

Brigham Young University BYU ScholarsArchive

Theses and Dissertations

1975-12-01

Calorimetric determination of the interaction of Cu, Fe, and V oxides with SO₂ and measurement of sulfur (IV) and sulfur (VI) in particulate samples from Utah Valley

Douglas F. Cannon Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

BYU ScholarsArchive Citation

Cannon, Douglas F., "Calorimetric determination of the interaction of Cu, Fe, and V oxides with SO₂ and measurement of sulfur (IV) and sulfur (VI) in particulate samples from Utah Valley" (1975). *Theses and Dissertations*. 8182.

https://scholarsarchive.byu.edu/etd/8182

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact ellen_amatangelo@byu.edu.

CALORIMETRIC DEFERMINATION OF THE INTERACTION OF CU, FE, AND V OXIDES WITH SO₂ AND MEASUREMENT OF SULFUR (IV) AND SULFUR(VI) IN PARTICULATE SAMPLES FROM UTAH VALLEY

QD 1.02

: (36

A Thesis Presented to the Department of Chemistry Brigham Young University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Douglas F. Cannon December 1975 •.

This thesis, by Douglas F. Cannon, is accepted in its present form by the Department of Chemistry of Brigham Young University as satisfying the thesis requirement for the degree of Master of Science.

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS	7
LIST OF TABLES	7
ACKNOWLEDGMENTS vii	-
I. INTRODUCTION AND LITERATURE SURVEY	L.
A. Health Considerations4B. Lung Effects5C. Aerosol Sources8	;
II. ADSORPTION OF SO ₂ ON METAL OXIDES)
A. Introduction)
Interaction 2 13 C. Results 1 16	3
III. DETERMINATION OF S(IV) AND S(VI) IN AIRBORNE PARTICULATES IN UTAH VALLEY)
A. Sample Collection23B. Sulfite and Sulfate Analyses26C. Results34	3
IV. CONCLUSIONS	3
V. SUMMARY AND RECOMMENDATIONS FOR FURTHER STUDY 50)
APPENDIX ASummary of Source Emission Estimates in Tons per Year for the Wasatch Front Air Quality Control	
$\operatorname{Region} \ldots \ldots$	i.
APPENDIX BStatistical Data from Air Quality Section of the Utah Division of Health	3
APPENDIX CParticulate Weight on Each Stage of the Andersen Sampler for All Sampling Locations	, .
REFERENCES	,

LIST OF ILLUSTRATIONS

1.	Location of Sampling Sites
2.	Andersen Sampler Simulates Human System
3.	Idealized Recorder Output of Metal Oxide in Decane, Titrant, with SO ₂ in Decane, Titrate
4.	Thermometric Titration of Fe ³⁺ by SO_3^{2-}
5.	Schematic of the Andersen Head Sampler
6.	Filtration Assembly
7.	S(IV) and S(VI) Analytical Instrumentation
8.	Idealized Thermometric Titration for S(IV) and S(VI) 33
9.	Plot of S(IV) in $\mu g/M^3 x 10$ for Each Stage of the Andersen Sampler for Provo and Springville
10.	Plot of S(IV) in $\mu g/M^3 \times 10$ for Each Stage of the Andersen Sampler for Lindon and Pleasant Grove
11.	Plot of S(IV) in $\mu g/M \times 10$ for Each Stage of the Andersen Sampler for Cedar Fort

LIST OF TABLES

1.	Summary of SO ₂ Reaction in the Presence of Various Particulates
2.	BET Metal Oxide Surface Areas
3.	Metal Oxide in Decane Titrant with SO ₂ in Decane Titrate Results
4.	Dustfall Concentrations in Utah Valley
5.	S(IV) and S(VI) Concentrations from Provo Sampler 38
6.	S(IV) and S(VI) Concentrations from Springville Sampler
7.	S(IV) and S(VI) Concentrations from Lindon Sampler
8.	S(IV) and S(VI) Concentrations from Pleasant Grove Sampler
9.	S(IV) and S(VI) Concentrations from Cedar Fort Sampler
10.	<pre>µg/M³ S(IV) on Each Stage of the Andersen Sampler for Provo and Springville</pre>
11.	<pre>µg/M³ S(IV) on Each Stage of the Andersen Sampler for Pleasant Grove and Lindon</pre>
12.	<pre>µg/M³ S(IV) on Each Stage of the Andersen Sampler for Cedar Fort</pre>
13.	Weight Percent S(IV) and S(VI) for Utah, Salt Lake and Weber County Sampling Sites
14.	Particulate Emissions Inventory Summary in Tons per Year for the Wasatch Front Air Quality Control Region
15.	Sulfur Oxides Emissions Inventory Summary in Tons per Year for the Wasatch Front Air Quality
	concret region

16.	Statistical Weather Data from the Provo Station \ldots .	58
17.	Statistical Weather Data from the Mapleton Station $ \cdot \cdot \cdot$	59
18.	Statistical Weather Data from the Lindon Station	60
19.	Statistical Weather Data from the Pleasant Grove Station	61
20.	Wind Data from the Provo Station	62
21.	Wind Data from the Mapleton Station	63
22.	Wind Data from the Lindon Station	64
23.	Wind Data from the Pleasant Grove Station	65
24.	Wind Data from the Lehi Station	6 6
25.	Particulate Weights on Each Stage for All Sampling Stations	67

ACKNOWLEDGMENTS

I wish to express my gratitude to the members of my committee. Each has given me counsel, advice, and encouragement throughout the course of this study. I would like to give a special thanks to Dr. Lee Hansen, who worked most closely with me on this project. Dr. Hansen made many thoughtful suggestions and solved many technical problems involved in this study. I appreciate very much his competence in calorimetry and inorganic chemistry. I also give special thanks to Ted Jensen for helping and teaching me many aspects of calorimetry and laboratory techniques. Dr. Calvin Bartholomew, Jr. determined the surface area of several metal oxides used in this study for which I am very grateful.

I am grateful to the Air Quality Control Section of the Utah State Department of Health for their help. I also thank the Provo Rotary Club for a grant to help cover material and equipment costs. Dr. T. J. Smith at the University of Utah Medical School was very helpful in loaning me the high volume sampler and helping me utilize it in this study.

vii

I. INTRODUCTION AND LITERATURE SURVEY

The purpose of this study is threefold:

1) to determine qualitatively by a calorimetric titration procedure the extent of reaction of SO_2 with metal oxides in decane. The results may have application in understanding the reaction of SO_2 with metal oxide-containing aerosols in the environment. The metal oxides chosen for study (Cu_2O , CuO, Fe_3O_4 , Fe_2O_3 · xH_2O , V_2O_5) represent the metals commonly found in aerosols in the Utah Valley area.¹

 $V_2^{0}{}_5$ was included in the study since vanadium compounds are present in liquid fuels and are released into the atmosphere as $V_2^{0}{}_5$. Previous studies show a close correlation between vanadium concentrations from oil combustion products and sulfur dioxide concentrations. The vanadium concentrations show an inverse correlation with temperature in the atmosphere.

2) to obtain samples of Utah Valley aerosols and determine quantitatively the S(IV) and S(VI) concentrations in these particles.

3) to compare the results of purpose 2 with a similar study conducted in the Magna, Utah area for S(IV) and S(VI) concentrations.

There is an apparent synergistic effect between metal containing aerosol and sulfur dioxide so that respiratory impairment is greater than for either sulfur dioxide or particulates alone. Sulfur dioxide alone causes minimal pulmonary damage since the main portion

of inhaled sulfur dioxide is absorbed in the upper respiratory tract. But the combination of sulfur dioxide with aerosols results in the development of respiratory problems. The first evidence for toxic synergism between particulate matter and irritant gases in the respiratory system was presented by Dautrebunde in 1939. He suggested that absorption of gas on an inert aerosol particle increased the amount of the gas reaching the lungs.² Studies indicate that SO₂ reacts with aerosols and the SO₂ is stabilized in the S(IV) oxidation state. Exposures to combinations of irritant gases and aerosols delays recovery of the irritant response as compared to the recovery from exposures to the gas alone.³ This stabilization of SO₂ in particulates may occur by formation of transition metal-SO₃²⁻ complexes which could then contact lung membrane tissue during respiration and destroy disulfide and sulphydryl bonds by formation of organothiosulfates resulting in membrane alteration.

Samples were taken by a high-volume air sampler at various places in Utah Valley to determine the extent of metal sulfite and sulfate pollution. Five locations were chosen: (Fig. 1.) 1) in downtown Provo on top of the County Building, 2) in downtown Springville on top of the fire station, 3) at the Lindon Elementary School in Lindon, 4) at the Pleasant Grove High School in Pleasant Grove, and 5) at the Cedar Fort Grocery Store in Cedar Fort. The Department of Health of the State of Utah has anemometers at all locations except Springville and Cedar Fort.

Fig. 1. Location of Sampling Sites.

A. Health Considerations

The basic physiological response to inhalation of pure SO, appears to be a mild degree of bronchochonstriction reflected in a measurable increase in flow resistance. The changes produced by pure SO, are readily reversible. Although the response is highly vareable, most individuals tested have responded to 5 ppm. and levels of 5 to 10 ppm. have upon occasion produced severe bronchospasm in sensitive individuals. Sulfuric acid and sulfate salts are more potent irritants than sulfur dioxide. The irritant potency of these substances is affected by particle size and by relative humidity. The presence in particulate material of substances capable of oxidiaing sulfur dioxide to sulfuric acid causes a threefold to fourfold potentiation of the irritant response. Among the oxidizing agents which increase the irritant response are those which contain salts of iron (III), manganese (IV) and vanadium (V). Within a range of 0.3 to 2.5µ, the smaller the particle size of sulfuric acid or zinc ammonium sulfate, the greater the irritant potency.³

A history of repeated, acute, lower-respiratory illness in childhood may be associated with the development of chronic bronchitis in later life.⁴ Studies concucted by investigatorys in Britian and Japan showed an excess number of lower respiratory tract infections in children from the more heavily polluted areas compared to children in a low-exposure area.^{4,5,6}

Pollution exposure for three years or longer has been shown to be an important component in increased risk for acute respiratory disease.⁷ The Salt Lake Basin area has a single anthropogenic source that produces high sulfur dioxide levels but relatively low levels of total suspended particulates. Laryngotracheobronchitis is the major example of excess, acute, lower-respiratory disease in children in heavily polluted communities in the Salt Lake Basin. This pollution effect is independent of socioecononic status and cigarette smoking.⁷

Studies with radioactively labeled ³⁵S indicate that sulfur is absorbed into the bloodstream from all portions of the respiratory tract and is distributed essentially to all body tissues. S(IV) in mammalian plasma and serum reacts with disulfide bonds present in plasma, largely in the plasma proteins, with the resulting formation of S-sulfonate residues:⁸

$$RSSR + HSO_3 \longrightarrow RSSO_3 + RSH$$

This reaction mechansim is used as a gentle method for breaking proteins into fragments (sulfitolysis). Most of the urinary ³⁵S excreted after exposure to high ³⁵SO₂ levels was in the form of inorganic sulfate.⁹ Short term exposure to low concentrations of SO₂ in mice for 135 days caused an unexpected enhancement of antibody production but the activity fades after 192 days.¹⁰

B. Lung Effects

The human respiratory tract has unique and specific aerodynamic properties which cause patterns of distribution for air-borne particles.¹¹ See Figure 2. There is a maximum alveolar deposition of particles of 1 μ diameter and a minimum deposition at 0.3 μ . However, particle deposition for the range below 0.1 μ increases again to a posint just slightly lower than values for 1 μ .³

Any aerosol sampling device should reproduce to a reasonalbe degree the dust-collections characteristics of the human respiratory system so that lung penetration by air-borne particles can be predicted from sampling data. The sampling instrument should classify particles collected according to the aerodynamic dimension which is the true measure of lung penetrability. The fraction of inhaled dust retained in the respiratory system and the site of deposition vary with size, shape, density, and all the physical properties of the particles that constitute the aerodynamic dimen-Methods that employ light scattering or filtration and sion. microscopic sizing of particles do not reckon with density and some other properties that affect the movement of the partilces in air. The combined effect of all the aerodynamic properties of particles determines settling velocities, jet impaction, and lung penetration of airborne particles. The aerodynamic classification of particles can best be done using a series of jets of decreasing size. The smaller the jets (within certain limits), the more efficient and precise they are with respect to impaction and particle size discrimination. In smaller jets the particles flow nearer to the axis of the jets. In the Andersen sampler a cascading series of jets cause a distribution in cutoff with less overlap of particle sizes as the jets get smaller with smaller particles carried further to impact on later stages. Smaller jets are favored but smaller jets cause less volume

7

Fig. 2. Andersen Samplers Simulate Human Respiratory System.

for the sample. This disadvantage is overcome by having a multiplicity of jets in each stage. Several stages are necessary for evaluating the sample since penetration of particles into the respiratory tract varies with particle size.¹¹ For a given volume of air passing through the sampler, its velocity increases as it passes through jets in each succeeding stage.¹

C. Aerosol Sources

In general the three main classes of airborne particles are wind-erosion products, industrial dusts and combustion products.¹² The most prominent sources of airborne particulates in Utah Valley come from 1) soil and other dusts originating on the farms and roads; 2) fine material (i.e., kish) associated with a) steel processing at the Geneva plant, b) the U.S. Steel pipe plant in Springville, c) the concrete block plant in Lehi, d) Reilly Tar and Chemical Company of Springville, e) Thorn Rock Products Company and f) Kennecott smelter in Salt Lake; and 3) combustion products from automobiles and electrical generating plants at Brigham Young University and Provo Power Company and from the sources listed in number 2, above.

"The highest annual geometric mean particulate concentration in the State of Utah monitored in 1970 was 79 μ g/M³ at the monitoring station at Provo. The Kennecott smelter in Salt Lake is responsible for 96% of the sulfur oxide emissions in Salt Lake County and 81% of the sulfur oxide emissions in the Wasatch Front. Fuels combustion is the second largest categorical emitter of sulfur oxides. This category accounted for about 9% of the total emissions in the Wasatch

Front. Sulfur oxide emissions from all other point and area sources are less than 1% of total emissions in the Wasatch Front."¹³

Airborne particulate matter ranges in size from less than 0.1 micron to 100 microns.¹⁴ Air particles having a diameter greater than ten microns settle from the atmosphere quickly, and this occurrence is known as dustfall.¹⁵ Of particular interest are the small particles having a diameter less than one micron because they are a health hazard and are not easily removed from industrial emissions by existing control equipment.¹⁶

Appendix A shows a summary of source emission estimates for Utah for the year 1970.¹³ The contribution for each source for both particulates and sulfur oxides is given. The data for Salt Lake County are included for comparison with the data for Utah County.

II. ADSORPTION OF SO2 ON METAL OXIDES

A. Introduction

There is a marked increase in the irritation produced in human subjects exposed to sulfur dioxide (SO_2) when exposures occur in the presence of various metal oxide aerosols. A special type of synergism may occur as a result of differences in the aerodynamic behavior of gases and particles. A gas such as SO_2 can penetrate more deeply into the lungs when it is adsorbed on particles of respirable size.

Adsorption of Sulfur-35-labelled SO₂ on airborne particles of iron oxide (Fe₃O₄), aluminum oxide (Al₂O₃), lead compounds (PbO, PbCO₃ and PbO·H₂O) and platinum has been studied. At an initial SO₂ concentration of 6.2 ppm., adsorption of SO₂ onto 1.8×10^5 Fe₃O₄ particles per cm.³ (initial count) reached about 3%. Adsorption on Al₂O₃ particles was much greater so that adsorption reached 50% with an initial SO₂ concentration of about 1 ppm. The aerosols of lead compounds completely remove SO₂ from the free gaseous state almost immediately (about 5 minutes) after mixing. This is expected because SO₂ reacts readily with lead oxides. An adsorption isotherm for SO₂ on Fe₃O₄ particles shows an increase in specific adsorption with increasing SO₂ concentration over the range from about 1 to 66 ppm. at 24^OC. The single monolayer coverage through chemisorption is

complete at about 2 ppm. of SO_2 ; coverage increases to a surprising equivalent of 75 monolayers at 66 ppm. of SO_2 through physical adsorption. The conclusion is that chemisorption on Fe_3O_4 and Al_2O_3 is preferential at low SO_2 concentrations and is followed by multilayered physical adsorption at higher concentrations.²

Adsorption of sulfur dioxide with particulates with and without ultraviolet irradiation has been studied by a combination of colorimetric and radio-tracer techniques. Gaseous mixtures of SO₂ kept in the dark for days did not react, whereas sulfur dioxide in the presence of powdered oxides of aluminum, calcium, chromium, iron, lead and vanadium reacted within minutes with or without sunlight or ultraviolet irradiation.¹⁷ The unreacted sulfur dioxide was measured colorimetrically, and a scintillation method was used to account for all of the sulfur dioxide. The values in Table 1 for the amount of loss of sulfur dioxide from the gas phase before rinsings were analyzed are shown in parentheses next to the values for the overall reaction.

Two-liter flasks held the particulate and air mixtures. The results in Table 1 for calcium carbonate, chromium trioxide, and vanadium pentoxide gave reaction rates of approximately 0.2, 0.5, and 0.7% per hour respectively. These rates were surprisingly low, especially for chromium trioxide and vanadium pentoxide, which are known to catalyze the oxidation of sulfur dioxide at higher temperatures. In all reactions a large excess of metal oxide over sulfur dioxide was used. Finely ground powders were placed in a 2-liter flask and SO₂ from a mylar bag was allowed to enter the flask through a stopcock.

	•	total used.	Adsorbed
SO ₂ 14 ppm.	1000	99	-1.8
NaCl 21.0 mg.			
SO ₂ 14 ppm.	1100	99	4.2
CaCO ₃ 30.3 mg.			
SO ₂ 18 ppm.	22	100	99
Fe ₂ O ₃ 20.0 mg.			
SO ₂ 8 ppm.	4	102	17
Fe ₃ 0 ₄ 14.0 mg.			
SO, 14 ppm.	1030	99	9.0
Cr ₂ 0 ₃ 11.0 mg.			
SO ₂ 17 ppm.	15	101	(26)
- PbO 11.0 mg.			
SO 18 mm	9	103	(53)
2^{10} ppm.	2	105	(55)
2^{12} mg.			
SO ₂ 8 ppm.	800	97	9.3
V ₂ 0 ₅ 17.2 mg.			
SO ₂ 12 ppm.	30	92	53
CaO 19.7 mg.			
SO ₂ 14 ppm.	1145	93	46
Al ₂ 0 ₃ 33.1 mg.			

Summary of SO2 Reactions in the Presence of Various Particulates

Table 1ª

() % SO_2 removed from gas phase before flasks were rinsed.

^aSee Reference 16.

The surface area of the metal oxide exposed to the sulfur dioxide gas was not determined. The weights of particulates used in the heterogeneous experiments (SO₂ gas with particulates) were from 100 to 200 times the weight of the sulfur dioxide taken. In a polluted atmosphere the total weight of particulates suspended in air is much smaller relative to sulfur dioxide and other gaseous pollutants.¹⁷

B. Experimental Design for Studying SO2-Metal Oxide Interaction

When metal oxides are exposed to SO_2 in a container, there is usually no visible reaction. However, any reaction can be determined by calorimetric titration using decame to suspend both the metal oxides and the SO_2 .

Two 500 g. bottles of decane (Pract. Grade, J. T. Baker) from the same lot were used. Decane has a boiling point of $172-174^{\circ}C$. Sulfur dioxide was bubbled slowly through one bottle for 15-30 minutes. To determine the SO₂ concentration in the decane, a titration scheme using potassium dichromate was used. The titrant was the decane-SO₂ solution and the titrate was 20 ml. of 0.00300 <u>M</u> K₂Cr₂O₇ in 0.1 <u>M</u> HCl. The reaction was followed on the recorder with the Tronac Model 450 Calorimeter. The following reaction was monitored:

 $11H^{+} + 3HSO_{3}^{-} + K_{2}Cr_{2}O_{7} = 3H_{2}SO_{4} + 2Cr(III) + 2K^{+} + 4H_{2}O_{3}$

For each mole of $K_2 Cr_2 O_7$ three moles of SO₂ were titrated in the decane solution. The concentration of the SO₂ in the decane was 0.102 <u>M</u> ±0.006. The metal oxides were all reagent grade chemicals and

were prepared by screening so that all passed through a 150 mesh screen. The metal oxide surface areas were determined by BET analysis. BET is an abbreviation for the Brunauer-Emmett-Teller multilayer theory. The surface area determinations are accurate to within 5%. In this case nitrogen gas a liquid-nitrogen temperatures (-195.8°C at 760 torr) was used.¹⁸

The Tronac thermometric titrator model 450 isoperibol calorimeter was equipped with a 25 ml. Dewar. The termistor bridge on this calorimeter has a sensitivity of 25 mv/ $^{\circ}$ C. The Tronac Model 450 makes possible the collection of calorimetric data having a precision of 0.3% or better.¹⁹ The water bath temperature in all cases was 25 $^{\circ}$ C. A Gilmont 2 ml. capacity buret constructed of glass and teflon was used. The buret delivery rate was 0.00662 ml/min. Delivery from the buret was within ±0.5% accuracy.^{20.21}

The number of millimoles of metal oxide was determined by dividing the weight of titrant (grams) in the Dewar by the molecular weight (g./mole). The total milliliters of SO₂ in decane solution delivered can be calculated by multiplying the buret delivery rate by the number of seconds the reaction proceeded until the endpoint. The concentration of SO₂ in decane was 0.102 M. The milliliters of titrate added to the Dewar multiplied by the molarity of the titrate gives the millimole of SO₂ reacted. If there is one adsorption site per metal oxide molecule, the millimole of metal oxide equals the millimole of SO₂. This value, divided by the total millimoles of metal oxide in the Dewar multiplied by 100 yields the percent of the metal oxide that reacted. In the case where there are two "endpoints" in the titration (dashed line in Figure 3), the

percentage of metal oxide reacted is the total amount reacted to the respective endpoints. For example, the second percentage given includes the percentage of metal oxide reacted since the reaction started and therefore includes the percentage to the first endpoint.

C. Results

Table 2 summarizes the BET theory determined metal oxide surface areas.

Table 2

Metal Oxide Sample	BET Surface Areas $(M^2/g.)$
Cu ₂ 0 Cu0	0.704 0.526
Fe ₃ 0 ₄	6.49
Fe203	11.0

BET Determined Metal Oxide Surface Areas

The results showed reaction for every metal oxide tested under these conditions except V_2O_5 . A typical output curve is shown in Figure 3. No BET surface areas were determined for $Fe_2O_3 \cdot xH_2O$ so that the results for the reaction of SO_2 with metal oxides which are given in Table 3 in terms of millimoles SO_2 per M² surface do not include $Fe_2O_3 \cdot xH_2O$. The slope of the line changed on the strip chart recorder output as the reaction proceeded in the case of cuprous oxide and ferric hydroxide. The results are therefore given for these two metal oxides in terms of "first and second endpoints." The test results are given in Table 3.

Table	3
-------	---

Compound Tested	% of the Compound That Reacted	Millimoles of SO ₂ per M ² of Surface Area
CuO	4	1
Cu ₂ O	3	0.3
	7	0.8
Fe203	2	0.01
Fe ₃ 0 ₄	1.5	0.01
Fe203 · xH20	3	
	10 m	
v ₂ 0 ₅	0	0

Metal Oxide in Decane Titrant with SO₂ in Decane Titrate Results

In every case the percentage of metal oxide that reacted increased as the weight suspended in decane decreased. This indicates that more surface area was exposed to SO_2 because the amount of clumping of metal oxide particles decreases as the amount in solution decreases. The metal oxide weight used was from 0.1 to 0.3 g. in 20 ml. of decane. Two other compounds were also tried: $Fe_2O_3 \cdot xH_2O$ and V_2O_5 . The ferric hydroxide had two endpoints. Two endpoints indicate two different loci of reaction. See Table 3. The reaction of SO_2 with the metal oxide in millimoles of SO_2 per M² surface decreases in order $CuO > Cu_2O > Fe_2O_3 > Fe_3O_4 > V_2O_5$. V_2O_5 should oxidize SO_2 to SO_4^{2-} but the results indicate very little reaction. A second series of experiments was made using decane dehydrated by adding Fisher Scientific Company Type 5A molecular sieves to a bottle of 500 g. M.C.B. decane. SO_2 was next bubbled through a portion of the dehydrated decane. The concentration of SO_2 in the dehydrated decane was determined by titrating the SO_2 -decane solution into $K_2Cr_2O_7$ in a dewar.

In every case the metal oxide reacted only slightly or not at all with the SO₂. Moisture, U. V. light and oxygen are factors which enter into the reaction. Therefore, the simple reaction MO + SO₂ = MSO₃ is probably not the reaction that ultimately occurs in aerosols in the environment. Kirshman²² found that when alkalized alumina reacted with SO₂ ". . . as time passed the retardation of the reaction rate became severe unless a trace of water was present." Cheng²³ found that the extent of reaction between SO₂ and particules depended on the % relative humidity. "In the completely dry state the reaction $SO_2 + 1/2 O_2 \xrightarrow{catalyst}$ SO₃ simply cannot proceed."

A third series of experiments was conducted using decane saturated with distilled water. The results were the same as those obtained using decane from the bottle to prepare the titrate and titrant. Apparently there is sufficient water dissolved in the decane to complete the reaction and the difference is shown only when the decane is dehydrated with molecular sieves.

III. DÉTERMINATIONS OF S(IV) AND S(VI) IN AIRBORNE PARTICULATES IN UTAH VALLEY

A study of Pasadena aerosols showed that sulfur content was highest at night and consisted of S(IV) and S(VI). The S(IV) predominated at night on the smaller particles and was presumed to be adsorbed SO₂ which was later oxidized to S(VI), (SO_4^{2-}) , and predominated in the larger particles during the day. Previously, the chemical states of sulfur had been determined using specific colorimetric reactions in solution for the SO_4^{2-} anion. However, the sample size on a cascade impactor stage approached the lower quantitative limit of the colorimetric method. X-ray photoelectron spectroscopy, ESCA, was used to determine the relative elemental composition and oxidation states in the Pasadena study. The sample took a scanning time of two hours for sulfur. Accretion of SO_3^{2-} proceeded rapidly during the day followed by slower oxidation to SO_4^{2-} at night.²⁴

There are several questions about the Pasadena study. Before the sulfur oxidation states were determined, the samples were apparently allowed to stand exposed to air which could cause oxidative processes on sulfur compounds. Also, care must be taken in interpreting the relative concentrations determined by ESCA because of the semisurface nature of the method. The photoelectrons detected by ESCA have an escape depth of only several tens of Ångstroms for solid samples.²⁵

Sulfur dioxide is oxidized by oxygen to form sulfur trioxide: $SO_2 + 1/2O_2 = SO_3$.²⁶ The reaction sequence of SO_2 on the surfaces of metal oxides is 1) chemisorption of oxygen onto the surface sites, 2) diffusion of SO_2 to the surface, 3) reaction between SO_2 and chemisorbed oxygen to form SO_3 . The oxidation reaction of sulfur dioxide to form sulfur trioxide does not occur in the dark but an external radiation in the 3000-4000 Å range makes the reaction kinetically possible.²⁷

Basset²⁸ proposed that in the oxidation of sulfurous acid in catalyst solutions, the active catalyst is a transitional metalsulfite complex. The complex form picks up a molecule of oxygen and rearranges to form either a sulfite or dithionate group.

Spectroscopic evidence indicates that CU^{2+} and SO_3^{2-} form a stable complex in solution. Below pH 6 the complex with a $Cu^{2+}:SO_3^{2-}$ ratio of 1:2 is in equilibrium with a yellow solid whereas the yellow precipitate formed at high total $Cu^{2+} + SO_3^{2-}$ concentrations has a $Cu^{2+}:SO_3^{2-}$ ratio of 1:1. Above pH 7 a completely soluble green complex is formed with a $Cu^{2+}:SO_3^{2-}$ ratio of 2:1. The complex is stable but oxidizes slowly in air over a twelve-hour period.²⁹

In solution the reaction $2Fe^{3+} + H_2SO_3 + H_2O =$ $2Fe^{2+} + SO_4^{2-} + 4H^+$ has a log K value of 20 based on half cell potentials. Results of thermometric titrations with $0.002 \text{ M} SO_3^{2-}$ solution in $0.1 \text{ M} \text{ HClO}_4$ and $0.002 \text{ M} SO_4^{2-}$ with FeCl₃ in $0.1 \text{ M} \text{ HClO}_4$ show that Fe^{3+} does not oxidize SO_3^{2-} to SO_4^{2-} in solution but forms stable $Fe^{3+} - SO_3^{2-}$ complexes.²⁸ See Figure 4. In 0.1 M acid solution containing some sulfate the reaction:

$$Fe(SO_3)_{n-1}^{5-2n} + HSO_3^{-} = Fe(SO_3)_n^{3-2n} + H^+$$
 (n=1,2,3) log K=17 (1)

occurs in preference to:

$$2Fe^{3+} + HSO_3^- + H_2O = 2Fe^{2+} + SO_4^{2-} + 3H^+ \log K = 22.1$$
 (2)

If the reaction is carried out at higher pH or with solutions containing no initial SO_4^{2-} , then the two reactions, (1) and (2) occur in the same solution. Thermometric titration data indicate that various complexes are stoichiometrically formed, <u>i.e.</u> the $Fe(SO_3)_3^{3-}$ species has been reported but thermometric titration data for the first time show stepwise formation of $Fe(SO_3)_n^{3-2n}$ (n=1,2,3) complexes and show their high stability.²⁹

To quantitatively determine the S(IV) and S(VI) concentrations in particulate samples, a relatively simple and inexpensive method was used, based on a thermometric titration of sulfur (IV) with $K_2 Cr_2 O_7$ solution followed by a direct injection enthalpimetric determination of total sulfate using BaCl₂.

The thermometric method for measuring S(IV) has a sensitivity range of 10^{-5} to 10^{-6} <u>M</u> corresponding to approximately 1 to 0.1 ppm. of the unknown present in the analyzed solution with a precision of 1%. The reaction occurring is

$$3Feso_3^+ + Cr_2o_7^{2-} + 8H^+ = 3so_4^{2-} + 4H_2O + 2Cr^{3+} + 3Fe^{3+}$$

The sensitivity of the instrument used is 2×10^{-5} °C. The level of SO_3^{2-} expected from solution of 0.1 gram of total particulate

containing 0.5% SO₂ dissolved in 100 ml. of solution is a concentration of about 10^{-5} M.²⁹

Using this thermometric method Eatough, <u>et.al.</u>³⁰ determined that the ratio of S(IV) to S(VI) in particulates collected from the Kennecott smelter in Salt Lake is greater than 4. Hansen, <u>et.al.</u>²⁹ postulated that stabilization of SO₂ in particulates occurs by formation of transition metal-SO₃²⁻ complexes in which the SO₃²⁻ is resistant to oxidation. ESCA Spectra were run on two of the aerosol samples. The spectra verified the presence of S(IV) and S(VI) in the samples. The ESCA Spectra show that the S(IV) was present either as a sulfite compound or as adsorbed SO₂.³⁰

A. Sample Collection

The Sampler head is used to support the filters and funnel the air through jets onto the filters. It consists of the Interface Plate and gaskets and plates 1-5. See Figure 5. The Sampler head used was manufactured by Andersen Air Samplers, Inc. The Sampler head is a high-volume sampler (Model 65-000). It is designed to operate with various Hi-volume Air Samplers but the High Volume Sampler made by General Metal Works, Inc., Model GMWL2000H was used in this study. The suspended particulate matter is sized aerodynamically into four fractionations in the head: 1.1, 2.0, 3.3, and 7.0 microns, with submicron material being trapped on the backup filter (stage 5) located below the filter holder on the interface plate. There are aluminum plates located one above the other ranging in thickness from 0.25 to 0.05 inches. The plates have holes through them (air jets)

through which the air passes and impacts on the filter below. An interface adapter plate hooks the Sampler head onto the Sampler. There are five 0.25 inch thick neoprene gasket/spacers to separate the plates. A speedball handle is used to tighten down the head by hand and also to carry the head from the field to the laboratory. There are two configurations of specially designed and cut perforated collection paper. The holes in the paper line up with the holes cut in the collection plates and allow the air to pass through. Each collection plate is offset from the one above or below so that the air won't pass straight through but impacts on each plate. Paper configuration I. (Collection paper #1 and #3) holes correspond to the jets of plates #2 and #4; configuration II. (Collection paper #2 and #4) holes correspond to the jets of plates #3 and #5. The paper used is Type "A" non-hygroscopic fiber glass and is placed on the plates with rough side up. See Figure 5. Below the round plates is an interface gasket which acts as a seal between the interface plate as well as to hold down the 8x10 backup filter paper. This 8x10 backup filter is located below the interface plate on the filter holder and provides the fifth and final stage to collect particles in the submicron range. The 8x10 inch fiberglass filter is placed on the stainless steel wire screen mesh support with the rough side up. A manometer is used to accurately set the unit for a pressure drop which corresponds to 20 cfm. flowing air. The scale is calibrated with red gage oil to correspond with inches of water. The unit was calibrated at the University of Utah Mecical School by Dr. Tom Smith so that a separation of 5.2 inches on the manometer corresponds to

20 cfm. The flow rate was adjusted by a variable voltage transformer.³¹

General Metal Works Sampler Housing

The sampler housing consists of a motor-driven blower and a supporting screen for the filter ahead of the blower unit. The sampler is supported in a protective housing so that the sampler head surface of the filter is in a horizontal position. Flow rate readings are adjusted before each sampling period. The shelter is fabricated from 0.08 inch aluminum sheet metal with 0.125 inch aluminum angle braces and lips. When assembled for field use the shelter is 15x15x52 inches and weighs apporximately 70 pounds. At an average mass concentration of 128 μ g/M³ (corresponding to a relative standard deviation of 4%).³²

Calorimeter

A Tronac Model 450 calorimeter was used to determine air particulate sulfite and sulfate levels. The calorimeter was equipped with a 3 ml. Dewar and two extra 0.015 inch teflon tubes in the insert, and a 1 ml. Gilmont precision buret. Three teflon tubes inserted into the Dewar delivered respectively 1) $BaCl_2$, 2) $K_2Cr_2O_7$ and 3) the sample and argon. The bridge output was amplified by a Kiethley Model 150B amplifier. The output was recorded on a HP 1700B recorder with a 17505A plug-in module.³²

B. Sulfur (IV) and Sulfur (VI) Analyses

The filters were weighed on a Mettler Balance Model H2OT and placed in the sampler prior to field use. In all cases the sampler was run for about 48 hours at 20 cfm. Days with clear weather and little or no wind were chosen on which to sample. The weather varied somewhat over the sampling period and between different stations. After air sampling the Andersen Head was disassembled and each filter was reweighed to determine particulate levels. Each filter in succession was cut into four equal parts so that two samples consisting of 2 to 25 milligrams of particulates could be analyzed. The filter was carefully folded into a large test tube and securely sealed with a rubber stopper. Two Monojet 200 stainless steel needles with aluminum hubs were used to puncture the stopper to provide openings so that one needle could be attached to a cylinder of argon to flush the tube and filter with argon (which is heavier than air) to purge any oxygen which could oxidize sulfite to sulfate. The tube was purged for five minutes with a slow stream of argon. The needles were removed from the stopper and the tubes were refrigerated until analysis time.

In designing a procedure to analyze for sulfite in the presence of ferric ion and cupric copper the solution should have an H^+ concentration of 0.1 <u>M</u> to prevent sulfur (IV) oxidation but should also not exceed 1 <u>M</u> to prevent reduction of sulfur (IV) which takes place more easily in strong acid. HCl was chosen since the anion of the acid does not interfere with the precipitation reaction for sulfate using BaCl₂ and also Cl⁻ does not interfere with redox reactions by $\text{Cr}_2\text{O}_7^{2-}$. SO₂ gas is lost from the system if the Fe³⁺ concentration is not at least 0.005 <u>M</u> in the acid solution. 0.1 <u>M</u> Hcl solution containing 0.005 <u>M</u> FeCl₂ was chosen since the sulfite and sulfate
salts of most elements expected to be present in airborne particulates are readily soluble except for Ca, Sr, Ba, and Pb. The SO_3^{2-} is oxidized by oxygen-free $Cr_2O_7^{2-}$ to SO_4^{2-} and the resulting ΔT obtained by thermometric titration gives the amount of sulfite in the sample. Next, a solution of BaCl₂ is added and the amount of SO_4^{2-} is determined from the precipitation and corresponding exothermic reaction to form BaSO₄. The amount of sulfate represented by the ΔT value is found by comparison to the output from a standard solution. The amount of sulfate in the sample is the total sulfate (including the sulfite previously oxidized to sulfate) minus the previously determined sulfite concentration.²⁹

In the procedure errors are introduced unless the system is purged with argon. S(IV) in particulate samples is oxidized by oxygen in the air unless an inert gas such as argon is used. Because of the errors introduced in the analysis, the concentration of S(IV) by this procedure represents the minimum concentration of S(IV) present.

A liter of 0.10 <u>M</u> BaCl₂ was prepared using BaCl₂ \cdot 2H₂O (Reagent, B&A). A 50 ml. solution of 0.005032 M K₂Cr₂O₇ in 0.1 <u>M</u> HCl was made using NBS standard K₂Cr₂O₇ and analytical reagent, MCB HCl. The extractor solution was made 0.00251 <u>M</u>. Fe³⁺ in 0.1 <u>M</u> HCl using FeCl₃ \cdot 6H₂O (analytical reagent, MCB) and HCl (analytical reagent, MCB). All the solutions were stored under an argon atmosphere. The samples to be analyzed were removed from the refrigerator and 15 ml. (18 ml. for backup pad, Stage 5) of the extraction solution was injected through the rubber septum after first purging the syringe and needle with argon. The extraction lasted at least 3 hours while refrigerated at 5° C and rotating in a plate at 6 rpm. The tubes were tilted about 20° to the vertical to allow the solution to contact the entire filter but still prevent any solution from touching the rubber stopper. A 10 ml. Hamilton gas tight syringe fitted with a Monojet 200 stainless steel needle with an aluminum hub was purged with argon for about 10 to 15 seconds and then used to withdraw the solution from the tube. The solution was next injected through a filter assembly (described below) into two 2.5 ml. Hamilton gas tight syringes. The two 2.5 ml. syringes and filter assembly were first purged with argon.

The filter assembly used was a Swinnex-13 which contains a silicone gasket between two halves which screw together (Millipore). In preparing the filter apparatus, the filter (Millipore GSTF01300) was centered on the holder support screen using unserrated-tip forceps. Next the prefilter (AP2001000) was placed on top with the grid surface facing away from the filter. Next a silicone gasket was placed on top of the prefilter and the two polypropylene Swinnex holder halves (Millipore SX0001300) were screwed together. See Fig. 6. The two 2.5 ml. syringes were filled with solution to 2.25 ml.

Instrumentation is shown in Fig. 7. The Dewar was attached to the calorimeter and purged with argon for 5 minutes. The solution was injected from the syringe into the Dewar reaction vessel and the argon was again left on to clear any solution from the injection line into the Dewar. The argon was turned off before titration

Illustrative Section

- 1. 2.5 ml. syringe (receiving)
- 2. Hamilton connector
- 3. Swinnex filter holder (2 Parts)
- 4. Millipore filter

- 5. Depth filter
- 6. Silicone rubber gasket
- 7. 10 ml. syringe (delivery)
- Fig. 6. Filtration Assembly

Fig. 7. S(IV) and S(VI) Analytical Instrumentation

began. The reaction vessel temperature was 0.08°C below bath temperature when the titration began. The buret runs 4 minutes at 0.0987 cc./min. and the thermogram was recorded at 0.2 inches per second. The recorder range was at 10 µV/inch. The Kiethley bridge output amplifier model 150B was set for 1 mv. input and 1 volt output. The buret was turned off after 4 minutes and the recorder chart speed was changed to 2 inches per minute but the recorder range was not changed. The heater was turned on until the reaction vessel temperature was equal to bath temperature. The calorimeter was calibrated electronically. A set point was taken at the start of the day to determine where the bath temperature registers on the recorder. 0.25 ml. of BaCl, solution at the same temperature as the bath was added at a constant rate for 1 minute by means of a syringe with a threaded plunger (to minimize extraneous heat production). The Dewar used was previously coated with $BaSO_4$ and after every run was rinsed with only deionized water since the BaSO₄ coating promotes the rapid precipitation of BaSO₄. An idealized recorder output is shown in Fig. 8. Blank determinations were made by using the same procedure.

The amount of S(IV) in the sample was determined from the endpoint in the redox region of the thermogram. The sulfite oxidation reaction gives a very characteristic slope which differs from other reducing agents which may be present [Fe(II), As(III) and organics.]. The sulfate concentration was determined by comparison of the sample output with the temperature rise attained by injecting the BaCl₂ solution into a known amount of SO_4^{2-} in 0.1 <u>M</u> HCl and 0.005 <u>M</u> FeCl₃. Blank corrections from analyses of unused filters

ω ω were used to make corrections. Previous determinations show that the precision of the method is \pm (5% of the total sulfur (IV) + 3 nanomoles) and \pm (10% of the total sulfate + 30 nanomoles) in 2.25 ml. of extractant solution.

C. Air Sampling Results

The results of the particulate S(IV) and S(VI) concentrations are shown in the following tables for each of the five sampling stations. In each case the S(IV) and S(VI) levels are reported in terms of millimoles per gram of particulate. The total sulfur is the sum of S(IV) and S(VI) in millimoles/g. The percent S(IV) is the result of dividing S(IV) (in mmoles/g.) by total sulfur (in mmoles/g. and multiplying by 100. The sampling period was 48 hours in each case, which is a rather limited time period from which to draw any general conclusions concerning yearly concentrations at the various sampling stations. Also, the samples were taken in winter or early spring when particulate concentrations are highest. Therefore, data from the Utah Division of Health were included to show that the particulate concentrations on the days samples were taken are representative of particulate concentrations of other days in the month and to show how this compares with other days in the year. Those data give only rough comparisons however, since the State takes the raw data values and changes them to reflect levels comparable at standard temperature and pressure (STP) from values at ambient temperatures and pressure. In each case where the total particulate

in grams and particulate concentration in μ g/m³ are given, no correction to STP has been made on the samples taken at the five sampling stations.

Dustfall measurements are available for 1969 and 1970. The average two year measurements are shown in Table 4. 33

Table 4

Dustfall Concentrations in Utah Valley^a

	Location		Tons per squa	re mile pe	r month
Lindon				9.4	
Provo		· ·		9.3	
Springville				18.0	
Richfield (locat	ed 100 mile	s south of 1	Provo)	6.8	

a See Ref. 33.

The particulate concentrations shown in Table 4 show that the data collected in this present study are also representative for yearly averages. The sampling sites in this present study also included Lindon, Provo and Springville. The total particulates collected (See Tables 5, 6, and 7) compare favorably with results in Table 4. For example, the Springville sample (Table 8) is about twice as large as the Provo (Table 5) and Lindon (Table 7) samples. The Lindon and Provo samples have about the same concentration (Tables 5 and 7); however, Table 4 shows the Lindon sample slightly more concentrated, whereas Table 5 shows the particulate concentration of the Provo sample slightly more concentrated on the days the samples were taken than the Lindon sample (Table 11).

Tables 5, 6, 7, 8 and 9 show the S(IV) and S(VI) concentrations whereas Tables 16, 17, 18, and 19 show statistical data gathered from the Air Quality Section of the Utah Division of Health. Tables 20, 21, 22, 23, and 24 show the speed of wind blowing (MPH) and direction (azimuth). The data for Lehi are given since the State has no sampling station at Cedar Fort and Lehi is the closest station but is 15 miles east of Cedar Fort. Also, the wind data for Mapleton, which is 3 miles south of Springville, are given instead of Springville, since the State has no sampling station in Springville either.

The data from the Air Quality Section of the Utah Division of Health is in appendix B. The data indicate that the days on which samples were taken were close to the particulate concentration geometric mean for other days in the month. However, the Springville samples had the higher particulate levels for the days on which samples were taken than for any other days in the month by a factor of 2.

The uncertainty in Tables 5, 6, 7, 8, and 9 is the standard deviation. The abreviations used on data from the Air Quality Control Section of the Utah Division of Health are TM = this month, YD = year to date, RY = running year. All entries are referred to STP (standard temperature and pressure) except those labelled 'actual.' 'Actual' refers to annual station pressure and average daily temperature. Particulates are measured in ambient air and 24 hour average in micrograms per cubic meter.

The Provo station samples were taken on days in which the particulate levels were lower by about 10 μ g/M³ than the geometric mean levels for the rest of the month but were very near the geometric mean particulate values for the running year. (Table 16.) The wind blew from the northwest or west during most of the sampling period and was less than 5 miles per hour during most of the time.

The Mapleton data show that the samples in Springville were taken on days in which the particulate levels were higher by about 40 μ g/M³ than the geometric mean levels for the rest of the month. One day on which I sampled had the maximum particulate level for the month. However, no day during the month had a level greater than 150 μ g/M³ (Table 17). For the data given, the wind came mainly from the southeast at less than 5 mph. during the whole sampling time.

The Lindon station samples were taken on days in which the particulate levels were higher by about 30 μ g/M³ than the geometric mean levels for the rest of the month (Table 7). However, the particulate level for the sampling period is very close to the particulate level for the geometric mean running year. The wind blew mainly from the northeast and northwest for most of the sampling period and was mostly under 5 mph. (Table 18.)

The leasant Grove samples were taken on days in which the particulate levels were slightly higher by about 10 μ g/M³ than the geometric mean levels for the rest of the month. However, only 2 of the 3 days sampled were available from the State data. Also, the particulate level for those days were highly variable by a factor of about 7. No day during the month had particulate levels greater than

150 μ g/M³ (Table 19). The wind during the sampling period came mainly from the southeast at between 5 and 10 mph. during most of the sampling time.

No statistical data are available from the State Air Quality Section for the Lehi station. However, the wind data (Table 24) indicate that the wind was quite variable in both speed and direction for the sampling period.

Table 5

	• • • • • • • • • • • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·	
Stage	S(IV) millimole/g	S(VI) millimole/g	Total S millimole/g	mole %S(IV)
S#5 B.U.	0.075 ± 0.007	1.84 ± 0.02	1.92	3.91
S#4	0.162 ± 0.009	7.76 ± 0.17	7.92	2.04
S#3	0.095 ± 0.005	6.72 ± 0.26	6.81	1.40
S#2	0.282 ± 0.049	3.11 ± 0.08	3.39	8.32
S#1	0.083 ± 0.010	1.09 ± 0.02	1.17	7.09

Results from Provo in mmole/g. Particulate^{a,b}

^aTotal particulate = 0.135060 g.

^bParticulate concentration = $82.6 \ \mu g/M^3$

· · ·	·		
S(IV) millimole/g	S(VI) millimole/g	Total S millimole/g	mole %S(IV)
0.048 ± 0.006	2.06 ± 0.01	2.11	2.27
0.028 ± 0.007	4.14 ± 0.02	4.17	0.671
0.065 ± 0.042	4.38 ± 0.08	4.45	1.46
0.073 ± 0.012	2.55 ± 0.25	2.62	2.79
0.052 ± 0.004	0.836 ± 0.034	0.888	5.86
	S(IV) millimole/g 0.048 ± 0.006 0.028 ± 0.007 0.065 ± 0.042 0.073 ± 0.012 0.052 ± 0.004	S(IV) millimole/gS(VI) millimole/g0.048 \pm 0.0062.06 \pm 0.010.028 \pm 0.0074.14 \pm 0.020.065 \pm 0.0424.38 \pm 0.080.073 \pm 0.0122.55 \pm 0.250.052 \pm 0.0040.836 \pm 0.034	$S(IV)$ millimole/g $S(VI)$ millimole/gTotal S millimole/g 0.048 ± 0.006 2.06 ± 0.01 2.11 0.028 ± 0.007 4.14 ± 0.02 4.17 0.065 ± 0.042 4.38 ± 0.08 4.45 0.073 ± 0.012 2.55 ± 0.25 2.62 0.052 ± 0.004 0.836 ± 0.034 0.888

Results from Springville in mmole/g. Particulate^{a,b}

^aTotal particulate = 0.25198 g.

^bParticulate concentration = 154.5 μ g/M³.

Table 7

Results from Lindon in mmole/g. Particulate^{a,b}

Stage	S(IV) . millimole/g	S(VI) millimole/g	Total S millimole/g	mole %S(IV)
s#5	0.076 ± 0.005	1.53 ± 0.34	1.61	4.72
S#4	0.161 ± 0.080	7.15 ± 0.43	7.31	2.20
S#3	0.276 ± 0.088	3.96 ± 0.01	4.24	6.51
S#2	0.000 ± 0.029	2.69 ± 0.14	2.69	0
S#1	0.108 ± 0.045	1.41 ± 0.05	1.52	7.11

^aTotal particulate = 0.114370 g.

 b Particulate level 70.1 µg/M 3

Results from Pleasant Grove in mmole/g. Particulate.^{a,b}

Stage	S(IV) millimole/g	S(VI) millimole/g	Total S millimole/g	mole %S(IV)
S#5 B.U.	0.005 ± 0.003	2.17 ± 0.19	2.18	0.236
S#4	0.178 ± 0.046	5.33 ± 0.03	5.51	3.46
S#3	0.342 ± 0.017	4.27 ± 0.30	4.61	7.42
S#2	0.000 ± 0.003	3.80 ± 0.42	3.80	0
S#1	0.157 ± 0.002	1.60 ± 0.04	1.76	8.92

^aTotal particulate = 0.09009 g.

^bParticulate concentration = 56.4 μ g/M³.

Table 9

Results from Cedar Fort in mmole/g. Particulate^{a,b}

Stage	S(IV) millimole/g	S(VI) millimole/g	Total S millimole/g	mole %S(IV)
S#5 B.U.	0.217 ± 0.031	1.99 ± 0.03	2.21	9.82
S#4	0.364 ± 0.051	7.04 ± 0.26	7.40	5.17
S#3	0.354 ± 0.011	5.22 ± 0.66	5.57	6.78
S#2	0.271 ± 0.026	3.42 ± 0.16	3.69	7.34
S#1	0.162 ± 0.016	2.08 ± 0.05	2.24	7.23

^aTotal particulate = 0.10276 g.

^bParticulate level = 64.0 μ g/M³.

To give a better idea of the effect on health and to compare with sulfur oxide data in the literature, the data from Tables 5-9 for S(IV) have been converted to $\mu g/M^3$ of S(IV) collected on the various stages of the Andersen Sampler.

Fig. 9 shows the S(IV) in $\mu g/M^3 x 10$ from both Springville and Provo since these two sampling sites give rather similar trends. The hypothesis to explain this similarity is that both samples have a similar source of S(IV). The main source in both cases is probably from combustion of fossil fuels. Both the samplers in Provo and Springville were taken in areas close to heavily travelled roads. Both samplers show their highest concentrations of S(IV) on stages one or two and then decrease on stages three and four. S(IV) concentrations increase again on stage 5 but don't increase to the concentrations of the highest (stage one or two).

Fig. 10 shows the S(IV) in $\mu g/M^3 \times 10$ from both Lindon and Pleasant Grove since these two sampling sites also have similar trends. In this case both samples have a sawtooth pattern on the plot. Stage one has the greatest concentration of $S(IV)/M^3$ and stage two is zero. Stage three shows an increase in concentration again but still is below the concentration on stage one. The concentration of S(IV) on stage 5 increases over the concentration of $S(IV)/M^3$ on stage 4 in the Lindon sample but decreases on stage 5 on the Pleasant Grove sample. An explanation for this might be that the Lindon sample was taken close to a highway (See map Fig. 2.) and the increase of $\mu g S(IV)/M^3$ for stage 5 may reflect the source of S(IV)

Fig. 9. Plot of S(IV) in $\mu g/M^3 x 10$ for each stage of the Andersen Sampler for Provo and Springville.

Fig. 10. Plot of S(IV) in $\mu g/M^3 x 10$ for each stage of the Andersen Sampler for Lindon and Pleasant Grove.

Provo Sulfite in µg/M ³				Springville Sulfite in µg/M ³	
Stage 1	0.250			Stage 1	0.247
Stage 2	0.280			Stage 2	0.115
Stage 3	0.0562			Stage 3	0.0613
Stage 4	0.0825			Stage 4	0.0332
Stage 5	0.114			Stage 5	0.188

 $\mu g/M^3$ Sulfite on each Stage of the Andersen Sampler for Provo and Springville

Table 10

Table 11

µg/M³ Sulfite on each Stage of the Andersen Sampler for Pleasant Grove and Lindon

P] Sul	leasar Lfite	nt Gro in µg	ve /M ³			Lindon Sulfite in µg/M ³		
Stage	1		0.2544		Stag	ge l		0.2709
Stage	2		0.0000		Stag	je 2		0.0000
Stage	3		0.2071		Stag	je 3		0.1524
Stage	4	• .	0.0726		Stac	je 4		0.0632
Stage	5		0.0047	•	Stag	je 5		0.0894

Figure 11 shows the S(IV) concentrations in $\mu g/M^3 \times 10$ for Cedar Fort for the five different stages of the Andersen Sampler. The plot shows the unique trend of this sample in comparison to the other

Table 12

 $\mu g/M^3$ Sulfite on Each Stage of the Andersen Sampler for Cedar Fort

Stage	 μg/M ³
1	 0.267
2	0.277
3	0.231
4	0.206
5	0.266

samples from Utah Valley sites. In this case the probable source for most of the sulfur oxides in the sample was the Kennecott smelter.

The data in Table 13 show the results of this study in addtion to a similar study conducted around Magna and Ogden.

Location	Distance from Smelter	No. Samp.	Part Size	SP ^a µg/M ³	s(IV) so ²⁻	s(VI) so ^{2–} 4
Smelter	0	7	>7.0 1.1-7.0 <1.1 TSP	1450±690 680±750 500±630 2630±2000	2.1±0.4 1.9±0.5 1.5±0.4 1.9±0.4	2.0±1.1 6.6±4.2 16.0±15.8 5.9±4.2
Magna	4	3	>7.0 1.1-7.0 <1.1 TSP	- 31±9 47±11 29±4 107±22	1.2±1.0 2.8±1.0 2.1±0.9 2.3±1.0	17.7±1.8 30.7±5.2 28.9±9.8 26.2±4.1
Kearns	15	2	>7.0 1.1-7.0 <1.1 TSP	22±1 34±8 24±3 80±12	1.1±0.3 2.7±0.3 1.1±0.6 1.8±0.1	16.7±0.5 19.5±15.1 22.5±12.2 19.9±9.9
Salt Lake City	26	2	>7.0 1.1-7.0 <1.1 TSP	21±2 33±1 24±5 78±8	1.9±0.1 2.8±0.1 1.7±1.2 2.2±0.4	16.7±9.7 21.5±1.3 17.4±0.4 18.9±3.0
Cedar Fort	44	1	>7.0 1.1-7.0 <1.1 TSP	21 28 15 64	1.3 2.5 1.7 1.9	19.9 46.5 18.4 31.4
Ogden	62	2	>7.0 1.1-7.0 <1.1 TSP	43±11 67±30 49±18 159±59	0.5±0.1 0.5±0.4 0.2±0.2 0.4±0.2	5.4±2.7 8.0±0.7 10.7±4.2 8.2±1.7
geneva Area	7^C	3	>7.0 1.1-7.0 <1.1 TSP	30±9 25±1 15±4 70±13	0.9±0.3 1.2±0.3 0.9±0.2 1.0±0.2	12.9±2.8 43.1±6.6 17.5±2.8 24.8±2.6
Springville	20 ^C	1	>7.0 1.1-7.0 <1.1 TSP	59 46 49 159	0.42 0.48 0.39 0.43	6.6 35.8 19.8 19.5

Weight Percent Suspended Particulates 34

^aSP is suspended particulates, either total, TSP or indicated size fraction.

^bGeneva Area includes Provo, Lindon and Pleasant Grove.

^CKilometers from the steel mill.

IV. CONCLUSION

Except for the Cedar Fort sample, in which stage five also had a high concentration of S(IV), the larger particle sizes have the highest concentration of S(IV) in $\mu g/M^3$. Cedar Fort had the highest overall concentration in terms of $\mu g S(IV)$ per cubic meter of air (Table 21). If the data for S(IV) and total particulate weight are calculated to reflect weight percentage S(IV), some trends appear. In all cases the highest percentage of S(IV) was formed on the first stage except for Cedar Fort where the second stage had the highest percentage of S(IV) and the Provo sample where the second stage was slightly higher than Stage 1.

It is significant that the Cedar Fort sampling site had the highest overall concentrations of S(IV). This particular location is downwind from the Kennecott Smelter at Magna. The plume can often be seen drifting south over the Oquirrh Mountains (see Figure 2.)

Salt Lake has high SO₂ concentrations whereas Utah Valley has high particulate concentrations. The average of all stages for S(IV) concentration in airborne particulates at the Kennecott smelter in Salt Lake is 1.8 ± 0.4 weight percent in suspended particulate, whereas the S(VI) weight percent is variable by a factor of eight but averages 7.6\pm6.3 weight percent. The S(IV):S(VI) ratio at the smelter is 1:4.2. The average of all stages for S(IV) is 2.1±1.0 weight percent

at Magna (the closest city to the smelter), whereas the S(IV) average for all stages is 25.9 5.2 weight percent. The S(IV):S(VI) ratio is 1:12.3. At Cedar Fort the average of all stages for S(IV) is 1.8 whereas the average for all stages for S(VI) is 29.0. Therefore the S(IV):S(VI) ratio is 1:16.1.³⁴

These data support the conclusion that the S(VI) concentration increases rapidly in the smelter stack. Only a slight amount of oxidation occurs from S(IV) to S(VI) as the plume travels 44 kilometers south to Cedar Fort compared to the amount of oxidation in the stack. This also testifies to the fact that the metal sulfites formed in the particulates are stable to oxidation for relatively long periods of time in the plume from the Magna smelter. The Kennecott smelter sample consists of particulates directly from the furnace and not discharged from the smoke stack. The Magna and Cedar Fort samples, on the other hand, consist of plume particulates from the smoke stack.

V. SUMMARY

The first purpose of this study was to determine qualitatively the extent of adsorption of SO_2 in decane with metal oxides in decane in order to simulate in the laboratory the reactions which occur in the environment between SO_2 and particulates. Surface areas of metal oxides commonly found in Utah Valley aerosols were determined by BET analysis. The reaction order of SO_2 with the metal oxides decreases in order $CuO>Cu_2O>Fe_2O_3>Fe_3O_4>V_2O_5$. Under anhydrous conditions the adsorption of SO_2 on metal oxide occurred only slightly or not at all. There is no difference in adsorption of SO_2 on the metal oxides between the SO_2 dissolved in Decane and the SO_2 dissolved in hydrous Decane. Apparently there is enough moisture in Reagent Grade Decane to allow the adsorption reaction to preceed.

The second purpose of this study was to obtain samples of Utah Valley aerosols and to determine quantitatively the S(IV) and S(VI) levels. This part of the study showed that the highest sulfur level in Utah Valley occurred at the sampling site closest to the Kennecott smelter located at Magna. Other sources of sulfur oxides occur in Utah Valley such as various coal burning operations and automobile exhaust; however, these operations have a negligible effect on the sulfur oxide level compared to the Kennecott smelter smoke.

The third purpose of this study was to compare the results for S(IV) and S(VI) to a similar S(IV) and S(VI) study³⁴ conducted around the Magna, Utah area (Table 13). The S(IV), S(VI) and total sulfur levels in the Magna area range up to 100 times the amount found in Utah Valley around Provo. The Cedar Fort sample indicates that once the particulates are released from the stack the S(IV):S(VI)ratio stays fairly constant during the time it takes the plume to travel the 40 kilometers to Cedar Fort from Magna.

Recommendations for Further Study

This study is valuable because it gives S(IV) and S(VI) values for Provo and the surrounding communities in Utah Valley. These values are particularly valuable since Kennecott, whose smelter at Magna is the highest source of SO_2 in Salt Lake Valley, is now building a new smoke stack at the smelter. This smoke stack will have the effect of spreading the smoke plume over a greater area. Further studies will determine whether the stack is beneficial as officials of Kennecott maintain.

Another interesting study could be made by sampling the Kennecott plume as it travels south along the Oquirrh Mountains (see Figure 2) to show the transition of SO₂ and the interaction of SO₂ with particulates to form metal sulfites and sulfates.

A study of S(IV) and S(VI) concentrations over the course of a full year would be helpful since change of concentrations from month to month is unknown.

APPENDIX A

Appendix A is a summary of source emission estimates for Utah for the year 1970^{13} for the Wasatch Front--particulates (pages 52-54) and sulfur oxides (pages 55-57).

Table 14

Particulate Emissions Inventory Summary in Tons Per Year Wasatch Front Air Quality Control Region

			Salt Lak	e County Utał	County
		Source Category	1970]	.970
	This	1 Qaarkaanti aa			
1.	rue	tionowy Courses			
	Sta	Desidential and			
•	Α.	Residential and	1. S.		
		Commercial (Area			
		Sources)	C.F.		140
		1. Bituminous Coal	65		143
		2. Distillate Oil	55		1/4
		3. Residual Oil	N		N 7C
		4. Natural Gas	344		70
		TOTAL	464		393
		Tuatitutianal	<u></u>		······
	Þ.	(Doint Sources)			
		Pituminous Coal	336		297
		2 Distillate Oil	330		N
		2. Discinate Off	L N		-
		A Natural Cas	15		N
		4. Natural Gas	252		207
		Iotal	352		207
	C,	Industrial (Point			
		Sources)	205		676
		1. Bituminous Coal	395		0/0
		2. Distillate Oil	N N		3
		3. Residual Oll	97		13 TT2
		4. Natural Gas	43		140
		5. Process Gas	63		142
		6. Wood	2		-
		Total	600		947

Source Category19701970D. Electric Power Generation (Point Sources)1. Bituminous Coal10318412. Distillate 0il2-3. Residual 0il74-4. Natural Gas120305. Process Gas-6Total1227866E. Total Fuel Stationary Sources26432513II. Process Losses (Point Sources) A. Chemical Process IndustriesB. Food and Agricul. Industries5J. Mieral Product Industries2972539E. Petroleum and Petrochem. Indus.149F. Wood Process G. Others-H. Total Process Loss423842386735HII. Solid Waste Sources6A. Incineration Sources-1. Area Sources6A. Incineration 1. Area Sources6A. Incineration 1. Area Sources50J. Area Sources67J. Area Sources67C. Agric. Burning 1. Area Sources-J. Area Sources67Sources67J. Area Sources50J. Area Sources-J. Area Sources-			Salt Lake Count	y Utah County
D. Electric Power Generation (Point Sources) 1. Bituminous Coal 1031 2. Distillate 0il 2 3. Residual 0il 74 4. Natural Gas 120 30 5. Frocess Gas - 6 70tal 1227 866 66 E. Total Fuel Stationary Sources 2643 Stationary Sources 2643 2513 II. Process Losses (Point Sources) 5 A. Chemical Process Industries 511 5 B. Food and Agricul. Industries 6 123 C. Metallurgical Industries 3206 4068 D. Mineral Product Industries 297 2539 E. Petroleum and Petrochem. Indus. 149 - F. Wood Process 69 - G. Others - - G. Others - - II. Solid Waste - - A. Incineration I. Area Sources 125 34 2. Point Sources - - B. Open Burning - - I. Area Sources 67 52 <th></th> <th>Source Category</th> <th>1970</th> <th>1970</th>		Source Category	1970	1970
Generation (Point Sources)1.Bituminous Coal10318412.Distillate Oil2-3.Residual Oil74-4.Natural Gas120305.Process Gas-6Total1227866E.Total Fuel Stationary SourcesA.Chemical ProcessIndustries5115B.Food and Agricul. Industries6123Industries6124Industries2972539E.Petrochem. Indus.149-F.Wood Process69G.Others-H.Total Process Loss42386735		D. Electric Power		
Sources) I. Bituminous Coal 1031 2. Distillate Oil 2 3. Residual Oil 74 4. Natural Gas 120 30 5. Process Gas Total 1227 866 E. Total Fuel Stationary Sources 2643 2513 II. Process Losses (Point Sources) A. Chemical Process Industries 511 5 B. Food and Agricul. Industries 6 237 2539 E. Petroleum and Petrochem. Indus. 149 F. Wood Process 6 C. Others - H. Total Process Loss 4238 6735 III. Solid Waste A. Incineration 1. Area Sources 125 34 2. Municipal—Point Sources 6 52 2. Point Sources 534 534 534 534 534 534 534 53		Generation (Point		
1. Bituminous Coal 1031 841 2. Distillate 0il 2 - 3. Residual 0il 74 - 4. Natural Gas 120 30 5. Process Gas - 6 Total 1227 866 E. Total Fuel 5 7 Stationary Sources 2643 2513 II. Process Losses (Point 5 Sources) A. Chemical Process 5 Industries 511 5 B. Food and Agricul. 1 123 Industries 6 123 C. Metallurgical 1 1 Industries 297 2539 E. Petroleum and 149 - F. Wood Process 69 - G. Others - - H. Total Process Loss 4238 6735 III. Solid Waste - - A. Incineration 1 Area Sources 125 J. Area Sources 67 52 2 Point Sources - - - <tr< td=""><td></td><td>Sources)</td><td></td><td></td></tr<>		Sources)		
2. Distillate Oil 2 - 3. Residual Oil 74 - 4. Natural Gas 120 30 5. Process Gas - 6 Total 1227 866 E. Total Fuel Stationary Sources 2643 2513 II. Process Losses (Point Sources) A. Chemical Process Industries 511 5 B. Food and Agricul. Industries 6 123 C. Metallurgical Industries 3206 4068 D. Mineral Product Industries 297 2539 E. Petroleum and Petrochem. Indus. 149 - F. Wood Process 69 - G. Others - - H. Total Process Loss 4238 6735 III. Solid Waste A. Incineration 1. Area Sources 125 34 J. Area Sources 67 52 J. Point Sources - - B. Open Burning - - J. Area Sources 67 52 J. Proti Sources - - C. Agric. Burning (Area)		L Bituminous Coal	1031	841
3. Residual Oil 74 - 4. Natural Gas 120 30 5. Process Gas - 6 Total 1227 866 E. Total Fuel 5 5 Stationary Sources 2643 2513 II. Process Losses (Point 5 5 Sources) A. Chemical Process 5 A. Chemical Process 11 5 B. Food and Agricul. 1 123 C. Metallurgical 6 123 J. Industries 3206 4068 D. Mineral Product 1 1000000000000000000000000000000000000		2. Distillate Oil	2001	_
4. Natural Gas 120 30 5. Process Gas - 6 Total 1227 866 E. Total Fuel 5 2513 II. Process Losses (Point 2643 2513 II. Process Losses (Point 5 2513 II. Process Losses (Point 5 2643 2513 II. Process Losses (Point 5 1 5 Sources) A. Chemical Process 1 1 A. Chemical Process 6 123 Industries 5206 4068 D. Mineral Product 1 1 Industries 297 2539 E. Petroleum and - - Petrochem. Indus. 149 - F. Wood Process 69 - G. Others - - H. Total Process Loss 4238 6735 III. Solid Waste - - A. Incineration - - 1. Area Sources 125 34 2. MunicipalPoint 6(*) - Sources <		3 Residual Oil	74	
1. Artendris Cas - 6 5. Process Gas - 66 Total 1227 866 E. Total Fuel Stationary Sources 2643 2513 II. Process Losses (Point Sources) 2513 2513 A. Chemical Process Industries 511 5 B. Food and Agricul. Industries 6 123 C. Metallurgical Industries 297 2539 E. Petroleum and Petrochem. Indus. 149 - F. Wood Process G. Others - - H. Total Process Loss 4238 6735 CHII. Solid Waste 125 34 A. Incineration 1. Area Sources 125 34 J. Area Sources 67 52 2. Point Sources - - B. Open Burning - - 1. Area Sources 67 52 2. Point Sources - - C. Agric. Burning (Area) 50 38 D. Total Process - - C. Agric. Burning (Area) 50 38		4 Natural Cas	120	30
Total1227866E. Total Fuel Stationary Sources26432513II. Process Losses (Point Sources)2513A. Chemical Process Industries5115B. Food and Agricul. Industries6123C. Metallurgical Industries32064068D. Mineral Product Industries2972539E. Petroleum and Petrochem. Indus.149-F. Wood Process G. OthersH. Total Process Loss42386735(III. Solid Waste Sources67522. MunicipalPoint SourcesB. Open Burning I. Area SourcesI. Area Sources67522. Point SourcesC. Agric. Burning (Area)5038D. Total Prolid Waste A. Delid Waste		5. Process Gas		6
E. Total Fuel Stationary Sources 2643 2513 II. Process Losses (Point Sources) A. Chemical Process Industries 511 5 B. Food and Agricul. Industries 6 123 C. Metallurgical . Industries 3206 4068 D. Mineral Product Industries 297 2539 E. Petroleum and Petrochem. Indus. 149 - F. Wood Process 69 - G. Others - H. Total Process Loss 4238 6735 III. Solid Waste A. Incineration 1. Area Sources 125 34 2. MunicipalPoint Sources 67 52 2. Point Sources - C. Agric. Burning (Area) 50 38 D. Sources 200		J. Total	1227	866
I. Four Full Stationary Sources 2643 2513 II. Process Losses (Point Sources) A. Chemical Process Industries 511 5 B. Food and Agricul. Industries 6 123 C. Metallurgical . Industries 6 123 C. Metallurgical . Industries 297 2539 E. Petroleum and . Petrochem. Indus. 149 - F. Wood Process 69 - - G. Others - - - H. Total Process Loss 4238 6735 (III. Solid Waste A. Incineration 1. Area Sources 125 34 Sources 67 52 - - B. Open Burning . - - - I. Area Sources 67 52 - - C. Agric. Burning (Area) 50 38 38		ະ ຫວາສໄຮນອໄ	, , , , , , , , , , , , , , , , , , ,	
<pre>II. Process Losses (Point Sources) A. Chemical Process Industries 511 5 B. Food and Agricul. Industries 6 123 C. Metallurgical Industries 3206 4068 D. Mineral Product Industries 297 2539 E. Petroleum and Petrochem. Indus. 149 - F. Wood Process 69 - G. Others - H. Total Process Loss 4238 6735</pre>		Stationary Sources	2643	2513
Sources)A. Chemical Process Industries5115B. Food and Agricul. Industries6123C. Metallurgical6123C. Metallurgical72539D. Mineral Product Industries2972539E. Petroleum and Petrochem. Indus.149-F. Wood Process69-G. OthersH. Total Process Loss42386735(III. Solid Waste A. Incineration 1. Area SourcesB. Open Burning 1. Area Sources6(*)-B. Open Burning 1. Area Sources67522. Point SourcesC. Agric. Burning (Area)5038D. Mitch Callel Waste240124		Process Losses (Point		
A. Chemical Process Industries 511 5 B. Food and Agricul. Industries 6 123 C. Metallurgical Industries 3206 4068 D. Mineral Product Industries 297 2539 E. Petroleum and Petrochem. Indus. 149 - F. Wood Process 69 - G. Others - - H. Total Process Loss 4238 6735 CHI. Solid Waste - - A. Incineration 1. Area Sources 125 34 2. MunicipalPoint Sources 6 ^(*) - B. Open Burning - - - I. Area Sources 67 52 - Z. Point Sources - - - B. Open Burning - - - I. Area Sources 67 52 - 2. Point Sources - - - D. Durning (Area) 50 38 324		Sources)		
Industries 511 5 B. Food and Agricul. Industries 6 123 C. Metallurgical Industries 3206 4068 D. Mineral Product Industries 297 2539 E. Petroleum and Petrochem. Indus. 149 - F. Wood Process 69 - G. Others - H. Total Process Loss 4238 6735 CHI. Solid Waste A. Incineration 1. Area Sources 125 34 2. MunicipalPoint Sources 6 ^(*) - B. Open Burning 1. Area Sources 67 52 2. Point Sources - C. Agric. Burning (Area) 50 38 P. Metal Calid Maste 246		A. Chemical Process		
B. Food and Agricul. Industries 6 123 C. Metallurgical Industries 3206 4068 D. Mineral Product Industries 297 2539 E. Petroleum and Petrochem. Indus. 149 - F. Wood Process 69 - G. Others - H. Total Process Loss 4238 6735 HII. Solid Waste A. Incineration 1. Area Sources 125 34 2. MunicipalPoint Sources 6 ^(*) - B. Open Burning 1. Area Sources 67 52 2. Point Sources - C. Agric. Burning (Area) 50 38 P. Tetal Calid Waste 240		Industries	511	5
Industries 6 123 C. Metallurgical Industries 3206 4068 D. Mineral Product Industries 297 2539 E. Petroleum and Petrochem. Indus. 149 - F. Wood Process 69 - G. Others - H. Total Process Loss 4238 6735		B. Food and Agricul.		
C. Metallurgical Industries 3206 4068 D. Mineral Product Industries 297 2539 E. Petroleum and Petrochem. Indus. 149 - F. Wood Process 69 - G. Others - H. Total Process Loss 4238 6735 (III. Solid Waste A. Incineration 1. Area Sources 125 34 2. MunicipalPoint Sources 6 ^(*) - B. Open Burning 1. Area Sources 67 52 2. Point Sources - C. Agric. Burning (Area) 50 38 D. Watel Schild Waste		Industries	6	123
Industries 3206 4068 D. Mineral Product Industries 297 2539 E. Petroleum and Petrochem. Indus. 149 - F. Wood Process 69 - G. Others - H. Total Process Loss 4238 6735 (III. Solid Waste A. Incineration 1. Area Sources 125 34 2. MunicipalPoint Sources 6 ^(*) - B. Open Burning 1. Area Sources 67 52 2. Point Sources - C. Agric. Burning (Area) 50 38 D. Metal Calid Waste		C. Metallurgical		
D. Mineral Product Industries 297 2539 E. Petroleum and Petrochem. Indus. 149 - F. Wood Process 69 - G. Others - H. Total Process Loss 4238 6735 TII. Solid Waste A. Incineration 1. Area Sources 125 34 2. MunicipalPoint Sources 6 ^(*) - B. Open Burning 1. Area Sources 67 52 2. Point Sources - C. Agric. Burning (Area) 50 38 D. Total Sources 249		Industries	3206	4068
Industries 297 2539 E. Petroleum and Petrochem. Indus. 149 - F. Wood Process 69 - G. Others - H. Total Process Loss 4238 6735 (III. Solid Waste A. Incineration 1. Area Sources 125 34 2. MunicipalPoint Sources 6 ^(*) - B. Open Burning 1. Area Sources 67 52 2. Point Sources - C. Agric. Burning (Area) 50 38 P. Wetch Calid Waste		D. Mineral Product		
E. Petroleum and Petrochem. Indus. 149 - F. Wood Process 69 - G. Others - H. Total Process Loss 4238 6735		Industries	297	2539
Petrochem. Indus.149-F. Wood Process69-G. OthersH. Total Process Loss42386735CII. Solid WasteA. Incineration1. Area Sources125342. MunicipalPointSources6(*)B. Open Burning1. Area Sources672. Point Sources-C. Agric. Burning (Area)5038D. Total Sources249		E. Petroleum and		
F. Wood Process 69 - G. Others - H. Total Process Loss 4238 6735 CII. Solid Waste A. Incineration 1. Area Sources 125 34 2. MunicipalPoint Sources 6 ^(*) - B. Open Burning 1. Area Sources 67 52 2. Point Sources - C. Agric. Burning (Area) 50 38 D. Ettel Solid Waste 249		Petrochem. Indus.	149	
G. Others	· ·	F. Wood Process	69	
H. Total Process Loss 4238 6735 H. Total Process Loss 4238 6735 H. Solid Waste A. Incineration 1. Area Sources 125 34 2. MunicipalPoint Sources 6 ^(*) - B. Open Burning 1. Area Sources 67 52 2. Point Sources - C. Agric. Burning (Area) 50 38 D. Total Solid Waste 249		G. Others	—	· · · · · · · · · · · · · · · · · · ·
III. Solid Waste A. Incineration 1. Area Sources 125 2. MunicipalPoint Sources 6 ^(*) B. Open Burning 1. Area Sources 67 2. Point Sources - C. Agric. Burning (Area) 50 B. Tetal Solid Waste 240	• .	H. Total Process Loss	4238	6735
A. Incineration 1. Area Sources 2. MunicipalPoint Sources B. Open Burning 1. Area Sources 2. Point Sources C. Agric. Burning (Area) D. Tetal Solid Waster 242 34 34 34 - - - - - - - - - - - - -		Solid Waste	<u></u>	
1. Area Sources125342. MunicipalPoint Sources6(*)-B. Open Burning6(*)-1. Area Sources67522. Point SourcesC. Agric. Burning (Area)5038D. Estal Solid Maste248124		A. Incineration		
2. MunicipalPoint Sources6(*)-B. Open Burning 1. Area Sources67522. Point SourcesC. Agric. Burning (Area)5038D. Tetal Solid Waste248124		1. Area Sources	125	34
Sources6(*)-B. Open Burning1. Area Sources67522. Point SourcesC. Agric. Burning (Area)5038D. Matal Solid Masta248324		2. MunicipalPoint		
B. Open Burning 1. Area Sources 67 52 2. Point Sources C. Agric. Burning (Area) 50 38 D. Matal Solid Masta 249		Sources	6 ^(*)	
1. Area Sources67522. Point SourcesC. Agric. Burning (Area)5038D. Matal Solid Masta248124		B. Open Burning		
2. Point SourcesC. Agric. Burning (Area)5038D. Matal Solid Master248124		1. Area Sources	67	52
C. Agric. Burning (Area) 50 38		2. Point Sources		en e
		C. Agric. Burning (Area) 50	38
D. TOLAL SOLID WASLE 248 124		D. Total Solid Waste	248	124

Table 14--Continued

•	•		Salt	Lake	County	Ì	Utah Cou	nty
		Source Category	 1970		<u></u>		1970	<i></i>
TV	 ምጉ ፡	neportation (Area			e i			
TA *	CON	roog)						
	30u	Autog and Light						
	<i>h</i> .	Trucks	600				230	
	B.	Diesel-On Hiway	115				69	
	C.	Diesel-Off Hiway	153				51	
	n	Aircraft	 492				10	1
	F.	Railroade	84.				90	
	F.	Gasoline	04					
	±•	Handling Losses	· _			· · · ·	· · · ·	
	G.	Total Transporta-	· · ·					
		tion	1543				459	
v.	Gr	and Totals	8672		:		9831	

(N) = Negligible

(*) Auto Body Incineration, Salt Lake County Only

Note: 8% ash for Utah coal used where not specifically given.

		Salt Lak	ke County	Utah County	,
	Source Category	1970		1970	
т Б-	-l Combustien				
T. LU	et compustion				
36	Bogidontial and				
А.	Commongial (Amon				
	Commercial (Area				
· · · ·	Dituringua Casl	0.0		204	
	2. Distillate Oil	92		204	
	2. Distillate Oll	233 N		/43 N	
	A Natural Car	N		2	
	4. Nacurai Gas	226		2	
· · ·	Total	330		949	
В.	Institutional				
	(Point Sources)		e de la companya de l		
	1. Bituminous Coal	321		299	
	2. Distillate Oil	8		N	
	3. Residual Oil	N	See 1	-	
•	4. Natural Gas	N		N	
	Total	329		299	
· · · · · · · · · · · · · · · · · · ·				· · ·	
ċ.	Industrial (Point				
	Sources)				
	1. Bituminous Coal	121		80	
	2. Distillate Oil	6		18	
	3. Residual Oil	2021		252	
	4. Natural Gas	11		1	
	5. Process Gas	2330		7341	
	6. Wood	N			
	Total	4489		7692	
• <u> </u>					
D.	Electric Power Gen.			1.4. •	
	(Point Sources Only)				
	1. Bituminous Coal	706		372	
	2. Distillate Oil	4			
	3. Residual Oil	4654			

5

-

5369

4. Natural Gas

5. Process Gas

Total

Sulfur Oxides Emissions Inventory Summary in Tons Per Year Wasatch Front Air Quality Control Region

Table 15

1030

1404

Table 15--Continued

		Salt	Lake County	Utah County
•	Source Category	1970		1970
	F Total Fuel			
	Stationary Sources	10532		10344
· .				
II.	Process Losses (Point			
	Sources Only)			
	A. Chemical Process			
	Industries			-
	B. Food & Agricul-			
	tural Industries	· –		-
	C. Metallurgical			
	Industries	280171		136
	D. Mineral Product			
	Industries	-		
	E. Petroleum &			
	Petrochem. Indus.	1521		
	F. Wood Process	-		
	G. Others	·		-
		· ····································		
	H. Total Process			
	Losses	281692		136
III.	Solid Waste			
	A. Incineration			
	1. Area Sources	12		3
	2. MunicipalPt.			
	Sources	N		N
	B. Open Burning			
	1. Area Sources	4		3
	2. Point Sources	-		e progette -
	C. Agricultural Burning			
	(Area)	N		N
	D. Total Solid Waste	16		6

Table 15--Continued

			Salt Lak	e County	Utah County
	•	Source Category	1970		1970
IV.	Tra	nsportation (Area			
	Sou	irces)			
	Α.	Autos and Light	43.6		
	-	Trucks	419		144
	в.	DieselOn Hiway	207		124
	C.	DieselOff Hiway	276		91
	D	Aircraft	244		41
	Ε.	Railroads	218		233
	F.	Gasoline Handling			
		Losses	· •		-
:	· · · · ·	<u> </u>			
	G.	Total Transpor-			
		tation	1364	•	633
v.	Gra	nd Totals	293595	<u></u>	11119

(N) = Negligible

Notes: (1) 0.6% sulfur in Utah coal used where not specifically given.

- (2) 0.4% sulfur in light fuel oil used where not specifically given.
- (3) 0.9% sulfur in heavy fuel oil used where not specifically given.

APPENDIX B

Appendix B is a series of statistical results compiled by the Air Quality Section, Utah Division of Health.

Table 16^a

				· · · · · · · · · · · · · · · · · · ·	
Date	STP µg/M ³	Actı µg,	ual /M ³		
February 17	100	9:	2	<u> </u>	-
18	90	84	4		
19	78	7	2		
		· · · · · · · · · · · · · · · · · · ·	ТМ	YD	RY
Geometric mean µg	1/M ³		98	96	88
Geometric Standar	d Deviation		1.55	1.74	1.70
Geometric Mean Ac (µg/M ³)	tual Temp. and F	ress.	91	90	78
Maximum 24-hr. av	verage (µg/M ³)		206	226	727
Arithmetic mean ((μg/M ³)		108	110	102
Number of days ov	ver 150 µg/M ³		6	14	38
	200 µg/M ³	• •	1	3	13
	260 µg/M ³	an taona an taon An taon An taon	0	0	5

Provo Data for February 17 to February 19, 1975 and Statistical Comparisons

^aFrom Air Quality Section, Utah Division of Health

Date	· · · · · ·	STP µg/M ³	Actual µg/M ³			
February	24	an				
	25	123	111			
	26	98	89			
			·	тм	YD	RY
Geometric	c mean	(µg/M ³)		38	49	51.
Geometric	c Stan	dard Deviation		1.79	1.96	1.93
Geometric (µg/M ³)	c Mean)	Actual Temp. and	Press.	35	45	45
Maximum 2	24-hr.	average (µg/M ³)		123	154	490
Arithmeti	ic mea	n (µg/M ³)		45	60	63
Number of	f _. days	over 150 µg/M ³		0	2	9
		200 μg/M ³		0	0	4
		260 μg/M ³		0	0	2

Mapleton Data for February 24 to February 26, 1975 and Statistical Comparisons^b

^aFrom Air Quality Section, Utah Division of Health

^bThe State has no monitoring station in Springville and this station is the closest to the Springville location.

Table 18^a

STP Date µg/M ³	Actua] µg/M	3		
March 3 66	58			n na sena na sena na sena na sena na sena se
4 82	73			
5 70	61			
		TM	YD	RY
Geometric mean (μ g/M ³)		40	64	75
Geometric Standard Deviation		1.75	2.23	1.89
Geometric Mean Actual Temp. and Pro $(\mu g/M^3)$	ess.	36	58	66
Maximum 24-hr. average ($\mu g/M^3$)		91	359	566
Arithmetic mean (μ g/M ³)		46	88	91
Number of days over 150 μ g/M ³		0	12	26
200 μg/M ³		0	8	13
260 µg/M ³		0	3	7

Lindon Data for March 3 to March 5, 1975 and Statistical Comparisons

^aFrom Air Quality Section, Utah Division of Health

Date	STP µg/M ³	· · · ·	Actua µg/M	11 1 ³		
March 18	11		10			<u>er an en en</u>
19	71		62			
20	 				•	
		· · · · ·	8.17.18	TM	YD	RY
Geometric mean (µg/M	1 ³)			34	62	68
Geometric Standard I	Deviation			1.88	2.40	1.96
Geometric Mean Actua Pressure (µg/M ³)	al Temp. and			31	57	60
Maximum 24-hour ave	cage (µg/M ³)			90	859	859
Arithmetic mean (µg,	′M ³)		•	41	94	86
No. days over 150 p	ıg/cm.			0	15	25
200 1	ıg/cm.			0	8	11
260 լ	ıg/cm.	* .		0	3	6

Pleasant Grove Data for March 18 to March 20, 1975 and Comparisons with Data for the Month with Previous Data for Running Year

^aFrom Air Quality Section, Utah Division of Health

No data are available from the Air Quality Section, Utah Division of Health concerning particulate levels in Cedar Fort or comparisons for the running year, etc.

	Mon	day	Tues	sday	Wednesday		
Hours	azi- muth	wind speed	azi- muth	wind speed	azi- muth	wind speed	
0-1			220	2	330	3	
1-2			10	2	290	4	
2-3			360	3	270	3	
3-4			310	3	280	2	
4-5			210	2	200	2	
5-6			210	2	290	2	
6-7		•	200	2	290	3	
7-8			230	1	270	3	
8-9			340	1	340	2	
9-10			200	4	20	2	
10-11			170	3	280	2	
11-12		· · · ·	250	4	310	3	
12-13			250	6	70	3	
13-14		· · · ·	270	7	130	4	
14-15	310	12	290	7	180	4	
15-16	290	13	300	6			
16-17	290-	13	300	6			
17-18	300	12	290	4			
18-19	300	11	280	3			
19-20	310	7	100	2			
20-21	310	4	250	2			
21-22	270	3	170	3			
22-23	270	3	160	3			
23-24	230	2	320	2			

Provo Wind Data for Sampling Period from Monday, February 17 at 2:28 p.m. to Wednesday, February 19 at 2:33 p.m.

Table 20^{a,b}

a From Air Quality Section, Utah Division of Health. b Wind speed given in miles per hour and azimuth in degrees (0 is north and 90 is east, etc.)

	Mon	dav	Tueso	lav	Wedne	sđav
Hours	azi- muth	wind speed	azi- muth	wind speed	azi- muth	wind speed
0-1			203	1		
1-2			45	3		
2-3			158	2		
3-4			135	1		
4-5			45	2		
5-6		• • • • • • • • • •	113	1	an a	
6-7			68	1		
7-8			45	2		
8-9			158	1		
9-10			158	2		
10-11			180	2		÷.
11-12			293	1		· . · ·
12-13			No dat	ta available	e for	
13-14	180	3	rest o	of sampling	period.	
14-15	158	4				
15-16	180	2				
16-17	180	3				
17-18	158	2				
18-19	270	1				· · ·
19-20	90	3				• • • • •
20-21	180	2				
21-22	90	2				
22-23	180	1				
23-24	338	3				

Mapleton Wind Data for Sampling Period from Monday, February 24 at 3:10 p.m. to Wednesday, February 26 at 3:10 p.m.

Table 21^{a,b}

^aFrom Air Quality Section, Utah Division of Health.

^bWind speed given in miles per hour and azimuth in degrees (0 is north and 90 is east, etc.)
Hours	Mond azi- muth	ay wind speed	Tues azi- muth	day wind speed	Wednes azi- muth	sday wind speed
0-1	<u></u>			0	90	5
1-2			-	0	90	5
2-3				0	90	3
3-4			90	3	90	4
4-5			-	0	68	3
5-6			2 25	1	68	2
6-7			68	2	68	3
7-8			23	1	68	2
8-9			225	1	270	1
9-10			315	2	248	1
10-11			248	1 25	113	3
11-12			293	1	113	7
12-13			135	2	113	6
13-14			225	1	203	5
14-15	225	6	203	1	90	3
15-16	270	7	135	3		
16-17	270	8	90	1		
17-18	270	4	113	4		
18-19	225	5	68	i i 1 de la		
19-20	23	1	68	3		
20-21	68	1	68	5		
21-22	113	1	68	5		
22-23	90	2	293	2		
23-24	113	4	45	2		• • • • • •

Lindon Wind Data for Sampling Period from Monday, March 3 at 3:30 p.m. to Wednesday, March 5 at 3:30 p.m.

Table 22^{a,b}

^aFrom Air Quality Section, Utah Division of Health.

b Wind speed given in miles per hour and azimuth in degrees (0 is north and 90 is east, etc.)

Hours	Tuesd azi- muth	ay wind speed	Wednes azi- muth	day wind speed	Thurs azi- muth	day wind speed
0-1			113	5	113	9
1-2			90	8	113	8
2-3			90	7	90	5
3-4	· .		90	6	135	3
4-5			68	6	90	4
5-6			90	6	90	7
6-7		·	90	5	113	7
7-8		· · ·	90	4	113	7
8-9			135	3	113	6
9-10			113	3	113	6
10-11			135	6	113 113	4
11-12		. •	135	5	135	4
12-13			135	5	100	6
13-14			135	6	203	6
14-15	135	7	180	7	113	7
15-16	158	8	158	8		
16-17	158	6	130	7		
17-18	135	8	203	7		
18-19	113	7	180	7		
19-20	90	8	203	6		
20-21	90	8	135	8		
21-22	90	8	180	11		
22-23	90	8	158	8		
23-24	113	5	135	7		1.4

Pleasant Grove Wind Data for Sampling Period from Tuesday, March 18 at 2:42 p.m. to Thursday, March 20 at 2:30 p.m.

Table 23^{a,b}

^aFrom Air Quality Section, Utah Division of Health.

^bWind speed given in miles per hour and azimuth in degrees (0 is north and 90 is east, etc.)

Hours	Monday azi- win muth spe	Tue d azi- ed muth	esday wind speed	L	Wedn azi- muth	esday wind speed
0-1		68	1	······································	0	3
1-2		338	4		135	2
2-3		315	3		68	4
3-4		315	9	•	23	5
4-5		338	7		90	1 I
5-6		0	4		23	1
6-7		45	4		68	2
7-8		45	3	н ^т 1.	68	1
8-9		90	2		45	1
9-10		135	5		135	5
10-11		113	6	1997	180	6 .
11-12		203	5		180	4
12-13		135	8		315	6
13-14		0	12		338	16
14-15	180 9	338	13			
15-16	158 13	338	13			
16-17	158 12	23	13			e de la composition Na composition de la composition
17-18	158 8	23	10			
18-19	180 3	23	13			
19-20	0 2	0	11			
20-21	45 4	0	7		· · ·	
21-22	338 6	293	12			
22-23	0 5	68	7			
23-24	68 1	135	3			

Lehi Wind Data for Sampling Period from Monday, April 21 at 2:18 p.m. to Wednesday, April 23 at 1:34 p.m.

Table 24^{a,b}

^aFrom Air Quality Section, Utah Division of Health

^bWind speed given in miles per hour and azimuth in degrees (0 is north and 90 is east, etc.)

APPENDIX C

Appendix C contains the particulate weight on each stage of the Andersen Sampler for all sampling locations.

Table 25

Location	Stage	Weight Milligrams
Provo	1	61.43 20.26
	3	12.07
	4	10.38
	5.	30.92
Springville	1.	96.85
	2	32.02
	3	19.24
	4	24.18
	5	79.69
Lindon	1	51.14
	2	19.98
	3	11.26
	4	8.01
	5	23 00

Particulate Weights for all Sampling Stations

Table 25--Continued

Location	Stage	Weight Milligrams	
Pleasant Grove	1	32.35	
	2	18.64	
	3	12.10	
	4	8.14	
	5	18.86	
Cedar Fort	·	33-10	·
	2	20.54	
	3	13.11	
	4	11.35	
	5	24.63	

REFERENCES

- D. R. Lawson, "Composition, Time, and Size Distributions of Airborne Particulate Material in Utah Valley", Unpublished Thesis, Brigham Young University, 1975.
- B. M. Smith, J. Wagman, B. R. Fish, <u>Environ. Sci. Technol.</u>, <u>3</u>, 558 (1969).
- 3. M. O. Amdur, J. Air Poll. Con. Assoc., 19, 638 (1969).
- 4. J. W. B. Douglas, R. E. Waller, <u>Br. J. Prev. Soc. Med.</u>, <u>20</u>: 1-8 (1966).
- J. E. Lunn, J. Knoweldon, A. J. Handyside, <u>Br. J. Prev. Soc. Med.</u>, 21:7-16 (1967).
- 6. T. Toyoma, Arch. Environ. Health, 8, 153-173 (1967).
- J. G. French, G. Towrimore, W. C. Nelson, J. F. Finklea, T. English, M. Hertz, Arch. Environ. Health, 27, 129 (1973).
- 8. A. F. Gunnison, A. W. Benton, <u>Arch. Environ. Health</u>, <u>22</u>, 381 (1971).
- 9. E. Yokoyama, R. E. Yoder, R. N. Frank, Arch. Environ. Health, 22, 389 (1971).
- 10. A. Zarkower, Arch. Environ. Health, 5, 47 (1972).
- 11. A. A. Andersen, J. Amer. Ind. Hyg. Ass., 27, 160 (1966).
- W. C. McCrone in "Air Pollution", 2nd Ed., ed. A. C. Stern, Academic Press, New York II, p. 292 (1968).
- 13. Utah Implementation Plan, State of Utah Department of Social Services Division of Health, Revised December, 1972.
- 14. Air Quality Monographs, #69-2, Particulates: "Air Quality Criteria Based on Health Effects.", American Petroleum Institute, New York (1969).
- Task Group on Lung Dynamics, <u>Health Phys.</u>, <u>12</u>, 173 (1966).
 S. K. Friedlander, <u>Environ. Sci. Technol.</u>, <u>7</u>, 1115 (1973).

- 17. P. Urone, H. Lutsep, C. Noyes, J. F. Parcker, <u>Environ. Sci. &</u> Technol., 2, no. 8 (1968), p. 611.
- 18. J. M. Thomas, W. J. Thomas, "Introduction to the Principles of Heterogeneous Catalysis", Academic Press, 1967.
- Tronac Model 450 Calorimeter Instruction Manual, Tronac, Inc., 1804 South Columbia Lane, Orem, Utah.
- 20. J. J. Christensen, R. M. Izatt, L. D. Hansen, <u>Rev. Sci. Instr.</u>, <u>36</u>, 779 (1965).
- 21. J. Jordan, J. Chem. Ed., 40, A5 (1963).
- 22. M. Krishman, Atmos. Environ., 7, 575, (1975).
- 23. R. T. Cheng, Atmos. Environ., 5, 987-1008 (1971).
- 24. T. Novakov, P. K. Mueller, A. E. Alcocer, J. M. Otvos, <u>J. Coll.</u> <u>Interface Sci.</u>, 39, 225 (1972).
- 25. N. T. Craig, A. B. Harker, T. Novakov, <u>Atmos. Environ.</u>, 8, 15-21 (1974).
- 26. S. Akiyoshi, T. Hasegawa, Environ. Sci. and Technol., 7, #5 (1973).
- 27. J. Greiberg, Environ. Sci. and Technol., 8, 731 (1974).
- 28. H. Bassett, J. Chem. Soc., 1540-1560 (1951).
- 29. L. D. Hansen, et. al., Trace Substances in Environmental Health, VII, Univ. Missouri Press (1974), p. 393.
- 30. D. J. Eatough, L. D. Hansen, T. J. Smith, unpublished results, 1974.
- 31. Andersen Air Samplers 2000, Inc., Instruction Manual.
- 32. High Volume Air Samplers Operator's Manual, General Metal Works, Inc.
- 33. O. S. Cannon, J. L. Shupe, R. E. Lamborn, "The Problems of Airborne Dust and 'Kish' in Utah County". Research Report 2, 1972, Agricultural Experiment Station, Utah State University, Logan, Utah.
- 34. L. D. Hansen, et. al., "Proceedings of Symposium on Environmental Assessment, Las Vegas, Sept., 1975.

CALORIMETRIC DETERMINATION OF THE INTERACTION OF CU, FE,

AND V OXIDES WITH SO2 AND MEASUREMENT OF SULFUR

(IV) AND SULFUR (VI) IN PARTICULATE

SAMPLES FROM UTAH VALLEY

Douglas F. Cannon

Department of Chemistry

M.S. Degree, December 1975

ABSTRACT

The adsorption of SO₂ by metal oxides suspended in decane were studied by calorimetric titration. The adsorption per surface area decreases in order CuO > Cu₂O > Fe₂O₃ > V₂O₅. An Andersen High Volume sampler was used to obtain particulate samples from five sites in Utah County. Particulate sulfur (IV) and sulfur (VI) was analyzed by thermometric titration with $K_2Cr_2O_3$ and by a direct injection enthalpimetric determination using BaCl₂. Results show that little oxidation of the S(IV) occurs after it is released from the Kennecott smelter stack.