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ABSTRACT

High Order Numerical Methods for Problems in Wave Scattering

Dane Scott Grundvig
Department of Mathematics, BYU

Master of Science

Arbitrary high order numerical methods for time-harmonic acoustic scattering problems orig-
inally defined on unbounded domains are constructed. This is done by coupling recently devel-
oped high order local absorbing boundary conditions (ABCs) with finite difference methods for
the Helmholtz equation. These ABCs are based on exact representations of the outgoing waves
by means of farfield expansions. The finite difference methods, which are constructed from a
deferred-correction (DC) technique, approximate the Helmholtz equation and the ABCs to any de-
sired order. As a result, high order numerical methods with an overall order of convergence equal
to the order of the DC schemes are obtained. A detailed construction of these DC finite difference
schemes is presented. Details and results from an extension to heterogeneous media are also in-
cluded. Additionally, a rigorous proof of the consistency of the DC schemes with the Helmholtz
equation and the ABCs in polar coordinates is also given. The results of several numerical exper-
iments corroborate the high order convergence of the proposed method. A novel local high order
ABC for elastic waves based on farfield expansions is constructed and preliminary results applying
it to elastic scattering problems are presented.

Keywords: acoustic scattering, elastic scattering, Helmholtz equation, high order numerical meth-
ods, variable wave number, heterogeneous media, deferred corrections
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CHAPTER 1. INTRODUCTION

The propagation and scattering of waves in the presence of impenetrable obstacles, in an un-

bounded medium, is an important problem to which significant efforts have been dedicated. How-

ever, there are still aspects of this problem that have not yet been satisfactorily solved. One of them

is the construction of easily implementable, reliable and stable high order numerical methods for

the accurate approximation of scattered waves. This is the subject of this work. The construction of

high order numerical methods is motivated by the need to obtain highly precise numerical solutions

at relatively low computational costs. I consider scattering in two different media. The majority

of my study is done for acoustic waves while I reserve the last part for the construction of a high

order local absorbing boundary condition (ABC) for the elastic waves in unbounded domains.

Regarding acoustic media, it is well-known [1, 2, 3, 4] that the accuracy of the numerical

methods for the Helmholtz equation (2.1) based on finite differences or finite elements deteriorates

rapidly when the wave number k increases. This phenomenon is known as pollution error. A com-

mon practice, to avoid this error for a given numerical method, consists of increasing the number

of points per wavelength PPW = λ/h, where λ is the wavelength and h represents the grid step

size. However, this approach becomes computational very costly as k increases. An alternative to

alleviate the computational cost is to employ high order numerical methods since they require less

points per wavelength to achieve the same accuracy level as their low order counterparts. This is

the approach followed in this work.

Among the most popular alternatives to finite difference methods are finite element (FEM) and

boundary element methods (BEM). These methods have their own advantages and shortcomings

when approximating the solutions of a boundary value problem (BVP). An important FEM ad-

vantage is their ability to deal with domains of arbitrary shape. However, high order convergence

usually requires a high number of degrees of freedom which normally leads to elevated compu-

tational cost. The BEM have the advantage that the Sommerfeld radiation condition is already

built into the numerical method, so there is no need to introduce an artificial boundary and define
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an ABC on it. In contrast, a major shortcoming of BEM is that they are limited to homogeneous

media. In this study, I opt for finite difference methods because they are easy to use and their

implementation is simple and flexible enough to be applied to heterogeneous media.

In the context of finite difference methods, there has been a lot of interest in high order numer-

ical methods in recent years. In fact, for interior problems modeled by the Helmholtz equation,

several fourth and sixth order numerical methods have appeared in the last 25 years. For instance,

Singer and Turkel [5, 6] developed compact fourth and sixth order methods in two dimensions

for constant wavenumber using Cartesian coordinates. Sutmann [7] devised a compact sixth or-

der method for Dirichlet boundary value problems (BVPs) and Nabavi et al. [8] for Neumann

BVPs. All of these compact numerical methods were obtained from the so called equation-based

[5] procedure. By applying it, they obtained their compact fourth and sixth order 9-point finite

difference formulas to approximate the two-dimensional Helmholtz equation in Cartesian coor-

dinates. It resembles the strategy followed by Collatz and Leveque in [9, 10], respectively, to

obtain the well-known compact 9-point finite difference formula for the two-dimensional Poisson

equation in Cartesian coordinates. More recently, Zhang et al. [11] derived a sixth order finite

difference scheme for the Helmholtz equation with inhomogeneous Robin boundary conditions in

two dimensions.

A major challenge of the volumetric numerical methods, such as finite element and finite dif-

ferences, when they are applied to wave scattering, is the need to transform a physical unbounded

domain into a bounded one, such that the solution of the new bounded problem approximates to a

reasonable degree the solution of the original unbounded problem in their common domain. This

requires the introduction of both an artificial finite boundary and an appropriate ABC defined on

this artificial boundary. One of the most important ABCs was introduced by Bayliss-Gunzburger-

Turkel in their celebrated paper [12]. This condition is denoted as BGT in the ABC literature.

Other well-known conditions in this category were introduced by Engquist-Majda [13], Feng [14]

and Li-Cendes [15]. These conditions, in turn, have inspired others. The drawback of the BGT and

the others mentioned is that to increase the order of the approximation at the boundary, the order
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of the derivatives present in their definitions also needs to be increased. This leads to impractical

ABCs due to the difficulty found in their implementations beyond the first two orders. Many other

ABCs have been formulated in recent years, for a complete review see the article by Givoli [16].

In this work, I adopt recently derived ABCs by Villamizar et al. [17]. These ABCs are based on

finite truncations of exact series representations of the scattered field in the farfield region. They

are also called farfield expansions ABCs. As a consequence, the order of the error induced by these

ABCs can be easily improved by simply adding as many terms as needed to the truncated farfield

expansions.

As far as the I know, overall high order finite difference methods for exterior time-harmonic

acoustic scattering have only been constructed up to fourth order [18, 19, 20]. In the present study,

I develop arbitrary high order finite difference schemes for the Helmholtz equation based on a

deferred-correction (DC) methodology (see [10] Section 3.5). Among the pioneer applications of

deferred-corrections to differential equations are the works by Pereyra [21, 22]. My construction

proceeds by coupling arbitrary high order DC finite difference schemes for the Helmholtz equation

with high order DC finite difference schemes corresponding to the arbitrary high order ABCs based

on farfield expansions, which were developed by Villamizar et al. in [17]. As a result of combining

these high order techniques (domain’s interior and boundary), I obtain an overall arbitrary high

order method for acoustic scattering. Of course, the arbitrary high order property of this method

is limited by the computer arithmetic and the computer resources available. The construction and

performance analysis of this overall and arbitrary high order finite difference method for acoustic

scattering problems is discussed in detail in the following sections.

An important aspect of this work is the successful application of these higher order methods to

wave scattering in heterogeneous media which is the content of Section 2.7. Also in Chapter 3, I

construct a novel local high order ABC for elastic waves based on farfield expansions and present

some preliminary results applying it to elastic scattering problems.
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CHAPTER 2. HIGH ORDER NUMERICAL METHODS

FOR ACOUSTIC SCATTERING

2.1 HIGH ORDER LOCAL ABSORBING BOUNDARY CONDITIONS (ABC)

When considering acoustic scattering, a classical strong formulation, when a time-harmonic in-

cident wave, uinc, is scattered from an obstacle with a boundary Γ embedded in an unbounded

acoustic region Ω, consists of finding the acoustic scattered pressure field, u ∈ C2(Ω)∩C(Ω) such

that

∆u+ k2u = f in Ω, (2.1)

u = −uinc or ∂nu = −∂nuinc, on Γ, (2.2)

lim
r→∞

r(δ−1)/2 (∂ru− iku) = 0, (2.3)

where ∆ denotes the Laplace operator, ∂n is the normal derivative and i is the imaginary unit.

Both the wavenumber k and the source term f may vary in space. Here, I will consider the case

where f has compact support in a bounded region Ω− ⊂ Ω that is bounded internally by Γ and

externally by a circle of radius R. On Γ, I will study two boundary conditions at the scatterer,

either the first equation in (2.2) corresponding to the sound-soft Dirichlet condition, or, the second

equation in (2.2) corresponding to the sound-hard Neumann condition. Equation (2.3) is known as

the Sommerfeld radiation condition, where r = |x| and δ = 2 or 3 for two or three dimensions,

respectively.

Definition 2.1. A solution u of the two-dimensional Helmholtz equation (2.1), exterior to a circle

r = R which also satisfies the Sommerfeld radiation condition (2.3) is called an outgoing wave.

All outgoing waves in 2D can be represented by two infinite series in powers of 1/kr whose

representation is provided by the following theorem due to Karp.
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Theorem 2.2. [23] Let u be an outgoing solution of the two-dimensional Helmholtz equation in

the exterior region to a circle r = R. Then u can be represented by a convergent expansion

u(r, θ) = H0(kr)
∞∑
l=0

Fl(θ)

(kr)l
+H1(kr)

∞∑
l=0

Gl(θ)

(kr)l
, r ≥ R. (2.4)

This series is uniformly and absolutely convergent for r > R and can be differentiated term by

term with respect to r and θ any number of times.

Here, r and θ are polar coordinates. The functions H0 and H1 are Hankel functions of the first

kind of order 0 and 1, respectively. Karp also claimed that the terms Fl and Gl (l = 1, 2, . . . )

can be computed recursively from F0 and G0. To accomplish this, he suggested the substitution

of the expansion (2.4) into Helmholtz equation in polar coordinates and the use of the identities:

H ′0(z) = −H1(z) and H ′1 = H0(z)− 1
z
H1(z). In fact, by doing this and requiring the coefficients

of H0 and H1 to vanish, a recurrence formula for the coefficients Fl and Gl for the expansion (2.4)

can be derived. This result is stated in the following corollary.

Corollary 2.3. The coefficients Fl(θ) and Gl(θ) (l > 1) of the expansion (2.4), can be determined

from F0(θ) and G0(θ) by the recursion formulas

2lGl(θ) = (l − 1)2Fl−1(θ) + d2
θFl−1(θ), for l = 1, 2, . . .

2lFl(θ) = −l2Gl−1(θ)− d2
θGl−1(θ), for l = 1, 2, . . . .

These formulas have led to the derivation of several high order local ABCs for time-harmonic

acoustic scattering. Of particular note is the work of Bayliss-Gunzburger-Turkel [12] in developing

their well-known BGT absorbing boundary condition. In their pioneering work, they began by

developing an asymptotic expansion of (2.4) given by,

u ≈ eikr√
kr

∞∑
l=0

fl(θ)

rl
, as r →∞, (2.5)

5



with recursion formula

2ilfl(θ) = (l − 1

2
)2fl−1(θ) + ∂2

θfl−1(θ), l ≥ 1.

These equations can then be used to construct a sequence of local ABCs using a technique called

operator annihilation. The first of these local absorbing boundary conditions (ABCs) are defined

by the following differential operators:

B0u = ∂ru− iku ∈ O
(

1

r3/2

)
,

B1u = ∂ru− iku+
u

2r
∈ O

(
1

r5/2

)
,

B2u = ∂2
ru+

(
3

r
− 2ik

)
∂ru+

(
3

4r
− 3ik

)
u

r
− k2u ∈ O

(
1

r9/2

)
.

Although these ABCs are useful, there are some problems when using the higher order versions.

In fact, in order to use higher order versions, the number of terms required and the order of the

derivatives both increase with respect to the order. As a consequence, the ABCs constructed from

the operators Bi for i > 2 are numerically intractable.

After the appearance of this pioneer BGT absorbing boundary condition, many more followed.

Most of these ABCs were based on the same annihilating technique. To the best of my knowledge,

there are only two local high order ABC, that are numerically tractable, one of them is due to

Hagstrom and Hariharan [24]. Unfortunatley, this ABC is based on the series representation (2.5)

of the scattered field, which is only an asymptotic approximation to Karp’s exact representation.

The other one is due to Villamizar et al. [17] who use Karp’s expansion directly to define a more

precise and computational more efficient local ABC. This is the one that I will use in this work.

The details of its definition and implementation are considered in the next section.
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2.2 FORMULATION OF THE ACOUSTIC SCATTERING BVP WITH KARP’S FARFIELD

EXPANSION ABC

Instead of formulating an ABC using the BGT condition, Villamizar et al. [17] used a more direct

application of Karp’s exact expansion (2.4). This was done by first introducing a circular artificial

boundary S that encloses all scatterers, regardless of their particular shapes, and then by defining

high order local ABCs on the artificial boundary S. Note that the artificial boundary S divides

the domain into a bounded computational region Ω− enclosed by the obstacle boundary Γ and the

artificial boundary S, and the exterior unbounded region Ω+ = Ω\Ω̄−. Once this decomposition

of the domain is done, the original unbounded problem in Ω is reformulated as a bounded problem

in Ω− by matching the solution u inside Ω− with the karp’s semi-analytical series representation

(2.4) of the solution u in Ω+.

With the given parameters, a complete boundary value problem can be formulated using the

following equations:

∆u+ k2u = 0, in Ω−, (2.6)

u = −uinc, or ∂ru = −∂ruinc, in Γ, (2.7)

u(R, θ) = H0(kR)
L−1∑
l=0

Fl(θ)

(kR)l
+H1(kR)

L−1∑
l=0

Gl(θ)

(kR)l
, (2.8)

∂ru(R, θ) = ∂r

(
H0(kr)

L−1∑
l=0

Fl(θ)

(kr)l
+H1(kr)

L−1∑
l=0

Gl(θ)

(kr)l

)∣∣∣∣
r=R

, (2.9)

∂2
ru(R, θ) = ∂2

r

(
H0(kr)

L−1∑
l=0

Fl(θ)

(kr)l
+H1(kr)

L−1∑
l=0

Gl(θ)

(kr)l

)∣∣∣∣
r=R

, (2.10)

2lGl(θ) = (l − 1)2Fl−1(θ) + d2
θFl−1(θ), for l = 1, 2, . . . (2.11)

2lFl(θ) = −l2Gl−1(θ)− d2
θGl−1(θ), for l = 1, 2, . . . , (2.12)

where R is the radius of the circular artificial boundary S. Equations (2.6)-(2.7) guarantee that u is

an outgoing wave, however, with only those equations, there are not enough independent equations

to solve for the number of unknowns. To that end, two additional conditions, (2.8) and (2.9) which
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match the first and second derivatives of the interior outgoing wave with the Karp expansion at the

boundary R, are added. These equations allow for the computation of the unknown functions F0

and G0. To complete the problem, additional conditions in the form of equations (2.11) and (2.12)

are added. These equations come from Corollary 2.3 and allow Fl and Gl for l = 1, . . . , L − 1 to

be computed. Thus, the equations (2.8)-(2.12) constitute the novel Karp’s farfield expansion ABC

(KFE) constructed in [17].

As a note, I chose to limit my study to the two-dimensional Helmholtz equation in polar coordi-

nates for clarity in the formulation and presentation of the theoretical results. However, I anticipate

that an extension of the DC technique to the KFE-BVP in generalized curvilinear coordinates will

follow a similar pattern to that found in polar coordinates. I discuss this extension in the concluding

remarks in Section 4.

2.3 DERIVATION OF HIGH ORDER DEFERRED-CORRECTION (DC) NUMER-

ICAL METHODS

In the next subsections, the detailed formulation of the fourth order DC numerical scheme is given

for the Helmholtz equation in the domain Ω− bounded externally by the artificial boundary S

of circular shape with radius R. Similarly, I also develop the fourth order DC scheme for the

construction of the high order KFE imposed on the artificial boundary. Then I proceed to go over

the extension to arbitrary high order DC schemes.

2.3.1 Fourth order DC scheme for the Helmholtz equation in polar coordinates. First, I

consider that the domain Ω− can be covered by a polar grid with constant radial and angular

steps ∆r and ∆θ, respectively. The number of grid points in the radial and angular directions is

N,m > 1, respectively. For a given grid point (ri, θj), the discrete value of the scattered field is

denoted by ui,j = u(ri, θj). Notice that the pairs (ri, θ1) and (ri, θm+1) represent the same physical

point due to periodicity in the angular direction, thus ui,1 = ui,m+1 for i ≤ N . Thus, the grid

supports N ×m wavefield evaluations.
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I start with the standard centered second order finite difference method for the Helmholtz equa-

tion in polar coordinates given by

H2U2
ij ≡

U2
i+1,j − 2U2

i,j + U2
i−1,j

∆r2
+

1

ri

U2
i+1,j − U2

i−1,j

2∆r
(2.13)

+
1

r2
i

U2
i,j+1 − 2U2

i,j + U2
i,j−1

∆θ2
+ k2U2

ij = 0.

The symbol U2
ij is used to describe a discrete solution of (2.13). The super-index 2 states that

H2U2
ij = 0 is a consistent second order finite difference approximation of the Helmholtz equation

(2.6). Also, I consider a discrete function U2
ij which is a second order approximation to the exact

solution u of the Helmholtz equation (2.6) subject to the boundary conditions (2.7)-(2.12), i.e.,

U2
ij = u(ri, θj) + ∆r2v(ri, θj) + ∆θ2w(ri, θj) = u(ri, θj) + h2z(ri, θj), (2.14)

where v, and w and z are sufficiently smooth bounded functions on the closure of Ω− and h =

max{∆r,∆θ}. The computation of U2
ij is fully described in [17].

ApplyingH2 to u and evaluating it at (ri, θj) leads to

H2uij =
ui+1,j − 2ui,j + ui−1,j

∆r2
+

1

ri

ui+1,j − ui−1,j

2 ∆r
+

1

r2

ui,j+1 − 2ui,j + ui,j−1

∆θ2
+ k2uij

=
(
∆rθu+ k2u

)
ij

+
∆r2

12

(
(u4r)ij +

2

ri
(u3r)ij

)
+

∆θ2

12 r2
i

(u4θ)ij +O(∆r4) +O(∆θ4).

(2.15)

I seek to obtain a fourth order finite difference scheme for the Helmholtz equation by subtracting

the second order leading terms of the truncation error in the right hand side of (2.15) from the sec-

ond order standard scheme (2.13). This is followed by substitution of the partial derivatives of u,

present in these leading terms, by finite difference operators approximating these partial derivatives

of u to second order. They act on the previously computed discrete solution U2
ij of the standard

second order scheme (2.13) which approximates u to second order. This is the fundamental idea

in the formulation of the DC method proposed in this work for the Helmholtz equation. More pre-

9



cisely, the construction of the fourth order DC technique for the Helmholtz equation (2.6) subject

to the boundary conditions (2.7)-(2.12) consists of two steps:

Step 1: Obtaining a second order approximation U2
ij to the solution u, of the original BVP (2.1)-

(2.3).

Approximate the Helmholtz equation (2.6) by the standard centered second order 5-point

stencil scheme H2U2
ij = 0, defined in (2.13). Also, use appropriate one-sided second or-

der schemes to approximate all the other boundary differential operators contained in the

boundary conditions (2.7)-(2.12). Then, by solving the linear system that ultimately results

from the discretization of all the equations of the KFE-BVP, obtain a second order numerical

approximation U2
ij to the exact solution u, of the original BVP (see [17] for details).

Step 2: Formulation of the new fourth order finite difference DC numerical scheme for the Helmholtz

equation in terms of the U2
ij obtained in step 1.

The second step consists of approximating the continuous derivatives u4r, u3r, and u4θ in

(2.15) using standard centered second order finite differences acting on U2
ij as follows,

(u4r)ij ≈ D2
4rU

2
ij ≡

1

∆r4

[
U2
i−2,j − 4U2

i−1,j + 6U2
i,j − 4U2

i+1,j + U2
i+2,j

]
, (2.16)

(u3r)ij ≈ D2
3rU

2
ij ≡

1

∆r3

[
−1

2
U2
i−2,j + U2

i−1,j − U2
i+1,j +

1

2
U2
i+2,j

]
, (2.17)

(u4θ)ij ≈ D2
4θU

2
ij ≡

1

∆θ4

[
U2
i,j−2 − 4U2

i,j−1 + 6U2
i,j − 4U2

i,j+1 + U2
i,j+2

]
. (2.18)

I use the notationDp
qr to designate the pth order centered finite difference discrete operator of

the qth derivative with respect to r. Analogously, Dp
qθ designates the pth order centered finite

difference operator of the qth order derivative with respect to θ. Then by substituting (2.16)-

(2.18) into (2.15), I arrive to the new fourth order finite difference DC numerical scheme for

10



the Helmholtz equation given by

H4U4
ij ≡

U4
i+1,j − 2U4

i,j + U4
i−1,j

∆r2
+

1

ri

U4
i+1,j − U4

i−1,j

2∆r
+

1

r2
i

U4
i,j+1 − 2U4

i,j + U4
i,j−1

∆θ2
+ k2U4

ij

− ∆r2

12

(
D2

4rU
2
ij +

2

ri
D2

3rU
2
ij

)
− ∆θ2

12r2
i

D2
4θU

2
ij = 0.

(2.19)

Notice that the new finite difference scheme (2.19) for the unknown discrete function U4
ij con-

sists of the same 5-point stencil of the standard centered second order scheme. The difference is

that (2.19) has additional known terms given by

∆r2

12

(
D2

4rU
2
ij +

2

ri
D2

3rU
2
ij

)
+

∆θ2

12r2
i

D2
4θU

2
ij,

which are calculated from the second order numerical solution U2
ij of u already computed in the

first step.

Remark 1. At the artificial boundary r = R, I use appropriate second order one-sided finite dif-

ferences acting on U2
Nj to approximate the various derivatives present in the leading terms of the

truncation error in (2.15). They are defined in the following section.

In what follows, I state and prove my claim that the finite difference scheme (2.19) is a fourth

order approximation of the Helmholtz equation.

Theorem 2.4. The new DC numerical scheme (2.19), or equivalently,

H4U4
ij ≡ H2U4

ij −
∆r2

12

(
D2

4rU
2
ij +

2

ri
D2

3rU
2
ij

)
− ∆θ2

12r2
i

D2
4θU

2
ij = 0 (2.20)

is a consistent finite difference approximation of the Helmholtz equation in polar coordinates,

∆rθu+ k2u = urr +
1

r
ur +

1

r2
uθθ + k2u = 0

11



of order O(∆r4) + O(∆θ4) + O(∆r2∆θ2), if the continuous function u has derivatives of order

4 in its two variables r and θ; and if the discrete function U2
ij is a second order approximation of

u, i.e., there exists v(r, θ), and w(r, θ) sufficiently smooth and bounded functions on the closure of

Ω− such that

U2
ij = u(ri, θj) + ∆r2v(ri, θj) + ∆θ2w(ri, θj) = uij + ∆r2vij + ∆θ2wij. (2.21)

Before proving this theorem, I will prove the following lemma.

Lemma 2.5. ForU2
ij and u(r, θ) satisfying the hypotheses of Theorem 2.4, it holds that the standard

second order centered finite difference operators:

(i) D2
4r, as defined in (2.16), acting onU2

ij , is consistent with the derivative u4r of orderO(∆r2)+

O(∆θ2).

(ii) D2
3r, as defined in (2.17), acting onU2

ij , is consistent with the derivative u3r of orderO(∆r2)+

O(∆θ2)

(iii) D2
4θ, as defined in (2.18), acting onU2

ij , is consistent with the derivative u4θ of orderO(∆θ2)+

O(∆r2)

Proof. To prove (a), I apply D2
4r to U2

ij replaced by (2.21). This leads to

D2
4rU

2
ij = D2

4ruij + ∆r2D2
4rvij + ∆θ2D2

4rwij

= (u4r)ij +O(∆r2) + ∆r2(v4r)ij +O(∆r4) + ∆θ2(w4r)ij +O(∆θ2∆r2)

Therefore,

D2
4rU

2
ij = (u4r)ij +O(∆r2) +O(∆θ2)

and part (a) of the lemma is proved. The proofs of parts (b) and (c) are completely analogous.

12



Proof. (Proof of Theorem 2.4)

First, I rewriteH4U4
ij as

H4U4
ij =

(
D2

2rU
4
ij −

∆r2

12
D2

4rU
2
ij

)
+

1

ri

(
D2
rU

4
ij −

∆r2

6
D2

3rU
2
ij

)
+

1

r2
i

(
D2

2θU
4
ij −

∆θ2

12
D2

4θU
2
ij

)
+ k2Ūij.

Next, I applyH4 to u satisfying (2.21). This is followed by expressing each of the discrete deriva-

tives of u in terms of their corresponding continuous derivatives plus their leading order truncation

errors, which leads to

H4uij =

(
(urr)ij +

∆r2

12
(u4r)ij +O(∆r4)− ∆r2

12
D2

4rU
2
ij

)
+

1

ri

(
(ur)ij +

∆r2

6
(u3r)ij +O(∆r4)− ∆r2

6
D2

3rU
2
ij

)
+

1

r2
i

(
(uθθ)ij +

∆θ2

12
(u4θ)ij +O(∆θ4)− ∆θ2

12
D2

4θU
2
ij

)
+ k2uij.

Reordering the righthand side terms yields

H4uij = (urr)ij +
1

ri
(ur)ij +

1

r2
i

(uθθ)ij + k2uij −
∆r2

12

(
D2

4rU
2
ij − (u4r)ij

)
− ∆r2

6

(
D2

3rU
2
ij − (u3r)ij

)
− ∆θ2

12

(
D2

4θU
2
ij − (u4θ)ij

)
+O(∆r4) +O(∆θ4).

Then, by applying the statements of Lemma 2.5 to the above expression, I get

H4uij =
(
∆rθu+ k2u

)
ij

+O(∆r4) +O(∆θ4) +O(∆r2∆θ2),

which finishes the proof.

Therefore, the new numerical scheme (2.19) approximates the Helmholtz equation to fourth

order, while maintaining a 5-point stencil on the unknown discrete function U4
ij . This leads to a

significant improvement on precision with respect to the 5-point standard second order finite dif-
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ference at the same computational cost. Furthermore, there are important savings in the required

storage and computational time compared to the 9-point standard centered fourth order finite dif-

ference approximation of the Helmholtz equation, as shown by my results in Section 2.6. This is

the main virtue of the DC technique developed in this work.

2.3.2 Fourth order DC approximation at the artificial boundary. At the absorbing bound-

ary, the radial derivatives of the scattered field u, present in (2.9) and (2.10), are approximated

using standard centered second order finite differences. Then, to increase their accuracy to fourth

order via DC, I subtract from these standard finite differences their leading order truncation error

terms. Imitating the previous procedure employed for the Helmholtz equation at the interior points,

these leading order terms are approximated using a previously calculated second order numerical

solution U2
ij of the exact solution u of the BVP (2.6)-(2.12). As a result, I obtain the following

discrete non-homogeneous equations at the artificial boundary r = R:

U4
N+1,j − U4

N−1,j

2∆r
− ∂r

(
H0(kr)

L−1∑
l=0

F 4
lj

rl
+H1(kr)

L−1∑
l=0

G4
lj

rl

)
r=rN=R

=
∆r2

6
(Dl)2

3rU
2
N,j (2.22)

U4
N+1,j − 2U4

Nj + U4
N−1,j

∆r2
− ∂2

r

(
H0(kr)

L−1∑
l=0

F 4
lj

rl
+H1(kr)

L−1∑
l=0

G4
lj

rl

)
r=rN=R

=
∆r2

12
(Dl)2

4rU
2
N,j.

(2.23)

The forcing terms in (2.22) and (2.23) are defined from one-sided second order finite difference

approximations (Dl)2
3rU

2
N,j and (Dl)2

4rU
2
N,j of (u3r)Nj and (u4r)Nj , respectively. More precisely,

(Dl)2
3rU

2
N,j ≡

1

∆r3

[
1

2
U2
N−3,j − 3U2

N−2,j + 6U2
N−1,j − 5U2

N,j +
3

2
U2
N+1,j

]
(2.24)

(Dl)2
4rU

2
N,j ≡

1

∆r4

[
−U2

N−4,j + 6U2
N−3,j − 14U2

N−2,j + 16U2
N−1,j − 9U2

N,j + 2U2
N+1,j

]
. (2.25)

Notice that the equations (2.22)- (2.23) involve values of the discrete approximations, U4
ij and U2

ij ,

at the ghost points (rN+1, θj). The unknowns U4
N+1,j also appear in the fourth order approximation

of the Helmholtz equation (2.19) evaluated at i = N for j = 1 . . .m. I eliminate it by solving for
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U4
N+1,j in (2.22) and substituting it into (2.23), and into (2.19) evaluated at i = N . Similarly, the

ghost values U2
N+1,j are computed during the first step, i.e., as part of the numerical solution of the

second order scheme of the KFE-BVP (2.6)-(2.12).

Analogously, I construct deferred-correction fourth order recursion formulas by keeping the

second order terms of the truncation errors obtained by approximating the angular derivatives in

(2.11)-(2.12) using second order centered finite differences. In fact,

2lG4
lj − (l − 1)2F 4

l−1,j −
F 4
l−1,j+1 − 2F 4

l−1,j + F 4
l−1,j−1

∆θ2
= −∆θ2

12
D2

4θF
2
l−1,j, (2.26)

2lF 4
lj + l2G4

l−1,j +
G4
l−1,j+1 − 2G4

l−1,j +G4
l−1,j−1

∆θ2
=

∆θ2

12
D2

4θG
2
l−1,j, (2.27)

where F 2
l−1,j and G2

l−1,j , obtained in the first step, are second order approximations of Fl−1,j and

Gl−1,j which are part of the exact solution of the original scattering BVP. Also, the discrete differ-

ential operator D2
4θ is defined by equation (2.18) of the previous section.

Remark 2. The proofs that the finite difference formulas (2.22)-(2.23) and (2.26)-(2.27) approx-

imate their continuous counterparts to fourth order are very similar to the proof of Theorem 2.4.

Therefore, they are omitted. The key assumption for these proof is that the discrete functions

U2
N,j , F

2
l−1,j and G2

l−1,j , which are obtained in step 1, are second order approximations of u(R, θ),

Fl−1(θ), and Gl−1(θ), respectively.

Summarizing, the set of algebraic equations (2.19), (2.22)-(2.23), (2.26)-(2.27), the discrete

versions of the continuity of the scattered field (2.8) and the boundary condition at the obstacle

(2.7) form the fourth order Karp DC system of linear equations to be solved. I denote this system

as KDC4. Details on the structure and solution of this linear system are given in Section 2.5.

2.3.3 General high order DC schemes for the Helmholtz equation in polar coordinates. In

this Section, I extend the derivation of of the fourth order DC scheme for the BVP (2.6)-(2.12)

modeled by the Helmholtz equation in Subsections 2.3.1-2.3.2 to a scheme of arbitrary high order.

To start this derivation, I assume that U (p−2)
ij is a (p − 2)th order discrete approximation of the

solution u of the Helmholtz equation (2.6) subject to the boundary conditions (2.7)-(2.12). The
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details on the computation of this discrete approximation will be discussed later. Then, I apply

the standard centered second order finite difference approximation H2 of the Helmholtz operator

to the solution u and retain up to the (p − 2) leading order terms of the truncation errors of each

Helmholtz derivative. As a result, I obtain

H2uij =
ui+1,j − 2uij + ui−1,j

h2
+

1

ri

ui+1,j − ui−1,j

2h
+

1

r2

ui,j+1 − 2uij + ui,j−1

h2
+ k2uij =

−
(

1

3!ri
(u3r)ij +

2

4!
(u4r)ij +

2

4!r2
i

(u4θ)ij

)
h2

−
(

1

5!ri
(u5r)ij +

2

6!
(u6r)ij +

2

6!r2
i

(u6θ)ij

)
h4 . . .

−
(

1

(p− 1)!ri
(u(p−1)r)ij +

2

p!
(upr)ij +

2

p!r2
i

(upθ)ij

)
hp−2 +O(hp), (2.28)

where p = 4, 6, . . . , and h ≡ max{∆r,∆θ}.

I continue the construction of the pth order DC approximation to the Helmholtz equation by

imitating the one used to obtain the 4th order DC approximation (2.19). In fact, I proceed by sub-

tracting all of up to (p−2)th order error terms from the middle member of the equation (2.28). This

is followed by substituting the continuous derivatives present in these error terms, by appropriate

finite difference approximations of them acting on the (p−2)th order discrete approximation, Up−2
ij ,

of the exact solution u. More precisely, for q = 4, 6, 8, . . . , p, I replace the continuous derivatives

of the exact solution (uqr)ij ,
(
u(q−1)r

)
ij

, and (uqθ)ij in (2.28) by a (p + 2 − q)th order finite dif-

ference approximations given by Dp+2−q
qr Up−2

ij , Dp+2−q
(q−1)rU

p−2
ij , and Dp+2−q

qθ Up−2
ij , respectively. This

construction suggests the definition of the following pth order DC finite difference approximation
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to the Helmholtz differential operator,

HpUp
ij ≡

Up
i+1,j − 2Up

ij + Up
i−1,j

h2
+

1

ri

Up
i+1,j − U

p
i−1,j

2h
+

1

r2

Up
i,j+1 − 2Up

ij + Up
i,j−1

h2
+ k2Up

ij

−
(

1

3!ri
Dp−2

3r Up−2
ij +

2

4!
Dp−2

4r Up−2
ij +

2

4!r2
i

Dp−2
4θ Up−2

ij

)
h2

−
(

1

5!ri
Dp−4

5r Up−2
ij +

2

6!
Dp−4

6r Up−2
ij +

2

6!r2
i

Dp−4
6θ Up−2

ij

)
h4 − . . .

−
(

1

(p− 1)!ri
D2

(p−1)rU
p−2
ij +

2

p!
D2
prU

p−2
ij +

2

p!r2
i

D2
pθU

p−2
ij

)
hp−2. (2.29)

I claim that the equation, HpUp
ij = 0, is consistent with the Helmholtz equation (2.6) of order

O(hp). This is the content of my next theorem whose proof is provided below. The formulas for the

discrete differential operators acting on Up−2
ij , i.e., Dp+2−q

qr Up−2
ij , Dp+2−q

(q−1)rU
p−2
ij , and Dp+2−q

qθ Up−2
ij

for arbitrary p and q = 4, . . . p, can be obtained by applying computational algorithms such as

fdcoeffF.m written as a MATLAB function by Leveque [10]. As an illustrative example, I define

the operators needed to obtain a sixth order DC scheme, p = 6 and q = 4, 6 in the Appendix A.

Notice that the new finite difference operatorHp in (2.29) acts on the unknown discrete function

Up
ij , generating the same 5-point stencil of the standard centered second order discrete operatorH2.

The difference is in the additional known terms which depend on the numerical approximation

Up−2
ij of the exact solution u. They are given by

(
1

3!ri
Dp−2

3r Up−2
ij +

2

4!
Dp−2

4r Up−2
ij +

2

4!r2
i

Dp−2
4θ Up−2

ij

)
h2 + . . .

+

(
1

(p− 1)!ri
D2

(p−1)rU
p−2
ij +

2

p!
D2
prU

p−2
ij +

2

p!r2
i

D2
pθU

p−2
ij

)
hp−2.

Remark 3. Near the artificial boundary r = R, I use appropriate one-sided finite difference to

approximate the various derivatives present in the leading terms of the truncation error in (2.29).
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Theorem 2.6. The new DC numerical scheme,

HpUp
ij ≡ H2Up

ij −
(

1

3!ri
Dp−2

3r Up−2
ij +

2

4!
Dp−2

4r Up−2
ij +

2

4!r2
i

Dp−2
4θ Up−2

ij

)
h2

−
(

1

5!ri
Dp−4

5r Up−2
ij +

2

6!
Dp−4

6r Up−2
ij +

2

6!r2
i

Dp−4
6θ Up−2

ij

)
h4 − . . .

−
(

1

(p− 1)!ri
D2

(p−1)rU
p−2
ij +

2

p!
D2
prU

p−2
ij +

2

p!r2
i

D2
pθU

p−2
ij

)
hp−2 = 0, (2.30)

is a consistent finite difference approximation of the Helmholtz equation in polar coordinates

∆rθu+ k2u = urr +
1

r
ur +

1

r2
uθθ + k2u = 0

of orderO(hp), if the continuous function u has derivatives of order p in its two variables r and θ;

and if the discrete function Up−2
ij is a (p − 2)th order approximation of u, i.e., there exists z(r, θ)

sufficiently smooth and bounded on the closure of Ω− such that

Up−2
ij = u(ri, θj) + hp−2z(ri, θj), with h = max{∆r,∆θ}. (2.31)

The following lemma is the analogue of Lemma 2.5 for a p ordered scheme.

Lemma 2.7. For Up−2
ij and u(r, θ) satisfying the hypothesis of Theorem 2.6, it holds that the stan-

dard (p+ 2− q)th order centered finite difference operator:

(i) Dp+2−q
qr acting on Up−2

ij is consistent with the derivative uqr of order O(hp+2−q),

for q = 4, 6 . . . , p.

(ii) Dp+2−q
(q−1)r acting on Up−2

ij is consistent with the derivative u(q−1)r of order O(hp+2−q),

for q = 4, 6 . . . , p.

(iii) Dp+2−q
qθ acting on Up−2

ij is consistent with the derivative uqθ of order O(hp+2−q),

for q = 4, . . . , p.
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Proof. To prove (i), I apply Dp+2−q
qr to Up−2

ij and use (2.31). This leads to

Dp+2−q
qr Up−2

ij = Dp+2−q
qr uij + hp−2Dp+2−q

qr zij

= (uqr)ij +O(hp+2−q) + hp−2(zqr)ij +O(h2p−q)

Therefore,

Dp+2−q
qr Up−2

ij = (uqr)ij +O(hp+2−q), (2.32)

for q = 4, 6 . . . , p. The proofs of parts (ii) and (iii) follow the same pattern.

Now, I am ready to prove Theorem 2.6

Proof. (Proof of Theorem 2.6)

First, I rewriteHpUij as

HpUij =D2
2rUij −

2h2

4!
Dp−2

4r Up−2
ij − 2h4

6!
Dp−4

6r Up−2
ij − . . .− 2hp−2

p!
D2
prU

p−2
ij

+
1

ri

(
D2
rUij −

h2

3!
Dp−2

3r Up−2
ij − h4

5!
Dp−4

5r Up−2
ij − . . .− hp−2

(p− 1)!
D2

(p−1)rU
p−2
ij

)
+

1

r2
i

(
D2

2θUij −
2h2

4!
Dp−2

4θ Up−2
ij − 2h4

6!
Dp−4

6θ Up−2
ij − . . .− 2hp−2

p!
D2
pθU

p−2
ij

)
+ k2Uij.

Then applyingHp to u, which satisfy (2.31), and expanding the individual terms where the discrete
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operators act on uij results in

Hpuij = (urr)ij +
2h2

4!
(u4r)ij + . . .+

2hp−2

p!
(upr)ij +O(hp)

− 2h2

4!
Dp−2

4r Up−2
ij − . . .− 2hp−2

p!
D2
prU

p−2
ij

+
1

ri

(
(ur)ij +

h2

3!
(u3r)ij + . . .+

hp−2

(p− 1)!

(
u(p−1)r

)
ij

+O(hp)

−h
2

3!
Dp−2

3r Up−2
ij − . . .− hp−2

(p− 1)!
D2

(p−1)rU
p−2
ij

)
+

1

r2
i

(
(uθθ)ij +

2h2

4!
(u4θ)ij + . . .+

2hp−2

p!
(upθ)ij +O(hp)

−2h2

4!
Dp−2

4θ Up−2
ij − . . .− 2hp−2

p!
D2
pθU

p−2
ij

)
+ k2uij.

Reordering and appropriately combining terms yields

Hpuij = (urr)ij +
1

ri
(ur)ij +

1

r2
i

(uθθ)ij + k2uij

− 2h2

4!

(
Dp−2

4r Up−2
ij − (u4r)ij

)
− . . .− 2hp−2

p!

(
D2
prU

p−2
ij − (upr)ij

)
− h2

3!ri

(
Dp−2

3r Up−2
ij − (u3r)ij

)
− . . .− hp−2

(p− 1)!ri

(
D2

(p−1)rU
p−2
ij −

(
u(p−1)r

)
ij

)
− 2h2

4!r2
i

(
Dp−2

4θ Up−2
ij − (u4θ)ij

)
− . . .− 2hp−2

p!r2
i

(
D2
pθU

p−2
ij − (upθ)ij

)
+O(hp).

Thus, applying the statements of Lemma 2.7 to each of the expressions in parentheses yields

Hpuij =
(
∆rθu+ k2u

)
ij

+O(hp),

which finishes the proof.

2.3.4 Arbitrary order DC approximation for the KFE. Following the derivation described

in the previous three sections, I can obtain arbitrary order DC approximations for the KFE at the

grid points (rN , θj) by using appropriate one-sided finite difference for the derivatives present in

the truncation error terms. For instance, the definitions of the pth order approximations for (2.9)
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and (2.10) are natural extensions of (2.22)-(2.23). They consist of adding discrete approximations

to the continuous derivatives present in all the truncation error terms up to the pth order.

Up
N+1,j − U

p
N−1,j

2∆r
− ∂r

(
H0(kr)

L−1∑
l=0

F p
lj

rl
+H1(kr)

L−1∑
l=0

Gp
lj

rl

)
r=rN=R

(2.33)

=
h2

3!
(Dl)p−2

3r Up−2
ij +

h4

5!
(Dl)p−4

5r Up−2
ij + . . .+

hp−2

(p− 1)!
(Dl)2

(p−1)rU
p−2
ij

Up
N+1,j − 2Up

Nj + Up
N−1,j

∆r2
− ∂2

r

(
H0(kr)

L−1∑
l=0

F p
lj

rl
+H1(kr)

L−1∑
l=0

Gp
lj

rl

)
r=rN=R

(2.34)

=
2h2

4!
(Dl)p−2

4r Up−2
ij +

2h4

6!
(Dl)p−4

6r Up−2
ij + . . .+

2hp−2

p!
(Dl)2

prU
p−2
ij .

In the discrete equations (2.33)-(2.34), I employ (p + 2 − q)th order discrete finite difference

operators, (Dl)p+2−q
(q−1)r and (Dl)p+2−q

qr (for q = 4, 6, · · · , p) acting on the discrete function Up−2
ij

approximating u of order (p − 2)th. The use of Dl instead of D states that left one-sided finite

difference approximations of the corresponding continuous derivatives are used.

Analogously, I formulate pth order approximations of the recurrence formulas as

2lGp
lj − (l − 1)2F p

l−1,j −
F p
l−1,j+1 − 2F p

l−1,j + F p
l−1,j−1

∆θ2
(2.35)

= −2h2

4!
Dp−2

4θ F p−2
l−1,j −

2h4

6!
Dp−4

6θ F p−2
l−1,j − . . .−

2hp−2

p!
D2
pθF

p−2
l−1,j,

2lF p
lj + l2Gp

l−1,j +
Gp
l−1,j+1 − 2Gp

l−1,j +Gp
l−1,j−1

∆θ2
(2.36)

=
2h2

4!
Dp−2

4θ Gp−2
l−1,j +

2h4

6!
Dp−4

6θ Gp−2
l−1,j + . . .+

2hp−2

p!
D2
pθG

p−2
l−1,j,

where F p−2
l−1,j and Gp−2

l−1,j are part of the previously calculated (p− 2)th ordered numerical solution,

and the discrete operators Dp+2−q
qθ are centered finite difference operators. Summarizing, the set of

equations (2.29), (2.33)-(2.34), (2.35)-(2.36), the discrete version of the continuity of the scattered

field (2.8), and the appropriate discretization of the boundary condition at the obstacle (2.7) form

the pth order DC discrete system of equations to be solved. I denote this system as KDCp.
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2.4 STANDARD FOURTH ORDER NUMERICAL METHOD FOR THE KFE-BVP

In this section, I formulate a standard fourth order numerical method for the KFE-BVP (2.6)-(2.12)

in polar coordinates. This constitutes an alternative high order method for this BVP. In Section 2.6,

I compare it with the DC fourth order method and assess convergence, accuracy and computational

efficiency of both. This fourth order method is also a natural extension of the standard second order

finite difference method, carefully constructed in [17], where the KFE was first introduced.

I begin by considering the centered 9-point standard finite difference scheme for the Helmholtz

equation in polar coordinates,

H9Ū
4
ij ≡

−Ū4
i+2,j + 16Ū4

i+1,j − 30Ū4
i,j + 16Ū4

i−1,j − Ū4
i−2,j

12∆r2

+
1

ri

(
−Ū4

i+2,j + 8Ū4
i+1,j − 8Ū4

i−1,j + Ū4
i−2,j

12∆r

)

+
1

r2
i

(
−Ū4

i,j+2 + 16Ū4
i,j+1 − 30Ū4

i,j + 16Ū4
i,j−1 − Ū4

i,j−2

12∆θ2

)
+ k2Ū4

ij = 0. (2.37)

at the interior gridlines r2 < ri < rN−1. I adopt the alternative notation for the standard fourth

order numerical solution Ū4
ij , because it is different from its DC counterpart U4

ij , as confirmed by

my numerical results in the next section. At the boundaries of the domain, appropriate fourth order

one-sided finite difference approximations of the various derivatives of the Helmholtz equation are

required.

I also need non-centered fourth order finite difference approximations for the various equations

of the KFE. For instance,

(i) Continuity of the first derivative at the artificial boundary:

1

∆r

[
1

4
Ū4
N+1,j +

5

6
Ū4
N,j −

3

2
Ū4
N−1,j +

1

2
Ū4
N−2,j −

1

12
Ū4
N−3,j

]
(2.38)

− ∂r

(
H0(kr)

L−1∑
l=0

F̄ 4
lj

rl
+H1(kr)

L−1∑
l=0

Ḡ4
lj

rl

)
r=rN

= 0.
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(ii) Continuity of the second derivative at the artificial boundary:

1

∆r2

[
5

6
Ū4
N+1,j −

5

4
Ū4
N,j −

1

3
Ū4
N−1,j +

7

6
Ū4
N−2,j −

1

2
Ū4
N−3,j +

1

12
Ū4
N−4,j

]
(2.39)

− ∂2
r

(
H0(kr)

L−1∑
l=0

F̄ 4
lj

rl
+H1(kr)

L−1∑
l=0

Ḡ4
lj

rl

)
r=rN

= 0.

(iii) Standard fourth order discretization of the recursion formulas along the angular direction:

2lḠ4
lj − (l − 1)2F̄ 4

l−1,j −
−F̄ 4

l−1,j+2 + 16F̄ 4
l−1,j+1 − 30F̄ 4

l−1,j + 16F̄ 4
l−1,j−1 − F̄ 4

l−1,j−2

12∆r2
= 0,

(2.40)

2lF̄ 4
lj + l2Ḡ4

l−1,j +
−Ḡ4

l−1,j+2 + 16Ḡ4
l−1,j+1 − 30Ḡ4

l−1,j + 16Ḡ4
l−1,j−1 − Ḡ4

l−1,j−2

12∆r2
= 0,

(2.41)

for l = 1, . . . L − 1. Again, I have adopted the alternative notation for the standard fourth order

numerical solutions F̄ 4, and Ḡ4 to differentiate them from their DC fourth order counterparts F 4,

and G4, respectively. Notice that I have retained the values of the unknown functions at the ghost

points (rN+1, θj) in all the one-sided finite difference approximations. As a consequence another

set of unknowns is added to the problem. However, they are eliminated considering an additional

set of equations given by the discretization of the Helmholtz equation (2.37) at the nodes located

on the artificial boundary r = rN . My numerical experiments suggests that this practice leads to

a more accurate and stable numerical solutions than just using typical one-sided finite differences.

The set of equations (2.37)-(2.41) and the discrete version of the continuity u (2.8) at the artificial

boundary form the standard 4th order method for the KFE-BVP (2.6)-(2.12). I will denote this

method as KS4.

At the computational level, this fourth order standard method reduces to a new linear system

of equations (LSE) given by

A4Ū
4 = b. (2.42)

This matrix A4 has a greater number of nonzero entries than the matrix associated to the fourth
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order DC method described above. As a consequence, memory and computing costs increase for

this standard formulation. In Section (2.6), I compare both fourth order techniques through some

numerical experiments.

2.5 IMPLEMENTATION OF THE DC NUMERICAL METHOD TO THE KFE-BVP

The practical advantage of the DC method coupled with the KFE is that it leads to arbitrary high

order numerical approximations to the solution of scattering BVPs, such as (2.6)-(2.12). Here, I

choose an obstacle of circular shape to alleviate the transformation of the KFE-BVP into a linear

system. As mentioned before, in Section 4, I discuss the scattering from arbitrarily shaped scatter-

ers. My strategy to generate a pth order DC numerical approximation Up
ij to the exact solution u

of the BVP (2.6)-(2.12) can be summarized by the following steps:

(i) Obtain a second order approximation U2
ij to the exact solution u using a standard second

order finite difference technique for the Helmholtz equation and the BCs. This technique

was adopted in [17]. As shown there, the set of discrete equations employed to obtain U2
ij

can be recast into the LSE,

A2U
2 = b. (2.43)

In particular, the vector U2 consists of the unknown discrete value approximations of the

scattered field u, and the unknown angular coefficients of the Karp’s expansion for a given

grid. The vector b is assembled from the boundary data at the obstacle obtained from the

incident wave. More precisely, the unknown vector U2 is defined as

U2 =
[ at obstacle︷ ︸︸ ︷
U2

1,1...U
2
1,m

at interior grid points︷ ︸︸ ︷
U2

2,1...U
2
2,m...U

2
N−1,1...U

2
N−1,m

at artificial boundary︷ ︸︸ ︷
F 2

0,1...F
2
0,mG

2
0,1...G

2
0,m... F

2
L−1,1...F

2
L−1,mG

2
L−1,1...G

2
L−1,m

]T
,(2.44)
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and the vector b, for a Dirichlet boundary condition on the obstacle, as

b =
[ at obstacle︷ ︸︸ ︷
−(uinc)1,1...− (uinc)1,m

at interior grid points︷ ︸︸ ︷
0...0...0...0

at artificial boundary︷ ︸︸ ︷
0...0...0...0

]T
. (2.45)

Thus, the LSE dimension is (N − 1 + 2L)m× (N − 1 + 2L)m where the first m×m block

of the matrix A2 corresponds to the identity matrix. In the case of a Neumann BC, minor

updates to the m first equations should be made. Specifically, A2 is affected by the ghost-

point based treatment of the discretization of the radial derivative in (2.7), and b depends on

the boundary data ∂ruinc. See details in Appendix B.

The sparse structure of the matrix A2 is studied in [17], where built-in MATLAB linear

solvers were employed to obtain second order accurate solutions. In fact, the complex ma-

trix A2 is non-Hermitian and its condition number worsens as the number of KFE terms

increases, or the discretization grid is refined. More precisely, the standard discretization of

the KFE and the ordering of the discrete unknowns in U2 leads to a highly asymmetric block

structure of the lower non-zero coefficients of A2. Nevertheless in [17], the LU MATLAB

solvers were successfully used for an ample set of scattering problems whose discretization

ended in the LSE (2.43). In this work, I also employ the direct built-in MATLAB linear

solvers for my two dimensional high order DC schemes. As it is seen in my numerical ex-

periments in Section 6, I obtained excellent high order approximations for very refined grids

up to 60 PPW and up to a maximum of 12 terms in the Karp’s fafrfield expansion.

(ii) Construct a fourth order finite difference DC consistent scheme of the Helmholtz equation

by subtracting the second order leading terms of the truncation errors from the second order

standard scheme (2.13). This leads to the desired fourth order finite difference deferred

correction discrete equation (2.19) consistent with the Helmholtz equation. Likewise, obtain

fourth order approximations to the boundary conditions (2.8)-(2.12). For this purpose, use

appropriate approximations to the various continuous derivatives present in the leading order

truncation error terms using the second order approximation U2
ij obtained in step (a). This
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process is described in detail in sections 2.3.1-2.3.2. The resulting linear system is given by

A2U
4 = b + b4

DC(U2). (2.46)

The unknown vector U4 is identical to U2 in (2.43), except in the replacement of the super-

script number 2 by 4. Also, the dependence of the correction vector b4
DC on the second order

numerical solution has been made explicit. This new vector consists of all the corrections in

(2.19), (2.22), (2.23), (2.26) and (2.27). In the particular case of Dirichlet BC, it reads

b4
DC(U2) =

[ at boundary︷ ︸︸ ︷
0 · · · 0

at interior grid points︷ ︸︸ ︷
∆r2

12

(
D2

4rU
2
2,1 +

2

r2

D2
3rU

2
2,1

)
+

∆θ2

12r2
2

D2
4θU

2
2,1 · · ·

at interior grid points (continued)︷ ︸︸ ︷
∆r2

12

(
D2

4rU
2
N−1,m +

2

rN−1

D2
3rU

2
N−1,m

)
+

∆θ2

12r2
N−1

D2
4θU

2
N−1,m

at artificial boundary︷ ︸︸ ︷
∆r2

12

(
(Dl)2

4rU
2
N,1 +

2

rN
(Dl)2

3rU
2
N,1

)
+

∆θ2

12r2
N

(Dl)2
4θU

2
N,1 −

(
∆r

3
+

∆r2

6rN

)
(Dl)2

3rU
2
N,1 · · ·

at artificial boundary (continued)︷ ︸︸ ︷
∆r2

12

(
(Dl)2

4rU
2
N,m +

2

rN
(Dl)2

3rU
2
N,m

)
+

∆θ2

12r2
N

(Dl)2
4θU

2
N,m −

(
∆r

3
+

∆r2

6rN

)
(Dl)2

3rU
2
N,m

at artificial boundary (continued)︷ ︸︸ ︷
∆r2

12
(Dl)2

4rU
2
N,1 −

∆r

3
(Dl)2

3rU
2
N,1 · · ·

∆r2

12
(Dl)2

4rU
2
N,m −

∆r

3
(Dl)2

3rU
2
N,m

at artificial boundary (continued)︷ ︸︸ ︷
−∆θ2

12
D2

4θF
2
0,1 · · · −

∆θ2

12
D2

4θF
2
0,m

∆θ2

12
D2

4θG
2
0,1 · · ·

∆θ2

12
D2

4θG
2
0,m · · ·

at artificial boundary (continued)︷ ︸︸ ︷
−∆θ2

12
D2

4θF
2
L−1,1 · · · −

∆θ2

12
D2

4θF
2
L−1,m

∆θ2

12
D2

4θG
2
L−1,1 · · ·

∆θ2

12
D2

4θG
2
L−1,m

]T
. (2.47)

Alternatively, under Neumann conditions, the firstm components of this vector must account

for the correction term (B.1), in Appendix B combined to those arising from the ghost-point

boundary treatment. By solving the linear system (2.46), I obtain a fourth order numeri-

cal approximation, U4
ij , of the solution u of the original BVP. An important aspect of this
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approach is that the matrix A2 remains the same in both the second and fourth order compu-

tations. The only change occurs in the forcing term.

(iii) Continue the iterative construction process described in (b) until a desired pth order approx-

imation Up
ij of the exact solution u is obtained from the previous approximation Up−2

ij . The

associated linear system in this general case is given by

A2U
p = b + bpDC(Up−2). (2.48)

The components of the vector bpDC consists of the approximations of the high order cor-

rection terms present in (2.29), (2.33), (2.34), (2.35) and (2.36). All of them are computed

from Up−2. The unknown vector Up is identical to U2 in (2.43), by replacing 2 by p in all

its components. Therefore, to obtain a numerical solution approximating the exact solution

two orders higher, it is required to solve an additional linear system. However, all the linear

systems to be solved using the DC technique have the same sparse matrix A2. The differ-

ence is in the forcing terms as explained above. Compared to high order standard schemes,

this DC implementation feature is advantageous regardless of the adopted LSE resolution

strategy. In the case of direct solvers, A2 factorization is performed once and then reused

throughout the high order DC iteration. In the case of iterative solvers, all the linear sys-

tems to be solved as part of the DC iteration use the same solving algorithm, under the same

preconditioning and optimal implementation. Therefore, the resolution strategy requires a

one-time computational investment over a rather simple matrix for every DC iteration step.

In Section 2.6, I perform numerical experiments employing the discrete DC Helmholtz oper-

ators H4 and H6 of fourth and sixth order, respectively. As a result, I obtain numerical solutions

approximating the scattered field u of the KFE-BVP (2.6)-(2.12). By comparing these numerical

solutions against the corresponding exact solutions for circular scatterers, the expected fourth and

sixth order of convergence, respectively, are achieved. For completeness, several of the sixth order

finite difference formulas, used in this work, approximating continuous derivatives are given in
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the Appendix A. These continuous derivatives are contained in the leading order truncation error

terms of the finite difference approximations of the Helmholtz equation and the equations forming

the KFE, respectively. Also, the deferred corrections approximations for the Neumann boundary

condition are given in the Appendix B.

2.6 NUMERICAL RESULTS

In this section, I discuss numerical results for the scattering of a time harmonic incident plane

wave, ûinc(x, t) = e−iωteikx = eiωtuinc(x) propagating in the direction of the positive x-axis,

from a circular obstacle. I obtain numerical solutions for my proposed deferred correction method

coupled with the Karp’s farfield expansion ABC, which is applied to the KFE-BVP defined by

(2.6)-(2.12). To access the high accuracy and high order of convergence of this technique, I com-

pare my numerical results to the exact solution of the exterior BVP defined by (2.1)-(2.3) for a

circular obstacle of radius r0 and wavenumber k. The exact solution for the scattered field u and

its corresponding Farfield Pattern (FFP), P (θ) are as follows:

(i) Dirichlet boundary condition: u = −uinc,

u(r, θ) = −
∞∑
n=0

εni
n Jn(kr0)

H
(1)
n (kr0)

H(1)
n (kr) cosnθ (2.49)

P (θ) = −
(

2

kπ

)1/2

e−iπ/4
∞∑
n=0

εn
Jn(kr0)

H
(1)
n (kr0)

cosnθ, (2.50)

(ii) Neumann boundary condition: ∂nu = −∂nuinc,

u(r, θ) = −
∞∑
n=0

εni
n J ′n(kr0)

H
′(1)
n (kr0)

H(1)
n (kr) cosnθ (2.51)

P (θ) = −
(

2

kπ

)1/2

e−iπ/4
∞∑
n=0

εn
J ′n(kr0)

H
′(1)
n (kr0)

cosnθ, (2.52)

where ε0 = 1 and εn = 2 for n ≥ 1.
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In Fig. 2.1, I show some numerical results obtained by applying the fourth order deferred

correction technique KDC4, introduced in Sections 2.3.1-2.3.2, to the KFE-BVP. The left graphs

illustrate the amplitude of the total field, utotal = uinc + u for both boundary conditions. The

middle graphs shows the comparison of the numerical Farfield Patterns (defined below) against

the exact ones. The rightmost graphs show the fourth order of convergence of the numerical

solution to the exact solution. In both numerical experiments, the wavelength is 2π, the number

of Karp Expansion terms is 9, the outer radius is 3, and the number of gridpoints per wavelength

to determine the order of convergence is [20, 30, 40, 50, 60]. The infinite series defining the exact

solutions have been truncated to 60 terms for my calculations. In the following subsections, I

present numerous results for the application of the DC technique to the KFE-BVP for the two BCs

under studied. Discussion of the order of convergence and accuracy of the DC techniques, along

with comparisons against other high order techniques are included as well.

Figure 2.1: Numerical results for scattering from a circular scatterer using KFE. Shown from left
to right are the wave amplitude, Farfield Pattern, and order of convergence for Dirichlet (top) and
Neumann (bottom) BCs.
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Figure 2.2: Matrix density for the matrix used in the solution of the first image shown in Figure
2.1

2.6.1 Accuracy and convergence under Dirichlet BC. I perform several numerical experi-

ments to obtain approximations of the FFP of the scattered wave for the BVP (2.6)-(2.12) under

Dirichlet boundary conditions. The FFP is an important property to be analyzed in scattering prob-

lems. It depends on the shapes and physical properties of the scatterers. In Section 4.2.1 of [25],

Martin defines the Farfield Pattern (FFP) as the angular function present in the dominant term of

the asymptotic expansions for the scattered wave when r → ∞. For instance, in 2D, the Farfield

Pattern is the coefficient f0(θ) of the leading order term of the asymptotic approximation of Karp

expansion,

u(r, θ) =
eikr

(kr)1/2
f0(θ) +O

(
1/(kr)3/2

)
. (2.53)

Following Bruno and Hyde [26], I calculate it from the approximation of the scattered wave at the

artificial boundary. A detailed computation is found in [17].

In my first set of experiments, I obtain the L2 norm relative errors made by approximating

the exact FFP by the numerical FFP using both the DC and standard techniques. In all these

experiments, the wavenumber is k = 2π and the radius of the circular obstacle is r0 = 1 while the

radius of the artificial boundary is either R = 2 or R = 3. To determine the convergence rates of
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the numerical solutions to the exact solution, I refine my polar grid by increasing the number of

gridpoints per wavelength (PPW) from 20 to 60. These results are illustrated in Figs. 2.3 and 2.4.

In Fig. 2.3, I present four cases with varying number of Karp Expansion terms, NKFE = 4,8,10,13

while the grid is systematically refined. In these figures, I denote solutions using the DC methods

of fourth and sixth order as KDC4 and KDC6, respectively. Also, those solutions obtained from

the application of the standard second and fourth order schemes are referred to as KS2 and KS4,

respectively.

Figure 2.3: Comparison of L2-norm relative errors of the Farfield Pattern computed from KS2,
KDC4, KDC6 and KS4 methods for R = 2

An analysis of the graphs in Fig. 2.3 reveals how the accuracy and convergence rate of the

standard and DC techniques, coupled with the KFE, depend on both PPW and the number of

Karp’s expansion terms. From the top left plot of Fig. 2.3, it is observed that the only method
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Figure 2.4: Comparison of convergence rates between the DC and standard methods in terms of
NKFE.

that attains the expected convergence rate (2nd order convergence), when NKFE = 4, is KS2.

Furthermore, KDC4 seems to attain the expected convergence rate only for coarser grids, while

errors of the other methods remain nearly constant as PPW increases. As NKFE increases from

4 to 8 terms (top right plot of Fig. 2.3), I observe that KS2 continues attaining the second order

rate, but now KDC4 also achieves the expected 4th order convergence rate along the full PPW

range. However, KDC6 and KS4 convergence rates improve for the coarser grids, but as I continue

refining, they degrade quickly. More consistent experimental results are attained by all methods

for 10 KFE terms, as depicted in the bottom left plot of Fig. 2.3, with the exception of KS4 whose

order drops slightly below 4 for the finer grids. Finally for NKFE = 13, all these methods attain

their theoretical convergence rate, as shown in the bottom right plot of Fig. 2.3, this can be more

clearly seen for the 4th order DC scheme in Table 2.1.

Alternatively, Fig. 2.4 shows the convergence rates attained by the DC and the standard meth-

ods as the number of terms in Karp expansion (NKFE) increases. In these experiments, the artificial

boundary is located at R = 3 and the various grids used to determine the convergence rate consist

of PPW = 20, 30, 40, 50 and 60. It is seen from Figs. 2.3 and 2.4 that any of these four methods

can reach its theoretical order of convergence, if enough terms in Karp’s expansion are retained
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PPW Grid size h = ∆θ = ∆r L2-norm Rel. Error Observed order

20 20× 126 0.04987 5.69× 10−4

30 30× 189 0.03324 1.09× 10−4 4.08
40 40× 252 0.02493 3.39× 10−5 4.04
50 50× 315 0.01995 1.38× 10−5 4.02
60 60× 377 0.01667 6.69× 10−6 4.04

Table 2.1: Order of convergence of 4th order scheme shown in the fourth plot of Figure 2.3.

for sufficiently fine grids. This fact illuminates the arbitrary high order character of the KFE-ABC,

whose accuracy is easily adjustable to the precision of the interior Helmholtz solver. In addition,

the order of convergence of the proposed interior scheme can be efficiently increased by adding

higher order error terms of the discretized Helmholtz differential operator into the DC numerical

scheme.

Figure 2.5: L2-norm FFP relative error employing KDC6 method for various numbers of Karp’s
expansion terms and PPW values. Problem parameters are r0 = 1, k = 2π, R = 2.

The dependence of the L2-norm FFP relative error on PPW and NKFE is explored in Fig. 2.5

for the KDC6 method. Note that at coarser grids, increasing the number of Karp’s expansion

terms only leads to minor accuracy improvements. On the contrary, as the grids become more

refined using larger NKFE, greater accuracy occurs. In fact, for NKFE = 8, the L2 relative error

approaches 10−7 as the grid is refined. This represents a significant improvement over the results
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obtained using lower NKFE.

2.6.2 Comparison of computational times. I performed several experiments to evaluate the

computational times spent by DC and Standard methods when solving similar problems to those in

the previous section. The results of these experiments are depicted in Figure 2.6. To obtain them, a

set of baseline error tolerances are defined, and then pairs (NKFE,PPW) close to optimal are found

for each method to satisfy such thresholds. By an optimal pair I mean, the minimum values of

NKFE and PPW that are needed to attain the target L2-norm FFP relative error. Once each pair

(NKFE,PPW) is found, the same simulation is performed ten times. Then, the resulting CPU times

are averaged and this time average is plotted in Fig. 2.6.

Figure 2.6: Computational times vs. L2-norm FFP relative errors for the KS2, KDC4, KS4, and
KDC6 methods.

For all simulations represented in Fig. 2.6, the relevant parameters values are r0 = 1, k = 2π

and R = 3. Also, the pairs needed (close to optimal) to attain the FFP target errors for the

different methods are depicted in Table 2.2. The curves on the left plot show that KS2 is not able

to reach errors smaller than 10−4 during a time interval of 4 seconds, a threshold that is much

earlier reached by the higher order methods, as depicted in the right plot. In fact, it is observed

that the time spent by KS2 to attain an error close to 10−4 is about 8 times the one spent by KDC4.

The limited KS2 accuracy prompted us to present two different plots with different time scales in

Fig. 2.6. I noticed that KDC6 is at least three times faster than both fourth order schemes, to reach
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an error of 10−5. The KDC4 method was second best in terms of computational time. All these

experiments were performed on an Intel Core i5 laptop computer of 8 GB RAM. The codes were

written and executed in MATLAB R2017b. The results are not meant to represent my methods’

limiting computational speed. Instead, these are presented to demonstrate the relative speed of the

different methods described.

Notice, that I needed to choose R = 3 to allow lower order methods to reach higher accuracies

comparable to their higher order counterpart.

The sources of the time savings that are shown in Fig. 2.6 are most easily explained by exam-

ining Table 2.2. At all error levels, the DC6 scheme requires a much less refined grid and fewer

Karp Expansion terms than DC4 or KS4. This leads to a smaller matrix and allows the scheme

to be solved more efficiently despite the additional steps required. A similar phenomena can be

seen when comparing DC4 and KS4 (especially in regards to the NKFE). The DC4 scheme have

an additional efficiency advantage over the KS4 since the matrix used for solving the DC4 system

is less dense than the matrix used by the KS4 method. As a note, the error values given in the

table are approximations since it was not possible to find values of PPW and NKFE that would

give identical errors for all three schemes. Additionally, the information displayed in Table 2.2

corresponds to the right plot in Figure 2.6, a similar table could be derived for the left plot.

FFP Tol KS4 KDC4 KDC6
error PPW NKFE PPW NKFE PPW NKFE

5× 10−4 17 8 20 8 13 2

10−4 26 9 31 8 17 5

5× 10−5 35 9 40 8 20 6

10−5 51 11 60 8 26 7

5× 10−6 60 11 70 8 29 8

Table 2.2: Points per wavelength and KFE number of terms needed to reach a target FFP relative
error.
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Figure 2.7: Comparison of L2-norm FFP relative errors computed from KS2, KDC4 and KDC6
under Neumann BC.

2.6.3 Accuracy and convergence under Neumann BC. In this section, I compare the FFP

relative errors and convergence rates of fourth- and sixth-order DC solutions for the BVP (2.6)-

(2.12) under Neumann boundary conditions. For this boundary condition, the deferred correction

schemes are detailed in Appendix B. In these experiments, problem parameters, PPW, and NKFE,

are the same ones used for the Dirichlet type tests in Section 2.6.1. In Fig. 2.7, I compare the FFP

relative errors make by the application of KS2, KDC4 and KDC6 methods for NKFE = 4, 8, 10

and 13, while in Fig. 2.8, I exhibit the convergence rates dependence on NKFE. In both figures, the

illustrated results nearly resemble the ones given in Figs. 2.3 and 2.4. Therefore, I conclude that

DC accuracy and convergence rates are not affected by the type of obstacle boundary condition.

As in the Dirichlet case, the KDC4 and KDC6 methods require at least NKFE = 8 to fully reach
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their highest accuracy and expected convergence rates, respectively. Furthermore, for NKFE = 10

or 13, the KDC6 relative errors are two order of magnitude smaller than their KDC4 counterparts

for sufficiently fine grids.

Figure 2.8: Comparison of convergence rates between the DC methods in terms of NKFE, under
Neumann BC

2.7 HETEROGENEOUS MEDIA

2.7.1 The KFE-BVP for heterogeneous acoustic wave scattering . In this section, I extend

the previously defined high order deferred corrections scheme to the scattering from an obsta-

cle embedded in an unbounded acoustic heterogeneous region Ω. This is modeled by the forced

Helmholtz equation for the total pressure field ut,

∆ut + k2n2(x)ut = f(x), x ∈ Ω (2.54)

where k > 0 is the wavenumber, and the real-valued functions n and f are in C1(Ω) ∩ C(Ω). The

function n is called the index of refraction, and 1 − n2 and f have compact support in a bounded

region Ω− ⊂ Ω that is bounded internally by the boundary of the obstacle Γ and externally by a
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circle of radius R (artificial boundary).

The functions n is what defines the heterogeneity of the media. Notice that n = 1 corresponds

to the homogeneous case already discussed in the previous sections. Now, ut consists of the scat-

tered wave u and the incident wave uinc. This means ut = u + uinc. Then, by inserting this

decomposition of ut into (2.54), and rearranging terms gives

∆u+ k2n2(x)u = k2(1− n2(x))uinc + f(x) x ∈ Ω. (2.55)

This equation is supplemented with the Dirichlet or Neumann boundary condition (2.7) at the

obstacle boundary Γ, and the KFE absorbing boundary condition defined by the equations (2.7)

-(2.12) to complete the heterogeneous KFE-BVP considered in this work. As in the homogeneous

case, I specialize my study to polar coordinates and leave the extension to generalized curvilinear

coordinates for later (see Appendix A). The variable coefficients of the Helmholtz equation are the

main difference with respect to the homogeneous case. Therefore, at the discrete level the only

changes to make, in the former treatment, are in the diagonal entries of the matrix defining the

associated linear system, and in the forcing term. In fact, the main diagonal entries (2.43) of the

intermediate rows (i = 2 . . . N ) change from − 2
∆r2
− 2

r2i ∆θ2
+ k2 to − 2

∆r2
− 2

r2i ∆θ2
+ n(ri, θj)k

2.

In the heterogeneous case, there is no exact solution for the circular obstacle. Thus, to estimate

convergence rates and perform error analysis, I solved the system using a very fine grid and took

that as the exact solution.

2.7.2 Numerical experiments. To analyze the accuracy and convergence of the proposed high

order numerical method, I perform a set of experiments for the scattering of a time-harmonic

incident plane wave ûinc(x, t) = e−iωteikx = eiωtuinc(x) propagating in the positive direction of

the x-axis from a circular obstacle. I study the effect of the degrees of heterogeneity in the medium

by changing the index of refraction n inside the computational domain Ω− . First, I consider the
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following smoothly varying index of refraction,

n1(r) =


2 r ≤ 1.25

.5 cos(2π(r − 1.25)) + 1.5 1.25 ≤ r ≤ 1.75

1 r ≥ 1.75.

(2.56)

Note that n = n1 is gradually and smoothly decreasing from the value 2 at the obstacle boundary

to the value 1 when r = 1.75. Therefore, starting at r = 1.75, the medium becomes homogeneous.

The graphs for the total pressure field for k = 2π and R = 2, 3 are shown in Fig. 2.9, respectively.

In contrast with the homogeneous case, there is not a well-defined shadow zone. Instead, I observe

Figure 2.9: Total pressure field for the heterogeneous wave scattering problem using the function
n1 described in Equation 2.56. On the left is with R = 2 and on the right with R = 3.

oscillations in both radial and angular directions, respectively.

For index of refraction n1, both the 4th order and 6th order deferred corrections schemes

achieved their expected level of convergence. These schemes were very robust when considering

different sizes of the computational domains (values of R), different numbers of Karp expansion

terms, and changes in the grid sizes. In Fig. 2.10, the 4th and 6th order convergence of the scheme

can be seen. The left plot of Fig. 2.10 and its corresponding Table 2.3 show the high level of

accuracy achieved by the 4th order scheme, along with its approximated order of convergence.

I also tested this high order deferred corrections method on other indices of refractions. I found
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Figure 2.10: Convergence rates for 4th order (left) and 6th order (right) Deferred Correction
schemes. Wavenumber varies following n1, NKFE= 12, R = 2.

that other smooth functions (functions that were at least continuously differentiable) produced

solutions that had similar convergence properties to those displayed by n1. To demonstrate the

robustness of this method when dealing with other smooth functions, I will include results for the

following two indices of refractions:

n2(r) =


3 r ≤ 1.25

cos(2π(r − 1.25)) + 2 1.25 ≤ r ≤ 1.75

1 r ≥ 1.75,

(2.57)

n3(r) =


2 r ≤ 1.25

16r3 − 72r2 + 105r − 48 1.25 ≤ r ≤ 1.75

1 r ≥ 1.75.

(2.58)

Note that n2 is a scaled version of n1 while n3 is the lowest order polynomial interpolating between

the two straight lines with continuous first derivative. Plots of n1, n2, and n3 are shown in Figure

2.11. As can be seen in Tables 2.3-2.5, for all of the given functions the 4th order DC method

averages 4th order convergence and achieves high levels of accuracy.
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Figure 2.11: Comparison of different smoothly varying choices of n. From left to right n1, n2, and
n3.

h = ∆θ = ∆r L2-norm Rel. Error Observed order

0.06614 9, 07× 10−2

0.03307 5.07× 10−3 4.16
0.01653 3.08× 10−4 4.03
0.00827 1.81× 10−5 4.09

Table 2.3: Grid spacing, L2 Relative Error, and order of convergence for index of refraction n1

with NKAE= 12, R = 2.

h = ∆θ = ∆r L2-norm Rel. Error Observed order

0.06614 2.43× 10−0

0.03307 4.26× 10−1 2.51
0.01653 1.42× 10−2 4.91
0.00827 6.24× 10−4 4.50

Table 2.4: Grid spacing, L2 Relative Error, and order of convergence for index of refraction n2

with NKAE= 12, R = 2.

h = ∆θ = ∆r L2-norm Rel. Error Observed order

0.06614 8.45× 10−2

0.03307 4.95× 10−3 4.10
0.01653 3.06× 10−4 4.01
0.00827 1.81× 10−5 4.07

Table 2.5: Grid spacing, L2 Relative Error, and order of convergence for index of refraction n3

with NKAE= 12, R = 2.

However, when using an index of refraction with jump discontinuities, such as,
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n4(r) =


2 r ≤ 1.25

1.5 1.25 < r ≤ 1.75

1 r > 1.75,

(2.59)

the convergence results were not quite as good as the continuous case. For instance, the numer-

ical solution obtained from the fourth order DC method applied to the KFE-BVP with index of

refraction n4 still converged as the grid was refined, but the convergence was typically around or-

der 2. In Fig. 2.12, the approximated total pressure field and the estimated order of convergence

are illustrated for this case. This second order of convergence was typical for other non-smooth

functions that I tested. I believe that this lower order of convergence, which is not consistent with

the order of the numerical method, comes from a theoretical limitation of the deferred correction

method. This is because of the use of high order derivatives of the solution u implicitly assumes

a certain level of regularity in the solution. However, for the discontinuous index of refractions,

the true solution may not exhibit the required regularity which would cause the scheme to fail to

reach the expected order. It is comforting, however, that the solution still converges, despite these

limitations.

Figure 2.12: Total pressure field for the heterogeneous wave scattering problem with index of
refraction n2, NKFE= 12 and R = 3.

Additionally, my collaborators in this work are developing an alternative high order finite el-
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ement (within the context of isogeometric analysis) numerical method coupled with the KFE ab-

sorbing boundary condition for this heterogeneous problem. Comparison with preliminary results,

using this alternative methodology, seems to confirm that my scheme is actually converging to the

true solution as my experiments suggest.

CHAPTER 3. HIGH ORDER LOCAL ABSORBING

BOUNDARY CONDITIONS FOR ELASTIC WAVES

IN TERMS OF FARFIELD EXPANSIONS

In this chapter, I am concerned with the scattering of time harmonic elastic waves off compact

targets, which has geophysical application in exploratory seismology and seismic waves in earth-

quake phenomena. These problems are typically modeled by equations of elastic waves in un-

bounded media. Popular and efficient numerical techniques used to solve these problems include

finite element and finite differences methods. These methods requires the introduction of an arti-

ficial boundary and appropriate absorbing boundary conditions (ABCs) on it. In the following, I

present the construction of high order local ABCs based on farfield expansions, similar to those

already defined for acoustic waves in unbounded domains [17].

3.1 CONSTRUCTION OF KARP’S FARFIELD EXPANSION ABSORBING BOUND-

ARY CONDITION (KFE-ABC) FOR ELASTIC WAVES

To begin, I consider an unbounded region Ω of an elastic medium. I truncate this infinite region

using an artificial boundary S which is a sphere in 3D or a circle in 2D both having radius R and

both containing the scattering body in its interior. This new bounded region is called Ω−. I assume

that in the exterior region Ω+ = Ω\Ω− the medium is homogeneous, isotropic, and linear with

constant physical properties, density ρ and Lamé constants µ, λ. I will also make use of Poisson’s

ratio ν = λ
2(λ+µ)

and Young’s modulus E = µ(3λ+2µ)
λ+µ

. I make no such assumptions for the interior
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region. Thus, in the exterior region, the displacement U(x, t) satisfies the Navier equation of linear

elasticity and the Kupradze radiation conditions. I also assume that the scattered displacement U is

time-harmonic, so U(x, t) = u(x)e−iωt. Then, the Navier equation in terms of the time harmonic

scattered displacement u reduces to

(λ+ 2µ)∇∇ · u−∇×∇× u + ρω2u = 0.

Also, the Kupradze radiation conditions transforms into

lim
r→∞

r(δ−1)/2(∂ru
p − ikpup) = 0, lim

r→∞
r(δ−1)/2(∂ru

s − ksus) = 0, (3.1)

where u = up + us and the constants k2
p = ω2 ρ

λ+2µ
and k2

s = ω2 ρ
µ

are the longitudinal and

transverse wavenumbers, respectively.

In this work, I will focus in the two-dimensional case. Therefore, the artificial boundary S

is a circle and it is convenient to use polar coordinates (r, θ) and express u in terms of its ra-

dial displacement ur and its angular displacement uθ. Then, by using Chadwick and Trowbridge

decomposition theorem [27], the scattered displacement vector u can be written in terms of two

scalar potentials φ(r, θ) and ψ(r, θ) as

u = up + us = ∇r,θ,zφ+∇r,θ,z × (ψk) = urr̂ + uθθ̂, (3.2)

the vector k is the unit vector perpendicular to the xy-plane while r̂ and θ̂ are the local unit vectors

in the radial and angular direction, respectively. Therefore,

ur = ∂rφ+
1

r
∂θψ uθ =

1

r
∂θφ− ∂rψ, (3.3)

where ur and uθ are the radial and angular components of the vector scattered displacement u,
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respectively; and the potentials φ and ψ satisfy the Helmholtz equations,

∇2φ+ k2
pφ = 0, ∇2ψ + k2

sψ = 0, in Ω−. (3.4)

Similarly, expressions for the various elements of the stress tensor can be found [28] in terms of

the potentials,

σrr = λ∇2
r,θφ+ 2µ

[
∂2
rrφ−

1

r2
∂θψ +

1

r
∂2
rθψ

]
, (3.5)

σrθ = 2µ

[
1

r
∂2
θrφ−

1

r2
∂θφ

]
+ µ

[
1

r2
∂2
θθψ +

1

r
∂rψ − ∂2

rrψ

]
. (3.6)

Furthermore, the Kupradze radiation condition (3.1) implies that the scalar potentials φ and ψ

satisfy the Sommerfeld radiation condition at infinity, i.e.,

lim
r→∞

r(δ−1)/2 (∂rφ− ikpφ) = 0, lim
r→∞

r(δ−1)/2 (∂rψ − iksψ) = 0. (3.7)

As a consequence, φ and ψ are outgoing solutions of the two-dimensional Helmholtz equations

(3.4). Therefore according to Karp’s theorem [23], they can be written as the following convergent

expansions in the region Ω+, located in the exterior to the circle of radius r = R,

φ(r, θ) = Kp(r, θ) ≡ H0(kpr)
∞∑
l=0

F p
l (θ)

(kpr)l
+H1(kpr)

∞∑
l=0

Gp
l (θ)

(kpr)l
, for r > R, (3.8)

ψ(r, θ) = Ks(r, θ) ≡ H0(ksr)
∞∑
l=0

F s
l (θ)

(ksr)l
+H1(ksr)

∞∑
l=0

Gs
l (θ)

(ksr)l
, for r > R, (3.9)

and the coefficient angular functions satisfy the following recurrence formulas,

2lGp,s
l (θ) = (l − 1)2F p,s

l−1(θ) + d2
θF

p,s
l−1(θ), 2lF p,s

l (θ) = −l2Gp,s
l−1(θ)− d2

θG
p,s
l−1(θ), (3.10)

for l = 1, 2, . . . .

Now, I proceed to the construction of the KFE-ABC of the elastic waves at the artificial bound-
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ary r = R. This construction is similar to the one followed for the acoustic waves. Since the

potentials satisfy the Helmholtz equation, I expect them to be continuous at the artificial boundary,

r = R. As a result, I arrive to my first two equations defining the KFE-ABC,

φ(R, θ) = KpL−1(R, θ) ≡ H0(kpR)
L−1∑
l=0

F p
l (θ)

(kpR)l
+H1(kpR)

L−1∑
l=0

Gp
l (θ)

(kpR)l
, (3.11)

ψ(R, θ) = KsL−1(R, θ) ≡ H0(ksR)
L−1∑
l=0

F s
l (θ)

(ksR)l
+H1(ksR)

L−1∑
l=0

Gs
l (θ)

(ksR)l
(3.12)

Notice that for computational reasons, I have used a truncated version of Karp’s expansions in the

above conditions, denoted by KpL−1 and KsL−1. Thus, the numerical solution obtained by applying

these conditions should improve its accuracy by increasing the number of terms L in the Karp’s

expansions.

Next, I require continuity of the scattered displacement components at the artificial boundary

r = R, which leads to

ur(R, θ) = ∂rφ(R, θ) +
1

R
∂θψ(R, θ) = ∂rKpL−1(R, θ) +

1

R
∂θKsL−1(R, θ) (3.13)

uθ(R, θ) =
1

R
∂θφ(R, θ)− ∂rψ(R, θ) =

1

R
∂θKpL−1(R, θ)− ∂rKsL−1(R, θ). (3.14)

In addition, I require the continuity of the two components of the stress tensor in the radial direc-

tion. Thus,

σrr(R, θ) = λ∇2
r,θφ(R, θ) + 2µ

[
∂2
rφ−

1

R2
∂θψ +

1

R
∂2
rθψ

]
(R, θ) = λ∇2

r,θK
p
L−1(R, θ)+

2µ

[
∂2
rK

p
L−1 −

1

R2
∂θKsL−1 +

1

R
∂2
rθKsL−1

]
(R, θ), (3.15)

σrθ(R, θ) = 2µ

[
1

R
∂2
rθφ(R, θ) +

1

R2
∂θφ

]
(R, θ) + µ

[
1

R2
∂2
θψ +

1

R
∂rψ − ∂2

rψ

]
(R, θ) = (3.16)

2µ

[
1

R
∂2
rθK

p
L−1 +

1

R2
∂θKpL−1

]
(R, θ) + µ

[
1

R2
∂2
θKsL−1 +

1

R
∂rKsL−1 − ∂2

rKsL−1

]
(R, θ).

Finally, I have the recursion formulas to determine the angular functions of Karp’s expansions.
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They are given by

2lGp
l (θ) = (l − 1)2F p

l−1(θ) + d2
θF

p
l−1(θ), for l = 1, 2, . . . L− 1 (3.17)

2lF p
l (θ) = −l2Gp

l−1(θ)− d2
θG

p
l−1(θ), for l = 1, 2, . . . L− 1 (3.18)

2lGs
l (θ) = (l − 1)2F s

l−1(θ) + d2
θF

s
l−1(θ), for l = 1, 2, . . . L− 1 (3.19)

2lF s
l (θ) = −l2Gs

l−1(θ)− d2
θG

s
l−1(θ), for l = 1, 2, . . . L− 1. (3.20)

The set of equations (3.11)-(3.20) constitute my novel KFE-ABC for elastic waves.

The reason why all these equations are needed to define the KFE-ABC is explained by counting

the unknowns and the number of equations constituting it. In fact, in the six equations (3.11)-(3.16)

are six unknowns given by φ, ψ, F p
0 , Gp

0, F s
0 , and Gs

0. In addition, for every term added to the Karp

series expansion (3.11) there are an additional four unknowns given by F p
l , Gp

l , F
s
l , Gs

l . In total,

this gives 6 + 4 · (L − 1) unknonwns for l = L − 1. This is the same as the number of equations

in (3.11)-(3.20).

3.2 ELASTIC SCATTERING KFE BOUNDARY VALUE PROBLEM (KFE-BVP)

Now, I consider the scattering of an incident plane wave from a circular obstacle of radius r = r0.

This incident wave is represented in terms of the scalar potentials by

φ(r0, θ) = φinc(r0, θ) = eikx = eikr cos θ, and ψ(r0, θ) = ψinc(r0, θ) = 0, (3.21)

As described earlier, for a complete formulation of the elastic scattering problem, boundary con-

ditions at the obstacle boundary r = r0 need to be included. I have chosen to address two types of

boundary conditions in this work. The first is a soft obstacle boundary which corresponds to no to-

tal stress at the obstacle boundary. Since the total displacement uT = uinc + u and the differential
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operators defining the stress components are linear, this condition is equivalent to

σrr(r0, θ) = −(σinc)rr(r0, θ) and σrθ(r0, θ) = −(σinc)rθ(r0, θ), (3.22)

where σinc represents the stress tensor due to the incident wave, as stated in [28]. Representing

these radial stresses in terms of the potentials gives

−λk2
pφ(r0, θ) + 2µ

[
∂2
rφ−

1

r2
∂θψ +

1

r
∂2
rθψ

]
(r0, θ) (3.23)

=
[
λk2

p − 2µ(ikp cos(θ))2
]
φinc(r0, θ)

2µ

[
1

r
∂2
rθφ(r0, θ) +

1

r2
∂θφ

]
(r0, θ) + µ

[
1

r2
∂2
θψ +

1

r
∂rψ − ∂2

rψ

]
(r0, θ) = (3.24)

= 2µ(ikp)
2 cos(θ) sin(θ)φinc(r0, θ).

The second is a hard obstacle boundary which corresponds to zero total displacement at the obsta-

cle boundary, which is equivalent to

ur(r0, θ) = −(uinc)r(r0, θ) and uθ(r0, θ) = −(uinc)θ(r0, θ), (3.25)

which, in terms of the scalar potentials, reduces to

ur(r0, θ) = ∂rφ(r0, θ) +
1

r0

∂θψ(r0, θ) = −ikp cos(θ)φinc(r0, θ) (3.26)

uθ(r0, θ) =
1

r0

∂θφ(r0, θ)− ∂rφ(r0, θ) = ikp sin(θ)φinc(r0, θ). (3.27)

Summarizing, the BVP of the elastic scattering of the incident wave (3.21) from an obsta-

cle with a circular boundary in terms of the scalar potentials φ and ψ is given by the following

equations:
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The Helmholtz quations at the interior;

∇2φ+ k2
pφ = 0, ∇2ψ + k2

sψ = 0, in Ω−,

the scatterer boundary conditions (soft);

− λk2
pφ(r0, θ) + 2µ

[
∂2
rφ−

1

r2
∂θψ +

1

r
∂2
rθψ

]
(r0, θ)

=
[
λk2

p − 2µ(ikp cos(θ))2
]
φinc(r0, θ),

2µ

[
1

r
∂2
rθφ(r0, θ) +

1

r2
∂θφ

]
(r0, θ) + µ

[
1

r2
∂2
θψ +

1

r
∂rψ − ∂2

rψ

]
(r0, θ)

= 2µ(ikp)
2 cos(θ) sin(θ)φinc(r0, θ),

or scatterer boundary conditions (hard);

ur(r0, θ) = ∂rφ(r0, θ) +
1

r0

∂θψ(r0, θ) = −ikp cos(θ)φinc(r0, θ),

uθ(r0, θ) =
1

r0

∂θφ(r0, θ)− ∂rφ(r0, θ) = ikp sin(θ)φinc(r0, θ),

the continuity of the scalar potentials at r = R;

φ(R, θ) = KpL−1(R, θ),

ψ(R, θ) = KsL−1(R, θ),

the continuity of the displacement components at r = R;

ur(R, θ) = ∂rφ(R, θ) +
1

R
∂θψ(R, θ) = ∂rKpL−1(R, θ) +

1

R
∂θKsL−1(R, θ),

uθ(R, θ) =
1

R
∂θφ(R, θ)− ∂rψ(R, θ) =

1

R
∂θKpL−1(R, θ)− ∂rKsL−1(R, θ),
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the continuity of the stress components in the radial direction at r = R;

σrr(R, θ) = λ∇2
r,θφ(R, θ) + 2µ

[
∂2
rφ−

1

R2
∂θψ +

1

R
∂2
rθψ

]
(R, θ)

= λ∇2
r,θK

p
L−1(R, θ) + 2µ

[
∂2
rK

p
L−1 −

1

R2
∂θKsL−1 +

1

R
∂2
rθKsL−1

]
(R, θ),

σrθ(R, θ) = 2µ

[
1

R
∂2
rθφ(R, θ) +

1

R2
∂θφ

]
(R, θ)+

µ

[
1

R2
∂2
θψ +

1

R
∂rψ − ∂2

rψ

]
(R, θ) = 2µ

[
1

R
∂2
rθK

p
L−1 +

1

R2
∂θKpL−1

]
(R, θ)

+ µ

[
1

R2
∂2
θKsL−1 +

1

R
∂rKsL−1 − ∂2

rKsL−1

]
(R, θ),

and the recursion formulas for the angular coefficients;

2lGp
l (θ) = (l − 1)2F p

l−1(θ) + d2
θF

p
l−1(θ), for l = 1, 2, . . . L− 1

2lF p
l (θ) = −l2Gp

l−1(θ)− d2
θG

p
l−1(θ), for l = 1, 2, . . . L− 1

2lGs
l (θ) = (l − 1)2F s

l−1(θ) + d2
θF

s
l−1(θ), for l = 1, 2, . . . L− 1

2lF s
l (θ) = −l2Gs

l−1(θ)− d2
θG

s
l−1(θ), for l = 1, 2, . . . L− 1.

3.3 EQUIVALENT KFE ABSORBING BOUNDARY CONDITIONS FOR ELASTIC

WAVES

In this Section, I derive simplified and equivalent conditions to (3.13)-(3.16) that are very conve-

nient for numerical computation. Their convenience comes from the reduction in the number of

derivatives to be approximated. In fact,

Theorem 3.1. Assuming that (3.11) and (3.12) hold, then the conditions

∂rφ(R, θ) = ∂rKpL−1(R, θ) (3.28)

∂rψ(R, θ) = ∂rKsL−1(R, θ) (3.29)

are equivalent to (3.13) and (3.14).
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Proof. By (3.11), φ(R, θ) = KpL−1(R, θ) for all θ. Thus, ∂θφ(R, θ) = ∂θKpL−1(R, θ). This trans-

forms (3.13) into

∂rφ(R, θ) +
1

R
∂θψ(R, θ) = ∂rKpL−1(R, θ) +

1

R
∂θψ(R, θ)

and (3.14) into

1

R
∂θφ(R, θ)− ∂rψ(R, θ) =

1

R
∂θφ(R, θ)− ∂rKsL−1(R, θ).

Subtracting 1
R
∂θψ(R, θ) from both sides of the first equation and 1

R
∂θφ(R, θ) from both sides of

the second equation gives (3.28) and (3.29), respectively.

Theorem 3.2. Assume that (3.28) and (3.29) hold for all θ. In addition, assume that the conditions

of Theorem 3.1 also hold, then

∂2
rφ(R, θ) = ∂2

rK
p
L−1(R, θ) (3.30)

∂2
rψ(R, θ) = ∂2

rKsL−1(R, θ) (3.31)

are equivalent to (3.15) and (3.16).

Proof. By the proof of Theorem 3.1, ∂θφ(R, θ) = ∂θKpL−1(R, θ). Since this is true for all θ, it

must be that ∂2
θφ(R, θ) = ∂2

θK
p
L−1(R, θ) as well. Also by the first assumption, ∂θ(∂rφ)(R, θ) =

∂θ(∂rKpL−1)(R, θ) and ∂θ(∂rψ)(R, θ) = ∂θ(∂rKsL−1)(R, θ). These results imply that (3.15 ) can be

rewritten as

λ

(
∂2
rφ+

1

R
∂rφ+

1

r2
∂2
θφ

)
(R, θ) + 2µ

[
∂2
rφ−

1

R2
∂θψ +

1

R
∂θ∂rψ

]
(R, θ) =

λ

(
∂2
rK

p
L−1 +

1

R
∂rφ+

1

r2
∂2
θφ

)
(R, θ) + 2µ

[
∂2
rK

p
L−1 −

1

R2
∂θψ +

1

R
∂θ∂rψ

]
(R, θ).

After cancellation of common terms in both sides results (λ+2µ)∂2
rφ(R, θ) = (λ+2µ)∂2

rK
p
L−1(R, θ).
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Dividing both sides of that equation by λ+ 2µ gives (3.30). Similarly, (3.14) can be rewritten as

2µ

[
1

R
∂θ∂rφ+

1

R2
∂θφ

]
(R, θ) + µ

[
1

R2
∂2
θψ +

1

R
∂rψ − ∂2

rψ

]
(R, θ) =

2µ

[
1

R
∂θ∂rφ+

1

R2
∂θφ

]
(R, θ) + µ

[
1

R2
∂2
θψ +

1

R
∂rψ − ∂2

rKsL−1

]
(R, θ).

Subtracting the first four terms from both sides of the equation gives−µ∂2
rψ(R, θ) = −µ∂2

rKsL−1(R, θ).

Dividing both sides of that equation by −µ gives (3.31).

3.4 NUMERICAL SCHEME FOR THE KFE-BVP OF ELASTIC SCATTERING

The bounded KFE-BVP that I have proposed to obtain an approximation to the solution of the

elastic scattering from a single obstacle is given by (3.4) and (3.11)-(3.20) with an additional

Dirichlet (3.26)-(3.27) or Neumann (3.23)-(3.24) boundary condition at the obstacle boundary. In

this section I develop a second order finite difference numerical method to obtain an approximate

solution to this BVP. Throughout this section, I will use the following equations to simplify writing

the Karp expansion,

Jph =
H0(kpR)

(kpR)h
, Kp

h =
H1(kpR)

(kpR)h

Jsh =
H0(ksR)

(ksR)h
, Ks

h =
H1(ksR)

(ksR)h
.

Just as in Section 2.3.1, I cover the domain Ω− with a polar grid with constant radial and angular

steps ∆r and ∆θ, respectively. The number of grid points in the radial and angular directions is

N,m > 1, respectively. For a given grid point (ri, θj), the discrete value of the scattered field is

denoted by ui,j = u(ri, θj). Notice that the pairs (ri, θ1) and (ri, θm+1) represent the same physical

point due to periodicity in the angular direction, thus ui,1 = ui,m+1 for i ≤ N . Thus, the grid

supports N ×m wavefield evaluations.

The KFE-BVP leads to a well-posed linear system after discretization. For this, I will consider

the unknowns to be computed along with the corresponding set of equations. In the interior, φi,j

and ψi,j will be computed where i = 1, . . . , N − 1 and j = 1, . . . ,m for a total of 2 · (N − 1) ·m
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unknowns. Near the obstacle boundary, discretizations of derivatives cause the introduction of

an additional 2 · m points at φ0,j and ψ0,j . These points are known as ghost points since they

do not correspond to physical points outside of the scattering body but are instead used to aid in

computation. In addition, I will truncate the two Karp Expansion series to L − 1. This means

I have F p
l (θj), Gp

l (θj), F s
l (θj), and Gs

l (θj) for j = 1, . . . ,m and l = 0, . . . , L − 1. This gives

an additional 4 · L · m unknowns. Finally, 2 · m more unknowns at φN+1,j and ψN+1,j will be

added to aid in the computation of points near the absorbing boundary. Once again, these are ghost

points since they correspond to points outside of Ω−. The first set of 2 ·m equations comes from

the boundary conditions (either hard or soft obstacle, to be discussed later). For the second set

of equations, I consider the Helmholtz equations centered at i, j for i = 1, . . . , N , this introduces

2 ·N ·m equations. Note that any time the variables φN,j or ψN,j appear, they will be replaced with

the appropriate Karp expansion using (3.11) and (3.12). I then use four interface type conditions

(3.13)-(3.15) to obtain equations for the next 4 · m unknowns. The final set of 4 · (L − 1) · m

unknowns are taken care of by (3.17)-(3.20).

The following equations are the discretized version of equations (3.4), (3.11)-(3.20). Through-

out this section, I will refer to “blocks” of the matrix relating to the final numerical scheme. Each

“block” refers to a section of m contiguous rows that correspond to a single angular slice.

The first set of 2 ·m equations take up the first two blocks of the matrix and correspond to the

equations describing the obstacle boundary. In the case of the soft obstacle boundary equations

(3.23)-(3.24) become

(−λk2
p −

4µ

∆r2
)φ1,j +

2µ

∆r2
(φ0,j + φ2,j)−

µ

r2
1∆θ

(ψ1,j+1 − ψ1,j−1) (3.32)

+
µ

2r1∆r∆θ
(ψ2,j+1 − ψ0,j+1 − ψ2,j−1 + ψ0,j−1)

=
[
λk2

p − 2µ(ikp cos(θj))
2
]

(φinc)1,j
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µ

2r1∆r∆θ
(φ2,j+1 − φ0,j+1 − φ2,j−1 + φ0,j−1)− µ

r2
1∆θ

(φ1,j+1 − φ1,j−1) (3.33)

+ (− 2µ

r2
1∆θ2

+
2µ

∆r2
)ψ1,j + (

µ

2r1∆r
− µ

∆r2
)ψ2,j

+ (− µ

2r1∆r
− µ

∆r2
)ψ0,j +

µ

r2
1∆θ2

(ψ1,j+1 + ψ1,j−1)

= 2µ(ikp)
2 cos(θj) sin(θj)(φinc)1,j.

Note that φ0,j and ψ0,j are ghost points whose computation is taken care of by the inclusion of the

Helmholtz equation (3.4) at i = 1. In the case of the hard obstacle boundary equations (3.26)-

(3.27) become

φ2,j − φ0,j

2∆r
+
ψ2,j − ψ0,j

2r1∆θ
= −ikp cos(θj)(φinc)1,j (3.34)

φ2,j − φ0,j

2r1∆θ
− ψ2,j − ψ0,j

2∆r
= ikp sin(θj)(φinc)1,j. (3.35)

The 2 · (N − 2) blocks corresponding to the interior points (ri, θj) (i = 2, . . . N − 2, j =

1, . . .m), as well as the points at the obstacle boundary at i = 1, follow. Their corresponding

equations are obtained from the discretization of the Helmholtz equation.

α+
i φi+1,j + α−i φi−1,j + αpiφi,j + βiφi,j+1 + βiφi,j−1 = 0, (3.36)

α+
i ψi+1,j + α−i ψi−1,j + αsiψi,j + βiψi,j+1 + βiψi,j−1 = 0, (3.37)

α+
i = 1

∆r2
+ 1

(2∆r)ri
, α−i = 1

∆r2
− 1

(2∆r)ri
,

αpi = k2
p − 2

∆r2
− 2

∆θ2r2i
, βi = 1

∆θ2r2i
,

αsi = k2
s − 2

∆r2
− 2

∆θ2r2i
.

The next two blocks correspond to the interior points (ri, θj) (i = N − 1 j = 1, . . .m) where the
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replacement of φN,j and ψN,j using (3.11) and (3.12) causes the Helmholtz equation to become

α+
N−1

(
L−1∑
h=0

JphF
p
h,j +

L−1∑
h=0

Kp
hG

p
h,j

)
+ α−N−1φN−2,j + αpN−1φN−1,j (3.38)

+ βN−1φN−1,j+1 + βN−1φN−1,j−1 = 0,

α+
N−1

(
L−1∑
h=0

JshF
s
h,j +

L−1∑
h=0

Ks
hG

s
h,j

)
+ α−N−1ψN−2,j + αsN−1ψN−1,j (3.39)

+ βN−1ψN−1,j+1 + βN−1ψN−1,j−1 = 0.

At the artificial boundary (ri, θj) (i = N j = 1, . . .m), a similar replacement transforms the

Helmholtz equation into

α+
NφN+1,j + α−NφN−1,j + αpN

(
L−1∑
h=0

JphF
p
h,j +

L−1∑
h=0

Kp
hG

p
h,j

)
(3.40)

+ βN

(
L−1∑
h=0

JphF
p
h,j+1 +

L−1∑
h=0

Kp
hG

p
h,j+1

)
+ βN

(
L−1∑
h=0

JphF
p
h,j−1 +

L−1∑
h=0

Kp
hG

p
h,j−1

)
= 0

α+
NψN+1,j + α−NψN−1,j + αsN

(
L−1∑
h=0

JshF
s
h,j +

L−1∑
h=0

Ks
hG

s
h,j

)
(3.41)

+ βN

(
L−1∑
h=0

JshF
s
h,j+1 +

L−1∑
h=0

Ks
hG

s
h,j+1

)
+ βN

(
L−1∑
h=0

JshF
s
h,j−1 +

L−1∑
h=0

Ks
hG

s
h,j−1

)
= 0.

I now define some constants that will be useful in later equations:

Aph = − kpH1

(kpR)h
− kphH0

(kpR)h+1

Bp
h = −kp(h+ 1)H1

(kpR)h+1
+

kpH0

(kpR)h

Ash = − ksH1

(ksR)h
− kshH0

(ksR)h+1

Bs
h = −ks(h+ 1)H1

(ksR)h+1
+

ksH0

(ksR)h
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Cp
h = −

k2
pH0

(kpR)h
+
k2
p(2h+ 1)H1

(kpR)h+1
+
k2
ph(h+ 1)H0

(kpR)h+2

Dp
h =

k2
p(2h+ 1)H0

(kpR)h+1
−

k2
pH1

(kpR)h
+
k2
p(h+ 1)(h+ 2)H1

(kpR)h+2

Cs
h = − k2

sH0

(ksR)h
+
k2
s(2h+ 1)H1

(ksR)h+1
+
k2
sh(h+ 1)H0

(ksR)h+2

Ds
h =

k2
s(2h+ 1)H0

(ksR)h+1
− k2

sH1

(ksR)h
+
k2
s(h+ 1)(h+ 2)H1

(ksR)h+2
.

Note thtat A and B are related to the first partial derivative with respect to r of the coefficients of

the Karp expansion terms while C and D are related to the second partial derivative.

The next two blocks are made up of the first interface conditions

φN+1,j − φN−1,j

2∆r
−

L−1∑
h=0

AphF
p
h,j −

L−1∑
h=0

Bp
hG

p
h,j = 0

−ψN+1,j − ψN−1,j

2∆r
+

L−1∑
h=0

AshF
s
h,j +

L−1∑
h=0

Bs
hG

s
h,j = 0

which come from the simplified interface of the displacement (equations (3.28) and (3.29)). The

two blocks that follow that come from the simplified interface of the stresses (equations (3.30) and

(3.31))
φN+1,j + φN−1,j

∆r2
−

L−1∑
h=0

(
2

∆r2
+ Cp

h

)
F p
h,j −

L−1∑
h=0

(
2

∆r2
+Dp

h

)
Gp
h,j = 0

ψN+1,j + ψN−1,j

∆r2
−

L−1∑
h=0

(
2

∆r2
+ Cs

h

)
F s
h,j −

L−1∑
h=0

(
2

∆r2
+Ds

h

)
Gs
h,j = 0.
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Finally, come the recursion equations.

2lGp
lj − (l − 1)2F p

l−1,j −
F p
l−1,j+1 − 2F p

l−1,j + F p
l−1,j−1

∆θ2
= 0 (3.42)

2lF p
lj + l2Gp

l−1,j +
Gp
l−1,j+1 − 2Gp

l−1,j +Gp
l−1,j−1

∆θ2
= 0 (3.43)

2lGs
lj − (l − 1)2F s

l−1,j −
F s
l−1,j+1 − 2F s

l−1,j + F s
l−1,j−1

∆θ2
= 0 (3.44)

2lF s
lj + l2Gs

l−1,j +
Gs
l−1,j+1 − 2Gs

l−1,j +Gs
l−1,j−1

∆θ2
= 0. (3.45)

The previous equations can be combined into a matrix A that will used in the system AU = b.

The resulting unknown vector for the system of equations is as follows

U =
[ at ghost points︷ ︸︸ ︷
φ0,1...φ0,m ψ0,1...ψ0,m

at obstacle︷ ︸︸ ︷
φ1,1...ψ1,m

at interior grid points︷ ︸︸ ︷
φ2,1...ψ2,m...φN−1,1...ψN−1,m

at ghost points︷ ︸︸ ︷
φN+1,1...ψN+1,m

at artificial boundary︷ ︸︸ ︷
F p

0,1...F
s
0,mG

p
0,1...G

s
0,m... F

p
L−1,1...F

s
L−1,mG

p
L−1,1...G

s
L−1,m

]T
. (3.46)

Note the similarities to the setup of the acoustic system, seen in Equation 2.44. While the known

vector b, for a soft obstacle boundary condition on the obstacle, is given by

b =
[ at ghost points︷ ︸︸ ︷

(OS)1
1...(OS)1

m (OS)2
1...(OS)2

m

at obstacle︷ ︸︸ ︷
0...0...0...0

at all other points︷ ︸︸ ︷
0...0...0...0

]T
, (3.47)

(OS)1
j =

[
λk2

p − 2µ(ikp cos(θj))
2
]

(φinc)1,j

(OS)2
j = 2µ(ikp)

2 cos(θj) sin(θj)(φinc)1,j.

The known vector b, for a hard obstacle boundary condition on the obstacle, is given by

b =
[ at ghost points︷ ︸︸ ︷

(OH)1
1...(OH)1

m (OH)2
1...(OH)2

m

at obstacle︷ ︸︸ ︷
0...0...0...0

at all other points︷ ︸︸ ︷
0...0...0...0

]T
, (3.48)

(OH)1
j = −ikp cos(θj)(φinc)1,j

(OH)2
j = ikp sin(θj)(φinc)1,j.
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3.5 NUMERICAL RESULTS

Figure 3.1: Example solutions for elastic wave scattering. On the left is φ and on the right ψ. All
plots show solution for a soft obstacle boundary. Outer radius R = 2 for the top plots with R = 5
for the bottom plots. The data used is r0 = 1, ν = .3, ρ = 1, E = 1, NKFE= 6.

To analyze the accuracy and convergence of the proposed high order numerical method, I

performed a set of experiments for the scattering of a time-harmonic incident elastic wave from a

circular obstacle of radius r0. The equations describing the incident wave are given in terms of the

scalar potentials φ and ψ as

φ(r0, θ) = φinc(r0, θ) = eikx = eikr cos θ, and ψ(r0, θ) = ψinc(r0, θ) = 0.

I performed experiments using various numbers of Karp expansion terms as well as various radii.

Results for both hard and soft obstacle boundaries are included. Desired second order convergence
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Figure 3.2: Example solutions for elastic wave scattering. On the left is φ and on the right ψ. All
plots show solution for a hard obstacle boundary. Outer radius R = 2 for the top plots with R = 5
for the bottom plots. The data used is r0 = 1, ν = .3, ρ = 1, E = 1, NKFE= 6.

is demonstrated in various cases, confirming the second order nature of the scheme developed in

the preceding section. As in the heterogeneous case, no exact solution was used so a series of

increasingly refined grids was employed and the results over the most refined grid were taken as a

reference (best approximation to the exact solution values) instead of the actual values of the exact

solution.

Various examples of the reference solution of the total field for the two scalar wave potentials

are shown in Figures 3.1 and 3.2. Both hard and soft obstacle boundary results are included, as

well as several radii for the soft obstacle case. In Figure 3.3 order of convergence for the soft

obstacle with outer radius 2 is shown. As can be seen in the figure, convergence of both potentials

is consistent with a least squares logarithmic slope of 2 which matches the expected order of the
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scheme. More precise results, matching those in the figure, are shown for the scalar potentials

φ and ψ in Tables 3.1 and 3.2, respectively. The values of r0 = 1, ν = .3, ρ = 1 , E = 1 of

the radius of the circular obstacle and elastic parameters are fixed during the experiments of this

section. This gives λ = E∗ν
(1+ν)(1−2ν)

≈ .577 and µ = E
2(1+ν)

≈ .385. This in turns gives the wave

numbers kp =
√
ρ/(λ+ 2µ) ≈ .862 and ks =

√
ρ/µ ≈ 1.613 [28].

Figure 3.3: Line of best fit for order of convergence for the elastic scattering problem with soft
obstacle boundary. Left plot shows convergence for φ and right plot shows ψ. Data comes from
Tables 3.1 and 3.2.

h = ∆θ = ∆r L2-norm Rel. Error Observed order

0.1904 7.67× 10−3

0.0952 1.84× 10−3 2.06
0.0476 4.98× 10−3 1.89
0.0238 1.03× 10−4 2.27

Table 3.1: Grid spacing, L2 Relative Error, and order of convergence for elastic scattering problem
with soft obstacle boundary. Results are shown for φ with R=2 and NKFE= 13.

h = ∆θ = ∆r L2-norm Rel. Error Observed order

0.1904 2.31× 10−2

0.0952 3.01× 10−3 2.94
0.0476 1.10× 10−3 1.46
0.0238 2.43× 10−4 2.17

Table 3.2: Grid spacing, L2 Relative Error, and order of convergence for elastic scattering problem
with soft obstacle boundary. Results are shown for ψ with φ with R=2 and NKFE= 13.
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h = ∆θ = ∆r L2-norm Rel. Error Observed order

0.3696 4.06× 10−2

0.1848 7.39× 10−3 2.46
0.0924 1.85× 10−3 2.00
0.0462 3.85× 10−4 2.27

Table 3.3: Grid spacing, L2 Relative Error, and order of convergence for elastic scattering problem
with soft obstacle boundary. Results shown for ψ. Results shown for φ with R=4 and NKFE= 6.

These results are not surprising, because the interior scheme developed in the previous sections

is only order 2. All finite difference approximations of derivatives were done up to second order

so, although the Karp expansion is arbitrary order, the scheme is expected to reach 2nd order

convergence. This is clearly seen in Figure 3.3 and Tables 3.1-3.3. Thus, my results confirm the

consistency and accuracy of the finite difference scheme developed in this section.

Results similar to those found in Figure 3.3 were found by varying the number of Karp expan-

sion terms from as low as 5 to as high as 19. When varying the outer radius R, similar results were

also achieved as can be seen in Table 3.3. As a note, with larger radii, convergence was generally

slightly more erratic but was always close to order 2. Results for the hard obstacle followed a

similar pattern, if not slightly worse.

CHAPTER 4. CONCLUDING REMARKS AND FUTURE

WORK

I have constructed an arbitrary high order numerical method for the two-dimensional time-harmonic

acoustic scattering problem. This is based on applying a general pth order DC finite difference

technique to approximate the Helmholtz equation (interior approximation) and the Karp’s farfield

expansion absorbing boundary condition (KFE-ABC). The number of terms, NKFE for the equa-

tions (2.8)-(2.12) defining the KFE-ABC needs to be adjusted to achieve the desired order of

convergence.

The DC approximation of the governing Helmholtz equation of arbitrary order p is given by

(2.30), while the pth order DC approximation of the Karp’s farfield expansion ABC with enough
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NKFE terms is given by the discrete equations (2.33)-(2.34), (2.35)-(2.36). The algebraic linear

system for the scattered field obtained from all these discretizations is completed by the discrete

equations corresponding to the continuity of the scattered field (2.8) at the artificial boundary

and the appropriate discretization of the boundary condition at the obstacle (2.7). In the case

of Neumann or Robin condition, a pth order DC finite difference discretization of the boundary

condition at the obstacle should be constructed. The details in the construction of this DC scheme

for the BVP (2.6)-(2.12) are given in Section 2.3.

It is seen from Figs. 2.3 - 2.5 and Figs. 2.7 - 2.8 that the proposed method can reach its theo-

retical order of convergence, if enough terms in Karp’s expansion are retained for sufficiently fine

grids. This fact confirms the arbitrary high order character of the KFE-ABC that was claimed in

[17]. Actually, this high order property was already observed in [30] where the KFE-ABC was

combined with a high order isogeometric finite element method employed as a Helmholtz solver

for the interior.

The virtue of this approach is that any pth order approximation of the Helmholtz equation

consists of the same 5-point stencil which is used by the standard centered second order finite

difference approximation. The difference between these two approximations is that the right hand

side of the pth order scheme includes some additional terms that come from leading terms of the

truncation error of the Helmholtz equation centered second order finite difference approximation.

These new terms are calculated from a (p− 2)th order numerical solution Up−2, previously com-

puted. Hence, the proposed DC method is an iterative technique. For instance, the application

of the DC fourth order method that leads to a fourth order approximation U4 is preceded by the

calculation of U2 by applying a second order DC scheme. Moreover, the matrix defining the LSE

associated to both steps is the same matrix A2. However, it is important to notice (as shown in

Fig. 2.2) that this matrix, although highly sparse, is not banded due to the presence of the unknown

angular functions of the Karp’s expansion. In Section 2.5, I describe this iterative process in detail.

In Section 2.3, I rigorously proved how my proposed DC finite difference method is consistent

with equations (2.6)-(2.12), defining the KFE-BVP, to any order p. In Section 2.6, these theoretical
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results are complemented experimentally by showing that the numerical solutions obtained by

applying KDC4 and KDC6 numerically converge to the exact solution with a fourth and sixth

order convergence rate, respectively.

I accessed the computational effectiveness of my proposed technique by choosing target toler-

ance errors to be satisfied by the numerical FFP. An analysis of the right plot in Fig. 2.6 reveals

that KDC4 reaches the tolerance errors faster than its standard counterpart KS4. This is remarkable

since the combined KDC4 technique requires the solution of two linear systems while KS4 needs

to solve only one linear system. I attribute this performance to the greater sparsity of KDC4 matrix

A2 compared with the less sparse matrix A4, associated to the 9-point standard finite difference

approximation of Helmholtz equation. I also notice that KS4 requires more KFE terms than KDC4

for similar grid sizes to reach a given tolerance error. But, more important KDC6 is eight times

faster than KDC4, although its application has one more step in the iterative process. The reason

for this is the coarser grid and lower number of KFE terms used by KDC6 compared with those

employed by KDC4. For instance, KDC6 reaches an error close to 10−5 for (PPW,NKFE) = (26,7),

while KDC4 needs (PPW,NKFE) = (60,8).

In addition to developing a scheme for the homogeneous case, I also extended the deferred

corrections method to the heterogeneous case using (2.54). For media with continuous changes

in the index of refraction, such as (2.58), it was shown that a deferred corrections scheme could

obtain up to 6th order convergence (see Figure 2.10). For media with discontinuous changes in the

index of refraction, such as (2.59), the convergence results were not quite as robust. Overall, the

extension to the heterogeneous case was successful.

After developing the deferred corrections scheme for the acoustic case, I moved on to the

construction and analysis of numerical methods for elastic wave scattering problems. First, the

original Navier’s equation of elasticity was reduced to two uncoupled Helmholtz equations for

the scalar potentials φ and ψ. This was done by decomposing the elastic displacement in terms

of these two scalar potentials. Then, I constructed a high order ABC based on Karp’s infinite

series representations of the scalar elastic potentials φ and ψ in the farfield which resulted in the
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KFE-ABC given by (3.13)-(3.20). Finally, the Helmholtz equations for the two scalar potentials

were complemented with the KFE-ABC and the boundary condition over the obstacle boundary to

finalize the definition of the KFE-BVP.

Numerical methods for the scattering of elastic waves of two different types of obstacles were

discussed. Numerical results confirmed the second order convergence of this method.

In this work, I chose to limit my study to the two-dimensional Helmholtz equation in polar

coordinates for clarity in the formulation and presentation of the theoretical results. However,

I anticipate that an extension of the DC technique to the KFE-BVP in generalized curvilinear

coordinates will follow a similar pattern to what has already been observed in polar coordinates.

This extension could be based on Villamizar and Acosta’s previous works on the grid generation

for single and multiple scatterers of complexly shaped geometries [31, 32]. These grids correspond

to generalized curvilinear coordinates conforming to the boundaries of the scatterers. Moreover,

these grids were used by the same authors to solve single and multiple scattering problems from

complexly shaped obstacles in [33, 34, 17]. In particular in [17], they obtained second order

convergence for a star shaped scatter with smooth boundary by using second order finite difference

approximation based on curvilinear coordinantes conforming to the scatterer boundary.

Another possible extension is moving to the three-dimensional Helmholtz equation in spherical

coordinates

∆r,θ,φu+ k2u = urr +
2

r
ur +

1

r2 sin θ
(sin θ uθ)θ +

1

r2 sin2 θ
uφφ + k2u = 0, (4.1)

coupled with the high order local farfield expansion ABC for the three-dimensional case (WFE),

which was constructed in [17] from the Wilcox’s farfield expansion. In addition, it is expected

that the KFE can be adapted to wave problems in the half-plane with a hard or soft condition on

the plane boundary. A technique similar to the procedure employed by Acosta and Villamizar in

[34] for the construction of the Dirichlet to Neumann (DtN) condition for a single obstacle in the

half-plane from the multiple DtN condition for the full-plane [35, 33] is expected to be used. It is

also my opinion that the extension of the DC method to arbitrary PDEs (as long as the solution is
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sufficiently regular) is possible. The theoretical foundation for such an extension would be found

in the proof of Theorem 2.6.

APPENDIX A. SIXTH ORDER DC FINITE DIFFERENCE

APPROXIMATIONS

The sixth order DC finite difference approximation to the Helmholtz differential operator is ob-

tained by substituting p = 6 in (2.30) which leads to

H6U6
ij ≡ H2U6

ij −
(

1

3!ri
D4

3rU
4
ij +

2

4!
D4

4rU
4
ij +

2

4!r2
i

D4
4θU

4
ij

)
h2

−
(

1

5!ri
D2

5rU
4
ij +

2

6!
D2

6rU
4
ij +

2

6!r2
i

D2
6θU

4
ij

)
h4, (A.1)

where D4
4rU

4
ij , D

4
3rU

4
ij , and D4

4θU
4
ij are fourth order approximations of (u4r)ij , (u3r)ij , and (u4θ)ij ,

respectively. They are obtained by applying standard centered fourth order finite difference to U4
ij

and are given by

(u4r)ij ≈ D4
4rU

4
ij ≡

1

∆r4

[
−1

6
U4
i−3,j + 2U4

i−2,j −
13

2
U4
i−1,j +

28

3
U4
i,j −

13

2
U4
i+1,j + 2U4

i+2,j −
1

6
U4
i+3,j

]
(A.2)

(u3r)ij ≈ D4
3rU

4
ij ≡

1

∆r3

[
1

8
U4
i−3,j − U4

i−2,j +
13

8
U4
i−1,j −

13

8
U4
i+1,j + U4

i+2,j −
1

8
U4
i+3,j

]
(A.3)

(u4θ)ij ≈ D4
4θU

4
ij ≡

1

∆θ4

[
−1

6
U4
i,j−3 + 2U4

i,j−2 −
13

2
U4
i,j−1 +

28

3
U4
i,j −

13

2
U4
i,j+1 + 2U4

i,j+2 −
1

6
U4
i,j+3

]
.

(A.4)

Also, D2
6rU

4
ij , D

2
5rU

4
ij , and D2

6θU
4
ij are second order approximations of (u6r)ij , (u5r)ij , and

(u6θ)ij , respectively. They are obtained by applying standard centered second order finite differ-
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ence to U4
ij and are given by

(u5r)ij ≈ D2
5rU

4
ij ≡

1

∆r5

[
−1

2
U4
i−3,j + 2U4

i−2,j −
5

2
U4
i−1,j +

5

2
U4
i+1,j − 2U4

i+2,j +
1

2
U4
i+3,j

]
(A.5)

(u6r)ij ≈ D2
6rU

4
ij ≡

1

∆r6

[
U4
i−3,j − 6U4

i−2,j + 15U4
i−1,j − 20U4

i,j + 15U4
i+1,j − 6U4

i+2,j + U4
i+3,j

]
(A.6)

(u6θ)ij ≈ D2
6θU

4
ij ≡

1

∆θ6

[
U4
i,j−3 − 6U4

i,j−2 + 15U4
i,j−1 − 20U4

i,j + 15U4
i,j+1 − 6U4

i,j+2 + U4
i,j+3.

]
(A.7)

For points close to the artificial boundary, appropriate one-sided finite difference approximations

are employed.

APPENDIX B. APPROXIMATIONS FOR THE NEUMANN

BOUNDARY CONDITION

In the case of the Neumann condition at the boundary of a circular obstacle of radius r0, the strategy

to be employed for the construction of the fourth order approximation follows very closely the one

employed at the artificial boundary for the KFE in subsection 2.3.2.

First, I consider the standard second order centered finite difference approximation for the

Neumann boundary condition at r = r0, retaining an approximation of its leading order truncation

error,

U4
2,j − U4

0,j

2∆r
= −∂uinc

∂r
+

∆r2

6
(Dr)2

3r U
2
1,j. (B.1)

This equation contains the ghost values U4
0,j . They are also present in the fourth order approxi-

mation of the Helmholtz equation (2.19) evaluated at i = 1. Therefore, they can be eliminated by

combining these equations. The equations (B.1) and (2.19) also contain second order approxima-

tions of one-sided third and fourth forward radial derivatives at r = r0, respectively. They act on
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the second order approximations U2
1,j of u obtained in the first step and they are given by

(Dr)2
3r U

2
1,j ≡

1

∆r3

[
−3

2
U2

0,j + 5U2
1,j − 6U2

2,j + 3U2
3,j −

1

2
U2

4,j

]
, (B.2)

(Dr)2
4r U

2
1,j ≡

1

∆r4

[
2U2

0,j − 9U2
1,j + 16U2

2,j − 14U2
3,j + 6U2

4,j − U2
5,j

]
. (B.3)

It can be shown that the DC formula (B.1) is also a fourth order approximation to the Neumann

boundary condition and its proof is completely analogous to those performed in Section 2.3. There-

fore, it is not included.

I can increase the fourth order discrete approximation (B.1) of the Neumann condition to an ar-

bitrary pth order. Again, the definition is a natural extension of (B.1), where the continuous deriva-

tives of higher order truncation error terms (u3r)1j , (u5r)1j , . . . ,
(
u(p−1)r

)
1j

are approximated by

appropriate right one-sided discrete operators acting on the previously calculated (p−2)th ordered

numerical solution Up−2
i,j , approximating the exact solution u. More precisely,

U2,j − U0,j

2∆r
= −∂uinc

∂r
+
h2

3!
(Dr)p−2

3r Up−2
ij +

h4

5!
(Dr)p−4

5r Up−2
ij + . . .+

hp−2

(p− 1)!
(Dr)2

(p−1)rU
p−2
ij .

(B.4)

The proofs that the finite difference formulas (2.33)-(2.36) and (B.4) approximate their con-

tinuous counterparts to pth order are very similar to the proof of Theorem 2.6. Therefore, they

are omitted. The key assumption for these proofs is that the discrete functions Up−2
N,j , F p−2

l−1,j and

Gp−2
l−1,j , which are obtained in a previous step, are (p− 2)th order approximations of the continuous

solutions u(R, θ), F 2
l−1(θ), and G2

l−1(θ), respectively.
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