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ABSTRACT

Abstractions of Graph Models

Charles Addison Johnson
Department of Computer Science, BYU

Master of Science

Building models, whether to explain or to predict observed data, is an exercise of
describing how the values of observed variables depend on those of others. Black box models
only describe relationships between observed variables, and they are evaluated by their
ability to accurately describe the values of observed variables in new situations not previously
available to the model–such as the output response to a new set of inputs, for example.
Black box models describe the observed behavior of the underlying system, but they may not
correctly describe the way in which the system computes this behavior. White box models,
on the other hand, describe the observed behavior and also incorporate hidden, intermediate
variables that are used to describe the specific computation the underlying system uses to
generate its observed behavior. In this sense, we say the white box model captures the
structure of the system, in addition to its observed behavior. Since a given white box model
may be accurately described by an infinite variety of black box models, all computing the
same observed behavior but using different structures to do so, we say that any of these black
box models is an abstraction of the white box model. This thesis constructs foundational
pieces of a unifying theory of linear mathematical abstractions that are central to scientific
modeling. It offers a precise description of the spectrums of grey box models linking any
white and black box representation.

There are various motivations for having this rich variety of representations of a given
system. One key motivation is that of consilience, that is, to deepen our understanding of
the modeling process by connecting various well developed theories under the umbrella of a
broader theory. This work offers a precise relationship between Mason’s signal flow graphs
[34] and Willem’s behavioral systems theory [66], in addition to linking the classical transfer
function theory used by Nyquist [44], Bode [3], and Weiner [65] to the state space theory
preferred by Kalman [27]. Another motivation comes from the application of identification
or learning a model of the system from data. Learning problems trade off the number of a
priori assumptions that one must make about a system, as well as the richness of available
data, with the complexity of a model that one is able to confidently learn from measured
observations. This work offers insight into these tradeoffs by characterizing them precisely
over entire spectrums of grey box models of increasing complexity. A third motivation comes
from the application of vulnerability analysis, which is the study of sensitivities of system
behavior to structural perturbations in a grey-box model describing the attack surface, or
representation of the system as visible to a potential attacker.

The main results of this work, and its specific contributions, are as follows:



1. We define new graph-theoretic constructs and use them to create a unified framework
for structural abstractions,

2. We demonstrate that there will always exist a complete, structure preserving, acyclic
abstraction for every single-input, fully-connected system,

3. We define structural controllability of an abstraction of a system and argue why our
definition is good, and

4. We show how complete abstractions preserve structural controllability.

These results were accepted for publication in two papers at the 2020 International
Federation of Automatic Control World Congress, each submitted to a different special invited
session. These papers comprise Chapters 2 and 3, respectively, of the thesis presented here,
and they are expected to appear in print July 2020.

Keywords: Abstractions, Graph-Based Models, Dynamic Systems
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satisfies the constraint (imposed by the edge weight) that it be two times the

label of x (10 = 5× 2 6= 15). The graph in the upper right has well-labeled

nodes because the labels of y and z are set to the label of x times the sum

of the products of the edge weights on each path (10 = 2 × 2 + 6 × 1 6= 15

and 6 = 2× 3 = 6). Note here that x’s label is considered an unconstrained

variable, we refer to such variables as inputs in this work. . . . . . . . . . . . 6

1.2 This figure depicts a graph as well as an abstraction of that graph. Below

this it demonstrates the infinite paths which sum to constrain node y. Note

that each constrains the nodes in the same way, but the abstraction has fewer

edges and has lost information of how the left node is constrained by the right

one. To for the graph to be well-labeled we must have y = x + 1
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Chapter 1

Introduction

This work is concerned with abstractions of a special class of graph based models.

Abstractions are coarser-grained models which preserve some properties of the finer-grained

models. The models in this thesis can describe the causal relationships between measured

variables in a linear time-invariant (LTI) dynamic system, as well as computational dependency

in other contexts as well.

The abstractions often represent the same dynamic system or context, in which

fewer variables are measured. In a sense the abstractions are different perspectives on the

same system. The ability of these abstractions to represent various perspectives has been

leveraged in the past to model interesting phenomena. For example, in the context of

cyber-infrastructure security, a system user and a malignant attacker may be working with

the same model, however, the attacker can only see (or access) a coarser abstraction of the

system for the sake of designing attacks [22]. The applications of abstractions, of course, go

well beyond system vulnerability analysis.

1.1 Motivation

In many cases, the point of abstraction is to safely ignore the details of how exactly a

computation is made so that we can focus our resources on other, perhaps higher-level,

problems. The use of abstractions in this manner is hardly restricted to the discipline of

computer science. A classic, near-universal example in our day, is driving1. When I drive a

1This example was taken from Chapter 10 of [47].
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car, I don’t think about the complex mechanical details behind how the inputs that I give

to the car (turning the steering wheel, pushing down on the gas and brake pedals, etc.) are

transformed into how the car behaves on the road. The use of abstractions explains how the

finite human mind can function in a world with infinite or near-infinite complexity [18, 54].

However, our abstractions break down. Sometimes we need to break open the black-

box and understand how the computation is made. I can ignore the inner workings of my

car as long as it functions as I expect it to. However, a number of environmental conditions,

mechanical or software failures or trauma to the vehicle can make my black-box understanding

of the car insufficient. After an accident, or on an icy road, additional details regarding the

function and location of various car parts may be essential to properly repair or control the

vehicle.

In such circumstances it is almost never necessary to come face to face with the full

complexity of your vehicle and the physics that govern its behavior. One is not likely to need

to consider the car headlights to change out a flat tire. To properly navigate a complex world

one must properly navigate and balance one’s abstractions of the world.

Indeed, the world is becoming more complex and new paradigms for human-computer

interaction are becoming necessary to take full advantage of the computing resources available.

For example, a number of real-world strategic decisions are being made by complex, automated

computations. However, humans, in spite of their limited capacity, need to take responsibility

for these computer-suggested strategic decisions. Since a human is unable to understand the

full details behind why a computer may have recommended such a decision, an abstracted

representation of the computation process is a necessary requirement to allow a human

decision maker to take responsibility for that decision. Put another way, abstractions of

computation give humans alternatives to blindly accepting the computed decision.

In the field of systems theory a mathematical theory of abstraction is under development

[29, 68]. It considers structurally distinct graph models which each constrain a system to

have the same behavior. Complexity in this paradigm is, therefore, structural complexity,
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specifically the number of edges and nodes in the graph model. While the application of

this mathematical theory of abstraction has yet to be applied to abstractions in software

development, this is one of the motivations underlying this work.

Previous work in development of this theory of abstractions limited the scope of

these abstractions to frequency domain representations of linear time-invariant dynamic

networks in both continuous and discrete time. However, it has been observed that the

results extend quite naturally to time domain representations of the same systems when

one redefines multiplication to be the convolution operator (defined as appropriate given a

continuous-time or discrete-time formulation) [9]. This work extends this generalization by

explicitly allowing the weights in the models to come from any mathematical field. This

formulation, therefore includes systems whose weights for computation come from the binary

field as well as other finite fields. This step is significant as it expands the potential reach of

this theory of abstractions to include finite state-machine models (automata).

1.2 Overview

A key problem that spans a number of fields is that of finding the dependency relationships

between variables of interest. For example, given a set of several timeseries, one may wish to

model how one timeseries (perhaps representing a stock price or a protein concentration) influ-

ences another. In many cases the relationships between these timeseries may be asymmetric

and full of nuances. For example, one may affect another only indirectly via a third timeseries,

or there may be loops by which a timeseries indirectly affects itself through one or more

intermediaries. Ideally, the resulting model would be a digraph whose nodes each represent

one of the timeseries and whose edges indicate direct, one way, computational dependency

between the timeseries. Each of these edges would have a weight to explain the nature of

the dependency. This is known as the problem of network reconstruction. The model we

seek is the signal structure of the interdependent timeseries. When there are unmeasured

intermediary variables (unmeasured timeseries that are part of the true dependency structure),
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the digraph that one learns will only be an abstraction of the true dependency structure.

Identifying the dependency structure without measuring all the relevant variables leads to a

number of challenges. For example, with no apriori information on the dependency structure,

there will likely be an infinite number of weighted digraphs which will explain your measured

data, even in the limit of infinite data! Abstractions of these models warrant special attention

and care.

This thesis build upon a recent developing theory for structural abstractions of dynamic

networks [29, 67, 68]. It does so by returning to and rigorously defining the fundamental

structure on which the theory is built. In this community, LTI dynamic systems with partial

measurements have been defined by their signal structure. The signal structure may be

represented as a graph in which nodes are measured variables and edges represent causal

relationships between the variables. These models are abstractions of the original system

as structural information about the unmeasured variables (causal relationships between

unmeasured variables and all the system variables) is lost in the signal structure.

Our central contribution (broadly speaking) is to more generally explore structural

abstractions, including the signal structure already established for LTI dynamic systems. To

do so a number of general concepts are defined. The key concept of net effect is introduced

as one of the three foundational pillars of abstraction. The concepts of a complete abstraction

and an extraneous realization are rigorously defined. The usefulness of this foundation is

then explored by contributing results regarding the existence of complete acyclic subgraph

abstractions as well as results on the structural controllability of abstractions in the special

case of LTI dynamic networks. This work also contributes a discussion of the distinction

between networked dynamic systems and dynamic networks.

Models in this thesis can be represented with a special type of graph. In this model,

graph edges are directed and each edge has an associated weight. Similarly, each node has

a label. Weights and labels are variables with values chosen from some mathematical field,

F. The field, F, is a set endowed with two binary operations referred to as addition and
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multiplication which satisfy a special set of technical conditions (for reference see [48]). In the

graph, the direction of the edge implies computational dependency. We invented a concept of

well-labeled nodes, whose labels satisfy the constraints imposed by the edges, edge weights

and the labels themselves. These constraints will be defined in Chapter 2, but essentially, all

paths from node xi to xj are summed. Each path in the sum is the product of the xi’s label

and the path’s edge weights. Then xj is constrained to equal this sum for all i 6= j. So, if

a graph had two nodes, x, y, and a single directed edge from x to y, y depends on x. This

means that for each label x has, there is only one possible way to label y that keeps the node

well-labeled.2 A simple example of these concepts is shown in Figure 1.1.

In this work, abstractions of these models are structural abstractions, and so they

involve making a new graph model with fewer edges which still preserves key model properties.

The key property we preserve is net effect, which captures the way in which node labels are

uniquely constrained by each other and edge weights. Net effect also is strongly tied to a

graph (not the node labels) being well-labeled. For example, when our graph models are LTI

dynamic graph models with clearly identified input and output nodes, the net effect becomes

the transfer function matrix (a black-box input-output representation of an LTI dynamic

system). You may refer to Figure 1.2 for a simple example of a graph abstraction in the case

where F = R.

Chapter 2 of this work builds out of graph-based modeling efforts [34], often attributed

to Samuel Mason, as well Jan Willems’ behavioral theory whose modeling efforts focus on the

relationship between manifest variables [66]. These perspectives appear to have some mutually

incompatible viewpoints. For example, Willems argued strongly against the input-output

paradigm associated with the transfer function, a key element of Mason’s work and much

of classic systems theory. However, dynamical structure function (DSF) theory has made

a successful marriage of the concepts. DSF theory is a foundational work which this thesis

builds upon. In combining signal-graph theory and behavioral theory, the innovators who

2The label of y must be the product of the label of x and the weight of the edge connecting the two nodes,
otherwise the node is ill-labeled. This is all under the assumption that x itself is unconstrained.
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Figure 1.1: This figure depicts open directed graphs with nodes that are well and ill-labeled.
We say that the upper left has well-labeled nodes as the label of y satisfies the constraint
(imposed by the edge weight) that it be two times the label of x (10 = 5× 2 6= 15). The graph
in the upper right has well-labeled nodes because the labels of y and z are set to the label of
x times the sum of the products of the edge weights on each path (10 = 2× 2 + 6× 1 6= 15
and 6 = 2× 3 = 6). Note here that x’s label is considered an unconstrained variable, we refer
to such variables as inputs in this work.

worked on DSF theory had to make some specific modeling and philosophical choices, many

of which are discussed in [72]. This work will expose some of those modeling choices by

examining and extending this theory of modeling (before applied more or less strictly to LTI

systems) in a precise manner. Every element of these models will be defined and examined in

a blend of behavioral and signal-flow graph theory with the aim to explore and understand

model abstractions.

Chapter 3 of this work will then apply this theory of modeling and abstractions

to the question of structural controllability and observability of complex networks (also

referred to as networked dynamic systems). As the name suggests, structural controllability

considers ones ability to control a network which has a specific graph structure, but arbitrary

parameterizations (e.g. edge weights on the graph) of that structure. Since the current

complex network community views interconnection in these graph models as interconnection

between physically distinct systems (called subsystems) as opposed to the direct signaling

6



Figure 1.2: This figure depicts a graph as well as an abstraction of that graph. Below this it
demonstrates the infinite paths which sum to constrain node y. Note that each constrains
the nodes in the same way, but the abstraction has fewer edges and has lost information of
how the left node is constrained by the right one. To for the graph to be well-labeled we
must have y = x + 1

2
x + 1

4
x + ... = (1 + 1

2
+ 1

4
+ ...)x = (

∑∞
n=0(

1
2
)n)x = 2x, where the last

equality is due to the fact that the sum described is a geometric series. One sees that the net
effect, in this case, from x to y is 2.
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relationships between measured variables, this chapter will illustrate how our class of graph

based models is distinct. This is a subtle and yet key point as one could possibly conflate these

two model classes and, therefore, draw erroneous conclusions based off of valid abstractions

made with the wrong model class in mind.

Note that Chapters 2 and 3 will have been published as their own papers in the 2020

IFAC World Congress in Berlin. However, they are united in the sense that the first lays

a foundation for the second and the second addresses a prominent community of complex

systems theorists with the basics of this framework. It also shows how this framework can be

used to characterize structural controllability and observability of abstractions of dynamic

networks. These two chapters are presented as the main body of this thesis.

1.3 Related Work

This section does not discuss all relevant work to this thesis as each of the following chapters

will cite publications with specific relevance to the content of the chapter. However, I hope

that this brief survey of the literature can help to further contextualize and motivate the

contributions of this work.

The class of graph models that inspired the contributions of this thesis originally arose

to address the question of reconstructing a dynamic network from data, this structured model

is commonly referred to as the Dynamic Structure Function [21]. The notion of abstracting

away the structural complexity associated with hidden state variables was always key to the

concept and derivation of the Dynamic Structure Function. This connection to abstractions

has become more explicit in recent years.

Indeed, a theory of model abstractions is advantageous to a data scientist trying to

reconstruct the true underlying computation structure of a system (f(x)), instead of just

an input-output equivalent model. Past work has defined, for example, strict identifiability

conditions for reconstructing the signal structure of measured variables from a dynamic

system [19] as well as a network of interconnected subsystems from data [6, 59]. Furthermore,
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[5] has shown that, when the identifiability conditions are not met, that any structurally

admissible computation structure can equally explain the input-output dynamics observed.

This is especially daunting as a network’s possible structures grow combinatorially with the

size of the network.

One line of relevant research on model abstractions focuses on network immersions

(node abstractions followed by hollow abstractions). This research includes algorithms for

computing such abstractions [64], and leveraging them to answer questions about network

identifiability (necessary conditions for network reconstruction) [1, 19, 63]. These abstractions

are very nice to work with as the resulting structure of the abstraction will always have a

corresponding set of edge weights which will make the graph a true abstraction of the original

system. Other methods of abstraction need not satisfy this property. This is why results that

prove the existence of abstractions with desirable properties (such as structure-preserving, or

acyclic) may be useful.

Much recent work studying network immersions has focused on adding additional noise

assumptions and constraints to the fundamental questions associated with reconstructing LTI

dynamic networks and then providing additional solutions and insights to those circumstances

[36, 38, 40]. In other cases it is assumed that the network topology is known but that the

dynamics still need to be identified [58]. In contrast, this work chiefly expands the theoretical

framework of this graph-based model class at a very fundamental level.

1.4 Contributions

This work considers models in which the graph structure constrains the node values as

dependant variables. Information in these graphs pass along paths in a multiplicative fashion

and combines paths via addition. This does not restrict these models to standard addition

and multiplication, but rather allows one to choose definitions for multiplication and addition

that meet the field properties [48]. For example, if we define addition as the XOR operation

and AND as the multiplication operation and our set of node and edge labels is {0, 1}, then
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our network is defined over the binary field. Claude Shannon’s thesis demonstrated the

flexibility and power of modeling over the binary field [53]. These models, in general, include

the full descriptive power of discrete-time and continuous-time LTI systems and much more.

Structuring the framework for these models to be so general is the first contribution of this

thesis.

This work extends previous theory of graph modeling and abstractions (see [29, 68])

from the instance of LTI dynamic networks to general graphical models with node and

edge values taken from an arbitrary field. This is in contrast to the almost universal thrust

of the body of work which focuses on structural abstractions of signal-structure between

observed variables. The general body of the literature focuses nearly exclusively on results

and formulations of LTI networks. In the presented, framework LTI networks are special

cases of these graph models when the node and edge values are taken from the field of rational

functions over C, or the field constructed from such rational functions via the Laplace or

Z Transform with multiplication defined as convolution and addition defined as pointwise

function addition.

Chapter 3 will discuss a notion of controllability and observability for these graph

models. It is somewhat surprising that there is any connection between these models and

controllability in the first place. This is due to the fact that system concepts such as

controllability and observability were originally defined to be state-space concepts. This work

is not the first to connect graph representations of systems to concepts like controllability.

For example, [31] began a stream of results continuing into the modern day on structural

controllability. This work’s contribution to that set of results is to characterize the structural

controllability of abstractions.

Another contribution of this work is to introduce and motivate the importance of

complete abstractions. This notion separates abstractions which drop computation and

those which preserve it in a structurally simpler manner. On graphs, the interpretation of

a complete abstraction is simple and we see that computation is lost when source and sink
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nodes (or connected components) are abstracted away from the model. Chapter 3 of his

work argues that incomplete abstractions do not permit the preservation of the property of

structural control for LTI networks.

This work also proves that all single input networks have their own complete acyclic

abstraction which preserves the original structure of the network. This means that our

complete abstraction’s structure is acquired only by deleting edges, none are added as

often occurs when abstracting via network immersions. This problem is not trivial as these

abstractions must preserve net effect (the input-output relationship of the entire system).

These contributions provide a framework for reasoning about and comparing structural

model abstractions. This framework in and of itself is a valuable lens for analyzing the

abstraction process. This is a key contribution as understanding the quality of an abstraction

enables one to make good abstraction decisions. Abstractions can be judged not only on the

amount of complexity that they remove or keep, but also on other desirable properties that

they may have, such as being structure-preserving, acyclic, or complete. For example, the

value of the quality of completeness depends on one’s goals for the model. Chapter 3’s main

results indicate that complete abstractions are very valuable when one wants to preserve

structural controllability of the abstraction.
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Chapter 2

Graph Theoretic Foundations of Cyclic and Acyclic Linear Dynamic Networks

Accepted as a Special Session Paper to be presented in the 2020 IFAC World Congress

in Berlin

Dynamic Networks are signal flow graphs explicitly partitioning structural informa-

tion from dynamic or behavioral information in a dynamic system. This paper explicitly

develops the mathematical foundations underlying this class of models, revealing structural

roots for system concepts such as system behavior, well-posedness, causality, controllability,

observability, minimality, abstraction, and realization. This theory of abstractions uses graph

theory to systematically and rigorously relate LTI state space theory, developed by Kalman

and emphasizing differential equations and linear algebra, to the operator theory of Weiner,

emphasizing complex analysis, and Willem’s behavioral theory. New systems concepts, such

as net effect, complete abstraction, and extraneous realization, are introduced, and we reveal

conditions when acyclic abstractions exist for a given network, opening questions about their

use in network reconstruction and other applications.

2.1 Introduction

Signal flow graphs have a rich history in the control literature. First introduced by Shannon,

they were developed and popularized by Mason resulting in Mason’s celebrated Gain Formula,

see [52] and [34]. This technique enabled control engineers to compute the transfer function

from a particular input to a particular output using easy-to-understand rules that exploited

the topological structure of the network of components comprising the system.
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Later work eschewed this signal flow perspective, driven especially by situations

where there didn’t seem to be natural definitions of inputs and outputs. This work, dubbed

Behavioral Control theory, focused on the idea of systems as constraints and the resulting

behavior of admissible values manifest variables could adopt, see, for example, [66].

Nevertheless, the signal flow paradigm again appeared with the emergence of dynamic

networks, especially in the context of network reconstruction: that is, identifying the topology

and dynamics of modules in the network from data ([19]). Incorporating various influences

from information theory ([16], [49], and [55]), computer science ([46]), Bayesian statistics

([30]), and system identification ([14]), these methods revisited the problem of characterizing

signal flow in complex systems.

This paper takes a unique perspective to review some of the most important results

from the theory of dynamic networks. Using graph theory as a vehicle to systematically

decouple structure and dynamics in the representation of dynamic networks, this paper

systematically builds the theory of linear dynamic networks from basic definitions, some of

which are nonstandard and new to graph theory, some of which are nonstandard and new

to signal flow graphs, and some of which are new to both. The basic idea is that dynamics

in the system appear through the choice of field from which labels are chosen on nodes and

edges–all the graph results discussed here with real-valued labels (for ease of exposition)

become relevant for dynamic networks when the field is changed to rational functions of a

complex variable.

In particular, contributions of this work include detailing the structural roots behind

key systems concepts such as system behavior, well-posedness, causality, abstraction, and

realization. New results about the existence and construction of acyclic abstractions are

included, and new concepts of the completeness of abstractions and extraneousness of

realizations that lay the foundation for understanding the structural roots of controlabillity,

observability, and minimality are introduced. We end the paper by asking how complete

acyclic abstractions may facilitate the reconstruction of complex cyclic networks.
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Definition Summary

Node Labels and
Edge Weights

Elements of an algebraic field, F. When F = R, the model
represents a standard weighted digraph. When F is the field of
rational functions over C then the model represents LTI
dynamic networks.

Well-Labeled Nodes
Set of node weights that satisfies linear constraints imposed
by the edge weights.

Behavior of a Digraph The set of all well-labeled node labelings.
Well-Labeled Graph A graph whose behavior is constrained to be a unique value.
Ill-Labeled Graph A graph which is not well-labeled.

Net Effect
The cumulative influence of node labels on each other. For
LTI dynamic networks this is the transfer function.

Bipartite Digraph
A weighted digraph whose nodes are partitioned into two
subsets. All edges are directed from the “input” subset.

Open Digraph

A well-labeled graphical union of some digraph with a bipartite
digraph. Allows for an interpretation of edges as computational
dependence. DNFs, DSFs and LDGs are all special examples
of open digraphs.

Abstraction
A representation of an open digraph with fewer internal edges
that shares behavior and nodes with the digraph it represents.

Realization The open digraph we represent with an abstraction.

Complete Abstraction
An abstraction that preserves a subset of nodes; for example,
all sink and source nodes.

Extraneous Realization
A realization of a non-complete abstraction; in the above
example, this would be a realization with at least one
sink or source node missing in its abstraction.

Table 1. A table summarizing the novel/non-standard definitions in this paper.

2.2 Foundations

Definition 1 A directed graph is a pair (V , E) where

• V, called the node set, is a finite, totally ordered set and

• E ⊆ V × V is called the directed edge set.

Let n, called the order of the node set, be the cardinality of V.

Definition 2 An undirected graph is a simple directed graph, (V , E), with an additional

undirected edge symmetry constraint, that if (vi, vj) ∈ E then (vj, vi) ∈ E.
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Definition 3 The set of labels or weights, F, is any field with field operations + and ·,

where we use standard multiplication notation for the · operation, however it may be defined,

and other standard notation, e.g. for the additive and multiplicative identities, 0 and 1,

respectively.

Definition 4 A weighted (un)directed graph is the pair, (V , E), with labeling functions x

and w, where:

• x : V → F that assigns exactly one value in F to every element of V. Notice that x is an

element of a vector space x ∈ X , Fn, where vector addition and scalar multiplication

are defined pointwise.

• w : E → F that assigns exactly least one value in F to every element of E.

There is a body of work concerned with constructing labeling functions x and w to

meet various properties, cf. [17], such as graph coloring problems, etc. In some respects this

work also focuses on labelings that satisfy particular conditions related to the role of graphs

in modeling distributed computation.

2.2.1 Well-Labeled Digraphs, Net Effect, and Graph Behavior

Recall from Definition 1 that V is a totally ordered set. This means that we may index nodes

according to this ordering. Let vi ∈ V be the ith node.

Definition 5 Given a weighted directed graph, (V , E , x, w), the matrix W ∈ Fn×n, called the

weighted adjacency matrix, where

Wij ,


w(vj, vi) if (vj, vi) ∈ E

0 otherwise,

Usually it will be convenient to refer to a weighted (un)directed graph as (V , E , x,W )

instead of (V , E , x, w). Also, note that there are two types of zero entries in W . First, a zero
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can arise because a potential edge is not part of the graph, indicating “missing” edges. We

call these zeros structural zeros. On the other hand, a zero can arise because an existing

edge in the graph is labeled with the value of zero; these are called non-structural zeros.

Although there is no way to distinguish these different types of zero from W alone, E makes

the difference clear.

Weighted (un)directed graphs can be effective models of distributed computation when

the structure of the graph induces constraints on the admissible values of node and edge

labels. We accomplish this by choosing values of node and edge labels from the same field,

and interpreting the interaction of nodes and adjacent edges in terms of the field operations.

In particular, admissible labelings are those where the value of every node label equals a

quantity computed from the values of edges that target the node and the values of nodes in

their source sets.

Definition 6 The nodes of a graph D = (V , E , x,W ) are well-labeled if they satisfy:

x = Wx. (2.1)

Definition 7 The behavior, B, of an nth order digraph D = (V , E , y,W ) is a subset of Fn

given by:

B(D) = {y ∈ Fn|y = Wy}.

Example 1 Multidigraphs and Behavioral Equivalence. In some applications one may

consider Multidigraphs, that is, digraphs that admit multiple parallel edges between the same

pair of nodes, such as that in Fig. 2.1. In this case we see that the node labels are subject to

additional constraints defined by the parallel edges, but the algebraic properties of the edge

labels enable the construction of a behaviorally equivalent simple digraph with edge label wji

equal to the sum of all the parallel edge labels from node vi to node vj in the multidigraph. In

this way the simple digraph can be seen to have the same behavior as the original multidigraph.
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Figure 2.1: Multidigraphs (left) can be associated with nominal digraphs with corresponding
edge weights (right) such that the graphs are behaviorally equivalent. This is possible because
of the algebraic properties of the label set F.

Some well-labeled digraphs will not interest us because they will not constrain the

node labels to take on unique values.

In particular, note that rearranging the equation y = Wy yields

(I −W )y = 0,

suggesting that any combination of labels y that happen to form a vector in the null space of

(I −W ) will not only be in the behavior of D, but so will any scaling of y with an arbitrary

element of F. As a result, labelings such that (I−W ) is not full rank admit multiple solutions

y, leading to the following definition.

Definition 8 A graph D = (V , E , y,W ) is said to be well-labeled if (I −W ) is nonsingular

and ill-labeled otherwise. Also, we associate a matrix G , (I −W )−1, called the net effect

matrix, with every well-labeled graph D.

Example 2 Net Effect vs. Transitive Closure. If V is a set with n members, then a binary

relation, R, on V is a subset of V × V , and thus is associated with a corresponding digraph,

D(R). The transitive closure of R, denoted R∗, is the smallest extension of R that is

transitive. Graphically this means that if there is a path from any node vi to any node vj in
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D(R), then there is a direct edge (vi, vj) in D(R∗). The graph characterized by the net effect

matrix G of D(R) usually is D(R∗), but sometimes the weights in G can cancel just right

leaving a net effect of zero even though paths between the relevant nodes exist.

Consider, for example, a weighted digraph characterized by weighted adjacency matrix

W =


0 0 0

w21 0 0

w31 w32 0

 (2.2)

with net-effect matrix:

G =


1 0 0

w21 1 0

w21w32 + w31 w32 1

 . (2.3)

Thus we see that when w31 = −w21w32 then g31 = 0, that is, the net effect matrix has an

exact cancellation even though there are paths from v1 to v3, indicating that the transitive

closure has an edge from v1 to v3.

Graphs with a well-defined net effect matrix are precisely those that lay the foundation

of our analyses. Although the only admissible node labeling of such graphs in isolation is

y = 0, the fact that this is the unique solution satisfied by the graph operating on the node

labels becomes foundational to subsequent results.

2.2.2 Bipartite and Open Digraphs

A special kind of digraph that will play an important role in this analysis is one that partitions

its nodes into two sets with edges emanating only from one to the other. By treating the

labels of source nodes as independent variables and those of target nodes as dependent

variables, these structures introduce a particular meaning to the directionality of edges in

our models, as described below.
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Definition 9 A digraph of order p + m,

DB = (V , E ,

y
u

 ,W ),

is said to be bipartite if its node set, V, can be partitioned into two subsets, V = {Y ,U}, with

corresponding node labels, y ∈ Fp and u ∈ Fm such that the corresponding weighted adjacency

matrix W has the structure:

W =

 0 V

0 0

 , suggesting

 y

u

 =

 0 V

0 0


 y

u

 .

• Note the overloading of notation, where y generally represents all node labels but is also

used to represent one part of the partitioned labels in bipartite graphs.

• It is easy to see that every bipartite digraph is well-labeled, since I −W will always be

full rank.

• The second set of behavioral equations above, enforcing that u = 0, is inconsistent with

the interpretation of u as independent variables. As a result, we only enforce the first

set, redefining the behavior of a bipartite digraph to be the set

B(DB) , {[y′ u′]′ ∈ Fp+m|y = V u}

for any value u, thus making admissible values for y a well-defined linear function of

the (arbitrary) values of u. Similarly, the net effect matrix of a bipartite digraph is

simply V , characterizing how u effects y. The matrix V is the upper right hand entry

of (I −W )−1.

• This interpretation of y as dependent variables and u as independent variables implies:
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– The behavioral equation y = V u inherits the interpretation of assignment, not

merely equality,

– Directionality of edges in the graph thus correspond to computational dependence,

– It is reasonable to interpret u as inputs and y as outputs in the graph,

– While the only behavior of a well-labeled digraph is y = 0, a bipartite digraph’s

behavior is an r-dimensional subspace in Fp+m, where r is the rank of V .

• We denote bipartite digraphs as

DB = (Y ∪ U , E ,

y
u

 , V )

and identify properties of V with DB, specifically:

– When V is 1-1 we also call DB 1-1,

– When V is onto we also call DB onto.

Bipartite graphs allow the modeling of open systems by relaxing constraints on u in the

definition of their behavior and treating them as independent variables driving the behavior

of y. This idea of an open system, driven by independent variables u, can be generalized by

considering the graphical union of a (nominal, or closed) digraph with a bipartite digraph.

Definition 10 A well-labeled, open (or just open for short) digraph of order p + m is

the graphical union of a well-labeled (closed) digraph of order p and size N ≤ p2, DC =

(Y , EC , y,W ), and a bipartite graph of order p + m, DB = (Y ∪ U , EB,

y
u

 , V ), yielding

DO = (Y ∪ U , EC ∪ EB,

y
u

 ,

[
W V

]
).
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• We characterize the order of the open digraph, DO, by the tuple, (p,m), and sometimes

distinguish m as the input order and p as the output order.

• The internal size of an open digraph is defined to be N , the number of edges in DC.

• The net effect matrix of a well-labeled open digraph is computed to be G , (I −W )−1V .

The matrix G characterizes how u affects y, and can be found as the appropriate entry

in the inverse of (I −

W V

0 0

).

• The behavior of the open digraph, DO, is given by

B(DO) , {[y′ u′]′ ∈ Fn+m|y = (I −W )−1V u}.

– Characterizing behavior of the open digraph is only possible when the digraph is

well-labeled, ensuring that the relation between y and u has a unique solution.

– Like in bipartite graphs, the behavior of a well-labeled open digraph is an r-

dimensional subspace in Fp+m, where r is the rank of the matrix, G12 = (I−W )−1V .

– Interpretation of u as an independent variable and y as an observed variable suggests

directionality of edges in the graph correspond to computational dependence, and

even the edges in W inherit this interpretation from DB.

Definition 11 A well-labeled, open (or just open for short) digraph of order p + n + m

is the graphical union of a well-labeled (closed) digraph of order n DC = (X , EC , x,W ) a

bipartite graph of order n + m DB1 = (X ∪ U , EB1,

x
u

 ,

0 V

0 0

), a bipartite graph of order

n + p DB2 = (Y ∪ X , EB2,

y
x

 ,

0 0

R 0

) and a bipartite graph of order p + m DB12 = (Y ∪

U , EB12,

y
u

 ,

0 D

0 0

), yielding DO = (Y∪X ∪U , EC∪EB1∪EB2∪EB∞∈,


y

x

u

 ,


0 R D

0 W V

0 0 0

).
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• We characterize the order of the open digraph, DO, by the tuple, (p, n,m), and sometimes

distinguish p as the output order, m as the input order and n as the latent order.

• The net effect matrix of a well-labeled open digraph is computed to be

G ,


I R(I −W )−1 R(I −W )−1V + D

0 (I −W )−1 (I −W )−1V

0 0 I

 .

• The behavior of the open digraph, DO, is given by

B(DO) , {[y′ u′]′ ∈ Fp+m|y = (R(I −W )−1V + D)u}.

– Like in bipartite graphs, the behavior of a well-labeled open digraph is an r-

dimensional subspace in Fp+m, where r is the rank of the matrix, G13 = R(I −

W )−1V + D. This is only possible, though, when the digraph is well-labeled,

ensuring that the relation between y and u has a unique solution.

– Interpretation of u as an independent variable and y as an observed variable suggests

directionality of edges in the graph correspond to computational dependence, and

even the edges in W inherit this interpretation from DB1,DB2 and DB12.

Note observe the following special cases of the general open digraph:

1. p = 0, in this case we have the open digraph: DO = (X ∪ U , EC ∪ EB1,

x
u

 ,

W V

0 0

).

As before this is the network function.

2. n = 0, in this case we have the open digraph: DO = DB12.

3. m = 0, in this case we have the open digraph: DO = (Y ∪X , EC ∪ EB2,

y
x

 ,

0 R

0 W

).

Different combinations of W,R, V and D may yield the same net effect and behavior.

For simplicity, when p = 0 or R = I and D = 0, we often may refer to DO, by just (x, u,W, V ),
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called the network function, or sometimes the dynamic network function (i.e. DNF) when F

is a functional field.

Different combinations of W and V may yield the same net effect and behavior. For

simplicity, we often may refer to DO, by (y, u,W, V ) or just (W,V ), called the network

function, or sometimes the dynamic network function (i.e. DNF) when F is a functional field,

e.g. rational functions of a complex variable. Dynamic network functions where V = I and

inputs u are (unobserved) independent random processes are referred to as linear dynamic

graphs (LDG) by [36].

Sometimes we only consider network functions with no self loops, suggesting the

diagonal elements of W are necessarily zero. In this case we use the notation (Q,P ) for

(W,V ) and call the pair (Q,P ) the structure function or the dynamical structure function

(i.e. DSF) when appropriate. Dynamical structure functions for which the inputs are not

observable are also called linear dynamic influence models (LDIM) after the work of [41].

We often slightly abuse notation by using the network functions, i.e. (W,V ), or (Q,P ),

or (Q, I), to refer to the open digraph characterized by these parameters. Moreover, notice

that every well-labeled open digraph,

DO = (Y ∪ U , EC ∪ EB,

y
u

 ,

[
W V

]
)

characterizes an associated bipartite digraph over the same input and output node sets, given

by:

DB = (Y ∪ U , EC ∪ EB,

y
u

 , (I −W )−1V ).

These digraphs share the same net effect and behavior, leading naturally to the notions of

compatibility, abstractions and realizations of open digraphs.
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2.2.3 Digraphs as Models of Dynamic Systems

Digraphs are effective models of linear dynamic systems when one chooses F to be a functional

field, such as rational functions of a complex variable. In this case, values of node variables

should be understood as the Laplace transform of the corresponding value of of the node

variable as a function of time, and values of edge weights should be interpreted as the

transfer function of the corresponding single-input, single-output dynamic system. In this

way digraphs can represent dynamic systems in the frequency domain, and their net effect

matrix is each system’s corresponding transfer function matrix.

Alternatively, one could choose F to be the set of time distributions obtained as

the inverse Laplace transforms of rational functions, with multiplication understood as

convolution. Then the digraph would represent a dynamic system in the time domain, and

its net effect matrix becomes the system’s convolution kernel matrix.

Thus we see that the graph formalism described here enables a study of the structural

properties of systems, regardless of details about whether the model is defined over the

frequency domain or the time domain, or whether the system is dynamic or not, or stochastic

or not, etc. As long as the labels belong to a field, all of the properties derived here, and in

the subsequent analysis, will hold.

2.3 Abstractions and Realizations

Open digraphs include closed and bipartite digraphs as special cases, and thus they become

the focus of our analysis. For example, a closed digraph characterized by adjacency matrix W

is well modeled by an open digraph with network function (W, I), where I is the appropriate

sized identity matrix. We see here that in both cases the net effect is given by (I −W )−1.

Similarly, a bipartite digraph characterized by adjacency matrix V is well modeled by an

open digraph with network function (0, V ), as both will have the same net effect matrix,

given by V . The key to modeling one system with another is that the net effect, and hence

the behavior, is preserved.
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Figure 2.2: A dynamic network (i.e. “Original”), characterized by the DNF, (W,V ), generates
a rich spectrum of abstractions, characterized by fewer internal (i.e. blue) edges. The most
extreme of these abstractions is a unique bipartite network, the black box representation of
the system, characterized by the DNF, (0, (I −W )−1V ) and no internal (i.e. blue) edges.
Along the way are (generally) both cyclic and acyclic abstractions; examples of each are
shown.

Given any network function, (W,V ), there are many other combinations, (W̄ , V̄ ),

that characterize the same behavior. We think of these digraphs as different computation

structures that result in the same behavior, the way a transfer function and its different

state-space realizations all have the same input-output behavior.

In particular, notice that given any network function, we can form a spectrum (see

Figure 2.2) of behaviorally equivalent network functions spanning from the original to its

unique digraph with minimal internal structure, given by (0, (I −W )−1V ). Every step along

this spectrum is characterized by the number of internal edges, preserved from W , which

leads us to the notions of abstraction and realization.

Definition 12 (Abstraction and Realization) Given two open digraphs characterized by

DR = (WR, VR) and DA = (WA, VA), DA is an abstraction of DR if:

1. (Nodes) DA’s input and output node sets are (not necessarily strict) subsets of the input

and output node sets of DR,

2. (Behavior) The net effect of DA equals the appropriate submatrix of the net effect of

DR, and
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3. (Internal Size) the internal size (i.e. number of internal edges, see Definition 10) of

DA is strictly less than the internal size of DR.

When DA is an abstraction of DR, then DR is called a realization of DA.

One way to characterize the three points of the definition of an abstraction is through

full row-rank matrices Cy and Cu, whose rows are orthogonal indicator vectors. Then, given

open digraphs DR = (yR, uR,WR, VR) and DA = (yA, uA,WA, VA), DA is an abstraction of

DR if:

1. CyyR = yA, CuuR = uA,

2. Cy(I −WR)−1VRC
T
u = (I −WA)−1VA and

3. NA < NR.

When Cy and Cu are appropriate sized identity matrices, we see that (0, (I−WR)−1VR)

is a special abstraction, because it is 1) unique, 2) bipartite, and 3) an abstraction of all other

abstractions of DR, making it the “most abstract” of all. This “black box” representation

of the system grounds the spectrum of behaviorally equivalent networks constructed as

subgraphs from the original digraph.

We finally note that the above definition and characterization of abstraction is consis-

tent with a number of network abstractions discussed in the literature. For example,

1. An edge abstraction is an abstraction where Cy and Cu are both square,

2. A node abstraction is an abstraction where Cy and/or Cu are not square,

3. A hollow abstraction is an edge abstraction where WA is a hollow matrix,

4. An immersion is a node abstraction followed by a hollow abstraction, if necessary, to

end up with no self-loops. See [67], [12], [13], [32], and [68] for more details on these

abstractions.
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2.3.1 Complete Abstractions and Extraneous Realizations

Abstractions provide a systematic way to produce structurally simplified representations of

complex systems. Nevertheless, they can retain full information about the system’s effect,

but not all do. This section details one of the most important property of abstractions:

completeness.

Definition 13 An abstraction, DA = (yA, uA,WA, VA) of DR = (yR, uR,WR, VR) is complete

with respect to y∗R and u∗R, where y∗R is a subset of nodes in yR, i.e. y∗R ⊂ yR, and u∗R ⊂ uR,

if yA contains all the nodes y∗R and uA contains all the nodes in u∗R.

When an abstraction, DA, of a given network DR is complete with respect to all

nodes uR and all the sink nodes in yR, then we say it is a complete abstraction, and DR is a

non-extraneous realization of DA. If DA is not a complete abstraction of DR, then DR is an

extraneous realization of DA.

The basic intuition about complete abstractions is that information about the edges

in the original network is never entirely lost in the abstraction process; it is only compressed

and moved around within the network. On the other hand, extraneous realizations of a

network add new edge information that was lost in the given network as an abstraction of

these realizations.

For example, consider Figure 2.3. Suppose DR is the original network with DB and

DC as two separate abstractions. The weighted digraph DB is a complete abstraction; note

that the resulting edge weight of the single edge in the abstraction contains information from

both of the realization’s edges (A,B) = a and (B,C) = b. However, the edge weight in the

abstraction DC , which is not complete, contains no information about edge (B,C) from the

original network, DR.

Non-extraneous realizations are critical to understanding network minimality. If

the realization of a network is extraneous, it has introduced additional (hence extraneous)
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Figure 2.3: A network DR with an abstraction that is complete (DB) and an abstraction that
is not complete (DC).

information into the network that was not present in the original network. Thus, a minimal

network realization must necessarily be non-extraneous, see [25].

2.4 Acyclic Abstractions

Abstractions are structurally simplified representations of systems that preserve net effect, or

the behavior of the system. One way to simplify the structure of a system is to remove cycles,

resulting in an acyclic abstraction. Acyclic structures are critical for many graph algorithms,

and so developing acyclic abstractions may be a first step in applying such algorithms to

dynamic systems. This section details when such abstractions can be constructed, when

they’re complete, and how to build them.

2.4.1 Acyclic Subgraphs of Digraphs

Definition 14 A directed acyclic graph (DAG) is a weighted digraph D which admits a node

ordering so that the adjacency matrix of D is lower triangular.

Definition 15 Any node in a digraph, v′ ∈ V, such that ∀v ∈ V , (v, v′) 6∈ E, is a source

node.

Definition 16 An arborescence is a connected, directed acyclic graph, D′, in which any two

nodes are connected by at most one path with only one source node, called the root node.
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DAGs lend themselves to a number of applications such as allowing one to preform

a topological sort on the network, to execute special algorithms such as belief propagation,

and to conduct critical path analysis. The problem of deriving the largest acyclic subgraph

of an arbitrary graph, D (referred to as the maximal acyclic subgraph problem), has been

proven to be NP-hard, see [28]. Some focus in the literature has been to derive polynomial

time techniques for choosing a subgraph with proven bounds on the number of remaining

edges, see [2], [23] and [4].

Definition 17 A digraph spans node set V if there exists a node, v′ ∈ V for which there is a

path from v′ to every other node in V.

A spanning subgraph of digraph, D, is a digraph, D′ so that V = V ′, E ⊂ E ′ and D′

spans V.

Another existing class of acyclic subgraph finding problems is that of finding the

minimal spanning arborescence. This problem is source centered, one chooses a root node of

a graph and then computes an arborescence which spans the node set from which there are

paths from the root node. This is the digraph version of the minimal spanning tree problem.

It has had a polynomial solution since the 1960’s, see [10] and [15].

2.4.2 Single-Source Open Digraphs and DAG Subgraphs

Given a closed digraph, D∗, we choose a node, v′, and then attach an input node, v0, with a

weight 1 edge, making an open digraph. We call it D.

Definition 18 A single-source open digraph of a closed digraph, D∗, is a closed digraph, D,

which consists of D∗ composed with a single input node, v1 attached to a single node, v′ ∈ V∗

by a single unit-weight edge.

In this section we consider a DAG subgraph D′ ⊂ D in which v0 is the only source

node. This resulting digraph shares node labels and its edges are a subset of the edges of
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D. We demonstrate that when there is a path from v0 to every other node in D′ that there

exists a labeling of the edge weights in D′ which makes D′ an abstraction of D.

2.4.3 Directed Acyclic Abstractions

Once we have chosen our acyclic subgraph, D′, we consider if it is possible to choose weights

so that the net effect of D′ equals the appropriate column of the net effect of D.

Lemma 1 Every spanning subgraph arborescence of a single-source open digraph has a

labeling which makes its net effect equal to the appropriate column of the net effect of the

open digraph.

Let E be the set of edges in the original open digraph, and let E ′ be the subset of the

edges in the spanning subgraph arborescence. We note that the source node of the open

digraph is the root node of the arborescence.

We now choose the weight of each edge in E ′ as follows. We start by choosing the

weight of every edge (v1, vj1) where vj1 is distance 1 from v1 to be Gj11. Thus, W ′
j11

= Gj11.

We then assign each link from v1 to vj2 where vj2 is distance 2 from v1 to be: W ′
j21

=
Gj21

Gk1
.

Where k is the index of the node so that (vk, vj2) is in the unique path from v1 to vj2 .

We repeat this process until we have reached the set of nodes of maximal finite distance

from v1.

At this point we have that, for any index k, if we let j the distance of vk from v1 and

mi be the index of the ith vertex on the unique path from v1 to vk, then

G′k1 =

j∏
i=1

Gmi+11

Gmi1

= Gk1

and so G = G′.

Theorem 1 Every spanning subgraph DAG of a single-source open digraph has a labeling

which makes its net effect equal to the appropriate column of the net effect of the open digraph.

The resulting DAG with this labeling is an abstraction of the original digraph.
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We note first that every spanning subgraph DAG has a subset of edges which constitute

a spanning subgraph arborescence. We partition the set of edges in the spanning subgraph

DAG into this subset and the remaining edges.

Let E be the set of edges in the original open digraph, and let E ′ be the subset of the

edges in the spanning subgraph DAG.

Furthermore let E∗ be the edges which are part of the spanning arborescence rooted

at vi and let Ė be the rest of the edges in E ′.

Begin by adding all the edges in E∗ and choose their weights as in the proof of Lemma

1 so that G′ = G. At this point we add, one at a time, the edges of, Ė . Each time we add an

edge, call it (vs, vt), we first calculate the weight of (vs, vt) to be 1
es

, where es is the (current)

net-effect of vi on vs (a finite sum of products, since we are working with a DAG) and then,

recursively recalculate the weight of each edge (vs1 , vt1) ∈ Ė − {(vs, vt)} the same fashion

including recalculating the weight of each edge in (vs2 , vt2) ∈ Ė − {(vs, vt), (vs1 , vt1)} and so

on and so forth. The recursion will never result in circular dependencies as the graph is a

DAG. Thus in each iteration we preserve the relation that G = G′.

Corollary 1 Every spanning subgraph DAG of an open digraph has a labeling which makes

it an abstraction of the open digraph.

We simply note that every spanning subgraph DAG with a labeling which makes its

net effect equal to the appropriate column of the net effect of the open digraph fulfills the

definition of an abstraction.

2.4.4 DAG Abstractions and Conditions on Completeness

We now return to the DAG abstraction defined in Section 2.4 discuss completeness of such

abstractions. We note that DAG abstractions are edge abstractions, meaning that C1 and C2

are both square.
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Theorem 2 (Completeness of DAG Abstractions) A spanning subgraph DAG abstrac-

tion with a path from the source node to every other node in the digraph is complete.

Let WR and WA represent the weighted adjacency matrices of the original single-source

weighted digraph and the DAG abstraction respectively. With HR the net effect matrix of

the original digraph.

There is only one source node in the DAG abstraction, v1. For every entry [WR]ij

there exists one entry in HR which is a function of [WR]ij. Since there is a path from v1 to

every other node in the DAG abstraction, for all index k, there exists at least one edge in the

DAG abstraction whose corresponding label in WA is a function of [GR]k. Therefore, for all

[GR]ij there is at least one entry of WA which is a function of [WR]ij and the abstraction is

complete.

The following result is a consequence of Theorem 1. It implies that every dynamic

network spanned by a DAG has an abstraction whose edges match those of said DAG.

Corollary 2 Given any source node of a DSF there exists a single-input DAG abstraction

of the DSF which is complete with respect to all nodes spanned by the source node.

Figure 2.4: On the left is a dynamic network and on the right a single-input DAG abstraction.
Note that the graphical union of all three such abstractions includes all edges in the original
network.
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Figure 2.5: On the left is a dynamic network and on the right are its two single-input DAG
abstractions. Note that their graphical union does not include all loop dynamics.

2.5 Conclusion

This paper demonstrated how open digraphs can represent dynamic networks through careful

choice of algebraic field from which to draw node and edge labels. New notions of net effect

and behavior were introduced, leading to definitions of abstraction and realization and the

associated spectrum of abstractions, effectively linking (in the case of linear time-invariant

dynamic networks) state space realizations to their transfer functions.

Completeness of abstractions was also defined, along with the associated concept on

non-extraneous realization, and graphical characterizations of these properties were given.

These notions were argued to be essential for minimality and their associated concepts of

controllability and observability of a network, although these ideas are detailed elsewhere

(see [25]).

Finally, directed acyclic graphical abstractions were introduced. Methods for generat-

ing DAG abstractions, and conditions for their completeness, were also given.

Note that the structural information contained in each single-input DAG abstraction

can be combined to infer several acyclic structures. In some cases, the combined information

reveals the entire topology. Figure 2.4 illustrates this point for a ring structure. In others

(see Figure 2.5) some or none of the cyclic structure may be inferred.
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Previous work has given passive data-driven algorithms for the reconstruction of

acyclic networks (see [35], [36] and [37] for such work on LDGs). However, there are strong

indications that such techniques when used on a network with cycles need not reconstruct a

true DAG abstraction of the network (see, for example [5]).

Thus we pose to two related questions for future work:

1. What information regarding cyclic structure can be acquired from complete acyclic

abstractions of a dynamic network?

2. To what extent can acyclic reconstruction techniques give us true acyclic abstractions

of a reconstructed cyclic network?
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Chapter 3

Characterizing Network Controllability and Observability for Abstractions and

Realizations of Dynamic Networks

Accepted as a Special Session Paper to be presented in the 2020 IFAC World Congress

in Berlin

One method for managing the complexity of a dynamic network is to abstract some

of this complexity away by using a simpler, yet behaviorally equivalent, mathematical model.

A theory for such abstractions is currently under development (cf. [29] as well as [68]).

While recent work has considered concepts of controllability and observability for networked

dynamic systems (cf. [70] and [33]), this paper analyzes these concepts for abstractions of

dynamic networks. In particular, we present the notion of a complete abstraction and an

extraneous realization of a dynamic network and show that these concepts characterize the

controllability and observability properties of a class of abstractions of dynamic networks.

3.1 Introduction

Dynamic networks are a useful representation of dynamic systems. They not only reflect

the behavior of the system, but also capture a notion of structure in the way the system

computes its behavior. In particular, nodes in a dynamic network represent variables, or

signals, while edges between nodes describe dynamic relationships between signals. In linear

time-invariant (LTI) systems, these edges are labeled with SISO transfer functions (or their

time-domain equivalent, a convolution kernal) characterizing the dependency of one variable
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on another. When considering directed edges, we align the direction of an edge with the

causal dependency among variables.

A number of interesting systems questions can be posed in terms of dynamic networks.

For example, work on characterizing informativity conditions for discovering network structure

and edge dynamics under various conditions has been analyzed in [20], [1], [6], [7] and [45].

Likewise, a rich body of literature is emerging on the identification of part or all of a dynamic

network, see [35], [38], [49], [61] and [57]. Distributed control problems have been explored

where the dynamic network of the controller is constrained to have a particular network

structure (see [50]), and the security of cyber-physical-human systems has been explored in

terms of the underlying dynamic network characterizing the system in [51], [8] and [22].

Another set of interesting questions deals with the relationship between the graph

structure of a dynamic network and its behavior. Some of these questions include structural

controllability and reachability (first introduced in [31]), which extend the classic notions

of controllability and observability of state-space models. Structural controllability analysis

may be applied to all the fields where controllability is relevant and is especially of interest

as exact knowledge of the model parameters are not required [70].

However, the complexity and scale of modern-day networks means that such analysis

can be prohibitively expensive. Several strategies for managing this complexity arise from

considering abstractions (behaviorally equivalent, though structurally simplified models) of

dynamic networks. A rich theory of such abstractions is currently under development, see

[26], [68] and [29].

This paper highlights key similarities and differences between dynamic networks and

networked dynamic systems, a prominent model class for considering structured complex

networks. It then contributes definitions and characterizations of network controllability and

observability of abstractions of linear dynamic networks. These results highlight the advan-

tages of considering network abstractions when modeling, as well as conditions (we namely
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consider an abstraction condition called completeness) on which doing so fundamentally

changes the interpretation of the abstracted (simplified) model.

3.2 Background

The terms networked dynamic systems and dynamic networks are used in the literature to

mean very different things. Likewise, different notions of controllability and observability have

also been developed for networks. This section briefly surveys these concepts and establishes

the focus of the results presented in this paper.

3.2.1 Networked Dynamic Systems vs. Dynamic Networks

Networked dynamic systems are interconnections of subsystems that result in a larger, more

complicated system ([6, 60]). Often such models are used to describe multi-vehicle systems

([42]), power systems ([24]), or other systems interconnected by communication networks

([43]). The typical linear model for such a system would consider linear state equations for

each agent,

ẋi(t) = Aixi(t) + Biui(t)

yi(t) = Cixi(t)

where i ∈ 1, 2, ..., N indicates the agent index (in a system with N agents); xi(t) ∈ Rni is

the agent’s internal state vector; the agent’s input vector, ui(t) ∈ Rmi , receives input signals

from either external sources or neighbors in an interconnection (possibly directed) graph,

G, characterizing the structure of the entire system; the agent’s output vector, yi(t) ∈ Rpi ,

sends information to pi neighbors defined by the same interconnection graph, G; and t may

be either continuous or discrete (in the discrete case, ẋ(t) should be interpreted as x(t + 1)

instead of dx
dt

). Note that stacking the equations for each agent leads to a linear state space

model characterizing the entire system, although the structure of G might get lost in such

a representation. In such networks, nodes of G represent systems while edges carry signals
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transmitting information from one subsystem to another. We often call G the subsystem

structure of the network, since it represents the interconnection structure of subsystems.

Dynamic networks, on the other hand, are representations of dynamic systems that

also appeal to a graph, G, to characterize their structure, and they have been used to model

biochemical reaction networks ([73]), financial networks ([39]), the attack surface for the

security of cyber-physical-human systems ([22] and [8]), and to address different network

reconstruction and identification problems, see [63], [56], [40] and [20]. Nevertheless, in

these graphs, in contrast to networked dynamic systems, nodes represent signals while edges

represent systems. Such systems are characterized by equations of the form

y = Wy + V u

where y is a vector of length p and represents manifest measurements from the system and u

is a vector of length m representing stochastic or deterministic inputs to the system. Note

that, similar to networked dynamic systems, these equations may be considered in either

the time or frequency domain and over discrete or continuous time. Thus, for example, to

model a continuous time system in the frequency domain, entries of y, u, W and V would be

real rational functions of the Laplace variable, s ∈ C, while modeling a discrete time system

in the time domain suggests that entries of these variables are functions of (discrete) time,

t ∈ Z, and multiplication would become the convolution operation. The graph structure,

in this case, however, is revealed by the adjacency structure of W and V , and entries of

these matrices reveal the dynamics associated with the system, called a module (see [62]),

represented by each edge of the graph. Because we restrict our attention to causal modules

and well-posed representations (see [69]), the resulting graph G can be interpreted as revealing

the causal dependencies among the signals y and u; thus we call G the signal structure of the

system.

38



Every causal, linear time-invariant system has both a subsystem structure and a signal

structure, but in general these structures are different, see [71]. One example of this difference

is due to the possibility of a shared hidden state between modules, while subsystems do

not share states. The existence of shared hidden state implies that distinct modules on the

dynamic network may not be separated in the dynamic system from which the dynamic

network was computed; this may complicate the interpretation of a dynamical network as a

physical system.

3.2.2 Structural Controllability and Observability

Consider an LTI state-space model:

ẋ = Ax + Bu

y = Cx.

(3.1)

We call this model (A,B,C) for convenience.

We restate the classic definition of structural controllability given by [31] via the

notion of structural zeros1 explained in [26].

To consider the structural controllability of (A,B,C) from a graph-theoretic standpoint

we represent the system with a weighted digraph. We do so by considering the states, x,

and the inputs, u, to be graph nodes and then characterize the system graph as the graph

composition of a bipartite digraph with weighted adjacency matrix Wu and a second digraph

with weighted adjacency matrix Wx, where

Wu =

0 B

0 0

 and Wx =

A 0

0 0

 .

1Loosely speaking, structural zeros correspond to the absence of a connection between variables as opposed
to the existence of a potentially zero-strength connection.
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This gives us a new graph to consider, whose weighted adjacency matrix is of the form:

Wx+u =

A B

0 0

 .

The first n nodes in this resulting digraph are the state-variables, x, the remaining m nodes

are the inputs, u. Each zero entry in A or B can either correspond to an edge with a zero

weight or to a non-existent edge. One can think of each non-existent edge on this graph as a

structural zero.

Definition 19 (Structurally Controllable) The model in Equation 3.1 is structurally

controllable if there exists a controllable system (Ā, B̄, C̄) which has the same structural zeros

as the system (A,B,C).

Graph structure conditions on when a system is structurally controllable (specifically

path connectivity from input nodes and the absence of graph dilations) are then given for

the graph structure in [31].

For these LTI systems, the same graph results on structural observabillity may be

defined on a sort of graphic dual of Wx+u. By graphic dual we mean the n + p node graph

(where nodes are the states and outputs) with the weighted adjacency matrix of the form:

Wx+y =

A 0

C 0

 .

Structural observability can then be posed as a structural controllability problem on the

transpose digraph given by

W T
x+y =

AT CT

0 0

 .

Thus we extend our definition of structural controllability to cover structural observ-

ability.
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Definition 20 (Structurally Observable) The model in Equation 3.1 is structurally ob-

servable if there exists a controllable system (ĀT , C̄T , B̄T ) which has the same structural zeros

as the system (AT , CT , BT ).

3.2.3 The Computational Dynamic Network Function

The computational dynamic network function for LTI systems is a model derived from

Equation 3.1, as follows. By taking the Laplace transform (or Z transform depending on if

time is continuous or discrete) of Equation 3.1 and assuming zero initial conditions we get:

sX = AX + BU

Y = CX

Now, dividing by s yields:

X =
1

s
AX +

1

s
BU

Y = CX.

(3.2)

The equation tuple (X = 1
s
AX + 1

s
BU, Y = CX) is the computational dynamic network

function (DNF) of (A,B,C).

We now define structural controllability and observability on the computational

DNF. Since there is a one-to-one correspondence between the LTI system (A,B,C) and its

computational DNF, it inherits structural controllability and observability from the LTI

system it corresponds to.

Definition 21 The computational DNF, (X = 1
s
AX + 1

s
BU, Y = CX), is structurally con-

trollable if (A,B, I) is structurally controllable, and it is structurally observable if (AT , CT , I)

is structurally controllable.

The computational DNF may be interpreted as a digraph with the same structure as

(A,B,C), but with the weights in A and B scaled by 1
s
, a first-order dynamic system.
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Figure 3.1: Example of graphical representations of the state-space, computational DNF and
computational DSF models of an LTI system. Note that there is a one-to-one correspondence
between a state-space model with C = I and its computational DNF, thus the two perfectly
share network controllability characteristics. Note in this case that the state-space (and
therefore computational DNF) model has no dilations and has path connectedness from the
input to all states, so all three models (including the computational DSF) are structurally
controllable.

3.2.4 General LTI Dynamic Networks

General LTI dynamic networks may be interpreted as arbitrary digraphs whose edge weights

are themselves SISO LTI systems (typically represented by rational polynomials over C).

One such example is the computational dynamical structure function (DSF), see [20].

Example 3 Consider the state-space system:


ẋ1

ẋ2

ẋ3

 =


0 0 0

a21 0 0

a31 0 a33



x1

x2

x3

+


b1

0

0

u1
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y1

y2

y3

 =


1 0 0

0 1 0

0 0 1



x1

x2

x3

 .

This system’s computational DSF is the tuple (Q(s), P (s)), where Y (s) = Q(s)Y (s)+P (s)U(s).

It is computed by taking an immersion (see Definition 22) with CA = I. Specifically:


Y1(s)

Y2(s)

Y3(s)

 =
1

s


0 0 0

a21 0 0

a31s
s−a33 0 0



Y1(s)

Y2(s)

Y3(s)

+
1

s


b1

0

0

U1(s).

Note that the self-loop in the computational DNF has now been incorporated into the

relationship between Y1 and Y3. This means that the network is structurally controllable (like

the state-space model and computational DNF it was computed from), although the graph

contains a dilation.

Figure 3.1 demonstrates the digraphs associated with a simple LTI system, its compu-

tational DNF and its computational DSF.

3.3 Network Abstractions and Realizations

A theory of abstraction has been developed for dynamic networks. This theory results in a

spectrum of representations linking input-output or behavioral descriptions to state space

models of the same underlying system, see [67] and [64]. Moreover, while previous work has

considered the controllability and observability of networked dynamical systems (such as [70],

[33] and [11]), this work considers how these concepts relate to dynamic networks, in general,

and their corresponding spectrum of abstractions in particular.

An abstraction of a dynamic network is a behaviorally equivalent model with fewer

structural parameters. While there are many forms of abstractions, we will concern ourselves
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Figure 3.2: A visual demonstration of the concept of a network abstraction. We apply an
immersion and an input immersion. By ignoring nodes U3, Y6, and Y7, we reduce the number
of parameters needed to learn the simplified network model from data. Note that the edge
weights (which are dynamic systems) between the two models often will not be the same.

with immersions in this work. Formally we define an immersion as follows (note the relationship

of this definition to those given by [68] and [64]).

Definition 22 (Immersion and Realization) An immersion of an LTI network model,

(WR(s), VR(s)), with input nodes uR(s), manifest nodes xR(s) and transfer function GR(s),

is a second LTI network model (WA(s), VA(s)), with input nodes uA(s), manifest nodes xA(s)

and transfer function GA(s) where:

1. WA is hollow (has zeros on the diagonal),

2. xA(s) = CAxR(s) and

3. GA(s) = CAGR(s),

where CA is a set of rows from a permutation matrix of appropriate size.

We call (WR(s), VR(s)) is the realization of (WA(s), VA(s)).
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Additionally, to simplify one’s network models one may abstract away a network input

(many things could motivate the desire to remove or ignore a network actuator). To do so we

define a second form of abstraction.

Definition 23 (Input Immersion and Realization) An input immersion of an LTI net-

work model, (WR(s), VR(s)), with input nodes uR(s), manifest nodes xR(s) and transfer

function GR(s), is a second LTI network model (WA(s), VA(s)), with input nodes uA(s),

manifest nodes xA(s) and transfer function GA(s) where:

1. WR is hollow (has zeros on the diagonal),

2. uA(s) = CAuR(s) and

3. GA(s) = GR(s)CT
A ,

where CA is a set of rows from a permutation matrix of appropriate size.

We call (WR(s), VR(s)) is the realization of (WA(s), VA(s)).

3.3.1 Structural Controllability and Observability of Dynamic Networks and

their Immersions

The graphical results characterizing structural controllability and observabillity (originating

with the introduction of structural control in [31]) do not extend to a reasonable definition of

structural control on general dynamic networks (a parallel argument for the failure of these

results to extend is given for networked dynamic systems in [11]).

Indeed, when we define structural control to be the existence of edge dynamics that

permit a structurally controllable realization, we find that path connectedness is the only

notion required for structural control. However, LTI systems that are not structurally

controllable may be represented (as abstractions) by Dynamic Networks that are path

connected.

To see that past graph results on structural controllability do not directly carry over

to LTI dynamic networks, examine the dynamic network given by the DSF in Example 3 and
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shown in Figure 3.1. When one examines the graph topology of the DSF there appears to be

a graph dilation, which implies that structural controllability of the network is impossible,

a conclusion shown in [31]. However, when one examines the computational DNF, or the

state-space model which can be realized from the same network, there is no dilation (due to

the existence of a self-loop on X3), and the system is therefore structurally controllable.

Alternatively, we can restrict our definition to constrain the choice of edge dynamics

with the same graph structure and then consider if a realization of the current dynamics

is itself structurally controllable. But, even this working definition has its issues. It still

allows a network that was derived from a structurally uncontrollable state-space model to be

realized as structurally controllable. See Example 4 and Figure 3.3. Further restriction on

which realizations we may consider for structural controllability is necessary.

Example 4 (Uncontrollable System, Controllable Realizations) Consider the structurally

uncontrollable state-space model

(A, b) = (

0 0

0 0

 ,

1

1

).

Taking the trivial immersion of the system results in,

(QA(s), PA(s)) = (

0 0

0 0

 ,
1

s

1

1

).

The transfer function of this immersion is: G(s) = P (s). However, we may realize this system

as an abstraction of the system

(A,B) = (

0 0

0 0

 ,

1 1

1 0

),

which is clearly controllable (B is full row rank).
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Note that the transfer function of this controllable realization,

GCR(s) =
1

s

1 1

1 0

 ,

has a higher Smith McMillan degree than that of the original model with transfer function

GA(s) = PA(s). This difference in Smith McMillan degree motivates the below definition of

structural controllability of a dynamic network.

Figure 3.3: In this example we see that one network can be derived from a structurally
uncontrollable state-space model, but also be the abstraction of a network that was derived
from a structurally controllable state-space model (hence the same network is also derivable
from a structurally controllable state-space model). We thereby justify holding the Smith
McMillan Degree constant when considering state-space realizations of our abstractions.

A definition of structural controllability for dynamic networks needs avoid situations

like that demonstrated in Example 4. To avoid this issue we propose restricting the set of

admissible realizations to those which share the same Smith McMillan degree. This will allow
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the realization of a class of systems which captures the same dynamic information as our

network in a clear, tractable way.

Definition 24 (Structural Controllability) An LTI dynamic network, (WA(s), VA(s)),

is structurally controllable if there exists a structurally controllable computational dynamic

network function in the set of all possible realizations of (WR(s), VR(s)) which are of the same

Smith-McMillan degree of (WA(s), VA(s)).

Under any of the definitions we considered above (including the one we chose) we

cannot necessarily trust all the basic graph conditions (see Figure 3.1) used to characterize

structural controllability on general LTI dynamic networks because the model we reference

may be derived from an equivalent model with a more complex graph structure. However,

we can ask the question of when properties like structural controllability carry over from

realization to immersion. As a prelude to some results that answer this question we introduce

the notion of a complete immersion and an extraneous realization.

3.4 Complete Immersions

We argue that not all network immersions are equal in their effect on the resulting model.

There are some immersions which require no more than the removal of rows and columns

from WR(s) and rows from VR(s), and there are some input immersions that require no more

than removal of some columns of VR(s). We will refer to these as incomplete immersions.

Incomplete immersions dramatically obfuscate the structural controllability and observability

of dynamic networks by removing both structural and dynamic information from the resulting

model.

Complete immersions, on the other hand, preserve underlying dynamics and, while

they may appear to create dilations in the network, loop dynamics are encoded on to the

edges and path connectivity is never disrupted.
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Definition 25 (Complete Immersion) An (input) immersion, (WA(s), VA(s)) is complete

with respect to a subset of nodes in wR(s), w∗R(s), and a subset of nodes in uR(s), u∗R(s), if

wA(s) contains all the nodes w∗R(s) and uA(s) contains all the nodes of u∗R(s).

Figure 3.4: An example of an incomplete and a complete immersion with respect to the set
of sink nodes of the same computational DNF. When performing an immersion we throw
out the abstracted nodes (hence the abstracted node is represented in gray). Note that the
complete immersion required the creation of new edges. The dynamics corresponding to
the edges leading in to and out of Y1 are placed on the edges p21(s) and p31(s) to maintain
equivalent transfer functions from the realization to the immersion. The preservation of these
dynamics on these new edges keeps key information in the simplified model.

Example 5 (Complete and Incomplete Immersion) Consider the state-space model

given in Example 3. We perform two distinct immersions on that state-space model. The

first with

CA =

1 0 0

0 1 0

 and the second with CA =

0 1 0

0 0 1

 .
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The first is an incomplete immersion with respect to the set of sink nodes. It results in the

DSF (QI(s), PI(s)), where

QI(s) =
1

s

 0 0

a21 0

 , PI(s) =
1

s

b1
0

 .

Note that Q1 and P1 are each submatricies of the Q and P associated with the computational

DSF of this state-space system. This implies that no information from the edges into and

from Y3 have been included in this immersion.

The second is a complete immersion with respect to the set of sink nodes. It results in

the DSF (QC(s), PC(s)), where

QC(s) =

0 0

0 0

 , PC(s) =
1

s2

b1a21
b1a31
s−a33

 .

In this model the entries in PC are distinct from those of P from the computational DSF.

The edge weights in PC have been modified to encode the dynamics of the entire model.

By definition all input immersions are incomplete with respect to source nodes.

3.5 Results

Below we present preliminary results on the structural controllability of immersions and

realizations of LTI dynamic networks.

Result 1 (Edge Weights in Incomplete Immersions) Any single-node immersion,

(WA(s), VA(s)), of an LTI dynamic network, (WR(s), VR(s)), that is incomplete with respect

to sink nodes where CAwR(s) = wA(s) may always satisfy WA(s) = CAWR(s)CT
A .

Without loss of generality assume that we abstract away the last node and it is a sink

node. So WR(s) has the block structure: WR(s) =

W11 0

W12 w22

, with VR(s) =

V1

V2

,

50



where W12 and V2 are row vectors. So the transfer function of the realization is: GR(s) = (I −W11)
−1V1

1
1−w22

(W12(I −W11)
−1V1 + V2)

, while GA(s) = (I −W11)
−1V1. This may be achieved by

an abstraction of the form: WA(s) = W11(s) and VA(s) = V1(s).

Result 2 (Edge Weights in Incomplete Input Immersions) Any single-node input im-

mersion, (WA(s), VA(s)), of an LTI dynamic network, (WR(s), VR(s)), where CAuR(s) = uA(s)

may always satisfy VA(s) = VR(s)CT
A .

Without loss of generality assume that we abstract away the last input node. So VR(s) has

the block structure: VR(s) =

[
V1 V2

]
, where V2 is a column vector. So the transfer function

of the realization is: GR(s) = (I −WR)−1
[
V1 V2

]
, while GA(s) = (I −WR)−1V1. This may

be achieved by an abstraction of the form: WA(s) = WR(s) and VA(s) = V1(s).

Note that results 1 and 2 imply that in these cases the Smith McMillan Degree of the

network necessarily decreases as poles in the transfer function associated with the abstracted

edges will not be used to compute any other input-output relationship in the abstraction.

Result 3 (Complete Smith McMillan Degree) The Smith McMillan degree of a single-

node immersion (WA(s), VA(s)), of a weakly connected LTI dynamic network, (WR(s), VR(s))

equals that of (WR(s), VR(s)) if and only if it is complete with respect to its source and sink

nodes.

We prove the first direction by the contrapositive. Assume that the immersion, (WA(s), VA(s)),

is not complete with respect to the set of source and sink nodes. Without loss of generality

assume that we abstract away the last input node. So WR(s) has the block structure:

WR(s) =

W11 W12

W21 w22

 and VR(s) =

[
V1 V2

]
, where W12 and V2 is a column vector and W21

is a row vector. Then, we have two cases. In the first case we have abstracted away at least

one source node, so W21 = 0. In the second case we have abstracted away at least one sink
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node, so W12 = 0. In both cases, results 1 and 2 imply that the transfer function of the

abstraction is of a lower Smith McMillan degree than the original network.

Now assume that (WA(s), VA(s)) is a complete immersion with respect to source

and sink nodes of (WR(s), VR(s)). Then, to preserve transfer function equivalence, all the

dynamics of the abstracted edges pass over to the transfer function of the abstraction and so

the Smith McMillan degree is the same.

Result 4 (Structural Control of Complete Immersions) Complete immersions with

respect to source and sink nodes of a structurally controllable LTI dynamic network are

structurally controllable.

This is true because the Smith-McMillan degree of the immersion is that of the realization

and the immersion and the immersion dynamics are consistent (the transfer function entries

are equal), so the realization may be constructed from the immersion. Since that realization

was structurally controllable so is the immersion.

Analogous results for structural observability may be acquired by applying immersions

to dynamic networks generated from the dual network.

3.6 Conclusions

We have explored the difference between networked dynamic systems and dynamic networks.

We have highlighted how dynamic networks have an established theory of abstraction which

allows one to greatly reduce the topological complexity of their use and of learning them

from data. However, the interpretation of the abstracted model (especially immersions of the

original model) may have a significant difference in interpretation due to the existence of

shared hidden state. Regardless, such abstractions preserve all of the predictive power of their

topologically complex realizations when they retain the property of completeness. Specifically,

we defined structural controllability of dynamic networks and noted how completeness is

a necessary requirement for preserving structural controllability through the abstraction
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process. This informed application of dynamic network abstraction theory identifies how

graph-based model topology simplification methods influences the interpretation of models of

networked dynamic systems.
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