the best (lowest) loss at step 1, and this

is true for two of the graphs above. The results suggest that the optimal learning rate is

somewhat unstable since the slope of the green line always increases after the first step, and

increasing the learning rate by at least a factor of two results in a growing loss. Therefore,

it seems the better choice is to pick a learning rate slightly smaller than the optimal rate.

This should produce more predictable improvement shown in the blue lines. This makes

the results seen in Figure 5.1 more interesting since it already suggests that we may want
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slightly smaller learning rates, especially in the case of smaller networks.

5.3 Further Research

To make this analysis more practical, it should be extended to other neural network architec-

tures. For example, the convolutional neural network has proven itself as a capable solution

to many computer vision problems. Analyzing this network type to estimate its optimal

learning rate could yield valuable results.

5.4 Conclusion

Researchers face significant challenges when analyzing and understanding neural networks.

My attempts to exactly evaluate the optimal learning proved fruitless, but making the right

approximations led to good results in the case we should care most about. Large networks

should be the focus when choosing approximations. This area of research is reminiscent of

statistical physics where a small set of approximations and tricks are used repeatedly to

obtain the results that only apply in the case of large systems. Similarly, we need tricks and

approximations that handle large networks.
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