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abstract

Growing Complex Networks for Better Learning of Chaotic Dynamical Systems

David Joseph Passey Jr.
Department of Mathematics, BYU

Master of Science

This thesis advances the theory of network specialization by characterizing the effect of
network specialization on the eigenvectors of a network. We prove and provide explicit formu-
las for the eigenvectors of specialized graphs based on the eigenvectors of their parent graphs.

The second portion of this thesis applies network specialization to learning problems. Our
work focuses on training reservoir computers to mimic the Lorenz equations. We experiment
with random graph, preferential attachment and small world topologies and demonstrate that
the random removal of directed edges increases predictive capability of a reservoir topology.
We then create a new network model by growing networks via targeted application of the
specialization model. This is accomplished iteratively by selecting top preforming nodes
within the reservoir computer and specializing them. Our generated topology out-preforms
all other topologies on average.

Keywords: Complex networks, dynamical systems, reservoir computing, network growth,
isospectral transformations, spectral graph theory, chaos
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Chapter 1. Introduction

1.1 Complex Networks

Figure 1.1: A network grown via the specialization model.

Many processes in the world involve a network of interactions. People clicking though

websites and electricity moving through a power grid both travel through a complex net-

work of links and hubs. The underlying structure of this network has an enormous impact

on the process evolving over its links. The extent to which network structure helps or harms

different processes is not well understood. This is in part because networks can be sensitive

to small changes, i.e. adding or removing a single link can have large unpredictable impacts.

This is illustrated by the complicated way road closures affect traffic or how a single line

failure can wipe out an entire power grid. Other difficulties in understanding complex net-

works arise from the sheer scale of networks in question. The human brain, for example, is

computationally intractable by virtue of its size.

What is a Complex Network? While there are many kinds of networks in the world,

complex networks are characterized by a lack of predictable and uniform structure, yet still

contain structural features not found in completely random networks. Complex networks

may contain repeated motifs such as feed forward loops or repeated triangles and frequently

have a long tailed degree distribution [1]. Most networks in the real world are complex.

The Importance of Studying Complex Networks: The study of complex networks

is highly relevant and has potential to impact many fields. Consider the following examples:
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The structure of social networks can be decisive in the spread of ideas, culture, conflict and

disease. Understanding the impact of network structure could help us overcome cultural

divides, bridge conflict and avoid epidemics. The human brain demonstrates a variety of

structural motifs that appear to specialize in preforming different tasks [2]. Understanding

the impact and function of these motifs could lead to exciting advances in artificial intelli-

gence. Similarly, understanding the global state of signals moving though the brain could

give insight into consciousness and thought. Network science may also provide solutions

to species interaction problems in ecology, protein interaction problems in medicine and

resource relocation problems in business, energy and transportation.

1.2 The Specialization Model

The specialization model of network growth provides a method for generating complex net-

works. It produces growth by splitting up component branches of a network in a structured

way. The specialization model is useful because of its flexibility and theoretical guarantees.

The model is flexible in that it only grows a chosen region of the network and leaves the

rest of the network exactly the same. This allows for targeted expansion of certain groups

of nodes and as such affords model users some control over which topological features are

gained and which disappear as a network is specialized. In addition, the eigenvalues of a

specialized network are the eigenvalues of the original network, together with the eigenvalues

of each copied sub-network. This property guarantees that as a network grows according to

this model, it will have the same spectral radius as the original network, if its edge weights

are non-negative. Additionally, one can produce a targeted change in a network’s eigenvalues

by choosing appropriate subnetworks to specialize. Because of these features, the model is

a useful tool for studying complex networks.
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Figure 1.2: From left to right, an artificial neural network, a recurrent neural network, a
Hopfield network and a complex network.

1.3 Networks in Learning Problems

Despite their prevalence in natural systems, complex networks have not found much traction

in machine learning and artificial intelligence problems. Instead researchers have opted to

use simpler network structures in their models. None of the mainstream models in machine

learning use complex networks. Deep learning and neural network models are organized into

layers. They use a feed-forward structure where each node sends it’s output to every node

in the next layer [3]. This type of structure contains no loops or feedback and exhibits a

high degree of regularity. Because of this simple structure, neural networks are effectively

an input to output mapping and do not leverage network structure for performance. These

structures are mainly used in classification or pattern recognition tasks, where data points

are mapped to labels.

Because other classes of problems require feedback and memory, machine learning re-

searchers incorporated these features into their network structure. Recurrent neural networks

and Long Short Term Memory networks allow interior node values to feed back on them-

selves, but only in a predetermined, structured way that does not fully leverage potential

complex network structure [4].

There are examples of machine learning models that use network topology to solve learn-

ing problems such as Hopfield networks and Boltzman Machines, but theses models typically

use an all-to-all edge topology and the use of these models is limited [5, 6].

A simplification of machine learning topologies can be seen in Figure 1.2. While the ma-

chine learning network topologies appear to be busier and denser that the pictured complex
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network (far right), their uniformity makes it much easier to understand how node states

will evolve. This is not true for the pictured complex network where the mixture of cycles,

hubs and feedback adds complexity to processes evolving over its nodes and edges. This in

turn allows for node states to exhibit a variety of behavior as they evolve.

While artificial intelligence algorithms excel at pattern recognition, they lack an under-

lying reasoning structure that can extrapolate cause and effect. The complex structure of

neuronal connections in the human brain suggest that complex networks could be a powerful

tool for solving this type of learning problems. As things stand, no one has discovered how

to leverage the power of complex networks for solving learning problems. The relationship

between the structure of a complex network and learning processes remains an open question.

1.4 Reservoir Computing

Figure 1.3: The structure of a reservoir computer

To investigate the connection between structure and function we turn to a machine

learning model called a reservoir computer. In this thesis we use the model laid out in [7].

The model is trained on an input data stream and after it is fitted to the data, and is,

to some extent, able to replicate the dynamics governing the training signal and predict a

future trajectory. A reservoir computer consists of a random internal network or reservoir,

and two linear mappings. Inside the reservoir, node values change according to a differential

equation outlined in [7]. One of the mappings is randomly initialized and feeds the input
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signal to each reservoir node. The second mapping is learned. It attempts to map the node

states back to the original input data stream. After training, the reservoir computer uses

the second mapping to approximate the input data based on the internal node states and

drive itself with the approximated data stream instead of with the true signal.

While in some ways, reservoir computers are not as powerful as other machine learning

models, they are different from standard machine learning models in two ways that make

them useful to us. First, because a reservoir computer does not rely on stochastic training

methods, we know that the fit achieved by a reservoir computer is an optimal fit. This

comes in contrast to stochastic gradient descent training method, where the final result is

not guaranteed to be optimal. With stochastic gradient descent, it can be hard to say if the

resulting trained model came about because of it’s structure or because of hyper parameter

optimization. Second, unlike other machine learning models, a reservoir computer’s network

can have any type of network topology. These two facts allow us to study the impact of

complex network structure on a learning task.

Learning Chaotic Dynamical Systems It has been shown recently that reservoir

computers with random graph topologies are capable of capturing key properties of dynam-

ical systems such as the Lyapunov exponents [8, 9, 7]. In [7], reservoir computers are able

replicate the Lorenz Equation’s strange attractor for some time and capture it’s Lyapunov

exponents. The Lorenz system is chaotic, implying that it is impossible to predict the tra-

jectory of any orbit indefinitely. We will apply reservoir computers to this same task and

investigate the impact of network topology on success.
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Chapter 2. Specialization

Figure 2.1: Specialization in Business

Real world networks exhibit a variety of growth mechanisms. The specialization model

studies one specific mechanism—growth via copying subnetworks. As an example of growth

by specialization, consider the firm in Figure 2.1. The firm consists of a sales team, an R&D

team, and an overworked accountant. In this simplified example, the accountant interacts

with the sales team and the R&D team, and coordinates certain tasks between them. The

accountant can ”specialize” in four different tasks:

(i) Working only with the sales team

(ii) Working only with the R&D team

(iii) Sending information from R&D to sales

(iv) Sending information from sales to R&D.

If the accountant specializes in one of these tasks and the company hires three new

accountants to preform the remaining tasks, the network will be organized as pictured in

Figure 2.1. Because this is a valid specialization according to the model, the network will

maintain it’s spectral radius and in this case, will add three new zeros to it’s spectrum.

Though this example has limitations, it does illustrate that the specialization mechanism

happens in real world networks and demonstrates that it is a natural component of network

growth.
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In this chapter we will formulate the specialization model and state important results

about the spectrum of specialized graphs. We will then extend the theory of specialization

by characterizing it’s effect on graph eigenvectors.

2.1 Notation and Definitions

In order to help analyze complex networks and define the specialization model, we state

several important definitions. These definitions can be found in [11]. Each network that we

consider can be represented as a graph. A graph, G = (V,E, ω) is composed of a vertex set

V , and edge set E, and a mapping ω : E → R that associates each edge with a weight. If we

were considering a real world network, the set V contains the objects in consideration, be

they people in a social network or websites in the internet and E contains the interactions

between these objects, i.e. friendship or hyperlinks. The function ω provides information

about the strength of each edge.

For the graph G = (V,E, ω) we let V = {v1, . . . , vn}, where vi represents the ith vertex.

We let eij denote the directed edge that begins at vj and ends at vi. In terms of the network,

an edge eij is in the edge set E if the jth network element has some direct influence on

or is linked to the ith network element in some way. In practice, edges can be directed or

undirected and can be either weighted or unweighted. Since weighted directed graphs can

be used to represent both unweighted and undirected graphs, without loss of generality we

focus on weighted directed graphs. With this framework in place, we define several concepts

that are needed to construct the specialization method and prove accompanying results.

Definition 2.1. (Paths, Cycles and Loops)

A path P in the graph G = (V,E, ω) is an ordered sequence of distinct vertices P =

v1, . . . , vm in V such that ei+1,i ∈ E for i = 1, . . . ,m− 1. If the first and last vertices v1 and

vm are the same then P is a cycle. If it is the case that a cycle contains a single vertex then

we call this cycle a loop.

Definition 2.2. (Strongly Connected Components)
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Figure 2.2: The component branch structure of a particular graph. The nodes in B are
colored black. The two strongly connected components of G|B are colored blue. Every
component branch is visualized. (Undirected edges represent an edge in both directions.)

A graph G = (V,E, ω) is strongly connected if for any pair of vertices vi, vj ∈ V there is

a path from vi to vj or, in the trivial case, G consists of a single vertex. A strongly connected

component of a graph G is a subgraph that is strongly connected and is maximal with respect

to this property.

Definition 2.3. (Graph Restriction)

For a graph G = (V,E, ω) and a subset B ⊆ V we let G|B denote the restriction of the

graph G to the vertex set B, which is the subgraph of G on the vertex set B along with any

edges of the graph G between the vertices in B. We let B̄ denote the complement of B, so

that the restriction G|B̄ is the graph restricted to the complement of vertices in B.

Definition 2.4. (Component Branches)

For a graph G = (V,E, ω) and vertex set B ⊆ V let C1, . . . , Cm be the strongly connected

components of G|B̄. If there are edges e0, e1, . . . , em ∈ E and vertices vi, vj ∈ B such that

(i) ek is an edge from a vertex in Ck to a vertex in Ck+1 for k = 1, . . . ,m− 1;

(ii) e0 is an edge from vi to a vertex in C1; and

(iii) em is an edge from a vertex in Cm to vj, then we call the ordered set

β = {vi, e0, C1, e1, C2, . . . , Cm, em, vj}

a path of components in G with respect to B. If vi = vj then β is a cycle of components.

We call the collection BB(G) of these paths and cycles the component branches of G with

respect to the base set of vertices B.

8



Figure 2.3: An example of graph specialization. Each of the component branches in Figure
2.2 are split apart and added to the specialized graph. (Undirected edges represent an edge
in both directions)

The sequence of components C1, . . . , Cm in this definition can be empty in which case

m = 0 and β is the trivial path β = {vi, vj} or loop if vi = vj. It is worth emphasizing that

each branch β ∈ BB(G) is a subgraph of G. Consequently, the edges of β inherit the weights

they had in G if G is weighted. If G is unweighted then its component branches are likewise

unweighted. Consult Figure 2.2 for an example of component branch structure.

The process of specializing a graph G = (V,E, ω) involves choosing a set B ⊂ V , and

splitting up the component branches of G|B. This can be formalized as follows:

Definition 2.5. (Graph Specialization)

Suppose G = (V,E, ω) and B ⊆ V . Let SB(G) be the graph which consists of the

component branches BB(G) = {β1, . . . , β`} in which we merge, i.e. identify, each vertex

vi ∈ B in any branch βj with the same vertex vi in any other branch βk. We refer to the

graph SB(G) as the specialization of G over the base vertex set B.

Thus, a specialized graph is the original base vertices and all links between base nodes

together with one copy of each component branch. Each copy is attached to the original

base nodes where it was attached in the original graph. Consult Figures 2.3 and 2.2 for an

example of specialization.

9



2.2 Spectrum of Specialized Graphs

For the purposes of this thesis we consider the spectrum of a graph to be the eigenvalues of

it’s weighted adjacency matrix . We define this as follows.

Definition 2.6. (Weighted Adjacency Matrix and Graph Spectrum) The weighted

adjacency matrix of a graph G = (V,E, ω) is the matrix A = A(G) where

Aij =


ω(eij) if eij ∈ E

0 otherwise.

(2.1)

If G is unweighted then each entry Aij = ω(eij) = 1 if eij ∈ E and Aij = 0 otherwise. The

eigenvalues of the matrix A ∈ Rn×n make up the graph’s spectrum, which we denote by

σ(G) = {λ ∈ C : det(A− λI) = 0},

where we consider σ(G) to be a set that includes multiplicities, i.e. a multiset. The spectral

radius of G is the spectral radius of A = A(G) denoted by

ρ(G) = max{|λ| : λ ∈ σ(A)}.

With these definitions in place we may state the following theorem and corollary. The

proof of these results can be found in [10].

Theorem 2.7. (Spectra of Specialized Graphs. Bunimovich, Smith and Webb)

Let G = (V,E, ω), B ⊆ V , and let C1, . . . , Cm be the strongly connected components of G|B̄.

Then

sigma
(
SB(G)

)
= σ(G) ∪ σ(C1)n1−1 ∪ σ(C2)n2−1 ∪ · · · ∪ σ(Cm)nm−1

where ni is the number of copies of the component Ci in SB(G).

Simply stated, the spectrum of a specialized graph is equal to the spectrum of the original

graph, together with the spectrum of each strongly connected component that is copied more

10



than once. Because the eigenvalues of a graph play a large role in determining the dynamics

of processes on the graph, understanding how the spectrum changes after specialization gives

insight into how the dynamics will be change as the graph grows. The spectral radius of a

network is instrumental to certain dynamic properties. Because many networks studied have

positive edge weights, we state an important corollary:

Corollary 2.8. (Spectral Radius of Specialized Graphs. Bunimovich, Smith and

Webb) Suppose G = (V,E, ω) has positive edge weights. Then for any B ⊆ V the spectral

radius ρ(SB(G)) = ρ(G).

Certain types of dynamical systems with an underlying network structure can be special-

ized in a way analogous the the method described in this section. It is proven in [11] by way

of this corollary, that such dynamical systems will maintain stability under mild conditions

as they are specialized. Thus specialization gives insight into a key question in network

theory: How does the topology of a graph influence dynamic processes on the network? By

leveraging a structured change in spectrum, the specialization model demonstrates network

growth that preserves a dynamic property: stability. This invariance gives us insight into

the connection between topology changes and dynamics.

Thus, component branches appear to play an important role in the way a network pro-

cesses information. It is possible that by separating a network into its component branches,

we preserve an aspect of it’s path and cycle structure that are important to dynamic pro-

cesses.

2.3 Eigenvectors of Specialized Graphs

We turn now to a main focus of this thesis: the analysis of eigenvectors corresponding to

specialized graphs. Just as the eigenvalues of a graph are preserved in a structured way,

there is a clear structure in the preservation and creation of new eigenvector entries.

Here an eigenvector of a graph G corresponding to the eigenvalue λ ∈ σ(G) is a vector x

such that A(G)x = λx, in which case (λ,x) an eigenpair of G. That is, the eigenvalues of

11



G are the eigenvalues of its adjacency matrix A = A(G).

To describe how specialization affects the eigenvectors of a network we require the fol-

lowing definition.

Definition 2.9. (Incoming and Outgoing Component Branches) For the graph G =

(V,E, ω) and base B ⊆ V let β = {vi, e0, C1, e1, C2, . . . , Cm, em, vj} ∈ BB(G). We call the

ordered set

In(β, Ck) = {vi, e0, C1, e1, C2, . . . , Ck} ⊂ β

the incoming branch of β up to Ck. Similarly, we call the ordered set

Out(β, Ck) = {Ck, ek, Ck+1, . . . , Cm, em, vj} ⊂ β

the outgoing branch in β from Ck.

If Z is a strongly connected component of G|B̄ then ` ≥ 0 copies of Z will appear in the

graph SB(G). We denote the set of all such copies by C(Z) = {Z1, Z2, . . . , Z`}. Here, each Zi

is associated with the component Z in a specific branch βi ∈ BB(G). We say Zi, Zj ∈ C(Z)

have the same incoming branch if In(βi, Z) = In(βj, Z) and the same outgoing branch if

Out(βi, Z) = Out(βj, Z).

Definition 2.10. (Eigenvector Transfer Matrix) For a graph G = (V,E, ω) and a set

B ⊂ V , let β = {vi, e0, C1, e1, C2, . . . , Cm, em, vj} ∈ BB(G). Choose k ∈ {1, · · ·m} and

consider the graph G|B together with all nodes and edges in In(β, Ck), the incoming branch

of β up to Ck. The adjacency matrix of this graph is,

A =



B

Y0 C1

Y1 C2

. . . . . .

Yk−1 Ck


12



Figure 2.4: Comparison of leading eigenvector entries (centrality) before and after special-
ization. (Undirected edges represent an edge in both directions.)

where B = A(G|B) and Ci = A(Ci). Each Yi contains a single non-zero entry corresponding

to a single edge in the branch β. Using these submatrixes, we define

T (β, Ck, λ) = (λI − Ck)
−1Yk−1(λI − Ck−1)−1Yk−2 · · · (λI − C1)−1Y0

and call T (β, Ck, λ) the eigenvector transfer matrix of In(β, Ck), where λ is a spectral pa-

rameter.

As we will see, this product of matrixes describes how eigenvectors of a graph are trans-

formed to eigenvectors of a specialized version of that graph.

Before stating the main result, we outline some additional notation. If x is an eigenvector

of a graph G = (V,E, ω) and S ⊆ V is any subset of its vertex set, we let xS denote the

vector x restricted to the entries indexed by S. Similarly, by slight abuse of this notation,

if Z is a subgraph of G with vertex set S we let xZ = xS. With this in place, we state the

following theorem describing how the eigenvectors of a graph are affected by specialization.

Theorem 2.11. (Eigenvectors of Specialized Graphs. Bunimovich, Smith, P.

and Webb) Let G = (V,E, ω) be a graph, B ⊆ V a base, and let Z be a strongly connected
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component of β ∈ BB(G). If (λ,u) is an eigenpair of G with λ /∈ σ(G|B̄) then there is an

eigenpair (λ,v) of SB(G) such that the following hold:

(i) uB = vB.

(ii) For all Zi ∈ C(Z) the eigenvector restriction

vZi
= T (β, Z, λ)vB.

Hence, if Zi, Zj ∈ C(Z) have the same incoming branch then vZi
= vZj

.

(iii) For Zi ∈ C(Z) let ∪`k=1{Zk} be the copies of Z that have the same outgoing branch as

Zi. Then

uZ =
∑̀
k=1

vZk
=
∑̀
k=1

T (β, Z, λ)vB.

Figure 2.4 demonstrates the results of this theorem.

The proof of (i) is contained in [10]. We begin with a proof of part (ii)

Proof. Let Z be a strongly connected component of G|B and let Zi be a copy of Z in

SB(G). Then there exists a component branch β corresponding to Zi, of the form β =

{vj, e0, C1, ..., Ck, ek, Z, ek+1Ck+1, ..., Cn} . Then, because specialization isolates each compo-

nent branch, we can write the adjacency matrix A of SB(G) in the form,

A =

A(In(β, Z)) W

Y X

 =



B W

Y0 C1

Y1 C2

. . . . . .

Yk−1 Ck

Yk Zi

Yk+1 X



.

Here, B = A(G|B), Zi = A(Zi) and for 1 ≤ j ≤ k, Cj = A(Cj). For 0 ≤ j ≤ k + 1, the

matrix Yj is a single entry matrix corresponding to the edge ej ∈ β. The matrix X is the
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adjacency matrix for G restricted to nodes that are not in In(β, Z), W contains information

about edges from nodes represented in X to nodes in B.

Suppose (λ,v) is an eigenpair of G, i.e. Av = λv, such that λ /∈ σ(G|B̄). As σ(G|B̄) =

∪mj=1σ(Ci) where C1, C2, . . . , Cm are the strongly connected components of G|B̄ then λ is not

an eigenvalue of any strongly connected component of β.

We may conformally partition v into v = [vB,vC1 , · · ·vCk
,vZi

,vX ]T so that entries in

each piece correspond with the appropriate sub-matrix of A. Then, applying the eigenvector

equation produces,

Av =



B W

Y0 C1

Y1 C2

. . . . . .

Yk−1 Ck

Yk Zi

Yk+1 X





vB

vC1

vC2

...

vCk

vZi

vX



= λ



vB

vC1

vC2

...

vCk

vZi

vX



= λv.

We solve for vZ in terms of vB. Multiplying v by the appropriate block row of A gives

YkvCk
+ ZivZi

= vZi
, implying that

vZi
= λvZi

vZi
= (λI − Zi)

−1YkvCk
.

In a similar manner for 2 ≤ i ≤ k, we may solve for vCi
in terms of vCi−1

producing,

vCi
= (λI − Ci)

−1Yi−1vCi−1
.

Combining this with the previous equation yields,

vZi
= (λI − Zi)

−1Yk(λI − Ck)
−1Yk−1 · · ·Y2(λI − C2)−1Y1vC1 .

We solve for vC1 in a similar manner and find that

vC1 = (λI − C1)−1Y0vB.

Then,

vZi
= (λI − Zi)

−1Yk(λI − Ck)
−1Yk−1 · · ·Y1(λI − C1)−1Y0vB.
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Since Y0,...,Yk, C1 ... Ck and Zi are all the appropriate submatrixes of A( In(β, Zi) ), by

definition of the eigenvector transfer matrix

vZi
= (λI − Zi)

−1Yk(λI − Ck)
−1Yk−1 · · ·Y1(λI − C1)−1Y0vB = T (β, Zi, λ)vB.

Note that each inverse in this equation exists since λ /∈ σ(Zi) and λ /∈ σ(Cj) for j =

1, 2, . . . , k. This completes the proof.

To prove part (iii) of Theorem 2.11 we use the following. Given a graph H = (V,E, ω)

that is not strongly connected, let S = {S1, S2, ..., Sk} be the strongly connected components

of H. If there exist edges e1 · · · ek−1 such that, ej is an edge from Sj to Sj+1 for 1 ≤ j ≤ k−1,

we call the ordered set α = {S1, e1, S2, ..., Sk} a partial component branch from S1 to Sk in

H. We let P(S1, Sk) denote the set of all partial component branches from S1 to Sk in H.

We let P(Si, Si) be the set containing only α = {Si}.

Definition 2.12. (Partial Eigenvector Transfer Matrix) Let H = (V,E, ω) be a graph

that is not strongly connected and let S and T be strongly connected component subgraphs

of H. For α = {S, e0, C1, e1, ...Cm, emT} ∈ P(S, T ), let the adjacency matrix of α be



S

Y0 C1

Y1 C2

. . . . . .

Ym T


Where S = A(S), T = A(T ) and Ci = A(Ci) for 1 ≤ i ≤ m. We call the matrix

P (α, λ) = (λI − T )−1Ym(λI − Cm)−1Ym−1 · · ·Y1(λI − T )−1

the partial eigenvector transfer matrix of α, where λ is a spectral parameter.

Lemma 2.13. Suppose G = (V,E, ω) is not strongly connected with strongly connected
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components S1, S2,...,Sk and

A = A(G) =



S1

Y21 S2

...
. . .

Yk1 . . . Ykk−1 Sk


where Si = A(Si) for 1 ≤ i ≤ k. If λ /∈ σ(G) then,

(λI − A)−1 =



X11

X21 X22

...
...

. . .

Xkl Xk2 · · · Xkk


where

Xij =
∑

α∈P(Sj ,Si)

P (α, λ).

Proof. Since A is block lower triangular, (ρI − A) and (ρI − A)−1 are also block lower

triangular. Also, since we can write,

(ρI − A) =



(ρI − S1)

−Y21 (ρI − S2)

...
. . .

−Yk1 . . . −Ykk−1 (ρI − Sk)


we can write (ρI − A)−1 as,

(ρI − A)−1 =



X11

X21 X22

...
...

. . .

Xkl Xk2 · · · Xkk


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where Xii has the same dimensions as Si for 1 ≤ i ≤ k and Xij has the same dimensions as

Yij when 1 ≤ j < i ≤ k. It must then be the case that,

(ρI − A)(ρI − A)−1 = I1 ⊕ I2 ⊕ . . . ,⊕Ik

where each Ii is the identity matrix with the same dimensions as Si. Let j ∈ {1, 2, ...,k}.

Then,



(ρI − S1)

−Y21 (ρI − S2)

...
. . .

−Yk1 . . . −Ykk−1 (ρI − Sk)





0

...

0

Xjj

X(j+1)j

...

Xkj



=



0

...

0

Ij

0

...

0



.

Multiplying the jth row of (ρI − A) by the jth column of (ρI − A)−1 produces

(ρI − Sj)Xjj = Ij

Xjj = (ρI − Sj)−1 = P ({Sj}, λ).

Since P(Sj, Sj) only contains {Sj} by definition, it follows that

Xjj =
∑

α∈P(Sj ,Sj)

P (α, λ).

We will show by induction that

Xij =
∑

α∈P(Sj ,Si)

P (α, λ)

when i > j. As a base case, consider X(j+1)j. By multiplying row (j + 1) of (ρI −A) by the

jth column of (ρI − A)−1, we obtain the equations

−Y(j+1)j(ρI − Sj)−1 + (ρI − S(j+1))X(j+1)j = 0
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X(j+1)j = (ρI − S(j+1))
−1Y(j+1)j(ρI − Sj)−1. (2.2)

Let m be the number of nonzero entries in Y(j+1)j. Then we can write

Y(j+1)j =
m∑
k=1

Y
(k)

(j+1)j

where each Y
(k)

(j+1)j has one non-zero entry and that entry is equal to a non-zero entry of

Y(j+1)j. Thus,

X(j+1)j = (ρI − Sj+1)−1

m∑
k=1

Y
(k)

(j+1)j(ρI − Sj)
−1

=
m∑
k=1

(ρI − Sj+1)−1Y
(k)

(j+1)j(ρI − Sj)
−1.

For each k, the block-diagonal matrix

 Sj

Y
(k)

(j+1)j Sj+1


is an adjacency matrix for α(k) = {Sj, e(k), Sj+1} where e(k) is an edge from Sj to Sj+1. Then

α(k) ∈ P(Sj, Sj+1) and

X(j+1)j =
m∑
k=1

P (α(k)).

Clearly, ∪nk=1{α(k)} ⊂ P(Sj, Sj+1). We assert that ∪nk=1{α(k)} = P(Sj, Sj+1). To verify

this, let α ∈ P(Sj, Sj+1). Then α = {Sj, e, Sj+1} because if α contained any other strongly

connected component Sl, it would imply that a path exists from Sj to Sl to Sj+1 and because

of the structure of A, it must be the case that l < j or j + 1 < l. If an edge existed from Sj

to Sl to Sj+1 the matrix A would have an entry above the diagonal. This is a contradiction.

Thus,

X(j+1)j =
∑

α∈In(Sj ,Sj+1)

P (α).
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By the induction hypothesis assume that when i < n we have

X(j+i)j =
∑

α∈In(Sj ,Sj+i)

P (α).

Consider X(j+n)j. By multiplying the j+nth row of (ρI−A) by the jth column of (ρI−A)−1

we obtain the equations

−Y(j+n)j(ρI −Sj)−1− Y(j+n)(j+1)X(j+1)j · · · − Y(j+n)(j+n−1)X(j+n−1)j + (ρI −Sj+n)X(j+n)j = 0

X(j+n)j = (ρI − Sj+n)−1Y(j+n)j(ρI − Sj)−1 +
n−1∑
i=1

(ρI − Sj+n)−1Y(j+n)(j+i)X(j+i)j (2.3)

As shown in the base case, the first term can be broken up into a sum of partial eigenvector

transfer matrices. Let m0 be the number of non-zero entries in Y(j+n)j. If we define Y
(k)

(j+n)j

so that each Y
(k)

(j+1)j has a single nonzero entry that is equal to a distinct non-zero entry of

Y(j+1)j and

Y(j+n)j =

m0∑
k=1

Y
(k)

(j+n)j

then,

(ρI − Sj+n)−1Y(j+n)j(ρI − Sj)−1 =

m0∑
k=1

(ρI − Sj+n)−1Y
(k)

(j+n)j(ρI − Sj)
−1.

For each 1 ≤ k ≤ m0, (ρI−Sj+n)−1Y
(k)

(j+n)j(ρI−Sj)−1 is the partial eigenvector transfer matrix

for a distinct partial component branch α in P(Sj+n, Sj) that does not contain any strongly

connected components except Sj+n and Sj. Let D0 denote the set of all such branches. By

definition of an adjacency matrix, D0 contains one branch for each non zero entry in Y(j+n)j.

Thus,

(ρI − Sj+n)−1Y(j+n)j(ρI − Sj)−1 =
∑
β∈D0

P (β, λ). (2.4)

We consider the other terms in the sum (3). Let 1 ≤ i ≤ n − 1. By the induction

hypothesis,

(ρI − Sj+n)−1Y(j+n)(j+i)X(j+i)j =
∑

α∈P(Sj ,Sj+i)
(ρI − Sj+n)−1Y(j+n)(j+i)P (α, λ).
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Let mi represent the number of nonzero entries in Y(j+n)j+i. As before we write Y(j+n)j+i

as a sum of mi single entry matrices. Y(j+n)j+i =
∑mi

k=1 Y
(k)

(j+n)(j+i). Then,

(ρI − Sj+n)−1Y(j+n)(j+i)X(j+i)j =
∑

α∈P(Sj ,Sj+i)

mi∑
k=1

(ρI − Sj+n)−1Y
(k)

(j+n)(j+i)P (α, λ).

It is clear that for each α ∈ P(Sj, Sj+i) and k, the term

(ρI − Sj+n)−1Y
(k)

(j+n)(j+i)P (α, λ)

is a partial eigenvector transfer matrix for some incoming branch γ ∈ P(Sj, Sj + n),

because the matrix Y
(k)

(j+n)(j+i) is non zero if and only if an edge exists from Sj+i to Sj+n. If

P(Sj, Sj+i) is non empty, there is a branch from Sj to Sj+i, implying that there must be a

branch from Sj to Sj+n with partial eigenvector transfer matrix (ρI−Sj+n)−1Y
(k)

(j+n)(j+i)P (α).

What we see here is that for a given i, the term

(ρI − Sj+n)−1Y(j+n)(j+i)X(j+i)j

is equal to the sum of all centrality transfer matrices for the branches in P(Sj, Sj+n) that pass

through Sj+i immediately before reaching Sj+n. Let Di denote the set of all such branches.

Then,

(ρI − Sj+n)−1Y(j+n)(j+i)X(j+i)j =
∑

γ∈Di
P (γ, λ).

Putting (2.2), (2.3), and (2.4) together gives,

X(j+n)j =
∑
β∈D0

P (β, λ) +
n−1∑
i=1

∑
γ∈Di

P (γ, λ)

Let D = ∪n−1
i=0 Di. Then

X(j+n)j =
∑
α∈D

P (α, λ)

Clearly, D ⊂ P(Sj, Sj+n). We assert that D = P(Sj, Sj+n). To show this, let α ∈

P(Sj, Sj+n). If α has only two components, then α = {Sj, e, Sj+n} for some edge e and
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α ∈ D0 ⊂ D by definition of D0. If α has more then two components, then it has a second

to last component, Sj+i where 1 ≤ i ≤ n− 1. By definition of Di, α ∈ Di. Thus,

Xj+n,j =
∑

α∈P(Sj ,Sj+n)

P (α, λ)

This concludes the proof.

We now give a proof of part (iii) of Theorem 2.11.

Proof. Since each Zk is a copy of Z in SB(G), each Zk must correspond to a unique component

branch. Let D = {β1, ..., β`} be the set of such branches indexed so that βk is the unique

branch corresponding to Zk for 1 ≤ k ≤ `. Because each Zk has the same outgoing branch,

it follows that In(βj, Z) 6= In(βk, Z) when j 6= k. Otherwise, there would exist k 6= j such

that βk = βj which contradicts uniqueness of each βk.

If In(βk, Z) = {vi, e0, C1, e1, ..., en−1, Cm, em, Z} define Fk = {C1, C2, ...Cm} to be the set

of all strongly connected components of G|B in In(βk, Z). We let F = ∪`k=1Fk. Thus F is the

set of all strongly connected components of G|B(Z) that appear before Z in some incoming

branch of D.

We may order F = {C1, C2, ..., Cn, } such that if 1 ≤ i < j ≤ n there are no paths from

Cj to Ci. If no such ordering existed, it would imply for some 1 ≤ i < j ≤ n, paths exist

both from Ci to Cj and from Cj back to Ci. This implies that Ci and Cj must be part of

the same strongly connected component which is a contradiction.

Thus, we can write the adjacency matrix A = A(G) of G in the form

A =



B WBT WBZ WBX

YLB L

YZB YZL Z

YXB YXL YXZ X


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where L is of the form,

L =



C1

Y21 C2

...
. . .

Yk1 . . . Ykk−1 Cn


and B = A(G|B), Z = A(Z), Ci = A(Ci) for 1 ≤ i ≤ m. Since, λ is an eigenvalue of G,

there is a vector u such that Au = λu. We may partition u into u = [uB,uL,uZ ,vX ]T so

that the number of entries in each sub-vector corresponds with the size of the appropriate

sub-matrix of A

We apply the eigenvector equation to solve for uZ . Given that



B WBT WBZ WBX

YLB L

YZB YZL Z

YXB YXL YXZ X





uB

uL

uZ

uX


= λ



uB

uL

uZ

uX


we have

YZBuB + YZLuL + ZuZ = λuZ

uZ = (λI − Z)−1YZBuB + (λI − Z)−1YZLuL.

Solving for uL produces,

uL = (λI − L)−1YLBuB.

Thus,

uZ =
(

(λI − Z)−1YZB + (λI − Z)−1YZL(λI − L)−1YLB
)
uB.

We now show that,

uZ =
(

(λI − Z)−1YZB + (λI − Z)−1YZL(λI − L)−1YLB
)
uB =

∑`
k=1 T (βk, Z, λ)uB

by showing

(λI − Z)−1YZB + (λI − Z)−1YZL(λI − L)−1YLB =
∑̀
k=1

T (βk, Z, λ). (2.5)
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First, we consider (λI − Z)−1YZB. Since every non-zero entry in YZB corresponds to an

edge from G|B to Z we let n0 equal the number of non-zero entries in YZB and write,

YZB =
no∑
r=1

Y
(r)
ZB

where each Y
(r)
ZB has exactly one non-zero entry and that entry is equal to a non-zero

entry of YZB. Thus,

(λI − Z)−1YZB =
no∑
r=1

(λI − Z)−1Y
(r)
ZB .

We fix r ∈ {1, ..., n0} and consider (λI − Z)−1Y
(r)
ZB . The matrix Y

(r)
ZB corresponds to exactly

one edge from G|B to Z. Therefore, there must exist βr ∈ D such that In(βr, Z) = {v, e, Z}

where v ∈ B and e corresponds with the non-zero entry in Y
(r)
ZB . Hence,

(λI − Z)−1Y
(r)
ZB = T (βr, Z, λ).

Furthermore, βr must be the only branch in D that contains e. If not, there must be

another βs ∈ D such that In(βs, Z) = {v, e, Z} = In(βr, Z). Since βr and βs are in D,

they have the same outgoing branch and it must be the case that βr = βs. This contradicts

uniqueness of each β in D.

Thus, each Y
(r)
ZB corresponds with exactly one βr ∈ D. Furthermore, we see that In(βr, Z)

does not contain any strongly connected components except Z, because the branch contains

an edge directly from a node in B to Z. Thus, we may write it’s adjacency matrix as follows:

A(In(βr, Z)) =

 B

Y
(r)
ZB Z

 .
Then (λI − Z)−1Y

(r)
ZB must the eigenvector transfer matrix of βr with respect to Z.

Consider the setD0 = {β1, ...βn0} of component branches corresponding to {Y (1)
ZB , ..., Y

(n0)
ZB }.

In this case

(λI − Z)−1YZB =
no∑
r=1

(λI − Z)−1Y
(r)
ZB =

∑
β∈D0

T (β, Z, λ). (2.6)
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Note that for all β ∈ D0, In(β, Z) has no strongly connected components except Z. We

assert that D0 is the set of all branches in D that satisfy this property. To show this, note

that if β ∈ D and In(β, Z) = {v, e, Z}, then by definition of A(G), e must correspond to a

non-zero entry in YZB and therefore β corresponds to Y
(r)
ZB for some 1 ≤ r ≤ n0. Then β ∈ D0

and D0 is the set of all β ∈ D where In(β, Z) contains no strongly connected components

except Z.

Next we consider (λI−Z)−1YZL(λI−L)−1YZB from equation (2.5). Once again, we write

YZL =
∑n1

s=1 Y
(s)
ZL and YLB =

∑n2

t=1 Y
(t)
LB as the sum of their non-zero entries.

By definition of an adjacency matrix, it must be the case that the set {Y (s)
ZL}

n1
s=1 is in a

bijective correspondence with the edges from the components in {C1, ...Cn} to Z and the

set {Y (t)
LB}

n2
t=1 is in a bijective correspondence with the edges from G|B to components in

{C1, ...Cn}. Thus we may let {fs}n1
s=1 be the set of edges corresponding with {Y (s)

ZL}
n1
s=1 and

{gs}n1
t=1 be the set of edges corresponding with {Y (s)

LB}
n1
t=1.

We, therefore, have

(λI − Z)−1YZL(λI − L)−1YLB =

n1∑
s=1

n2∑
t=1

(λI − Z)−1Y
(s)
ZL (λI − L)−1Y

(t)
LB.

Fix, s ∈ {1, ..., n1} and t ∈ {1, ...n2} and consider, Y
(s)
ZL (λI − L)−1Y

(t)
LB. By definition Y

(s)
LB

represents an edge from G|B to some Ci ∈ F and Y
(s)
ZL represents an edge from some Cj ∈ F

to Z. Since there are no paths from Cj to Ci when i > j, it must be the case that i ≤ j.

This gives us information about the location of the non-zero entries in Y
(s)
LB and Y

(s)
ZL . In
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particular, it must be the case that

Y (t)
LB L

Y
(s)
ZL

 =





0

0

Y (t)

0

0

0

0

0





C1

...
. . .

Yi1 Ci

...
. . .

Yj1 Cj

...
. . .

Yk1 . . . Yki . . . Ykj . . . Cn


[

0 . . . . . . 0 Y (s) 0 0

]



.

For some Y (t) and Y (s) that contain a single non-zero entry. This is because Y
(t)
LB and Y

(s)
ZL

represent an edge from G|B to a component Ci and an edge from a component Cj to Z

respectively. Thus, we conclude that all entries in Y
(t)
LB and Y

(s)
ZL that correspond to edges to

or from components besides Ci and Cj respectively must be zero.

By lemma 2.13

(λI − L)−1 =



X11

X21 X22

...
...

. . .

Xkl Xk2 · · · Xkk


where

Xij =
∑

α∈P(Cj ,Ci)

P (α, λ).
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Using this fact we simplify the expression Y
(s)
ZL (λI − L)−1Y

(t)
LB to

[
0 . . . 0 Y (s) 0 . . . 0

]



X11

...
. . .

Xi1 Xii

...
...

. . .

Xj1 Xji Xjj

...
...

. . .

Xk1 . . . Xki . . . Xkj . . . Xnn





0

0

Y (t)

0

0

0

0

0


demonstrating that,

Y
(s)
ZL (λI − L)−1Y

(t)
LB = Y (s)XjiY

(t) =
∑

α∈P(Ci,Cj) Y
(s)P (α, λ)Y (t).

Thus, for each s and t the term,

(λI − Z)−1Y
(s)
ZL (λI − L)−1Y

(t)
LB =

∑
α∈P(Cit ,Cjs )(λI − Z)−1Y (s)P (α, λ)Y (t)

where js, it ∈ {1, ..., n}.

We now show for each α ∈ P(Cit , Cjs) that

(λI − Z)−1Y (s)P (α, λ)Y (t) = T (β, Z, λ)

where β ∈ BB(G). Let α ∈ P(Cit , Cjs). Then α = {Cα0 , e1, Cα1 , e2, ...CαN−1
, eNCαN

}

where Cα0 = Cit , CαN
= Cjs and for each 1 ≤ k ≤ N we have Cαk

∈ F . Because Y (s) and

Y (t) correspond to unique edges from Cjs to Z and from G|B to Cit , respectively, there is a

unique component branch β ∈ BB(G) such that

β = {v, gt, Cα0 , e1, Cα1 , e2, ...CαN−1
, eN , CαN

, fs, Z, ...u}

for some v, u ∈ B and where gt, fs ∈ E are edges corresponding to Y (t) and Y (s) respec-

tively as defined previously. Thus, both

T (β, Z, λ) = (λI − Z)−1Y (s)(λI − Cα0
)−1Y1(λI − Cα1

)−1Y2...YN(λI − CαN
)−1Y (t)

T (β, Z, λ) = (λI − Z)−1Y (s)P (α, λ)Y (t)

because,

27



P (α, λ) = (λI − Cα0
)−1Y1(λI − Cα1

)−1Y2...YN(λI − CαN
)−1.

We see given s, t and α that (λI−Z)−1Y (s)P (α, λ)Y (t) is equal to the eigenvector transfer

matrix for some branch β that contains Z where the first edge in β is gt and the edge before

Z is fs. Let Dst represent the set of all β ∈ BB(G) where the first edge is gt and the edge

leading to Z is fs. We have already shown that for each α ∈ P(Cit , Cjs), there exists a

β ∈ Dst such that

(λI − Z)−1Y (s)P (α, λ)Y (t) = T (β, Z, λ).

We now show that for each β ∈ Dst there exists an α ∈ P(Cit , Cjs) such that the

above equation is true. Let β ∈ Dst. Then β = {v, gt, Cβ0 , e1...eM , CβM , fs, Z...u} where

for 1 ≤ k ≤ M , ek ∈ E and Cβk ∈ F when 0 ≤ k ≤ M . By definition of a component

branch, each ek is and edge from Cβk−1
to Cβk when 1 ≤ k ≤ M . This implies that there is

a partial component branch from Cβ1 to CβM of the form, α = {Cβ0 , e1...eM , CβM}. Clearly

α ∈ P(Cβ1 , CβM ). Hence, the adjacency matrix for α is of the form,

A(α) =



Cβ0

Y1 Cβ1

. . . . . .

Ym CβM


and P (α, λ) = (λI −CβM

)−1YM ...Y1(λI −Cβ0
)−1. Since the components and edges in α are

in β, the adjacency matrix of In(β, Z) can be written as

A(In(β, Z)) =



B

Y (t) Cβ0

Y1 Cβ1

. . . . . .

Ym CβM

Y (s) Z


.
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Thus, there exists an α such that T (β, Z, λ) = (λI − Z)−1Y (s)P (α, λ)Y (t). Thus, the sets

P(Cit , Cjs are in a bijective correspondence.

We know that for each α ∈ P(Cit , Cjs) there is a β ∈ Dst such that

(λI − Z)−1Y (s)P (α, λ)Y (t) = T (β, Z, λ).

Using this fact, we may substitute each (λI − Z)−1Y (s)P (α, λ)Y (t) in the sum

∑
α∈P(Cit ,Cjs )

(λI − Z)−1Y (s)P (α, λ)Y (t)

for the corresponding T (β, Z, λ), (β ∈ Dst producing

∑
α∈P(Cit ,Cjs )

(λI − Z)−1Y (s)P (α, λ)Y (t) =
∑
β∈Dst

T (β, Z, λ).

We know that every β ∈ Dst is accounted for in the sum because of the correspondence

demonstrated previously.

We have now shown that

(λI − Z)−1YZL(λI − L)−1YLB =

n1∑
s=1

n2∑
t=1

(λI − Z)−1Y
(s)
ZL (λI − L)−1Y

(t)
LB

=

n1∑
s=1

n2∑
t=1

∑
α∈P(Cit ,Cjs )

(λI − Z)−1Y (s)P (α, λ)Y (t)

=

n1∑
s=1

n2∑
t=1

∑
β∈Dst

T (β, Z, λ).

Since

uZ =
(

(λI − Z)−1YZB + (λI − Z)−1YZL(λI − L)−1YLB
)

uB,

by equation (2.6) we have

uZ =

(∑
β∈D0

T (β, Z, λ) +

n1∑
s=1

n2∑
t=1

∑
β∈Dst

T (β, Z, λ)

)
uB.
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Finally we show that

D = D0 ∪

(
n1⋃
s=1

n2⋃
t=1

Dst

)
.

By definition, D0 ⊂ D and Dst ⊂ D for all 1 ≤ s ≤ n1, 1 ≤ t ≤ n2. Then D0 ∪

(
⋃n1

s=1

⋃n2

t=1Dst) ⊂ D. Let β ∈ D. Then In(β, Z) either contains a strongly connected

component besides Z, or it does not. If it does not, β ∈ D0 as shown previously. If it does,

then the first edge in β must connect a vertex in G|B to a vertex in some component Ci ∈ F

and therefore correspond to ft for some 1 ≤ t ≤ n2. Additionally the edge that appears

prior to Z must correspond to gs for some 1 ≤ s ≤ n1. Thus β ∈ D0 ∪ (
⋃n1

s=1

⋃n2

t=1Dst) and

D ⊂ D0 ∪ (
⋃n1

s=1

⋃n2

t=1Dst). This produces

uZ =
∑
β∈D

T (β, Z, λ)uB =
∑̀
k=1

T (βk, Z, λ)uB.

By part (ii) of Theorem 2.11 we have that T (βk, Z, λ)uB = vZk
and

uZ =
∑̀
k=1

vZk
.

This completes the proof of part (iii).
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Chapter 3. Specialization and Machine

Learning

3.1 Introduction

An important question in complex network network theory is: How does the structure of

a network impact dynamics on the network? To investigate this question, we study the

problem of chaotic attractor reconstruction with reservoir computers. We measure the effect

of network topology on model performance and analyze the eigenvalues of the best preforming

network topologies. We then design a model for producing a topology by specializing the

most important nodes. Our designed networks out preform the other network topologies

considered demonstrating the potential of the specialization model to connect structure with

dynamics.

3.1.1 Network Structure and Dynamics. Many real world processes exhibit under-

lying network structure. It is clear that the structure of these networks plays an important

role, but it is not always clear to what extent structure influences dynamics [1]. Because of

the complexity in this problem, there is a shortage of theoretical results about dynamical

systems on a large complex network.

Current theoretical work concerning dynamical systems on complex networks includes

the study of synchronization, global stability, time scales and others [12, 13]. Much of this

work maintains a strong reliance on spectral properties of the graph, or the eigenvalues

of a network’s adjacency matrix [14]. For example, spectral radius is a major factor in

determining stability of a dynamical system on a network.

Many networks are modeled with undirected graphs thus gaining the advantage of a

symmetric adjacency matrix and consequently real eigenvalues with a full set of orthogonal

eigenvectors. However, directed graphs are ubiquitous in network science and their non-

normal adjacency matrices make for dynamics that are much more interesting albiet more
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difficult to study [13]. We examine both directed and undirected graphs in our study of

network structure.

3.1.2 Reservoir Computing. In our investigation of structure and dynamics, we study

reservoir computers because of their arbitrary internal network topology—a feature few

machine learning models possess. Reservoir computers are the subject of much interest

recently as they have been shown to capture dynamic properties of chaotic systems and

recreate attractors [9]. What makes reservoir computers useful to us is their reliance on an

internal network with time varying node states. This allows us to observe and measure the

interplay of structure and dynamics in the system. We apply reservoir computers to the

task of learning the Lorenz equations (as descibed on p. 36) and study the effect of network

topology, and network spectrum on the ability of the model to learn.

We adopt the reservoir computer model used in [7]. The internal dynamics of the reservoir

computer are governed by two equations. During training, the following equation is used:

d
dt

r(t) = γ[−r(t) + tanh
(
Ar(t) + σWinu(t)

)
]

Here, r(t) is vector representing the state of all n nodes in the reservoir at time t. The

matrix A is the n× n weighted adjacency matrix of the reservoir with Aij representing the

weight of the connection from node j to node i. The matrix Win is a fixed n × m linear

mapping that sends the m dimensional training signal u(t) to the n dimensional reservoir

space. We can think of this mapping as sending a linear combination of the states of u to

each reservoir node. The function tanh is applied elementwise. The variables γ and σ are

scalar parameters.

To learn a particular signal, u(t), t ∈ [0, T ], a reservoir computer is trained, first by

solving the above ode for r(t) when t ∈ [0, T ]. Since u(t) is known, we can consider r(t) to

be the reservoir state driven by the input u(t). We will refer to r(t) as the driven state.

Our goal is for an undriven reservoir computer to produce an output signal û(t) such

that û(t) ≈ u(t). We accomplish this by solving for the mapping Wout such that
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Wout = argmin
W∈Rm×n

‖Wr(t)− u(t)‖

For our purposes, û(t) = Woutr(t). Next, instead of driving the reservoir states with u(t) as

done previously, we drive them with the approximated signal û(t) = Woutr(t) thus removing

the system’s dependancy on u(t). This produces the a new trained (dynamical) system,

d

dt
r̂(t) = γ[−r̂(t) + tanh

(
Ar̂(t) + σWinû(t)

)
]

d

dt
r̂(t) = γ[−r̂(t) + tanh

(
Ar̂(t) + σWinWoutr̂(t)

)
]. (3.1)

The trained reservoir can now be used to predict the trajectory of u(t) by solving 3.1 for r̂(t)

for t ∈ (T,∞) and then producing an approximated u(t), û(t) = Woutr̂(t) for t ∈ (T,∞).

It is not immediately clear that this process will produce a good approximation to u. In

fact, it is surprising that it is able to replicate chaos at all. See [7] for a discussion of the

theoretical conditions for reservoir computer success.

3.1.3 Network Topologies. The standard topology for a reservoir computer is an Erdős–

Rényi random graph. In this thesis, we study the Small World model, the Preferential At-

tachment model and the Specialization model in addition to random graphs. All of these

models, are undirected except for the Specialization model. For each of the undirected mod-

els, we explore directing their edges and removing a percentage of them at random. As we

will see, this leads to networks with richer spectrum and better learning abilities.

Each of the undirected models before mentioned, accept two or three parameters and

psuedo-randomly produce a network. The specialization model is different. Rather than

producing a new network from parameters, the model acts on existing networks by copying

components in a structured way. Previous work has shown that when about 10% of nodes in a

random graph are repeatedly specialized, the random graph grows into a network with many

real-world properties such as a right-skewed degree distribution, the small-world property

and that density and clustering coefficient decrease as the network grows [1].

Besides this, we use the specialization model because of it’s structured preservation of

eigenvalues. When a network is specialized, it retains all of it’s eigenvalues and gains the
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eigenvalues of any component that is copied. While this theoretical guarantee is useful, it

comes at the cost of losing the ability to directly control the number of nodes in the new

network. However, appropriate initial networks and some adjusting of parameters allows us

to generate networks that are close to the correct size.

For the Barabasi Albert model we connected every new node to the graph with two edges

(This parameter is called m in the original paper [15]. We use m = 2. For the Watts-Strogatz

model we connected each node to its 5 nearest neighbors and use a rewiring probability of

p = 0.05 [16]. We use p = 2/n for the Erdős–Rény random graphs so that the number of

edges scales linearly with the number of nodes n [17].

3.1.4 Node Importance Metric. To try to generate new types of complex network

topology for reservoir computing, we borrow a tool from deep learning [18]. Our goal is to

measure the importance of each node in the reservoir. The derivation proceeds as follows.

Let r(t) be a time varying vector of node states (each node state is a real number) from a

trained reservoir and let u(t) be the desired output. We can measure the error in a reservoir

computer’s ability to reproduce the desired output at a particular point in time with

E
(
r(t)
)

= ‖Woutr(t)− u(t)‖2

Let ∆T be our time step size. Let

Eni(x) = E
(
r(n∆T ), ri(n∆T ) = x

)
= ‖Woutr

∗ − u(t)‖2

where r∗j = rj(n∆T ) when j 6= i and r∗i = x.

According to [18], the contribution of node i at time n∆T can be approximated by

cni = |ri(n∆T )
dEni
dx

(
ri(n∆T )

)
|

To measure the contribution of node i for all time, Ci we average over timesteps:

Ci =
1

N

N∑
n=0

cni
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Let r(t) be a time varying vector of node states (each node state is a real number) from

a trained reservoir and let u(t) be the desired output. We can measure the error between

the trained reservoir computer prediction and the true solution with,

Because we hold rj(t) j ∈ {1, ..., n} constant for all j 6= i, the derivative,

dEni
dx

(
ri(n∆T )

)
=

∂

∂ri
‖Woutr(n∆T )− u(n∆T )‖2

=
∂

∂ri

m∑
k=0

( n∑
j=1

[Wout]kj rj − uk
)2

=
m∑
k=0

∂

∂ri

( n∑
j=1

[Wout]kj rj − uk
)2

= 2
m∑
k=0

( n∑
j=1

[Wout]kj rj − uk
)

[Wout]ki

Putting this into matrix vector form gives,

dEni
dx

(
ri(n∆T )

)
= 2
[
WT

out

(
Woutr(n∆T )− u(n∆T )

)]
i

Thus, we measure the effect of each node on the reservoir computer’s accuracy by approx-

imating the change in error when the node’s signal is set to zero. Based on the derivation

above, the score is computed for each node via

cni = | ri(n∆T )
dEt
dr

(
ri(n∆T ) | = | 2

[
WT

out

(
Woutr(n∆T )− u(n∆T )

)]
i
ri(n∆T ) |

then averaged over all time steps.

3.1.5 Reservoir Computer Implementation. For our implementation of a reservoir

computer, we set γ = 1, σ = 0.12. Every network is initialized with uniform edge weights

and then scaled so that the spectral radius is equal to 0.9. We initialize Win with random

values from -0.5 to 0.5 and solve the internal ode with an order four Runge-Kutta method

built into the Python Scipy library. See [19] for details. The size of our reservoir computers

varies from around 2000 nodes to 3500 nodes.

To solve for Wout we find the optimal solution to

min
W

N∑
k=0

‖Wr̂(k∆t)− u(k∆t)‖2 + β‖W‖2
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by using a ridge regression with β = 0.0001 and ∆t = 0.01. The complete reservoir computer

code can be found in [20].

3.1.6 Measures of Model Performance. To anaylyze the effect of network topology

on model performance, we use two metrics. The first quantity we study is the average fit

error. This quantity is computed via,

E =
1

k

N∑
k=0

‖Woutr̂(k∆t)− u(k∆t)‖2.

The second quantity studied, is the number of timesteps the reservoir computer could accu-

rately predict. This quantity is computed by finding the smallest k such that,

‖Woutr̂(k∆t)− u(k∆t)‖2 > δ.

We call such a k, kpred. In all of our experiments we set δ = 5 because this was the tolerance

where we could see a clear divergence between the reservoir computer orbit and the true

orbit.

Some issues in computing these scores were that reservoir computers rely on random

initialization of the Win matrix and that scores vary depending on the particular orbit. To

accurately assess the fit error and prediction length for a particular network, we test the

network on 200 orbits. Each orbit is generated by drawing a random initial condition, from

the uniform distribution on [−20, 20]× [−20, 20]× [−20, 20]. (This distribution was chosen

because it produced a variety of different orbits.) For each orbit we reinitialize Win to help

eliminate the effect of the random initialization when performance scores are considered in

aggregate.

We produce orbits from the Lorenz equations with standard parameter values in order

to produce chaotic orbits on the strange attractor. i.e.

dx
dt

= 10(y − x)

dy
dt

= x(28− z)− y
dz
dt

= xy − 8
3
z

In the following section we will describe the results of our experiments.
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3.2 Results

Figure 3.1: An orbit generated from the Lorenz equations (gray) overlayed with a reservoir

computer’s predicted orbit (green). A directed Barabasi-Albert topology with 75% of the

edges removed was used for the internal reservoir.

3.2.1 Topology Comparison. We begin with the results of using each network topology

as an internal reservoir. For each topology, 100 networks were generated and each network

was trained on 200 random orbits. The reported prediction length and error values are the

averages over all orbits and all networks. There was a high degree of variability in prediction

length, with some reservoir computer initializations accurately predicting the given orbit for

as many as 10,000 timesteps or as few as 100 timesteps. This variability is the reason each

network was trained on a large number of orbits. After averaging, we saw a clear separation

between each class of networks.

Of the topologies considered here, the winner for the best prediction length was the

Barabasi-Albert model with 75% of the edges removed. The effect of removing edges from

the Barabasi-Albert model was small and did not lead the the same magnitude of increased

prediction length or decrease in error as it did for the other network topologies.

This attribute is interesting, especially in context of [21], where it is shown that scale

free networks are extremely resistant to random attacks and maintain connectivity despite

node removal. As a result of this, the best Barabasi-Albert network, pictured in Figure 3.2,
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Erdős–Rényi Barabsi-Albert Watts-Strogatz Specialized

Per. kpred E Per. kpred E Per. kpred E Per. kpred E
0% 2446 0.0565 0% 2589 0.0606 0% 1143 0.1695 0% 2376 0.0723
25% 2471 0.0511 25% 2582 0.0567 25% 1865 0.0975 10% 2411 0.0688
50% 2484 0.0465 50% 2608 0.0530 50% 2213 0.0630 20% 2418 0.0648
75% 2547 0.0434 75% 2609 0.0468 75% 2433 0.0471 30% 2459 0.0613

Table 3.1: Predictive ability and fit error of various toplogies as edges are removed uniformly
at random. The first column, Per., for each topology is the percent of edges randomly re-
moved from the graph. The variable kpred is the number of timesteps predicted correctly and
E represents fit error. Both of these quantities are described in section 3.1.6. The topolo-
gies ranked from best to worst preformers are: Barabasi-Albert, Erdős–Rényi, Specialized,
Watts-Strogatz.

is highly connected. Despite losing 75% of its directed edges it retains a single tight knit

component.

This stands in contrast the the Watts-Strogatz model. When 75% of it’s edges are

removed, the network deteriorates into many small components. This is pictured in Figure

3.3. While we may be tempted to assume that connectivity is a key to predictive power, the

Watts-Strogatz model contradicts this by preforming best when it is disconnected. Because

of this it seems unlikely that network connectivity plays a major role in the ability of a

network to predict the Lorenz equations better than another. Therefore, because of the

trends in this analysis, we expect that network features which are important for predicition

will appear in the Watts-Strogatz model as edges are removed, and will be preserved in the

Barabasi-Albert model as edges are removed.

The specialized networks are slightly less deterinistic than the other three topologies.

Their structure is dependent on the initial graph, as well as on the number of nodes special-

ized. We preformed a single specialization of 6 random nodes on a random directed graph of

15 nodes where the probability of each directed edge existing was p = 0.4. These specialized

networks display some fracturing as edges are removed, but retain a clear largest component.

In response to edge removal, they exhibit mild increases in predictive ability. It should be

noted that in our experiments, less edges were removed from the specialized networks since
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Figure 3.2: The top preforming Erdős–Rény network (left) and top preforming Barabasi
Albert network (right).

they are not an undirected model. The specialized networks preform third best overall, but

exhibited a wider variety of features and more variation in structure than the other network

models. It is possible that a certain subset of the specialized networks, that contain key

features may preform better than the rest of the group.

The Erdős–Rény topology exhibits the same mild increase in predictive ability as the

specialization model when edges are removed. It also achieves the lowest fit error of any

class of network. It is interesting that the model with the best fit does not achieve the best

prediction. It may be the case that while the random graph can project it’s node states

onto the desired signal with the most accuracy, it’s structure cannot replicate the chaotic

dynamics for as long. It could also be overfitting to the input signal and not capturing the

general trend as well.

3.2.2 Statistical Significance.

Prediction Length Differences in prediction length were compared for a particular

model (as edges were removed) and the increase in prediction length after edge removal

was found to be statistically significant with p-values p < α = 0.05 for every model except

the Barabasi-Albert model. The only statisically significant difference found within the
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Figure 3.3: The top preforming Watts-Strogatz network (left) and top preforming specialized
network (right).

Barabasi-Albert topology classes was between networks with 25% of edges removed and 75%

of edges removed.

For each network model and percent of edges removed, the mean prediction length was

also compared to the top preforming class (Barabasi-Albert with 75% of the edges removed)

and the difference in means between each of them was statistically significant. Overall,

this implies that all results were found to be statistically significant except the comparison

Barabasi-Albert networks with themselves. This suggests that removing edges had little

effect on predictive power of the Barabasi-Albert model.

Error in Fit The decrease in fit error that occurred within each class of networks was

found to be statistically significant as well with α = .05. It is interesting that this decrease in

error was clearly monotonic. Edge removal appears to have a strong impact on fit error. This

is surprising because the current paradigm in machine learning is to incorporate as many

edges as possible into a layered network and learn every edge parameter. In contrast to this,

reservoir computers seem to benefit from sparsity. This highlights an important feature of

complex networks, that they can exhibit more complexity with fewer edges.
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3.2.3 Spectrum of Top Networks.

Pictured on the right are the spectra of the

top performers from each model. For a

given model and percent of edges removed,

the spectral plots were remarkably consis-

tent. Key features such as peaks, skewness

and shape of the imaginary eigenvalue spread

were maintained within a group. The only

exception was the specialization model. The

eigenvalue plots for specialized networks had

a variety of different features and shapes. A

key feature of the Barabasi-Albert spectrum

was symmetric peaks at the location of high

multiplicity real eigenvalues. (It should be

noted that the real spectrum is plotted on

a log scale for frequency.) These peaks are

visible when 25% of edges are removed and

become more prominent as more edges are

removed. Additionally, they seem to spread

outward and move away from the origin. We

see that the best preforming Watts-Strogatz

model exhibits similar symmetric peaks, and

though it is less symmetric, the best special-

ized network has symmetric peaks as well.

This suggests that a symmetric spectrum

with peaks in key places may be important

for learning the Lorenz equations.
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3.2.4 Edge Removal and Spectrum.

As edges were removed from a network, the

distribution of eigenvalues would spread out

into the complex plane. However, in the

case of the Watts-Strogatz model and the

Barabasi-Albert model, this did not occur

uniformly. The appearance of complex eigen-

values seemed related to critical real eigen-

values. The complex eigenvalues appeared

near these critical points initially, and then

move outward. The critical real eigenval-

ues would persist as edges were removed and

become peaks in the distribution. This ro-

bustness to edge removal suggests that the

eigenvalues with high multiplicity are related

to an inherent feature of the network. It is

also interesting to note that when 75% of

edges are removed from the Watts-Strogatz

model, it’s spectrum begins to resemble that

of the Barabasi-Albert model, and preforms

better than any other amount of edge re-

moval. There appears to be a connection be-

tween symmetry, high multiplicities and pre-

dictive power.
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Figure 3.4: Performance of repeated specialization. As the top preforming nodes were re-
peatedly specialized, the generated networks outperformed a random control with the same
sparsity and also outperformed all other topologies studied. The random control, however,
exhibited lower fit error.

3.2.5 Iterative Network Growth via Specialization. In an attempt to out-perform

the previously discussed topologies, we devise a scheme for iteratively growing complex

networks with the specialization model. The scheme begins with a random directed graph

on n = 30 nodes where each directed edges exists with probability p = .12. A random orbit

from the Lorenz Equations is generated. Then the following steps are repeated 50 times:

Initialize a reservoir computer with the current network topology and train it on the orbit.

Identify the 3 most important nodes via the process outlined in section 3.1.4 in the network

and specialize them. Set the current topology to be the specialized graph. Repeat.

At each iteration, we record the current prediction length (kpred) and the fit error E. As

a control, we also initialize a reservoir computer with a random digraph that has the same

sparsity as the specialized network and record it’s fit error and prediction length. (Random

digraphs are the directed version of Erdős–Rény random graphs. Each directed edge exists

with probability p.) Figure 3.4, that illustrates the average prediction length and error for

100 networks generated via this process.

After 50 iterations, the generated networks predict 3021 timesteps correctly on average.

This was compared to prediction lengths of Barabasi-Albert topologies and found to be

statistically significant with a p-value of p = 0.01. The average fit error after 50 iterations

was 0.042 and this was also statistically significant compared to the Barabasi-Albert fit error

with p = 1 × 10−8. It was not however statistically significant compared to the error in
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Figure 3.5: Network generated by repeated specialization

Erdős–Rény graphs with 75% of the edges removed.

Thus, the iteratively generated networks outperform the other classes of networks in-

vestigated in all but one category. Their structure was extremely sparse, containing long

branches of nodes with only one edge in and one edge out. Additionally, they contained

large hubs and clusters of single node loops. A network generated in this manner is pictured

in Figure 3.5. The repeated motif of alternating single node, single edge chains contributes

a huge amount of zeros to the spectrum and thus, the spectral plot is quite bland.

While these networks performed well, it is important to remember that they were gener-

ated based on a single orbit, and in a way, were tailored to that orbit. The other topologies

in question were tested on arbitrary orbits. Though we know the superiority of this method

on a single orbit, we do not know how well the networks generalize to arbitrary orbits.

44



Figure 3.6: Eigenvalues of the network in Figure 3.5.

3.3 Conclusion

In this thesis, we have proven a result about the eigenvectors of specialized graphs and

studied the effect of network topology on reservoir computers.

We have examined several different network topologies and compared their abilities to

predict the Lorenz equations accurately, concluding that for an arbitrary orbit, a Barabasi-

Albert topology with 75% of the (directed) edges removed preformed best with about 2600

accurate timesteps. We have also shown that by using a targeted approach to a specific orbit,

networks can be generated that predict about 3000 time steps accurately. We analyzed the

spectrum of each topology and found the existence of peaks in the eigenvalue distribution

that seemed correlated with performance.

Most importantly, we have shown that contrary to popular belief, maximizing connec-

tivity does not always increase performance, but rather, that performance may be improved

by decreasing connectivity.
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