
Brigham Young University Brigham Young University 

BYU ScholarsArchive BYU ScholarsArchive 

Theses and Dissertations 

2020-05-26 

Topologically Mixing Suspension Flows Topologically Mixing Suspension Flows 

Jason J. Day 
Brigham Young University 

Follow this and additional works at: https://scholarsarchive.byu.edu/etd 

 Part of the Physical Sciences and Mathematics Commons 

BYU ScholarsArchive Citation BYU ScholarsArchive Citation 
Day, Jason J., "Topologically Mixing Suspension Flows" (2020). Theses and Dissertations. 8389. 
https://scholarsarchive.byu.edu/etd/8389 

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion 
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please 
contact ellen_amatangelo@byu.edu. 

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F8389&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/114?utm_source=scholarsarchive.byu.edu%2Fetd%2F8389&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/8389?utm_source=scholarsarchive.byu.edu%2Fetd%2F8389&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu


Topologically Mixing Suspension Flows

Jason Junichi Day

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Todd Fisher, Chair
Benjamin Webb

Kening Lu

Department of Mathematics

Brigham Young University

Copyright c© 2020 Jason Junichi Day

All Rights Reserved



abstract

Topologically Mixing Suspension Flows

Jason Junichi Day
Department of Mathematics, BYU

Master of Science

We find a set of conditions on a roof function to ensure topological mixing for suspension
flows over a topological mixing base. In the measure theoretic case, such conditions have
already been established for certain flows. Specifically, certain suspensions are topologically
mixing if and only if the roof function is not cohomologous to a constant. We show that
an analogous statement holds to establish topological mixing with the presence of dense
periodic points. Much of the work required is to find properties specific to the equivalence
class of functions cohomologous to a constant. In addition to these conditions, we show that
the set of roof functions that induce a topologically mixing suspension is open and dense in
the space of continuous roof functions.
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Chapter 1. Introduction

The study of dynamical systems focuses on the behavior of a system as it evolves with time.

Some systems have very basic structure and behavior, like the swinging of a pendulum or the

rotation of a circle. Other systems have considerably more complicated behavior, like models

for the weather or economy. Understanding and predicting systems that have complicated

and chaotic properties motivates the study of dynamical systems. Two types of dynamical

systems, are discrete and continuous systems.

Definition 1.1. Let X be a nonempty set. The map f : X → X is a discrete-time dynamical

system or a discrete dynamical system.

In the study of discrete dynamical systems, we are interested in the trajectory of a point

or a set under recursive iteration of our function. That is, we consider x, f(x), f ◦ f(x), and

so on. To simplify the notation we write

fn(x) = f ◦ f ◦ · · · ◦ f(x) (composing x in f n times) and where f 0(x) = x

It is by understanding the behaviors of the points in a space X under repeated compositions

of f that we are able to form an understanding of the structure of the system (X, f). With

these maps, the system evolves discretely.

The second type of dynamical system captures the notion of a system that changes over

a continuous parameter.

Definition 1.2. A continuous-time dynamical system, continuous dynamical system, or flow

is a mapping ϕ : X × R→ X such that

(i) ϕ(x, 0) = x; and

(ii) ϕ(ϕ(x, t), s) = ϕ(x, s+ t).
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We often write ϕ(x, t) = ϕt(x) for convenience; however, we will use both notations as

needed.

The space X is called the phase space. Here, by crossing our phase space with R we obtain

a notion of time where negative values indicate the past state of the system, zero represents

the present, and positive values correspond with the future state of the system. We take a

point in the phase space and allow it to flow under ϕ with time t ∈ R. Frequently, we are

interested in the behavior of a point or set as time goes to infinity and whether predictions

can be made about the evolution of a system. Without infinite precision, a dynamical system

can appear to behave unexpectedly or randomly making predictions inaccurate or impossible

to make. The study of dynamical systems attempts to quantify and understand this chaos

and how to make conclusions when it is present in a system.

The systems we will consider are flows, which are typically generated by an ordinary

differential equations or by a vector field on a manifold. Flows and discrete time dynamical

systems can be thought of as the trajectories or motion dictated by a function in some space.

In addition, these systems are deterministic. That is for any point, there is exactly one future

for it. There is nothing random about the paths or trajectories of points in these kinds of

systems; although “noise” can be added to a system to give it more random behavior, we

do not consider any stochastic systems. This may suggest that deterministic systems are

simple and can be easily understood; however, two nearby points could have vastly different

behaviors and trajectories. Additionally, we would need an infinite level of precision to know

the future for a given a point. This gives rise to the notion of deterministic chaos, and is a

fundamental principle in the study of these systems.

1.1 History

The study of dynamical systems began when the French mathematician, Henri Poincaré in

the 19th century as he studied and attempted to predict the movement of celestial bodies as

governed by the laws of gravity. He found that for two bodies, the question is fairly simple.
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Figure 1.1: S, the Poincaré Section

However, for three or more bodies, finding a model that accurately predicted the behavior of

the system in the long run was considerably more difficult. Prior to this work by Poincaré,

mathematicians solved differential equations by finding an explicit solution or series solution.

However, no closed form solution could be produced for the general n-body problem. Rather

than find a solution Poincaré elected to study the orbits or trajectory of a point. This shift

in focus made it possible to study a system, and its evolution over time without knowing

the exact solution given a set of initial conditions of the system.

To assist his work on flows, Poincaré’s introduced the foundations for the construction of

a suspension flow, in Mémoire sur les courbes définies par les équations différentielles [19, p.

I49]. Given a flow, we can find a transversal surface of the phase space of codimension one

called a Poincaré section. This surface can be thought of as a manifold that does not run

parallel along any orbit in the flow. From this cross section, we can obtain a return map,

that represents where a point returns back to the transversal. This also allows us to define a

discrete system on the surface by tracking how the path of the point intersects the Poincaré

section. This map is often called the Poincaré map or return map. While the dynamical

system on the Poincaré section is not a flow, since the Poincaré section has lower dimension,

understanding the dynamics on this surface can be relatively easier than studying the flow.

3



Figure 1.2: Suspension flow

From the Poincaré section, return map, and the Poincaré map of a flow, we can construct

a suspension flow. Suspension flows or special flows are comprised of two components: a

discrete system on a space X, and a function from X into the positive reals. The space X

is referred to as the base, and the function mapping into the reals is called the roof function.

We construct our phase space by considering the space under the roof and by identifying

points on the roof with appropriate points in the base (see Definition 2.7). Points in the

phase space flow at unit speed directly up to the roof as in Figure 1.2. When constructing

a suspension from a flow, the Poincaré section is the base space, the return time is the roof

function, and the Poincaré map or return map is the discrete system on the base. In this

manner, we can construct suspension flows from a flow; a more rigorous treatment of this

construction is found in Section 2.1.

This construction is often helpful because any flow on a measure space without fixed

points is isomorphic to a suspension flow [3, p. 295]. Suspension flows are a useful tool when

trying to understand the behavior of a system because they can simplify many problems

that arise when studying a flow. Understanding the properties of a flow can be reduced to

understanding the dynamics on the base and knowing the structure of the roof function of

the corresponding suspension flow.
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1.2 Mixing

The topological property of a dynamical system we will study is topological mixing.

Definition 1.3. A discrete time dynamical system f : X → X is said to be topologically

mixing if for any two opens sets U, V ⊂ X, there exists an N , such that for all n ≥ N we

have that fn(U) ∩ V 6= ∅. Similarly, a continuous time dynamical system ϕt : X → X is

said to be topologically mixing if for any open sets U, V ⊂ X there exists a T such that for

all t ≥ T , we have that ϕt(U) ∩ V 6= ∅.

For compact metric spaces, there is an alternative definition that we may use [8, p. 56].

Here we only provide the definition for a flow, since the definition for discrete maps is similar.

Definition 1.4. A flow ϕt is topologically mixing if for all ε > 0, there exists a T ∈ R such

that for any x, y ∈ X and t ≥ T we have that ϕt(B(x, ε)) ∩B(y, ε) 6= ∅.

The notion of mixing arose in physics and the study of mixing liquids or gas. The

mathematical interpretation of mixing is meant to reflect the physical mixing process. For

example, consider a glass of water with food coloring added to the glass. If we stir the

glass enough, the food coloring will diffuse throughout the glass and become inseparable or

indistinguishable from the water.

This is a topological approach to describing a mixing property, but there are analo-

gous notions for different systems. If we are considering a system defined on a measure or

probability space, we may think of mixing in a statistical manner.

Definition 1.5. Let (X,A, µ) be a probability space. A measure preserving transformation

or flow T is (strong) mixing if for any A,B ∈ A we have that

lim
t→∞

µ(T−t(A) ∩B) = µ(A)µ(B)
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Equivalently, T is mixing if

lim
t→∞

∫
X

f(T t(x)) · g(x)dµ =

∫
X

f(x)dµ ·
∫
X

g(x)dµ

For any bounded measurable functions f and g.

We may interpret this definition for mixing in our food coloring in water example. Sup-

pose 90% of the solution is water and the remaining 10% is food coloring. Once we stir the

solution and take a sample, we would expect that any sample would be approximately 90%

water and 10% food coloring.

Some systems do not exhibit any mixing properties. Reusing the example of mixing

fluids, suppose we have a glass of water with oil in it. If we stir this solution, the water and

oil do not combine or mix in any manner because of the oils hydrophobic properties. The

water and oil will always be separated. Again, considering the statistics, if 90% is water and

the remaining 10% is oil, after stirring we would not expect that every sample of the solution

would contain the same ratio of water and oil.

Mixing systems tend to have more complicated behaviors and structure than systems

that are not mixing. Mixing is a strong property that implies a variety of other properties

about the system. While there are a handful of mixing systems with predictable and basic

behavior, most mixing systems have chaotic and unpredictable behavior. Because certain

phase spaces have more structure than others, the system of interest leads to different notions

and definitions of mixing can be used. Furthermore, there are a variety of definitions to

capture the different levels of mixing a system exhibits. Since we are focusing on topological

mixing we restrict our attention to compact metric spaces. To distinguish between the

different types of mixing, we will always refer to topological mixing using the full term, and

we will refer to strong mixing in Definition 1.5 simply as mixing.
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1.3 Ergodic Theory

Poincaré’s work on the n-body problem led him to utilizing probability theory and measure

theory to determine statistical properties of systems. This work gave rise to ergodic theory

and the study of measure preserving transformations. The statistical properties of a system

can provide many insights into the long-term behavior of a system regarding the trajectories

of points and the average values the points take on. Strong mixing is an example of how

the statistics of a systems can provide information about the behavior of a system. Some

of the most important and elementary results of ergodic theory are due to Poincaré, George

Birkhoff, and John von Neumann. Here we provide the definition of an ergodic system.

Definition 1.6. Let T : X → X be a measure-preserving transformation (or flow) on a

probability space (X,A, µ). T is ergodic if for all A ∈ A with T−1(A) = A, either µ(A) = 0

or µ(A) = 1.

Since the only sets that are fixed by T have zero measure or full measure, all other sets

are spread throughout the space. Heuristically, this means that points in an ergodic system

attain almost every possible state, and the orbits of points are spread throughout the system.

One fundamental result due to Poincaré deals with how often a point will return back to

a set it is contained in.

Proposition 1.7. Let T be a measure-preserving transformation on a probability space

(X,A, µ). If A ∈ A, then for all almost every x ∈ A, there exists some n ∈ N such that

T n(x) ∈ A.

This result implies that almost every point in a measurable set will return back to the

set an infinite number of times. In particular, it also implies that non-periodic points will

also return back to the set they started in.

Since ergodic systems exhibit the spreading of sets there is a connection between mixing

and ergodicity. In particular, strong mixing implies ergodicity. Thus an ergodic system

spreads sets throughout a space in a weaker manner than what a mixing system may exhibit.
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1.4 Measure Theoretic Results

Because of the success and power of ergodic theory the study of dynamical systems on

measure spaces became very popular. A great deal of research has been dedicated to studying

suspension flows in the measure theoretic case. In this setting, suspension flows are typically

referred to as “special flows.” Because many of the useful results are known in the case of an

ergodic transformation, study on how the roof function can affect the ergodic properties of a

system has been a point of focus. Additionally, because mixing implies ergodicity, identifying

roof functions that induce mixing special flows can help us show ergodicity in a system.

Major results often state that given a certain base, a special flow is mixing if the roof

function has a certain property. Many of these results deal with special flows over some sort

of rotation of the circle. Kochergin showed that special flows over a rotation of the circle

under a roof function of bounded variation is not mixing [14]. This work would be furthered

by Katok to special flows over a base that permutes fixed intervals of the circle [12]. Such a

base is called an interval exchange transformation, and a special flow with such a base under

a roof function of bounded variation is not mixing.

One major result states that an Anosov flow is mixing or is a special flow with a constant

roof function modulo a time change [18]. This result provides a dichotomy for Anosov flows.

Another result presents a similar dichotomy for roof functions over a certain class of parabolic

flows. They state further that the set of roof functions that induce mixing flows is dense

in the space of continuous roof functions [20]. These dichotomies can often provide simple

methods or strategies to determine whether a system is mixing.

Although there are many results in this setting, there is a scarcity of results for sus-

pensions for topological mixing. We will show that a similar dichotomy in the topological

setting exists. While there are some differences in the topological case we will employ a sim-

ilar strategy to obtain these results. Specifically, we will adapt the notion of cohomologous

from the measure theoretic setting to classify roof functions.
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Definition 1.8. [13, p. 717] Two roof functions r and s for a special flow over the same

measure preserving transformation T are cohomologous if there is a measurable function g

such that

r − s = g ◦ T − g

Definition 1.9. Two functions r : X → R and s : X → R are said to be cohomologous if

there exists a continuous function g : X → R such that r(x)− s(x) = g(f(x))− g(x) for all

x ∈ X. The function g is called a transfer function.

For the measure theoretic case, g is only required to be measurable. However, in the

topological setting we require that g be continuous. This transfer function is important

to how we compare roof functions, and finding a continuous transfer function for two roof

functions can be extremely difficult.

Many of our results will hold for arbitrary functions on the base; however, we will use

the existence of dense periodic points in the base to prove our main result, Theorem 4.9: a

suspension flow is topologically mixing if and only if the roof function is not cohomologous

to a constant. In addition, we will show that in this setting, the set of topologically mixing

suspension flows is an open and dense set in Theorem 5.3. For clarity, the inclusion of

dense periodic points will always be made in the statement of a result. While there is

no universally accepted definition of chaos, the common definition attributed to Devaney

includes a condition that a system must have dense periodic points [5, p. 50]. Hence, our

main results apply to chaotic topologically mixing systems.

9



Chapter 2. Preliminaries

Here we state a handful of additional definitions that will provide the foundation for the

more substantial results that will come later. We will also state several examples of systems

that exhibit topological mixing or do not. Because symbolic dynamics contain spaces with a

wide-variety of behaviors, they are a natural system to study for functions for the base of a

suspension. We will provide the basics of symbolic dynamics and examples of systems with

interesting topological mixing properties. We also include other basic examples to illustrate

other kinds of systems and their topologically mixing behavior.

2.1 Definitions

Before we present any examples or results we will define several terms that will repeatedly

appear throughout. These definitions will mainly focus on the structure of a system. In

addition, we will give a rigorous definition of a suspension flow and the construction of a

suspension from a flow.

Definition 2.1. Let f : X → X and let x ∈ X. The positive semiorbit of x under f is the

set
⋃
n≥0 f

n(x) and is denoted as O+
f (x) or as O+(x) if there is no confusion on the map.

If f is invertible, the negative semiorbit of x under f is the set
⋃
n≤0 f

n(x) and is denoted

as O−f (x) or as O−(x). We write

f−n(x) = f−1 ◦ f−1 ◦ · · · ◦ f−1(x) (composing n times).

The orbit of x under f is the union of the positive and negative semiorbits and is denoted

as Of (x) or O(x).

Definition 2.2. Let ϕ : X × R → X be a flow and let x ∈ X. The positive semiorbit of x

under ϕ is the set
⋃
t≥0 ϕ

t(x) and is denoted as O+
ϕ (x) or as O+(x).

10



The negative semiorbit of x under ϕ is the set
⋃
t≤0 ϕ

t(x) and is denoted as O−ϕ (x) or as

O−(x).

The orbit of x under ϕt is the union of the positive and negative semiorbits and is denoted

as Oϕ(x) or O(x).

The orbit of a point is the collection of all states that a point can attain in the past and

future. The orbit of a point is a useful tool in analyzing the dynamics of a system as it can

provide insights into the underlying structure of the system.

Definition 2.3. For a discrete time dynamical system, a point x is periodic if there exists

an N ≥ 0 such that fN(x) = x. The smallest such N is the period of x.

Similarly, for a flow, a point x is periodic if there is a t ∈ R such that t ≥ 0 and ϕt(x) = x.

The smallest such t is the period of x.

For discrete time dynamical systems, periodic points have a finite orbit, and their exis-

tence will be important for us to obtain our main results. These orbits are useful because

the information and dynamics on a periodic orbit are easier to use and understand than that

of an infinite orbit. Poincaré state that periodic points “are the only breach by which we

can penetrate a fortress hitherto considered inaccessible” [9, p. 284].

Infinite orbits can have varying and often unknown structure, but some infinite orbits

can be very helpful.

Definition 2.4. A dynamical system defined on a topological space X is transitive if there

exists a point x ∈ X such that the positive semiorbit of x is dense in X. Equivalently, a

continuous map of a compact metric space is transitive if for any non-empty open sets U

and V , there exists a n ≥ 0 such that fn(U) ∩ V 6= ∅ [8, p. 52].

The existence of a dense orbit means that our space cannot be expressed as a disjoint

collection of open spaces that are invariant under the map [5, p. 49]. Transitivity is the

topological analog to ergodicity as it provides a condition where the system cannot be de-

composed. The existence of a dense orbit will prove to be a very useful tool in proving many

of our results.
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Topological mixing is a stronger property than transitivity, and topological mixing implies

transitivity [2, p. 33]. Hence, any result we prove assuming transitivity will hold in the case

for topological mixing. Although we are primarily concerned with topological mixing, many

of our results will only rely on transitivity.

Definition 2.5. Two discrete dynamical systems f : X → X and g : Y → Y are topologically

conjugate if there exists a homeomorphism h : Y → X such that h ◦ g = f ◦ h.

Similarly, a flow is transitive if there exists a point x ∈ X such that the forward orbit

is dense, or equivalently, if ϕt is a continuous flow on a compact metric space where for

any two nonempty open sets U and V , there exists a t > 0 such that ϕt(U) ∩ V 6= ∅.

Two flows ϕ : X × R → X and ψ : Y × R → Y are topologically conjugate if there exists a

homeomorphism h : Y → X such that h(ψ(y, t)) = ϕ(h(y), t) for all y ∈ Y and t ∈ R.

Conjugate maps and flows have similar structures and properties including orbits struc-

tures and other topological properties. If we know that a flow is conjugate to another flow

that is easier to study, then we restrict our attention to the flow that is easier to study

because it will express the same properties.

The definition for conjugacy is more natural for discrete dynamical systems. For flows,

there is a weaker and more natural definition for comparing two flows.

Definition 2.6. Two flows ϕ : X × R→ X and ψ : Y × R→ Y are topologically equivalent

if there exists a homeomorphism h : Y → X that maps the orbits of ψ onto the orbits of ϕ

and preserves the direction of time. That is, for all y ∈ Y there exists a δ > 0 such that if

0 < |s| < t ≤ δ, and if s satisfies

h(ψ(y, t)) = ϕ(h(y), s)

then s > 0.

While this definition is more natural for flows, because it is weaker, in some instances, it

no longer guarantees properties like topological mixing will be shared between two equivalent

12



flows. Hence, for our purposes, we will mainly use topological conjugacy as a tool to compare

flows.

With this groundwork, we are now ready to provide the formal definition of a suspension

flow. In addition, we will demonstrate the process of obtaining a suspension flow from a

flow.

Definition 2.7. [2, p. 21] Given a map f : X → X, and a function r : X → R+ bounded

away from 0, consider the quotient space

Mr = {(x, t) ∈ X × R+ : 0 ≤ t ≤ r(x)}/ ∼

where ∼ is the equivalence relation (x, r(x)) ∼ (f(x), 0). The suspension of f with roof

function r(x) is the flow ϕt : Mr →Mr by ϕt(x, s) = (fn(x), s′), where n and s′ satisfy

n−1∑
j=0

r(f j(x)) + s′ = t+ s, 0 ≤ s′ ≤ r(fn(x)).

We will refer to the set of points {(x, t) : 0 ≤ t < r(x)} as the fiber of x.

Definition 2.8. A cross-section of a flow ϕt : X → X is a subset A ⊂ X such that the set

Tx = {t ∈ R : ϕt(x) ∈ A} is a non-empty discrete subset of R for all x ∈ X.

Definition 2.9. If A is a cross section and a ∈ A, let r(a) = minTa. The function r(a) is

the called the return time to A and the first return map f : A→ A by f(a) = ϕτ(a)(a). We

define f(a) to be the first point in the orbit of a under ϕt that intersects A. The first return

map f is frequently called the Poincaré map. Note that f is a discrete dynamical system on

A.

As discussed previously, given a flow ϕt : X → X there is a natural method of constructing

a suspension flow from ϕt. We first choose a suitable cross section A. From this we can

determine the first return map f : A→ A. The return time r(a) is a function on A mapping

to R+ and becomes the roof function for the suspension. We can determine many properties

13



of ϕt by studying the properties of the suspension of f . If the system has a global cross

section, rather than a local Poincaré section, the suspension flow is topologically mixing if

and only if the original flow is topologically mixing [1].

The roof function plays a vital role in the behavior of the flow. In particular, the roof

function influences whether a suspension flow is topologically mixing. In order to classify

and study suspension flows we will inspect the roof functions.

2.2 Symbolic Dynamics

We now review a class of systems that provide useful examples of dynamical systems. Let

A be some set. We refer to this set as the alphabet and the elements as symbols. The full

A-shift is the set AZ = {(xi)i∈Z : xi ∈ A} and is the set of all two sided sequences whose

terms are elements of A. The set A can be infinite or finite; however, we are primarily

concerned with finite alphabets. In the finite setting we let A = {0, 1, . . . N − 1}, and we

denote AZ by ΣN . Elements of these spaces are of the form

x = . . . x−2x−1x0x1x2 . . .

When dealing with a specific point we use a period to identify where the zeroth term appears

in the sequence. For example,

. . . 1342.0394 . . .

Here x−2 = 4, x−1 = 2, x0 = 0, x1 = 3, and so on. We call finite sequences of symbols words,

and for i ≤ j we use the notation x[i,j] to denote the specific word xixi+1 . . . xj that appears

in the point x.

The set ΣN can be endowed with the product topology and we define the cylinder sets

to be

Cn1,...,nk
j1,...,jk

= {x = (xl) : xni
= ji and i = 1, . . . , k}

14



where n1 < n2 < · · · < nk are indices in Z, and ji ∈ A. The cylinders form a basis for the

topology. We may also endow a metric on this space that agrees with the topology.

d(x, y) =


2−n if x 6= y and n is maximal so that x[−n,n] = y[−n,n]

0 if x = y.

Hence the distance between two points depends on how many symbols their central words

agree upon.

Rather than consider two-sided sequences, we may study one-sided sequences instead.

The construction and properties are defined in a similar manner. For a finite alphabet, we

denote the space by Σ+
N . It can also be endowed with the product topology, and the metric

is defined as

d(x, y) =


2−n if x 6= y and n is maximal so that x[0,n] = y[0,n]

0 if x = y.

We desire to study these spaces as dynamical systems. We naturally consider the shift

map σ : ΣN → ΣN defined by

σ(. . . x−2x−1.x0x1x2 . . . ) = . . . x−1x0.x1x2x3 . . .

Where σ simply shifts every term to the left. The behavior is similar for Σ+
N , where the

leading term of the sequence is deleted. Here σ : Σ+
N → Σ+

N , and we have that

σ(x0x1x2 . . . ) = x1x2x3 . . .

In both settings, σ is a continuous function with the d(·, ·) metric. In addition, σ is an

opening mapping on both ΣN and Σ+
N because it maps cylinders to cylinders. Moreover, σ

is a homeomorphism on ΣN , but it is not on Σ+
N because it is not injective.
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Some subsets of ΣN can exhibit interesting dynamics, and we often study these subsets

of ΣN rather than the full-shift itself. A subshift is a subset of ΣN or Σ+
N that is closed with

respect to the topology and invariant under σ. That is, if A ⊆ ΣN , then σ(A) = A. Subshifts

can be constructed in a variety of different ways. They are often constructed by establishing

a set of forbidden words, words that are not allowed appear in any element of the subshift.

Alternatively, one can establish a set of permissible words and generate a subshift in an

analogous fashion by including all possible sequences containing these words. We denote the

set of forbidden words by F , the set of permissible words as B(X), and Bn(X) is the set of

permissible words of length n. Carefully constructing subshifts can yield systems with rich

and astonishing dynamics.

Example 2.10. When we consider all of ΣN , the function σ is topologically mixing on this

space. We can see this by using the metric or by examining the behavior of σ on cylinders.

However, for shift spaces, there is an equivalent definition for topological mixing [16, p. 129,

191].

Definition 2.11. A subshift X is mixing if, for every pair u, v ∈ B(X), there is an N such

that for each n ≥ N there is a word w ∈ Bn(X) such that uwv ∈ B(X).

Since every word is in ΣN we can easily see that σ is topologically mixing. We apply this

result to Σ+
N and deduce that σ is topologically mixing on Σ+

N as well.

Example 2.12. One of the most commonly studied shifts is Σ+
2 , sequences of zeros and ones.

Note that Σ+
2 is homeomorphic to the Cantor set obtained by removing the middle third.

This allows us to better understand the topological structure on Σ+
2 . For example, this tells

us that Σ+
2 is compact, totally disconnected, and contains no isolated points. Subshifts can

inherit many of these properties, but we can see that all subshifts are compact because they

are closed subsets of a compact space.

While the alphabet only contains two symbols, subshifts of Σ+
2 can possess interesting

dynamics. They can have ergodic or mixing properties. Subshifts can be constructed to
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only have periodic points of even period [6]. The majority of the following examples will be

subshifts of Σ+
2 , and we will see what other kinds of behavior these subshifts can have. Since

these subshifts can be constructed to exhibit a variety of different behaviors with only two

symbols, Σ+
2 and Σ2 are often the preferred spaces to consider when working in symbolic

dynamics.

Example 2.13. A subshift of finite type is a shift space that can be described by a finite

set of forbidden words [16, p. 28]. That is F is finite. Subshifts of finite type can also be

described with a directed graph and directed walks on the graph. Suppose X is the collection

of all possible infinite walks moving from one vertex to another on a finite directed graph.

This collection can also be thought of as set of all possible infinite sequences of edges. This

set is closed and invariant, so it can be thought of as a shift, and is commonly called an

edge shift. Every subshift of finite type is isomorphic to an edge shift and every edge shift

is isomorphic to a subshift of finite type [2, p. 57]. Hence, a subshift of finite type may be

characterized in multiple ways.

Because subshifts of finite type correspond to some sort of graph, we can analyze the

adjacency matrix for the graph to determine the properties of the subshift. In particular,

it has been shown that a subshift of finite type is topologically mixing if and only if the

adjacency matrix A has the property that there exists a positive integer m0 such that for

all i, j ∈ {1, 2, . . . , n} such that Amij > 0 for all m ∈ Z with m > m0. Additionally, a

subshift of finite type is transitive if and only if the corresponding adjacency matrix A is

irreducible [11]. Strengthening the hypothesis, we have that the shift map on a subshift of

finite type is topologically mixing if the adjacency matrix for the isomorphic edge shift is

irreducible and the trace is nonzero [10]. Thus we see that for subshifts of finite type, given

the adjacency matrix, there are multiple methods to determine whether a subshift of finite

type is topologically mixing.

Definition 2.14. A dynamical system f : X → X is minimal if X does not contain any

non-empty, proper, closed, f -invariant subset.
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There are other equivalent definitions including the characterization that every orbit must

be dense in X. A simple example of a minimal dynamical system is the orbit of a periodic

point. Since there is only one orbit, there is only one invariant set. Minimal dynamical

systems are important systems because every dynamical system is minimal or it contains a

minimal system.

Example 2.15. For shift spaces, a minimal shift contains no proper subshift. Minimal shifts

can be constructed to possess much more complex structure than a periodic orbit.

Definition 2.16. A point x is an almost periodic point, if for any neighborhood U of x,

there exists an N ∈ N such that {fn+i(x) : i = 0, 1, . . . , N} ∩ U 6= ∅ for all n ∈ Z+.

An almost periodic point returns near its initial position with bounded gaps in time. A

shift space is minimal if and only if it is the closure of an almost periodic orbit [16, p. 457].

An example of a minimal shift with greater complexity than a periodic orbit is the Morse

shift. The Morse shift is constructed from the Morse sequence.

x = 01101001100101101001011001101001 . . .

We use this sequence to construct a two-sided sequence and from there construct a shift

space. Because this sequence is almost periodic the closure of its orbit yields a minimal

shift.

The Morse sequence can be constructed in a variety of different manners. One method

is by letting B0 = 0 and recursively defining the words Bn+1 = BnBn, where Bn denotes the

word where the 0’s of Bn are replaced with 1’s, and the 1’s of Bn are replaced with 0’s.

Another way to construct this sequence is by repeating a substitution where a 0 is replaced

with 01 and 1 is replaced with 10. This kind of construction can be done in the general setting

with more symbols and yields what are called substitution shifts. In the measure theoretic

setting, it has been shown that substitution shifts are not measure theoretically strongly
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mixing [4]. Hence, some substitution shifts may be topologically mixing, but they are not

strongly mixing.

Minimal shifts like the Morse shift contain no periodic orbits, and every orbit is dense

in the space. So if such a system is the base of a suspension, we can determine many facts

about the roof function by examining it along any orbit.

Example 2.17. In [17], a topologically mixing minimal shift is constructed. This shift has

a somewhat stronger mixing property, in that for any open sets U and V , there exists an N

such that σn(U) ∩ V 6= ∅ for |n| ≥ N . While we do not address topological entropy, this

shift also exhibits zero topological entropy. There are many other examples of topologically

mixing minimal shifts, and they often possess other interesting dynamical properties.

Example 2.18. Our main results hold when the periodic points are dense in the base. Be-

cause subshifts can be topologically mixing and not have dense periodic points they are a

natural setting to investigate suspensions with less structure. We desire to know if a coun-

terexample exists by constructing a roof function over a minimal topologically mixing base

such that the suspension is not topologically mixing, but the roof function is not cohomol-

ogous to a constant. Another possible setting to consider is a base with a finite number of

fixed points. There is an example of a shift space with only a fixed point, but is only weakly

topologically mixing in [15]. Here we present the construction of a topologically mixing

subshift with one fixed point and a period two orbit. This construction was inspired by the

structure of the weakly topologically mixing shift and the construction in [7], but echoes

many of the ideas in [17].

We will construct a subshift of Σ2, but we will begin with an element a in Σ+
N that is

almost periodic. We also require that a not be periodic and that an ∈ {3, 4, . . . N} for all

n ∈ N. In addition, because a is almost periodic O+(a) does not limit on any periodic points.

We will now think of a more as a sequence now rather than a point in Σ+
N .
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Let u1 = 10, u2 = 1010, u3 = 101010, and so on. For i ≥ 1, define Ai = {1β, u1, u2, . . . , ui}

where β > N . Define Bi = {x ∈ Σ+
2 : x = v10

a1v20
a2v30

a3 . . . where vj ∈ Ai}.

Let Ji =
∞⋃
k=0

σk(Bi).

Clearly Ji ⊆ Ji+1 for all i ∈ N. Let S =
⋃∞
i=1 Ji. S is clearly closed. Let x ∈

⋃∞
i=1 Ji with

x = x1x2x3 . . . then the point x′ = x0x1x2x3 · · · ∈
⋃∞
i=1 Ji where x0 = 0 if x1x2 = 10, or

x0 = 1 if x1x2 = 11 or 01. The only complication occurs when x1x2 = 00, since we have some

restrictions on the lengths of words of zeros. This pair of zeros must be in some word of zero

0ai for some i. By construction each of these words are preceded by a word of repeating ones

of 01 terms. In the instance that x0 cannot be zero, then it must be a one. If x0 cannot be

one, then it must be a zero. Hence, for all x ∈
⋃∞
i=1 Ji, there exists x′ ∈

⋃∞
i=1 Ji such that

σ(x′) = x. By continuity of σ, we obtain that for all x ∈ S, there exists x′ ∈ S such that

σ(x′) = x. Hence σ(S) = S, so S is invariant and S is a subshift of Σ+
2 . Note further that

by construction
⋃∞
i=1 Ji is dense in S, and we will use this fact repeatedly.

Because of our choice of the sequence a the words of zeros do not appear in any periodic

fashion with the exception of the ui and the repeating 1s. This ensures that the only periodic

orbits we can limit on are 1∞ and (01)∞. So S only contains two periodic orbits.

Proposition 2.19. σ is topologically mixing on S.

Proof. Fix N ∈ N. Let x = v10
a1v20

a2 . . . and y = w10
a1w20

a2 . . . . By construction w1

is either a word of repeating 01 terms or a word of repeating 1 terms. Without loss of

generality, suppose that w1 is a repeating word of 01 terms. Let u be the word of length

N ′ ≥ N such that x = uxN+1xN+2 . . . and such that the point x′ = u(01)∞ is contained in

B(x, 2−N). Thus σN
′
(x′) = (01)∞.

Since σ is an open map, there exists M sufficiently large, such that B((01)∞, 2−M) ⊆

σN
′
(B(x, 2−N)). For all n ≥ M there exist zn ∈

⋃∞
i=1 Ji such that zn = (01)ny. Further-

more, σ−N
′
(zn) ∩ B(x, 2−N) 6= ∅. Hence, for all n ≥ M , there exists xn ∈ B(x, 2−N) such
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that σN
′
(xn) = zn and σN

′+n(xn) = yn, so we may concluded that for all t > N ′ + M ,

σt(B(x, 2−N)) ∩B(y, 2−N) 6= ∅.

This holds for arbitrary x and y. It clearly extends to any pair of points from O+(x) and

O+(y). Since this holds for all point in
⋃∞
i=1 Ji and because

⋃∞
i=1 Ji is dense, it follow that

σ is topologically mixing on all of S.

From here we will use an inverse limit to construct X, a subshift of the full shift Σ2.

If X contained any other periodic points, S would also contain them as well. Because S

only contains the fixed point and the period two orbit, X only contains these two orbits.

Additionally, since σ is topologically mixing, it follows that for any permissible words u, v

there exists an N such that for n ≥ N there is a word w ∈ Bn(S) such that uwv ∈

B(S). Every finite permissible word in X is also a finite permissible word of S, so we get

that σ is topologically mixing on X. This shows that there exists a topologically mixing

homeomorphism with exactly two periodic orbits.

2.3 Further Examples

Example 2.20. Let f : X → X be any discrete dynamical system. Let r : X → R+ be

constant. That is for all x ∈ X, r(x) = k for some k > 0. We will show that the suspension

over a constant roof function is not topologically mixing.

Proposition 2.21. The suspension ϕt over f with roof function r is not topologically mixing.

Proof. Let U and V be open sets of X. Let U ′ = U × (0, k/4) and V ′ = V × (0, k/4) open

sets in the domain of ϕt. Since the roof function is constant, for any a ∈ (0, k/4), the subset

U × {a} of U ′ is identified to f(U) × 0 simultaneously when t = k − a. Hence the vertical

height of U ′ under the flow will always be of length k/4. Now, suppose there exists some T

such that ϕT (U ′) ∩ V ′ 6= ∅. Then ϕT+k/4(U) ∩ V = ∅. ϕt is not topologically mixing.

Suspensions with constant roof functions are not topologically mixing regardless of the

system in the base. Even if f had been topologically mixing, the flow would not. However,
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because topological mixing implies transitivity, the suspension of ϕt would still be transitive.

Thus we see that the suspension will reflect the same orbit structure as the base, but does

not necessarily mimic other properties like topological mixing.

Example 2.22. The expanding map Em : S1 → S1 defined by Em(x) = mx mod 1 for some

m > 1. Although Em is not a homeomorphism it is a topologically mixing discrete dynamical

system. Let U be any open interval (a, b). The length of U is b− a. The length of Em(U) is

m(b− a), and in general, the length of En
m(U) is mn(b− a). Since m > 1, there must exist

an N such that for n ≥ N , length of En
m(U) > 1. This implies that S1 ⊆ En

m(U). Thus for

any pair of open sets U, V , there exists an N such that for n ≥ N , En
m(U) ∩ V 6= ∅.
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Chapter 3. Basic Results

We now prove some essential results that we will need throughout. The majority of these

results will be about characteristics of cohomologous roof functions. If two roof functions are

cohomologous we would like to know what they have in common. In particular, we would

like to know what the relationship between the suspension flows of such roof functions may

be. Furthermore, we would like to classify and provide a method to determine when two

given roof functions are cohomologous.

To begin, we show that if two roof functions are cohomologous then the suspension flows

are conjugate. However, we will first need the following lemma.

Lemma 3.1. Let M ∈ R, M > 0, f : X → X be a homeomorphism of a compact metric

space, and r : X → R be a roof function. For all x ∈ X there exists a unique smallest N

such that
∑N

i=0 r(f
i(x)) > M .

Proof. M is finite and r(f i(x)) > 0 for all x and all i and bounded from below. Hence we

can find j∈ N such that
∑j

i=0 r(f
i(x)) > M . Let A be the set of all such integers that satisfy

this property. This is a set of positive integers, so it contains a smallest element N that is

unique.

Proposition 3.2. Let f : X → X be a homeomorphism of a compact metric space. Let

r1 : X → R be a roof function cohomologous to the function r2 : X → R by a transfer

function g : X → R such that r1(x)− r2(x) = g(f(x))− g(x). Let ϕi : Mi → Mi be the flow

over ri for i ∈ {1, 2}, then ϕr1 and ϕr2 are conjugate.

Proof. Since r1 and r2 are cohomologous we have that g(f(x))−r1(x) = g(x)−r2(x). Define

h : M1 →M2 by

h(x, t) =

(
fN(x), t+ g(x)−

N−1∑
i=0

r2(f
i(x))

)
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where N is the smallest integer satisfying t + g(x) <
∑N

i=0 r2(f
i(x)), where t + g(x) > 0.

If t + g(x) < 0, we can find the smallest n such that −
∑n

i=0 r2(f
−i(x)) < t + g(x)) and

h(x, t) =
(
f−n(x),−t− g(x)−

∑n−1
i=0 r2(f

i(x))
)
.

We consider the case h ◦ ϕr1
(
x, s
)

where x = (x, t) and t+ g(x) > 0. Here

h ◦ ϕ(x, s) = h ◦ ϕr1
(
(x, t), s

)
= h

(
fa(x), s+ t−

a−1∑
i=0

r1(f
i(x))

)

=

(
fa+k(x), s+ t−

a−1∑
i=0

r1(f
i(x)) + g(fa(x))−

k−1∑
i=0

r2(f
a+i(x))

)

=

(
fa+k(x), s+ t−

a−2∑
i=0

r1(f
i(x))− r1(fa−1(x)) + g(fa(x))−

k−1∑
i=0

r2(f
a+i(x))

)

=

(
fa+k(x), s+ t−

a−2∑
i=0

r1(f
i(x)) + g(fa−1(x))− r2(fa−1(x))−

k−1∑
i=0

r2(f
a+i(x))

)

=

(
fa+k(x), s+ t+ g(x)−

a−1∑
i=0

r2(f
i(x))−

k−1∑
i=0

r2(f
a+i(x))

)

=

(
fa+k(x), s+ t+ g(x)−

a−1∑
i=0

r2(f
i(x))−

a+k−1∑
i=a

r2(f
i(x))

)

=

(
fa+k(x), s+ t+ g(x)−

a+k−1∑
i=0

r2(f
i(x))

)
where a, k are chosen so that a + k is the smallest integer satisfying

∑a+k
i=0 r2(f

i(x)) >

s+ t+ g(x).

We now consider ϕr2(h(x), s). In this case,

ϕr2(h(x, t), s) = ϕr2

((
fN(x), t+ g(x)−

N−1∑
i=0

r2(f
i(x))

)
, s

)

=

(
fN+M(x), s+ t+ g(x)−

N−1∑
i=0

r2(f
i(x))−

M−1∑
i=0

r2(f
N+i(x))

)
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=

(
fN+M(x), s+ t+ g(x)−

N−1∑
i=0

r2(f
i(x))−

N+M−1∑
i=N

r2(f
i(x))

)

=

(
fN+M(x), s+ t+ g(x)−

N+M−1∑
i=0

r2(f
i(x))

)
where N and M are chosen so that N +M is the smallest integer satisfying∑N+M

i=0 r2(f
i(x)) > s+ t+ g(x).

By uniqueness, this implies that a+ k = N +M , which means that h ◦ ϕr1 = ϕr2 ◦ h. A

similar computation holds for when t+ g(x) < 0. The flows ϕr1 and ϕr2 are conjugate.

Conjugate flows share the same topological properties, so knowing that two roof functions

are cohomologous tells us that the suspensions have the same topological properties. If we

know the behavior of a suspension for a certain roof function, then we can determine the

behavior of another suspension if the roof functions are cohomologous. This can aid in the

study of a system, because understanding the dynamics simplifies to knowing what kind of

roof function the system has. The following is a standard result; we provide a proof for

completeness.

Proposition 3.3. Let ϕt : X → X and ψt : Y → Y be topologically conjugate flows. If ϕt is

topologically mixing, then ψt is topologically mixing.

Proof. Since ϕ and ψ are topologically conjugate, there exists a homeomorphism h : Y → X

such that h(ψt(y)) = ϕt(h(y)). Let U and V be open sets in Y . h(U) and h(V ) are open

sets in X. There exists T such that for t > T we have that ϕt(h(U)) ∩ h(V ) 6= ∅.

ϕt(h(U)) = h(ψt(U)) by definition. Plugging into h−1 we have the following.

∅ 6= h−1(ϕt(h(U)) ∩ h(V )) = h−1(h(ψt(U)) ∩ h(V )) = ψt(U) ∩ V

ψt is topologically mixing.

Remark. By Example 2.20, Proposition 3.2, and this proposition, it follows that any suspen-

sion flow with roof function cohomologous to a constant is not topologically mixing. This is
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one direction of our main result. The converse is not as simple to establish. We will continue

to focus on the roof function to create the foundation to prove the converse.

To aid us in the study of roof functions we may partition them into equivalence classes

by showing that the cohomologous condition is an equivalence relation. This will greatly

simplify the study of roof functions to equivalence classes.

Proposition 3.4. The cohomologous condition is an equivalence relation.

Proof. Let f : X → X be a base function and r : X → R, s : X → R, and t : X → R be

continuous roof functions.

Reflexivity: Let g : X → R be any constant function.

r(x)− r(x) = 0 = g(f(x))− g(x)

r(x) is cohomologous to r(x)

Symmetry: Let r(x) be cohomologous to s(x). There exists a continuous function g(x)

such that r(x)− s(x) = g(f(x))− g(x). Define G(x) = −g(x). G(x) is continuous.

G(f(x))−G(x) = −g(f(x)) + g(x) = −r(x) + s(x) = s(x)− r(x

s(x) is cohomologous to r(x).

Transitivity: Assume that r(x) is cohomologous to s(x) and s(x) is cohomologous to t(x).

We show that r(x) is cohomologous to t(x). There exist continuous functions g : X → R and

h : X → R such that r(x)− s(x) = g(f(x))− g(x) and s(x)− t(x) = h(f(x))− h(x). Define

G(x) = g(x) + h(x). G(x) is continuous.

G(f(x))−G(x) = g(f(x)) + h(f(x))− g(x)− h(x) = g(f(x))− g(x) + h(f(x))− h(x)

= r(x)− s(x) + s(x)− t(x) = r(x)− t(x)

r(x) is cohomologous to t(x).
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Since we have shown that cohomologous roof functions induce conjugate flows, we may

choose any desirable roof function from an equivalence class to determine the topological

dynamics of the suspension flows with roofs in the same class. We know that roof functions

cohomologous to a constant are not topologically mixing, but we do not know if a suspension

that is not topologically mixing has a roof function that is cohomologous to a constant.

Now that we have shown that roof functions can be organized into equivalence classes,

the natural next step is to determine whether two roof functions are elements of the same

class. In this case, it depends on whether a transfer function exists. An important initial

result shows the uniqueness of such a transfer function.

Proposition 3.5. Let f : X → X be a transitive homeomorphism on a compact metric

space. If r(x) and s(x) are continuous cohomologous roof functions, then the transfer function

g : X → R satisfying r(x)− s(x) = g(f(x))− g(x) is unique up to a constant.

Proof. There exists a point x0 ∈ X that has a dense orbit in X under f by transitivity.

For simplicity, let g(x0) = 0. Suppose there exists another continuous function h such that

r(x)− s(x) = h(f(x))− h(x). Denote h(x0) = k for k ∈ R. So we have

h(f(x0))− h(x0) = r(x0)− s(x0) = g(f(x0))− g(x0) = g(f(x0)),

and this implies

h(f(x0))− k = h(f(x0))− h(x0) = g(f(x0)).

So h(f(x0)) and g(f(x0)) differ by k and −k = g(f(x0))− h(f(x0)).

Now consider

r(f(x0))− s(f(x0)) = h(f 2(x0))− h(f(x0)) = r(f(x0))− s(f(x0)) = g(f 2(x0))− g(f(x0))

h(f 2(x0))− h(f(x0)) = g(f 2(x0))− g(f(x0))

g(f 2(x0)) = h(f 2(x0))− h(f(x0)) + g(f(x0)) = h(f 2(x0))− k.
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Once again, g(f 2(x0)) and h(f 2(x0)) differ by k. We proceed by induction, let j ≥ 2 and we

assume that −k = g(f j(x0))− h(f j(x0)). We show this to be true for j + 1.

Following a similar procedure we have

h(f j+1(x0))− h(f j(x0)) = r(f j+1(x0))− s(f j+1(x0)) = g(f j+1(x0))− g(f j(x0))

h(f j+1(x0))− h(f j(x0)) = g(f j+1(x0))− g(f j(x0))

h(f j+1(x0))− k = h(f j+1(x0))− h(f j(x0)) + g(f j(x0)) = g(f j+1(x0)).

So h(f j+1(x0))−k = g(f j+1(x0)), and by mathematical induction for all n ∈ N we have that

g(x) and h(x) differ by the same constant k on O+(x0). So g(x) and h(x)− k agree on a set

that is dense in X. By continuity of g(x) and h(x)− k we have that g(x) = h(x)− k for all

x ∈ X. Therefore, g is unique up to a constant.

Note that given two cohomologous roof functions, r(x) and s(x) and a transfer function

g(x) satisfying r(x)−s(x) = g(f(x))−g(x), the function G(x) = −g(x) is also a satisfactory

transfer function. However, it would satisfy s(x)−r(x) = −g(f(x))+g(x) = G(f(x))−G(x).

Here we provide a simple test to show that two roof functions are not cohomologous to

one another.

Proposition 3.6. Let f : X → X be a continuous base function. Let r : X → R and

s : X → R be roof functions. Suppose x0 is a periodic point with period p. If

p−1∑
j=0

r(f j(x0))− s(f j(x0)) 6= 0

then r(x) and s(x) are not cohomologous.

Proof. Suppose that r(x) and s(x) are cohomologous. Then there exists a function g : X → R

such that r(x)− s(x) = g(f(x))− g(x). Note that

r(f(x))− s(f(x)) + r(x)− s(x) = g(f 2(x))− g(f(x)) + g(f(x))− g(x) = g2(f(x))− g(x).
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In general, we have the identity

n−1∑
j=0

r(f j(x0))− s(f j(x0)) = g(fn(x))− g(x).

Now consider x0. By hypothesis we have

0 6=
p−1∑
j=0

r(f j(x0))− s(f j(x0)) = g(fp(x0))− g(x0) = g(x0)− g(x0) = 0,

which is a contradiction. The functions r(x) and s(x) are therefore not cohomologous.

The identity we used in this proof will be used repeatedly to prove many results. It can

be very difficult to determine whether two roof functions are cohomologous; however, this

proposition provides a simple way to show that two roof functions are not cohomologous. It

is worth noting that this also holds for averages. That is, if r(x) and s(x) are cohomologous,

then for a periodic point x0 with period p,

1

p

p−1∑
j=0

r(f j(x0)) =
1

p

p−1∑
j=0

s(f j(x0)).

Proposition 3.7. [8, p. 239] Let f : X → X be a continuous function on a compact metric

space X. Suppose there exists a point x0 such that O+(x0) = X and let r : X → R and

s : X → R be continuous roof functions. If there is a function g : O+(x0) → R that is

uniformly continuous and satisfies r(x) − s(x) = g(f(x)) − g(x), then r(x) and s(x) are

cohomologous.

There are a variety of ways to determine whether two arbitrary functions are cohomolo-

gous or not. Being able to a construct a transfer function, in contrast, can be very difficult.

However, the following result shows that certain conditions guarantee the existence or nonex-

istence of a transfer function. This result will be repeatedly used, and is a vital result for

proving the converse of our main theorems. The drawback of this result is that it is not
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a practical method for constructing a roof function in application because it deals with an

infinite sum.

Proposition 3.8. Let f : X → X be a continuous transitive map on a compact metric space.

Let r : X → R and s : X → R. If O+(x0) = X and the sum

∞∑
j=0

r(f j(x0))− s(f j(x0))

is bounded, then r(x) and s(x) are cohomologous.

Proof. There exists a point x0 such that O+(x0) = X by transitivity. Furthermore, there

exists a subsequence such that the limit

lim
n→∞

an−1∑
j=0

r(f j(x0))− s(f j(x0))

exists because
∞∑
j=0

r(f j(x0))− s(f j(x0)) is bounded.

Define gn : O+(x0) → R by gn(x) =
an−1∑
j=0

r(f j(x))− s(f j(x)). We know, by construction

that limn→∞ gn(x0) exists. That is, for all ε > 0 there exists an N such that for all n ≥ N we

have that |gn(x0) − g(x0)| < ε. We show that gn(x) converges for all points in the positive

orbit of x0. In addition, we show that the necessary N is the same for all points.

Consider

gn(f(x0)) =
an−1∑
j=0

r(f j(f(x0)))− s(f j(f(x0)))

= s(x0)− r(x0) +
an−1∑
j=0

r(f j(x0))− s(f j(x0)) = s(x0)− r(x0) + gn(x0)

Hence the convergence of gn(f(x0)) depends only on the convergence of gn(x0). Thus

gn(f(x0)) converges and for n ≥ N we have that |gn(f(x0)) − g(f(x0))| < ε. The neces-

sary value for N is the same.
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We proceed by induction and assume that gn(fk(x0)) converges and that for n ≥ N we

have that |gn(fk(x0))− g(fk(x0))| < ε. We show that this holds for the k + 1 case.

gn(fk(x0)) =
an−1∑
j=0

r(f j(fk+1(x0)))− s(f j(fk+1(x0)))

= s(fk+1(x0))− r(fk+1(x0)) +
an−1∑
j=0

r(f j(fk(x0)))− s(f j(fk(x0)))

= s(fk+1(x0))− r(fk+1(x0)) + gn(fk(x0))

The convergence depends only on that of gn(fk(x0)). By the inductive hypothesis it follows

that gn(fk+1(x0)) converges and the necessary N is the same as that of gn(x0). So by

induction we have that for all ε > 0 there exists an N such that for all n ≥ N and all

x ∈ O+(x0) we have that |gn(x)− g(x)| < ε, so gn converges uniformly by definition.

We show that s(x)− r(x) = g(f(x))− g(x) on O+(x0).

g(f(x))− g(x) = lim
n→∞

gn(f(x))− lim
n→∞

gn(x) = lim
n→∞

gn(f(x))− gn(x)

= lim
n→∞

an−1∑
j=0

r(f j(f(x)))− s(f j(f(x)))−
an−1∑
j=0

r(f j(x))− s(f j(x))

= lim
n→∞

s(x)− r(x) +
an−1∑
j=0

r(f j(x))− s(f j(x))−
an−1∑
j=0

r(f j(x))− s(f j(x))

= lim
n→∞

s(x)− r(x) = s(x)− r(x)

It readily follows that g(fk(x))− g(x) =
k−1∑
j=0

s(f j(x))− r(f j(x)).

Finally, we show that g(x) is uniformly continuous on O+(x0), which is dense in X. By

uniform convergence there exists an N ′ such that |gN ′(x) − g(x)| < ε/3 for all x ∈ O+(x0).

In addition, gN ′ is a finite sum of uniformly continuous functions. Thus it too is uniformly

continuous. Thus there exists some δ > 0 such that for all x, y where d(x, y) < δ implies
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that |gN ′(x)− gN ′(y)| < ε/3 and d is the metric on X. Now let x, y satisfy d(x, y) < δ

|g(x)− g(y)| = |g(x)− gN ′(x) + gN ′(x)− gN ′(y) + gN ′(y)− g(y)|

≤ |g(x)− gN ′(x)|+ |gN ′(x)− gN ′(y)|+ |gN ′(y)− g(y)| < ε

3
+
ε

3
+
ε

3
= ε.

Hence, g(x) is uniformly continuous. So, there exists a continuous extension of g fromO+(x0)

to a continuous function ĝ(x) on all of X, where ĝ satisfies ĝ(f(x))− ĝ(x) = s(x)− r(x) by

Proposition 3.7. Therefore, r(x) and s(x) are cohomologous by definition.
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Chapter 4. Main Result I

Our first main result shows that a suspension flow is topologically mixing if and only if the

roof function is cohomologous to a constant provided that the base is topologically mixing

and periodic points are dense. To establish this dichotomy, Proposition 3.8 will prove to be a

key result throughout this section because we will need to construct or prove the existence of

transfer functions based on the behavior of the flow. To find candidates for transfer functions,

we will need certain structure in the base. We will need the base to be transitive and have

dense periodic points. Since topological mixing in the base is required to obtain topologically

mixing in the flow, this is a property that would be necessary in the general setting. However,

the added assumption of dense periodic points makes our hypothesis stronger than that of

the most general setting.

4.1 Shearing

Here we introduce the notion of shearing. Let r : X → R be some roof function. Let

ϕ : Mr → Mr be a flow under r. Let U be an open set in the domain of ϕ. We choose two

distinct points x̂, ŷ ∈ U such that x̂ = (x, a) and ŷ = (y, a) where x, y ∈ X and a ∈ R.

We desire to approximate the change in vertical position caused by ϕr. Initially, they

have the same vertical height a, but as x̂, ŷ flow under ϕ we can calculate the change in

vertical position by the difference r(x)− r(y) once both points have flowed out of the initial

fibers and into the f(x) and f(y) fibers. We can continue this process to determine the

change in vertical positioning for the n-th iteration by the sum
∑n−1

j=0 r(f
j(x))−r(f j(y)). As

we allow n to approach infinity and we can determine the total shearing caused by the roof.

This is what we will refer to as the shearing experienced by x̂ and ŷ under ϕr. While the

infinite sum may not converge, there are instances where the shearing will be bounded. We

will use the shearing of by the roof function to determine the topological mixing properties

of the flow.

33



The notion of shearing we will use and some of the other summations we will rely on are

similar to the Birkhoff sums in ergodic theory. Given a measure-preserving transformation

t : X → X for X a finite measure space, and f a real valued function, the Birkhoff average

is the limit

lim
n→∞

1

n

n−1∑
j=0

f(T j(x)).

This sum has great importance in the measure theoretic setting. One of the fundamental

theorems in ergodic theory is Birkhoff’s Ergodic Theorem [3]. It states that if µ(X) is

positive and finite, and if f is a measurable function and T is ergodic, then for almost every

x

lim
n→∞

1

n

n−1∑
j=0

f(T j(x)) =
1

µ(X)

∫
f dµ.

If f is the characteristic function for a subset U of X, then we have

lim
n→∞

1

n

n−1∑
j=0

1U(T j(x)) =
µ(U)

µ(X)
.

The right hand side of this equation represents the spatial average and the left hand side

represents the time average. Thus, for an ergodic transformation, the space and time averages

are equal. This means that for almost any point in the space X, will spend µ(U)/µ(X) of

its time in the set U .

Although our results are not concerned with spatial averages, we will use a similar sum-

mation to determine the average length of a fiber. From this information, we can determine

whether a roof function is cohomologous to a constant, what kind of shearing we can expect,

and make conclusions about the topological mixing properties of the system.

Our first result addresses the case when the shearing is bounded. In general, if the shear-

ing induced by a roof function is bounded, then the suspension flow will not be topologically

mixing. To obtain this result we will use topological equivalence to assist us in the proof.
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Proposition 4.1. Let r : X → R be any continuous roof function on a compact metric space,

and let R : X → R be given by R(x) = r(x) + k for some k > 0. If ϕt : Mr → Mr is the

suspension flow under r, and ψt : MR →MR is the suspension flow under R, then ϕt and ψt

are topologically equivalent flows.

Proof. Note that elements of Mr and MR are tuples (x, t) ∈ X × R. Since X is compact, r

attains a minimum a = minx∈X r(x).

Let h : MR →Mr be defined as follows

h(x, t) =


(x, a

a+k
t) if t ∈ [0, a+ k)

(x, t− k) if t ∈ [a+ k,R(x)).

If πi is the projection function onto the ith component, we get that π1 ◦ h is continuous and

π2 ◦ h is continuous. Hence h is continuous.

We now show that h is a bijection. Suppose that h(x, t) = h(y, s). This immediately

implies that x = y. There are now three cases we must consider.

Case 1: a
a+k

t = a
a+k

s =⇒ t = s.

Case 2: t− k = s− k =⇒ t = s.

Case 3: t− k = a
a+k

s. If this is the case, then t ∈ [a+ k,R(x)) and s ∈ [0, a+ k). Hence

t − k ≥ a and a
a+k

s < a. This is a contradiction. This case and the case for s − k = a
a+k

t

cannot occur. Hence, h is injective.

We now show that h is surjective. Let (x, t) ∈ Mr. There are two cases. t ∈ [0, a), or

t ∈ [a, r(x)). If t ∈ [0, a), the h(x, a+k
a
t) = (x, t). If t ∈ [a, r(x)), then h(x, t + k) = (x, t).

Thus h is surjective. In addition, these computations give us the inverse function for h where

h−1(x, t) =


(x, a+k

a
t) if t ∈ [0, a)

(x, t+ k) if t ∈ [a, r(x)).

h−1 is continuous in each component, so it is continuous. Hence, h is a homeomorphism.
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Figure 4.1: The mapping of the homeomorphism h

Finally, we must show that the flow satisfies the final condition of the definition. That

is the flow of time is preserved by h. There are two cases.

Case 1: Suppose (x, t0) ∈ MR with t0 ∈ [0, a+ k). Let δ = a+ k − t0. If 0 < |s| ≤ t < δ

with s such that

h(ψt(x, t0)) = ϕs(h(x, t0)).

Evaluating the right-hand and left-hand side of the equality we have

h(ψt(x, t0)) = h(x, t0 + t) =
(
x,

a

a+ k
(t+ t0)

)

and

ϕs(h(x, t0)) = ϕs
(
x,

a

a+ k
t0

)
=
(
x,

a

a+ k
t0 + s

)
.

Thus, (
x,

a

a+ k
(t+ t0)

)
=
(
x,

a

a+ k
t0 + s

)
.

This implies that s = a
a+k

t > 0, as desired.

Case 2: Suppose (x, t0) ∈MR with t0 ∈ [a+k,R(x)). Let δ = R(x)−t0. If 0 < |s| ≤ t < δ

with s such that

h(ψt(x, t0)) = ϕs(h(x, t0)).
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Evaluating the right-hand and left-hand side of the equality we have

h(ψt(x, t0)) = h(x, t0 + t) = (x, t0 + t− k)

and

ϕs(h(x, t0)) = ϕs(x, t0 − k) = (x, t0 − k + s).

Thus,

(x, t0 + t− k) = (x, t0 − k + s).

This implies s = t > 0 as desired. Therefore, ψ and ϕ are topologically equivalent by

definition.

While we assumed the existence of an s satisfying the condition

h(ψt(x, t0)) = ϕs(h(x, t0))

we see that for the appropriate δ, for all 0 < t < δ, there exists s > 0 that satisfies the

equality. We extend this with the following result.

Proposition 4.2. If ψt and ϕt are as in Proposition 4.1, and t > 0, then there exists an s

satisfying 0 < s ≤ t such that

h(ψt(x, t0)) = ϕs(h(x, t0)).

Proof. By the work from Proposition 4.1, the proof here reduces to two simple cases.

Case 1: Suppose (x, t0) ∈MR with t0 ∈ [0, a+k). Let t = a+k− t0. We show that there

exists an s > 0 such that

h(ψt(x, t0)) = ϕs(h(x, t0)).
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Let s = a− a
a+k

t0, and note that when we evaluate the right-hand and left-hand side of the

equality we have

h(ψt(x, t0)) = h(x, t0 + t) = h(x, a+ k) = (x, a)

and

ϕs(h(x, t0)) = ϕs
(
x,

a

a+ k
t0

)
=
(
x,

a

a+ k
t0 + s

)
= (x, a).

Thus, h(ψt(x, t0)) = ϕs(h(x, t0)). Since t0 < a+ k, we have that s = a− a
a+k

t0 > a− a = 0.

Case 2: Suppose (x, t0) ∈ MR with t0 ∈ [a + k,R(x)). Let t = R(x)− t0. We show that

there exists an s > 0 such that

h(ψt(x, t0)) = ϕs(h(x, t0)).

Let s = k − t0 + r(x) = R(x) − t0 = t > 0, and note that when we evaluate the right-hand

and left-hand side of the equality we have

h(ψt(x, t0)) = h(x, t0 + t) = h(x,R(x)) = h(f(x), 0) = (f(x), 0)

and

ϕs(h(x, t0)) = ϕs(x, t0 − k) = (x, t0 − k + s) = (x, r(x)) = (f(x), 0).

Therefore, for any t > 0, there exists an s satisfying 0 < s ≤ t such that h(ψt(x, t0)) =

ϕs(h(x, t0)).

Having established this existence result, we are now ready to show that topological mixing

is preserved for suspensions whose roof functions differ by a constant. From there we will

prove that bounded shearing results in suspensions that are not topologically mixing.

Proposition 4.3. If ψt and ϕt are as in Proposition 4.1, and if ϕt is topologically mixing,

then ψt is topologically mixing.
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Proof. First we show that for all S > 0, there exists a T > 0 such that for all t > T there

exists s > S such that

h(ψt(x, t0)) = ϕs(h(x, t0)).

Fix S > 0 and (x, t0) ∈ MR. Consider h−1(ϕS(x, t0)). There exists some T such that

ψT (x, t0) = h−1(ϕS(h(x, t0))). Hence for t > T , we have that the s satisfying h(ψt(x, t0)) =

ϕs(h(x, t0)) must be larger than S.

Let U and V be any open sets in MR. Let U ′ = h(U) and V ′ = h(V ). U ′ and V ′ are

open in Mr because h is a homeomorphism. There exists S such that for all s > S we have

that ϕs(U ′) ∩ V ′ 6= ∅ since ϕt is topologically mixing. Let

T = sup
x∈U
{t ∈ R : ψt(x, t0) = h−1(ϕS(h(x, t0)))}.

T exists and is finite because the number of times the projection of U ′ onto X iterates under

f in time S can be uniformly bounded. Hence for t > T , we have that ψt(U) ∩ V 6= ∅ since

h(ψt(U) ∩ V ) = ϕs(U ′) ∩ V ′ 6= ∅. ψ is topologically mixing.

Proposition 4.4. Let f : X → X be a homeomorphism on a compact metric space and let

r : X → R be a continuous roof function. If there exist an open set U ⊂ X and a real number

M > 0 such that for all x, y ∈ U we have that

∣∣∣ ∞∑
j=0

r(f j(x))− r(f j(y))
∣∣∣ ≤M

then the suspension ϕt with roof function r is not topologically mixing.

Proof. Let R : X → R be defined as R(x) = r(x) + 4M and let ψt be the suspension flow

with roof R(x). We see that for all x, y ∈ U

∣∣∣ ∞∑
j=0

R(f j(x))−R(f j(y))
∣∣∣ =

∣∣∣ ∞∑
j=0

r(f j(x))− r(f j(y))
∣∣∣ ≤M.
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Consider the open set U ′ = U × (0,M), and let V be some open set of X and consider the

open set V ′ = V × (0,M). If there exists some n such that fn(U) ∩ V 6= ∅. Then there

exists some T such that ψT (U ′)∩V ′ 6= ∅. However, ψT+2M(U ′)∩V ′ = ∅. Since the shearing

never exceeds the minimum value of R, it cannot be topologically mixing. By Proposition

4.3, ϕt is not topologically mixing.

The existence of an open set that experiences bounded shearing is one way to identify a

system that is not topologically mixing. However, this result does not tell us anything about

the structure of the roof function or what equivalence class it belongs to. We would like to

take this a step further and relate bounded shearing to roof functions cohomologous to a

constant.

Proposition 4.5. If X is a compact space and f : X → X is a homeomorphism, and

r : X → R is a roof function cohomologous to a constant, then the shearing induced by r is

bounded.

Proof. Since r is cohomologous to k, there exists a continuous transfer function g : X → R

such that r(x) − k = g(f(x)) − g(x). Since X is compact, |g| ≤ M for some M > 0. Let

x, y ∈ X and consider

∣∣∣ n−1∑
j=0

r(f j(x))− r(f j(y))
∣∣∣ ≤ ∣∣∣ n−1∑

j=0

r(f j(x))− k
∣∣∣+
∣∣∣ n−1∑
j=0

k − r(f j(y))
∣∣∣

= |g(fn(x))− g(x)|+ | − g(fn(y)) + g(y)| ≤ 4M.

This holds for all n, so the shearing induced by r is bounded.

We desire to show that roof functions that yield bounded shearing are cohomologous to

a constant. In order to find a candidate for the constant, we will need to look at the average

fiber length of a periodic point. In order to prove the converse, we will need the added

assumption of dense periodic points. We require this to leverage the average value of a roof

function on a periodic orbit and Proposition 3.8.
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Proposition 4.6. Let X be a compact metric space, f : X → X a topologically mixing

homeomorphism with dense periodic points, and r : X → R be a continuous roof function. If

there exist an open set U ⊂ X and a real number M > 0 such that for all x, y ∈ U we have

∣∣∣ ∞∑
j=0

r(f j(x))− r(f j(y))
∣∣∣ ≤M,

then r is cohomologous to a constant.

Proof. First note that limn→∞
1
n

∣∣∑n−1
j=0 r(f

j(x))
∣∣ exists for all x ∈ U where x is a periodic

point. Now for all x, y ∈ U

lim
n→∞

1

n

∣∣∣ n−1∑
j=0

r(f j(x))− r(f j(y))
∣∣∣ ≤ lim

n→∞

1

n
M = 0.

Thus for all x, y ∈ U we have that limn→∞
1
n

∣∣∑n−1
j=0 r(f

j(x))
∣∣ = limn→∞

1
n

∣∣∑n−1
j=0 r(f

j(y))
∣∣ =

k for some k ∈ R.

Since f is topologically mixing, there exists x0 ∈ U such that O+(x0) = X. We consider

limn→∞
∣∣∑n−1

j=0 r(f
j(x0)) − k

∣∣. If the limit is bounded, then we may conclude that r(x) is

cohomologous to a constant.

Let y be a periodic point in U . We have that

∣∣∣ ∞∑
j=0

r(f j(x0))− r(f j(y))
∣∣∣ ≤M

by hypothesis. Since y is a periodic point, we have that

∣∣∣ ∞∑
j=0

r(f j(y))− k
∣∣∣ ≤M.

Thus we have that

−M ≤
n−1∑
j=0

r(f j(x0))− r(f j(y)) ≤M
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−M ≤
n−1∑
j=0

r(f j(x0))− k + k − r(f j(y)) ≤M

−M +
n−1∑
j=0

r(f j(y))− k ≤
n−1∑
j=0

r(f j(x0))− k ≤M +
n−1∑
j=0

r(f j(y))− k.

Allowing n→∞, it follows that
∑∞

j=0 r(f
j(x0))−k is bounded. Therefore, r(x) is cohomol-

ogous to a constant by Proposition 3.8.

We have shown that a roof function is cohomologous to a constant if and only if the

shearing is bounded. Moreover, we know that a roof function that is not cohomologous to a

constant must cause unbounded shearing. We now prove an important property about the

shearing induced by a roof function that is not cohomologous to a constant. Again, we will

need dense periodic points to obtain this result.

Proposition 4.7. Let X be a compact metric space and f : X → X a topologically mixing

homeomorphism. Assume that periodic points are dense in X under f . Let r : X → R be a

continuous roof function that is not cohomologous to a constant. For any open set U , there

exist x, y ∈ U such that

lim
n→∞

n−1∑
j=0

r(f j(x))− r(f j(y))

diverges to infinity.

Proof. Let U be an open set in X. Let x, y ∈ U , where x has a dense orbit, and y is a

periodic point. We must show that for all M > 0, there exists an N , such that for all n ≥ N

the sum ∣∣∣ n−1∑
j=0

r(f j(x))− r(f j(y))
∣∣∣ > M.

Suppose that this is not the case. Then there would exist an M > 0 such that for any N ,

there would exist an n ≥ N such that

∣∣∣ n−1∑
j=0

r(f j(x))− r(f j(y))
∣∣∣ ≤M.
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Hence there would exist an increasing subsequence an of natural numbers such that for all

n, ∣∣∣ an−1∑
j=0

r(f j(x))− r(f j(y))
∣∣∣ ≤M.

Since y is a periodic point, r(f j(y)) can only take on a finite number of distinct values for

any j. Hence, there exists a subsequence bn of an, such that

bn−1∑
j=0

r(f j(y)) = bnk

for some k > 0. This implies that,

∣∣∣ bn−1∑
j=0

r(f j(x))− k
∣∣∣ ≤M.

It follows by Proposition 3.8 that r(x) is cohomologous to a constant. A contradiction. The

shearing must diverge to infinity.

Here we concern ourselves with the total shearing we obtain from a roof function. We

can alternatively consider the average shearing by evaluating

lim
n→∞

1

n

n−1∑
j=0

r(f j(x))− r(f j(y)).

It can readily be seen that if the average is nonzero, then the total shearing is unbounded

and diverges to positive of negative infinity. However, if this average shearing is zero, we

cannot easily conclude anything about the total shearing caused by the roof function for the

system.

4.2 Topological Mixing

The results for the shearing caused by roof functions over dense periodic points shows that

there are two types of shearing. The shearing is either bounded, or it diverges to infinity.
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Since roof functions with bounded shearing are cohomologous to a constant, all other roof

functions must induce unbounded shearing. These facts about the roof functions will provide

us with the necessary foundation to complete the dichotomy for the topological mixing

behavior of suspension flows. As the previous results required dense periodic points, the

following results will also include this structure in the base.

We have already proven the first part of the dichotomy, a suspension flow with roof

cohomologous to a constant is not topologically mixing. This is true without the presence of

dense periodic points. However, to establish the converse, we will show that a suspension with

a roof function that is not cohomologous to a constant is topologically mixing. To accomplish

this, we will need dense periodic points because the proof depends on Proposition 4.7.

Proposition 4.8. Let f : X → X a topologically mixing homeomorphism of a compact

metric space with dense periodic points. If r : X → R is a continuous roof function that is

not cohomologous to a constant, then the suspension flow under r is topologically mixing.

Proof. X is a compact metric space, so every open cover of X has a finite subcover. Let

ε > 0 and define Ox = {x0 ∈ X : d(x, x0) < ε}. The union
⋃
x∈X Ox is an open cover of X

for any choice ε, and it has a finite subcover. Let
⋃M
n=0Oxn be a finite covering of X. Also,

as r(x) is continuous, it is bounded. Let R = supx∈X r(x).

Let U be an open set in the domain of ϕr and let U ′ be the projection of U onto X.

There exist points x̂, ŷ ∈ U such that x̂ = (x, a) and ŷ = (y, a) where x, y ∈ X and a ∈ R,

which satisfy the conclusion of Proposition 4.7. Let l be the set of points in U whose height

is a and are not x̂ and ŷ. Note that l limits onto x̂ and ŷ. By Proposition 4.7 we know there

exists a N1 such that for all n > N1 we have that

n∑
j=0

r(f j(x))− r(f j(y)) > RM.

Recall that M is the number of open set required to cover X. This sum represents

that amount of shearing caused by ϕr. By hypothesis, for any V ′ in the open cover of X,
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there is an N2 such that n > N2, f
n(U ′) ∩ V ′ 6= ∅ since f is topologically mixing. Choose

N = max{N1, N2}. Choose T sufficiently large so that both x and y have iterated N times

under f .

For all t > T , the projection of l into X intersects every open set in our subcover of X.

Also, by the shearing of x̂ and ŷ we get that the vertical difference of l exceeds RM , so the

image of U under ϕr will intersect any open set of radius ε in the domain of ϕr. Therefore

ϕr is topologically mixing by Definition 1.4.

Combining all of these results, we are ready to state the dichotomy and prove our first

main result.

Theorem 4.9. Let f : X → X is a topologically mixing homeomorphism with dense periodic

points. A suspension flow over X is topologically mixing if and only if the roof function is

not cohomologous to a constant.

Proof. We show that if a suspension flow is topologically mixing then the roof function is

not cohomologous to a constant by proving the contrapositive. Let ϕr(x) be a suspension

flow with roof function r : X → R. Suppose that the roof function is cohomologous to a

constant k. Let ϕk we the suspension flow with roof function s : X → R where s(x) = k for

all x ∈ X.

By Proposition 3.2 we have that ϕr and ϕs are conjugate. Thus they have the same

topological mixing properties by Proposition 3.3. ϕs is not topologically mixing; therefore,

ϕr is not topologically mixing.

The converse is proved by Proposition 4.8.
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Chapter 5. Main Result II

Our second result shows that the set of topologically mixing suspension flows is an open and

dense set provided the base has dense periodic points. We will accomplish this by showing

that the set of roof functions that are not cohomologous to a constant is an open and dense

set. We will first show that this set is open and then show that it is dense.

5.1 Open

The open property gives us an important insight to the collection of topologically mixing

suspensions. If we have a topologically mixing suspension flow with dense periodic points,

then for any r ≥ 0 any Cr perturbation that is C0 close will still yield a topologically mixing

flow. Furthermore, the set of flows that are not topologically mixing flows is closed, hence

slight changes in the roof function could cause the suspension to be topologically mixing.

Proposition 5.1. Let f : X → X be a topologically mixing continuous base function on a

compact metric space X with dense periodic points. Let rn : X → R be a sequence of roof

functions that converge uniformly to a limit function r(x). If all rn(x) are cohomologous to

a constant kn, then r(x) is cohomologous to a constant.

Proof. By hypothesis, rn(x) is cohomologous to kn. In addition, there exists a point x0 such

that O+(x0) = X. Further, there exists a sequence of continuous function gn : X → R such

that rn(x)− kn = gn(f(x))− gn(x) and gn(x0) = 0.

First we show that kn is bounded. Suppose for contradiction that kn is unbounded.

Without loss of generality suppose that kn → ∞. Let y be a periodic point with period p.

Thus
p−1∑
j=0

rn(f j(y)) = pkn.
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In addition, r(x) is continuous, so it is bounded. Thus

p−1∑
j=0

r(f j(y))

is also bounded. However,

p−1∑
j=0

r(f j(y)) = lim
n→∞

p−1∑
j=0

rn(f j(y)) = lim
n→∞

pkn =∞

a contradiction. Hence, kn is bounded.

Because kn is bounded, there exists a convergent subsequence kni
→ k. We define

si : X → R by si(x) = gni
(f(x)) − gni

(x) + k. We show that si(x) converges uniformly to

r(x). For all ε > 0, there exists I1 such that for i ≥ I1 we have that |kni
− k| < ε/2. In

addition, there exists I2 such that for i ≥ I2 we have that for all x, |rni
(x) − r(x)| < ε/2.

Let i ≥ max{I1, I2}. It follows that

|si(x)− r(x)| = |si(x)− rni
(x) + rni

(x)− r(x)| ≤ |si(x)− rni
(x)|+ |rni

(x)− r(x)|

= |gni
(f(x))− gni

(x) + k − gni
(f(x)) + gni

(x)− kni
|+ |rni

(x)− r(x)|

= |k − kni
|+ |rni

(x)− r(x)| < ε.

We now consider the limit of gni
(x). In general, g(fa(x0)) = limi→∞

∑a−1
j=0 si(f

j(x0))−k =∑a−1
j=0 r(f

j(x0))− k. Suppose fan(x0)→ y ∈ O+(x0) and

lim
n→∞

an−1∑
j=0

r(f j(x0))− k =∞.
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Then limi→∞ gni
(y) = ∞, which implies that limi→∞ gni

(f c(y)) = ∞ for all c ∈ Z. This

would imply that limi→∞ gni
(x0) =∞, a contradiction. Therefore, the sum

an−1∑
j=0

r(f j(x0))− k

is bounded. Therefore, r(x) is cohomologous to a constant by Proposition 3.8.

Under the assumption of the existence of dense periodic points, this shows that the set

of roof functions that are not cohomologous to a constant is open.

5.2 Dense

Now we show that the set of continuous roof functions that are not cohomologous to a

constant are dense. Thus the likelihood of selecting a roof function not cohomologous to a

constant is relatively high. Furthermore, this implies that any continuous roof function can

be approached by roof functions that are not cohomologous to a constant. Note that this

result will not require dense periodic points, nor does it require topological mixing in the

base either.

Proposition 5.2. Let f : X → X be continuous and X be a compact metric space. The set

of roof functions cohomologous to a non-constant function is dense in the set of continuous

roof functions.

Proof. Let ε > 0 and let r : X → R be an arbitrary roof function cohomologous to a constant

k. Then r(x) = g(f(x)) − g(x) + k for some continuous function g. Furthermore, define T

to be the set of all continuous functions cohomologous to a non-constant function.

There exists some continuous functions s(x) that is not cohomologous to a constant.

Define the sequence of sn(x) = 1
n
s(x) + k. We show that sn(x) converges uniformly to k.

s(x) is bounded so there exists some M > 0 such that |s(x)| < M . Let ε > 0 and let

N > M
ε

. For n ≥ N we have that |sn(x) − k| = | 1
n
s(x) + k − k| < |M

n
| < M

N
< ε. So sn(x)
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converges uniformly to k.

We can now construct a sequence of roof functions tn(x) = g(f(x))− g(x) + sn(x). Each

tn is not cohomologous to a constant since each sn(x) is not cohomologous to a constant.

Note that for n ≥ N

|tn(x)− r(x)| = |g(f(x))− g(x) + sn(x)− (g(f(x))− g(x) + k)| = |sn(x)− k| < ε.

So the sequence tn(x) converges to r(x) uniformly. Since r(x) is arbitrary, for any roof func-

tion cohomologous to a constant, there exists a sequence of roof functions not cohomologous

to a constant function that converges uniformly to r(x). So the set of roof functions coho-

mologous to a constant is contained in the closure of T . Since all continuous functions are

cohomologous to either a constant or a nonconstant function, T is equal to the set of all

continuous roof functions. Therefore, T is dense in the set of continuous roof functions.

We now compile these results to state our second main result regarding the space of

topologically mixing suspension flows.

Theorem 5.3. Let f : X → X be a topologically mixing homeomorphism of a compact metric

space with dense periodic points. The space of topologically mixing suspension flows is open

and dense.

Proof. We know that a the space of roof functions cohomologous to a constant is closed

by Proposition 5.1. Hence its complement, the space of functions not cohomologous to a

constant must be open. This implies that the space of topologically mixing flows must also

be open.

The space of roof functions not cohomologous to a constant are dense in the space of

continuous roof functions by Proposition 5.2. All flows associated with this space of functions

induce topologically mixing flows. Hence the space of topologically mixing flows must be

dense.
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Chapter 6. Conclusion

We have shown that with the inclusion of dense periodic points, a suspension flow is topo-

logically mixing if and only if the roof function is not cohomologous to a constant. In this

case, the set of topologically mixing suspension flows is open and dense. Many of our major

results establishing the topological mixing properties of a suspension depend on Proposition

3.8, which gives us a criteria to determine if a transfer function exists between any two roof

functions. While this result does not require the existence of dense periodic points, applying

this result to construct a transfer function or even to find a candidate for a transfer function

without the underlying structure of dense periodic points has proven to be a difficult task. In

the general setting it could be possible that a larger class of roof functions induce non-mixing

suspension flows.

We employed the strategy of cohomologous roof functions because of its use in the mea-

sure theoretic case [18]. While this definition is suited for a probabilistic setting, this char-

acterization may not be appropriate in the topological case in full generality. Using a char-

acterization on the roof function other than equivalence classes of cohomologous functions

may be necessary to obtain a desired dichotomy in the most general case. A candidate is

the notion of bounded shearing we have introduced. Other equivalent conditions could be

useful in proving a general result.

In addition, it is not known whether the roof functions that induce topologically mixing

suspension flows is an open and dense set in the set of continuous roof functions in the

absence of dense periodic points. This leads to the following opens questions:

(i) If a topologically mixing base does not have dense periodic points, can the suspension

have a roof function that is not cohomologous to a constant and be non-mixing?

(ii) If such a suspension exists, what kind of periodic structure can the base have? For

instance, could there exist periodic point that are not dense, or must periodic points

be absent from the system?
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(iii) Does the existence or absence of periodic points in the base affect the manner in which

we classify topologically mixing suspensions.

(iv) Given a topologically mixing base, is there an open and dense set of roof functions

such that the suspension flow is topologically mixing?

(v) Is there a criterion to determine if a roof function is cohomologous to a constant given

any topologically mixing base?

(vi) Can zero average shearing, lim
n→∞

1

n

n−1∑
j=0

r(f j(x))− r(fJ(y)) = 0, lead to any conclusions

about the roof function or topological mixing properties of a system?
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