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ABSTRACT

Application and Evaluation of Full-Field Surrogate Models
in Engineering Design Space Exploration

Christopher Murray Thelin
Department of Mechanical Engineering, BYU

Master of Science

When designing an engineering part, better decisions are made by exploring the entire
space of design variations. This design space exploration (DSE) may be accomplished manually
or via optimization. In engineering, evaluating a design during DSE often consists of running
expensive simulations, such as finite element analysis (FEA) in order to understand the structural
response to design changes. The computational cost of these simulations can make thorough DSE
infeasible, and only a relatively small subset of the designs are explored.

Surrogate models have been used to make cheap predictions of certain simulation results.
Commonly, these models only predict single values (SV) that are meant to represent an entire part’s
response, such as a maximum stress or average displacement. However, these single values cannot
return a complete prediction of the detailed nodal results of these simulations. Recently, surrogate
models have been developed that can predict the full field (FF) of nodal responses. These FF
surrogate models have the potential to make thorough and detailed DSE much more feasible and
introduce further design benefits. However, these FF surrogate models have not yet been applied
to real engineering activities or been demonstrated in DSE contexts, nor have they been directly
compared with SV surrogate models in terms of accuracy and benefits.

This thesis seeks to build confidence in FF surrogate models for engineering work by ap-
plying FF surrogate models to real DSE and engineering activities and exploring their comparative
benefits with SV surrogate models. A user experiment which explores the effects of FF surro-
gate models in simple DSE activities helps to validate previous claims that FF surrogate models
can enable interactive DSE. FF surrogate models are used to create Goodman diagrams for fa-
tigue analysis, and found to be more accurate than SV surrogate models in predicting fatigue risk.
Mode shapes are predicted and the accuracy of mode comparison predictions are found to require a
larger amount of training samples when the data is highly nonlinear than do SV surrogate models.
Finally, FF surrogate models enable spatially-defined objectives and constraints in optimization
routines that efficiently search a design space and improve designs.

The studies in this work present many unique FF-enabled design benefits for real engi-
neering work. These include predicting a complete (rather than a summary) response, enabling
interactive DSE of complex simulations, new three-dimensional visualizations of analysis results,
and increased accuracy.

Keywords: surrogate models, design space exploration, finite element analysis, fatigue life, modal
analysis, optimization
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CHAPTER 1. INTRODUCTION

On April 17, 2018, the left engine on Southwest Flight 1380 from LaGuardia to Dallas

experienced an uncontained engine failure. Debris from the engine tore through the wing and

fuselage. Tragically, the incident killed a passenger. Subsequent investigations showed that one

of the fan blades had broken at the root, with evidence indicating that metal fatigue had been the

cause of failure. A similar incident occurred in 2016 with a fan blade also failing due to metal

fatigue.

While the vast majority of engine parts do not fail catastrophically, the fatigue experi-

enced in these incidents indicate that the current design process is not always sufficiently thor-

ough. Vibration-related failures account for approximately 60% of aero-engine failures, making

the ability to accurately and easily predict failure due to fatigue an essential part of the jet engine

design process [1]. Moreover, as companies push designs for greater engine performance and effi-

ciency, it will become increasingly difficult to design parts that simultaneously meet aerodynamic,

structural, and weight demands [2]. This requires more extreme designs with smaller margins of

allowable error. For example, Pratt & Whitney has designed the geared turbofan (GTF) which

produces up to 16% more thrust [3]. However, because the fan blades must be simultaneously

light and strong, there is very little room for error. Margins of safety, part tolerances, and weight

allowances decrease. The extreme performance demands make the parts difficult to design, as well

as to repair. When parts are incorrectly manufactured, they must be scrapped and represent a sig-

nificant source of loss for these companies. Without additional tools for design, the likelihood of

parts failing will grow. Specifically, companies that are striving to push the current boundaries but

keep passengers safe need efficient and simpler methods for finding designs that achieve higher

performance but maintain sufficient strength.

In order to find the best designs possible, it is important to thoroughly explore the design

space. The design space is the collection of all possible design variations. Each design in the design
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space is uniquely defined by the value of its design parameters. When used with a parameterized

model, design space exploration (DSE) consists of varying these parameters and examining the

new designs. The new designs are used in engineering simulations to obtain results such as stress,

displacements, etc. The results of these simulations are considered the response to changes in the

design parameters.

Finite element analysis (FEA) is the most common form of simulation used in structural

engineering design [4]. These simulations are invaluable, but are computationally expensive (in

terms of time and computing resources). Although computing power has increased over time, sim-

ulations have also become more complex in order to meet the demands of a competitive aerospace

market [5]. Consequently, even with modern computing power, the quantity and complexity of

aerospace simulations that need to be performed continue to make their computational cost a lim-

iting factor for their use during the design process.

Surrogate models are a cheap and efficient solution to the computational expense of full

simulations. Surrogate models (also known as response surface models, metamodels, regression

models, or emulators [6]) create simplified mathematical relationships between inputs and outputs

of a system. The models can then use this relationship to predict the results of a simulation in

response to new input values. These surrogate models make it possible to evaluate many design

variations during DSE or optimization without the prohibitive cost of full simulations [7–12]. Their

convenience and speed when properly trained makes surrogate modeling a valuable part of engi-

neering design. While every surrogate has some degree of error, based on the particular method

and training samples used, generally some amount of bias error is acceptable when conducting

design space exploration early in a design process.

Most surrogate models map a set of inputs to a single output value. These types of surrogate

models will be referred to as single-value (SV) surrogate models. They cannot predict the full

response of an entire system, but instead predict a single value that represents the system (see Fig.

1.1 (top)). Often, the single values are used to summarize the quality of a design, such as the

maximum stress, aerodynamic coefficients, or the weight of the part. By only predicting single

values, the information SV surrogate models provide in an optimization routine is limited [7].

Single values provide little insight into the detailed differences between two complex objects [13],

such as the nodal results between FEA models. While values like the maximum stress and weight
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are important indicators of model quality, a good design is ideally determined by patterns and

relationships between the nodal results across the entire part.

In recent years, methods have been developed for using surrogate models to predict the

behavior of every node in an FEA simulation [14–16]. They generally take geometric parame-

ter values as inputs and predict the complete FEA results for a part. These methods give a much

more detailed and complete prediction of structural FEA results than SV surrogate model methods,

and enable a three-dimensional visualization of the structural results mapped onto the part geom-

etry. These surrogate models can be solved very quickly, allowing the predicted FEA response

to changes in parameter values to be shown in real time, where real time is defined as updated

responses appearing in under a second [14]. While they necessarily rely on more training data than

SV surrogate models (i.e., every node’s results instead of a single result for each training sample),

they also allow detailed full-field predictions.

Because this surrogate modeling method predicts an entire field of responses from an FEA

simulation, these will be referred to as full-field (FF) surrogate models. This work uses the ter-

minology of SV and FF surrogate modeling methods in order to provide a distinction between

these different types of surrogate models. The difference between SV and FF surrogate models is

illustrated in Fig. 1.1: while SV surrogate models only predict a single value, FF surrogate models

predict values for each node on a part.

If industry can confidently adopt the use of FF surrogate modeling methods into these

existing analyses, then these methods can begin to make a larger impact [17]. However, while FF

surrogate models show promise in terms of speed and accuracy [14–16], they have currently only

been used to predict steady stress contours. No studies have been published that test the claims that

FF surrogate models can enhance DSE activities and real engineering analyses. Steady stresses

are important in engineering design, but more complex analyses require fatigue life and modal

data. FF surrogates have not been applied to these types of data and analyses. The benefits of FF

surrogate models in these applications has been mostly speculative. In order to build confidence

in the abilities of FF surrogate models for real engineering design and DSE, they must be tested

in more complex analyses. Their accuracy and abilities compared to SV surrogate models in these

contexts must be explored. In this way, FF surrogate models can be further established as viable

alternatives or additions to SV surrogate models in engineering applications.
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Figure 1.1: (top) Single-value (SV) surrogate models only predict one value that represents the
response of the entire part across the design space. (bottom) Full-field (FF) surrogate models
predict the response of each node on the part across the design space.

The research objective of this thesis is to evaluate the accuracy and benefits of FF

surrogate models when used in real engineering applications and design space exploration.

This general objective is addressed by the following research questions:

RQ1 Can FF surrogate models be used reliably in real engineering and design space exploration

applications?

RQ2 How do FF surrogate models compare with SV surrogate models in these activities, espe-

cially in terms of accuracy and ability?

RQ3 What additional design benefits are gained by using FF surrogate models in the design pro-

cess?

These questions aim to promote confidence among engineers concerning the usefulness of FF

surrogate models for real engineering design, and reveal the associated benefits and shortcomings

of the method.
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1.1 Thesis Organization

The central chapters of this thesis (Chapters 2 - 5) present work that has been submitted for

publication by the author in a variety of academic engineering journals pertaining to FF surrogate

models in real engineering applications. In each, the various methods and examples are demon-

strated with a jet engine compressor blade model (the Purdue blade [18]). Although the methods

are generalized and could apply to any three-dimensional geometry and FEA model, the compres-

sor blade is used throughout for consistency and to take advantage of the expertise of the academic

and industry participants.

Chapter 2 contains a study that expands on previous work by testing the claims that FF

surrogate models enable enhanced interactive DSE experiences and demonstrates visualization

techniques that make DSE with FF surrogate models more efficient. Because the responses of the

entire design are obtained at low cost, it becomes possible to quickly compare different designs

across the design space; however, the cognitive load of making accurate comparisons is high.

A difference model visualization was created that updates dynamically as design parameters are

varied. The study describes the procedure and results for a set of user experiments that test how

human subjects perform when conducting design space exploration activities with and without

this visualization. The results show that the interactive exploration and visualizations enabled

by FF surrogate models do provide enhanced results for some design comparison activities. The

interactive difference model for comparing FEA results is presented as a benefit gained by using

FF surrogate models in the design process. The majority of this chapter has been accepted for

publication in the journal Information Visualization.

Chapter 3 investigates the effect of calculating values based on two distinct sets of FF sur-

rogate model predictions. FF surrogate models are used to predict steady and alternating stresses.

These stresses are mapped onto a Goodman (or Haigh [19]) diagram, a common engineering tool

for predicting the fatigue life and risk of a structural part under cyclical loading [20, 21]. The

predicted stresses are used to calculate various measures of fatigue safety on the Goodman dia-

gram. The accuracy of these values are then compared to those obtained via SV surrogate models.

It is determined that FF surrogate models predict the information with comparable-to-improved

accuracy compared to SV surrogate models, making them valuable in this type of analysis. Var-

ious benefits associated with using the full nodal predictions are explored which allow designers
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to avoid overconservative design and more intuitively understand the interaction between design

parameters and fatigue response. A dynamically updating Goodman diagram is presented for in-

teractive DSE of fatigue life data. The content of this chapter has been submitted for publication

to the Journal of Mechanical Design and is under review as of July 2019.

Chapter 4 investigates cases where a calculation combines all the nodal results of a FF pre-

diction and all the nodal results of an actual simulation. FF surrogate models are used to predict

and compare modal displacements, or mode shapes. The modal assurance criterion (MAC) equa-

tion is the most common method of measuring similarity between two mode shapes from different

designs [10, 22, 23]. The accuracy of the MAC predictions from FF and SV surrogate modeling

methods is studied across different modes and training sample sizes. It is concluded that, when the

data is highly nonlinear across a design space, the FF surrogate models struggle to predict results

with the accuracy of SV surrogate models, and require an extremely high amount of samples. The

considerations and methods associated with using FF surrogate models for modal data are detailed.

If properly trained, various benefits related to flexibility and full visualizations are made uniquely

possible by FF surrogate models. The content of this chapter has been submitted for publication to

the journal of Mechanical Systems and Signal Processing and is under review as of July 2019.

Chapter 5 applies FF surrogate models in optimization routines for more efficient DSE.

Because the FF surrogate models make predictions for each node on a three-dimensional model,

each value in the prediction of a design has some geometric or spatial relationship to the others.

These values enable spatially-defined constraints and objectives that allow a designer to better con-

trol the optimization of the design with respect to the three-dimensional response pattern across

the part. The FF-enabled techniques are described and demonstrated with various examples. This

study illustrates further ways that FF surrogate models can offer enhanced design benefits, espe-

cially in design space exploration and optimization. This content will be submitted to the journal

of Structural and Multidisciplinary Optimization in August 2019.
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Table 1.1: Summary of chapter differences

RQ1: RQ2: RQ3:
Chapter Application vs SV? Benefits Predicted data General characteristics
2: Difference DSE N 3D comparative visualizations Steady stresses 1 set of predicted nodal data
model Interactive DSE for testing DSE enhancements

3: Goodman DSE Y Interactive fatigue DSE Steady stresses Nodal calculations using
Fatigue analysis Less conservative predictions Alt. stresses 2 sets of predicted nodal data

3D fatigue visualization for fatigue analysis

4: MAC DSE Y Flexible modal comparisons Modal Single calculation using
Modal analysis (high cost of training data) displacements 1 set of predicted nodal data

1 set of data from simulation
for modal comparisons

5: Optimization DSE Y Spatially-defined Steady stresses 1 set of predicted nodal data
Optimization optimization for DSE using optimization

Enhanced control
over optimization
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Table 1.1 displays a summary of the differences between the chapters. The Application

column describes which engineering design activities are contained in each chapter in response to

the first research question (RQ1). The third column describes whether or not the chapter attempts

to determine accuracy and capability comparisons with SV surrogate models, in response to the

second research question (RQ2). The Benefits column gives brief descriptions of the benefits

FF surrogate models add to the given engineering application in response to the third research

question (RQ3). The specific kind of nodal data that was predicted in each chapter is listed in

the fifth column. Finally, the sixth column shows a generalized way of describing the differences

between each chapter’s research.

Chapter 6 describes general conclusions from these four studies. These are followed by a

brief description of future work pertaining to this study. Relevant information from the individual

chapters is presented in the appendices.

8



CHAPTER 2. DIFFERENCE MODEL

Existing research has demonstrated that FF surrogate modeling is possible, and has alluded

that it can enable enhanced design space exploration and visualization [14]. This enhancement

is based on the premise that as more information is available, better conclusions can be drawn

about the subject [24]. However, a concentrated study on FF surrogate modeling in design space

exploration activities has not previously been published. Also, the ability to explore a design space

at interactive rates presents various challenges to the user. With the complete set of nodal results

available for every design rapidly displayed, the cognitive load of comparing one design to another

in meaningful ways becomes very high.

This chapter contains a study that has been accepted for publication in the journal Infor-

mation Visualization. It describes the basic method of creating FF surrogate models for interactive

design space exploration. It also answers the challenge of making meaningful design comparisons

by applying a difference modeling technique to the three-dimensional FEA result predictions. This

visualization clarifies the differences between two designs. The results of a user experiment are

described that uses the FF surrogate models for an interactive design space exploration of steady

stress contours on a jet engine compressor blade, and measures the effectiveness of using the dif-

ference model visualization for design comparisons. The comparative visualization techniques are

shown to help improve perception speed and accuracy when making various design comparisons

between two designs. This enables more efficient design space exploration as engineers compare

large numbers of complex objects, such as nodal compressor blade predicted by FF surrogate mod-

els in an interactive design space exploration.

While this chapter does not make comparisons with SV surrogate models, it does apply FF

surrogate models to real engineering activities (RQ1) and explore benefits of using FF surrogate

models in the design process (RQ3).
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2.1 Introduction

In engineering, design space exploration is an important process for finding optimal de-

signs [25]. The design space is the collection of all possible design variations. When used with

a parameterized model, the space may be explored by varying input parameters and running sim-

ulations at critical points. Results are then compared to each other with the goal of discovering

the interactions between parameters and outputs [26]. The structural results of a design (strength,

stiffness, etc.) are affected by the geometry, or the values of the design parameters. Engineers

can vary parameters until they achieve a set of parameter values that produces optimal structural

results (e.g., lower stresses, minimize displacement, or shift stress contours to a more desirable

configuration) [1].

Design space exploration involving structural results can be inhibited by the time required

for finite element analysis (FEA) and other analyses to solve. FEA is a simulation method which

approximates the shape of a model with a mesh of points called nodes, applies loads and boundary

conditions to the model, and then solves for results such as structural stress and displacements [4].

This process is meant to simulate how a part will respond to real-world conditions. These results

are produced for each individual node in the model. The speed of FEA is largely dependent on

model complexity [14], and models used in engineering disciplines such as aerospace can have

hundreds of thousands of nodes and anywhere from 5 to 50 parameters [27, 28]. The expense in

time and computer resources can cause designers to consider fewer designs during design space

exploration and limits the ability of simulations to facilitate exploration of design alternatives [26].

Surrogate modeling has recently been applied to this problem and allows designers to

quickly emulate and visualize structural FEA results across a design space [14–16]. Surrogate

models create a relationship between input data and output data. Instead of computationally ex-

pensive simulations, these relationships can predict responses very quickly with low cost [12]. The

surrogate model can be created, or trained, with the design parameters to a FEA model as inputs

and the response, such as the stress, at each node of a FEA model. This allows the surrogate model

to predict the complete stress response of the FEA model for new input parameter values, and indi-

cate the strength of a model without needing to solve new computationally expensive simulations.

These results can be obtained very quickly. With this process, designers may adjust the input

parameters to a model and see the predicted structural results displayed in a three-dimensional
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visualization immediately. Bunnell et al. [14] showed that this method can be applied to large,

complex models such as those used for turbomachinery compressor blade design.

These methods make thorough exploration of the design space for a part much more fea-

sible; however, even with the ability to visualize simulated FEA results in real-time, better tools

are needed to make it easier to visually compare one design to another [26]. With a large number

of possible designs in the design space as well as a vast number of points to compare between

three-dimensional structural results in each design, recalling the myriad differences becomes quite

difficult. When changes between two three-dimensional objects are small or subtle, the human

visual system has limited perception [29]. Designing visualizations to aid the user in making

such comparisons is a challenging, yet important, endeavor for discovery in science and engineer-

ing [30]. This is especially true for comparisons involving spatial three-dimensional data, where

spatial means the data has a meaningful three-dimensional length, width, height, etc.

According to the taxonomy for comparative visualization developed by Gleicher et al. [31,

32] and extended for spatial three-dimensional comparisons by Kim et al. [30], a side-by-side

comparison of results (juxtaposition) is useful and common. Unfortunately, when objects are large

with many points to compare, all the burden is placed upon the user’s memory and limits the ability

to make effective comparisons [30, 31]. One solution is to use an explicit encoding visualization,

such as displaying only the difference between the objects. This type of visualization provides

a much more focused comparison of the objects than juxtaposition alone and is useful when the

focus of the comparison is the relationship between two objects [30, 31]. Difference images and

difference models have been used in many diverse fields for comparison purposes [33–43]. These

visualizations often show the degree and location of differences between two objects or models

and strip away less essential information.

This research applies a type of difference modeling for visualizing the differences between

the structural results of two separate three-dimensional designs. This type of explicit encoding vi-

sualization will hereafter be used interchangeably with the phrase “difference model.” These differ-

ences are visualized to facilitate design comparison, particularly during design space exploration.

The difference between the value of each node on one design and the value of each corresponding

node on another design is computed using a simple node-by-node relationship [32]. The amount of
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change at each node is then displayed on the difference model, allowing the user to easily perceive

even slight differences.

It is expected that, when the difference model is displayed alongside the two designs, com-

bining the juxtaposition and explicit encoding methods of visualization in coordinated multiple

views, shortcomings in each type of visualization will be overcome [30,31]. With these visual ob-

stacles removed and differences clearly displayed, users could more quickly and more accurately

judge how changing design parameters affects a part design.

Although difference modeling and hybrid comparative visualizations are not new, Kim et

al. recently suggested that a valuable branch of research for comparative visualization includes not

only exploration of new visualizations but also user studies that help quantify the advantages of

various types of visualizations [30]. These user studies should include a variety of tasks and should

be used in real data analysis applications.

With these facts in mind, the contributions of this paper are to (1) present an application of

using a hybrid juxtaposition and explicit encoding (a difference model) visualization to facilitate

comparison between different designs in a design space for surrogate-modeled structural results,

and (2) conduct an experiment to help validate the claim that a hybrid visualization, rather than just

a juxtaposition visualization, for this type of application will improve speed and reduce error in

making meaningful comparisons between parts. The experiment tests the hypothesis for a variety

of tasks and information, including search and quantitative estimation, as suggested by Kim et

al. [30]. This research presents these results, which show evidence that the difference model does

improve performance in some types of design tasks, while for others it produces no statistically

significant advantages.

The scope of the application and experiments in this research is limited to showing the dif-

ference between the structural results of three-dimensional compressor blade finite element meshes

emulated by surrogate models, though this method could apply to a wide variety of engineering

part design spaces. The implementation presented uses a reference, or baseline, design as one

of the objects to be compared. Because the experiments in this research used random treatment

assignment (i.e., participants randomly were assigned a certain visualization method to test), sta-

tistical inferences about the causal effect of the difference model may be drawn from the results;

however, because the test subjects were self-selected volunteers (rather than by using random sam-
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pling methods of selection), general inferences about the larger engineering population are beyond

the scope of this research. This study provides useful data that supports conclusions about the ef-

fects of the visualization methods in this study, but further testing is required to make conclusions

about the effect across the population of all engineers.

This paper will proceed as follows: the surrogate modeling method used to create the data

for this research will be briefly covered, followed by an overview of how difference images and

difference models have been used in various fields for error visualization and other purposes. In

Section 3, the specific methods for creating the difference model will be discussed. In Section

4, the experiment design will be explained and results for each task will be presented. Finally,

conclusions are presented that show there is indeed evidence that the difference model improves

speed and accuracy for some comparison tasks and that the difference model can be a useful tool

in engineering design comparison.

2.2 Related Work

This section will give a brief overview of FEA and attempts to predict responses from finite

element analyses with surrogate modeling. This will include a discussion of how surrogate models

are created. Other work that covers different comparative visualization techniques fro complex

objects will also be presented.

2.2.1 Surrogate-modeled FEA

Finite element analysis is a common engineering tool for obtaining the response of a part

to a set of loading conditions, or forces [4]. FEA programs, such as ANSYS, take a two or three

dimensional model of a part and convert it into a mesh of distinct points, or nodes. The program

determines the response to the loads by solving equations at each node of the mesh. These re-

sponses could include values such as the amount of physical displacement or stresses at each node

caused by the loads on the part. The response values are assigned a color and mapped onto the

model’s geometry to create colored contours representing the response across the entire part (see

the example in Figure 2.1).
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Figure 2.1: An example of FEA results on a compressor blade shape

Surrogate modeling uses training data to create a relationship between inputs and outputs

to a system. The resultant relationship can then be used to predict the system’s response to a

new set of input values in a fraction of the time it takes to solve the original system [6, 12]. In

recent years, surrogate models have been used to emulate the stress and displacement response of

each node in a finite element mesh [14–16]. A variety of designs are created by using a design of

experiments (DOE) to find a set of designs that adequately fill the design space. For a model with

n input parameters, each design is represented by an n-dimensional vector [26]. Once the designs

are generated, FEA is performed for each design.

The input parameter values for each design constitute the inputs to the surrogate models,

and the FEA result values constitute the outputs. The surrogate models are used to model the

relationship between these and can then take in new parameter values to predict the response across

the part. These predicted results are assigned a color value based on the chosen color scale and

mapped onto a reconstructed visualization of the finite element mesh. This process allows a user

to change the parameters of a model and obtain visualized results up to 96% more quickly than

waiting for the full FEA process [14], allowing a user to conduct rapid design space exploration

with instant structural feedback. Being able to quickly visualize alternate designs in a design space

without the need to set up many independent models and wait for simulations to solve enables

faster and more creative exploration.

14



2.2.2 Comparative Visualization

Gleicher et al. developed various classifications of visualization techniques for facilitating

comparison [31]. These classifications have been used and expanded by others [30, 44], but the

basic categories have proven useful:

• Juxtaposition: a side-by-side comparison of two objects

• Superposition: two or more objects shown in the same space (also called ”Overlay”)

• Explicit encoding: computes a relationship between objects and represents the relationship,

not the original models, in space

Each has inherent strengths and weaknesses. Juxtaposition shows each object in its entirety

but places the burden of comparison on the user’s memory and perception as they look back and

forth between objects. This may be helped by linked camera views, etc. [30, 44]. Superposition

locates the parts together in space but suffers from occlusion. Explicit encoding directly shows a

desired relationship, such as the differences, which makes the user’s task quite easy, but results are

decontextualized from the original objects [30, 31].

When framing a comparative visualization problem, one must consider various challenges,

as described by Gleicher in a later study [32]:

1. Number of items to compare

2. The size/complexity of the objects to be compared

3. The size/complexity of the relationships

The most common form of comparison is between two different objects; comparison of three or

more can be incredibly difficult. Objects being compared can be large with many simple small dif-

ferences, small with very complicated differences, or any combination of these. Specifically, when

an object has only small, subtle differences, the challenge for the user to perceive and correctly un-

derstand these differences is greater. Finally, the relationships between the objects may be simple

or complex. Simple relationships include those where objects to be compared have corresponding

elements that may be checked element-by-element [32]. When dealing with comparisons between
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two three-dimensional shapes, the challenge of determining relationships becomes much more

difficult if there are no clear correspondences between points on one object to the other [32, 45].

Research has suggested that hybrid methods are advantageous when comparing displays of

three-dimensional data [30]. These can include coordinated multiple views or tightly integrated

combinations of various methods. These combinations help combine strengths and overcome

weaknesses. When combining juxtaposition and explicit encoding, the explicit encoding makes

the relationship between the juxtaposed views clear, and the juxtaposed views provide context for

the explicit encoding [31].

2.2.3 Comparative Visualization in Scientific Studies

There are many examples of how explicit encodings (or difference models and difference

images) assist researchers to make scientific comparisons in many fields. In biological studies,

these methods have been used to indicate increasing or decreasing accuracy of plant reflectance

models [36], exposing toxic leaf chemicals [39], automatically detect cells in the root of a plant

[41], and illustrating concentrations of ethanol vapor on a sensor [40]. In medical fields, difference

imaging can identify possible breast cancer in patients by taking two images of a patient in different

positions and comparing them [38]. In computer vision, a type of difference imaging is used for

motion detection by examining pixel differences between two consecutive frame images in a video

sequence [42] or calculating the magnitude and direction of change with optical flow vectors [43].

A type of comparative visualization common to scientific fields is error visualization. This

involves calculating the difference between an approximation and a ground truth in order to deter-

mine the error between the models. Explicit encodings may be used to map error values directly

onto a three-dimensional geometry, and allow a user to gain quick intuition about the reliability of

the model with respect to its geometric location and features.

A specific example of the use of difference modeling with three-dimensional models is the

program Metro. Here, a geometric mesh is loaded and then simplified for faster computation [46].

The differences in position between each node of the simplified mesh and of the original mesh are

computed, creating an error value for every node on the mesh. For example, a simplified mesh

that closely resembles the original mesh will have low error at all nodes. These error values are

represented with a hue and then displayed on the surface of the simplified mesh to indicate the

16



distance between where the node is and where it should be. This allows the viewer to see, at a

glance, where the simplified mesh geometry differs from the original and the degree of difference.

The result is visually similar to the stress contours found in typical FEA results, but the colors

represent varying degrees of signed error instead of stress. Using this visualization, engineers may

more easily make judgments about the quality of the simplified mesh.

Similarly, in a 2010 study concerning ocean floor mapping, models of varying fidelity

were created and then compared. The distance between each surface location on two different

models could be represented as a signed error (positive or negative height differences), which was

then converted to a range of colors and displayed on the geometry. This allowed the researchers

to determine whether the lower density meshes were reliable enough to use for further research

purposes.

Finally, a combination of juxtaposition and explicit encoding has been used in some com-

putational fluid dynamics (CFD) analyses to show the error between different models of a specific

flow scenario (e.g., a high vs a low resolution model) [34, 35]. The researcher may compare the

two models in their full representations via juxtaposition and then use the difference model, shown

to the side of the juxtaposed models, to clearly understand which locations have the most change

in accuracy.

While these examples do not use difference modeling in the context of design space ex-

ploration or structural results on three-dimensional models, they do illustrate how using explicit

encodings can help expose otherwise hidden results in a study. These studies use visualizations,

but do not attempt to analyze the visualization choices used. This research aims to not only apply

these methods to a unique type of aerospace analysis, but also examine the comparative visualiza-

tion benefits gained from the chosen visualizations.

2.3 Method

In this section, a method for applying a hybrid visualization to nodal results and the details

of its implementation is described.
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2.3.1 Visualization Considerations

This research uses a combination of juxtaposition and explicit encoding. The juxtaposition

represents the simplest way to compare two objects: side by side, with little to no extra insight to

relationships between the two objects. The explicit encoding directly computes and conveys the

differences between the two objects as positive or negative. This method is ideal for representing

whether stresses at specific locations have increased or decreased for different designs in a design

space due to changes in the parameters. By including both the juxtaposition and explicit encoding,

the visualization presents the original models to the engineer for examination, clearly shows the

differences, and does not suffer from decontextualization.

To address the challenges of comparative visualization set forth by Gleicher [32], it was de-

termined that, for this application, only two designs need be compared at a time. The entire design

space could be summarized by statistical methods, but insight into the significance of differences

is gained from looking at the full individual models [47]. The focus here is on direct structural

comparison, and looking at two sets of results at a time is sufficient.

In regards to object and relationship complexity, the three-dimensional objects being com-

pared may be quite large (each finite element model may be made up of thousands to hundreds

of thousands of nodes) and the parts of the objects being compared (the results at each node) are

comparatively very small. This increases the difficulty for the user to perceive such small areas

of change. However, Gleicher noted that when the relationships between parts are simple, such as

checking a set of data in an element-by-element fashion, the challenges are reduced [32].

Each different design in the design space is composed of different geometric parameter

values, so pairs of objects being compared in this application will have different shapes. Because of

this, it becomes harder to find ways to directly relate one point to another between the two objects

[45]. For this purpose, this application makes use of mesh morphing during the data generation

phase. Mesh morphing adjusts the nodes in an existing finite element mesh to a new shape, rather

than create a new mesh [48]. As the geometry changes, the relative positions and numbering of the

nodes in the finite element mesh are preserved. Thus, a consistent number and relative positioning

of nodes exists for each design in the design space, and any two designs have an exact set of

corresponding nodes and results to be compared. Thus, the relationships between nodal values on

the objects are simple as per Gleicher’s definition.
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2.3.2 Basic Setup

The juxtaposed views consist of two renderings of designs in the design space and their

structural results. When displayed, they look like the output of a FEA simulation. The camera

views are linked so that both designs are always in the same orientation. This has been done to

help the viewer make direct comparisons between both visualizations [30, 44].

The difference model, or explicit encoding visualization, is made by calculating the nodal

differences between two designs. The calculated nodal differences are assigned a color based on

the magnitude of the difference. This visualization maps these colors onto a third geometry. This

produces a separate, three-dimensional representation of the geometry that, instead of displaying

the results of a single design, shows the differences between the results of two designs. For the

purposes of this study, the geometry used for this rendering is the geometry of the first object to

be compared. Though this does not make the results entirely independent of the first object [31], it

does provide a clearer, more meaningful representation of the data than applying it to some other

geometry outside the comparison. The juxtaposed views are required for analysis of the geometric

differences, while the explicit encoding shows the mapped result differences.

The difference model uses the results for each node in the compared designs to calculate

difference values. These results could be stresses, displacements, temperatures, or any set of nodal

values across a mesh. In this paper, the displayed results will be von Mises stresses [49], which

are useful for determining problematic stress locations. Because each design in the design space

is built from the same parametric finite element mesh, there exists a result value for each node

in every possible design. Thus, no matter which two designs are compared, there also exists a

difference value for every node in the mesh.

To render these difference values to the difference model geometry, they must be assigned

a color that aids the designer in perceiving the changes that have occurred. The signs of these

differences can be determined by calculating whether results at each node on the second design

being compared have increased or decreased in relation to the first design. For example, the result

values that have increased from the first to the second design can be represented with varying

degrees of warm colors, e.g. orange and red. Values that have decreased can use varying degrees

of cool colors, e.g. teal and blue. Values that have not significantly changed can be colored a

neutral color, such as white. The threshold for significance can be chosen by the user. An example
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Figure 2.2: The difference model’s color scale and the difference model

of these colors is shown in Figure 2.2. The result is a “double-ended” color scale which indicates

whether results have increased or decreased by varying degrees, with warm and cool colors at the

extremes and colors tending from bold to neutral as the differences decrease in magnitude.

The difference model communicates the differences between the two designs more pre-

cisely and more completely than a direct visual comparison of the designs [30, 31]. From observ-

ing the two original designs alone, many subtle—yet significant—differences are still difficult to

perceive or mentally judge. The difference model can highlight exactly how much each node has

changed, where changes have occurred, and quickly provide the designer with a visual map of how

design changes affect the structural results between the two designs.

2.3.3 Implementation Details

In this implementation, a simple parametric geometry similar to a turbomachinery com-

pressor blade design is used. The geometry used in this study will be referred to as a “blade” for
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simplicity. It is controlled by three parameters: the height, the chord at the root, and the chord at

the tip. The root refers to the base and the tip refers to the top face. The leading edge faces the

direction of motion, and the trailing edge faces away. The chord refers to the distance from the

trailing edge to the leading edge. Unless otherwise specified, the trailing edge will be located on

the right hand side of all figures in this paper, and the tip will be oriented towards the top of the

figures. Each of these three parameters have a baseline value of 3.0 in (7.62 cm) and can vary by

10% (0.3 in) in either direction, creating a range of 2.7 in to 3.3 in (6.86 cm to 8.38 cm). The

design space is three-dimensional, with each axis representing a different parameter between the

values of 2.7 and 3.3.

This geometry and the associated nodal stress responses were obtained by creating surro-

gate models using the process outlined by Bunnell et al. [14]. A design of experiments was used

to obtain a set of designs that would suitably fill the design space. In ANSYS, these designs were

given loading conditions of a fixed constraint of the root face and a load on the tip’s edge. These

were solved for each design, and the results for each node were used to train radial basis surrogate

models.

At this point, the three parameters’ values may be changed by the user, and the new nodal

stresses are calculated by the surrogate models fast enough for the visualization to update without

the user noticing any delay. Because the surrogate models were trained to respond to parameter

values from 2.7 to 3.3, parameter values outside this range are not guaranteed to produce accurate

results.
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Figure 2.3: From left to right: the shared stress color scale, the new design, the nominal design,
the difference model, and the difference model color scale.
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