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ABSTRACT 

SNFing Glucose to PASs Mitochondrial Mitochondrial Dysfunction: The Role 
of Two Sensory Protein Kinases  

in Metabolic Diseases 

Kai Li Ong 
Department of Microbiology and Molecular Biology, BYU 

Doctor of Philosophy 

Mitochondria is no longer viewed as merely a powerhouse of the cell. It is now apparent 
that mitochondria play a central role in signaling, maintaining cellular homeostasis and cell fate. 
Mitochondrial dysfunction has been linked to many human diseases caused by cellular metabolic 
deregulation, such as obesity, diabetes, neurodegenerative disease, cardiovascular disease and 
cancer. Eukaryotic organisms have evolved an efficient way in sensing, communicating and 
responding to cellular stress and regulating mitochondrial activity correspondingly through a 
complex network of intercommunicating protein kinases and their downstream effectors. This 
dissertation focuses on the interplay of two of the master metabolic regulators in the cell: AMPK 
and PASK, and characterization of the functions of their downstream substrates: OSBP and 
MED13. AMPK is an energy sensing kinase that maintains energy homeostasis in the cell, 
whereas PASK is a nutrient sensing kinase that regulates glucose partitioning and respiration in 
the cell. Both kinases play important roles in mitochondrial function and regulation, and 
deficiency in either kinase has been found to associate with various human pathologies. Further 
characterization of the cross-talk and molecular mechanisms of both kinases in controlling 
mitochondrial health and function may aid in the identification of new targets for treating 
metabolic diseases.  

Keywords: AMP-activated Kinase; SNF1; Oxysterol binding protein; OSBP; Osh6; Osh7; 
ORP5; ORP8; PAS Kinase; Med13; cyclin C; mitochondria function; mitochondria dynamic; 
mitophagy 
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1 

CHAPTER 1: Role of Mitochondrial Dysfunction and Metabolic Diseases 

1.1 Introduction 

Mitochondria are powerhouses of the cell that generate the energy necessary for all 

cellular activity in the form of adenosine triphosphate (ATP), a high energy carrying molecule 

[1]. Although some ATP can be obtained through anaerobic glycolysis, most ATP derives from 

oxidation of carbohydrates and fatty acids in the mitochondria through a series of reactions in the 

Kreb cycle and the Electron transport chain (ETC). In addition to generation of cellular energy, 

mitochondria have also been recognized as an important signaling hub and a critical regulator of 

apoptosis about 2 decades ago due to two major discoveries: 1) cytochrome c, a protein 

previously known as only an electron transporter, was found to initiate apoptosis once it is 

released into the cytosol through association with apoptotic protease activating factors (Apaf) 

and activating signaling cascade of caspases [2]. 2) The discovery of Bcl-2 family’s involvement 

in apoptotic signaling through controlling the release of cytochrome c into the cytosol [3]. It is 

now established (and still under rigorous, active research) that mitochondria communicate to the 

rest of the cells regarding its fitness through many pathways such as the release of metabolites, 

mitochondrial peptides, reactive oxygen species (ROS), activation of AMPK, changes in inner 

mitochondria membrane potential, calcium signaling and communication through mitochondria 

associated membrane (MAMs) [4-7]. Changes in mitochondria dynamic (fission and fusion) 

ensure delivery of appropriate signal to proper location in the cell, allow mitochondria fitness 

assessment by quality control mechanisms such as mitophagy and cellular stress adaptation [8, 

9]. These mechanisms may function jointly—for instance, decreases in mitochondrial respiratory 

flux can result in reduced mitochondrial membrane potential, decreased output of ATP (and the 

corresponding increase in the AMP:ATP ratio), decreased ROS production, and alterations in 
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other TCA metabolites. These signals can activate AMPK and cause a switch from anabolic 

metabolism to a catabolic state; AMPK activation promotes mitochondria fission [10], hence 

mitochondria without adequate membrane potential are dissociated from healthy mitochondria 

and destroyed through mitophagy [11, 12]; decreases ROS levels thus reducing signaling 

pathway activation necessary for cell proliferation and metabolic adaptation [4]; decreases TCA 

metabolites which output may cause reduction in lipid production necessary for cell growth and 

reduced protein acetylation [5]; and  inadequate mitochondria membrane potential also causes a 

decrease in Ca+ uptake hence improper calcium signaling [13]. Under starvation conditions, cells 

ensure adequate supply of substrates such as amino acids to the TCA cycle through autophagy in 

an effort to maintain mitochondria membrane potential or risk the release of cytochrome c. With 

mitochondria’s importance to the overall cell health and role in many essential cellular processes, 

it is not surprising that mitochondrial dysfunction can lead to many diseases at the tissue and 

organismal level. Mitochondrial dysfunction has been associated with many diseases such as 

sarcopenia, type 2 diabetes mellitus (T2DM), neurodegenerative disease, cardiovascular disease, 

liver and kidney disease and cancer [14-17]. Furthermore, their regulation has been shown to be 

important in longevity in many different organisms from yeast to man [18, 19]. With 

mitochondria being at the center of cellular metabolism and signaling pathways, the difficulty in 

understanding and treating human diseases caused by mitochondrial dysfunction arises from the 

complex relationships between mitochondria and other cellular processes. Understanding of 

mitochondrial protein-protein signaling network, types of mitochondrial stressors, their interplay 

with mitochondrial dynamics and the mechanisms that orchestrate how cells respond to them is 

critical in better understanding the transition between health and disease. 
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1.1.1 Role of AMPK in mitochondrial function and metabolic diseases 

AMP-activated kinase (AMPK) is an evolutionarily conserved protein kinase that 

regulates energy homeostasis in the cell. Cells need to manage their energy consumption 

depending on nutrient availability and on their capacity to produce ATP constantly by changing 

their metabolism, and AMPK is the key player in this process. AMPK is a heterotrimeric 

complex composed of a catalytic α-subunit and two regulatory subunits, β and γ (Figure 1-1 

[20]). Humans possess multiple genes that encode for each subunit which results in different 

isoforms of AMPK complexes: two α-subunits, α1 and α2 encoded by the gene PRKAA1 and 

PRKAA2 [21]; two β-subunits, β1 an β2 encoded by the gene PRKAB1 and PRKAB2 [22]; and 

three γ-subunits, γ1, γ2 and γ3, encoded by the gene PRKAG1, PRKAG2 and PRKAG3 [23]. 

Each AMPK complex is only composed of one α, one β and one γ subunit at any given time, 

which gives rise to 12 possible combinations of AMPK complexes. Different complexes of 

AMPK seem to be functionally redundant with differences in tissue/ organ dependent expression 

levels [24]. When ATP is used in cellular processes, it is broken down into ADP and can be 

further broken down into AMP. AMPK senses changes in cellular AMP/ADP: ATP ratio by the 

binding of AMP, and to a lesser extent ADP to the γ subunit, which stimulates AMPK activity 

[25-27]. Binding of AMP/ ADP to the γ subunit promotes Thr172 phosphorylation in the 

activation loop in the kinase domain by upstream kinases such as LKB1 and protects Thr172 

from dephosphorylation by protein phosphatases. Activation of AMPK can also be achieved in a 

non-AMP/ ADP sensitive fashion, by the phosphorylation of calcium-sensitive kinase CAMKK2 

at Thr172.  

AMPK has been identified as a central integrator of mitochondrial homeostasis by 

controlling multiple aspects of the mitochondrial life cycle: from mitochondrial biogenesis and 
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dynamics, to healthy removal by mitophagy [28]. Almost every mitochondrial insult or defect 

activates AMPK and given the function of mitochondria as the major source of ATP production 

in the cell, it makes perfect sense that AMPK, an energy homeostasis regulator in the cell would 

engage downstream effectors to ensure optimal mitochondrial function. AMPK promotes 

mitochondrial biogenesis through direct and indirect regulation of the peroxisome proliferator-

activated receptor-γ co-activator 1 (PGC1) family— by affecting expression level of PGC1α 

[29], direct phosphorylation [30] or through AMPK-dependent modulation of p38 MAPK1 [31], 

HDAC5 [32, 33] or SIRT1 [34]. Understanding the effect of AMPK on mitochondrial biogenesis 

has important implications in multiple pathological states and processes, including Duchenne 

muscular dystrophy [35], mitochondrial myopathy[36], exercise capacity [37], muscle 

regeneration after injury [38] and protection from age-related myopathies [39]. AMPK is also a 

direct and crucial regulator of mitochondrial dynamics. As mentioned above, AMPK regulates a 

core component of the mitochondria fission pathway—mitochondrial fission factor (MFF) [40] 

through direct phosphorylation at Ser155 and Ser172 of MFF and promote DRP1 (a protein that 

mediates constriction of mitochondria during fission [41]) localization at mitochondria [10]. 

Therefore, AMPK controls the shape of the mitochondrial network in response to stress, in which 

fusion of mitochondria maximizes generation of ATP [42], distributes lipids and protects 

mitochondria from mitophagy [12, 43]; fission of mitochondria facilitates mitophagy of 

mitochondrial fragments lacking proper membrane potential, as well as allows timely apoptosis 

when necessary [44]. AMPK also regulates other pathways that control autophagy/ mitophagy 

through multiple downstream substrates such as mTORC1, ULK1, ATG9 and VPS34 to remove 

damaged/ depolarized mitochondria [45-48]. With AMPK’s essential role in regulating energy 
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metabolism and mitochondria function, AMPK is currently at the center stage of interests in 

studies of diabetes and related metabolic diseases, as well as cancer [49, 50].  

Figure 1-1 Crystal structure of AMPK complex (A) Schematic representation of the construct used for 
crystallization of AMPK α1β1γ1 (AMPKxtal), α (purple), β (cyan), and γ (pink). (B) Topology of near-full length 
AMPK α1β1γ1. Arrows indicate the location of the CBM-KD interface, αC-helix and C-interacting helix, ATP site, 
activation loop, and highest affinity AMP site (site 4). (C) Close-up view of the CBM-KD interface illustrating 
intersubunit electrostatics. (D) Surface representation of the structure shown in (B). The disordered segment 
between the β1 CBM and the C-terminal domain is shown as dotted lines. Adapted from Calabrese, M. F., et al. 
(2014).  Structural Basis for AMPK Activation: Natural and Synthetic Ligands Regulate Kinase Activity from 
Opposite Poles by Different Molecular Mechanisms. Structure 22(8): 1161-1172. 

The yeast ortholog of AMPK—SNF1 was identified in Saccharomyces cerevisiae 

(baker’s yeast) in 1981 when the snf1 mutation was found in a search for mutants unable to 

utilize sucrose (snf, sucrose-nonfermenting) [51]. SNF1/ AMPK pathways are highly conserved, 
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in which upstream kinases of AMPK— LKB1, CAMKK2, TAK1 were first identified in yeast 

[52-54]. Much like mammalian AMPK, SNF1 complex is a heterotrimeric protein kinase 

composed of one catalytic α subunit, one β subunit and one γ subunit. Saccharomyces cerevisiae 

genome possesses one gene that encodes for the catalytic α subunit Snf1, three genes encode for 

alternate β subunits Gal83, Sip1 and Sip2, and one gene encodes for the γ subunit Snf4 [55]. 

Crystal structure of SNF1 complexes are shown in Figure 1-2 [56]. The constitutively expressed 

α subunit Snf1is a 633 amino acid protein that phosphorylates its downstream targets. The α 

subunit consists of a N-terminal catalytic domain and a C-terminal regulatory region [57-59]. 

The regulatory region consists of a short autoinhibitory sequence (AIS) (380—415aa) and a 

region which facilitates the interactions with the β subunits of the complex (515—633aa) as 

sufficient for interaction with Sip2 [60]. The autoinhibitory domain interacts with both the 

regulatory subunit Snf4 and the kinase domain of Snf1 [61]. The interaction with Snf4 relieves 

the inhibition of the AIS allowing phosphorylation of Thr210 residue of Snf1 that results in 

activation of the catalytic subunit [62]. The β subunits direct the localization of α subunit, and 

exhibit overlapping function as each subunit alone is sufficient for growth under conditions in 

which SNF1 activity is required [63-65]. Under normal conditions, all three β subunits are 

cytosolic; however, the different N-termini of β subunits allows unique subcellular localization 

upon glucose depletion: Sip1 re-localizes to the vacuolar membrane, Gal83 re-localizes to the 

nucleus, and Sip2 remains cytosolic [64]. Sip1 is a 863 amino acids protein, Sip2 is a 415 amino 

acids protein and Gal83 is a 417 amino acids protein [55]. The β subunits contain conserved C-

terminal sequences that mediate their interaction with the SNF1 complex [66]. Amino acids 

residue 198 to 350 of Gal83 and residues 154 to 335 of Sip2 are sufficient for interaction with 

Snf1; while residues 771 to 863 of Sip1 and residues 332 to 415 of Sip2 mediates interaction 
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with Snf4 [60, 66]. The sequence of glycogen binding domain (GBD) in Gal83 (161-243) and 

Sip2 (163-245) is conserved in the mammalian AMPK β1 subunit [67]. However, studies 

showed that GBD may affect SNF1 function through mechanisms independent of glycogen 

binding [67]. Despite all three β subunits having overlapping functions, the abundance of each 

beta subunit is differently regulated by glucose availability. Gal83 is the main beta subunit 

during glucose growth, while the level of Sip2 increases when switched to non-fermenting 

carbon sources. Sip1 is the least abundant amongst the three β subunits and its cellular level 

remained constant regardless of carbon sources [64]. Gal83 contributes the most to SNF1 activity 

in response to glucose depletion, while Sip2 has been implicated in aging [68]. SNF1 complexes 

with different β subunits also display preference for activation by Sak1, Tos3, and Elm1 in a 

stress-dependent manner [69]. Snf4 contains a Bateman domain that binds adenosine derivatives; 

however several studies showed that unlike AMPK, SNF1 is not allosterically activated by AMP 

in vitro [70-73].  

1.1.2 Conserved signaling of AMPK-PASK from yeast to man 

Like mammalian AMPK, SNF1 plays a central role in energy sensing, metabolism and 

stress response [74]. Per-Arnt-Sim kinase (PAS kinase) is a highly conserved nutrient sensing 

kinase that has recently been identified as being a downstream substrate of Snf1 in yeast [75]. 

PAS kinase is an emerging regulator of mammalian glucose and lipid metabolism, as shown by a 

wide range of studies [76]. Mice with PAS kinase deficiency display a hypermetabolic 

phenotype and are protected from high fat diet-induced obesity and insulin resistance [77]; PAS 

kinase is found to promote energy production by shifting metabolism towards respiration in both 

yeast and mammalian systems, through regulation of its substrate Cbf1/USF1 and perhaps 

through activation of AMPK pathways [78, 79] because the presence of PAS kinase is necessary 
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for AMPK activation in the nerve cells of the hypothalamus (N2A), as well as normal glucose-

stimulated insulin production in cultured β-cells [78]. PASK also controls insulin secretion as it 

enhanced PDX-1 stability through inactivating glycogen synthase kinase 3β (GSK-3β); hence 

reducing blood glucose [80]. PAS kinase was also found to regulate glucose partitioning through 

phosphorylation of UDP-glucose pyrophosphorylase (Ugp1) [81]. With a large number of yeast 

PAS kinase (Psk1) interacting partners that are involved in cell growth (gene/ protein expression, 

replication/ cell division, and protein modification and degradation), vacuole function and stress 

tolerance identified [82], functions and regulation of PAS kinase remain to be explored. 
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Figure 1-2 Crystal structure of SNF1 complex (A) Domain organization of SNF1 subunits. Residues that are 
included in the co-expression construct are shown in color, and the others are shown in grey or black. KD, protein 
kinase domain; RS, regulatory sequence. (B) Schematic representation (stereo view) of the heterotrimer core of 
SNF1. The regulatory sequence of the α-subunit (Snf1) is shown in red and the rest is in yellow; the GBD of the β-
subunit (Sip2) is shown in cyan and the rest is in magenta; and the γ-subunit (Snf4) is shown in green. The positions 
of AMP (stick model in black), as observed from the S. pombe enzyme as well as that of β-cyclodextrin (in grey) as 
bound in the rat GBD10, are shown for reference. (C) Superposition of the structures of S. cerevisiae SNF1 (colored 
as in b) and S. pombe AMPK (in grey). The superposition is based on the γ-subunits only. Red arrows point to new 
features in the SNF1 structure, and blue arrows point to differences between the two structures. Produced with 
Ribbons30. Adapted from Amodeo, G. A., et al. (2007). Crystal structure of the heterotrimer core of Saccharomyces 
cerevisiae AMPK homologue SNF1. Nature 449: 492. 
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1.2 Conclusion 

AMPK acts as the caretaker of mitochondria and this role is conserved from yeast to man 

[83]. Given the important role of mitochondria functions in cellular energetics, metabolism and 

survival, it is not surprising that there are more substrates dedicated to restoring mitochondria 

health waiting to be identified. Understanding the cross-talk of AMPK with other protein kinases 

and identifying new downstream targets of AMPK will help to unravel novel aspects of 

regulation in mitochondrial health and functions, which is of immerse therapeutic potential for 

metabolic diseases, neurodegenerative disorders and cancer. In Chapter 2, we report a novel 

downstream substrate of yeast AMPK (SNF1)—Osh7 and the regulation of mitochondrial 

function through this signaling pathway; in Chapter 3, we report a novel signaling pathway in 

which SNF1 regulates Med13 degradation and mitochondrial dynamic through PAS kinase. 
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2.2 Abbreviations 

ORP- Oxysterol binding protein related protein 

OSBP- Oxysterol binding protein 

LTP- Lipid transfer protein 

ORD- OSBP-related protein domain 

PI(4)P-Phosphatidylinositol 4-phosphate 

PS- Phosphatidylserine 

ESCRT- Endosomal sorting complexes required for transport 

Vps4- Vacuolar protein sorting-associated protein 4 

Osh- Oxysterol binding protein homolog 

AMPK- AMP-activated protein kinase 

AMP- Adenosine monophosphate 

ADP- Adenosine diphosphate 

ATP- Adenosine triphosphate 

SNF1- Sucrose non-fermenting 1 
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2.3 Abstract 

Gene evolution through duplication and divergence appears to be a common strategy for 

producing proteins with related but unique function. Herein we explore the evolution of two 

homologous oxysterol binding proteins (OSBPs) in yeast, Osh6 and Osh7. These proteins were 

previously found to have overlapping function, but evidence is provided herein for their 

differential regulation and function. First, Osh7, but not Osh6, is phosphorylated by the nutrient 

sensing protein kinase Snf1. This phosphorylation is required for Osh7 stability within the cell.  

Second, Osh7, but not Osh6, localizes to ER-mitochondrial contact sites. OSH6-deficient yeast, 

on the other hand, display a more pronounced respiratory-defect as well as a mitophagy defect. 

In addition, a double osh6osh7 mutant suppresses the respiratory defect of OSH6-deficient yeast.  

These findings support differential but overlapping function for these OSBPs, explaining the 

selective pressures in the maintenance of both genes and providing pathways for the study of 

their mammalian homolog. 

2.4 Introduction 

Oxysterol binding proteins (OSBP) and OSBP-related proteins (ORP) are a large family 

of lipid transfer proteins (LTPs) conserved from yeast to man. The human genome encodes 12 

ORP genes and a total of 16 ORP protein products generated from alternative splicing, whereas 

the Saccharomyces cerevisiae (baker’s yeast) genome encodes seven ORP genes: Osh1-Osh7 

[84, 85]. OSBP and ORP contain a conserved OSBP-related protein domain (ORD) at the C-

terminal and were first discovered in the 1980’s as the intracellular receptors of oxysterols [86]. 

Recent advances in the understanding of cellular OSBP revealed many lipids in addition to 

oxysterols may occupy the ORD, such as phosphatidylserine (PS), phosphoinositides, cholesterol 

and other anionic lipids [85, 87-90].  OSBP and ORP have been implicated in many cellular 
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functions such as sterol and lipid metabolism, cell cycle, calcium signaling, vesicular transport 

and apoptosis [91], with roles as lipid or signaling regulators at different membrane contact sites 

(MCS) [92-97]. OSBPs/ ORPs were also reported to play roles in various human diseases 

including dyslipidemia, amyotrophic lateral sclerosis (ALS) and many types of cancer [91]. 

Despite this importance, there is still much unknown about their individual functions and 

regulation. 

Yeast Osh proteins collectively play a role in sterol homeostasis and share at least one 

essential function [84], however the unique functions of each Osh protein remain elusive. 

Together with their human homologs ORP5 and ORP8, respectively, Osh6 and Osh7 have been 

reported to mediate the counter transport of PI(4)P/PS between the endoplasmic reticulum (ER) 

and plasma membrane (PM) [98, 99]. Osh6 and Osh7 have also been reported to bind Vps4, an 

AAA ATPase that is essential for efficient transport in the multivesicular body (MVB) sorting 

pathway that functions to disassemble the ESCRT complexes, with no unique roles being 

ascribed to either [100-103]. ORP5 and ORP8 share approximately 80% similarity in sequence 

homology and constitute a unique group in human ORPs, as they are the only two ORPs to 

possess a C-terminal transmembrane domain (TMD) and both lack the FFAT motif [94]. ORP5 

and ORP8 were found to localize at ER-mitochondria contact sites and affect mitochondria 

morphology and function [104]. Thus, experimental evidence and homology analysis have 

supported the model of overlapping functions between Osh6 and Osh7 as well as their human 

counterparts ORP5 and ORP8. In this study, we explored the conserved nature of Osh6 and 

Osh7, as well as evidence for differential roles and regulation of Osh6 and Osh7 through in vivo 

and in vitro studies.  
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2.5 Results 

2.5.1 Evolutionary relationships of OSBP families supports a close relationship between 

Osh6 and Osh7 

Phylogenetic analysis of amino acid sequence utilizing Maximum Likelihood methods 

[MegaX] showed that OSBP family proteins are grouped into four lineages among S. cerevisiae, 

H. sapiens, C. elegans and D. melanogaster (Figure 2-1). Osh6 and Osh7 are the most closely

related yeast homologs, and their closely related human counterparts are ORP5 and ORP8.  

Sequence similarities between Osh6 and Osh7 (69.7% identity and 81.5% similarity) supports 

evolution by gene duplication, which often results in similar but disparate, selectable functions, 

yet only overlapping roles have been reported thus far.  

2.5.2 AMPK/ Snf1 phosphorylates ORP8/ Osh7 directly but not Osh6 

In our previous study of PAS kinase in yeast, Osh7 was identified as a substrate of a 

copurified kinase [82]. This contaminating kinase may be Snf1, an upstream regulator of PAS 

kinase. In support of this conclusion, purified yeast Snf1 or human constitutively active 

mammalian AMPK α1(1-312) is able to phosphorylate Osh7 or its human homolog ORP8 

directly in vitro (Figure 2-2A -D). Kinase dead (KD) Snf1 was used in the assay to test for 

contaminating kinases copurifying with Snf1. These results confirm direct phosphorylation of 

Osh7 by Snf1.  

As mentioned above, sequence homology suggests that Osh6 and Osh7 are close 

homologs of each other that arose during a yeast genome duplication event and are often treated 

as such. However, in vitro kinase assays suggest that Snf1 and AMPK α1(1-312) were able to 

differentiate between Osh6 and Osh7 as neither Snf1 nor AMPK phosphorylate Osh6 in vitro, 

suggesting differential regulation of Osh6 and Osh7 in yeast (Figure 2-2E & F). 
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Figure 2-1 Evolutionary history and relationships of OSBP families in S. cerevisiae, H. sapiens, C. elegans, and D. 
melanogaster The phylogenetic tree was constructed using the Maximum Likelihood method and JTT matrix based 
model [105].The bootstrap consensus tree inferred from 2000 replicates is taken to represent the evolutionary history 
of the taxa analyzed [106]. Branches corresponding to partitions reproduced in less than 50% bootstrap replicates are 
collapsed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test 
(2000 replicates) are shown next to the branches [106]. Initial tree(s) for the heuristic search were obtained 
automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a 
JTT model, and then selecting the topology with superior log likelihood value. This analysis involved 27 amino acid 
sequences. There were a total of 1669 positions in the final dataset. Evolutionary analyses were conducted in MEGA 
X [107]. 
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Figure 2-2 Evidence supporting the direct phosphorylation of Osh7 by Snf1 and direct phosphorylation of ORP8 by 
AMPK (A) Full length Osh7 (expressed in E. coli from pJG1054) was phosphorylated in vitro when incubated with 
wild type Snf1 (expressed in yeast from pJG1193) but not the kinase dead Snf1 (Snf1-KD, expressed in yeast from 
pJG1338). In vitro kinase assays were conducted using purified Snf1 incubated with radiolabeled ATP (32P) with or 
without purified Osh7. Reactions were visualized with 10% SDS-PAGE gel stained with coomassie brilliant blue 
(CB, bottom) followed by exposure on X-ray film (32P, top). Lane 1&2: WT Snf1+FL Osh7; Lane 3: WT Snf1 
only; Lane 4&5 KD-Snf1+FL Osh7; Lane 6: FL Osh7 only. CB: Snf1 appear at the top of the double band in each 
lane. The bottom of the double band is a protein that co-purified with Osh7. (B) Full length Osh7 was shown to be 
phosphorylated by human AMPK α1(1-312) (AMPK α1312). Lane 1&2: FL Osh7 + AMPK α1312; Lane 3: FL 
Osh7 Only; Lane 4: AMPK α1312 only. (C) ORP8 (ORP8107-701: PH-OSBP domain, pJG1658; ORP8366-701: 
OSBP domain, pJG1659) were shown to be phosphorylated by AMPK α1312. ORP8 was purified from yeast 
(JGY91, ∆snf1) due to poor expression in E. coli BL21 and to prevent background phosphorylation from WT Snf1 
(data not shown). Lane 1: ORP8107-701 + AMPK α1312; Lane 2: ORP8366-701 + AMPK α1312; Lane 3: AMPK 
α1312 only; Lane 4: ORP8107-701 only; Lane 5: ORP8366-701 only. (D) Diagram of ORP8 constructs utilized in 
this study. (E) Snf1 does not phosphorylate Osh6 in vitro. Purified Snf1 was incubated with radiolabeled ATP (32P) 
with or without purified Osh6/ Osh7. Lane 1: Snf1 + FL Osh7; Lane 2&3: Snf1+FL Osh6; Lane 4: Snf1 only; Lane 
5: FL Osh6 only. (F) Purified AMPK α1312 was incubated with radiolabeled ATP (32P) with or without Osh6/ 
Osh7. Lane 1: AMPK α1312 + Osh7; Lane 2&3: AMPK α1312 + Osh6; Lane 4: AMPK α1312 only; Lane 5: Osh6 
only. 
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2.5.3 Evidence for the direct interaction and stabilization of Osh7 by SNF1 

The heterotrimeric S. cerevisiae SNF1 complex consists of a catalytic subunit Snf1, three 

inter-changeable beta subunits Gal83, Sip1 and Sip2, and a gamma subunit Sip4. Beta subunits 

of SNF1 bind Snf1 and Snf4 to form a functioning complex, and act as substrate binding domain 

[55, 108]. Direct interactions between Osh7 and Snf1, Gal83, Sip1 or Sip2 were investigated 

through the Yeast-2-Hybrid (Y2H) system. Full-length and/ or truncations of each SNF1 

subunits mentioned above were cloned into bait and prey plasmids and tested against full-length 

Osh7, and the Osh7 OSBP domain (a.a. 53- a.a 392) or coiled-coil domain (CC domain, a.a. 366- 

a.a. 437) in the Y2H bait or prey plasmid (Figure 2-3A&B). The Y2H Gold yeast strain

(Clontech) with 4 reporter genes (HIS3, ADE2, AUR1-C, MEL1) was transformed with bait and 

prey plasmids and spotted on synthetic minimum plates lacking leucine (LEU), tryptophan 

(TRP), histidine (HIS) and adenine (ADE) for selection of plasmid maintenance (LEU or TRP) 

or protein-protein interactions (HIS and ADE). All constructs were tested for autoactivation by 

transforming the bait or prey plasmid with target protein against an empty bait or prey plasmid to 

eliminate the possibility of false positive interactions. Direct interactions between the OSBP 

domain of Osh7 were observed with all beta subunits of SNF1 (Figure 2-3C), but not with the 

catalytic subunit Snf1 (data not shown). The Snf1/Snf4 binding domain of Gal83 (a.a 141- a.a. 

417) [63, 109] is necessary for binding of the OSBP and CC domain of Osh7, but does not find

full length Osh7; Full length Sip1 and Sip2 binds the OSBP domain of Osh7 directly, but not the 

CC domain or full length Osh7. 

 In addition to direct interaction via the yeast two hybrid, copurification supports an 

interaction between Snf1 and Osh7, but not Snf1 and Osh6 (Figure 2-3D). Lysates from yeast 

expressing Snf1-myc were incubated with equal amounts of purified Osh6 or Osh7, then 
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subjected to myc purification. Prominent bands are seen with Osh7, but only faint bands with 

Osh6. 

Phosphorylation of Osh7 appears to stabilize the Osh7 protein in that the presence of 

wildtype Snf1 is necessary for maintaining intracellular Osh7. A wildtype (JGY1) or ∆snf1 

(JGY91) strain harboring a plasmid containing Osh7-His under the GAL 1-10 promoter 

(pJG1357) were grown for 12 hours in SD-Trp and switched to SGal-Trp for 36 hours to induce 

Osh7 expression. Cells were then broken open and subjected directly to western blotting. Results 

indicate no detectable amount of Osh7 after 36 hours of induction in the ∆snf1 yeast (Figure 2-

3E). In order to show that this deficit in Osh7 was due to Snf1 and not an adaptation of the ∆snf1 

yeast, WT and ∆snf1 yeast were co-transformed with plasmids containing  Snf1-Myc,  Snf1 KD-

Myc, or the EV-Myc control along with the Osh7-HIS, grown for 12 hours in SD-Ura-Trp 

followed by 36 hours growth in SGal-Ura-Trp to induce protein expression. Cells were then 

broken open and Osh7 was purified using His-tagged protein purification. Results indicate that 

Osh7-His can only be stably expressed when wildtype Snf1 is supplied, but not when Snf1 KD is 

present (Figure 2-3F).  
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Figure 2-3 Evidence that direct interaction with SNF1 maintains the intracellular stability of Osh7 (A-C) Evidence 
that Osh7 directly interacts with the three beta subunits of the SNF1 complex (Gal83, Sip1 and Sip2).  Constructs of 
Osh7 used in yeast-2-hybrid assays are diagrammed in (A) whereas interacting regions of Osh7 with Gal83 are 
shown in (B). The Snf1 binding domain of Gal83 and Snf4 interacting domain of Gal83 are necessary for 
recognizing OSBP domain of Osh7 (C, top). A weaker interaction of this truncation of Gal83 is also seen with 
coiled-coil domain of Osh7. Full-length Sip1 interacts with OSBP domain but not coiled-coil domain of Osh7 (C, 
middle). Full-length Sip2 interacts with OSBP domain but not coiled-coil domain of Osh7 (C, bottom). Y2HGold 
cells (Clontech) were co-transformed with OSBP domain/ coiled-coil domain of Osh7 (AD) and Gal83 Δ141-417 
truncation/FL Sip1/ FL Sip2 (BD) and spotted on SD-Leu-Trp-His-Ade for selection of protein-protein interactions 
and SD-Leu-Trp as growth control. (D) Myc pull-down assay provides evidence that Osh7(His-tag) co-purifies 
strongly with Snf1(Myc-tag) from mixed cell lyastes, and Osh6 (His-tag) co-purifies with Snf1 to a lesser extent.  
Crude extract is shown to control for protein expression in the cell. (E) Overexpressed Osh7 is detected in wildtype 
yeast overexpressing Osh7-His (JGY1) but not ∆snf1 (JGY91) yeast. Anti-UGP1 antibody was used to probe UGP1 
as loading control. (F) Overexpressed Osh7 is purified from WT but not ∆snf1 yeast. WT or ∆snf1 yeast strain 
transformed with Osh7-His or EV-His and Snf1-Myc, Snf1-KD-Myc or EV-Myc were subject to His-tagged 
purification followed by western blot. Lane 1: WT yeast with Osh7-His and EV-Myc plasmids; Lane 2: ∆snf1 strain 
with Osh7-His and EV-Myc plasmids. Lane 3: ∆snf1 Strain with Osh7-His and Snf1-Myc plasmids; Lane 4: ∆snf1 
strain with Osh7-His and Snf1 KD-Myc. Lane 5: ∆snf1 strain with EV-His and Snf1-Myc plasmids. 
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2.5.4 Osh7, but not Osh6, co-localizes with mdm34; Snf1 does not affect Osh7 

localization 

In addition to the differential regulation of Osh6 and Osh7 by Snf1, the function of Osh6 

and Osh7 was explored to investigate similarities and differences.  The human homologs of Osh6 

and Osh7, ORP5 and ORP8 were recently reported to localize at ER-mitochondrial contact sites 

and to affect mitochondria function [104], thus we looked at ER-mitochondrial contact site 

localization of these two proteins. In addition, the effects of Snf1 on this localization were 

investigated by varying the growth media to increase or decrease Snf1 activity, since Osh7 is 

degraded in ∆snf1 mutant and is not visible by microscopy.  Snf1 becomes activated under low 

glucose conditions due to the increased AMP:ATP ratio, therefore glucose gradients were 

utilized [55].  Osh7 co-localized with Mdm34 at the ER-and mitochondria contact sites in WT 

yeast 45% of the time (Figure 2-4), while some remained cytosolic.  This localization did not 

change with altered glucose levels. A small fraction of ∆snf1 mutant yeast also displayed some 

Osh7, and it was localized to the ER-and-mitochondria contact sites. Osh6 on the other hand 

remained cytosolic in both the WT and ∆snf1 strain, and its expression was not altered in 

response to Snf1. Thus, Snf1 does not appear to play a role in localization of Osh6 nor Osh7, but 

only a very low level of Osh7 was detected ∆snf1 mutant in the and usually seen as foci, which is 

consistent with the observation of Snf1 being necessary in maintaining Osh7 intracellular 

stability (see Fig. 2-3). 
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Figure 2-4 Osh7, but not Osh6, localizes to ER-mitochondrial contact sites in a Snf1 independent manner, and its 
stable expression is affected by Snf1 (A) WT and ∆snf1 cells with genome tagged Mdm34::mCherry harboring 
Osh6-YFP/ Osh7-YFP plasmid under ADH promoter were grown to log phase in SD-URA and then subject to low 
glucose/ nutrient stress in SD-URA for 2 hours. Cells were imaged before and after stress with Fluoview confocal 
microscope. B. Cell count and statistical analysis of Osh7-YFP co-localization with Mdm34-mcherry. (B) Statistical 
analysis of cells with or without at least 1 co-localizing foci of Osh6/Osh7-YFP with Mdm34 in WT/Δsnf1 strain, 
before and after 2 hours 0,05% glucose stress. Cells were visualized using Fluoview confocal microscope. 
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2.5.5 Both Osh6 and Osh7 plays a role in mitochondrial function; with Osh6 playing a 

more prominent role 

To better understand the cellular functions of Osh6 and Osh7, including the Osh7 

localization to ER-mitochondria contact sites, we examined the mitochondria morphology and 

functions in WT, ∆osh6, ∆osh7, ∆osh6∆osh7 yeast. Our data showed that ∆osh6 plays a more 

important role in mitochondria dysfunction compared to Osh7, as Δosh6 mutant cannot grow on 

media with non-fermenting carbon source (Figure 2-5A, 2% Glycerol-Ethanol in this 

experiment). The double mutant (∆osh6∆osh7) appeared to restore the mitochondria dysfunction 

observed in ∆osh6 strain, consistent with differential rather than redundant functions for Osh6 

and Osh7. On the other hand, the ∆osh7 strain did not show obvious signs of mitochondrial 

dysfunction when grown on 2% Glycerol-Ethanol. We then subjected each strain of cells to 

Seahorse XFp OCR (oxygen consumption rate) analysis. Measurements were taken in basal, 

inhibited, and uncoupled respiratory environments and are represented as pmol O2 

consumed/min/cell. Consistent with the plate assay (Figure 2-5B), Δosh6 yeast consumed 

significantly less oxygen than WT at all timepoints (p<0.00001) when normalized to cell number 

as shown in Figure 2-5E. However, as opposed to the plate assay it appears that some oxygen is 

consumed, which in conjunction with weak reactions to the inhibitory and uncoupling respiratory 

drugs TET and FCCP indicates low levels of respiratory carbon source utilization as opposed to 

non-mitochondrial oxygen consumption. The most surprising result is the respiratory defect 

observed in the Δosh7 knockout strain. The Δosh7 yeast consumed significantly less oxygen than 

WT, a divergence from the plate phenotype, at all timepoints (p<0.001). This may suggest a 

difference in carbon source utilization between solid and liquid media or truly represent a 

defective respiratory phenotype that does not affect growth. In accordance with the plate assay, 
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the Δosh6osh7 double mutant showed a recovery of respiratory function, although the OCR was 

lower than WT at all timepoints (p<0.01) indicating a potential genetic interaction between the 

two genes. 

Further analysis of the respiratory data revealed differences in the strains response to the 

uncoupling drug FCCP, which transport H+ across the inner mitochondria membrane. 

Respiratory rates between Δosh6 and Δosh7 were not significantly different during basal and 

inhibitory readings however upon the addition of FCCP the Δosh6 saw an increase of 40% while 

Δosh7 respiration increased by 100% resulting in significantly differences in uncoupled 

respiratory rates. For reference WT OCR increased by 99% and Δosh6osh7 increased by 61%.  

Florescent microscopy with plasmid containing mito-TFP was then used to examine 

mitochondria morphology in all four strains (Figure 2-5C). No obvious altered mitochondria 

morphology was observed suggesting the respiratory dysfunction of ∆osh6 yeast is due to a 

mitochondrial dysfunction rather than deficit. 

Mitophagy, the process of selectively degrading damaged mitochondria, was monitored 

using the OM45-GFP processing assay shown in previous study [110] and florescent microscopy 

with mitochondria-targeting TFP (Figure 2-6). Interestingly, the ∆osh6 strain displayed no 

detectible mitophagy after 36 hours growth in YPL, much like ∆atg32 control. Atg32 is a 

mitophagy specific receptor in yeast and mitophagy is completely inhibited in cells lacking 

ATG32 [111], therefore it serves as a negative control. Our data showed that Osh6 plays a 

significant role in mitophagy while Osh7, on the other hand, displayed only a decrease in 

mitophagy (Figure 2-6A&B). Once again the double mutant (∆osh6∆osh7) appeared to rescue 

the ∆osh6 defect and phenocopied the less severe decrease in mitophagy of the ∆osh7 strain. 
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Figure 2-5 Both Osh6 and Osh7 plays a role in mitochondria function with Osh6 playing a more prominent role (A) 
An ∆osh6 knockout display a respiratory-defect on synthetic media with glycerol/ethanol (SGE-complete) when 
compared with glucose (SD- complete) and ∆osh6∆osh7 double knockout strains suppresses the mitochondria 
defect. Yeast were spotted in WT, ∆osh6, ∆osh7, ∆osh6osh7 strain on SD-complete and SGE-complete plates. (B) 
Δosh6, Δosh7, and Δosh6Δosh7 knockouts were tested in Seahorse respiration assays in SGE-complete media after 
growth in SD-complete. OCR of both Δosh6 and Δosh7 are significantly lower than WT at all timepoints with 
p<0.001 and Δosh6Δosh7 at all timepoints with p<0.01. There were no significant differences in OCR between 
Δosh6 and Δosh7 up until FCCP was added and asterisk (*) represent where significant difference of OCR between 
Δosh6 and Δosh7 occur. Dotted lines represent injections of mitochondrial inhibitory and uncoupler drugs TET and 
FCCP. Error bars represent SEM. (C) Neither Osh6 nor Osh7 appears to affect mitochondria morphology. 
Mitochondria morphology were analyzed using florescent microscope. Cells were grown to logarithm phase in 0.5% 
glucose and switched to SD-N for 6h. Mitochondria morphology was visualized at growth phase and after 6h of 
nitrogen starvation.   
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Figure 2-6 Osh6-deficient cells display mitophagy defects (A) Representative image of western blot analysis 
showed that ∆osh6 strain has significant defects in mitophagy. Osh7 on the other hand, affects mitophagy to a lesser 
extent. Cells were grown to mid-log phase and switched to YPL for 36 hours. OD600 = 1 of cells were analyzed 
using western blotting.  (B) Statistical analysis of free GFP relative signal intensity between WT, ∆osh6, ∆osh7, 
∆osh6∆osh7 and ∆atg32 in A. (C) Cells expressing Mito-TFP and Vph1-mcherry were analyzed with florescent 
microscopy before and after 24 h nitrogen starvation. Mito-TFP construct contained mitochondrial leader sequence 
fused with TFP for mitochondria targeting, where Vph1-mcherry allows visualization of vacuole. Overlap of Mito-
TFP and Vph1-mcherry following nitrogen starvation indicates mitophagy. Results for ∆osh6 strain not shown due 
to cell death resulted under these conditions. (D) Statistical analysis of % mitophagy in C. was graphed with the 
indicated genotype (mean ± SEM, n ≥ 2).  “****” indicates p-value < 0.0001 by one-way ANOVA followed by 
post-hoc Tukey analysis. 
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2.6 Conclusions 

Gene duplication followed by divergence is a likely pathway for the evolution of novel 

protein functions.  The first models for gene duplication were fairly simplistic, suggesting that 

gene duplication allowed for a wild type copy of the gene to be present while a second copy 

could evolve a side activity or novel function. A more accurate model for the evolution of 

paralogous genes may be the innovation, amplification, and divergence (IAD) model proposed 

by Bergthorsson, Andersson and Roth, which allows for selection at every step of the process 

[112]. In this model, a gene containing a side activity is amplified, sometimes in large duplicated 

arrays held by selection for the side activity.  A copy of the gene may then acquire a mutation 

allowing for the side activity to predominate, and the amplified copies may collapse.  In the case 

of the Osh6 and Osh7 paralogs, which may have evolved from a whole genome duplication of 

yeast, such homologous genes are often thought to have redundant function, where side activities 

are revealed following further investigation.  Herein we present a further investigation into the 

Osh6 and Osh7 proteins, providing evidence for their divergent regulation and function as well 

as pathways for evolutionary selection. 

Osh7 but not Osh6, appears to be directly phosphorylated by Snf1 and binds the SNF1 

complex in vivo (Figure 2-2&3). To our knowledge, this is the first report of an OSBP as a 

substrate for SNF1, which regulation may be conserved from yeast to mammalian cells since the 

Snf1 homolog AMPK α1 (1-312) also phosphorylates the mammalian Osh7 homolog ORP8 in 

vitro (Figure 2-2).  The Snf1-dependent phosphorylation appears to stabilize the Osh7 protein in 

vivo because yeast deficient in Snf1 or harboring a Snf1-KD mutant have no detectible Osh7 

protein (Figure 2-3).  Thus, Osh6 and Osh7 appear to be differentially regulated by Snf1.  
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In addition to the differential regulation of these two proteins, Osh6 and Osh7 also appear 

to have evolved disparate functions. Osh7 localized to ER-mitochondrial contact sites in this 

study but Osh6 remained cytosolic (Figure 2-3), only yeast lacking Osh6 displayed defects on 

respiratory media (Figure 2-4). Osh6 have a more significant role in mitochondria function 

according to Seahorse assay compared to Osh7 along with a severe defect in mitophagy (Figure 

2-5&6).  Remarkably, no difference was seen in yeast morphology of mitochondria from either 

yeast lacking Osh6 or Osh7, suggesting a defect in function rather than structure of the 

mitochondria from ∆osh6 yeast.  These results describe the first connection of Osh7 to yeast ER-

mitochondrial contact sites as well as the first role for Osh6 in respiration and mitophagy.   

Thus far the human homologs of Osh6 and Osh7, ORP5 and ORP8, have been shown to 

have overlapping function, being recruited to the ER-plasma membrane contact sites by 

phosphatidylinositol4-5 bisphosphate (PtdIns(4,5)P2) and regulating PtdIns(4,5)P2 at the plasmid 

membrane [88] . In addition, they have also been shown to affect respiratory function [104]. The 

results in the study of differential function for the yeast paralogs of Osh6 and Osh7 may provide 

a basis for the study of differential functions of the mammalian OSBP’s, particularly with respect 

to mitophagy and the regulation by the Snf1 homolog AMPK.  Mammalian ORPs have been 

linked to a wide variety of diseases from dyslipidemia to ALS and cancer, making the 

understanding of paralogous evolution particularly crucial.  

2.7 Experimental procedures 

2.7.1 Yeast Strains, plasmids and primers  

Yeast strains, plasmids and primers used in this study is shown in Table 1. Yeast strains 

generated in this study were constructed using standard polymerase chain reaction (PCR) based 
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gene disruption followed by sporulation method as previously described [113, 114], unless 

otherwise stated.  

Table 2-1 List of yeast strain used 

Strain Background genotype abbreviation a/
α 

Reference/ Source 

JGY 1 W303 his3, Leu2, lys2, met15, trp1, 
ura3 

WT a David Stillman, 
University of Utah 

JGY 91 W303 snf1::hphMX4, his3, Leu2, lys2, 
met15, trp1, ura3 

Δsnf1 a Demille D, 2015 

JGY 1031 
 

LYS2::GAL1UAS-
GAL1TATA-His3 GAL2UAS-
Gal2TATA-Ade2 
URA3::MEL1UAS-
MEL1TATA, AUR1-CMEL1, 
ura3-52, his3-200, ade2-101, 
trp1-901, leu2-3, 112, gal4del, 
gal80del, met- 

Y2H Gold a Clontech 

JGY 1366 BY4742/BY474
1 

osh6::KanMX4, MATa his3∆1, 
leu2∆0, met15∆0, ura3∆0  

Δosh6 
Diploid 

a/α GE Health Care 
(CloneID:25074) 

  
MATα his3∆1, leu2∆0, lys2∆0, 
ura3∆0  

   

JGY 1400 SGAY7039 osh7::hphMX4 can1∆::STE2pr-
Leu2, lyp1∆, ura3∆0, leu2∆0, 
his3∆1, met15∆0 

Δosh7 α Joanna Zukowska-
Kasprzyk. Gavini 
Research Group, 
EMBL 

JGY 1410 BY4741 mdm34::mCherry::KanMX4, 
his3∆1, leu2∆0, met15∆0, 
ura3∆0 

Mdm34-
mCherry 

a Maya Schuldiner's 
Lab, Weizmann 
Institute of Science 

JGY1416 BY4741 his3∆1, leu2∆0, lys2∆0, ura3∆0  WT α This study 

JGY1418 BY4741 osh6::KanMX4, his3∆1, leu2∆0, 
lys2∆0, ura3∆0  

Δosh6 α This study 

JGY1419 BY4741 osh7::hphMX4, his3∆1, leu2∆0, 
lys2∆0, ura3∆0 

Δosh7 α This study 

JGY1425 BY4741 osh6::KanMX4, osh7::hphMX4,  
his3∆1, leu2∆0, lys2∆0, ura3∆0  

Δosh6Δosh7 α This study 

JGY1547 BY4741 atg32::KanMX4 Δatg32 
 

Tim Formosa, 
University of Utah 

JGY1586 W303 OM45::GFP::HIS, ade2, ade6, 
can1-100, his3-11,15, leu2-3,112, 
trp1-1, ura3-1 

OM45-GFP 
 

Katrina Cooper, 
Rowan University 
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JGY1589 W303 osh7:hphMX4, his3, leu2, lys2, 
met15, trp1, ura3 

Δosh7 a This study 

JGY1628 BY4741 snf1::hphMX4, 
mdm34::mCherry::KanMX4, 
his3∆1, leu2∆0, met15∆0, ura3∆0 

Δsnf1 a This study 

 

Table 2-2 List of plasmids used 

Plasmid Gene Backbone Organism Origi
n 

selection Reference/ Source 

pJG124 Empty 
vector 

pRS424 S. cerevisiae 2u TRP Jared Rutter, 
University of Utah 

pJG485 Y2H BD 
Empty 
vector 

pGBKT7 S. cerevisiae 2u TRP Clontech 

pJG549 Y2H AD 
Empty 
vector 

pGADT7 S. cerevisiae 2u LEU Clontech 

pJG725 Empty 
vector 

pRS416 S. cerevisiae 2u URA [82] 

pJG1009 Empty 
vector 

pET15b with James 
Y2H MCS 

E. coli 
 

Amp [82] 

pJG1054 Osh7 pET15b E. coli 
 

Amp [82] 

pJG1115 Osh7 pRS426 S. cerevisiae 2u URA This study 

pJG1193 Snf1 pRS313 S. cerevisiae CEN URA [75] 

pJG1238 Sip2 YEp-GBD S. cerevisiae 2u TRP [75] 

pJG1260 Gal83 
aa141-417 

YEp-GBD S. cerevisiae 2u TRP [75] 

pJG1333 FL Osh7 pGADT7 S. cerevisiae 2u LEU This study 

pJG1338 Snf1-KD pRS313 S. cerevisiae CEN URA This study 

pJG1353 Osh7 c.c. 
domain 

pGADT7 S. cerevisiae 2u LEU This study 

pJG1355 Osh7 OSBP 
domain 

pGADT7 S. cerevisiae 2u LEU This study 

pJG1357 Osh7 pRS424 S. cerevisiae 2u TRP1 This study 

pJG1375 Sip1 YEp-GBD S. cerevisiae 2u TRP This study 

pJG1611 Osh7 pRS416 S. cerevisiae CEN URA This study 

pJG1656 Osh6 pET15b E. coli 
 

Amp This study 
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pJG1657 ampk α1 
a.a.312 

pET30a+ E. coli 
 

Amp Dave Thomson, 
Brigham Young 
university 

pJG1658 ORP8 (PH-
OSBP) 

pRS426 S. cerevisiae 2u Amp This study 

pJG1659 ORP8 
(OSBP) 

pRS426 S. cerevisiae 2u Amp This study 

pJG1660 ORP8 pCDNA4/TO  mammalian 
 

Amp Vesa Olkkonen, 
University of 
Helsinki 

pJG1684 mito-TFP pRS316 S. cerevisiae CEN URA Katrina Cooper, 
Rowan University 

pJG1685 Vph1-
mCherry 

pRS313 S. cerevisiae CEN HIS Katrina Cooper, 
Rowan University 

pJG1688 mito-TFP pRS313 S. cerevisiae 
 

HIS Katrina Cooper, 
Rowan University 

pJG1697 Osh7-YFP pRS416 S. cerevisiae 
 

URA Katrina Cooper, 
Rowan University 

pJG1698 Osh6-YFP pRS416 S. cerevisiae 
 

URA Katrina Cooper, 
Rowan University 

 

Table 2-3 List of primers used 

Primers Sequence 

JG1000 CATGCGTCAATCGTATGTGAATGC 

JG2184 CTGCAGCGAGGAGCCGTAAT 

JG3185 GGCGAATTCATGGCTCTCAATAAACTAAAGAATATACC 

JG3186 GCCTCGAGATTCTTTTGGATTCCATGCTTTTTATAAG 

JG3207 GGC CATATGGCTCTCAATAAACTAAAGAATATACC  

JG3209 GCCTCGAGTTAATTCTTTTGGATTCCATGCTTTTTATAAG 

JG3398 CTTGAGTTTCCTAAAAATTTCGCTTTTGGCACAACAACTC 

JG3996 GGCCCCGGGCTCTCCCTTAGTGCTTGTGAAATAAAC 

JG3997 GGCGGATCCTATTCTTTTGGATTCCATGCTTTTTATAAGCC 

JG3401 GTTCTTCTTATCTACTTTTTAACTTGTGTG 

JG3402 GATGCGGAAACAACGGGTTGAACC 

JG3592 GCCAAAAAGTTGCTCTAAGAATCATTAATAAGAAGG 

JG3603 CAACTTTCTCTTCTTGGATCTCTCC 
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JG3604 GGGAAATTTCAAAGATTTTTTTAATAGAGGC 

JG3763 ATTCATATGAATATTATTTCCCAGCTGAAGCCAGG 

JG3764 TCCTCGAGCTACTTGTAAATATAATAATCTAAATCCTCAC 

JG3765 GAACATATGGCCGAAGACGGCGTTGAATTTCATTC 

JG3988 GGCGGATCCATGGGCTCCAAAAAACTGACCGTAGGATCTG 

JG3989 CGGCTCGAGCTATTGTTTTGCTGGGTTCTGCTTTTCG 

JG4442 GGCGTCGACTTATTTGTACAATTCATCCATACCATGGGTAATACC 

JG4445 GGCCCCGGGATGTCTAAAGGTGAAGAATTATTCACTGGTGTT 

JG4446 GGCCAATTGACACTATTGAAACAAGTCCGTCCTGGC 

JG4447 GCCGTCGACGTAATGCCATTCTCCTGTGAGTGGATCAAG 

JG4448 GGCCAATTGATTGTTATGGCTGATTGGTTAAAGATTCGTGG 

JG4522 TTTGACTCTCCTGCCTGCATGGTG 

JG4523 AATAGCCCTGCGTTCACAAACTCG 

JG4524 CGTTATCTAAGGCGAAGGAGGACTTG 

JG4525 CGCCGGCAAAGTTACCCATAG 

JG4551 GTTCCCGGGTTTGTACAATTCATCCATACCATGGG 

JG4552 GGCACTAGTATGTCTAAAGGTGAAGAATTATTCA 

JG4605 GGCCCCGGGATGGGCTCCAAAAAACTGACCGTAG 

 

2.7.2 Growth media 

Yeast strains were grown aerobically at 30°C unless otherwise stated. Medium used: 

YPAD (1% yeast extract, 2% peptone, 2% glucose with adenine), synthetic minimal medium 

with glucose or galactose (SD-/ SGal-; 0.67% yeast nitrogen base without amino acids, 0.2% 

auxotropic amino acids with vitamins,  2% glucose or 2% galactose), YPD (1% yeast extract, 2% 

peptone, 2% glucose), YPL (1% yeast extract, 2% peptone, 2% lactic acid, pH 5.5), synthetic 

minimal medium lacking nitrogen (SD-N; 0.17% yeast nitrogen base without amino acids, 2% 

glucose), depleted synthetic medium with glucose (SDD-; 0.17% yeast nitrogen base without 
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amino acids, 0.6% of auxotrophic amino acids, 0.5% ammonium sulfate, 2% glucose or 0.05% 

glucose).  

2.7.3 In vitro kinase assays 

Yeast plasmids expressing human ORP8 were constructed by PCR amplifying from 

plasmid containing ORP8 cDNA (pJG1660)-- a kind gift from Dr. Vesa M. Olkkonen 

(University of Helsinki).  Plasmid with ORP8 PH-OSBP domain (pJG1658) were amplified 

using JG4447/JG4448, plasmid with ORP8 OSBP domain (pJG1659) were amplified using 

JG4446/JG4447 and cloned into EcoRI/XhoI site of pJG859. Bacteria expressing full length 

Osh7 (pJG1054), constitutively active human AMPK α1 (PRKAA1) [115], full length Osh6 

(pJG1656) was constructed by PCR amplifying Osh6 from JGY1 using JG3988/JG3989 and 

cloned into the BamHI and Sall site of pJG1009, were also used. 

Yeast (JGY1 or JGY91) harboring wildtype Snf1-myc, Snf1 kinase dead Snf1 KD-myc 

(pJG1193) or ORP8-HIS (pJG1658, pJG1659) plasmids were grown in selective 2% glucose 

synthetic minimal medium (SD-Ura) overnight, diluted 1:100 into 500mL of SD-Ura and grown 

for 12 hours, pelleted and resuspended in 500mL of selective 2% galactose synthetic minimal 

media (SGAL-Ura) and grown for 36 hours.  

BL21 (DE3) Escherichia coli harboring Osh7-HIS (pJG1054), Osh6-HIS (pJG1656) or 

PRKAA1-HIS (pJG1657) were grown overnight at 37°C in Luria Bertani broth supplemented 

with ampilicin (LB Amp), diluted 1:100 into 500mL of LB Amp and grown for 3 hours, 

followed by 5 hours induction in LB Amp supplemented with 0.5 mM of IPTG. 

Cells were pelleted and resuspended in appropriate lysis buffer: Myc-tagged purification 

lysis buffer (20 mM HEPES, 10 mM KCl, 1 mM EDTA, 1 mM EGTA, 50 mM NaCl, 10% 
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glycerol, 1 mM β-mercaptoethanol, Pierce Protease Inhibitor Tablet, pH 7.4, with or without 

phosphatase inhibitor-- 50 mM NaF, 35mM glycerophosphate);  and HIS-tagged purification 

lysis buffer (50 mM HEPES, 300 mM NaCl, 20 mM imidazole, 10 mM KCl, 1 mM β-

mercaptoethanol, Pierce Protease Inhibitor Tablet, pH 7.8). Cell suspension were then lysed with 

Microfluidics M-110P homogenizer (Microfluidics, Westwood, MA). Cell debris were then 

pelleted by centrifugation at 12,000 rpm, 4°C for 30min twice, transferring supernatant to a new 

tube after the first and second centrifugation. For HIS-tagged purification, 300 μL of nickel-

nitrilotriacetic acid (Ni-NTA) agarose beads (Qiagen, Valencia, CA) was added to each 500mL 

culture of cell lysate and incubated at 4°C for 3 hours with agitation; for Myc-tagged 

purification, 20-25 μl of Myc-conjugated magnetic beads (Cell Signaling, Danvers, MA) were 

added to each 500 mL culture of cell lysate and incubated at 4°C for 2 hours with agitation. After 

incubation, Ni-NTA beads for HIS-tagged purification were washed twice with 10-15 mL ice 

cold lysis buffer without protease inhibitor (centrifugation at 1000 rpm, 4°C), transferred to 

polypropylene column and washed with additional 50 ml of lysis buffer without protease 

inhibitor. Myc-conjugated magnetic beads were washed with 4 ml of ice-cold lysis buffer 

without protease inhibitor per 5 μl of beads, using magnetic field to separate liquid from the 

beads. HIS-tagged protein were then eluted 3 times with 300 μl of elution buffer containing 250 

mM imidazole and 100 mM NaCl without protease inhibitors. HIS-tagged protein can then be 

stored in 15% glycerol at -80°C. Myc-tagged protein were used immediately after purification 

without eluting. 

WT Snf1-Myc/ Snf1 KD-Myc/ PRKAA1 were incubated with Osh6/ Osh7/ ORP8 PH-

OSBP/ ORP8 OSBP in total volume of 30 μl of reaction mixture containing 1X Snf1 kinase 

buffer (50 mM Tris-HCl, 10 mM MgCl2), 1 mM dithiothreitol (DTT), pH 7.5, 10 μM ATP, and 
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7.5 μCi of γ32P-ATP (MP Biomedicals) for 35 min at 30°C. Kinase assays were stopped by the 

addition of 6X SDS-PAGE sample buffer, analyzed by SDS-PAGE, stained with coomassie blue 

(30 min), destained for 2 h, soaked in water for 1 h, dried and exposed to film in -80°C. 

2.7.4 Yeast-2-hybrid assays 

Plasmid containing Osh7 OSBP domain (pJG1355) and coiled coil (CC) domain 

(pJG1353) were PCR amplified using JG3763/JG3764, JG3765/JG3209 from pJG1115 and 

cloned into pJG549. Bait plasmid with Gal83/Sip1/Sip2/EV control were co-transformed with 

prey plasmid with full length Osh7/ OSBP/ CC/ EV control into Y2H Gold strain (JGY1031) and 

selected on SD-Leu-Trp plates and grown for 2 days at 30°C. Transformants were inoculated 

into 5 mL liquid cultures in SD-Leu-Trp and grown overnight, then serial diluted 1:5- 3,125 fold 

and 5uL of each dilution were spotted on SD-Leu-Trp plates as growth control and SD-Leu-Trp-

His-ade plates to select for protein-protein interaction. Each construct has been tested with 

corresponding EV bait/prey plasmid control to eliminate false positive results. 

2.7.5 Co-IP of Osh6/ Osh7 with Snf1 

His-tagged Osh6/Osh7 were purified from E. coli BL21 (DE3) using standard His-tagged 

protein purification as previously described. Yeast (JGY4) harboring plasmid with Snf1 under 

ADH promoter (pJG1193) were grown in SD-URA for 12 hours then transfer to SGal-Ura for 36 

hours. Cells were then pelleted and resuspended in myc-tagged purification lysis buffer (20 mM 

HEPES, 10 mM KCl, 1 mM EDTA, 1 mM EGTA, 50 mM NaCl, 10% glycerol, 1 mM β-

mercaptoethanol, Pierce Protease Inhibitor Tablet, pH 7.4, with phosphatase inhibitor-- 50 mM 

NaF, 35mM glycerophosphate) and lysed open using glass beads disruption. Cell lysate were 

then centrifuged at 14,000 rpm for 30 min twice to remove cell debris. Purified Osh6-HIS and 

Osh7-His were then added into JGY4-Snf1-myc lysate followed by Myc-tagged protein 
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purification using Myc-Tag mouse mAB conjugated magnetic beads (Cell Signaling Technology 

#5698) to pull down Snf1-myc. Protein bound beads were then washed multiple times and boiled 

in sample buffer before separation on 10% SDS-PAGE. Osh6/Osh7 were detected with western 

blotting using anti-His antibody (Proteintech #HRP-66005) at 1:10,000, 2.5% milk TBST, and 

Snf1 using anti-myc antibody at 1:1000, 5% BSA, TBST. 

2.7.6 Stability assays 

WT yeast (JGY1) and Snf1 knockout yeast (JGY91) harboring plasmids with WT Osh7/ 

WT Snf1/ Kinase dead (KD) Snf1/ EV-HIS and/ or EV-Myc control were grown overnight at 

30°C, diluted 1:100 into 100mL of SD-Ura-Trp and grown for 12 hours. Cells were then pelleted 

and resuspended in SGal-Ura-Trp and induce protein expression for 36 hours. Cells were subject 

to standard His-tagged purification followed by western blotting or crude lysate analysis. Crude 

lysate analysis: OD600 =1 number of cells were resuspended in 10% Trichloroacetic acid (TCA; 

10% final concentration) and incubated for 10 min on ice. Cells were then pelleted by 

centrifugation at 14,000 rpm at 4°C for 10 min. After washing the pellet twice with 1 ml of ice-

cold acetone, the pellet is air-dried. Air dried pellet were then resuspended in 100 μl of sample 

buffer (150 mM Tris-HCl, pH 8.8, 6% SDS, 25% glycerol, 6 mM EDTA, 0.5% 2-

mercaptoethanol, and 0.05% bromophenol blue) and lysed by vortex with glass beads for 4 min 

followed by boiling at 100°C for 3 min. Proteins in crude lysate were then resolved in 10% SDS-

PAGE and subject to western blots analysis. Presence of Osh6/Osh7-His were detected with anti-

His and anti-UGP1 (a kind gift from Jared Rutter’s Lab) were used as a loading control.  

2.7.7 Microscopy for Osh6-YFP and Osh7-YFP localization 

Yeast harboring YFP-Osh7 (pJG1697) and YFP-Osh6 were grown overnight in 2% 

glucose SD-URA, diluted 1:100 in 10mL 2% glucose SD-Ura and grown to log phase (4 hours at 
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30°C). Cells were then pelleted and resuspended in 0.05% glucose SDD-URA for 2 hours. Cells 

were imaged before and after starvation using Fluoview confocal microscope. Osh7-YFP co-

localization with Mdm34-mCherry were counted (n=100cells) and analyzed using Prism. 

2.7.8 Florescent microscopy mitochondria morphology  

Cells harboring Mito-TFP plasmid were grown to log phase in SDD-His and then starve 

in SD-N for 6 hours. Mitochondria morphology were analyzed using a Nikon microscope (model 

E800) before and after starvation.  

2.7.9 Plate testing for respiration 

WT, Δosh6, Δosh7 and Δosh6Δosh7 were grown for 2 overnights in 3mL SD-complete at 

30°C. Saturated culture were then serial diluted to 1:5- 3,125 fold in water and 5uL of each 

dilution were spotted on SD-complete plate (growth control) and SGE-complete plate to test for 

mitochondria dysfunction. Plates were incubated at 30°C for 2-3 days. 

2.7.10 Whole yeast seahorse respiration assay 

Cell Culturing and Culture Plate Preparation. A detailed explanation for the entire 

Seahorse protocol is contained within the supplementary protocol but will be briefly explained 

here. Single and double knockout strains were streaked onto YPAD and then liquid cultures were 

started in SD-Complete. During this time a Seahorse Cell Culture Plate was also prepared for cell 

seeding on the day of the assay. Overnight cultures were diluted into SGE-Complete after which 

cells were plated and allowed to incubate until the beginning of the respiration assay. 

Sensor cartridge and drug preparation. While preparing the cell culture plate the wells 

and moats of the sensor cartridge utility plate were filled with XF calibrant and placed in a non-

CO2 humidified 37⁰ C incubator overnight. Carbonyl cyanide-p-
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trifluoromethoxyphenylhydrazone (FCCP) and triethyltin chrloride (TET) used to test different 

respiratory conditions were prepared the day of the assay. Injection ports A and C of the sensor 

cartridge were loaded with 20 μl of S-Complete, port B TET, and port D FCCP. The sensor 

cartridge and utility plate were loaded into the XFp Analyzer for initial calibration. 

OCR Normalization and XFp Analyzer Settings. Measurement cycles were performed as 

a 3 min mix, no wait, and 3 min measurement. Basal respiration was measured three times, port 

A injection twice, port B four times, port C twice, and port D four times. OCR was normalized to 

viable cells by plating serial dilutions of cell cultures on YPAD and calculating CFU/μl.  

2.7.11 Mitophagy assays 

Mitophagy of WT, Δosh6, Δosh7 and Δosh6Δosh7 yeast were monitored using OM45-

GFP processing assay as previously described [110] and microscopy using mitochondria 

targeting TFP and vacuole targeting Vph1-RFP assays. Mitophagy was induced using post-log 

phase method in OM45-GFP processing assays followed by detection of mitophagy using 

western-blotting with anti-GFP (Proteintech #66002-1).  

Mitophagy studies using chimeric fusion proteins were performed in live cells and 

imaged using florescent microscopy. For all experiments, cells were grown to mid-log (5x106 

cells/mL), spun down and washed with H2O and resuspended in SD-N media for 24 hours. Cells 

were then analyzed by fluorescence microscopy and images were obtained using a Nikon 

microscope (model E800) with a 60x objective (Plan Fluor Oil, NA 1.3) and a CCD camera 

(RETIGA Exi). Data were collected using Autoquant and processed using Image Pro software. 

All images were obtained using the same exposures for the course of the experiment. Plasmids 

used: RSB2598 ADH1-mitoTFP-CYC1, RSB2600 ADH1-Vph1-mCherry-CYC1.  
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2.8 Supplementary methods 

2.8.1 Cell culturing and culture plate preparation 

The knockout yeast strains were streaked on YPAD solid media and grown for 54 hours 

at RT. Different growth times and temperatures were tested with varying degrees of success. 

Room temperature was chosen because we wanted to avoid gaining suppressors in the knockouts 

and hiding interesting phenotypes. Using a growth time of 54 hours allowed the colonies to 

become large enough to pick but minimized suppressor acquisition. Less time also yielded poor 

growing liquid cultures in the next step, which failed to respire. We inoculated 5 ml of SD-

Complete liquid media in triplicate (to make sure at least one would reach saturation) with single 

colonies and grew them at 30⁰ for 42 hours while rotating. At this stage 30⁰ was chosen because 

room temperature cultures yielded erratic oxygen rates and sometimes would not respire despite 

the cells being alive when tested later. Approximately 18 hours before the assay the wells of the 

cell culture plate were coated with 50 μl of 0.25 mg/ml concanavin A, add 400 μl of water per 

moat, and store at 4⁰. After the 42 hours we then diluted 100 μl of saturated cell culture into 5 ml 

of SGE-Complete, made day of experiment, and let them grow at 30⁰C for 6 hours while 

rotating. If the cultures don’t look saturated then there is a good chance it won’t respire. While it 

is possible for a strain to be so slow growing it doesn’t get saturated but can still respire we often 

saw that lack of saturation correlated with no respiration or it was erratic. The cells were then 

centrifuged at 3000 rpm for three minutes and the pellets resuspended in fresh SGE-Complete to 

an OD600 between 0.2 and 0.3. Seeding the proper number of cells for a Seahorse respiration 

assay is important as the machine has an optimal OCR range where the readings can be 

normalized correctly. Using saturated cultures as described above for these strains will put them 

close to the 0.2 to 0.3 OD600 range. Most strains are optimal for seeding near 0.25. However, it 
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should be noted that strains used in other experiments while this protocol was designed were 

optimal near 0.2 and 0.35. We seeded 50 μl of cell suspension into wells B-G and 50 μl of SGE-

Complete into wells A and H of the cell culture plate. The plate should be washed with water 

prior to seeding to remove unbound concanavin A. After seeding the plate was centrifuged at 300 

rpm for 1 min with no brakes and cell adherence was verified under a microscope. The volume 

of the wells was brought up to 180 μl with SGE-Complete, the moats filled with 200 μl of water, 

and the plate was placed in a 30⁰ incubator for 40 min until loading into the Seahorse XFp 

Analyzer. 

2.8.2 Sensor cartridge and drug preparation 

While preparing the cell culture plate the day before the assay. We filled the wells and 

moats of the sensor cartridge utility plate with 200 and 400 μl of XF calibrant, respectively and 

placed it in a non-CO2 humidified 37⁰ incubator overnight. Three hours prior to beginning the 

assay we prepared a 260 μM carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) and 

10% ethanol solution in S-Complete. At this stage ethanol is the primary carbon source for the 

yeast and minimizing the amount added is ideal. To make the FCCP got into solution it was 

incubated in a 45⁰ water bath. It should have a transparent very light-yellow color when ready. 

After the cell culture plate has started its 40 min incubation we prepared an 806.3 uM solution of 

triethyltin chloride (TET) in S-Complete in a chemical fume hood. Warnings on the bottle 

included fatal when inhaled, fatal when ingested, and fatal when in contact with skin. Keep 

reagent bottle wrapped in absorbent material and in a sealed secondary container. TET has a 

damp earth and musty or moldy smell to it. If the smell is strong or present for a long time 

something is wrong with containment. The smell is occasionally detectable when the resealed 

container is taken from the fumehood but it isn’t detectable when diluted and is safe to handle. 
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We then loaded injection ports A and C of the sensor cartridge with 20 μl of S-Complete, port B 

TET, and port D FCCP. The sensor cartridge and utility plate were inserted into the XFp 

Analyzer for calibration. Once the calibration was over the cell culture plate was inserted. 

2.8.3 OCR normalization and XFp analyzer settings 

Measurement cycles were performed as a 3 min mix, no wait, and 3 min measurement. 

Basal respiration was measured three times, port A injection twice, port B four times, port C 

twice, and port D four times. OCR was first normalized to viable cells by plating serial dilutions 

of cell cultures on YPAD and calculating CFU/μl. Using the strains in the OD600 range 

described above in serial dilutions and plating has yielded easy counting when 50 μl of a 10-3 

and 100 μl of a 10-4 dilution is plated. Cells started appearing after two days but an official count 

was taken after four days because some strains will have many colonies appear later.   
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3.2 Abbreviations 

SSN2- Suppresor of SNF1 

MED13- Mediator complex subunit 13 

Cdk8- Cyclin dependent kinase 8 

PASK- Per-Arnt-Sim (PAS) kinase 

Psk1- Pas domain-containing Serine/threonine protein Kinase 1 

Psk2- Pas domain-containing Serine/threonine protein Kinase 2 

CWI- Cell wall intergrity 

MAPK- Mitogen-activated protein kinases 

CKM- Cdk8 Kinase module 

Slt2- Suppressor of the LyTic phenotype 2 

IDR- Intrinsic disordered region 

Rho1- Ras Homolog 1 

USF1- Upstream stimulatory factor 1 

Pkc1- Protein kinase C 1 
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3.3 Abstract 

Per-Arnt-Sim (PAS) kinase is an important nutrient sensing kinase that is evolutionarily 

conserved from yeast to man. It is known to increase lipid production in response to nutrients 

while decreasing respiratory metabolism. Herein we describe a novel function of PAS kinase in 

the regulation of cell death.  SSN2 (MED13) was previously retrieved from a yeast two-hybrid 

screen for direct PAS kinase binding partners. Together with cylin C, Med13 is part of the CDK8 

Kinase Module (CKM) in the multi-subunit mediator complex that acts as an interface between 

DNA bound transcription factors and RNA polymerase II. In yeast, Med13 is degraded in 

response to unfavorable cellular stress and triggers nuclear release of cyclin C into the cytoplasm 

where it promotes mitochondrial fragmentation and programed cell death. Herein we provide 

evidence for the direct phosphorylation and stabilization of Med13 by PAS kinase, the 

corresponding inhibition of nuclear cyclin C release, and the regulation of mitochondria 

fragmentation upon carbon or oxidative stress. 

3.4 Introduction 

Cells have developed complex mechanisms for sensing their cellular environment and 

control key metabolic processes appropriately.  At the heart of these mechanisms are sensory 

protein kinases, capable of regulating many interrelated pathways through the phosphorylation of 

tens of substrates.  Per-Arnt-Sim (PAS) kinase is a conserved sensory protein kinase that 

regulates glucose homeostasis in yeast, mice and humans.   

PAS kinase controls a pivotal point in glucose allocation, the partitioning of glucose to 

lipid biosynthesis versus respiratory metabolism. In mice, PAS kinase-deficiency has been 

shown to protect against weight gain, hepatic triglyceride accumulation, and insulin insensitivity 

when mice are placed on a high-fat diet [77].  These mice are also hypermetabolic in that they 
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display increased whole-animal CO2 output and O2 uptake when compared to their wild-type 

littermates. This protection from hepatic triglyceride accumulation was also seen in PAS kinase-

deficient mice placed on a high-fat high-sugar diet, which more closely resembles the western 

diet [116]. In addition, liver and muscle tissue from these mice displayed increased respiratory 

rates when compared to the wild type littermates. These effects on triglyceride and respiratory 

metabolism appear to be evolutionarily conserved in that yeast PAS kinase also controls lipid 

biosynthesis and respiration, in part through the phosphorylation of its substrate Cbf1 [82].    

In addition to the regulation of triglyceride biosynthesis and respiratory metabolism, PAS 

kinase is regulated by nutrient status.  PAS kinase activity increases upon fasting and refeeding, 

as well as by the addition of glucose [78].  In addition, PAS kinase has also been shown to 

control pancreatic B-cell insulin and glucagon production in response to glucose in both humans 

and mice studies [117-120].   

Herein we describe a novel function for PAS kinase in regulating mitochondrial 

fragmentation and cell death through the phosphorylation and subsequent stabilization of Med13 

(also known as SSN2 in yeast).  Med13, together with cyclin C, is part of CDK8 Kinase Module 

(CKM) in the multi-subunit mediator complex that acts as an interface between DNA bound 

transcription factors and RNA polymerase II. In yeast, Med13 is degraded in response to 

unfavorable cellular stress such as peroxide stress [121, 122].  This degradation triggers nuclear 

release of cyclin C into the cytoplasm, where cyclin C associates with the mitochondria to 

promote mitochondrial fragmentation and programed cell death.  The glucose responsive kinase 

Snf1 has recently been shown to regulate Med13 degradation in response to reactive oxygen 

species [122]. Herein we describe a novel, direct role for a second sensory kinase in this 

pathway, placing PAS kinase as a regulator of cell death in response to glucose. 
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3.5 Results 

3.5.1 PAS kinase 1 (Psk1) interacts with Med13 in vivo 

A previous large-scale yeast-2-hybrid (Y2H) screen for PAS kinase binding partners 

identified Med13 as putative direct binding partner of Psk1 [82].  The interaction between 

Med13 and PAS kinase was further studied through truncation analysis, with amino acids 571-

650 being required (Figure 3-1).  This region is part of the intrinsic disordered region (IDR) of 

Med13 and has been previously identified as the Med13 degron, the region required for Med13 

degradation. IDR’s are defined by a continuous stretch of flexible, disorder-promoting residues 

that are key to cellular control in that they facilitate the relay of macromolecular decisions as 

they transition to more ordered states.  

3.5.2 Psk1 phosphorylates Med13 in vitro 

The relationship between Med13 and Psk1 has not been previously explored and there are 

many possible outcomes from their protein-protein interaction. For example, Med13 could be a 

binding partner that regulates Psk1 activity, such as by localizing it to the CKM, or it could serve 

as a substrate of Psk1. We therefore purified Psk1 as well as Med13 and assayed for direct, Psk1-

dependent phosphorylation through in vitro kinase assays (Figure 3-2). Psk1 phosphorylated 

Med13571-650 in vitro, while the kinase dead (KD) mutant of Psk1 showed only weak 

phosphorylation, suggesting that Med13 is directly phosphorylated by Psk1. Note that Psk1 has 

been previously show selectively for only certain phosphorylate substrates under the in vitro 

kinase conditions utilized herein [82]. 
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Figure 3-1 PAS kinase directly binds to Med13 as found in a yeast two-hyrid assay (A) A diagram of the full length 
Med13 protein, indicating the region of the SCFGRR1 degron and the mediator complex subunit 13 (Med13) 
domain.  The two yeast two-hybrid constructs that bind to PAS kinase 1 (Psk1) are indicated below the full-length 
protein.  Both contain the degron.  (B) A dilution series showing the strength of the interaction between Psk1 and 
Med13504-703.  

 

  

A. 

B. 
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Figure 3-2 Psk1 phosphorylates Med13 in vitro Purified Med13571-650 was incubated with radiolabeled 32-P ATP in 
the presence or absence of purified Psk1/ Psk1-KD for 12 min at 30°C. Samples were then resolved in 12% SDS–
PAGE, followed by staining with Coomassie blue. Gels were then dried and imaged on x-ray film. Lane 1: 
Psk1+USF1; Lane 2&3: Psk1+ Med13571-650; Lane 4&5: Psk1-KD+ Med13571-650; Lane 6: Psk1 only; Lane 7: Psk1-
KD only; Lane 8: Med13571-650 only. Psk1 is not visible in the Coomassie Blue stained gel due to low protein 
concentration. 

 

3.5.3 Psk1 is required for Med13 degradation in response to carbon stress  

In order to determine the effects of Psk1-dependent Med13 phosphorylation in vivo, the 

stability of cyclin C was assessed in response to carbon source, a known regulator of Psk1 

activity [123].  As shown in Figure 3-3B, Med13 is degraded upon switching from high glucose 

to low glucose (0.5%).  This degradation is dependent upon PAS kinase as it is not seen in the 

Δpsk1Δpsk2 yeast.  

Cyclin C nuclear release before and after glucose stress was also examined with 

Fluoview confocal microscope. PAS kinase appears to play a role in the nuclear release of cyclin 
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C as well upon 2 hours of 0.05% glucose stress in that cyclin C remains nuclear in many of the 

PAS kinase-deficient (Δpsk1Δpsk2) yeast (Figure 3-3B). 

 

 

 

Figure 3-3 PAS kinase is required for Med13 degradation in response to carbon stress (A) Wild type and 
Δpsk1Δpsk2 yeast overexpressing Med13-Myc were transferred from 2% glucose to 0.5% glucose for 0, 1, 2 and 4 
hours, and yeast extracts were analyzed by western blot using anti-myc antibody for MED13-Myc detection (cell 
signaling). (B) Cyclin C localization in WT and Δpsk1Δpsk2 knockout strain were observed with Fluoview confocal 
microscope before and after 2 hours 0.05% glucose stress. Yeast harboring plasmids with cyclin C-YFP, mito-
mCherry were used in this study and NucBlueTM Live ReadyProbesTM was used to visualize the nucleus.  

 

A. 

B. 
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3.5.4 Psk1 affects localization of cyclin C and its nuclear release upon oxidative stress 

The degradation of Med13 has been shown to promote the export of cyclin C from the 

nucleus into the cytoplasm, where it binds mitochondria to initiate fragmentation and subsequent 

cell death. The localization of cyclin C was therefore used as a readout for Med13 activity in 

wild type versus PAS kinase-deficient yeast (Δpsk1Δpsk2).  As previously shown, cyclin C is 

exported to the cytoplasm in response to 1mM H2O2 stress (Figure 3-3).  This localization was 

inhibited to an extend by PAS kinase deficiency. In Δpsk1Δpsk2 yeast, a single peri-nuclear foci 

of cylin C-YFP is seen under normal growth condition and upon 2h oxidative stress, with lesser 

nuclear release of cyclin C after 2h oxidative stress compared to wild type. 
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Figure 3-4 PAS kinase plays an important role in cyclin C nuclear release upon oxidative stress Localization of 
cyclin C-YFP in wild-type or Δpsk1Δpsk2 cells before and following 2 h treatment with H2O2 (1 mM) was 
visualized through Fluoview confocal microscope. Perinuclear foci of cylin C-YFP is seen in Δpsk1Δpsk2 cells and 
psk1/ psk2 affected nuclear release of cyclin C upon oxidative stress. 

 

3.6 Conclusions 

Cell death pathways are intimately tied to external cues, containing many check points in 

order to avoid unnecessary destruction.  One such cell death pathway is the cyclin C pathway in 

which is translocation from the nucleus to the cytoplasm results in mitochondrial fragmentation 

and, ultimately, cell death. We have previously shown cyclin C translocation to be dependent on 

two critical pathways (Figure 3-5).  First is the Cell Wall Integrity (CWI) MAPK pathway.  In 

this pathway, cell wall sensors including Wsc1, Mtl1 and Mid2 are activated by stresses such as 
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hydrogen peroxide, leading to the activation of Rho1 which phosphorylates protein kinase C 

(Pkc1), initiating the CWI MAPK cascade.  Slt2 is activated by this cascade, and phosphorylates 

cyclin C, which in turn phosphorylates Med13 in a priming event.  Med13 is then 

phosphorylated by Slt2, targeting it for destruction by the ubiquitin-mediated SCFGRR1 pathway.   

Recently, the SNF1 complex was shown to be required for this pathway, but the molecular 

mechanisms of this pathway have not been described.  Herein we provide evidence that PAS 

kinase, a known downstream target of SNF1, directly phosphorylates Med13 and is required for 

its degradation in response to carbon or hydrogen peroxide stress. A model for the regulation of 

cyclin C localization through a cascade including PAS kinase (Psk1) is shown in Figure 3-5. 

First, yeast Psk1 directly interacts with Med13 in vivo, specifically at the previously 

identified degron (amino acids 571-650, Figure 3-1), and phosphorylates Med13 in vitro (Figure 

3-2).  PAS kinase is also required for the degradation of Med13 by the SCFGRR1 pathway in 

response to carbon stress.  And finally, PAS kinase-deficiency leads to cyclin C retention in the 

nucleus.  

The complexity of two signaling cascades involving several protein kinases allows for 

careful control of the cell death pathway in response to several external stimuli.  The CWI 

pathway has been shown to be activated by many cell membrane perturbing agents, including 

chlorpromazine.  Interestingly, PAS kinase is also activated by cell integrity stress [123], 

including the cell membrane perturbing agent chlorpromazine.  In addition to cell integrity stress, 

PAS kinase is well-known to respond to nutrient status, particularly glucose, in both yeast and 

mammalian cells [75, 78, 123].  Herein we provided the first evidence for Med13 degradation 

and cyclin C export in response to glucose depravation (Figure 3-3). 
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Figure 3-5 A model for the regulation of cyclin C localization through a cascade including PAS kinase (Psk1) Cell 
wall stress (such as peroxide) stimulates cell wall sensors (Wsc1, Mtl1 and Mid2) to activate Rho1 which in turn 
activates protein kinase C (Pkc1) which triggers the SWI MAPK cascade, leading to the activation of Slt2.  Slt2 
directly phosphorylates cyclin C, which then primes the degron through cyclin C/Cdk8 phosphorylation of Med13. 
A second phosphorylation event is required. Snf1 kinase, in response to peroxide or carbon stress, activates PAS 
kinase and phosphorylates Med13, targeting the degron for ubiquitin-mediated SCFGrr1 degradation.  

 

In addition to Med13, three other yeast PAS kinase substrates have been characterized.  

First, UDP-glucose pyrophosphorylase (UGP1), a key enzyme in glucose utilization for glycan 

biosynthesis, a component of the yeast cell wall.  Phosphorylation of Ugp1 results in increased 

increased cell wall biosynthesis, necessary for growth, and decreased glycogen storage. This 

pathway is consistent with the role of PAS kinase described herein in-conjunction with the cell 

wall integrity pathway. Second, PAS kinase phosphorylates yeast Cbf1, shifting cellular 

metabolism from respiration and toward lipid biosynthesis, which lipids are also required for the 

cell membrane. And finally, PAS kinase phosphorylates yeast Pbp1 to activate stress granule 

formation and TORC1 inhibition at stress granules [124]. In addition to these two substrates, 

yeast Psk2 has been shown to activate Rho1 by an unknown mechanism, suppressing the growth 
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defect of a tor2 temperature-sensitive mutant [125].  Each of these roles appears to be a cell 

survival role, promoting cell growth and proliferation.  At first glance, they are strikingly 

juxtaposed to the cell death pathway described herein.  However, it is likely that these sensory 

pathways play a two-fold role in the cell.  First, they alert the cell to the need for increased 

glucans and lipids necessary for cell growth or to repair cell damage.  And second, they initiate 

cell death when this damage is too severe.  This is supported by the ability of Psk2 to activate 

Rho1, an upstream kinase in the Med13 pathway, suggesting PAS kinase regulates the 

Med13/cyclin C/Cdk8 pathway by two mechanisms. The Med13/cyclin C/Cdk8 pathway 

described herein requires several inputs and priming events, ensuring that cell death is not 

initiated without several inputs. 

3.7 Experimental procedure 

3.7.1 In vitro kinase assay 

Yeast (JGY142 or JGY4) harboring wildtype Psk1-HIS (pJG1089), kinase dead Psk1 

KD-HIS (pJG1170) or were grown in selective 2% glucose synthetic minimal medium (SD-

Trp/Ura) overnight, diluted 1:100 into 500mL of SD-Trp/ Ura and grown for 12 hours, pelleted 

and resuspended in 500mL of selective 2% galactose synthetic minimal media (SGAL-Trp/Ura) 

and grown for 36 hours.  

BL21 (DE3) Escherichia coli harboring Med13-HIS were grown overnight at 37°C in 

Luria Bertani broth supplemented with ampilicin (LB Amp), diluted 1:100 into 500mL of LB 

Amp and grown for 3 hours, followed by 5 hours induction in LB Amp supplemented with 0.5 

mM of IPTG. Cells were pelleted and resuspended in HIS-tagged purification lysis buffer (50 

mM HEPES, 300 mM NaCl, 20 mM imidazole, 10 mM KCl, 1 mM β-mercaptoethanol, Pierce 

Protease Inhibitor Tablet, pH 7.8) with or without phosphatase inhibitor (50 mM NaF, 35mM 
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glycerophosphate). Cell suspension were then lysed with Microfluidics M-110P homogenizer 

(Microfluidics, Westwood, MA). Cell debris were then pelleted by centrifugation at 12,000 rpm, 

4°C for 30min twice, transferring supernatant to a new tube after the first and second 

centrifugation. For HIS-tagged purification, 300 μL of nickel-nitrilotriacetic acid (Ni-NTA) 

agarose beads (Qiagen, Valencia, CA) was added to each 500mL culture of cell lysate and 

incubated at 4°C for 3 hours with agitation. After incubation, Ni-NTA beads for HIS-tagged 

purification were washed twice with 10-15 mL ice cold lysis buffer without protease inhibitor 

(centrifugation at 1000 rpm, 4°C), transferred to polypropylene column and washed with 

additional 50 ml of lysis buffer without protease inhibitor. HIS-tagged protein were then eluted 3 

times with 300 μl of elution buffer containing 250 mM imidazole and 100 mM NaCl without 

protease inhibitors. HIS-tagged protein were then be stored in 15% glycerol at -80°C. 

WT Psk1-His/ Psk1 KD-HIS were incubated with Med13-HIS in total volume of 30 μl of 

reaction mixture containing 1X kinase buffer (pH 7.5),  0.2mM ATP, and 0.2 μCi of γ32P-ATP 

(MP Biomedicals) for 12 min at 30°C. Kinase assays were stopped by the addition of 6X SDS-

PAGE sample buffer, separated by SDS-PAGE, stained with coomassie blue (30 min), destained 

for 2 h, soaked in water for 1 h, dried and exposed to film in -80°C. 

3.7.2 Cyclin C-YFP nuclear release microscopy 

WT (JGY1) and Δpsk1Δpsk2 (JGY4) yeast strain were transformed with cyclin C-YFP 

(pJG1703) and mitochondria targeting mCherry plasmid- Mito-mCherry (pJG1691). 50 µL of 

overnights from each transformant were transferred to 25mL of SD-URA-TRP (2% glucose) and 

cultures were grown to late log phase (OD600 = 0.8~1.3), followed by 2 h of 1mM H2O2/ 

switching to 0.05% glucose SD-URA-TRP treatment. Cells were then fixed immediately in 70% 

ethanol and store in 4°C for >12 h. Before imaging with Fluoview confocal microscope, cells 
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were pelleted, washed twice in 1mL ddH2O and stained with NucBlueTM Live ReadyProbesTM at 

the concentration of 1 drop/ml for 20 minutes under room temperature. 

3.7.3 Yeast-2-Hybrid Assay 

Prey plasmid containing Med13570-650 (pJG1465) were co-transformed with bait plasmid 

containing psk1(pJG598)/ EV control (pJG421) into Y2H Gold strain (JGY1031) and selected on 

SD-Leu-Trp plates and grown for 2 days at 30°C. Transformants were inoculated into 5 mL 

liquid cultures in SD-Leu-Trp and grown overnight, then serial diluted 1:5- 3,125 fold and 5uL 

of each dilution were spotted on SD-Leu-Trp plates as growth control and SD-Leu-Trp-His-ade 

plates to select for protein-protein interaction. Each construct has been tested with corresponding 

EV bait/prey plasmid control to eliminate false positive results. 
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CHAPTER 4: Concluding Remarks 

Metabolic diseases are a global epidemic and deregulation of cellular metabolism can 

lead to a wide variety of disease including metabolic syndrome, obesity, neurodegenerative 

disorder and various types of cancer. They occur when cells allocate too many of their primary 

resources towards one pathway at the expense of another pathway, or simply due to improper 

response to cellular stress leading to deregulation of cellular processes, organellar dysfunction, or 

even cell death. My research focused on the understanding of interplay between key metabolic 

regulators: AMPK/SNF1, PASK/PSK1, identifying novel downstream targets of these kinases: 

MED13/SSN2, OSBP/(OSH6/OSH7) and characterizing their role in mitochondrial function as 

well as regulation of mitochondria signaling. With the central role of mitochondria in cellular 

energy homeostasis as well as the regulation of key cellular processes such as proliferation, 

growth and cell death, understanding how cells control mitochondrial respiration and maintain 

mitochondrial health through cross-talk between metabolic regulators is key to developing 

effective treatments for many common diseases resulting from metabolic dysfunction, 

particularly mitochondrial dysfunction.  

Sensory protein kinases are a major way in which the cell regulates central metabolism. 

They can phosphorylate tens of substrates to control entire metabolic pathways, shifting the 

metabolism of the cell depending on nutrient availability, cellular energy level or different 

stressors. AMP-activated kinase (AMPK) and Per-Arnt-Sim kinase (PASK) are two of the main 

metabolic regulators in the cells. Both kinases regulate critical metabolic nodes of central 

metabolism: lipid versus respiratory metabolism, anabolic versus catabolic metabolism and 

control mitochondria function and health. In Chapter 2, we explored the regulation of the 

oxysterol binding protein Osh7 by SNF1— the yeast AMPK ortholog and provided evidence for 
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conservation of this regulation in mammalian cells.  As part of this study, we investigated the 

localization and function of Osh7 and its close homolog, Osh6. Deficiency of either Osh6 or 

Osh7 both causes a mitochondrial phenotype, with Osh6-deficeincy being more severe.  We 

provide evidence that this mitochondrial defect may be due to defects in mitophagy, a pathway 

for clearing damaged mitochondrial which is commonly disrupted in many diseases including 

heart disease, diabetes, cancer, and neurodegeneration. Although previously thought to have 

redundant cellular roles, evidence is displayed herein for the preferred localization of Osh7 at 

ER-mitochondria contact sites, whereas Osh6 remains primarily cytoplasmic. In addition, the 

regulation by Snf1 is specific for Osh7. Thus, we have uncovered a major pathway for the 

regulation of mitochondrial health, under the control of the master and commander SNF1/AMPK 

through oxysterol binding protein. 

In Chapter 3 and appendix chapters 1 and 2, we investigated the role of both SNF1 and 

PAS kinase in mitochondrial and cell death regulation through the phosphorylation of Med13, a 

key regulator of cyclin C.  Med13 controls cyclin C export from the nucleus, when Med13 is 

inactivated cyclin C is exported to the cytoplasm.  In the cytoplasm cyclin C associates with the 

mitochondria to induce fragmentation and ultimately, cell death. In collaboration with the cyclin 

C experts at Rowan University (Katrina Cooper’s Laboratory), we have shown that Snf1 is 

required for Med13 activity in response peroxide stress, whereas PAS kinase directly 

phosphorylates Med13 and controls its activity in response to both peroxide and carbon stress.  

In a Snf1 mutant or a PAS kinase mutant, cyclin C is trapped in the nucleus. Nuclear release of 

cyclin C is known to promote mitochondria fission and timely apoptosis when necessary.  

Combined these results support a model in which Snf1 and PAS kinase control cell death in 
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response to both AMP and glucose levels.  Each of these proteins are conserved from yeast to 

man, suggesting that these pathways may be key in metabolic diseases in human as well. 

The complexity of these metabolic pathways is only matched by the complexity of their 

regulation, requiring exquisite control by sensory proteins that can regulate entire processes.  

Herein we have further characterized two key metabolic controllers, AMPK and PAS kinase, and 

their control of mitochondrial health and cell death. Further characterization of these signaling 

pathways involving mitochondrial signaling, mitochondria health and functions may provide 

novel therapeutic targets in treating metabolic diseases, neurodegenerative disorders and cancer.  
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A1.2 Abbreviations 

PCD - Programmed cell death 

ROS - Reactive oxygen species 

SCF - Skp1, Cullin, F box E3 ligase 

IDR - intrinsic disordered region  

Cdk - cyclin dependent kinase 

PKA - Protein Kinase A 

MAPK - MAP Kinase  

AMPK - 5' adenosine monophosphate-activated protein kinase 

AMPKK - 5' adenosine monophosphate-activated protein kinase kinase 

ORF - Open reading frame 

ßME - ß-mercaptoethanol 

CKM – cyclin C/Cdk8 kinase module 

ROS - Reactive Oxygen Species 

Y2H –Yeast Two Hybrid 
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A1.4 Abstract 

Eukaryotic cells, when faced with unfavorable environmental conditions mount either 

pro-survival or pro-death programs. The conserved cyclin C-Cdk8 kinase plays a key role in this 

decision. Both are members of the Cdk8 kinase module that, along with Med12 and Med13, 

associate with the core Mediator complex of RNA polymerase II. In S. cerevisiae, oxidative 

stress triggers Med13 destruction, which releases cyclin C into the cytoplasm to promote 

mitochondrial fission and programmed cell death. The SCFGrr1 ubiquitin ligase mediates Med13 

degradation dependent on the cell wall integrity pathway MAPK Slt2. Here we show that the 

AMP kinase Snf1 activates a second SCFGrr1 responsive degron in Med13. Deletion of Snf1 

resulted in nuclear retention of cyclin C and failure to induce mitochondrial fragmentation.  This 

degron was able to confer oxidative-stress-induced destruction when fused to a heterologous 

protein in a Snf1 dependent manner. Although snf1∆ mutants failed to destroy Med13, deleting 

the degron did not prevent destruction. These results indicate that the control of Med13 

degradation following H2O2 stress is complex being controlled simultaneously CWI and MAPK 

pathways. 

A1.5 Introduction 

All eukaryotic cells are continually exposed to changing environmental conditions. 

Consequently, they have evolved elaborate mechanisms to both sense damage and transmit this 

signal to the nucleus. The resulting response varies dependent upon the stress encountered but in 

gross terms cells have to decide whether to activate pro-survival or pro-death programs. Despite 

this being a critical decision point, what remains understudied are the molecular details of how 

cells decide their fate upon encountering unfavorable environments. Previous studies revealed 

that the conserved cyclin C protein plays a key role in this decision in response to increased 
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environmental reactive oxygen species (ROS) [126-134]. Cyclin C, together with its kinase 

partner Cdk8, Med12 and Med13, form the Cdk8 Kinase Module (CKM) of the multi-subunit 

Mediator complex. This complex acts as an interface between DNA bound transcription factors 

and RNA polymerase II (RNAP-II [135-137])When the CKM module is bound, it predominantly 

negatively regulates expression of a subset of stress response genes[126, 138-141]. Following an 

increase in environmental ROS (induced by H2O2 treatment), this repression is relieved by the 

nuclear release of cyclin C to the cytoplasm[127, 129, 134, 142]. Intriguingly, here cyclin C 

plays a second role directing stress-induced mitochondrial fission as well as promoting 

programmed cell death (PCD) [127, 132, 143, 144]. Consistent with this function, cells lacking 

cyclin C cells are less able to execute stress-induced mitochondria fission and are more resistant 

to oxidative stress [127, 143]. Taken together, these results argue that cyclin C nuclear release 

must be carefully controlled as it signals a commitment to PCD. 

Our previous studies have revealed that a complex molecular mechanism that controls 

cyclin C nuclear release.  In response to environmental ROS, cyclin C is directly phosphorylated 

by Slt2, the MAP kinase of the Cell Wall Integrity (CWI) signal transduction pathway ([131] and 

Figure A1-1A). This canonical pathway is characterized by a family of cell-surface sensors 

(Wsc1, Mid2 and Mtl1[144]) that transmit the stress to a small G protein Rho1, which thereafter 

activates protein kinase C (Pkc1)[145, 146]. Once activated, Pkc1 transmits the intracellular 

signal to the MAPK Slt2/Mpk1 [147] as well as to the pseudo-kinase Kdx1/Mlp1 via 

the MAPK module. In addition to cyclin C[131], Slt2 directly phosphorylates two other 

transcription factors (Rlm1, Swi4/Swi6) that stimulate the expression of other stress response 

genes[148-151]. More recently, Slt2 has also been shown to regulate gene expression by 

phosphorylating tyrosine-1 of the RNAP II carboxy-terminal domain[146, 152]. This event is 
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associated with pause/termination processes in mammals[153]. Intriguingly, it is required for the 

loss of cyclin C and Cdk8 from target genes following stress in yeast [152]. 

 

Figure A1-1 Cdk8 module regulation by the CWI MAPK pathway (A) H2O2 stimulates cell wall sensors Wsc1, 
Mtl1 and Mid2, leading to activation of Rho1 that in turn triggers the cell wall integrity (CWI) MAPK pathway by 
activating Protein Kinase C (Pkc1). Activation of this cascade triggers the MAPK, Slt2, to directly phosphorylate 
cyclin C, an event required for the 1st step towards its release from the nucleus. The second step requires Slt2 to 
directly phosphorylate Med13-degron742-844, which targets it for ubiquitin mediated degradation by SCFGrr1. 
Cyclin C-Cdk8 activity is needed to prime the degron before it is recognized by SCFGrr1 9. (B) Outline of the 
AMPK pathway in yeast. It remains unknown how this pathway is activated in response to H2O2 stress. The gray 
box represents the Snf1 kinase complex (see text for details). 

 

In S. cerevisiae, Med13 destruction is required for cyclin C nuclear release[154]. 

Consistent with this, cyclin C is cytoplasmic in unstressed med13∆ and the mitochondria are 

predominantly fragmented[154]. More recently we identified SCFGrr1 as the E3 ligase that 

mediates Med13 destruction[133]. Like other SCF targets[155], recognition of this phospho-

degron requires it first to be primed by one kinase (cyclin C-Cdk8) and then activated by another 
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(Slt2). These studies also revealed that phosphorylation of cyclin C by Slt2 is required for the 

SCFGrr1 to recognize Med13 ([133] and Figure A1-1A). Like the Slt2-degron, this domain lies 

within the large intrinsic disordered region (IDR) of Med13 (Figure A1-2A). IDR’s are defined 

by a continuous stretch of disordered promoting residues which easily transition into more 

ordered states. These structural transitions afford IDR’s great flexibility and as such these 

regions are known to play key roles in macro-molecular decisions including signaling 

pathways[156, 157]. 

In addition to Slt2, the highly conserved 5’ adenosine monophosphate-activated protein 

kinase (AMPK), which plays a major role in the utilization of alternative carbon sources after 

glucose depletion[158], is also activated in response to various environmental stresses including 

oxidative stress[159]. In S. cerevisiae, the catalytic subunit of the heterotrimeric AMPK complex 

is encoded by SNF1. Other members of the complex (outlined in Figure A1-1B) include two 

regulatory subunits, the γ subunit Snf4 and one of the three alternative β subunits, Sip1, Sip2, or 

Gal83[158]. The three β isoforms determine the respective cellular addresses after activation of 

Snf1, with the Snf1-Gal83 isoform being enriched in the nucleus[160-162]. The catalytic activity 

of Snf1 is regulated by phosphorylation at Thr-210 that is located in the activation loop of its 

kinase domain[163]. This is executed by one of three upstream kinases, Sak1, Tos3, and 

Elm1[159, 164, 165]. These in turn are activated by an unknown mechanism in response to a 

variety of stresses which lends specificity to the system[159]. 

In this report we show that Snf1, Sak1 and at least one β isoform are required for the 

H2O2 induced degradation of Med13.  Using yeast two-hybrid analysis the Snf1-interacting 

domain on Med13 was identified.  This domain lies in the large IDR region of Med13 and is 

recognized by SCFGrr1 after Snf1 directed phosphorylation. Consistent with this, Snf1 is required 
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for efficient cyclin C nuclear release following H2O2 stress. Taken together, this reveals that 

Med13 degradation is regulated by two SCFGrr1 degrons that are regulated by three different 

classes of kinases, a Cdk, a MAPK and an AMPK. As all three kinases are required for Med13 

degradation, this complex molecular mechanism ensures that cyclin C nuclear release is tightly 

controlled and prevents its untimely release into the cytoplasm. 

 

Figure A1-2 Med13 contains two H2O2 stress responsive degrons (A) Cartoon of the results from ProteinPredict® 
89 analysis of yeast Med13. The amino and carboxyl terminal domains are structured and separated by a large 
intrinsic disordered region. The positions of the two degrons are indicated. (B) Yeast two hybrid analysis of 
degron571-650 and Grr1 derivatives. Yeast PJ69-4a cells harboring Med13-activating domain plasmid (pDS15) and 
either pAS2, pAS-Grr1 or pAS2-Grr1∆F∆L binding domain plasmids were grown on -LEU, -TRP drop out medium 
to select for both plasmids (left panel) and -TRP, -LEU, -HIS -ADE (right panel) to test for Med13-Grr1 interaction. 
(C) Wild-type (RSY10) or grr1∆ cells (RSY1770) harboring degron571-650 (pDS15) were treated with 0.4 mM 
H2O2 for the timepoints indicated and Med13571-650-HA levels analyzed by Western blot. Tub1 levels were used 
as loading controls. (D) Degradation kinetics of the degron571-650 constructs shown in C. Values represent 
averages ± SD from a total of at least two Western blots from two independent experiments.  

 

A1.6 Results 

A1.6.1 Med13 contains two SCFGrr1 phospho-degrons 

We have previously shown that SCFGrr1 is the E3 ligase responsible for mediating Med13 

degradation following H2O2 stress [121, 133]. This degron (amino acids 742-844, Figure A1-

2A,) is primed by cyclin C-Cdk8 and activated by Slt2. In these studies we also observed that 
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another Med13 domain (amino acids 571-650) can also bind to Grr1 using the Gal4 yeast two 

hybrid (Y2H) assay[166]. These results were repeated using two baits, wild-type Grr1 and a 

grr1∆F∆L mutant, which can neither bind to the SCF or recognize substrates[167, 168].  As 

anticipated, the Gal4 activating domain Med13571-650 fusion protein (hereon out referred to as 

degron571-650) can associate with wild-type Grr1 as an interaction is detected selecting for the 

dual HIS3 and ADE2 reporter genes (Figure A1-2B). The vector control and mutant bait were 

unable to grow on this media suggesting that the interaction is specific.  

To confirm that degron571-650 is responsive to SCFGrr1 we examined its degradation, via 

Western blot analysis, following 0.4 mM H2O2 treatment in wild-type and grr1∆ cells. This 

concentration of H2O2 induces mitochondrial outer membrane permeabilization (MOMP) 

dependent regulated cell death response in yeast [169-171] and triggers cyclin C nuclear 

release[127, 129, 131, 154]. The results show that although less degron571-650 is present in 

unstressed grr1∆ cells, the protein is more stable following H2O2 stress (Figure A1-2C and 

quantified in A1-2D). Taken together with the Y2H data, these results argue that degron571-650 is a 

SCFGrr1 responsive degron. They are also consistent with our previous published work 

demonstrating that Grr1 is required for H2O2 induced degradation of Med13 [133].  

A1.6.2 Snf1 is required for stress-induced degradation of Med13  

We next addressed if the H2O2 mediated destruction of degron571-650 required Cdk8 kinase 

activity. To execute this, the degradation of degron571-650 was monitored as described above in 

cells deleted for cyclin C harboring either functional myc-tagged cyclin C or a vector control. 

The results revealed that the degron571-650 is degraded with the same kinetics in the presence or 

absence of cyclin C (Figure A1-S1A and quantified in Figure A1-S1B).  These results suggest 

that another kinase phosphorylates degron571-650. One candidate is the PAS kinase.  This kinase is 
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required for glucose homeostasis and is encoded by two orthologs Psk1 and Psk2[172]. 

Intriguingly, previous Y2H studies have revealed that a domain of Med13 (amino acids 505-

703), that encompasses the degron571-650, interacts with Psk1 [173]]. The Y2H assay was repeated 

using Psk1 as bait and the smaller degron571-650 as prey and again an interaction was observed 

(Figure A1-S2A). We next tested if the PAS kinase plays a role in the degradation of full length 

Med13. Wild-type and psk1∆ psk2∆ cells harboring a functional HA-tagged Med13 plasmid 

[133] were treated with H2O2 and Med13 degradation monitored by Western blot analysis. The 

results show that Med13 is degraded with similar kinetics in the mutant and wild-type cells 

(Figure A1-S2B and quantified in Figure A1-S2C). These results indicate that although the PAS 

kinase can interact with degron571-650, it is not required for Med13 degradation following H2O2 

stress. 

PAS kinase activation by carbon sources is dependent on the Snf1 complex [124, 174]. 

Since Snf1 has many targets [175], we next tested if Snf1 mediates Med13 degradation following 

H2O2 stress as just described. The results show that Med13 is significantly more stable in snf1∆ 

cells (Figure A1-3A and quantified in Figure A1-3C). Similar results were obtained when the 

Snf1 kinase dead mutant (K84R, [176]) was the only source of Snf1 (Figure A1-3B and 

quantified in Figure A1-3D). Taken together, these results indicate that Snf1 activity is required 

for Med13 degradation following H2O2 stress.  
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Figure A1-3 Snf1, Sak1 and at least one β subunit are required for degradation of Med13 following H2O2 stress (A) 
Wild-type (RSY10), snf1∆ (RSY2080), sak1∆ (YPDahl17) and gal83∆ sip1∆ sip2∆ (MSY557) cells harboring full 
length Med13-HA (pKC801) were treated with 0.4 mM H2O2 for the timepoints indicated and Med13-HA levels 
analyzed by Western blot. Tub1 levels were used as a loading control. (B) snf1∆ cells harboring Med13-HA 
(pKC803) and either wild- type Snf1 (JG1193), a vector control (pRS316) or snf1K84R (JG1338) were treated and 
analyzed as described in A. (C and D) Degradation kinetics of the Med13-HA shown in A and B. Values represent 
averages ± SD from a total of at least two Western blots from independent experiments.  

 

Sak1 has been identified as the AMPK kinase that is activated in response to oxidative 

stress [177]. Therefore, we next addressed if Sak1 is required for H2O2 induced Med13 

degradation. The degradation assays described above were repeated in sak1∆ cells and results 

revealed that Med13 was again significantly more stable in sak1∆ than wild type (Figure A1-3A 

and quantified in Figure A1-3C).  This result supports the previously proposed model that Sak1 

is the AMPKK that activates Snf1 in response to oxidative stress [159]. We next addressed if the 

nuclear enriched isoform, Snf1-Gal83 [143, 160-162], is required for Med13 degradation under 
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similar circumstances. Unexpectedly, the results show that Med13 is still degraded in gal83∆ 

cells (Figure A1-S3A). Likewise, similar results were obtained when Med13 degradation was 

monitored in a sip1∆ sip2∆ strain (Figure A1-S3A). However, deletion of all three β subunits 

significantly inhibited the degradation of Med13 to a similar extend as observed in snf1∆ (Figure 

A1-3A and quantified in Figure A1-3C). Taken together, this suggests at least one of the β 

subunits of the Snf1 complex is required for Med13 degradation following H2O2 stress.  

A1.6.3 Snf1 activation alone is not sufficient to mediate Med13 degradation 

We next addressed if Snf1 activation was sufficient to mediate Med13 degradation in the 

absence of H2O2 stress. To execute this Med13 levels were examined in wild-type cells after they 

had been switched from 2% to 0.05% glucose which, is sufficient to activate Snf1 (Figure A1-4A 

and [159]). No differences in Med13 levels were observed following glucose deprivation (Figure 

A1-4B). Taken with the results presented in Figure A1-3, this suggests that Snf1 activation is 

necessary but not sufficient to mediate the degradation of Med13 following H2O2 treatment.  

A1.6.4 The CWI pathway sensors proteins are not required for Snf1 activation  

It is known that both the CWI and AMPK pathways are activated in response to oxidative 

stress but how these two pathways communicate is not well understood [178]. Importantly, 

although it is known how the signal is transmitted to the CWI pathway, it is unclear how the 

AMPK pathway is activated (Figure A1-1B). One possibility is that the pathways cross talk, 

through the cell wall sensor proteins. To test this, we examined Snf1 phosphorylation status in a 

strain lacking the three cell wall sensors (Wsc1, Mid2 and Mtl1[144]). Consistent with 

previously published work [159], Snf1 is phosphorylated following H2O2 treatment in a Sak1 

dependent manner (Figure A1-4C). Likewise the cell wall sensor triple mutant is also able to 

activate Snf1 following H2O2 treatment (Figure A1-4C).  These results suggest that the activation 
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of the CWI pathway is not required to transmit the stress signal to the AMPK pathway. Others 

have demonstrated that Snf1 is not required for activation of Slt2 [179]. Consistent with this, we 

observed that the Med13 degron571-650 is still degraded following H2O2 stress when a mutant of 

cyclin C, that cannot be phosphorylated by Slt2 (S266A [131]), is used as the sole source of 

cyclin C (Figure A1-S1C&D).  Taken together, these results argue that the AMPK and MAPK 

signaling pathways act independently of each other. The extension of this conclusion is that both 

pathways contribute independently to regulating Med13 destruction following H2O2 stress. 

 

Figure A1-4 Snf1 activation does not mediate Med13 degradation (A) Mid-log -type cells (RSY10) growing in 2% 
glucose (T=0) were switched to media containing 0.05% glucose. Snf1 phosphorylation and Snf1 itself were 
detected as described in materials and methods for the timepoint indicate. (B) Wild-type cells harboring Med13-HA 
(pKC801) were switched to media containing 0.05% glucose. Med13-HA levels were detected by Western blot 
analysis for the timepoints indicated. Tub1 was used as a loading control. (C) As in (A) except that Snf1 
phosphorylation was monitored after 0.4 mM H2O2 treatment in the strains indicated. 

 

A1.6.5 The Snf1 degron lies within the IDR of Med13  

Snf1 has previously been shown to phosphorylate an SCFGrr1 phospho-degron in Pfk27, a 

key regulator of glycolysis [180]. Taking this into account, we asked if the Gal4 activating domain 

Med13571-650 fusion protein (degron571-650) is an Snf1 responsive degron by monitoring its H2O2 
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mediated degradation snf1∆ cells. The results show that degron571-650 is more stable in snf1∆ cells 

compared to wild type following H2O2 stress (Figure A1-5A and quantified in Figure A1-5B). This 

suggests that degron571-650 is a Snf1 responsive degron.  To further support this conclusion, we 

examined the degradation kinetics of a degron mutated for either of the potential Snf1 

phosphorylation sites previously identified in proteomic screens (S587 [181] and S636 [182], 

Figure A1-6A) although none of these sites perfectly fit the Snf1 consensus sequence [183, 184]. 

The studies revealed that both mutants were degraded following H2O2 treatment with kinetics 

similar to wild type (Figure A1-S3B). We also noted that serine 634 could potentially be 

phosphorylated by Snf1 (see Figure A1-6A). As it lies very close to serine 636, we made a double 

mutant (S634A, S636A) and repeated the assay. Again this mutant degron was degraded following 

H2O2 treatment (Figure A1-S3B). However, the triple mutant (S587A, S634A, S636A) exhibited 

enhanced stability following H2O2 stress (Figure 5C and quantitated in Figure 5B). Taken together, 

these results suggest that Snf1 phosphorylates Med13 following H2O2 stress targeting S587, S634 

and S636. Consistent with this model, we (Figure 5D and S3C) and others [185] have shown that 

Snf1 can co-immunoprecipitates with Cdk8 both before and after H2O2 stress. As cyclin C directly 

binds to the adjacent degron742-844 (Figure 2A and [133]) this places Snf1 in close proximity to 

degron571-650. In addition, these data also support the notion suggested by others that a 

subpopulation of Snf1 is nuclear in unstressed cells [143, 162, 185].  
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Figure A1-5 Snf1 phosphorylates degron571-650 (A) Mid-log wild-type (RSY10) or snf1∆ cultures (RSY202) 
harboring degron571-650 (pDS15) were subjected to an H2O2timecourse experiment and protein extracts analyzed by 
Western blot. Tub1 levels were used as loading controls. (B) Degradation kinetics of degron571-650 shown in (A) and 
(C). Values represent averages ± SD from a total of at three Western blots from independent experiments. (C) As in 
(A) except that degron571-650,S587A, S634A, S636A (pDS56) was analyzed in wild-type cells. (D) Co-immunoprecipitation 
analysis of Snf1-myc and Cdk8-HA. Mid log wild-type cells harboring Snf1-myc and Cdk8-HA on single copy 
plasmids were treated with 0.4 mM H2O2 for the timepoints shown. Protein extracts were immunoprecipitated with 
anti-HA, separated by SDS-PAGE Western analysis and the membrane probed with the antibodies shown. [] 
represents no IP antibody and the asterisk represents the heavy chain. See Figure A1-S3C for vector control. 
(E) Potential phospho-sites in Med13571-650. (F) Upper panels: Kinase assays using Snf1 and Snf1K84R-myc (kinase 
dead) immunoprecipitated from yeast protein extracts prepared from either wild type (left panel) or cdk8∆ cells 
(right panel) and Med13-degron571-650 (GST-Med13571-906,S608A purified from E. coli) as the substrate. The reactions 
were separated by SDS PAGE and subject to autoradiography. Lower panels: Coomassie stained gels showing the 
input used in the kinase assays. 
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To address if Snf1 directly phosphorylates Med13 kinase assays were performed with 

wild-type and kinase dead Snf1 (K84R). The activated kinase was immunoprecipitated from 

yeast extracts and incubated with GST-Med13561-650, S608A purified from E. coli. Serine 608 was 

mutated to alanine as it is a potentially contaminating PAS kinase site (Figure A1-5E and [124]). 

In addition, although this site has also been identified as target of PKA mediated phosphorylation 

[186], we have previously shown that this site does not play a role in Med13 degradation in 

response to oxidative stress [133]. Lastly, it is documented that Snf1 does not phosphorylate 

GST so this control was not included here [187]. The results (Figure A1-5F) show that Snf1 is 

able to directly phosphorylate degron571-650.  However, despite taking the precautions listed 

above, kinase activity was also observed using the kinase dead version. This suggests that 

another kinase that immunoprecipitates with Snf1 is able to phosphorylate this degron.  One 

strong possibility is Cdk8, which is a proline directed kinase that can phosphorylate the minimal 

consensus sequence S/T-P [188]. Med13571-650 contains one such site (Figure A1-5E). Therefore 

the kinase assays were repeated using Snf1 extracts isolated from a cdk8∆ strain. The result show 

that degron571-650 was phosphorylated by Snf1 and this activity was reduced in the kinase dead 

control (Figure A1-5F). Taken together, these results are suggestive that Snf1 directly 

phosphorylates Med13571-650. However, as some phosphorylation of degron571-650 was observed 

when Snf1K84R was used, we cannot rule out the possibility that an intermediary kinase may be 

playing a role. 

A1.6.6 Other potential Snf1 sites on Med13 are not needed for its degradation following 

H2O2 stress 

The Snf1 proteomic screen mentioned above also identified 5 additional potential Snf1 

sites in Med13 [182]. Intriguingly, these sites all lie within the large IDR of Med13 (Figure A1-
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6A). As IDR regions provide ideal environments for post-translational modifications which 

effect signaling events [189], we asked if these additional sites also play a role in Med13 

degradation. To address this question, Med13-HA fragments were fused to the SV40 nuclear 

localization sequence (NLS) and assayed for H2O2 mediated destruction. The results revealed 

that the construct that contains both degrons as well as all the potential Snf1 sites (amino acids 

306-906) is degraded. However, the Med13306-570 construct, that contains the remaining potential 

Snf1 sites but not the two SCFGrr1 responsive degrons, was significantly more stable. This 

suggests that these other potential Snf1 sites do not play a role in the H2O2-stress mediated 

degradation of Med13. To address if the head and tail regions of Med13 contain unidentified 

Snf1 sites, Med13 constructs spanning these regions (amino acids 1-306 and 907-1420) were 

also tested as described above for stability following H2O2 stress. The results (Figure A1-6C) 

demonstrate that these constructs are not destroyed under these conditions. This supports our 

conclusion that the Snf1 degron lies within amino acids 571-650. Degron742-844 also contains a 

potential Snf1 target site (Figure A1-6A). However, this degron fused to the Gal4 activating 

domain is destroyed following H2O2 stress in wild-type and snf1∆ cells alike (Figure A1-6D). 

Taken together, these results support the above conclusions that the Snf1 phosphorylation sites 

lie within degron571-650. 

A1.6.7 Snf1 is necessary for cyclin C nuclear release and stress-induced mitochondrial 

fission 

As Med13 degradation is required for cyclin C nuclear release [133, 154] we next tested 

if Snf1 was also required for this event. To address this, the location of a functional cyclin C-

YFP reporter protein [130] before and after stress in wild-type and snf1∆ cells was examined 

(Figure A1-7A and quantified in FigureA1-7B). The results show that a majority of cyclin C-
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YFP is cytoplasmic in wild-type cells whereas it remains significantly more nuclear in snf1∆ 

cells.  These data indicate that Snf1 is required for the oxidative stress induced nuclear release of 

cyclin C. We next examined the mitochondrial morphology in snf1∆ cells as cyclin C nuclear 

release initiates stress-induced mitochondrial fission [127, 129, 134]. As previously reported, 

unstressed wild-type cells exhibited mainly reticular mitochondrial morphology (Figure A1-7C) 

that switched to a predominantly fragmented phenotype after 3 hours of 0.4 mM H2O2 treatment.  

In snf1∆ cells, significantly less fragmented mitochondria are seen after H2O2 treatment. Taken 

together, these results indicate that activation of Snf1 is required for stress-induced 

mitochondrial fragmentation through C nuclear release. 

 

 

 

 

 

Figure A1-6 Other potential Snf1 sites in Med13 are not required for its degradation following H2O2 stress (A) Map 
of Med13 outlying the positions of the two Med13 degrons, the consensus Snf1 target site 57 and potential Snf1 
sites, identified by published proteomic screens. (B) and (C) Wild-type (RSY10) cultures harboring the NLS-
Med13-HA constructs shown were grown to mid-log phase (0 h) then treated with 0.4 mM H2O2 for the indicated 
times. Med13-HA levels were determined by Western blot analysis. Tub1 levels were used as a loading control. 
(D) Mid-log wild type or snf1∆ cultures (RSY202) harboring HA tagged Med13 degron742-844 (pDS32) were 
subjected to an H2O2 timecourse experiment and protein extracts analyzed by Western blot. Tub1 levels were used 
as loading controls. 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6116281/#B57
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Figure A1-7 Cyclin C remains predominantly nuclear following H2O2 stress in snf1∆ (A) Fluorescence microscopy 
of mid-log phase wild-type and snf1∆ cells harboring a cyclin C-YFP expression plasmid (pBK38). Cells were 
stained with Dapi to visualize the nucleus. (B) Quantification of the results obtained in (A). At least 200 cells were 
counted per timepoint from 3 individual isolates. The percent of cells (mean ± SEM) within the population 
displaying cytoplasmic cyclin C is given. * p < 0.05 difference from wild type. (C) Right panel: representative 
images of the two mitochondrial morphologies scored. Left panel: as in (B) except that percent of cells displaying 
fragmented mitochondria was scored. Representative images of the mitochondrial morphologies scored are shown in 
the left hand panel. The percent of cells (mean ± s.e.m.) within the population displaying fragmented mitochondria 
is given. * p < 0.05 difference from wild type. ** p < 0.01 difference from wild type. Bar = 13 µM. 
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A1.6.8 Med13-degron571-650 is not required for the degradation of Med13 following H2O2 

stress  

We next addressed if Snf1 mediated phosphorylation of Med13 is required for Med13 

degradation.  Degron571-650 was deleted from full length Med13 and the degradation kinetics of 

this construct (Med13deg∆571-650) was examined in med13∆ cells. The results show that 

Med13deg∆571-650 was degraded with kinetics similar to wild type (Figure A1-8A upper two 

panels, quantified in Figure A1-8B). We also observed that this construct retained cyclin C in the 

nucleus in unstressed cells and released it into the cytoplasm following H2O2 stress (Figure A1-

S5). These results were unexpected as deletion or inactivation of Snf1 results in Med13 

stabilization following H2O2 stress (Figure A1-3). Similarly, deletion of the Slt2 responsive 

degron (amino acids 742-844) only partially rescued the deletion (Figure A1-8A, bottom two 

panels) whereas Med13 is significantly stabilized in slt2∆ cells following H2O2 stress [133]. 

These results suggest a complex model in which the function of either Snf1 or Slt2 is only 

required when their respective degron is present. If correct such a model would predict that the 

degron impeaches degradation when not phosphorylated. Moreover these studies predict 

independent roles for these two signaling pathways that ultimately direct in the same outcome of 

Med13 degradation. 

A1.7 Discussion 

Our previous work has shown that nuclear release of the yeast and mammalian cyclin C 

predisposes cells to initiate PCD following stress [127, 134]. In S. cerevisiae, this nuclear release 

requires the destruction of Med13 [154] mediated by the E3 ligase complex SCFGrr1, which 

requires Slt2 and Cdk8 activity [133].  In this current work, we provide evidence that Sak1 

activated Snf1 is also required for H2O2 induced Med13 degradation and cyclin C nuclear 
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release. In the absence of this kinase, Med13 degradation following H2O2 stress is inhibited and 

cyclin C remains predominantly nuclear. Consistent with this model, we showed that Snf1 is 

required for the degradation of the Med13 degron571-650.  Paradoxically, deletion of this degron 

did not prevent H2O2 induced destruction of Med13. Instead this mutant exhibited H2O2 induced 

Med13 degradation and cyclin C nuclear release. Intriguingly, deletion of the Slt2-resonsive 

degron (Med13742-844) also did not protect Med13 from H2O2 induced degradation although the 

protein was slightly more stable than wild type.  Taken together, this study indicates that Slt2 and 

Snf1 pathways cooperate to trigger Med13 destruction. The use of two required pathways may 

help insure the proper signals are in place to target Med13. 

 
 

Figure A1-8 Either Med13 degron is sufficient for Med13 degradation (A) med13∆ (RSY1701) cells harboring 
either Med13571-650deg∆-HA (pKC805, upper panels) or Med13742-844deg∆-HA plasmids (pKC814, lower panels) were 
treated with 0.4 mM H2O2 for the timepoints indicated and Med13deg∆-HA levels analyzed by Western blot. Tub1 
levels were used as a loading control. (B) Degradation kinetics of the results shown in (A). Values represent 
averages ± SD from a total of at least two Western blots from independent experiments. For clarity, the degradation 
kinetics of wild-type Med13-HA from previous experiments was included. (C) Model depicting how two 
SCFGrr1 phospho-degrons mediate the destruction of Med13 following H2O2 stress. In unstressed cells cyclin C-Cdk8 
phosphorylates degron742-844 9 but both degrons are protected by an unknown mechanism from Snf1 and Slt2 kinase 
activity (depicted by the red circle). Following H2O2 stress Snf1 and Slt2 are activated and permitted access to the 
now exposed degrons. This results in SCFGrr1 mediated degradation of Med13 and cyclin C nuclear release (not 
shown). 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6116281/#B9
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To accommodate these two results the following model that best fits the data is proposed 

(outlined in Figure A1-8C).  In unstressed cells the IDR region of Med13, which encompasses 

both degrons, is protected from SCFGrr1 activity (depicted by red circle in Figure A1-8C) by an 

unknown mechanism. Following H2O2 stress, two events happen, the hierarchy of which is 

unknown. The protection is lost (depicted by green circle in Figure A1-8C) and the activated 

kinases Snf1 and Slt2 phosphorylate their respective degrons, triggering SCFGrr1 mediated 

degradation of Med13. Although we currently favor the hypothesis that Snf1 directly 

phosphorylates Med13, we could not definitively exclude the possibility that Snf1 may promote 

Med13 phosphorylation indirectly via an intermediary kinase another kinase. That being said, the 

model presented in Figure A1-8C could accommodate this possibility. More importantly 

however, the model supports the observation that both the AMPK and MAPK pathways act 

independently of each other (Figure A1-4), and are required for Med13 degradation.  However, 

in the absence of either the Snf1 or Slt2 degron, this protection is lost, allowing SCFGrr1 to 

recognize either activated degron. This model also accounts for the observation that when either 

degron is expressed in isolation then it would require its kinase to render it recognizable by 

SCFGrr1.  

If this model is correct, then how could this region be protected from AMPK and MAPK 

activity in unstressed cells? One strong possibility could be connected to the fact that both 

degrons lie within the very large IDR domain of Med13 (Fig 2A). IDR’s are known to endow 

proteins with highly malleable structures that undergo disorder-to-order transitions [190]. It has 

been proposed that the IDR domains can have different binding partners that transiently associate 

[142]. In some cases, this can lead to proteins binding the same region that possess unrelated, or 

even opposite functions [191]. Thus proteins that contain IDR regions are frequently involved in 
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signaling as they can easily change their conformational state in response to changing 

environmental conditions. Taken together, it is feasible to propose that in unstressed cells, the 

IDR region of Med13 is in one conformational state that, by associating with an unknown 

protein, protects this region. Upon stress, the confirmation changes and the degron becomes 

exposed. This model is also consistent with the observation that IDR regions are notorious for 

being regulated by multiple kinases [189, 192]. This has led to the idea that IDRs and multiple 

phosphorylation events together provide structural variability [193] resulting in ultra-sensitive 

molecular switches that are triggered at a threshold level of phosphorylation. Thus our results 

suggest a model in which Med13 degradation is regulated by three types of different kinases, a 

cyclin dependent kinase, a MAPK and AMPK.  

Lastly, here we show that Snf1 phosphorylates Med13, either directly or by an 

intermediary kinase, as well as being able to associate with the CKM before stress (Figure A1-

5D). These results are consistent with a growing number of papers that have shown that a sub-

population of the Snf1-Gal3 isoform is present in the nucleus under normal conditions [143, 185, 

194], as well as enriched in the nucleus upon glucose starvation [65, 160, 162]. In addition, Sak1 

is needed for Snf1 nuclear localization [195].  In support of this model, Snf1, Gal83 and Sak1 

localize to the SUC2 promotor under non-starvation conditions [143]. This promotor is also 

negatively regulated by the CKM [196].  Repression is relieved by Snf1 mediated 

phosphorylation of two proteins known to repress SUC2 expression, the DNA binding protein 

Mig1 [197] and the glucose kinase Hxk2 [143, 198], causing them to be released into the 

cytoplasm [199, 200]. Likewise, carbon starvation results in the degradation of cyclin C [128], an 

event that occurs in the cytoplasm [129]. Surprisingly we found that although Sak1 is needed for 

Med13 destruction following H2O2 stress, deletion of Gal83 has no effect (Figure A1-3A and 
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A1-S2A). However, deletion of all three β-subunits does inhibit Med13 degradation. This would 

suggest that in the absence of Gal83 either Sip1 or Sip2 are able to activate nuclear Snf1. 

However, the Snf1-Sip1 and Snf1-Sip2 isoforms have not been reported to be nuclear, either 

dispersing to the vacuolar membrane (Sip1) or remaining cytoplasmic following carbon 

deprivation (Sip2) [65, 160, 162]. Further studies need to be executed to address if Sip1 or Sip2 

can translocate into the nucleus in the absence of Gal83. Intriguingly, just recently the 

Mitochondrial Voltage-Dependent Anion Channel Protein Por1 (yVDAC1) has been shown to 

enhance Snf1 nuclear enrichment by promoting the nuclear enrichment of Gal83 [194]. This 

unexpected finding serves to emphasize that there is much still to learn about the role Snf1 

kinase plays in response to changing environmental conditions. 

A1.8 Materials and methods 

A1.8.1 Yeast strains and plasmids  

Most experiments were performed in the S. cerevisiae W303 strain [201] and are listed in 

Table S1. Exceptions to this are the sak1∆ (YPDahl17, a gift from S. Hohmann [202]), the sip1∆ 

sip2∆ (MML1445, a gift from E. Herrero) and psk1∆ psk2∆ strains which are W303-1A strains. 

The sip1∆ sip2∆ gal83∆ strain (MSY557, a gift from M. Schmidt [203]) is an S288c strain. 

Finally, the Y2H assays were performed in PJ69-4a [166] that was obtained from the Yeast 

Resource center, a gift from S. Fields. In accordance with the Mediator nomenclature unification 

effort [204], we use CNC1 and CDK8 gene designations for cyclin C (SSN8/UME3/SRB11) and 

Cdk8 (SSN3/UME5/SRB10) respectively. The snf1∆ and gal83∆ strains (RSY1949 and RSY2080 

respectively) were constructed using gene replacement methodology as described [205]. The 

sak1∆ (RSY1976) was a gift from S. Hohmann [202]. All cells were grown at 30°C.  
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All plasmids used in this study are listed in Table S2. The wild-type epitope tagged 

plasmids pKC801, pKC803 (MED13-HA), pBK38 (ADH1Pro-CNC1-YFP), Snf1-Myc and 

ADH1Pro-CNC1-MYC (pKC337) are functional and have been previously described [126, 129, 

130, 133, 206, 207]. All other plasmids were constructed using PCR cloning techniques and 

details are available upon request. In short, all constructs were amplified from plasmid DNA 

using Phusion Taq (Thermo) digested using Thermo fast digest restriction enzymes and ligated 

using Thermo fast ligase into their respective vectors. Site directed mutagenesis (New England 

Bio-Labs Q5) was used to create plasmids harboring amino acid mutations and the change 

confirmed by sequencing (Eurofins Genomics). The MED13 Y2H plasmids were constructed by 

PCR cloning regions of Med13 in frame with the Gal4 activating domain of pACT2. The NLS-

Med13 fusion constructs were made by first creating a backbone vector (pNLS-HA) that 

contains the SV40 nuclear localization sequence (NLS) in frame with a single HA epitope tag 

under the control of the ADH1 promotor. PCR-cloning was then used to place fragments of 

Med13 in frame with NLS. All in frame fusion proteins were verified by sequence analysis. 

Other plasmids that were used in this study that have been previously described are listed in 

Table S2. 

A1.8.2 Cell growth 

Yeast cells were grown in either rich, non-selective medium (YPDA) or synthetic 

minimal medium (SC) allowing plasmid selection as previously described [126]. For all 

experiments, the cells were grown to mid-log phase (~ 6 x 106 cells/ ml) before treatment with 

low concentrations of 0.4 mM H2O2 as previously described [130].  25 mls of cells were 

collected per timepoint, washed in water, then the pellet flash frozen in liquid nitrogen. Yeast 

two hybrid experiments were executed as described [168]. E. coli cells were grown in LB 
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medium with selective antibiotics. For the kinase assays cells were grown initially grown in SD-

Ura (1.7 g Yeast Nitrogen Base, 5 g Ammonium Sulfate, 20 g Dextrose per liter), overnight, 

diluted 1:100-fold into 500 ml of SD-Ura, and grown for 10–12 h. Thereafter the cells were 

pelleted, and resuspended in 500mL SGal-Ura (1.7 g Yeast Nitrogen Base, 5 g Ammonium 

Sulfate, 20 g Galactose per liter) 

A1.8.3 Western blot analysis and co-immunoprecipitation 

Tagged full length Med13-HA constructs were detected by using NaOH lysis of cell 

pellets exactly as described in [121].  To detect Med13-HA, 1 in 5000 dilutions of anti-HA 

antibodies (Abcam) were used. The co-immunoprecipitation analysis was performed essentially 

as described [128]. Anti-alpha tubulin antibodies (12G10) were obtained from the 

Developmental Studies Hybridoma Bank, University of Iowa. Western blot signals were detected 

using either goat anti-mouse or goat anti-rabbit secondary antibodies conjugated to alkaline 

phosphatase (Sigma) and the CDP-Star chemiluminescence kit (Thermo). Signals were 

quantitated by CCD camera imaging (Kodak) and standardized to the loading control.  All 

degradation assays were performed two or three times. SEM’s were generated for each point 

(error bars are indicated on the graphs) and the data analyzed using linear regression analysis 

using GraphPad Prism 7 program.  

A1.8.4 Snf1 activation and kinase assays 

The Snf1 activation assays were executed as follows. Cells were grown to mid log and 

treated with 0.4 mM H2O2 for the times indicated. They were then immediately boiled for 3 

minutes and pellets frozen using liquid nitrogen. Protein extracts were made using the NaOH 

method described in [121] and analyzed by SDS-PAGE and Western blotting. Anti-phospho-

Thr172–AMPK (Cell Signaling Technology; Cat. No. 2531) was used to detected 
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phosphorylated Snf1 and polyhistidine antibody H1029 (Sigma-Aldrich) to detect Snf1. This is 

possible as Snf1 ORF contains 13 contiguous histidine residues at its N terminus. The in vitro 

kinase assays were executed as follows.  Wild-type yeast or cdk8∆ harboring myc-tagged Snf1, 

Snf1 kinase dead (K84R) plasmids under the control of the GAL1-10 promotor, were first grown 

in SD-Ura followed by SGal-Ura as described above and then resuspended in lysis buffer  (20 

mM HEPES, 10 mM KCl, 1 mM EDTA, 1 mM ethylene glycol tetra-acetic acid (EGTA), 50 

mM NaCl, 10% glycerol, 1 mM β-mercaptoethanol, Pierce™ Protease Inhibitor Tablets, pH 7.4 

with phosphatase inhibitors). Resuspended cultures were lysed using a Microfluidics M-110P 

homogenizer (Microfluidics) and cell debris removed by centrifugation at 12,000 x g for 30 min. 

Supernatants were transferred to new tubes and incubated with 5–10µl of Myc-conjugated 

magnetic beads (Cell Signaling) for 2–3 h at 4°C. Beads were separated using magnetic force 

and washed four times with 1 ml of lysis buffer lacking the protease inhibitor.  Beads containing 

Myc-tagged proteins were used directly for in vitro kinase assays without eluting. GST-

Med13571-650 S608A  was purified from E. coli  BL21 DE3 strain as previously described [121] and 

assayed for Snf1–dependent phosphorylation. In short, GST-Med13571-650 S608A was incubated 

with the Snf1 immunoprecipitates in 30 μl of reaction buffer containing 1X Snf1 kinase buffer 

(50 mM Tris-HCl, 10 mM MgCl2, 1 mM dithiothreitol (DTT), pH 7.5, 10 μM ATP, and 7.5 μCi 

of γ32P-ATP, and reactions were incubated for 35 min.  Kinase assays were stopped by the 

addition of SDS–PAGE sample buffer and analyzed by SDS-PAGE, stained with coommassie 

(30 mins), destained for 2 h, dried and exposed to film.  

A1.8.5 Fluorescence microscopy 

Cyclin C-YFP subcellular localization and mitochondrial morphology were monitored as 

described previously [127, 129]. For all experiments, the cells were grown to mid-log (6 x 106 
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cells/ ml), treated with 0.4 mM H2O2 for the timepoints indicated, then analyzed by fluorescence 

microscopy. Cyclin C-YFP release analysis was performed on cells stained with DAPI in 

mounting medium (10 mg/ml p-phenylenediamine, 50 ng/ml 4',6-diamidino-2-phenylindole, 

Molecular Probes) to visualize nuclei and prevent photo bleaching. Images were obtained using a 

Nikon microscope (model E800) with a 100X objective with 1.2X camera magnification (Plan 

Fluor Oil, NA 1.3) and a CCD camera (Hamamatsu model C4742). Data were collected using 

NIS software and processed using Image Pro software. All images of individual cells were 

optically sectioned (0.2 µM slices at 0.3 µM spacing) deconvolved and the slices were collapsed 

to visualize the entire fluorescent signal within the cell. Cyclin C-YFP foci were scored as being 

cytoplasmic when 3 or more foci were observed outside of the nucleus.  Mitochondrial fission 

assays were performed on live cells as described [127]. In brief, mitochondrial fission was scored 

positive if no reticular mitochondria were observed that transversed half the cell diameter.  

Fusion was scored when cells exhibited one or more reticular mitochondria the diameter of the 

cell.  Fission and fusion was scored for 200 cells from three independent isolates. Statistical 

analysis was performed using the Student’s T-test.   
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Supplemental Table A1-1 Yeast strains used in this study 

Strain Genotype* Source 

RSY10  [201] 

RSY1696 cnc1::KANMX6 [208] 

RSY1701 med13::HIS3 

 

[154] 

RSY1707 mid2::HIS3  mtl1::TRP1  wsc1::KANMX4 [130] 

RSY1770 grr1∆::his5+ [121] 

RSY1726 cdk8∆::KANMX4 [154] 

RSY1949 gal83::KANMX4 This study 

RSY2080 snf1::KANMX4 This study 

YPDahl17  sak1::KANMX4 [202] 

MML1445 sip1::natMX4 sip2:: KANMX4 [209] 

MSY557 sip1::HIS3 sip2:: HIS3 gal83::HIS3 [203] 

JGY1  [82] 

JGY4 psk1::HIS3  psk2∆:: KANMX4 [75] 

   

PJ69-4 LYS2::GAL1-HIS3 GAL2-ADE2 met2::GAL7-lacZ 

gal4∆ gal80∆ 

[166] 

*Genotype of all strains is MATa  ade2  ade6  can1-100  his3-11,15  leu2-3,112  trp1-1  ura3-1 except YPDahl17, 
MML1445, JGY1 and JGY4 which are MATa  ade2-1 can1-100  his3-11,15  leu2-3,112  trp1-1  ura3-1 and PJ69-4 
which is MATa trp1-901 leu2-3,112 ura3-52 his3-200 gal4∆ gal80∆.  
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Supplemental Table A1-2 Plasmid used in this study 

Plasmid 
Name 

Gene  Epitope Tag  Marker Promoter 2µ/ 
CEN 

Reference 

pBK38 CNC1 YFP URA3 ADH1 CEN [129] 

pKC337 CNC1 CNC1 TRP1 ADH1 CEN [126] 

pKC801 MED13 3HA URA3 TRP1 CEN [121] 

pLR166 CNC1S266A CNC1 TRP1 TRP1 CEN [210]   

pKC803 MED13 3HA LEU2 ADH1 CEN [121] 

pKC805 MED13571-650deg∆ 3HA URA3 ADH1 CEN This study 

pKC814 MED13742-844deg∆ 3HA URA3 ADH1 CEN This study 

pDS8 GAL4AD-MED13571-

906 
1HA LEU2 ADH1 2µ [121] 

pDS15 GAL4AD-MED13571-

650 
1HA LEU2 ADH1 2µ [121] 

pDS16 GAL4AD-MED13651-

906 
1HA LEU2 ADH1 2µ [121] 

pDS32 GAL4AD-MED13742-

844 
1HA LEU2 ADH1 2µ [121] 

pDS44 GAL4AD-MED13571-

650 S636 
1HA LEU2 ADH1 2µ This study 

pDS51 GAL4AD-MED13571-

650 S636, S634A 
1HA LEU2 ADH1 2µ This study 

pDS55 GAL4AD-MED13571-

650 

S587A 

1HA LEU2 ADH1 2µ This study 

pDS56 GAL4AD-MED13571-

650 

S58A7, S636A, S634A 

1HA LEU2 ADH1 2µ This study 

pDS45 NLS-Med131-306 1HA LEU2 ADH1 2µ This study 

pDS46 NLS-Med13306-570 1HA LEU2 ADH1 2µ This study 

pDS47 NLS-Med13907-1420 1HA LEU2 ADH1 2µ This study 

pDS52 NLS-Med13307-570 1HA LEU2 ADH1 2µ This study 

pDS54 GST-Med13571-650,S608A GST AMP - - This study 

pJG1215 HIS6-PSK1-KD HIS6 AMP - - [75] 

pUM504 CDK8 1HA TRP GPD CEN [128] 

pACT2 GAL4AD 1HA LEU2 ADH1 2µ [211] 
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pAS2 GAL4BD 1HA TRP ADH1 2µ [211] 

pAS2-Grr1 GAL4BD-GRR1 1HA TRP ADH1 2µ [168] 

pAS2-
Grr1∆L∆F 

GAL4BD-
GRR1Grr1∆L∆F 

1HA TRP ADH1 2µ [168] 

pJG1465 GAL4AD-MED13504-

703 
1HA TRP ADH1 2µ [82] 

pAS2- 

Psk1 

 

GAL4BD-PSK1 

 

 

1HA TRP ADH1 2µ [82] 

JG1193 

 

Snf1 8Myc URA3 Snf1 CEN [206] 

JG1338 Snf1K84R 8Myc URA3 Snf1 CEN [207] 

 Snf1 8Myc URA3 GAL1-10 2µ [207] 

 Snf1K84R 8Myc URA3 GAL1-10 2µ [207] 

pNLS-HA SV40 NLS 1HA LEU2 ADH1 2µ This study 

Mt-Cherry Mito-targeting mCherry TRP1 ADH1 CEN This study 

pRS314 - - TRP1 - CEN [212] 

pRS316 - - URA - CEN [212] 
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A2.2 Abbreviations 

RCD – Regulated Cell Death 

ROS - Reactive Oxygen Species 

SCF - Skip1, Cullin, F box E3 ligase 

IDR - Intrinsic Disordered Region  

MoRF - Molecular Recognition Feature 

Cdk - cyclin dependent kinase 

PKA - Protein Kinase A 

MAPKKK - MAP Kinase Kinase Kinase 

MAPK - MAP Kinase  

ORF - Open Reading Frame 

ßME - ß-mercaptoethanol 

3-AT - 3-amino-1,2,4-triazole

CKM – cyclin C/Cdk8 kinase module 

Y2H – Yeast Two Hybrid 

Keywords:  

Med13, cyclin C, Cdk8, Slt2, Programmed Cell Death 
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A2.3 Abstract 

In response to oxidative stress, cells decide whether to mount a survival or cell death 

response. The conserved cyclin C and its kinase partner Cdk8 play a key role in this decision. 

Both are members of the Cdk8 kinase module that, with Med12 and Med13, associate with the 

core mediator complex of RNA polymerase II. In S. cerevisiae, oxidative stress triggers Med13 

destruction, which thereafter releases cyclin C into the cytoplasm. Cytoplasmic cyclin C 

associates with mitochondria where it induces hyper-fragmentation and regulated cell death. In 

this report, we show that residues 742-844 of Med13’s 600 amino acid intrinsic disordered 

region (IDR) both directs cyclin C-Cdk8 association and serves as the degron that mediates 

ubiquitin ligase SCFGrr1-dependent destruction of Med13 following oxidative stress. Here, cyclin 

C-Cdk8 phosphorylation of Med13 most likely primes the phospho-degron for destruction. Next,

pro-oxidant stimulation of the cell wall integrity pathway MAP Kinase Slt2 initially 

phosphorylates cyclin C to trigger its release from Med13. Thereafter, Med13 itself is modified 

by Slt2 to stimulate SCFGrr1-mediated destruction. Taken together, these results support a model 

that this IDR of Med13 plays a key role in controlling a molecular switch that dictates cell fate 

following exposure to adverse environments.  

A2.4 Introduction 

Protein-protein interactions are at the heart of nearly all facets of cell physiology 

including transducing exogenous signals necessary for proper cell fate decisions to be adopted. 

For example, following exposure to cytotoxic compounds, the cell must assess the level of 

damage and decide whether to arrest cell division and repair the damage or execute programmed 

cell death. Recently, it has become apparent that intrinsic-disordered regions (IDRs) defined by a 

continuous stretch of disordered promoting residues, play key roles in directing protein−protein 
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interaction networks especially those involved in macro-molecular decisions including signaling 

and control pathways (reviewed in [156, 157]). This hotspot for communication is achieved in 

part by the ability of IDR’s to contribute to the formation of large, malleable interfaces that can 

interact with multiple partners. These protein interactions can occur via short segments termed 

molecular recognition features (MoRFs) that undergo disorder-to-order transition upon binding 

to their cognate ligands [213]. Consistent with these domains being communication hubs, the 

binding of IDR’s to their targets is often regulated by covalent modifications including 

phosphorylation, which can serve as simple biological switches [214]. 

In budding yeast, cyclin C and its kinase partner Cdk8 are predominantly negative 

regulators of a diverse set of stress response genes [126, 138-141].  Together with Med13 and 

Med12, they form the Cdk8 kinase module (CKM) of the multi-subunit Mediator complex which 

acts as an interface between DNA bound transcription factors and RNA polymerase [135-137]. 

In addition to its transcriptional role, cyclin C possesses another function following oxidative 

stress that is found in both yeast and mammalian cells [127, 129, 134, 215]. Specifically, nuclear 

release of cyclin C, but not Cdk8, allows its re-localization to the mitochondrial outer membrane. 

At this new subcellular address, cyclin C is necessary and sufficient for stress-induced 

mitochondrial fission and is required for MOMP dependent normal regulated cell death (RCD) 

execution [127, 129, 134].  This type of cell death is the reclassification of programmed cell 

death (PCD) passed by the international Nomenclature Committee on Cell Death in 2015 [216]. 

In the budding yeast, cyclin C release is dependent upon its direct phosphorylation by Slt2 

MAPK [131] and the ubiquitin mediated degradation of Med13 ([154] and see Figure A2-1) In 

the CKM, Med13 contains a large centrally located IDR, the extent and placement of which is 

conserved across metazoans, plants and fungi [217]. As Med13 also bridges the CKM to the 
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Mediator complex [218] this centrally placed IDR may provide structural plasticity, allowing the 

CKM to interface with different mediator components according to the environment. Consistent 

with Med13 IDR being a potential communication hub, computer predictions suggest the 

presence of several MoRPs biased toward an alpha helical confirmation [219].  

 

Figure A2-1 Cdk8 module (Cd8, cyclin C, Med12 and Med13) regulation by the CWI MAPK pathway H2O2 
stimulates cell wall sensors leading to activation of the cell wall integrity (CWI) MAP kinase module. Slt2 
phosphorylation triggers cyclin C translocation to the mitochondria and Med13 degradation [154]. The pseudokinase 
Kdx1 is also required for cyclin C nuclear release via an unknown mechanism [131]. Med12 is not required for 
cyclin C nuclear release [154]. 

 

In this report, we provide mechanistic details on how Med13 is targeted for destruction 

following oxidative stress in the budding yeast S. cerevisiae. We show that the Cell WalI 

Integrity (CWI) pathway MAPK Slt2 directly phosphorylates Med13, which is required for 

recognition by the SCFGrr1 E3 ligase complex. Consistent with other SCF targets in yeast and 

higher eukaryotes (reviewed in [155]), degradation of Med13 by SCFGrr1 also requires the 

phosphorylation by cyclin C-Cdk8 which most likely primes this phospho-degron. Furthermore, 
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this phospho-degron partly overlaps with the predicted Med13 IDR [219]. Consistent with this 

region serving as an interaction hub [220], this IDR directs both Cdk8 and Grr1 binding and is 

sufficient to retain cyclin C in the nucleus. Taken together, these results define a multi-step 

switch required for the cellular decision to release cyclin C from the nucleus and identifies a 

Med13 IDR as the communication hub that co-ordinates this pro-death decision.  

A2.5 Results 

A2.5.1 SCFGrr1 is required for Med13 H2O2-mediated degradation 

We have previously shown that Med13 degradation is dependent upon a functional 26S 

proteasome indicating that a ubiquitin ligase is required [154]. In unstressed human cells, Med13 

is turned over by the conserved SCF ubiquitin ligase utilizing the Fbw7 F-box recognition 

protein [221]. Grr1, a yeast homologue of Fbw7, is a non-essential F-box protein that utilizes a 

Leucine Rich Region (LRR, Fig. 2A) for substrate recognition [221, 222]. SCFGrr1 is required 

for degradation of the mediator component Med3 [222] as well as proteins regulating the 

glycolytic-gluconeogenic switch [180]. More recently it has also been shown to regulate Whi7, a 

repressor of Start transcriptional gene expression [223]. To determine whether SCFGrr1 plays a 

role in H2O2-induced Med13 degradation, we examined Med13 degradation following 0.4 mM 

H2O2 treatment in wild type and grr1∆ cells harboring functional Med13-HA on a single copy 

plasmid. This concentration of H2O2 has long been established to induce a MOMP dependent 

RCD response in yeast [169, 171, 224] as well as trigger cyclin C nuclear export [127, 129, 131]. 

The results (Figure A2-2B) show that Med13-HA is significantly more stable in grr1∆ cells. We 

next repeated these experiments using endogenous MED13 tagged with the myc epitope in wild 

type (RSY1798) and grr1∆ mutant strains (RSY1771) harboring a plasmid expressing either 

wild-type GRR1, a vector control or a GRR1 derivative deleted for the LRR domain (grr1∆L) 
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[221].  Following H2O2 treatment, Med13-myc was again significantly more stable in grr1∆ cells 

harboring either the vector control or grr1∆L than in wild-type cells (Figure A2-2C and A2-

S1A). These results suggest that SCFGrr1 is the E3 ligase responsible for mediating Med13 

degradation following H2O2 stress.  

 

 
 

Figure A2-2 SCFGrr1 mediates Med13 degradation following H2O2 stress (A) Model of the SCFGrr1. (B) Wild type 
(RSY10) and grr1∆ cells (RSY1770) harboring Med13-HA (pKC801) were treated with 0.4 mM H2O2 for the 
timepoints indicated and Med13 levels analyzed by Western blot. (C) Top panel: RSY1798 (MED13-myc::KAN) 
was treated with 0.4 mM H2O2 for the timepoints indicated and Med13 levels analyzed by Western blot. Tub1 levels 
were used as loading controls. Bottom panel: RSY1771 (grr1∆::HIS3 MED13-myc::KAN) harboring ADH1PRO-
grr1∆L was analyzed as for RSY1798. Tub1 levels were used as loading controls. (D) Yeast two hybrid analysis of 
Med13 and Grr1 derivatives. Y69a cells harboring Med13-activating domain plasmid (pKC800) and either pAS2, 
pAS-Grr1 or pAS2-Grr1∆L binding domain plasmids were grown on -LEU, -TRP drop out medium to select for 
both plasmids (left panel), -TRP, -LEU, -HIS –ADE (middle panel) and -TRP,-LEU, -HIS, -ADE +3AT (right panel) 
to test for Med13-Grr1 interaction.  
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If SCFGrr1 is the ubiquitin ligase directing Med13 proteolysis, then Grr1 should interact 

with Med13. To test this possibility, Grr1 and Med13 association was assayed using a two-

hybrid strategy. This approach has been previously used to both identify and confirm Grr1 

substrates [167, 168].  We expressed either the wild type or grr1∆L mutant GRR1 allele fused to 

the Gal4 DNA binding domain bait with the full length Med13 fused to the activator domain 

(AD) prey. These studies revealed that Grr1 interacts with Med13 and this interaction survives 

addition of the histidine analog 3-amino-1,2,4-triazole (3-AT) suggesting that the HIS3 reporter 

gene induction is robust (Figure A2-2D). With the grr1∆L mutant bait, an interaction is detected 

selecting for the dual HIS3 and ADE2 reporter genes but colony formation is uneven (middle 

panel) or absent in the presence of 3-AT (right panel). Taken together with the increased stability 

of Med13 observed in grr1∆ cells, these results argue that Med13 is an SCFGrr1 substrate. 

A2.5.2 The intrinsic disordered region of Med13 interacts with Grr1 

Many SCF targets require phosphorylated substrates for F-box recognition [225]. 

Consistent with this model, the LRR of Grr1 specifically recognizes phosphorylated 

serine/threonine-proline motifs within its substrate degron [221]. In human cells, 

phosphorylation of T326 is required for Med13 destruction by SCFFbw7 [226]. To address 

whether a similar mechanism directs H2O2-induced Med13 degradation in yeast, the requirement 

of the analogous threonine in yeast (T210, Fig S1B) was tested. For these studies we expressed 

Med13-HA from a single-copy plasmid in med13∆ cells. These studies revealed that both the 

wild type and the Med13T210A derivative were still degraded following 0.4 mM H2O2 stress 

(Figure A2-S1C, D and quantitated in E) indicating that T210 phosphorylation is not necessary 

for oxidative stress-induced destruction of Med13. Furthermore, consistent with our previously 

published results with endogenously tagged Med13-myc [154], Med13-HA degradation is not 
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dependent upon new protein synthesis as it is still observed following cycloheximide treatment 

(Figure A2-S1C). 

 

 
Figure A2-3  The unstructured domain of Med13 binds Grr1 (A) ProteinPredict® [227] analysis of yeast Med13. 
Med13 contains amino and carboxyl terminal structured domains separated by an intrinsic disordered domain (IDR). 
Grr1 and Med13 interaction regions are indicated below the schematic. ± = qualitatively reduced binding (B). 
Med13-Grr1 Y2H analysis. Y69a cells harboring pAS-Grr1 and the indicated Gal4AD-Med13 subclone were 
streaked on media selecting for plasmid maintenance (left) or induction of the ADE2 and HIS3 reporter genes (right) 
by Y2H interaction. (C) Wild type (RSY10) and grr1∆ (RSY1770) cells harboring the minimal Med13 interaction 
domain expression plasmid (Gal4AD-Med13571-906) were treated with 0.4 mM H2O2 for the timepoints indicated 
and Med13571-906 levels analyzed by Western blot. Pgk1 levels were used as a loading controls. 

 

We next employed Y2H assays to identify the Med13 region able to interact with Grr1. 

Med13 has structured head and tail domains flanking a large intrinsic disordered region (IDR) 

[219] (Figure A2-3A). A series of Gal4AD-Med13 constructs that span the length of Med13 

were built and tested for their ability to interact with Gal4BD-Grr1. The results revealed that the 

Grr1 interaction domain lies within the unstructured domain, between amino acids 571 and 906 

(Figure A2-3B, summarized in Figure A2-3A). To confirm that the Med13 degron lies within 

this region, we performed a classical degron assay. The levels of the prey Gal4AD-Med13571-906 

fusion protein were monitored following 0.4 mM H2O2 stress in wild type and grr1∆ cells. The 

results indicated that Med13571-906 was destroyed following oxidative stress in a Grr1-dependent 
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manner (Figure A2-3C). Taken together, these results indicate that the SCFGrr1 degron lies within 

the IDR. 

A2.5.3 The Med13 IDR binds cyclin C 

As cyclin C nuclear release represents an important step toward entering the cell death 

pathway, we next sought to identify the Med13 region that binds cyclin C using two hybrid 

strategies. However, the yeast cyclin C self activates when tethered to a Y2H bait protein [126]. 

Therefore, we used the human cyclin C as it does not self-activate two-hybrid reporter genes 

[228]. Using this approach, we found that the same region associating with Grr1 (amino acid 

residues 571-906) also bound cyclin C (Figure A2-4A, summarized in Figure A2-3A). To 

confirm these results, as well as to address if this interaction is direct, we used a pull down 

approach. We expressed a central region of the Med13 interaction domain (amino acid residues 

742-844) as a Gst fusion protein. Gst-Med13742-844 was passed over a cobalt column on which E.

coli prepared human His6-cyclin C was bound. Following extensive washing, bound proteins 

were eluted with imidazole and the presence of Gst-Med13742-844 was determined by Western 

blot analysis using antibodies to 6His or human cyclin C. These results show that human cyclin 

C interacts with Med13742-844 (Figure A2-4B). The experiments were repeated using yeast cyclin 

C (Figure A2-4C). Although the residual cleaved GST that was present in the GST-Med13 

construct showed some interaction with yeast cyclin C, the full length construct showed a 

significantly stronger interaction. Confidence was garnered in this interaction being specific as 

no interaction was observed when GST alone was used in either Figure A2-4B or 4C. 

Interestingly, although amino acid residues 571-650 of Med13’s IDR can associate with Grr1 

(Figure A2-3B) this region does not associate with cyclin C (Figure A2-4D). Thus taken together 
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these results indicate that cyclin C binds the same region of Med13’s large IDR that is 

recognized by SCFGrr1.  

 
Figure A2-4 The Med13 IDR binds cyclin C (A) Y2H analysis of human cyclin C DNA binding domain plasmid 
(pSW108) and the indicated Gal4AD-Med13 subclone derivatives. The numbers indicate the amino acids remaining 
in the activation domain plasmids. Transformants were patched onto either -LEU, -TRP (-L –T) or -HIS -ADE -LEU 
-TRP (-H-A-L-T) to select for plasmid maintenance or Y2H interaction, respectively. (B) Western blot analysis of 
pull down assays with His6-human cyclin C and GST-Med13742-844 (DS30). The load control contains 1/10 of the 
input. Single and double asterisks represent cleaved GST and cross-reaction between anti-GST antibody and human 
cyclin C, respectively. Molecular weight markers (kDa) are indicated. (C) As in (B) except that yeast cyclin C was 
used. (D) Western blot analysis of pull down assays with GST yeast cyclin C and 6His-Med13571-650 (DS22). The 
load control contains 1/50th of the input. Molecular weight markers (kDa) are indicated.  
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A2.5.4 The Med13 IDR is sufficient to retain cyclin C in the nucleus 

To determine whether the yeast cyclin C also associates with the same region of Med13’s 

IDR in vivo, we asked if this region (Med13571-906) is sufficient to retain cyclin C in the nucleus 

in the absence of stress. To address this question, mitochondrial morphology and subcellular 

localization of a functional cyclin C-YFP [129] was monitored in unstressed med13∆ cells 

harboring either a vector control or one of four Gal4AD-Med13 fusion proteins. As expected, 

cyclin C was predominantly cytoplasmic and co-localized with fragmented mitochondria in the 

vector control (A, top row, quantitated in Figure A2-5B and see Figure A2-S2 for DAPI stained 

images). Similarly, expression of Gal4AD-Med13571-650 was unable to retain cyclin C in the 

nucleus or prevent mitochondrial fragmentation (second row). However, cells expressing either 

Gal4AD-Med13571-906 Gal4AD-Med13651-906 or Gal4AD-Med13742-844 exhibited both nuclear 

retention of cyclin C and fused mitochondria.  Taken together with the pull down assays, these 

results suggest that Med13742-844 is sufficient s sufficient to retain yeast cyclin C in the nucleus.  

A2.5.5 Cdk8 phosphorylation primes Med13 for destruction 

SCF substrates are typically recognized following phosphorylation of the degron. 

However, many substrates require two phosphorylation marks; one to “prime” the substrate and 

the other that represents the trigger for ubiquitylation (reviewed in [155]. Previous work revealed 

that Protein Kinase A (PKA) phosphorylates Med13 on Serine 608 and 1236 [229]. However, a 

derivative mutated for both phosphor acceptor sites (Med13S608A,S1236A-HA) was still destroyed 

with similar kinetics to wild type (Figure A2-S3A) indicating that PKA phosphorylation is not 

required for Med13 degradation following H2O2 treatment. Consistent with this result, the 

Med13S608A,S1236A-HA complements the aberrant mitochondrial morphology exhibit by med13∆ 

cells (Figure A2-S3B). 
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Figure A2-5 The unstructured domain of Med13 retains cyclin C in the nucleus (A) Fluorescence microscopy of 
mid-log phase med13∆ cells (RSY1701) harboring the Gal4AD-Med13 construct indicated or a vector control 
(pACT2) and both cyclin C-YFP and DsRed mitochondrial targeting (mt-DsRed) plasmids.  Blue boxes indicated 
enlarged regions of the image. Bar  = 10 µM. (B) The percent of the population of cells in (A) displaying at least 3 
cyclin C-YFP foci in the cytoplasm (top panel) or fragmented mitochondria (bottom panel) is quantified (mean ± 
s.e.m.).  At least 200 cells were counted per timepoint from 3 individual isolates. * p<0.05 difference from vector 
control. 

 

In addition to PKA, cyclin C-Cdk8 phosphorylates Med13 in humans [218, 230] 

suggesting the possibility that Cdk8 represents the priming kinase. To test this model, Med13 

destruction kinetics were monitored in a cnc1∆ null strain transformed with either the wild type 

CNC1 gene or the vector control. These experiments indicated that cyclin C-Cdk8 kinase is 

required for Med13 destruction (Figure A2-6A and quantified in Figure A2-S4A).  Our previous 

studies showed that Slt2 phosphorylates cyclin C on Ser266 following H2O2 and this 

modification is required for its release from Med13 and translocation to the cytoplasm [131].  

Therefore, one possibility is that cyclin C release is a prerequisite for Med13 destruction. 
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Consistent with this possibility, Med13 was protected from destruction in a cnc1∆ mutant 

harboring a plasmid expressing cyclin CS266A (Figure A2-6A, right panel). These results indicate 

cyclin C phosphorylation by Slt2 is also required for Med13-HA destruction (see below). 

 
 

Figure A2-6 Cyclin C-Cdk8 directly stimulate Med13 proteolysis (A) Mid-log cnc1∆ cultures (RSY391) harboring 
either wild-type CNC1 (pKC337), vector (pRS314) or cnc1S266A (pLR166) expression plasmids and pKC803 (CEN, 
Med13-HA) were subjected to an H2O2 timecourse experiment. Pgk1 levels were used as loading controls. (B) Phos-
tag gel analysis of pDS8 (Gal4AD-Med13571-906) in unstressed wild type (RSY10) or cdk8∆ (RSY1796) cultures. 
Arrow indicates phosphorylated Med13571-906 species. Molecular weight markers (kDa) are indicated. (C) RSY2066 
harboring the Ubi-Ile3-Cdk8-HA expression plasmid (pCM1888) were grown to mid-log phase and doxycycline 
added for the indicated times. Cdk8-HA levels were monitored by Western blot analysis. Tub1 levels were 
monitored for loading control. (D) RSY2066 harboring pCM1888 and Med13-HA (pKC803) were grown to mid-log 
phase, the culture split, and doxycycline added to one for 1 hour. Both cultures were then treated with 0.8mM H2O2 
and Med13-HA degradation monitored as previously described. Tub1p was monitored for loading control.  
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The results just presented indicated that the cyclin C-Cdk8 kinase is required for Med13 

destruction in response to oxidative stress. Consistent with this Med13 is protected from 

degradation in cells harboring kinase dead cdk8 as the only source of this enzyme [127].  As 

cyclin C-Cdk8 is active in unstressed cells these results suggest this kinase could prime the 

degron for recognition by SCFGrr1. To test this model attempted to perform in vitro kinase assays 

with cyclin C-Cdk8 and Med13571-906 as the substrate. Unfortunately, we were unable to get these 

assays to work. Thus we decided to ask examine the phosphorylation state of the Med13 degron 

derivative (GalADMed13571-906) using the Phos-Tag™ SDS-PAGE system that severely retards 

the movement of a phosphorylated peptide [231]. Protein extracts prepared from unstressed wild 

type or cdk8∆ cultures harboring GalADMed13571-906 were subjected to Phos-Tag western blot 

analysis. The results revealed the presence of a slower migrating band in the wild type extract 

that was missing in the cdk8∆ sample (Figure A2-6B). This indicates that Cdk8 is required for 

Med13 phosphorylation in unstressed cells.  

To test whether cyclin C-Cdk8 activity was required before or after oxidative stress, a 

Cdk8-N-end rule degron was constructed. This system takes advantage of the rapid turnover of 

proteins that contain arginine as the amino terminal residue [232-234]. The Cdk8-N-end rule 

construct is under the control of a doxycycline-repressible promoter such that the administration 

of doxycycline coupled with the rapid turnover of the Cdk8-N-end rule fusion protein results in 

rapid depletion of Cdk8 from yeast cells (Figure A2-6C). To test the execution point for Cdk8 

phosphorylation, a mid-log culture expressing an epitope-tagged allele of full length MED13 

(MED13-HA) and Cdk8-N-end degron was untreated or treated with doxycycline for one hour 

prior to H2O2 addition to ensure Cdk8 depletion. A timecourse was conducted and samples 

collected, extracts prepared and Med13-HA levels monitored by Western blot analysis. These 
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studies revealed that Med13-HA levels were reduced similarly in both cultures (Figure A2-6D) 

indicating that Cdk8 function was required before oxidative stress. Thus taken together, these 

results are consistent with a model that Cdk8 phosphorylation primes Med13 for degradation. 

A2.5.6 The CWI pathway is required for ROS-mediated destruction of Med13 

The CWI signal transduction pathway is the major MAPK pathway in yeast that transmits 

the reactive oxygen species (ROS) stress signal to transcription factors [235]. To facilitate cyclin 

C nuclear release, the CWI employs two MAPKs, Slt2 and its pseudokinase paralog Kdx1. Slt2 

phosphorylates cyclin C on Serine 266 to induce cytoplasmic re-localization [129-131] while 

Kdx1 functions through an unknown mechanism [236]. To address if Kdx1 and/or Slt2 are 

required for Med13 degradation, we examined Med13-HA degradation kinetics in wild type and 

slt2∆ or kdx1∆ single mutant cultures following 0.4 mM H2O2 stress. As slt2∆ mutants are 

temperature sensitive, these experiments were conducted at 23°. The results show that Med13-

HA was degraded in wild type or kdx1∆ cells but stable in the slt2∆ mutant (Figure A2-7A, 

quantified in Figure A2-S4B). These results indicate that unlike cyclin C, only Slt2 but not Kdx1, 

is required for Med13 destruction. Repeating this experiment with cells expressing a kinase dead 

version of SLT2 (slt2K54R) produced similar results (Figure 7B) indicating the Slt2 kinase activity 

is required for Med13 proteolysis. To investigate whether the role of Slt2 in Med13 degradation 

was direct, in vitro kinase assays were performed using activated Slt2-HA or the kinase dead 

derivative (Slt2K54R-HA) [149] immunoprecipitated from yeast extracts. The immunoprecipitate 

was incubated with the E. coli prepared Med13 degron (amino acids 571-906) described above. 

These experiments revealed enhanced phosphorylation of Med13571-906 above background that 

was dependent upon a functional kinase (Figure A2-7C) indicating that Slt2 directly regulates 

Med13 stability. Finally, we asked whether Slt2 activation was sufficient to induce Med13 
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destruction or whether another stress signal was required. To address this question, Med13-HA 

levels were monitored in an unstressed culture expressing a constitutively active allele of the 

upstream MAPKKK BCK1 (BCK1-20). Mid-log cultures expressing BCK1-20 exhibited 

dramatically reduced Med13-HA levels compared to vector control (Figure A2-7D). These 

results indicate that the CWI pathway is both necessary and sufficient to induce Med13 

destruction. Finally, to test the epistatic relationship between BCK1-20 and cdk8∆ alleles, the 

experiment just described was repeated in a cdk8∆ background. Western blot analysis revealed 

that Cdk8 was required for BCK1-20 induced Med13 destruction in unstressed cells (Figure A2-

6D). Taken together, these results indicate that Slt2 activation is necessary for H2O2-mediated 

Med13-HA degradation and that this signal requires Cdk8 activity. These results are consistent 

with a three-step model for initiating the Med13 destruction pathway (see Discussion). 

 

 
 

Figure A2-7 Slt2 directly stimulates Med13 destruction (A) Wild type (RSY10), kdx1∆ (RSY1736) and slt2∆ 
(RSY1006) cultures expressing pKC801 (CEN, Med13-HA) were grown to mid-log phase (0 hr) then treated with 
0.4 mM H2O2 for the indicated times.  Med13-HA levels were determined by Western blot analysis. (B) As in A 
except that the slt2∆ cells expressed a kinase dead SLT2 mutant (slt2K54R) plasmid. (C) Upper panel: Slt2-HA or 
Slt2K54R-HA (kinase dead) was immunoprecipitated from extracts prepared from cells treated for 60 min with 5mM 
sodium orthovanadate was mixed with Med13571-906 and radioactive ATP as indicated. All reactions were conducted 
in duplicate then separated by SDS PAGE and subject to autoradiography. Med13571-906 is indicated by the 
arrowhead. Lower panel: Coomassie stained gel showing the Med13571-906 input used in the kinase assays. (D) Wild-
type (RSY10) or cdk8∆ (RSY1796) mutant cells expressing either an empty vector control or the hyperactive allele 
of BCK1 (BCK1-20) and MED13-HA (pKC803) were grown to mid-log and Med13-HA levels determined by 
western blot analysis. Tub1 served as a loading control.  
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A2.5.7 Slt2 and Cdk8 phosphorylation of the IDR region is required for Med13 

destruction 

IDR regions confer conformational flexibility to proteins that are often targets of post-

translational modifications [190]. Notably IDR's are enriched for phosphorylation sites raising 

the possibility that they are substrates for multiple kinases [192]. As our data indicate that Cdk8 

and Slt2 are required for Med13 degradation, we next asked if the sites they phosphorylate lie 

within the same IDR region of Med13 that associates with Grr1 and cyclin C (amino acids 651-

906). Slt2 and Cdk8 are both proline directed kinases that preferentially phosphorylate the 

consensus sequences PX(S/T)P or S/T-P-X-K/R (where X is any amino acid), respectively.  

They also can phosphorylate the minimal consensus sequence S/T-P [188]. Med13651-906 contains 

a conserved Slt2 consensus sequence at position 748 that has been identified as potential 

phosphorylation site in two genomic screens [181, 237] well as four additional TP sites (Figure 

A2-8A).  Thus, to address if these kinases phosphorylate the five S/T-P sites in Gal4AD-

Med13651-906 fusion protein, its degradation was monitored following H2O2 stress in wild type, 

slt2∆ and cdk8∆ cells. The results show that Gal4AD-Med13651-906 fusion protein is stable in 

either slt2∆ or cdk8∆ cells (Figure A2-8B). These results are consistent with a model that the 

Med13 phospho-degron is targeted by both Cdk8 and Slt2. Consistent with the Y2H data 

presented in Figure A2-3B, the phopho-degron is stable in grr1∆ cells (Figure A2-8C). If the 

Med13 phospho-degron is regulated by two kinases, then two separate S/T-P sites within the 

degron should stabilize the protein. To test this, wild-type cells harboring either a wild type 

Gal4AD-Med13742-844 fusion protein or mutant derivatives were subjected to 0.4 mM H2O2 stress 

and analyzed as described above. As anticipated, the smaller Gal4AD-Med13742-844 fusion protein 

that contains all 5 S/T-P sites was still degraded in wild-type cells (Figure A2-8C). Interestingly, 
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the S748A, T781A and T803A mutants were also degraded with the same kinetics as wild type 

(Figure A2-S4C). In addition, the double mutants (T781A T803A and S748A T781A) were also 

degraded with wild-type kinetics (Figure A2-8D and E). However, the T835A, T837A double 

mutant was significantly more stable than wild type (Figure A2-8C and E) suggesting that these 

sites are required for Med13 degradation. Taken together, these results suggest that both kinases 

have to be active in order for SCFGrr1 to recognize this 100 amino acid phospho-degron, at 

position T835 and T837.  

 

 

Figure A2-8 The Med13 IDR contains the phospho-degron (A) Map of Med13 showing the location of potential 
Cdk and MAPK sites within the IDR. (B) Wild type (RSY10), slt2∆ (RSY1737) and cdk8∆ (RSY1796) cultures 
expressing pDS16 (Gal4AD-Med13651-906) were grown to mid-log phase (0 hr) then treated with 0.4 mM H2O2 for the 
indicated times.  Med13651-906-HA levels were determined by Western blot analysis. Pgk1 levels were used as a 
loading control. (C) (D) Wild type (RSY10) cultures harboring wild type Gal4AD-Med13742-844 (pDS32) or various 
point mutations as indicated were grown to mid-log phase (0 hr) then treated with 0.4 mM H2O2 for the indicated 
times. Med13-HA levels were determined by Western blot analysis. Pgk1 levels were used as a loading control. The 
Gal4AD-Med13742-844 levels were also monitored in the grr1∆ strain. (E) Degradation kinetics of the Gal4AD-
Med13742-844 constructs shown in C and D. 
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A2.6 Discussion 

Communication between organelles is critical to coordinate the cellular response to a 

variety of external or internal signals including oxidative stress. The data presented here and in 

previous publications [126, 127, 129-131, 134, 154, 228, 236] has revealed that the Cdk8 module 

(cyclin C, Cdk8, Med12 and Med13) of the mediator complex plays a key role in both yeast and 

mammalian cells. Previously, we reported that the cyclin C, but not Cdk8, translocates from the 

nucleus to the mitochondria following oxidative stress in both yeast and mammalian cells. At the 

mitochondria, cyclin C associates with the fission machinery to induce fragmentation and directs 

programmed cell death [127, 129, 134]. Therefore, releasing cyclin C from the nucleus 

represents an important step determining whether the cell initiates the RCD pathway or not. 

Importantly, we found that the nuclear anchor for cyclin C, Med13, is destroyed in response to 

oxidative stress providing a mechanism for how cyclin C nuclear release was orchestrated [154]. 

Interestingly, Med12, is neither required for this response [154] nor destroyed following H202 

stress (Figure A2-S4D). In this report, we provide the molecular details of how Med13 

destruction is triggered to operate this important molecular switch in yeast. First, Med13 

proteolysis is mediated by the ubiquitin ligase SCF and the specificity factor Grr1. Several 

studies in yeast and higher eukaryotes found that SCF substrates require a complex interplay 

between multiple kinases to generate the requisite phospho-degron on the substrate (reviewed in 

[155]). For example, Cdk1 acts as a priming kinase for Cdc5 [238, 239] whereas Cdc5 acts as a 

priming kinase for Wee1 [240]. In all cases, the priming kinase first phosphorylates the substrate, 

while the second kinase completes the formation of the phospho-degron by modifying residues 

that are recognized by the SCF. This has led to the current model that priming phosphorylations 

create docking sites for downstream kinases. Moreover, local structural disorder most likely 
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facilitates how multiple kinases regulate a protein within a small region. We identified a small 

region (amino acids 742-844) within the intrinsic-disordered region (IDR) of Med13 that acts as 

a communication hub. This region is sufficient to retain cyclin C in the nucleus, associates with 

Grr1, and contains the Med13 phospho-degron that is primed by Cdk8 and activated by Slt2 

following oxidative stress exposure. This dual kinase requirement provides the cell with a 

mechanism to integrate multiple input signals into a single read out. 

A2.6.1 The Med13 phospho-degron activation requires a three-step process 

Our results indicate that cyclin C-Cdk8 provides the priming signal for Med13 destruction 

(Figure A2-9, Step 1). Although technical reasons prevented us from addressing whether this 

activity is direct or indirect, four independent experiments support a model that this is a direct 

phosphorylation event.  1. The observation that Med13651-906 was not destroyed following H2O2 

stress in cdk8∆ cells (Figure A2-8B).  2. Observation of a slower migrating band seen in Phos-

Tag™ SDS-PAGE analysis of unstressed in wild type extracts that was missing in the cdk8∆ 

sample (Figure A2-6B).  3. The end-N rule experiments conducted in Figure A2-6C and D also 

revealed that Med13-HA levels were reduced regardless of the presence of Cdk8 after stress. 4. 

Lastly, in vitro evidence revealed that cyclin C directly interacts with this region of Med13 

(Figure A2-4B and 4C) which would position the kinase with direct access to the Med13 degron. 

Thus taken together, these results suggest that Cdk8 phosphorylation primes Med13 for 

degradation, most likely by a direct event. Consistent with this, human Cdk8 directly 

phosphorylates human Med13 on S749, which lies in the intrinsic disorder domain in what 

appears to be a non-conserved residue compared to yeast [230]. This requirement may be 

necessary to inform the cell that Med13 is in the Cdk8 module and its destruction will lead to 

cyclin C release and Cdk8 inactivation. Slt2 activation by oxidative stress provides the trigger 
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mechanism that commits the cell to destroying Med13 and releasing cyclin C from the nucleus 

(Step 3). This event accomplishes two goals. First, removing cyclin C and destroying Med13 

inhibits the repressor activity of Cdk8 for several stress responsive genes including chaperones 

(e.g., SSA1), anti-oxidants such as catalase (CTT1) and the multi-stress responsive gene DDR2 

[126, 129, 139]. In addition, Slt2 activation stimulates several transcription factors, such as Rlm1 

that is required for the transcriptional arm of the stress response [148, 151, 241]. Therefore, Slt2 

activation both stimulates transcriptional activators and inhibits repressors. By releasing cyclin 

C, the cell is able to transmit the stress signal to the rest of the cell including the mitochondria. 

We have previously demonstrated that cyclin C-induced fission alone is not sufficient to induce 

cell death but does make cells hypersensitive to oxidative stress [154]. Therefore, cyclin C 

release poises the cell to initiate RCD but additional regulatory layers exist. Unlike other 

priming/trigger two-kinase degron phosphorylation switches, we have identified an additional 

step in the system regulating Med13. Specifically, Slt2 also modifies cyclin C on S266, which 

promotes its dissociation from Med13 [131]. Our finding that the S266A mutation protects 

Med13 from destruction is consistent with a model that S266 modification disrupts cyclin C-

Med13 interaction (Step 2) allowing Slt2 access to the phospho-degron. Taken together, our 

model predicts a three-step system that controls Med13  stabilityand cyclin C nuclear release.  

If cyclin C phosphorylation is sufficient to initiate cyclin C nuclear release, then why 

would it be important to completely destroy Med13? First, our results indicate that S266 

phosphorylation is capable of stimulating only partial release of cyclin C in unstressed cells 

[131]. Therefore, Med13 destruction may be necessary for complete cyclin C release. Not 

exclusive of this model, another possibility is that Med13 destruction prevents the 

reaccumulation of cyclin C in the nucleus after its cytoplasmic translocation. In this model, 
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Med13 proteolysis fixes the decision of cyclin C release thus directing a complete transcriptional 

and mitochondrial response to oxidative stress. 

Figure A2-9 Three-step model of cyclin C release from Med13 following H2O2 stress Step 1. Cdk8-Cyclin C kinase 
phosphorylates Med13 in unstressed cells to provide the priming modification for this degron. Step 2 requires stress-
activated Slt2 that phosphorylates cyclin C on S266 leading to disassociation of cyclin C from Med13. This event 
allows Slt2 access to the phospho-degron to deliver the trigger modification leading to Med13 recognition by 
SCFGrr1 and its destruction. 

A2.6.2 Med13 Intrinsic disordered Region (IDR) is a communication hub 

It has recently been suggested that IDR's play important roles in protein:protein 

communication as they provide a flexible interaction surface to multiple partners [189]. Using 

protein two different structure prediction algorithms IUPred/ANCHOR and Phyre2 [242-244] 

Med13 has a large IDR spanning the middle of the protein  (amino acids residues 307-906 and 

Figure A2-S5A and B).  Although not conserved in amino acid sequence, it is notable that the 

position and presence of Med13’s IDR is conserved throughout three kingdoms [217]. Also 

conserved is the observation that Med13 is the CKM member that brings this kinase module in 

contact with the Mediator complex [218].  This suggests a model in which the IDR of Med13 

provides conformational plasticity to the CKM, which is important for bringing the kinase and 

other proteins in contact with different mediator members on a “pro re nata” basis.  This idea is 

consistent with the results presented here in which we show that the IDR of Med13 can bind to 
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cyclin C before stress and Grr1 after. Although speculative, taken together this suggests a model 

in which Med13 IDR is conserved functionally and may contain signature motifs that are 

important for protein binding. Consistent with this idea is the observation that two other 

conserved proteins that regulate transcription (CCR4-NOT4 and TFIIS) also bind to the IDR 

region of yeast Med13 but in a different location  (Fig S5, [245, 246].  Such a signature could be 

a MoRF, which is defined as a short binding region located within longer intrinsically disordered 

regions that bind to protein partners via disorder-to-order transitions [247]. ANCHOR analysis 

[243] predicts that the IDR of Med13 has many such domains, with two lying within the cyclin C 

binding region  (residues 742-844 - Figure A2-S5A). As additional factors are identified that 

bind the Med13 IDR, the rules that govern these interactions may become better understood.  

The need to understand the role Med13 IDR plays in protein communication has become 

important in the last decade as in humans truncating or loss of function mutations in MED13L, a 

paralogue of MED13 [248], results in MED13L happloinsufficiency syndrome. This syndrome is 

complex and presents with either complex congenital heart and neurodevelopmental defects or 

severe neurocognitive deficiencies and facial dysmorphism [249-252].  Interestingly many of 

these mutations lie in the IDR region of MED13L [252].  In yeast, a hallmark of med13∆ cells is 

that they are respiratory deficient which is dependent upon cyclin C nuclear export [154]. Thus it 

would be anticipated that a strain deleted for Med13 residues 742-844 would have a similar 

phenotype. Taken together, these studies emphasize the need for further analysis of both yeast 

and human Med13 IDR’s to understand the molecular details of how this region contributes to 

Med13 function. 
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A2.6.3 Role of SCFFbw7 and Med13 in higher eukaryotes following stress 

Our previous studies described the conserved role of cyclin C in stressed and unstressed 

cells [127, 134]. However, differences are observed in cyclin C regulation between yeast and 

humans. In yeast, all of cyclin C is released into the cytoplasm followed by its destruction by the 

Not1 ubiquitin ligase. Conversely, only about 10% of total cyclin C is released from the nucleus 

in mammalian cells following oxidative stress and we do not detect any significant changes in its 

overall protein levels [134]. Steady state turnover of the human Med13 is directed by the 

analogous SCF ubiquitin ligase by a homologue of Grr1, called Fbw1 [226]. As Med13 tethers 

the Cdk8 module to the Mediator complex [218], Med13 turnover determines the promoter 

residency of the module and therefore impacts transcriptional regulation. However, we found 

that the phospho-degron directing the turnover of Med13 in human cells (T326) is not required 

for stress-induced destruction of Med13 in yeast. These results suggest that either a different 

degron system is employed in these two systems or that stress-induced destruction is regulated 

differently than that observed under normal growth conditions. Consistent with this is the 

observation that Cdk substrates are often clustered in regions of intrinsic disorder (reviewed in 

[253]). However, similar to other intrinsic disordered regions, their exact position in the protein 

is often poorly conserved in evolution, indicating that precise positioning of phosphorylation 

may not be required to permit a shared function (reviewed in [253]). Thus, it is possible that 

following oxidative stress in human cells, a similar two-kinase mechanism could regulate Med13 

degradation. In support of this model, phosphorylation by two kinases of has been observed for 

other SCFFbw1 substrates [254] including oncogenic transcription factors. This has led to 

classifying Fbw1 as a tumor suppressor (reviewed in [255]). Fbw7 degrades numerous oncogenic 

transcription factors (e.g., Myc, Notch, and Jun) as well as other proteins that contribute to 
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carcinogenesis. As cyclin C has also recently been given this tumor suppressor designation 

[256], it is imperative to understand the relationship between these proteins following stress in 

higher eukaryotes. 

A2.7 Materials and methods 

A2.7.1 Yeast strains and plasmids 

All experiments, except the yeast two-hybrid assays (Y2H), were performed in S. 

cerevisiae W303 strain RSY10 [201] and are listed in Table S1. The Y2H assays were performed 

in PJ69-4a [166]. In accordance with the Mediator nomenclature unification effort [204], cyclin 

C (SSN8/UME3/SRB11) and Cdk8 (SSN3/UME5/SRB10) will use CNC1 and CDK8 gene 

designations, respectively. The cnc1∆, cdk8∆, med13∆, slt2∆, kdx1∆ and kdx1 slt2∆ and strains 

have been previously described [126, 127, 131, 228]. The grr1∆ strain RSY1770 and myc tagged 

Med12 strain (RSY18787) were constructed using gene replacement methodology as described 

[205]. The MED13-13myc allele was generated in this strain to create RSY1771 using the same 

methodology. RSY2066 was made by integrating pMK634 [234] into the CDK8 locus of 

RSY10. The strain was then transformed with pCM188 [257] which contains the TET activator 

on a plasmid. The yeast two hybrid strain PJ69-4a was obtained from the Yeast Resource center, 

courtesy of a gift from S. Fields. All cells were grown at 30°C apart from slt2∆ and slt2∆ kdx1∆ 

which were grown at 23°C. 

All plasmids used in this study are listed in Table S2. The wild-type epitope tagged 

plasmids pHY1066 (MED13-HA, 2µ), pKC337 (ADH1Pro-cyclin C-myc), pUM511 (GPD1Pro-

CDK8-HA) and pBK38 (ADH1Pro-CNC1-YFP) are functional and have been previously 

described [126, 129, 130, 229, 258]. pLR141 was made by cloning the ADH1Pro-CNC1-myc, 

CYCTerm from pKC337 into pRS426. The 2µ MED13-HA plasmids (PHY1066 and PHY1089) 
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and were a gift from P. Herman [229]. The wild-type MED13 centromere based plasmids 

pKC801 and pKC803 were made by PCR cloning the ADH1 promoter, MED13-3HA ORF, and 

MED13 terminator from PHY1022 into pRS316 and pRS315 respectively. Site directed 

mutagenesis (New England Bio-Rad Q5) was used to create plasmids harboring amino acid 

mutations except for DS36 which was made using the Change-ITTM kit by Affymetrix. The 

CNC1S266A and the SLT2K54R (a gift from D. Levin) have been previously described [131, 149]. 

The MED13 Y2H plasmids were constructed by PCR cloning from pHY1022 into the Xho1 site 

of the Gal4 activating domain plasmid pACT2. Likewise the human cyclin C Y2H Gal4 binding 

domain plasmid pSW108 was made by PCR cloning of cyclin C cDNA amplified from pEGFP-

cyclin C [259] into Nco1 digested pAS2. The GST-MED13 fusion plasmid was made by PCR 

cloning from PHY1022 into pGEX4T-1. Oligonucleotide sequences were used to make plasmids 

and strains are available upon request. In short, all constructs were amplified from plasmid DNA 

using Phusion Taq (Thermo) digested using NEB fast digest restriction enzymes and ligated 

using Thermo fast ligase into their respective vectors. All protein fusion constructs were 

sequenced (Eurofins Genomics). Other plasmids that were used in this study that have been 

previously described are listed in Table S2. 

A2.7.2 Cell growth 

Yeast cells were grown in either rich, non-selective medium (YPDA) or synthetic 

minimal medium (SC) allowing plasmid selection as previously described [126]. For all 

experiments the cells were grown to mid-log phase (~ 6 x 106) before treatment with low 

concentrations of 0.4 mM H2O2 as previously described [130].  25 mls of cells were collected per 

timepoint, washed in water, then the pellet flash frozen in liquid nitrogen. Yeast two hybrid 

experiments were executed as described [168]. 10 mM 3-amino-1,2,4-triazole (3-AT) was added 
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to the selective plates to increase the stringency of the interactions. E. coli cells were grown in 

LB medium with selective antibiotics.  The degron experiments described in Figure A2-5D and 

E were executed as follows. In Figure A2-5D, cells (RSY2066) were grown to mid log and 

samples removed at the timepoints shown for analysis of Ubi-isoleucine::3HA-Cdk8 degradation 

after the addition of 2 µg/ml doxycycline. In Figure A2-5E, RSY2066 was transformed with 

Med13-3HA plasmid (pKC803), grown to mid-log, split and into one flask 2 µg/ml doxycycline 

added. After 60 minutes, 0.8 mM H2O2 was added to both sets of cells and samples taken for 

NaOH lysis and Western analysis as described below.   

A2.7.3 Western blot analysis 

Tagged Med13 constructs were detected by using NaOH lysis of cell pellets as basically 

described by [260]. In short, the frozen cell pellets were defrosted on ice, resuspended in 2M 

LiOAc on ice for 5 minutes, centrifuged and then resuspended in 0.4 M NaOH for a further 5 

minutes on ice. Thereafter, the pellets were finally resuspended in 100 µl 2X SDS loading dye 

[126], boiled for 5 minutes and 15µl loaded onto a 6% SDS-PAGE gel (Novagen). For the phos-

tag gel (Figure A2-9B), proteins were prepared as just described and analyzed on an 7.5% 

polyacrylamide gel containing 7.5 µM phos-tag (Wako Laboratory Chemicals) and 15 µM 

MnCl2. The proteins were transferred to a nylon membrane (Millipore) using 10% methanol, 

0.02% SDS and 10X running buffer [126]. To detect Med13-myc, Med12-myc and Med13-HA, 

1 in 5000 dilutions of either anti-myc (Roche) or anti-HA antibodies (Clontech) were used.  

Tub1 and Pgk1 were visualized as previously described [261] except that anti-alpha tubulin 

antibodies (12G10) were obtained from the Developmental Studies Hybridoma Bank, University 

of Iowa. Western blot signals were detected using either goat anti-mouse or goat anti-rabbit 

secondary antibodies conjugated to alkaline phosphatase (Sigma) and the CDP-Star 
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chemiluminescence kit (Tropix). Signals were quantitated by CCD camera imaging (Kodak Inc.). 

All degradation assays were performed more than once. S.E.M. were generated for each point 

and error bars are indicated on the graphs which were generated using GraphPad Prism 7 

program. 

A2.7.4 Fluorescence microscopy 

YFP-cyclin C subcellular localization and mitochondrial morphology was monitored as 

described previously [127, 129]. For all experiments, the cells were grown to mid-log (6 x 106 

cells/ml), treated with 0.4 mM H2O2 for the timepoints indicated, then analyzed by fluorescence 

microscopy. Cyclin C-YFP export analysis was performed on cells fixed with 4% 

paraformaldehyde/3.4% sucrose for 1 h at room temperature.  The cells were washed three times 

in water and prepared for fluorescence microscopy as described previously [262] using mounting 

medium (10 mg/ml p-phenylenediamine, 50 ng/ml 4',6-diamidino-2-phenylindole) to visualize 

nuclei and prevent photo bleaching. Images were obtained using a Nikon microscope (model 

E800) with a 100X objective with 1.2X camera magnification (Plan Fluor Oil, NA 1.3) and a 

CCD camera (Hamamatsu model C4742). Data were collected using NIS software and processed 

using Image Pro software. All images of individual cells were optically sectioned (0.2 µM slices 

at 0.3 µM spacing) deconvolved and the slices were collapsed to visualize the entire fluorescent 

signal within the cell. Cyclin C-YFP foci were scored as being cytoplasmic when 3 or more foci 

were observed outside of the nucleus.  Mitochondrial fission assays were performed on live cells 

as described [127]. In brief, mitochondrial fission was scored positive if no reticular 

mitochondria were observed that transversed half the cell diameter.  Fusion was scored when 

cells exhibited one or more reticular mitochondria the diameter of the cell.  Fission and fusion 
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was scored for 200 cells from three independent isolates. Statistical analysis was performed 

using the Student’s T-test with p<0.05 used to indicate significant differences.   

A2.7.5 Pull down assays and kinase assays 

Purified proteins that were used in the pull down assay (Figure A2-4B) were made as 

follows. The GST constructs (DS30, GST hCCNC and GST alone) were transformed into BL21 

DE3 E. coli strain and expression induced with 0.5 M IPTG at 37°C for 3 h. Cell pellets were 

resuspended in 50 mL GST lysis buffer (150 mM KCl, 50 mM HEPES, pH 7.5, 1mM ßME), 

sonicated (25 x 10 sec. bursts) and the supernatant recovered by centrifugation at 40000xg for 30 

minutes. The supernatant was then added to 1mL of washed glutathione beads (LifeTech) rotated 

at 4°C for 1 hr. The unbound fraction was removed from the beads by gravity flow. The beads 

were washed twice with lysis buffer and the bound protein was eluted in five 1mL fractions with 

the elution buffer (lysis buffer supplemented with 10 mM reduced Glutathione). The protein 

containing fractions were pooled and then desalted using 4 mL Zebra7K desalting columns that 

had been pre-equilibrated with the lysis buffer. The protein fraction was supplemented with 

glycerol to a final concentration of 10% and stored at -80 °C in small aliquots. 6His tagged 

human or yeast cyclin C was purified the same way with the following exceptions. The lysis 

buffer (buffer A) was 500 mM KCl, 50mM HEPES pH7.5, 1mM ßME, 20mM imidazole. Talon 

beads (Clontech,) were used and washed with buffer B (150mM KCl, 50mM HEPES pH7.5, 

1mM BME, 20 mM imidazole) and the bound protein was eluted in elution buffer (150 mM KCl, 

50mM HEPES pH7.5, 1 mM BME, 500 mM imidazole). The desalting columns were pre-

equilibrated with the B buffer without Imidazole. The concentrations of all the recombinant 

proteins were determined by Bradford assay. The pull down assays in Figure A2-4B and C were 

performed using His-tagged human or yeast cyclin C respectively as bait and GST-tagged 
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Med13742-844 (DS30) as target. 500nM cyclin C was mixed with 1uM of Med13742-844 in a final 

reaction volume of 250 µL with B buffer and incubated for 1hr at room temperature. Bound 

protein was precipitated with 100 µL of washed Talon beads and eluted using 500mM imidazole. 

The protein mixture was resolved using SDS-PAGE and Western blotting with either anti-GST 

(Abcam), anti-His (Bethal) or anti human cyclin C antibodies (Bethal). Controls with only the 

target protein and no bait protein were included in all the experiments. The pull down assays in 

Figure A2-4D were performed using 500 nM of either GST, GST-tagged yeast cyclin C and 

1µM 6His-Med13571-660  (DS22). The proteins were incubated together in GST lysis buffer and 

incubated at RT for 1hr. Then 100uL of GSH beads (pre-equilibrated with GST wash/lysis 

buffer) was added to the protein mixture and incubated with rotation for 1hr.  The beads were 

centrifuged for 30sec washed twice with 500uL of GST wash/lysis buffer. The protein mixture 

was resolved using SDS-PAGE and Western blotting with either anti-GST or anti-His antibodies  

The in vitro kinase assays were executed basically as described [75]. Slt2-HA and 

Slt2K54R-HA kinases were immunoprecipitated from cells treated with 5mM sodium 

orthovanadate for 60 minutes which activates Slt2 [263].  In short, yeast extracts harboring the 

respective plasmids were made by resuspending cells in lysis buffer (20 mM HEPES, 10 mM 

KCl, 1 mM EDTA, 1 mM ethylene glycol tetraacetic acid [EGTA], 50 mM NaCl, 10% glycerol, 

1 mM β-mercaptoethanol, cOmplete Protease Inhibitor Cocktail Tablet, pH 7.4, with 

phosphatase inhibitors for Cdk8-HA purification) and protein immunoprecipitation was 

conducted as previously described [75]. with anti-HA magnetic beads (PierceTM)/ anti-myc 

magnetic beads (Cell Signaling).  Med13571-906 was purified from E. coli BL21 DE3 strain 

induced with 0.5 mM IPTG for 5 hours at 37ºC using 6X His-tagged purification method 

previously described [75]. The Slt2 in vitro kinase assay was conducted as previously described 
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[264] by resuspending Slt2 beads in kinase buffer (20 mM HEPES, 10 mM MgCl2, 100 μM

Na3VO4, pH 7.5), with 20uM ATP, 5 uCi of 32P-ATP and purified Med13571-907.  Reactions were 

incubated at 30ºC for 30 minutes. 
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A2.9 Supplementary materials 

Supplemental Table A2-1 Yeast strains used in this study 

Strain Genotype* Source 
RSY10 -  [201] 

RSY1006 slt2∆::his5+ [228] 

RSY1696 cnc1∆::KANMX6 [208] 

RSY1701 med13∆::HIS3 [154] 

RSY1706 med13∆:: KANMX6 [154] 

RSY1726 cdk8∆:: KANMX6 [154] 

RSY1736 kdx1∆::KANMX6 [131] 

RSY1737 kdx1∆::KANMX6 slt2∆::his5+ [131] 

RSY1798 Med13-myc::KANMX4 [154] 

RSY1770 grr1∆::his5+ This study 

RSY1771 grr1∆::his5+ MED13-13Myc:: KANMX6 This study 

RSY1787 Med12-myc::KANMX4 This study 

RSY2066 PTetO7-Ubi-Ile::3HA-Cdk8::NatMX4 This study 

PJ69-4a LYS2::GAL1-HIS3 GAL2-ADE2 met2::GAL7-lacZ gal4∆ 

gal80∆ 

[166]

*Genotype of all strains is MATa ade2 ade6 can1-100 his3-11,15 leu2-3,112 trp1-1 ura3-1 except PJ69-4alpha
which is MATa trp1-901 leu2- 3,112 ura3-52 his3-200 gal4∆ gal80∆
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Supplemental Table A2-2 Plasmids used in this study.  

Plasmid 
Name 

Gene  Epitope 
Tag  

Marker Promoter 2µ/ CEN/ 

int  

Reference 

pBK38 CNC1 GFP URA3 ADH1 CEN [129] 

pKC337 CNC1 1myc TRP1 ADH1 CEN [126] 

pKC800 GAL4AD-MED13 1HA LEU2 ADH1 CEN This study 

       

pKC801 MED13 3HA URA3 ADH1 CEN This study 

pKC802 MED13T210A 3HA URA3 ADH1 CEN This study 

pKC803 MED13 3HA LEU2 ADH1 CEN This study 

pLR106 BCK1-20 None HIS3 ADH1 CEN [228] 

pLR141 CNC1 1 myc URA ADH1 2µ This study 

pLR166 CNC1S266A 1 myc TRP1 ADH1 CEN [131] 

pDS2 GAL4AD -MED131-305 1HA LEU2 ADH1 CEN This study 

pDS4 GAL4AD-MED13907-1421 1HA LEU2 ADH1 CEN This study 

pDS5 GAL4AD-MED13306-906 1HA LEU2 ADH1 CEN This study 

pDS6 GAL4AD-MED131-906 1HA LEU2 ADH1 CEN This study 

pDS7 GAL4AD-MED13306-570 1HA LEU2 ADH1 CEN This study 

pDS8 GAL4AD-MED13571-906 1HA LEU2 ADH1 CEN This study 

pDS10 6HIS- MED13571-906 - - -  This study 

pDS15 GAL4AD-MED13571-650 1HA LEU2 ADH1 CEN This study 

pDS16 GAL4AD-MED13651-906 1HA LEU2 ADH1 CEN This study 

pDS30 GST-MED13742-844 GST - - - This study 

pDS22 6His-MED13571-650 6His - - - This study 

pDS32 GAL4AD-MED13742-844 1HA LEU2 ADH1 2µ This study 

pDS33 GAL4AD-MED13742-844 S748A 1HA LEU2 ADH1 2µ This study 

pDS34 GAL4AD-MED13742-844 T781A 1HA LEU2 ADH1 2µ This study 

pDS36 GAL4AD-MED13742-844 T835A, 

T837A 
1HA LEU2 ADH1 2µ This study 

pDS40 GAL4AD-MED13742-844 T801A 1HA LEU2 ADH1 2µ This study 

pDS41 GAL4AD-MED13742-844 T781A, 

T801A 
1HA LEU2 ADH1 2µ This study 

pDS42 GAL4AD-MED13742-844 S748A, 

T781A 
1HA LEU2 ADH1 2µ This study 
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pSW108 hCCNC1-GAL4BD 1HA TRP1 ADH1 2µ This study 

GST-
yCNC1 

GST-yCNC1 GST - - - [259] 

6His-
hCNC1 

6His-hCNC1 6His - - - This study 

6His- 6His-yCNC1 6His - - - This study 

pACT2 GAL4AD 1HA LEU2 ADH1 CEN [211] 

pAS2 GAL4BD 1HA TRP ADH1 CEN [211] 

pAS2-Grr1 GAL4BD-GRR1 1HA TRP ADH1 CEN [168] 

pAS2-
Grr1∆L 

GAL4BD-GRR1∆L- 1HA TRP ADH1 CEN [168] 

pGrr1 Grr1 1HA TRP ADH1  [221] 

pGrr1∆L Grr1∆L 1HA TRP ADH1  [221] 

Mt-dsRed  Mito-targeting  dsRed URA3 ADH1 CEN [265] 

pHY1022 MED13 3HA URA3 ADH1 2µ [229] 

pHY1089 MED13S608A,S1236A 3HA URA3 ADH1 2µ [229] 

Slt2 SLT2 3HA LEU2 SLT2 2µ [149] 

       

Slt2K54R SLT2K54R 3HA LEU2 SLT2 2µ [149] 

pCM188 TET - URA3 ADH1-
Tet02 

CEN [257] 

pMK634 Ubi-lLe-3HA  NAT-
MX4 

ADH1 Int. [234] 
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Figure A2-S1 The human Fbw7 degron on Med13 is not required for Med13 degradation (A) RSY1771 
(grr1∆::HIS3 MED13-myc::KAN) harboring either ADH1PRO-GRR1 or a vector control were treated with 0.4 mM 
H2O2 for the timepoints indicated and Med13 levels analyzed by Western blot. Tub1 levels were used as loading 
controls. (B) Conservation of the human Med13 SCFFbw7 degron in yeast. (C) Degradation of Med13-HA after 
treatment of the cells with cycloheximide. Wild type cells (RSY10) harboring Med13-HA (pKC801) were treated 
with cycloheximide as previously described [131] and Med13-HA degradation analyzed as described. Pgk1 was 
used as a loading control. (D) med13∆ cells (RSY1701) harboring Med13T210A as the only copy of Med13 were 
treated with 0.4 mM H2O2 for the timepoints indicated and Med13 levels analyzed by Western blot. Tub1 levels 
were used as a loading control. (E) Quantification of Med13-HA degradation from C and D. 
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Figure A2-S2 Fluorescence microscopy of mid-log phase med13∆ cells (Y1701) harboring the GalAD-Med13 fusion 
constructs shown and cyclin C-YFP (pBK38) Cells were stained with Dapi to visualize the nucleus. Bar = 10µM 

  



127  

 

 

Figure A2-S3 PKA mediated phosphorylation of Med13 is not required for its degradation following H2O2 stress 
(A) Wild type (RSY10) cultures expressing either PHY1066 (2µ Med13-HA) or PHY2081 (2µ Med13-HA plasmid 
with PKA sites, S608 and S1236 mutated to alanine) were grown to mid-log phase (0 hr) then treated with 0.4 mM 
for the indicated times.  Med13-HA levels were determined by Western blot analysis.  Tub1 levels were used as a 
loading control. (B) The Med13S808A, S1236A mutant complements med13∆ mitochondrial morphology.  med13∆ 
cells (RSY1701) expressing either PHY1066, PHY2081 or a vector and the DsRed mitochondrial targeting plasmid 
(mt-DsRed) were grown to mid-log. Mitochondrial morphology was examined using fluorescence microscopy of 
living cells. The left hand panel shows representative images of reticular or fragmented mitochondria are shown. Bar 
= 10µM. The percent of cells (mean ± s.e.m.) within the population displaying mitochondrial fission is given * 
p<0.05 difference from wild type.  
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Figure A2-S4 (A) Quantification of Med13-HA degradation following 0.4mM H2O2 stress for the experiments 
shown in Figure A2-6 (A) and Figure A2-7 (B) (C) Wild type (RSY10) cultures harboring either wild type Gal4AD-
Med13742-844 or the various point mutations indicated were grown to mid-log phase (0 hr) then treated with 0.4 mM 
H2O2 for the indicated times. Med13-HA levels were determined by Western blot analysis. Tub1 levels were used as 
a loading control. (D) Med12 is not destroyed in H2O2 stress. A strain harboring endogenous Med12-myc 
(RSY1787) was treated with 0.4 mM H2O2 for the timepoints indicated and Med12 levels analyzed by Western blot. 
Tub1 levels were used as loading controls. 
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Figure A2-S5 (A) IUPred and ANCHOR plot analysis of Med13 These programs generates a plot with the profiles 
calculated by IUPred [242], a general disorder prediction method (in red), and ANCHOR [243], a prediction of 
disordered binding regions (in blue). Underneath the profile, predicted binding regions are indicated by the 
horizontal bars. The bar is shaded according to the prediction score. Regions that are filtered out are marked by 
empty bars. Grr1 and cyclin C binding domains identified in this work are also shown. In addition, the domain of 
Med13 that does not interact with cyclin C is marked as well as the CCR4-NOT4 complex and TFIIS interaction 
domains [245, 246]. (B) Phyre2 [244] plot analysis of yeast Med13.  
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