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Figure A1-3 Snf1, Sak1 and at least one β subunit are required for degradation of Med13 following H2O2 stress (A) 
Wild-type (RSY10), snf1∆ (RSY2080), sak1∆ (YPDahl17) and gal83∆ sip1∆ sip2∆ (MSY557) cells harboring full 
length Med13-HA (pKC801) were treated with 0.4 mM H2O2 for the timepoints indicated and Med13-HA levels 
analyzed by Western blot. Tub1 levels were used as a loading control. (B) snf1∆ cells harboring Med13-HA 
(pKC803) and either wild- type Snf1 (JG1193), a vector control (pRS316) or snf1K84R (JG1338) were treated and 
analyzed as described in A. (C and D) Degradation kinetics of the Med13-HA shown in A and B. Values represent 
averages ± SD from a total of at least two Western blots from independent experiments.  

 

Sak1 has been identified as the AMPK kinase that is activated in response to oxidative 

stress [177]. Therefore, we next addressed if Sak1 is required for H2O2 induced Med13 

degradation. The degradation assays described above were repeated in sak1∆ cells and results 

revealed that Med13 was again significantly more stable in sak1∆ than wild type (Figure A1-3A 

and quantified in Figure A1-3C).  This result supports the previously proposed model that Sak1 

is the AMPKK that activates Snf1 in response to oxidative stress [159]. We next addressed if the 

nuclear enriched isoform, Snf1-Gal83 [143, 160-162], is required for Med13 degradation under 
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mediated degradation snf1∆ cells. The results show that degron571-650 is more stable in snf1∆ cells 

compared to wild type following H2O2 stress (Figure A1-5A and quantified in Figure A1-5B). This 

suggests that degron571-650 is a Snf1 responsive degron.  To further support this conclusion, we 

examined the degradation kinetics of a degron mutated for either of the potential Snf1 

phosphorylation sites previously identified in proteomic screens (S587 [181] and S636 [182], 

Figure A1-6A) although none of these sites perfectly fit the Snf1 consensus sequence [183, 184]. 

The studies revealed that both mutants were degraded following H2O2 treatment with kinetics 

similar to wild type (Figure A1-S3B). We also noted that serine 634 could potentially be 

phosphorylated by Snf1 (see Figure A1-6A). As it lies very close to serine 636, we made a double 

mutant (S634A, S636A) and repeated the assay. Again this mutant degron was degraded following 

H2O2 treatment (Figure A1-S3B). However, the triple mutant (S587A, S634A, S636A) exhibited 

enhanced stability following H2O2 stress (Figure 5C and quantitated in Figure 5B). Taken together, 

these results suggest that Snf1 phosphorylates Med13 following H2O2 stress targeting S587, S634 

and S636. Consistent with this model, we (Figure 5D and S3C) and others [185] have shown that 

Snf1 can co-immunoprecipitates with Cdk8 both before and after H2O2 stress. As cyclin C directly 

binds to the adjacent degron742-844 (Figure 2A and [133]) this places Snf1 in close proximity to 

degron571-650. In addition, these data also support the notion suggested by others that a 

subpopulation of Snf1 is nuclear in unstressed cells [143, 162, 185].  
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Figure A2-S3 PKA mediated phosphorylation of Med13 is not required for its degradation following H2O2 stress 
(A) Wild type (RSY10) cultures expressing either PHY1066 (2µ Med13-HA) or PHY2081 (2µ Med13-HA plasmid 
with PKA sites, S608 and S1236 mutated to alanine) were grown to mid-log phase (0 hr) then treated with 0.4 mM 
for the indicated times.  Med13-HA levels were determined by Western blot analysis.  Tub1 levels were used as a 
loading control. (B) The Med13S808A, S1236A mutant complements med13∆ mitochondrial morphology.  med13∆ 
cells (RSY1701) expressing either PHY1066, PHY2081 or a vector and the DsRed mitochondrial targeting plasmid 
(mt-DsRed) were grown to mid-log. Mitochondrial morphology was examined using fluorescence microscopy of 
living cells. The left hand panel shows representative images of reticular or fragmented mitochondria are shown. Bar 
= 10µM. The percent of cells (mean ± s.e.m.) within the population displaying mitochondrial fission is given * 
p<0.05 difference from wild type.  
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Figure A2-S4 (A) Quantification of Med13-HA degradation following 0.4mM H2O2 stress for the experiments 
shown in Figure A2-6 (A) and Figure A2-7 (B) (C) Wild type (RSY10) cultures harboring either wild type Gal4AD-
Med13742-844 or the various point mutations indicated were grown to mid-log phase (0 hr) then treated with 0.4 mM 
H2O2 for the indicated times. Med13-HA levels were determined by Western blot analysis. Tub1 levels were used as 
a loading control. (D) Med12 is not destroyed in H2O2 stress. A strain harboring endogenous Med12-myc 
(RSY1787) was treated with 0.4 mM H2O2 for the timepoints indicated and Med12 levels analyzed by Western blot. 
Tub1 levels were used as loading controls. 
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Figure A2-S5 (A) IUPred and ANCHOR plot analysis of Med13 These programs generates a plot with the profiles 
calculated by IUPred [242], a general disorder prediction method (in red), and ANCHOR [243], a prediction of 
disordered binding regions (in blue). Underneath the profile, predicted binding regions are indicated by the 
horizontal bars. The bar is shaded according to the prediction score. Regions that are filtered out are marked by 
empty bars. Grr1 and cyclin C binding domains identified in this work are also shown. In addition, the domain of 
Med13 that does not interact with cyclin C is marked as well as the CCR4-NOT4 complex and TFIIS interaction 
domains [245, 246]. (B) Phyre2 [244] plot analysis of yeast Med13.  
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