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abstract

Congruences for Coefficients of Modular Functions
in Levels 3, 5, and 7 with Poles at 0

Ryan Austin Keck
Department of Mathematics, BYU

Master of Science

We give congruences modulo powers of p ∈ {3, 5, 7} for the Fourier coefficients of certain
modular functions in level p with poles only at 0, answering a question posed by Andersen and
Jenkins and continuing work done by the Jenkins, the author, and Moss. The congruences
involve a modulus that depends on the base p expansion of the modular form’s order of
vanishing at ∞.
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Chapter 1. Introduction

A modular form f(z) of level N and weight k is a complex valued function which is holo-

morphic on the upper half plane, satisfies the equation

f

(
az + b

cz + d

)
= (cz + d)kf(z) for all ( a bc d ) ∈ Γ0(N),

and is holomorphic at the cusps of Γ0(N). Letting q = e2πiz, modular forms have a Fourier

expansion f(z) =
∑

n≥0 a(n)qn with Fourier coefficients a(n). A weakly holomorphic modular

form is a modular form that is allowed to be meromorphic at the cusps; we define M ]
k(N)

to be the space of weakly holomorphic modular forms of weight k and level N that are

holomorphic away from the cusp at ∞, and in the same notation as [7], we use M [
k(N) to

denote forms holomorphic away from the cusp at 0. For prime N , these are the only cusps.

Modular forms in both of these spaces also have Fourier expansions at infinity, where the

constraint n ≥ 0 is relaxed to n� −∞ if the form has a pole at infinity.

The Fourier coefficients of modular forms often satisfy interesting congruences. For the

j-invariant j(z) = q−1 + 744 +
∑∞

n=1 c(n)qn ∈ M ]
0(1), Lehner [11, 12] proved that the c(n)

satisfy the congruence

c(2a3b5c7dn) ≡ 0 (mod 23a+832b+35c+17d) if a, b, c, d ≥ 1.

Kolberg [9, 10], Aas [1], and Allatt and Slater [2] strengthened Lehner’s congruences for

j(z). Furthermore, Griffin [6] gave a canonical basis for M ]
0(1) and extended Kolberg’s

and Aas’s results to the basis elements. Similarly, Jenkins, Andersen, and Thornton [3, 8]

proved congruences for the Fourier coefficients of elements of canonical bases for M ]
0(p)

with p = 2, 3, 5, 7. Jenkins, the author, and Moss [7] proved congruences for the Fourier

coefficients of elements of a canonical basis for M [
0(2). It is natural to wonder whether a

similar result holds for bases of M [
0(p) for the other genus zero primes, mirroring the results
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of M ]
0(p).

Let p ∈ {2, 3, 5, 7, 13}. Taking η(z) = q
1
24

∏∞
n=1 (1− qn) to be the Dedekind eta function,

a Hauptmodul for Γ0(p) is

φ(p)(z) =

(
η(pz)

η(z)

)24/(p−1)

= q +
24

p− 1
q2 + · · · ,

which vanishes at∞ and has a pole only at 0. The functions (φ(p)(z))m for m ≥ 0 are a basis

for M [
0(p). Andersen and the Jenkins used powers of φ(p)(z) to prove congruences involving

ψ(p) = 1
φ(p)

= q−1 − 24
p−1 + · · · ∈M ]

0(p) in [3], and made the following remark: “Additionally,

it appears that powers of the function [φ(p)(z)] have Fourier coefficients with slightly weaker

divisibility properties... It would be interesting to more fully understand these congruences.”

The Jenkins, the author, and Moss in [7] proved congruences for the Fourier coefficients of

φ(2)(z) and its powers. In this paper, we use similar techniques to obtain congruences for

φ(p)(z) and its powers for p = 3, 5, 7.

Write φ(p)(z)m =
∑∞

n=m a
(p)(m,n)qn. Let χS be the characteristic function on S, which

outputs 1 when the input is an element of S and 0 otherwise. The main result of this paper

is the following theorem.

Theorem 1.1. Let p ∈ {3, 5, 7}. Let n = pαn′ where p - n′. Express the base p expansion

of m as a =
∑∞

i=1 aip
i−1, where ai = 0 for all sufficiently large i. Consider the rightmost α

digits aα . . . a2a1. Let i′ be the index of the rightmost nonzero digit, or i′ = −1 if a1 = a2 =

· · · = aα = 0. Let

γ3(m,α) =


3− ai′ + 2# { i | ai = 0, i > i′ }+ # { i | ai = 1, i > i′ } if i′ ≥ 0,

0 otherwise.

γ5(m,α) = γ7(m,α) =


χ{ 1,2 }(ai′) + # { i | ai ∈ { 0, 1 } , i > i′ } if i′ ≥ 0,

0 otherwise.
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Then

a(p)(m, pαn′) ≡ 0 (mod pγp(m,α)).

The power of p in the congruence includes a count of the number of digits in the base p

expansion of m that are 0, 1, or 2. This result is similar to the one found for φ(2), but it is

more complicated to state because there are more digits in bases 3, 5, 7. We note that this

congruence is not sharp. For m = 1, Allatt and Slater in [2] proved a stronger result that

provides an exact congruence for many n.

As an example, the base 3 expansion for m = 102 is m = · · · 00010210. Table 1 gives

values of γ3.

α 0 1 2 3 4 5 6 7 8 9 · · · α · · ·
γ(40, α) 0 0 2 2 4 5 7 9 11 13 · · · 2(α− 5) + 5 · · ·

Table 1.1: Values of γ3(m,α) for m = 102

Notice that once α surpasses 5—the leftmost nonzero digit in the base 3 expansion of m

occurs in the 5th place—γ3 always increases by 2 as α increases by 1. This illustrates that

γ3(m,α) is unbounded for a fixed m. Similar examples can be constructed for γ5 and γ7.

Chapter 2 contains the machinery and definitions we use for proving Theorem 1.1, and

the proof itself is in Chapter 3. In Chapter 4 we discuss the p = 13 case; although 13 is also

a genus zero prime we do not obtain congruences modulo 13.

Chapter 2. Preliminary Lemmas

We prove Theorem 1.1 by first proving several facts about φ(p), which is where we begin in

this chapter. Most importantly, Up(φ
(p)) is a polynomial with integer coefficients in φ(p) for

the Hecke operator Up, which acts on a Fourier expansion by dividing the power of q by p

and throwing away non-integer powers. This means that if Up(φ
(p)), as a polynomial in φ(p),

has all coefficients divisible by some number, then every pth coefficient of φ(p) is divisible by

that number. The same holds true for applying Up to any power of φ(p) as well.
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One can also consider Up as a sum of Möbius transformations of a given function. We find

a polynomial with functions as its coefficients such that when we evaluate it at the proper

Möbius transformations of φ(p), we get zero.

The operator Up on a function f(z) is given by

Upf(z) =
1

p

p−1∑
j=0

f

(
z + j

p

)
.

Let M !
k(N) be the space of weakly holomorphic modular forms of weight k and level N ,

meaning we allow poles at any cusp. We have Up : M !
k(N) → M !

k(N) if p divides N . If

f(z) has the Fourier expansion
∑∞

n=n0
a(n)qn, then the effect of Up is given by Upf(z) =∑∞

n=n0
a(pn)qn.

The following result describes how Up applied to a modular function behaves under the

Fricke involution. This will help us in Lemma 2.4 to write Up(φ
(p))m as a polynomial in φ(p).

Lemma 2.1 ([4, Theorem 4.6]). Let p be prime and let f(z) be a level p modular function.

Then

p(Upf)

(
−1

pz

)
= p(Upf)(pz) + f

(
−1

p2z

)
− f(z).

The Fricke involution
(
0 −1
p 0

)
swaps the cusps of Γ0(p), which are 0 and ∞. We will use

this fact in the proof of Lemma 2.4, and the following relations between φ(p)(z) and ψ(p)(z)

will help us compute this involution.

Lemma 2.2 ([3, Lemma 3]). The functions φ(z) and ψ(z) satisfy the relations

φ(p)

(
−1

pz

)
= p−12/(p−1)ψ(p)(z),

ψ(p)

(
−1

pz

)
= p12/(p−1)φ(p)(z).

The following lemma is a special case of a result of Lehner [12]. It provides a polynomial

with functions as its coefficients whose roots are modular forms used in the proof of Theorem

3.1, meaning that evaluating the polynomial at those modular forms yields the zero function.
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Lemma 2.3 ([12, Theorem 2]). There exist integers b
(p)
j such that

Upφ
(p)(z) = p

p∑
j=1

b
(p)
j φ(p)(z)j.

Furthermore, let h(p)(z) = p12/(p−1)φ(p)(z/p). Then

(h(p)(z))p +

p∑
j=1

(−1)jgj(z)(h(p)(z))p−j = 0

where

gj(z) = (−1)j+1p12/(p−1)+2

p∑
`=j

b
(p)
` φ(p)(z)`−j+1.

In the following lemma, we extend the result from the first part of Lemma 2.3, writ-

ing Up(φ
(p))m as an integer polynomial in φ(p). In particular, we give the degree of that

polynomial. An alternative approach can be seen in [5, Lemma 4.1.1].

Lemma 2.4. For all m ≥ 1, Up(φ
(p))m ∈ Z[φ(p)]. In particular,

Up(φ
(p))m =

pm∑
j=dm/pe

d(m, j)(φ(p))j

where d(m, j) ∈ Z, and d(m, pm) is not 0.

Proof. We proceed as in [7, Lemma 5]; this is a straightforward generalization from 2 to p.

Using Lemmas 2.1 and 2.2, we have that

Upφ
(p)(−1/pz)m = Upφ

(p)(pz)m + p−1φ(p)(−1/p2z)m − p−1φ(p)(z)m

= Upφ
(p)(pz)m + p−1−12m/(p−1)ψ(p)(pz)m − p−1φ(p)(z)m

= p−1−12m/(p−1)q−pm +O(q−pm+p).
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Thus,

p1+12m/(p−1)Upφ
(p)(−1/pz)m = q−pm +O(q−pm+p).

Because φ(p)(z)m is holomorphic at ∞, Upφ(p)(z)m is holomorphic at ∞. So Upφ(−1/pz)m is

holomorphic at 0 and, since the Fourier expansion starts with q−pm, it must be a polynomial

of degree pm in ψ(p)(z). Let b(m, j) ∈ Z such that

p1+12m/(p−1)Upφ
(p)(−1/pz)m =

pm∑
j=0

b(m, j)ψ(p)(z)j,

and we note that b(m, pm) is not 0. Now replace z with −1/pz and use Lemma 2.2 to get

p1+12m/(p−1)Upφ
(p)(z)m =

pm∑
j=0

b(m, j)p12j/(p−1)φ(p)(z)j,

which gives

Up
(
φ(p)(z)m

)
=

pm∑
j=0

b(m, j)p12(j−m)/(p−1)−1φ(p)(z)j.

Because
(
φ(p)(z)

)m
= qm + · · · , if m is divisible by p, the leading term of the above sum is

qm/p, and otherwise the smallest power of q present in the polynomial is at least dm/pe, so

the sum starts with j = dm/pe as desired. Notice that b(m, j)p12(j−m)/(p−1)−1 is an integer

because the coefficients of φ(p)(z)m are integers.

We may repeatedly use Lemma 2.4 to write Uα
p (φ(p))m as a polynomial in φ(p). Let

f(p)(`) = d`/pe , f 0
(p)(`) = `, and fα(p)(`) = f(p)(f

α−1
(p) (`)) for α ≥ 1. (2.1)

Using Lemma 2.4, the smallest exponent of q appearing in Uα
p (φ(p))m is fα(p)(m).

Lemma 2.5 provides a connection between γp(m,α) and the integers fα(p)(m): γp is count-

ing the number of 0s and 1s to the left of the first nonzero digit in the base p expansion of

m. The key difference between the following lemma and its corresponding lemma in [7] is

6



that there are more digits in bases 3, 5, 7.

Lemma 2.5. The number of 0s to the left of the rightmost nonzero digit in the first α digits

of the base p expansion of m is equal to the number of integers congruent to 1 modulo p in

the list

m, f(p)(m), f 2
(p)(m), . . . , fα−1(p) (m),

except when the rightmost nonzero digit is 1 (in which case there is exactly one more in the

list). Similarly, the number of 1s to the left of the rightmost nonzero digit in the base p

expansion of m is equal to the number of integers congruent to 2 modulo p in the above list,

again with the exception of when the rightmost nonzero digit is 2.

Proof. Write the base p expansion ofm as ar . . . a2a1, and consider its first α digits, aα . . . a2a1,

where ai = 0 for i > r if α > r. If ai = 0 for 1 ≤ i ≤ α, then all of the integers in the

list are zero modulo p. Otherwise, suppose that ai = 0 for 1 ≤ i < i′ and ai′ 6= 0. Apply

f(p) repeatedly to m. Each application of f(p) deletes the rightmost 0 from the expansion,

until ai′ is the rightmost remaining digit; that is, f i
′−1

(p) (m) = aα . . . ai′−1ai′ . In particular, the

rightmost digit is nonzero. Having reduced to this case, we now treat only the case where

m is not divisible by p.

If m is not divisible by p, and a1 ∈ {1, 2}, then at least one number in the list, namely

m, is congruent to either 1 or 2 modulo p. Also, f(p)(m) = dm/pe = (m + a)/p for some

a 6= 0. Applied to the base p expansion of m, f(p) deletes a1 and propagates a 1 leftward

through the base p expansion, replacing any digit that was previously equal to p − 1 with

zero. This is essentially the operation of carrying in addition. This process then terminates

upon encountering the rightmost digit less than p−1 (if it exists), which becomes one greater.

As in the case where p divides m, we apply f repeatedly to delete the new leading 0s. But if

the first nonzero digit to the left was either a 0 or a 1 before we propagated a 1 leftward, it is

now a 1 or a 2 respectively. So now when we repeat this process until all digits are accounted

for, we notice that any digit that was either a 0 or a 1 becomes a 1 or a 2 respectively (with

the exception of the first nonzero digit), which proves the lemma.
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Chapter 3. Proof of the Main Theorem

Using the polynomial whose roots are the proper Möbius transformations of φ(p), any result

that works for enough powers of φ(p) can be extended to all higher powers of φ(p) using

Newton’s formulas for sums of powers of roots of a polynomial. In this chapter, we use this

idea to prove Theorem 1.1.

Then, in order to find congruences for the coefficient of n = pαn′, we use the Up operator

α times, showing that each successive time we hit (φ(p))m with Up, we get a polynomial in

φ(p) of the same form we would expect if we just applied it to the lowest power of φ(p) in the

previous polynomial we had, with every coefficient divisible by some positive power of p if

there is a nontrivial congruence. The previously defined γp functions are simply a method

of quickly determining that power of p.

Theorem 1.1 will follow from the next theorem.

Theorem 3.1. Let fα(p)(m) be as in (2.1). Let γp(m,α) be as in Theorem 1.1, and let α ≥ 1.

Define P (p)(`, a) to be the set of polynomials in φ(p) with lowest power ` having coefficient d`

divisible by pa and each subsequent coefficient dk being divisible by at least pδp(k−`)+a, where

δ3 = 4 and δ5 = δ7 = 1. Then

Uα
p (φ(p))m ∈ P (p)(fα(p)(m), γp(m,α)). (3.1)

Because our methods use the Up operator, they do not give meaningful congruences for

the case when α = 0. Theorem 3.1 is an improvement on the following result by Lehner [12]

for p = 3.

Theorem 3.2. [12, Equation 3.24] Write Uα
3 (φ(3))m as

∑
d(m, j, α)(φ(3))j ∈ Z[φ(3)]. For

any integer k, let ν3(k) be the highest power of 3 dividing k. Then

ν3(d(m, j, α)) ≥ 4(j − 1) + α(2− 4(1−m)).
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In particular, Lehner’s bound sometimes only gives the trivial result that the 3-adic

valuation of d(m, j, α) is greater than some negative integer. Lehner also proved congruences

for p = 5, 7, but they experience similar issues [11].

We prove Theorem 3.1 by first letting α = 1, which we refer to as the single term case,

and showing the theorem holds there. The single term case is similar to Lemma 6 from

[3], which gives a subring of Z[φ] which is closed under the Up operator. Here, we employ a

similar technique to prove divisibility properties of the polynomial coefficients in Lemma 2.4.

We then show that applying Up to a polynomial in the set P (p)(fα(p)(m), γp(m,α)) will carry

it to the set P (p)(fα+1
(p) (m), γp(m,α+1)), which we refer to as the polynomial step. Implicitly,

this proves the result by induction. This structure differs from [7] because it allows us to

prove the polynomial step in a much cleaner way. Another approach to proving the base

case can be found in [5, Lemma 4.1.1].

Proof of Theorem 3.1. For the base case, we let α = 1, and seek to prove the statement

Up(φ
(p))m =

pm∑
j=dm/pe

dm,j(φ
(p))j

with

pδp(j−dm/pe)+c
(p)
m | dm,j (3.2)

where

c(3)m =


2 m ≡ 1 (mod 3),

1 m ≡ 2 (mod 3),

0 otherwise,

c(5)m = c(7)m =


1 m ≡ 1, 2 (mod p),

0 otherwise.
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We prove (3.2) by induction on m. We follow the proof techniques used in Lemmas 5 and 6

of [3]. From the definition of Up, we have

Upφ
(p)(z)m = p−1

p∑
j=1

φ(p)

(
z + j

p

)m
(3.3)

where h
(p)
` (z) = p12/(p−1)φ(p)

(
z+`
p

)
. We will construct polynomials whose roots are the func-

tions h
(p)
` (z), depending on p. The construction will be done in accordance with Lemma

2.3.

Consider the polynomials

F (p)(x) = xp +

p−1∑
j=1

(−1)jgj(z)xp−j.

We claim that F (p)(x) has the h
(p)
` (z) as roots. By Lemma 2.3, we know that h

(p)
0 (z) is a root;

the others are roots because the gj(z) are fixed under z 7→ z+ 1, but for this transformation

of z, h
(p)
` (z) gets sent to h

(p)
`+1(z). Note that the coefficients of F (p)(x) are the gj(z) functions.

Now since F (p) has the functions h
(p)
` (z) as its roots, the coefficients, namely the functions

gj(z), are the symmetric polynomials in the roots. Recall Newton’s identities for the sum

of powers of roots of a polynomial. Writing F (p)(x) =
∏n

i=1(x− xi), let S` = x`1 + · · · + x`n.

Then it follows that

S` = g1S`−1 − g2S`−2 + · · ·+ (−1)`+1`g`.

Let R(p) be the set of polynomials of the form
∑N

n=1 dnφ
(p)(z)n where dn ∈ Z and where

for n ≥ 2, νp(dn) ≥ δp(n− 1), where δp is as in Theorem 3.1.

Lemma 3.3. (R(p) product lemma) If f, g ∈ R(p), then pδpfg ∈ R(p).

Proof. To prove the lemma, we only need prove it for the product

pδp
(
pδp(i−1)diφ

i(z)
) (
pδp(j−1)d′jφ

j(z)
)
,

10



and then the lemma will hold for the product of any two polynomials by linearity, since the

sum of any two elements in R(p) is clearly also an element of R(p). Observe that

pδp
(
pδp(i−1)diφ

(p)(z)i
) (
pδp(j−1)d′jφ

(p)(z)j
)

= pδp(i−1+j−1+1)did
′
jφ

(p)(z)i+j

= pδp((i+j)−1)(did
′
j)φ

(p)(z)i+j,

which is clearly an element of R(p). So the desired result holds.

We call this the R(p) product lemma, as it implies that when multiplying two polynomials

in R(p), we must multiply in δp extra copies of p for the product to be in R(p).

We now continue in cases. Note that for brevity, we take φ = φ(p), where p is determined

by the case. The following three cases together make up the “single term case,” since we are

showing that the theorem holds for Up of a single φm term.

Case 1. Let p = 3. Given Lemma 2.3 and the statement we are trying to prove, we see

that what we want depends on m as follows:

m ≡ 0 (mod 3) : ∃ r ∈ R(3), U3φ
m = 3−4(dm/3e−1)r,

m ≡ 1 (mod 3) : ∃ r ∈ R(3), U3φ
m = 3−4(dm/3e−1)+2r,

m ≡ 2 (mod 3) : ∃ r ∈ R(3), U3φ
m = 3−4(dm/3e−1)+1r.

Furthermore, by Equation 3.3 and considering the functions h
(3)
` , we see that U3φ

m =

3−1−6mSm. Let cm = 0, 2, 1 if m is congruent to 0, 1, 2 modulo 3 respectively. Then for

our theorem to be true, we require

Sm = 36m+5−4dm/3e+cmr (3.4)

for some r ∈ R(3). We will prove this by induction.
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Our base case will be m = 1, 2, 3. Observe that

g1(z) = 10 · 39φ(z) + 4 · 314φ2(z) + 318φ3(z),

g2(z) = −4 · 314φ(z)− 318φ2(z),

g3(z) = 318φ(z).

We find S1, S2, and S3 as follows:

S1 = g1 = 39(Q1(φ)),

S2 = g1S1 − 2g2 = 314(Q2(φ)),

S3 = g1S2 − S1g2 + 3g3 = 319(Q3(φ)),

where Q1, Q2, Q3 ∈ R(3). Note that since g1 and S1 each are of the form 39r for some

r ∈ R(3), we use the R(p) product lemma to quickly deduce that their product is of the form

318−4r = 314r for some r ∈ R(3), from which we easily see S2 = 314(Q2(φ)). Similarly, 323

divides both g1S2 and S1g2, which means that to keep g1S2 and S1g2 in R(p), we lose 34 and

get S3 = 319(Q3(φ)) using the same lemma. Comparing with (3.4), we see that the base case

is proved.

Suppose that for some M ≥ 4, i ∈ {1, 2, 3} we have

SM−i = ri3
6(M−i)+5−4d(M−i)/3e+cM−i

for some ri ∈ R(3). We want to show that SM = 36M+5−4dM/3e+cM r0 for some r0 ∈ R(3).

Recall that for M ≥ 4,

SM = g1SM−1 − g2SM−2 + g3SM−3.

If each of the terms is of the form 36M+5−4dM/3e+cM r0 for some r0 ∈ R(3), then we are done.

12



We will check each term.

Using the R(p) product lemma, the power of 3 that we get from g1SM−1 is

9 + 6(M − 1) + 5− 4d(M − 1)/3e+ cM−1 − 4

= 6M + 4− 4d(M − 1)/3e+ cM−1,

which we want to be greater than 6M + 5− 4dM/3e+ cM . In other words, we want to check

whether

−1− 4d(M − 1)/3e+ cM−1 ≥ −4dM/3e+ cM ,

i.e.

− 1 + cM−1 ≥ −4(dM/3e − d(M − 1)/3e) + cM . (3.5)

Now we will evaluate both sides three different ways, depending on the parity of M :

M ≡ 0 (mod 3) : −1 + 1 ≥ 0,

M ≡ 1 (mod 3) : −1 + 0 ≥ −4 + 2,

M ≡ 2 (mod 3) : −1 + 2 ≥ 1,

so we see that Equation 3.5 is true.

The power of 3 that divides g2SM−2 is

14 + 6(M − 2) + 5− 4d(M − 2)/3e+ cM−2 − 4

= 6M + 3− 4d(M − 2)/3e+ cM−2,

which we want to be greater than 6M + 5− 4dM/3e+ cM . In other words, we want to check

13



whether

−2− 4d(M − 2)/3e+ cM−2 ≥ −4dM/3e+ cM (3.6)

−2 + cM−2 ≥ −4(dM/3e − d(M − 2)/3e) + cM . (3.7)

Now we will evaluate both sides three different ways, depending on the parity of M :

M ≡ 0 (mod 3) : −2 + 2 ≥ 0,

M ≡ 1 (mod 3) : −2 + 1 ≥ −4 + 2,

M ≡ 2 (mod 3) : −2 + 0 ≥ −4 + 1,

so we see that Equation 3.6 is true.

In the final term, the power of 3 that divides g3SM−3 is

19 + 6(M − 3) + 5− 4d(M − 3)/3e+ cM−3 − 4

= 6M + 2− 4d(M − 3)/3e+ cM−3,

which we want to be greater than 6M + 5− 4dM/3e+ cM . In other words, we want to check

whether

−4− 4d(M − 3)/3e+ cM−3 ≥ −4dM/3e+ cM ,

i.e.

− 4 ≥ −4(dM/3e − d(M − 3)/3e). (3.8)
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Now we will evaluate both sides three different ways, depending on the parity of M :

M ≡ 0 (mod 3) : −4 ≥ −4,

M ≡ 1 (mod 3) : −4 ≥ −4,

M ≡ 2 (mod 3) : −4 ≥ −4,

so we see that Equation 3.8 is true. This concludes the case where p = 3.

Case 2. Let p = 5. Given Lemma 2.3 and the statement we are trying to prove, we see that

what we want depends on m as follows:

m ≡ 1, 2 (mod 5) : ∃ r ∈ R(5), U5φ
m = 5−(dm/5e−1)+1r

m ≡ 0, 3, 4 (mod 5) : ∃ r ∈ R(5), U5φ
m = 5−(dm/5e−1)r.

Furthermore, by Equation 3.3 and considering the functions h
(5)
` , we see that U5φ

m =

5−1−3mSm. Let cm = 1 if m is congruent to 1, 2 modulo 5, and cm = 0 otherwise. Then for

our theorem to be true, we require

Sm = 53m+2−dm/5e+cmr (3.9)

for some r ∈ R(5). We will prove this by induction.

Our base cases are m = 1, 2, 3, 4, 5. From Lemma 2.3,

g1(z) = 63 · 55φ(z) + 52 · 58φ2(z) + 63 · 510φ3(z) + 6 · 513φ4(z) + 515φ5(z),

g2(z) = −52 · 58φ(z)− 63 · 510φ2(z)− 6 · 513φ3(z)− 515φ4(z),

g3(z) = 63 · 510φ(z) + 6 · 513φ2(z) + 515φ3(z),

g4(z) = −6 · 513φ(z)− 515φ2(z),

g5(z) = 515φ(z).
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We find S1, S2, S3, S4 and S5 as follows:

S1 = g1 = 55(Q1(φ)),

S2 = g1S1 − 2g2 = 58(Q2(φ)),

S3 = g1S2 − g2S1 + 3g3 = 510(Q3(φ)),

S4 = g1S3 − g2S2 + g3S1 − 4g4 = 513(Q4(φ)),

S5 = g1S4 − g2S3 + g3S2 − g4S1 + 5g5 = 516(Q5(φ)),

where Q1, Q2, Q3, Q4, Q5 ∈ R(5), again using the R(p) product lemma in the same way as the

previous part. Comparing with (3.9), we see that the base case is proved.

So suppose for some M ≥ 6, i ∈ {1, 2, 3, 4, 5} we have

SM−i = ri5
3(M−i)+2−d(M−i)/5e+cM−i

for some ri ∈ R(5). We want to show that SM = 55M+2−dM/5e+cM r0 for some r0 ∈ R(5). Recall

that for M ≥ 6,

SM = g1SM−1 − g2SM−2 + g3SM−3 − g4SM−4 + g5SM−5.

If each of the terms is of the form 53M+2−dM/5e+cM r0 for some r0 ∈ R(5), then we are done.

We will check each term.

Using the R(p) product lemma, the power of 5 that we get from g1SM−1 is

5 + 3(M − 1) + 2− d(M − 1)/5e+ cM−1 − 1

= 3M + 4− d(M − 1)/5e+ cM−1 − 1

= 3M + 3− d(M − 1)/5e+ cM−1,

which we want to be greater than 3M + 2− dM/5e+ cM . In other words, we want to check
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whether

1− d(M − 1)/5e+ cM−1 ≥ −dM/5e+ cM ,

i.e.

1 + cM−1 ≥ −(dM/5e − d(M − 1)/5e) + cM .

Considering the possibilities modulo 5, this always holds true.

Moving on to the next term, the power of 5 that we get from g2SM−2 is

8 + 3(M − 2) + 2− d(M − 2)/5e+ cM−2 − 1

= 3M + 4− d(M − 2)/3e+ cM−2 − 1

= 3M + 3− d(M − 2)/3e+ cM−2,

which we want to be greater than 3M + 2− dM/5e+ cM . In other words, we want to check

whether

1 + cM−2 ≥ −(dM/5e − d(M − 2)/5e) + cM .

Considering the possibilities modulo 5, this always holds true.

In the next term, the power of 5 that we get from g3SM−3 is

10 + 3(M − 3) + 2− d(M − 3)/5e+ cM−3 − 1

= 3M + 3− d(M − 3)/5e+ cM−3 − 1

= 3M + 2− d(M − 3)/5e+ cM−3,

which we want to be greater than 3M + 2− dM/5e+ cM . In other words, we want to check
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whether

cM−3 ≥ −(dM/5e − d(M − 3)/5e) + cM .

Considering the possibilities modulo 5, this always holds true.

In the next term, the power of 5 that we get from g4SM−4 is

13 + 3(M − 4) + 2− d(M − 4)/5e+ cM−4 − 1

= 3M + 3− d(M − 4)/5e+ cM−4 − 1

= 3M + 2− d(M − 4)/5e+ cM−4,

which we want to be greater than 3M + 2− dM/5e+ cM . In other words, we want to check

whether

cM−4 ≥ −(dM/5e − d(M − 4)/5e) + cM .

Considering the possibilities modulo 5, this always holds true.

In the last term, the power of 5 that we get from g5SM−5 is

15 + 3(M − 5) + 2− d(M − 5)/5e+ cM−5 − 1

= 3M + 2− d(M − 5)/5e+ cM−5 − 1

= 3M + 1− d(M − 5)/5e+ cM−5,

which we want to be greater than 3M + 2− dM/5e+ cM . In other words, we want to check

whether

−1 + cM−5 ≥ −(dM/5e − d(M − 5)/5e) + cM .

Considering the possibilities modulo 5, this always holds true. This concludes the case where
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p = 5.

Case 3. Let p = 7. Given Lemma 2.3 and the statement we are trying to prove, we see

that what we want depends on m as follows:

m ≡ 1, 2 (mod 7) : ∃ r ∈ R(7), U7φ
m = 7−(dm/7e−1)+1r,

m ≡ 0, 3, 4 (mod 7) : ∃ r ∈ R(5), U7φ
m = 7−(dm/7e−1)r.

Furthermore, by Equation 3.3 and considering the functions h
(7)
` , we see that U7φ

m =

7−1−2mSm. Let cm = 1 if m is congruent to 1, 2 modulo 7, and cm = 0 otherwise. Then for

our theorem to be true, we require

Sm = 52m+2−dm/7e+cmr (3.10)

for some r ∈ R(7). We will prove this by induction.

Our base cases are m = 1, 2, 3, 4, 5, 6, 7. From Lemma 2.3,

g1(z) = 82 · 74φ+ 176 · 76φ2 + 845 · 77φ3 + 272 · 79φ4 + 46 · 711φ5 + 4 · 713φ6 + 714φ7,

g2(z) = −176 · 76φ− 845 · 77φ2 − 272 · 79φ3 − 46 · 711φ4 − 4 · 713φ5 − 714φ6,

g3(z) = 845 · 77φ+ 272 · 79φ2 + 46 · 711φ3 + 4 · 713φ4 + 714φ5,

g4(z) = −272 · 79φ− 46 · 711φ2 − 4 · 713φ3 − 714φ4,

g5(z) = 46 · 711φ+ 4 · 713φ2 + 714φ3,

g6(z) = −4 · 713φ− 714φ2,

g7(z) = 714φ.
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We find S1, S2, S3, S4, S5, S6 and S7 as follows:

S1 = g1 = 74(Q1(φ)),

S2 = g1S1 − 2g2 = 76(Q2(φ)),

S3 = g1S2 − g2S1 + 3g3 = 77(Q3(φ)),

S4 = g1S3 − g2S2 + g3S1 − 4g4 = 79(Q4(φ)),

S5 = g1S4 − g2S3 + g3S2 − g4S1 + 5g5 = 711(Q5(φ)),

S6 = g1S5 − g2S4 + g3S3 − g4S2 + g5S1 − 6g6 = 713(Q6(φ)),

S7 = g1S6 − g2S5 + g3S4 − g4S3 + g5S2 − g6S1 + 7g7 = 715(Q7(φ)).

where Q1, Q2, Q3, Q4, Q5, Q6, Q7 ∈ R(7), again using the R(p) product lemma in the same

way as the previous part. Comparing with (3.10), we see that the base case is proved.

So suppose for some M ≥ 8, i ∈ {1, 2, 3, 4, 5, 6, 7} we have

SM−i = ri7
2(M−i)+2−d(M−i)/7e+cM−i

for some ri ∈ R(7). We want to show that SM = 72M+2−dM/7e+cM r0 for some r0 ∈ R(7). Recall

that for M ≥ 8,

SM = g1SM−1 − g2SM−2 + g3SM−3 − g4SM−4 + g5SM−5 − g6SM−6 + g7SM−7.

If each of the terms is of the form 72M+2−dM/7e+cM r0 for some r0 ∈ R(7), then we are done.

We will check each term.
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Using the R(p) product lemma, the power of 7 that we get from g1SM−1 is

4 + 2(M − 1) + 2− d(M − 1)/7e+ cM−1 − 1

= 2M + 4− d(M − 1)/7e+ cM−1 − 1

= 2M + 3− d(M − 1)/7e+ cM−1,

which we want to be greater than 2M + 2− dM/7e+ cM . In other words, we want to check

whether

1− d(M − 1)/7e+ cM−1 ≥ −dM/7e+ cM ,

i.e.

1 + cM−1 ≥ −(dM/7e − d(M − 1)/7e) + cM .

Considering the possibilities modulo 7, this always holds true.

Moving on to the next term, the power of 7 that we get from g2SM−2 is

6 + 2(M − 2) + 2− d(M − 2)/7e+ cM−2 − 1

= 2M + 4− d(M − 2)/7e+ cM−2 − 1

= 2M + 4− d(M − 2)/7e+ cM−2,

which we want to be greater than 2M + 2− dM/7e+ cM . In other words, we want to check

whether

1 + cM−2 ≥ −(dM/7e − d(M − 2)/7e) + cM .

Considering the possibilities modulo 7, this always holds true.
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In the next term, the power of 7 that we get from g3SM−3 is

7 + 2(M − 3) + 2− d(M − 3)/7e+ cM−3 − 1

= 2M + 3− d(M − 3)/7e+ cM−3 − 1

= 2M + 2− d(M − 3)/7e+ cM−3,

which we want to be greater than 2M + 2− dM/7e+ cM . In other words, we want to check

whether

cM−3 ≥ −(dM/7e − d(M − 3)/7e) + cM .

Considering the possibilities modulo 7, this always holds true.

In the next term, the power of 7 that we get from g4SM−4 is

9 + 2(M − 4) + 2− d(M − 4)/7e+ cM−4 − 1

= 2M + 3− d(M − 4)/7e+ cM−4 − 1

= 2M + 2− d(M − 4)/7e+ cM−4,

which we want to be greater than 2M + 2− dM/7e+ cM . In other words, we want to check

whether

cM−4 ≥ −(dM/7e − d(M − 4)/7e) + cM .

Considering the possibilities modulo 7, this always holds true.
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In the next term, the power of 7 that we get from g5SM−5 is

11 + 2(M − 5) + 2− d(M − 5)/7e+ cM−5 − 1

= 2M + 3− d(M − 5)/7e+ cM−5 − 1

= 2M + 2− d(M − 5)/7e+ cM−5,

which we want to be greater than 2M + 2− dM/7e+ cM . In other words, we want to check

whether

cM−5 ≥ −(dM/7e − d(M − 5)/7e) + cM .

Considering the possibilities modulo 7, this always holds true.

In the next term, the power of 7 that we get from g6SM−6 is

13 + 2(M − 6) + 2− d(M − 6)/7e+ cM−6 − 1

= 2M + 3− d(M − 6)/7e+ cM−6 − 1

= 2M + 2− d(M − 6)/7e+ cM−6,

which we want to be greater than 2M + 2− dM/7e+ cM . In other words, we want to check

whether

cM−6 ≥ −(dM/7e − d(M − 6)/7e) + cM .

Considering the possibilities modulo 7, this always holds true.
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In the last term, the power of 7 that we get from g7SM−7 is

14 + 2(M − 7) + 2− d(M − 7)/7e+ cM−7 − 1

= 2M + 2− d(M − 7)/7e+ cM−7 − 1

= 2M + 1− d(M − 7)/7e+ cM−7,

which we want to be greater than 2M + 2− dM/7e+ cM . In other words, we want to check

whether

−1 + cM−7 ≥ −(dM/7e − d(M − 7)/7e) + cM .

Considering the possibilities modulo 7, this always holds true. This concludes the case where

p = 7.

We will also do the polynomial step by cases.

Case 1. For the case p = 3, our single term case says that

U3(φ(z)m) =
3m∑
n=i

dn(φ(z))n,

where i = dm
3
e, and 32 | di if m ≡ 1 (mod 3), or 3 | di if m ≡ 2 (mod 3). Furthermore,

ν3(dn) ≥ 4 + ν3(dn−1), where n 6= i. To take into account the equivalence class of m modulo

3, we can rewrite this as

U3(φ(z)m) = 3cm
3m∑
n=i

d′n(φ(z))n,

where cm is as it was in the single term case. Since this is a constant, it factors out of U3

and we treat the polynomial step as follows:

Suppose that
j∑
n=i

dn(φ(z))n
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is a polynomial where ν3(dn) ≥ 4 + ν3(dn−1), for n > i. We will show that

U3

(
j∑
n=i

dnφ(z)n

)
= 3ci

3j∑
n=i′

d′nφ(z)n,

where 3ci is 32, 3, or 1 if i is 1, 2, or 0 modulo 3 respectively, and ν3(d
′
n) ≥ 4 + ν3(d

′
n−1), for

n > i′.

First of all, we have already shown that i′ = d i
3
e and that the degree of the resulting

polynomial is 3j, so it is of the correct form. The only question is whether or not the 3ci

term appears and whether the d′n satisfy the appropriate relative divisibility by increasing

powers of 3.

For this purpose, we use the sets P (3)(`, a) as defined in Theorem 3.1. Note that in a

trivial sense, we take ν3(0) = ∞, so if any coefficient of (φ(3))m is zero, it may still be an

element of P (3)(`, a) as long as the divisibility holds for the nonzero coefficients. Now since

U3 is linear over the sum, we can use the single term case to find the sets to which each single

term belongs, and then show that each of the sets is contained in P (3)(i′, ci + ν3(di)), which

is the set that U3((φ
(3))i) belongs to. Note that any element of this set is a polynomial of

the form we are trying to obtain. We do this by showing the containments

P (3) (i′, γi + ν3(di)) ⊇ P (3)

(⌈
i+ 1

3

⌉
, γi+1 + ν3(di+1)

)
⊇ · · ·

⊇ P (3)

(⌈
j

3

⌉
, γj + ν3(dj)

)
.

In order to show all of these containments, we only need show consecutive set inclusions. So

we will show that for a particular m, P (3)(dm
3
e, cm+ν3(dm)) ⊆ P (3)(dm−1

3
e, cm−1 +ν3(dm−1)).

Now we move to subcases.

Subcase 1. If m ≡ 0 (mod 3), then dm−1
3
e = dm

3
e, and we want to show P (3)(dm

3
e, ν3(dm)) ⊆
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P (3)(dm−1
3
e, 1 + ν3(dm−1)). Observe that

P (3)
(⌈m

3

⌉
, ν3(dm)

)
⊆ P (3)

(⌈
m− 1

3

⌉
, 4 + ν3(dm−1)

)
⊆ P (3)

(⌈
m− 1

3

⌉
, 1 + ν3(dm−1)

)
,

as desired.

Subcase 2. If m ≡ 1 (mod 3), then dm−1
3
e = dm

3
e − 1, and we want to show P (3)(dm

3
e, 2 +

ν3(dm)) ⊆ P (3)(dm−1
3
e, ν3(dm−1)). Observe that

P (3)
(⌈m

3

⌉
, 2 + ν3(dm)

)
⊆ P (3)

(⌈
m− 1

3

⌉
+ 1, 4 + 2 + ν3(dm−1)

)
⊆ P (3)

(⌈
m− 1

3

⌉
, 2 + ν3(dm−1)

)
⊆ P (3)

(⌈
m− 1

3

⌉
, ν3(dm−1)

)
,

as desired.

Subcase 3. If m ≡ 2 (mod 3), then dm−1
3
e = dm

3
e, and we want to show P (3)(dm

3
e, 1 +

ν3(dm)) ⊆ P (3)(dm−1
3
e, 2 + ν3(dm−1)). Observe that

P (3)
(⌈m

3

⌉
, 1 + ν3(dm)

)
⊆ P (3)

(⌈
m− 1

3

⌉
, 4 + 1 + ν3(dm−1)

)
⊆ P (3)

(⌈
m− 1

3

⌉
, 2 + ν3(dm−1)

)
,

as desired.

As explained, this shows that the result holds for p = 3.

Case 2. We will handle the cases p = 5, 7 together. For these cases, our single term case

says that

Up((φ
(p)(z))m) =

pm∑
n=i

dn(φ(p)(z))n,

where i = dm
p
e, and p | di if m ≡ 1, 2 (mod p). Furthermore, νp(dn) ≥ 1 + νp(dn−1), where
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n 6= i. To take into account the equivalence class of m modulo p, we can rewrite this as

Up((φ
(p)(z))m) = pcm

pm∑
n=i

d′n(φ(p)(z))n,

where cm is as it was in the single term case. Since this is a constant, it factors out of Up

and we treat the polynomial step as follows:

Suppose that
j∑
n=i

dn(φ(p)(z))n

is a polynomial where νp(dn) ≥ 1 + νp(dn−1), for n 6= i. Then we will show that

Up

(
j∑
n=i

dn(φ(p)(z))n

)
= pci

pj∑
n=i′

d′n(φ(p)(z))n,

where pci is p or 1 depending on i modulo p, and νp(d
′
n) ≥ 1 + νp(d

′
n−1), for n 6= i′.

First of all, we have already shown that i′ = d i
p
e and that the degree of the resulting

polynomial is pj, so it is of the correct form. The only question is then whether or not the pci

term appears and whether the d′n satisfy the appropriate relative divisibility by increasing

powers of p.

For this purpose, we use the sets P (p)(`, a) as defined in Theorem 3.1. Now since Up is

linear over the sum, we can use the single term case to find the sets to which each single

term belongs, and then show that each of the sets is contained in P (p)(i′, ci + νp(di)), which

is the set that Up((φ
(p))i) belongs to. Note that any element of this set is a polynomial of

the form we are trying to obtain. We do this by showing the containments

P (p)(i′, γi + νp(di)) ⊇ P (p)

(⌈
i+ 1

p

⌉
, γi+1 + νp(di+1)

)
⊇ · · ·

⊇ P (p)

(⌈
j

p

⌉
, γj + νp(dj)

)
.
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In order to show all of these containments, we only need show consecutive set inclusions. So

we will show that for a particular m,

P (p)

(⌈
m

p

⌉
, γm + νp(dm)

)
⊆ P (p)

(⌈
m− 1

p

⌉
, γm−1 + νp(dm−1)

)
.

Now we move to subcases.

Subcase 1. Ifm ≡ 1 (mod p), then dm−1
p
e = dm

p
e−1, and we want to show P (p)

(⌈
m
p

⌉
, 1 + νp(dm)

)
⊆

P (p)
(⌈

m−1
p

⌉
, νp(dm−1)

)
. Observe that

P (p)

(⌈
m

p

⌉
, 1 + νp(dm)

)
⊆ P (p)

(⌈
m− 1

p

⌉
, νp(dm)

)
⊆ P (p)

(⌈
m− 1

p

⌉
, νp(dm−1)

)
,

as desired.

Subcase 2. Ifm ≡ 2 (mod p), then dm−1
p
e = dm

p
e, and we want to show P (p)

(⌈
m
p

⌉
, 1 + νp(dm)

)
⊆

P (p)
(⌈

m−1
p

⌉
, 1 + νp(dm−1)

)
. Observe that

P (p)

(⌈
m

p

⌉
, 1 + νp(dm)

)
⊆ P (p)

(⌈
m− 1

p

⌉
, 1 + 1 + νp(dm−1)

)
⊆ P (p)

(⌈
m− 1

p

⌉
, 1 + νp(dm−1)

)
,

as desired.

Subcase 3. Ifm ≡ 3 (mod p), then dm−1
p
e = dm

p
e, and we want to show P (p)

(⌈
m
p

⌉
, νp(dm)

)
⊆

P (p)
(⌈

m−1
p

⌉
, 1 + νp(dm−1)

)
. Observe that

P (p)

(⌈
m

p

⌉
, νp(dm)

)
⊆ P (p)

(⌈
m− 1

p

⌉
, 1 + νp(dm−1)

)
⊆ P (p)

(⌈
m− 1

p

⌉
, 1 + νp(dm−1)

)
,

as desired.
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Subcase 4. Ifm 6≡ 1, 2, 3 (mod p), then dm−1
p
e = dm

p
e, and we want to show P (p)

(⌈
m
p

⌉
, νp(dm)

)
⊆

P (p)
(⌈

m−1
p

⌉
, νp(dm−1)

)
. Observe that

P (p)

(⌈
m

p

⌉
, νp(dm)

)
⊆ P (p)

(⌈
m− 1

p

⌉
, 1 + νp(dm−1)

)
⊆ P (p)

(⌈
m− 1

p

⌉
, νp(dm−1)

)
,

as desired.

As explained, this shows that the result holds for p = 5, 7.

This method of proving the polynomial step could be used to create a similar proof for

p = 2, simplifying the argument in [7].

Now Theorem 1.1 follows easily from Theorem 3.1.

Theorem 1.1. Let p ∈ {3, 5, 7}. Let n = pαn′ where p - n′. Express the base p expansion

of m as a =
∑∞

i=1 aip
i−1, where ai = 0 for all sufficiently large i. Consider the rightmost α

digits aα . . . a2a1. Let i′ be the index of the rightmost nonzero digit, or i′ = −1 if a1 = a2 =

· · · = aα = 0. Let

γ3(m,α) =


3− ai′ + 2# { i | ai = 0, i > i′ }+ # { i | ai = 1, i > i′ } if i′ ≥ 0,

0 otherwise.

γ5(m,α) = γ7(m,α) =


χ{ 1,2 }(ai′) + # { i | ai ∈ { 0, 1 } , i > i′ } if i′ ≥ 0,

0 otherwise.

Then

a(p)(m, pαn′) ≡ 0 (mod pγp(m,α)).

Proof. The leading coefficient of a polynomial in the set P (p)(fα(m), γp(m,α)) is divisible

by pγp(m,α). On the other hand, by Theorem 3.1, Uα
(p)φ

m is an element of that set, so every
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pαth coefficient is divisible by pγp(m,α).

Chapter 4. The Case p = 13

Since 13 is also a genus zero prime, it is natural to consider whether any congruences hold for

φ(13)(z) or its powers. Computationally, it appears that unless m ≡ 5 (mod 13), expressing

U13φ
(13)(z)m as a polynomial in φ(13)(z) gives a coefficient not divisible by 13. Furthermore,

in the case of m ≡ 5 (mod 13), it appears that there are two coefficients of that polynomial

that are exactly divisible by 13. If we attempt to use the methods in this paper, this prevents

us from chaining properly in the polynomial step. There may be some way around this issue,

but it will take a slightly different approach. Computationally, for any prime p less than 1000,

it appears that the Fourier coefficient of qp in φ(13)(z) is divisible by 13 precisely when τ(p)

is divisible by 13, but no further congruences of the style given in this paper are immediately

apparent.
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