

Brigham Young University BYU ScholarsArchive

Theses and Dissertations

1965-08-01

# A phytosociological study of Coprophilous ascomycete and Basidiomycete communities from Santaquin Canyon, Utah

A. Clyde Blauer Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

## **BYU ScholarsArchive Citation**

Blauer, A. Clyde, "A phytosociological study of Coprophilous ascomycete and Basidiomycete communities from Santaquin Canyon, Utah" (1965). *Theses and Dissertations*. 8020. https://scholarsarchive.byu.edu/etd/8020

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact ellen\_amatangelo@byu.edu.

# A PHYTOSOCIOLOGICAL STUDY OF COPROPHILOUS ASCOMYCETE AND BASIDICMYCETE COMMUNITIES FROM

SANTAQUIN CANYON, UTAN

A Thesis Presented to the Department of Botany Brigham Young University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

A. Clyde Blauer

August 1965

This thesis, by A. Clyde Blauer, is accepted in its present form by the Department of Botany of Brigham Young University as satisfying the thesis requirement for the degree of Master of Science.

Typed by Dianne Steed

#### ACKNOWLEDGMENTS

The author wishes to express his sincere appreciation to Drs. Earl M. Christensen and Kent H. McKnight for their valuable suggestions and help during the course of this study. Appreciation is also expressed to Dr. Dennis W. Trent for his critical reading of the manuscript and for serving as a member of the advisory committee.

Special thanks are offered to the Brigham Young University, the National Defence Educational Act, and the National Science Foundation for the monetary assistance in the form of assistantships and fellowships which made this study possible. The Department of Botany, Brigham Young University, supplied laboratory space, equipment, and supplies.

The author also extends sincere thanks to his wife, Geaneen, for her dedication, patience, and assistance from the initiation to the completion of this thesis.

iii

### TABLE OF CONTENTS

| 1                                                  | Page |
|----------------------------------------------------|------|
| ACKNOWLEDGMENTS                                    | iii  |
| LIST OF TABLES                                     | v    |
| LIST OF ILLUSTRATIONS                              | vi   |
| INTRODUCTION                                       | 1    |
| METHODS AND MATERIALS                              | 3    |
| RESULTS                                            | 8    |
| General Data                                       | 8    |
| The Early Community                                | 39   |
| The Intermediate Community                         | 44   |
| The Late Community                                 | 47   |
| Insect Disturbance                                 | 48   |
| Effect of Incubation under Different Temperatures  | 48   |
| Temperature and Light Fluctuations                 | 55   |
| DISCUSSIONS                                        | 57   |
| General Considerations                             | 57   |
| The Successional Communities                       | 61   |
| Insect Disturbance                                 | 63   |
| Effects of Incubation under Different Temperatures | 65   |
| SUMMARY                                            | 68   |
| BIBLIOGRAPHY                                       | 71   |

٨.

## LIST OF TABLES

| Table |                                                                                                                                                                    |     |     | 2 | Page |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|---|------|
| 1.    | The Number of Species in Each Genus, Series and<br>Class Represented on the Fourteen Cultures<br>Incubated During This Study                                       | • • |     |   | 8    |
| 2.    | The Constancy and Presence Percentages of the Fungal<br>Species Fruiting on Cultures 1-10b                                                                         | • • | •   |   | 9    |
| 3.    | The Number of Major, Minor, and Rare Species of Each<br>Genus Which Fruited on Cultures Incubated at 21 <sup>0</sup> C                                             | •   |     |   | 13   |
| 4.    | The Weekly Percentage Frequencies of the Species on Each of the Cultures                                                                                           | • • | •   |   | 15   |
| 5.    | The Weekly Absolute Density of the Species on Each of the Cultures                                                                                                 | •   |     |   | 23   |
| 6.    | The Average Percentage Frequencies as Determined<br>Weekly of the Species Fruiting on the Ten Cultures<br>Incubated at 21° C                                       | •   | •   |   | 30   |
| 7.    | The Average Absolute Density as Determined Weekly<br>of the Species Fruiting on the Ten Cultures<br>Incubated at 21° C                                             |     |     |   | 33   |
| 8.    | The Average Relative Density as Determined Weekly<br>of the Species Fruiting on the Ten Cultures<br>Incubated at 21 <sup>o</sup> C                                 | •   | , . |   | 36   |
| 9.    | The Average Number of Fruiting Bodies Per Culture<br>Sets Incubated at 21° C                                                                                       | • • |     |   | 49   |
| 10.   | A Summary of the Weekly Absolute Density of the Speci<br>Fruiting on Cultures of the Second Experiment Which<br>Were Incubated Under Three Different Temperatures. | Ł   | , . |   | 51   |
| 11.   | The Composition of the Communities at Each of the Different Incubation Temperatures                                                                                | • • | •   |   | 54   |

### LIST OF ILLUSTRATIONS

| Figure |                                                                                                                                                    | Page |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.     | Number and Arrangements of the Fifty Quadrats<br>Placed on Each Culture                                                                            | 4    |
| 2.     | Comparison of the Summarized Relative Density and<br>Percentage Frequency Values of Major Species Fruiting<br>At 21° C. on Cultures 1-6 and 7a-10a | 40   |
| 3.     | Chart Quadrats Showing the Relative Size of the<br>Fruiting Bodies of Some of the Major Species<br>Fruiting on Culture 1-10b                       | 43   |
| List   |                                                                                                                                                    |      |
| 1.     | Species Fruiting Only at 26° C                                                                                                                     | 50   |
| 2.     | Species Fruiting Only at 21 <sup>°</sup> C                                                                                                         | 50   |
| 3.     | Species Fruiting Only at 16° C                                                                                                                     | 50   |
| 4.     | Species Which Fruited Earlier at $26^{\circ}$ C. on Cultures<br>7b and 8b Than at $21^{\circ}$ C. on Cultures 7a and 8a                            | 50   |
| 5.     | Species Which Fruited Later at $26^{\circ}$ C. on Cultures<br>7b and 8b Than at $21^{\circ}$ C. on Cultures 7a and 8a                              | 50   |
| 6.     | Species Which Fruited Earlier at $16^{\circ}$ C. on Cultures<br>9b and 10b Than at $21^{\circ}$ C. on Cultures 9a and 10a                          | 50   |
| 7.     | Species Which Fruited Later at $16^{\circ}$ C. on Cultures<br>9b and 10b Than at $21^{\circ}$ C. on Cultures 9a and 10a                            | 50   |

vi

#### INTRO DUCTION

The purpose of this research was to determine the structure of ascomycete and basidiomycete communities which grow and fruit on cow dung. Quantitative and qualitative phytosociological data were obtained, and successional patterns were studied in detail.

Cow dung was chosen as the substratum because large cow dung platters are plentiful, easily collected, and of adequate size to permit the placement of numerous small quadrats for sampling the fungal communities. Also, large platters can be divided into sections for incubation under different environmental conditions.

Previous investigations by Ellis and Everhart (1892), Wilson (1947), Lundquist (1960), Hanks (1963), and McKnight and Hanks (1964) have shown that cow dung is a natural substratum for many different coprophilous Ascomycetes and Basidiomycetes. Their investigations, however, were concerned primarily with taxonomy and distribution rather than the sociology of the fungi known to fruit on animal dung. In 1948 and 1963 Cooke made a review of the literature of fungus sociology and ecology. He gave references to several quantitative ecological studies on the larger fleshy fungi and on soil fungi, but made no reference to quantitative ecological studies on the coprophilous fungi. The author has been unable to find any reference to quantitative ecological studies concerning coprophilous fungi.

There are published reports on successional studies of microfungi on various substrata. Watting (1963) examined the micro-fungal

succession of hawk pellets, but only a few Ascomycetes and no Basidiomycetes in the successional pattern were reported. Other researchers have examined the succession of micro-fungi growing on such substrata as decaying stems of <u>Dactylis glomerata</u> (Webster, 1956, 1957, Webster and Nix, 1960) and <u>Agropyron repens</u> (Hudson and Webster, 1958), leaf litter of <u>Carex paniculata</u> (Pugh, 1958), ageing leaves of <u>Saccharum</u> <u>officinarum</u> (Hudson, 1962), and hair in contact with soil (Griffin, 1960).

Concerning the succession of fungi on the dung of herbivorous animals, Massee and Salmon (1901) observed that when quite fresh dung from such animals were placed under a bell-jar, Phycomycetes develop first, then Hyphomycetes followed by Ascomycetes. Ingold (1953), reviewed the work by Massee and Salmon. Although Ingold accepted the same general pattern reported by Massee and Salmon, he added that Basidiomycetes follow Ascomycetes in the coprophilous fungal succession. Ingold further stated that while the successional stages are usually fairly definite they do overlap.

In the current study only the successional stages in the fruiting of the Ascomycetes and Basidiomycetes growing on cow dung were examined in detail. Phycomycetes and Hyphomycetes were not included in this report although they were seen fruiting early in the incubation period.

#### METHODS AND MATERIALS

Large platters of dry, firm cow dung were collected October 3, 1964, from Santaquin Canyon, Utah County, Utah. The dung was stored in the laboratory at room temperature in air-tight metal containers until it was removed to be used in two experiments. The first experiment was begun on October 7, 1964. A section  $3\frac{1}{2}$  inches wide was cut from the center of each of six platters. These were designated sections 1 through 6. Each section was then examined microscopically for the presence of dried ascocarps and basidiocarps, but none were found.

After this examination, the sections were submerged for three minutes in distilled water and then placed on moistened paper towels in plastic culture trays 17 inches long,  $4\frac{1}{2}$  inches wide,  $4\frac{1}{4}$  inches deep. The trays were covered with glass plates and the cultures were incubated at  $21^{\circ} \pm 2^{\circ}$  C. under continuous illumination. A "Tempscribe" thermograph was placed in the incubation chamber by the side of the cultures to record the temperature during the incubation period. Throughout the experiment, additional distilled water was added to the trays each week to keep the cultures moist.

Six days after the start of the incubation period fifty quadrats, each 25 square millimeters, were spaced, as shown in Figure 1, in a regular checkerboard pattern on a central portion, 26 cm by 8 cm, of each of the six cultures. Insect mounting pins were inserted into the cultures at the corners of each quadrat to mark the boundries of the quadrats and to serve as reference points for locating the quadrats.

| 25 c | m |
|------|---|
|------|---|

|     | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10    | 11 | 12 | 13 |
|-----|----|----|----|----|----|----|----|----|----|-------|----|----|----|
| 8cm |    | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 23 | 24 | 25 |    |
|     | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35    | 36 | 37 | 38 |
|     |    | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 48 | 49 | 50 |    |

Fig. 1.--Number and arrangement of the fifty quadrats placed on each culture.

To aid in examination of the quadrats a grid micrometer was inserted into an eyepiece of a Bausch and Lomb "Stereozoom" dissecting microscope and the magnification was adjusted until the size of the grid image matched the size of the quadrats.

An examination of the cultures was made immediately after the quadrats were located and subsequently at weekly intervals for sixteen weeks. During each of the 16 examinations, presence, frequency, and density data were recorded.

Presence data were obtained by recording the ascomycete and basidiomycete species present on each culture after the species had been identified from their fruiting bodies. For identification the fruiting bodies were removed from the culture and all or part of them mounted on glass slides in a ten percent aqueous solution of glycerol. The fruiting bodies were crushed by applying pressure to the coverslip. Permanent microscope slides of most of the species were preserved. The slides were prepared as follows: As the water evaporated from the mounting medium it was replaced by solutions of gradually increasing concentrations

of glycerol. The slides were then ringed with "Zut Slide Ringing Compound"<sup>1</sup> and labeled with the species name and collection number. Fruiting bodies of the same species also were harvested, placed in small paper packets, and deposited with the slides in the mycological herbarium of Brigham Young University. Whenever possible the fruiting bodies harvested for identification and preservation were collected outside the quadrats to avoid disturbing the quadrats.

Frequency and density data were obtained by recording the number of fruiting bodies produced by each species within each quadrat. The percentage frequency of each species was then determined by dividing the number of quadrats in which a species fruited by the total number of quadrats examined in the sample. Absolute density was determined for each species by counting the number of the species fruiting bodies in the quadrats examined. The relative density was determined for each species by dividing the number of its fruiting bodies by the total number of fruiting bodies of all species in the sample. In figuring the relative density and the percentage frequency any value less than 1.0% was denoted as a trace. Constancy was also determined for each species. This was done by figuring the percentage of cultures in whose quadrats the species fruited.

When the frequency and density data were obtained each week no distinction was made between the old fruiting bodies and the new ones. As long as the fruiting bodies were recognizable they were recorded each

<sup>1</sup>Manufactured by Bennett's Paint Products, Salt Lake City, Utah.

week whether they had been recorded in previous weeks or not. Chart quadrats were drawn to show the relative sizes of the fruiting bodies of representative species (Figure 3). Coverage data could have been obtained by use of chart quadrats, but the method is too time consuming to be used efficiently.

The second experiment was started January 30, 1965. Eight cultures were incubated at different temperatures to determine what effect temperature might have on the succession and structure of the coprophilous ascomycete and basidiomycete communities. The eight cultures were obtained by cutting each of four large cow platters into two sections. Four of the eight sections were numbered 7a, 8a, 9a, and 10a. These will be referred to collectively, hereafter, as cultures 7a-10a. They were prepared, examined, and incubated at  $21^{\circ} \pm 2^{\circ}$  C. as described for cultures 1-6 in the first experiment. The four remaining sections, 7b, 8b, 9b, and 10b, were also prepared and examined as were the cultures of the first experiment, but they were incubated under different temperatures. These cultures will be referred to collectively, hereafter, as db were incubated at  $26^{\circ} \pm 2^{\circ}$  C. while cultures 9 b and 10b were incubated at  $16^{\circ} \pm 2^{\circ}$  C.

Thus, in this study ten cultures (1-6 and 7a-10a) were incubated at  $21^{\circ} \pm 2^{\circ}$  C. The general successional patterns and the general community structure of the Ascomycetes and Basidiomycetes reported in this paper are based only on the data obtained from these ten cultures. Variations in the patterns and structure due to temperature were found by incubating the four remaining cultures (7b-10b) at different

temperatures. To study these variations as accurately as possible the data obtained from cultures 7b-10b were compared to only the corresponding data from cultures 7a-10a. It was assumed on the basis of Buller's report (1909) that cultures from the same dung mass should contain a more homogenous mixture of spores than cultures taken from different dung masses. Therefore, incubation of cultures from the same platter under different temperatures should provide a fairly equitable test for determining the effect of temperature on the fruiting of the fungal species which grow on these cultures.

The species which fruited on the 14 cultures incubated during this study have been divided into the following three arbitrary categories: major species, minor species, and rare species. The major species are those with an average maximum density of at least 7.5 fruiting bodies per culture. The minor species are those with an average maximum density of less than 7.5 fruiting bodies per culture. The rare species are those that fruited on the culture, but which did not fruit in any quadrats.

For the second experiment, "Tempscribe" thermographs were placed in both the  $26^{\circ}$  C. and the  $16^{\circ}$  C. incubation chambers, and a maximum-minimum thermometer was placed in the  $21^{\circ}$  C. chamber.

The keys used for identification of the ascomycete species were those prepared by Cain (1934), Seaver (1961), Hanks (1963) and McKnight and Hanks (1964). The basidiomycete species were identified by Dr. Kent H. McKnight.

#### RESULTS

#### General Data

Sixty species of fungi were found in this study (Table 2). In

Table 1 the number of species in each genus, series, and class is given.

#### TABLE 1

THE NUMBER OF SPECIES IN EACH GENUS, SERIES, AND CLASS REPRESENTED ON THE FOURTEEN CULTURES INCUBATED DURING THIS STUDY

```
Class: Ascomycetes (46)
   Series: Plectomycetes (2)
      Genus: Tripterospora (1)
      Genus: Preussia (1)
   Series: Pyrenomycetes (26)
      Genus: Podospora (10)
      Genus: Sordaria (2)
      Genus: Sporormia (7)
      Genus: Chaetomium (5)
      Genus: Pleospora (1)
      Genus: Bombardia (1)
   Series: Discomycetes (18)
      Genus: Ascobolus (4)
      Genus: Ascophanus (8)
      Genus: Saccobolus (4)
      Genus: Peziza (1)
      Genus: Lasiobolus (1)
Class: Basidiomycetes (14)
   Series: Hymenomycetes (14)
      Genus: Coprinus (13)
      Genus: Conocybe (1)
```

Seven species produced fruiting bodies at the three temperatures(26° C., 21°C., and 16°C.) used in this experiment (Table 2). These species were <u>Podospora piriformis, Podospora curvula, Coprinus spp., Podospora deci</u>piens, Chaetomium globosum, Saccobolus kerverni and <u>Podospora vestita</u>.

## TABLE 2

### THE CONSTANCY AND PRESENCE PERCENTAGES OF THE FUNGAL SPECIES FRUITING ON

## CULTURES 1-10b

на и на се и и Панната за серени и сторита у котория насто премаки, раски такота на филосов и и 1. година и настоящи и маке в 11 година 1. на и стори настояние и сладината има била и тока и на 

|                                         | Const                    | ancy 🖇                                | Presence                                      | c to the second | THE REAL PROPERTY OF THE PARTY | ures                                | on | whic                                | h th    | ie si | pecie | s fr | uite | d  | <b>C 338 w 2 4 7</b> 10 | 1.0.gat 05.00 | 172.2724347940764000 |
|-----------------------------------------|--------------------------|---------------------------------------|-----------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----|-------------------------------------|---------|-------|-------|------|------|----|-------------------------|---------------|----------------------|
| Species                                 | At                       | All ·                                 | % All                                         | 1               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                   | 4  | 5                                   | 6       |       | 7     |      | 3    | 9  |                         | 10            | )                    |
|                                         | 21°C.                    | Temp.                                 | Temp.                                         | Nesting         | *********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>1</b> 2777 <b>200-1</b> 2233-227 | 4  | 18 14 <b>69</b> 14 <b>1</b> 4 10 10 | <b></b> | a     | b     | a    | Ъ    | a  | Ъ                       | a             | Ъ                    |
| energenergenergenergenergenergenergener | с-Со авщениализор «Алас» | angga sakanan ana karang sakanan saka | Theodormal contracts in which which which and | _21             | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21                                  | 21 | 21                                  | 21      | 21    | 26    | 21   | 26   | 21 | 16                      | 21            | 16                   |
| Podospora piriformis                    | 90%                      | 90%                                   | 90%                                           | x               | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | x                                   | x  | x                                   | x       | x     | x     |      |      | x  | x                       | x             | x                    |
| Coprinus spp.                           | 80%                      | 80%                                   | 90%                                           | x               | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | x                                   | x  | x                                   | x       | ~~    | *P    | x    | Р    | •• |                         | x             | x                    |
| Ascobolus immersus                      | 80%                      | 80%                                   | 80%                                           | x               | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | x                                   | x  | x                                   | x       |       | -     |      | •    | x  |                         | x             | x                    |
| Podospora curvula                       | 80%                      | 80%                                   | 80%                                           |                 | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | x                                   | x  | x                                   | x       | x     | x     | x    |      | x  | x                       |               |                      |
| Podospora decipiens                     | 70%                      | 70%                                   | 70%                                           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | х                                   | x  |                                     | x       | x     | x     | x    |      | x  | x                       | x             | x                    |
| Ascobolus furfuraceous                  | 60%                      | 60%                                   | 60%                                           | x               | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     | x  | x                                   | x       |       |       |      |      |    |                         | x             | x                    |
| Ascophanus holmskjold <b>ii</b>         | 60%                      | 60%                                   | 60%                                           | x               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | x                                   | x  | x                                   | х       |       |       |      |      |    |                         | x             |                      |
| Ascophanus granuliformis                | 60%                      | 60%                                   | 60%                                           | х               | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     | x  |                                     | х       |       |       |      |      | x  | x                       | x             | x                    |
| Podospora coronifera                    | 50%                      | 50%                                   | 60%                                           |                 | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | х                                   | x  | x                                   | х       |       |       | Ρ    |      |    |                         |               |                      |
| Sporormia intermedia                    | 50%                      | 50%                                   | 50%                                           |                 | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | х                                   | х  | х                                   | х       |       |       |      |      |    |                         |               |                      |
| Saccobolus kerverni                     | 40%                      | 50%                                   | 50%                                           |                 | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |    |                                     |         |       | х     | х    | х    | x  |                         | х             | x                    |
| Chaetomium globosum                     | 40%                      | 40%                                   | 40%                                           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |    |                                     |         | х     | х     | х    | х    | х  | х                       | х             |                      |
| Chaetomium sp. #2                       | 40%                      | 40%                                   | 40%                                           | х               | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | x                                   | х  |                                     |         |       |       |      |      |    |                         |               |                      |
| Sporormia minima                        | 40%                      | 40%                                   | 40%                                           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | x                                   |    |                                     | х       | х     |       |      |      | х  |                         |               |                      |
| Podospora vestita                       | 40%                      | 40%                                   | 40%                                           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |    |                                     |         | х     |       | х    | х    | х  | х                       | х             |                      |
| Ascophanus argenteus                    | 30%                      | 30%                                   | 40%                                           |                 | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     | х  |                                     | x       |       |       |      |      |    |                         |               | P                    |
| Ascophanus ochraceous                   | 30%                      | 30%                                   | 30%                                           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |    |                                     |         | х     |       |      |      | x  | х                       | х             | х                    |
| Saccobolus intermedius                  | 20%                      | 20%                                   | 30%                                           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |    |                                     | х       |       |       |      | Ρ    |    |                         | x             |                      |
| Podospora sp. #1                        | 20%                      | 20%                                   | 20%                                           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | х                                   |    |                                     | х       |       |       |      |      |    |                         |               |                      |
| Podospora sp. #2                        | 20%                      | 20%                                   | 20%                                           |                 | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |    | х                                   |         |       |       |      |      |    |                         |               |                      |
| Bombardia caerule <b>a</b>              | 20%                      | 20%                                   | 20%                                           |                 | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |    |                                     |         |       |       |      |      | x  |                         |               |                      |
| Podospora sp. #3                        | 20%                      | 20%                                   | 20%                                           |                 | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |    |                                     | x       |       |       |      |      |    |                         |               |                      |
| Coprinus parvisporus                    | 20%                      | 20%                                   | 20%                                           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | x                                   |    |                                     |         |       |       |      |      |    |                         | х             | `                    |

|--|

| <b>a</b>                | Const | ancy % | Presence | Э   | Cul          | ture | s on                   | whi          | ich t | the                | spec         | cies                          | fruj    | ited           |                                                                                                                |                |           |
|-------------------------|-------|--------|----------|-----|--------------|------|------------------------|--------------|-------|--------------------|--------------|-------------------------------|---------|----------------|----------------------------------------------------------------------------------------------------------------|----------------|-----------|
| Species                 | At    | All    | % All    | -1- | 2            | - 3  | 4                      | 5            | Ó     |                    | 7            | 8                             |         | 5              | )                                                                                                              | 10             | )         |
|                         |       | .Temp. | Temp.    | 21  | 21           | 21   | 21                     | 21           | -21   | a<br>21            | b<br>26      | a<br>21                       | b<br>26 | <u>a</u><br>21 | b<br>16                                                                                                        | <b>a</b><br>21 | -b<br>-16 |
| Podospora pilosa        | 10%   | 10%    | 20%      |     | -944 64 1999 |      | ini di kata di kata di |              | x     | 986,479871,9894948 | £9₽********  | - <u>199</u> - Andrew Martine |         | P              | a general de la companya de la comp |                |           |
| Sporormia australis     | 10%   | 10%    | 20%      |     |              |      |                        |              |       | x                  |              |                               |         |                | Ρ                                                                                                              |                |           |
| Coprinus pellucidus     | 10%   | 10%    | 10%      |     |              | x    |                        |              |       |                    |              |                               |         |                |                                                                                                                |                |           |
| Sordaria fimicola       | 10%   | 10%    | 10%      |     |              |      |                        |              |       | x                  |              |                               |         |                |                                                                                                                |                |           |
| Sordaria humana         | 10%   | 10%    | 10%      |     |              |      |                        |              |       | x                  |              |                               |         |                |                                                                                                                |                |           |
| Coprinus sp. #2         | 10%   | 10%    | 10%      |     |              |      |                        |              |       |                    |              |                               |         |                |                                                                                                                | х              |           |
| Saccobolus neglectans   | 10%   | 10%    | 10%      |     |              |      |                        |              |       | х                  | x            |                               |         |                |                                                                                                                |                |           |
| Sporormia vexans        | 10%   | 10%    | 10%      |     |              |      |                        | х            |       |                    |              |                               |         |                |                                                                                                                |                |           |
| Sporormia kansensis     | 10%   | 10%    | 10%      |     |              |      |                        | x            |       |                    |              |                               |         |                |                                                                                                                |                |           |
| Sporormia megalospora   | 10%   | 10%    | 10%      |     |              |      |                        | $\mathbf{x}$ |       |                    |              |                               |         |                |                                                                                                                |                |           |
| Saccobolus depauperatus | 10%   | 10%    | 10%      |     |              |      |                        |              |       |                    |              |                               |         |                |                                                                                                                | х              |           |
| Sporormia pascua        | 10%   | 10%    | 10%      |     |              |      |                        |              | х     |                    |              |                               |         |                |                                                                                                                |                |           |
| Coprinus hexagonospora  | 0     | 20%    | 20%      |     |              |      |                        |              |       |                    |              |                               |         |                | х                                                                                                              |                | х         |
| Peziza granulata        | 0     | 10%    | 20%      |     |              |      |                        |              |       |                    |              | Ρ                             |         |                |                                                                                                                | Р              | х         |
| Coprinus cordisporus    | 0     | 10%    | 20%      |     |              |      |                        |              |       |                    | Р            |                               |         |                |                                                                                                                |                | х         |
| Chaetomium sp. #1       | 0     | 10%    | 20%      | Ρ   |              |      |                        |              |       |                    |              |                               |         |                |                                                                                                                |                | х         |
| Ascophanus sp. #1       | 0     | 10%    | 10%      |     |              |      |                        |              |       |                    |              |                               |         |                | х                                                                                                              |                |           |
| Ascophanus brunneus     | 0     | 10%    | 10%      |     |              |      |                        |              |       |                    |              |                               |         |                |                                                                                                                |                | х         |
| Ascobolus furfuraceous  | 0     | 10%    | 10%      |     |              |      |                        |              |       |                    |              |                               |         |                | х                                                                                                              |                |           |
| Tripterospora sp. #1    | 0     | 10%    | 10%      |     |              |      |                        |              |       |                    | х            |                               |         |                |                                                                                                                |                |           |
| Conocybe bulbifera      | 0     | 0      | 30%      |     |              |      |                        |              |       | Ρ                  |              | Ρ                             |         | Ρ              |                                                                                                                |                |           |
| Coprinus fimetarius     | 0     | 0      | 20%      |     |              |      |                        | Ρ            |       |                    |              |                               |         |                |                                                                                                                | Р              | Ρ         |
| Coprinus sp. #3         | 0     | 0      | 20%      |     |              |      |                        |              |       | Ρ                  |              |                               |         |                |                                                                                                                |                | P         |
| Podospora anserina      | 0     | 0      | 20       |     |              |      |                        |              |       |                    |              |                               | Р       |                | Ρ                                                                                                              |                |           |
| Pleospora sp. #1        | 0     | 0      | 10%      |     |              |      |                        |              |       | Ρ                  | $\mathbf{P}$ |                               |         |                |                                                                                                                |                |           |
| Coprinus sp. #1         | 0     | 0      | 10%      |     |              |      |                        |              | Ρ     |                    |              |                               |         |                |                                                                                                                |                |           |

## TABLE 2--Continued

| Species                 | At   |   | ncy %<br>All | Presence<br>% All | 1  | 2  | 3  | 4  | 5  | ich<br>6 |               | 7  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 2  | 2.2 to 2 million               | 0    | 1 (                        | 0     |
|-------------------------|------|---|--------------|-------------------|----|----|----|----|----|----------|---------------|----|-----------------------------------------|----|--------------------------------|------|----------------------------|-------|
| opecies                 | 21°0 |   | Temp.        | Temp.             |    |    | 2  |    | _  | -        | a             | b  | a                                       | b  | a                              | b    | a                          | b     |
|                         |      |   | 1            |                   | 21 | 21 | 21 | 21 | 21 | 21       | 21            | 26 | 21                                      | 26 | 21                             | 16   | 21                         | 16    |
| Ascophanus argenteus v. | 0    |   | 0            | 10%               |    |    |    |    |    | P        | an fan Linnig |    |                                         |    | 107-76 # 92 (96 <b>11</b> 1 73 |      | # <b>********</b> ******** | ***** |
| Coprinus stercorarius   | 0    |   | 0            | 10%               |    | P  |    |    |    |          |               |    |                                         |    |                                |      |                            |       |
| Ascophanus carneus      | 0    |   | 0            | 10%               |    | Ρ  |    |    |    |          |               |    |                                         |    |                                |      |                            |       |
| Lasiobolus equinus      | 0    |   | 0            | 10%               |    |    |    |    |    | Ρ        |               |    |                                         |    |                                |      |                            |       |
| Ascophanus microsporus  | 0    |   | 0            | 10%               |    |    |    |    |    |          |               |    | Ρ                                       |    |                                |      |                            |       |
| Chaetomium sp. #3       | 0    |   | 0            | 10%               |    |    |    |    |    |          |               |    |                                         | P  |                                |      |                            |       |
| Coprinus sp. #4         | 0    |   | 0            | 10%               |    |    |    |    |    |          |               | Ρ  |                                         |    |                                |      |                            |       |
| Chaetomium murorum      | 0    | 0 | 0            | 10%               |    |    |    |    |    |          |               |    |                                         |    |                                | P    |                            |       |
| Preussia typharum       | 0    |   | 0            | 10%               |    |    |    |    |    |          |               |    |                                         |    |                                | Ρ    |                            |       |
| Coprinus sp. #5         | 0    |   | 0            | 10%               |    |    |    |    |    |          |               |    |                                         |    |                                | Ρ    |                            |       |
| Coprinus ephemerus      | 0    |   | 0            | 10%               |    |    |    |    |    |          |               |    |                                         |    |                                |      |                            | Р     |
| Total species/culture   |      |   |              |                   | 8  | 16 | 13 | 12 | 13 | 20       | 14            | 11 | 10                                      | 7  | 13                             | 14 : | 17 :                       | 17    |

\*P-Present but not in quadrats

These are all species of constancy between 40%-90% (Table 2), and all but <u>Saccobolus kerverni</u> and <u>Coprinus</u> spp. are pyrenomycetes species.

Ten species produced fruiting bodies at 16° C. and 21° C. (Table 2). These species are <u>Ascobolus immersus</u>, <u>Ascobolus furfuraceous</u>, <u>Ascophanus granuliformis</u>, <u>Ascophanus argenteus</u>, <u>Ascophanus ochraceous</u>, <u>Sporormia australis</u>, <u>Peziza granulata</u>, <u>Chaetomium</u> sp. #1, <u>Coprinus</u> <u>fimetarius</u>, and <u>Coprinus</u> sp. #3. Of these species <u>S. australis</u> and <u>Chaetomium</u> sp. #1 are Pyrenomycetes, the two <u>Coprinus</u> species are Basidiomycetes, and the other six species are Discomycetes.

Three species, <u>Saccobolus intermedius</u>, <u>Saccobolus neglectans</u>, <u>Pleospora</u> sp. #1, produced fruiting bodies at 21° C. and 26° C. (Table 2).

Twenty-seven of the sixty different species shown in Table 2 produced fruiting bodies only on cultures incubated at 21° C.; three species (<u>Tripterospora</u> sp. #1, <u>Chaetomium</u> sp. #3, <u>Coprinus</u> sp. #4) produced fruiting bodies only on cultures incubated at 26° C.; and eight species produced fruiting bodies only on cultures incubated at 16° C. These eight species were <u>Ascophanus furfuraceous</u> var. <u>coronatus</u>, <u>Ascophanus brunneus</u>, <u>Coprinus hexagonosporus</u>, <u>Ascophanus</u> sp. #1, <u>Chaetomium murorum</u>, <u>Preussia typharum</u>, <u>Coprinus</u> sp. #5, <u>Coprinus ephemerus</u>.

Of the species which fruited on cultures 1-10b, 6.7% had constancy ratings of 80% or 90%, 6.7% had constancy ratings of 60% or 70%, 11.6 had constancy ratings of 40% or 50%, 15.0% had constancy ratings of 20% or 30%, 31.7% had constancy ratings of only 10%, and 25.3% had constancy ratings of 0%. Thus 75.0% of these species were of low constancy, appearing in only three or less cultures. The rest of the species (25.0%) were of relatively regular occurrance since they

fruited on four or more cultures.

Thirteen different genera of Ascomycetes and Basidiomycetes were represented on the ten cultures incubated at 21<sup>°</sup> C. (Table 3). Four of these genera, <u>Ascophanus</u>, <u>Podospora</u>, <u>Sporormia</u>, and <u>Coprinus</u>,

| T | ABLE | -3 |
|---|------|----|
|   |      |    |

## THE NUMBER OF MAJOR, MINOR AND RARE SPECIES OF EACH GENUS WHICH FRUITED ON CULTURES INCUBATED AT 21°C.

| Genera     | Major Species | Minor Species | Rare Species | Total Species |
|------------|---------------|---------------|--------------|---------------|
| Ascobolus  | 2             | 0             | 0            | 2             |
| Ascophanus | 3             | 1             | 3            | 7             |
| Bombardia  | 0             | 1             | 0            | 1             |
| Chaetomium | 1             | 1             | 1            | 3             |
| Conocybe   | 0             | 0             | 1            | 1             |
| Coprinus   | 0             | 4             | 4            | 8             |
| Lasiobolus | 0             | 0             | 1            | 1             |
| Peziza     | 0             | 0             | 1            | 1             |
| Pleospora  | 0             | 0             | 1            | 1             |
| Podospora  | 6             | 3             | 0            | 9             |
| Saccobolus | 1             | ,<br>3        | 0            | 4             |
| Sporormia  | ō             | 7             | 0            | 7             |
| Sordaria   | Ő             | 2             | 0            | 2             |
| Total      | 13            | 22            | 12           | 47            |

produced almost two-thirds of the species which fruited on these cultures. None of the <u>Sporormia</u> or <u>Coprinus</u> species, however, were major species.

In contrast to the genera <u>Coprinus</u> and <u>Sporormia</u>, the genus <u>Podospora</u>, which was represented by nine different species, had six of these species in the major category (Table 3). This is important since all the other genera combined only had seven species in the same category. Thus approximately half of the major species on these cultures were

#### Podospora species.

In Table 4 the percentage frequency of 43 ascomycete and basidiomycete species is presented for the sixteen weekly examinations of each culture. These species include only those which fruited in the quadrats placed on the cultures. The absolute density of the same species is presented in Table 5. The species are listed in both tables in the order of their fruiting sequence with the species fruiting during the first week of incubation at the head of each table. The species fruiting during each week thereafter are listed in consecutive order. This arrangement shows the successional pattern in the fruiting of the species. Only those cultures on which the species fruited are included in the tables.

Although general patterns in the fruiting of species can be observed in Tables 4 and 5, some variations do exist. For most species there is not only variation in the initiation of fruiting but also in duration and intensity of fruiting. In order to obtain a general summarized pattern for the fruiting of each individual species growing on the cultures incubated at  $21^{\circ}$  C., the percentage frequency and absolute density data obtained from these cultures were averaged for each species. The averaged percentage frequency and absolute density of these species are presented in Tables 6 and 7 respectively. From the average absolute density, the relative density of each species was determined as explained in the "Methods", The relative density of the species is presented in Table 8.

Of the 47 species fruiting on the cultures incubated at  $21^{\circ}$  C., thirteen are major species, twenty-two are minor species, and twelve

## TABLE 4

.

## THE WEEKLY PERCENTAGE FREQUENCIES OF THE SPECIES ON EACH OF THE CULTURES

| Species                                                      |                                 | Cul-        |                |             | Nu       | umber                     | of We                     | eeks .                 | From S                                   | Start                                        | of I                           | ncuba   | tion                  |                           |                          |                            |                        |                                              |
|--------------------------------------------------------------|---------------------------------|-------------|----------------|-------------|----------|---------------------------|---------------------------|------------------------|------------------------------------------|----------------------------------------------|--------------------------------|---------|-----------------------|---------------------------|--------------------------|----------------------------|------------------------|----------------------------------------------|
| an a ta tha an a ta t       | ° C.                            | ture        | 1              | 2           | 3        | 4                         | 5                         | 6                      | 7                                        | 8                                            | 9                              | 10      | 11                    | 12                        | 13                       | 14                         | 15                     | 16                                           |
|                                                              | 21                              | 1           | 4              |             |          |                           |                           |                        |                                          |                                              |                                |         |                       |                           |                          |                            |                        |                                              |
|                                                              | 21                              | 2           | 4              | 10          | 8        | 4                         |                           |                        |                                          |                                              |                                |         |                       |                           |                          |                            |                        |                                              |
| lscobolus                                                    | 21                              | 4           | 10             | 14          | 8        | 10                        | 6                         |                        |                                          |                                              |                                |         |                       |                           |                          |                            |                        |                                              |
| furfuraceous                                                 | 21                              | 5           | 22             | 20          | 24       | 14                        | 8                         | 2                      |                                          |                                              |                                |         |                       |                           |                          |                            |                        |                                              |
|                                                              | 21                              | 6           | 44             | 44          | 40       | 40                        | 36<br>20                  | 34                     | 32<br>8                                  | 30<br>6                                      | 28                             | 28      | 28                    | 26                        | 24                       | 18                         | 14                     | 12                                           |
|                                                              | 21                              | 10a         | 46             | 48          | 40       | 28                        |                           | 16                     |                                          |                                              |                                |         |                       |                           |                          |                            |                        |                                              |
| nan waara wa marange ya wan wana a saarii na waariina wa     | 16                              | 10b         | 26             | 32          | 32       | 28                        | 20                        | 18                     | 12                                       | 12                                           | 10                             | 4       | the state of the last | an ann an chuar carlan an | alar i marter            | Paranti di se <b>bench</b> | - ALLERIG: 174-774     | 1.1.124.712.4.12/10/2 <sup>1.7128</sup> .949 |
|                                                              | 21                              | 1           | 44             | 14          | 8        | 4                         | 2                         |                        |                                          |                                              |                                |         |                       |                           |                          |                            |                        |                                              |
|                                                              | 21                              | 2           | 50             | 46          | 32<br>2  | 8                         | 4                         | 2                      |                                          |                                              |                                |         |                       |                           |                          |                            |                        |                                              |
|                                                              | 21                              | 3<br>4      | 12             | 8           | 2        | 2                         |                           |                        |                                          |                                              |                                |         |                       |                           |                          |                            |                        |                                              |
| Ascobolus                                                    | 21                              |             | 56             | 58          | 54       | 46                        | 42                        | 18                     | _                                        |                                              |                                |         | 0                     |                           |                          |                            |                        |                                              |
| immersus                                                     | 21                              | 5           | 66             | 72          | 60       | 56<br>2                   | 48                        | 44                     | 30                                       | 18                                           | 12                             | 12      | 8                     |                           |                          |                            |                        |                                              |
|                                                              | 21                              | 6           | 44             | 28          | 4        |                           | 2                         |                        |                                          |                                              |                                |         |                       |                           |                          |                            |                        |                                              |
|                                                              | 21                              | 9a          | 2              | 6           | 2        | 4                         | 01                        | 4.0                    | 4.0                                      | /                                            | 1.                             |         |                       |                           |                          |                            |                        |                                              |
|                                                              | 21                              | 10a         | 70             | 64          | 56<br>14 | 38<br>10                  | 26                        | 12<br>8                | 12<br>2                                  | 6<br>2                                       | 4<br>2                         | 2       | 2                     |                           |                          |                            |                        |                                              |
| nag ang a sa ang ang ang ang ang ang ang ang ang an          | 16                              | 10b         |                | 6           | 14       |                           | 10                        | <b>.</b>               | 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2 | lanna sa | بر بیدوند میں<br>مربقہ میں میں | 2       | 2                     | TVALAR SQUEETS            | 1.3 Mail 12 B Tab. 14 5. | 57278-0.5.28547127         | ್ಯಾಗ್ರಾಮ್ ಸಂಹಾಧನ್ ಹರ್ಷ | NE LI RECEIVENT                              |
|                                                              | 21                              | 1           |                |             | ~        | 2                         | 2                         |                        |                                          | ~                                            |                                |         |                       |                           |                          |                            |                        |                                              |
| . ,                                                          | 21                              | 3           |                |             | 2        | 4                         | 2                         |                        |                                          | 2                                            |                                |         |                       |                           |                          |                            |                        |                                              |
| Ascophanus                                                   | 21                              | 4           | 1.             | 26          | 00       | 6                         | 10                        | 20                     | 26                                       | 1.                                           | 1.                             | 0       | 2                     |                           |                          |                            |                        |                                              |
| nolmskjoldii                                                 | 21<br>21                        | 5<br>6      | 4<br>26        | 26<br>82    | 22<br>90 | 14<br>88                  | 10<br>90                  | 38<br>78               | 26<br>78                                 | 4<br>74                                      | 4<br>72                        | 8<br>72 | 2<br>72               | 72                        | 70                       | 70                         | 20                     | 70                                           |
|                                                              | 21                              | 10a         | 20             | 02          | 90       | 00                        | 70                        | 70                     | 2                                        | 6                                            | 10                             | 10      | 10                    | 10                        | 10                       | 10                         | 70<br>10               | 10                                           |
| energies aussi en sour en sour ense referen gezoenergenerge. | 2967928-1 <u>0</u> 72/8-1982318 | 化电路分配 电动力电子 | ann varre (12) | entern ente |          | ing i wat the state state | المتاجون وتتعطيه والمعالي | en an ministration das | <b>د</b><br>۱۹۷۹ - ۲۰۰۲ میروند ا         | and the second of the                        |                                | T O     | nerserense<br>TO      | 1.0<br>T.A                |                          |                            |                        |                                              |
| Coprinus                                                     | 21                              | 2           | <u>^</u>       |             | 6        |                           |                           |                        |                                          |                                              |                                |         |                       |                           |                          |                            |                        |                                              |
| pellucidus                                                   | 21                              | 3           | 2              |             |          |                           |                           |                        |                                          |                                              | sen armanatur a                |         |                       |                           |                          |                            |                        |                                              |

.

## TABLE 4--Continued

| Species                    | ${\tt Temp}$                                  | Cul-        |           |                         | Nui                            | nber d | of We                                 | eks Fi    | rom S | tart d | of In                                  | cubat:                        | ion                             |                                       |                          |                  |                                              |      |
|----------------------------|-----------------------------------------------|-------------|-----------|-------------------------|--------------------------------|--------|---------------------------------------|-----------|-------|--------|----------------------------------------|-------------------------------|---------------------------------|---------------------------------------|--------------------------|------------------|----------------------------------------------|------|
| -                          | ° C.                                          | ture        | 1         | 2                       | 3                              | 4      | 5                                     | 6         | 7     | 8      | 9                                      | 10                            | 11                              | 12                                    | 13                       | 14               | 15                                           | 16   |
| Chaetomium                 | 21                                            | 7a          |           | 14                      | 16                             | 18     | 20                                    | 12        | 12    | 6      | 8                                      | 8                             | 6                               | 6                                     | 6                        | 6                | 6                                            | 6    |
| globo sum                  | 26                                            | 7b          | 2         | 2                       | 2<br>8                         | 2      | 2                                     | 2         | 4     | 4      | 4                                      | 4                             | 4                               | 4                                     | 4                        | 4                | 4                                            | 4    |
| 0                          | 21                                            | 8a          |           | 4                       | 8                              | 8      | 6                                     | 6         | 4     | 4      | 4                                      | 4                             | 2                               | 2                                     | 2                        | 2                | 2                                            | 2    |
|                            | 26                                            | 8ъ          |           |                         |                                |        |                                       | 2         | 2     | 2      | 2                                      | 2                             | 2                               | 2                                     | 2                        | 2                | 2                                            | 2    |
|                            | 21                                            | 9a          | 4         | 14                      | 24                             | 18     | 20                                    | 18        | 18    | 16     | 16                                     | 14                            | 14                              | 14                                    | 12                       | 12               | 12                                           | 12   |
|                            | 16                                            | 9Ъ          |           |                         |                                | 2      | 2                                     | 4         | 4     | 4      | 4                                      | 4                             | 4                               | 4                                     | 4                        | 4                | 4                                            | 4    |
|                            | 21                                            | 10a         |           | 18 7.08/15/0 www.states | 1979-1940, 12 M 47 M 19        |        | 140. ma. <b>114 m</b> r. 7 de 164. C. | ALTER THE | 2     | 2      |                                        |                               | 74.5 <b>7 7 8</b> 10 1          |                                       | ··· #··· #*+ #*          |                  |                                              |      |
| <b>S</b> ordaria<br>humana | 21                                            | 7a          | 8         | 14                      | 10                             | 10     | 10                                    | 6         | 6     | 6      | 2                                      |                               |                                 | · · · · · · · · · · · · · · · · · · · |                          |                  |                                              | - 18 |
| Sordaria                   | 21                                            | 7a          | 6         | 8                       | 8                              | 6      | 2                                     | 2         | 4     |        |                                        |                               |                                 | ,                                     |                          |                  |                                              |      |
| fimicola                   | <b>ملدم</b> م<br>محمد الدام المحمد المحمد الم |             | - T2-4-95 |                         |                                |        | ••••                                  |           |       |        | 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | landa ay an an an an an an an |                                 |                                       | ngersamme ter significan | an the same      | . No are to care                             |      |
| Ascobolus                  |                                               |             |           |                         |                                |        |                                       |           |       |        |                                        |                               |                                 |                                       |                          |                  |                                              |      |
| furfuraceous               | 16                                            | <b>9</b> b  |           | 2                       | 4                              | 4      | 4                                     |           |       |        |                                        |                               |                                 |                                       |                          |                  |                                              |      |
| v. coronatus               |                                               |             |           |                         | anne startet der startet de Br |        |                                       |           |       |        | - 17 TX-TX-TX-TX-TX-TX-                | (Territy of Sec. Barry)       | - 2 (a ray a martine rate, rate |                                       | 1                        | an manifestar to | rts wurdt in i                               |      |
| Chaetomium                 | 21                                            | 1           |           |                         |                                |        |                                       | 2         |       |        |                                        | 2                             |                                 |                                       |                          |                  |                                              |      |
| <b>s</b> p. ∦2             | 21                                            | 2           |           |                         | 2                              | 2      | 2                                     | 2         | 2     | 2      | 2                                      |                               |                                 |                                       |                          |                  |                                              |      |
| •                          | 21                                            | 3           |           |                         |                                |        |                                       |           |       |        |                                        | 2                             |                                 |                                       | 2                        |                  |                                              |      |
|                            | 21                                            | Ĩ4          |           | 2                       |                                |        |                                       |           |       |        |                                        |                               |                                 |                                       |                          |                  | norme of firms all variable 10 <sup>17</sup> |      |
| Coprinus                   | 21                                            | l           |           |                         | 4                              | 1.2    |                                       |           | 4     | 2      | 2                                      | 2                             |                                 |                                       |                          |                  |                                              |      |
| spp.                       | 21                                            | 2           |           | 8                       |                                | 4      | 2                                     | 2<br>6    |       |        |                                        |                               | 2                               | 8                                     |                          | 2                |                                              | 2    |
|                            | 21                                            | 3           |           |                         |                                | 4      | 6                                     | 6         | 4     | 2      | 2                                      |                               |                                 |                                       |                          |                  |                                              |      |
|                            | 21                                            | 4           |           |                         | 6                              | 10     | 10                                    | 2         |       |        |                                        |                               |                                 | 2                                     |                          |                  | 4                                            |      |
|                            | 21                                            | 5<br>6      |           |                         |                                |        |                                       |           | 2     | 4      | 6                                      | 6                             |                                 |                                       |                          |                  |                                              |      |
|                            | 21                                            |             |           |                         | 6                              | 8      | 4                                     | 2         | 2     |        | 2                                      |                               |                                 |                                       |                          |                  |                                              |      |
|                            | 21                                            | 8a          |           |                         |                                |        |                                       |           |       |        |                                        |                               |                                 | 2                                     |                          |                  |                                              |      |
|                            | 21                                            | 10a         |           | 2                       |                                |        |                                       |           |       |        |                                        |                               |                                 |                                       |                          |                  |                                              |      |
|                            | 16                                            | <b>10</b> b |           |                         |                                |        |                                       |           | 4     | 4      |                                        |                               |                                 |                                       |                          |                  |                                              |      |

TABLE 4--Continued

| Species                                  |      | Cul.   |    |    | Num                       | per of | . Weel                                                                                                         | as Fra | om Sta                                  | art of  | f Inc            | ubatio | on |    |     |    |    |
|------------------------------------------|------|--------|----|----|---------------------------|--------|----------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------|---------|------------------|--------|----|----|-----|----|----|
|                                          | ° C. | ture 1 | 2  | 3  | 4                         | 5      | 6                                                                                                              | 7      | 8                                       | 9       | 10               |        | 12 | 13 | 14  | 15 | 16 |
|                                          | 21   | 2      | 64 | 96 | 98                        | 98     | 98                                                                                                             | 98     | <del>9</del> 8                          | 98      | 98               | 96     | 94 | 52 | 12  | 2  |    |
| Podospora                                | 21   | 3      |    | 40 | 60                        | 66     | 70                                                                                                             | 70     | 74                                      | 64      | 54               | 52     | 28 | 10 | 6   | 2  |    |
| coronifera                               | 21   | 4      |    | 4  | 24                        | 32     | 16                                                                                                             |        |                                         |         | -                | -      |    |    |     |    |    |
|                                          | 21   | 5      |    | 12 | 18                        | 24     | 16<br>38                                                                                                       | 44     | 38                                      | 22      | 14               |        |    |    |     |    |    |
|                                          | 21   | 6      | 20 | 12 | 20                        | 26     | 24                                                                                                             | 26     | 24                                      | 22      | 22               | 26     | 26 | 26 | 24. | 24 | 24 |
|                                          | 21   | 3      |    |    | 8                         |        |                                                                                                                |        |                                         |         |                  |        |    |    |     |    |    |
|                                          | 21   | Ĩ4     |    |    | 4                         | 2      |                                                                                                                |        |                                         |         |                  |        |    |    |     |    |    |
|                                          | 21   | 6      | 2  | 4  | 8                         | 8      | 2                                                                                                              | 2      | 2                                       | 2       |                  |        |    |    |     |    |    |
| Podospora                                | 21   | 7a     |    | 20 | 22                        | 22     | 20                                                                                                             | 22     | 2<br>16                                 | 2<br>20 | 12               | 4      |    |    |     |    |    |
| decipiens                                | 26   | 7Ъ     | 2  | 6  | 6                         | 6      | 2                                                                                                              | 4      |                                         |         |                  |        |    |    |     |    |    |
| -                                        | 21   | 8a     |    |    | 2                         | 2<br>8 | 2<br>6                                                                                                         | 2<br>6 |                                         |         |                  |        |    |    |     |    |    |
| •                                        | 21   | 9a     |    | 6  | 6                         |        |                                                                                                                | 6      | 4                                       | 2<br>8  |                  |        |    |    |     |    |    |
|                                          | 16   | 9b     |    |    |                           | 2      | 4                                                                                                              | 6      | 6                                       | 8       | $l_{\downarrow}$ | 6      | 6  | 6  | 4   | 4  | 4  |
|                                          | 21   | 10a    |    | 2  | 2                         | 2      | 2                                                                                                              | 2      |                                         |         |                  |        |    |    |     |    |    |
|                                          | 16   | 10b    |    |    |                           |        |                                                                                                                |        | 2                                       | 2       |                  |        |    |    |     |    |    |
| n an | 21   | 2      | 2  | 4  | A MELINING BROKE STATEMEN |        | , 1967 - 1969 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 197 |        | 1.0001000000000000000000000000000000000 | enere a |                  |        |    |    |     |    |    |
|                                          | 26   | 7Ъ     |    |    | 2                         | 4      | 2                                                                                                              | 4      |                                         | 2       |                  |        |    |    |     |    |    |
| Sacco bolus                              | 21   | 8a     | 18 | 20 | 20                        | 22     | 22                                                                                                             | 14     | 10                                      | 2<br>8  | 8                | 8      |    |    |     |    |    |
| kerverni                                 | 26   | 8ъ     | 14 | 12 | 12                        | 16     | 12                                                                                                             | 8      | 10                                      | 6       | 2                | 2      |    |    |     |    |    |
|                                          | 21   | 9a     |    |    |                           |        |                                                                                                                | 2      | 2                                       |         |                  |        |    |    |     |    |    |
|                                          | 21   | 10a    | 4  | 4  |                           |        |                                                                                                                | 2      | 2                                       |         |                  |        |    |    |     |    |    |
|                                          | 16   | 10b    |    | 2  | 2                         | 2      |                                                                                                                |        |                                         | 2       |                  |        |    |    |     |    |    |

~

|       | •          |
|-------|------------|
|       |            |
| TABLE | 4Continued |

.

· · ·

•••••••

| Species                 | Temp     | Cul-      |             |   |        | Num     | ber o                        | f Weel         | ks Fr    | om Sta                  | art o:                  | f Inc    | ubatio   | on       |    |          |    |    |
|-------------------------|----------|-----------|-------------|---|--------|---------|------------------------------|----------------|----------|-------------------------|-------------------------|----------|----------|----------|----|----------|----|----|
|                         | ° C.     | ture      | 1           | 2 | 3      | 4       | 5                            | 6              | 7        | 8                       | 9                       | 10       | 11       | 12       | 13 | 14       | 15 | 16 |
|                         | 21       | 2         |             |   | 4      | 6       | 6                            | 10             | 6        | 6                       | 6                       | 9        | 10       | 8        |    |          |    |    |
|                         | 21       | 3<br>4    |             |   |        | 12      | 14<br>20                     | 12             | 8        | 6                       | 6                       | -        |          |          |    |          |    |    |
|                         | 21       | 4         |             |   |        | 14      | 20                           | _              |          |                         |                         |          |          |          |    |          |    |    |
| Podospora               | 21       | 56        |             |   | 6      | 24      | 32                           | 38<br>34<br>16 | 36<br>42 | 24                      | 10                      | 2        | - 0      | -0       |    | . 0      |    |    |
| curvula                 | 21.      |           |             | ~ | ۶.     | 2<br>8  | 2                            | 34             | 42       | 40                      | 32                      | 32<br>34 | 30<br>26 | 28<br>22 | 28 | 28       | 22 | 22 |
|                         | 21<br>26 | 7a<br>7b  |             | 2 | 4<br>4 | 0<br>2  | 12                           | 10             | 18<br>4  | 20                      | -34<br>1                | 34       | 20       | 22       | 14 | 10       | 6  | 4  |
|                         | 20       | 70<br>8a  |             |   | 4      | 70      | 6                            | Ř              | ц<br>Ц   | ь<br>Ц                  | 2                       |          |          |          |    |          |    |    |
|                         | 21       | 9a        |             |   |        | 10<br>2 | 32<br>2<br>12<br>2<br>6<br>4 | 4<br>8<br>4    | 4<br>4   | 40<br>26<br>6<br>4<br>6 | 32<br>34<br>4<br>2<br>6 | 6        | 6        | 6        | 4  | 4        |    |    |
|                         | 16       | 10ъ       |             |   |        |         |                              |                | 2        | 6                       | 8                       | 10       | 12       | 14       | 14 | 14       | 14 | 14 |
| Tripterospora<br>sp. #1 | 26       | 7b        | <del></del> | 8 | 12     | 12      | 10                           | 12             | 12       | 8                       | 6                       | 4        | 2        | 2        |    | <u> </u> |    |    |
| Saccobolus              | 21       | 6         |             |   |        |         |                              |                |          | 6                       | 8                       | 4        | 6        |          |    |          |    |    |
| intermedius             | 21       | 10a       |             | 8 | 6      | 6       | 6                            | 6              | 2        | 2                       | 2                       |          | _        |          |    |          |    |    |
| Coprinus                | 21       | 3         |             |   | 4      |         |                              |                |          |                         |                         |          |          |          |    |          |    |    |
| pari sporus             | 21       | 10a       |             |   |        |         |                              |                |          |                         | 4                       | 2        |          |          |    |          |    |    |
|                         | 21       | 3         |             |   |        |         | 4                            | 2              |          |                         |                         | 2        |          |          |    |          |    |    |
| Sporormia               | 21       | 3<br>6    |             |   |        |         |                              | 2<br>2         | 2        |                         |                         |          |          |          |    |          |    |    |
| minima                  | 21       | 7a        |             |   | 2      | 2       |                              |                |          |                         |                         |          |          |          |    |          |    |    |
|                         | 21       | <u>9a</u> |             |   | 2      |         |                              |                |          |                         |                         |          |          |          |    |          |    |    |
| Coprinus<br>sp. #2      | 21       | 10a       |             |   | 30     | .26     | 20                           | 30             | 16       | 10                      |                         |          |          |          |    |          |    |    |

TABLE 4--Continued

| Species                                | Temp     | Cul-   |   |   |   | Num | per of  | f Weel  | ks Fra  | om Sta  | art o       | f Inci  | ubati | on |        |          |              | <del>ان معد</del> ن بلغان بن م |
|----------------------------------------|----------|--------|---|---|---|-----|---------|---------|---------|---------|-------------|---------|-------|----|--------|----------|--------------|--------------------------------|
|                                        | ° C.     | ture   | 1 | 2 | 3 | 4   | 5       | 6       | 7       | 8       | 9           | 10      | 11    | 12 | 13     | 14       | 15           | 16                             |
|                                        | 21       | 7a     |   |   |   |     | 18      | 12      | 10      | 12      | 16          | 10      | 10    | 12 | 14     | 14       | 12           | 12                             |
| Ascophanus                             | 21       | 9a     |   |   |   |     |         |         |         |         | 2           |         |       |    |        |          | 2<br>36<br>4 | 2<br>32                        |
| ochraceous                             | 16       | 9Ъ     |   |   |   |     |         | 10      | 32      | 40      | 42          | 44      | 40    | 36 | 38     | 34       | 36           | 32                             |
|                                        | 21       | 10a    |   |   |   |     |         | 2       | 2       | 2       | - (         | 2       |       |    |        |          | 4            |                                |
|                                        | 16       | 10b    |   |   |   | 6   | 10      | 16      | 10      | 14      |             | 14      | 14    | 12 | 6      | 6        | 8            | 6                              |
|                                        | 21       | 7a     |   |   |   |     |         | 4       | 8       | 12      | 10          | 12      | 20    | 24 | 32     | 32       | 42           | 44                             |
|                                        | 21       | 8a     |   |   |   |     |         |         | 4       | 4       | 12          | 18      | 24    | 24 | 28     | 20       | 22           | 20                             |
| Podo spora                             | 26       | 8ъ     |   |   |   | 12  | 20<br>2 | 34<br>2 | 34<br>2 | 36<br>6 | 42          | 42      | 42    | 42 | 42     | 42       | 42           | 42                             |
| vesti ta                               | 21       | 9a     |   |   |   | 2   | 2       | 2       | 2       | 6       | 6           | 6       | 8     | 10 | 12     | 12       | 12           | 14                             |
|                                        | 16       | 9Ъ     |   |   |   |     |         |         |         |         |             |         |       |    | 4      | 6        | 6            | 8                              |
|                                        | 21       | 10a    |   |   |   |     |         |         |         |         | •           |         |       |    | 2      | 4        | 4            | 2                              |
| Sacco bolus                            | 21       | 7a     |   |   |   | 14  | 10      | 20      | 16      | 16      | 16          | 12      | 10    | 6  | 8      | 6        |              |                                |
| neglectans                             | 26       | 7b     |   |   |   | 4   | 2       | 4       | 4       | 4       | 4           | 4       | 2     | 2  |        |          |              |                                |
| ······································ | 21       | 1      | ÷ |   |   |     |         |         |         |         | 2           | 4       |       |    |        |          |              |                                |
|                                        | 21       | 2      |   |   |   |     |         |         |         |         |             |         |       | 2  |        |          |              |                                |
|                                        | 21       | 3<br>4 |   |   |   | 8   | 16      | 14      | 14      | 10      | 6           | 8       | 6     | 12 | 6      | 6        | 6            | 2<br>4                         |
|                                        | 21       | 4      |   |   |   |     |         |         |         |         |             |         |       |    |        | 2        | 4            | 4                              |
| Podospora                              | 21       | 5<br>6 |   |   |   |     |         | 2       | 2       | 4       | 6           | 10      | 2     | 2  | 2<br>2 |          |              |                                |
| piriformis                             | 21       |        |   |   |   |     |         |         |         |         |             |         | -     | _  | 2      | 2        | 2<br>4       | 2<br>2                         |
|                                        | 21       | 7a     |   |   |   |     |         |         |         |         |             |         | 2     | 2  | -      | 2        | 4            | 2                              |
|                                        | 26       | 7b     |   |   |   |     |         |         |         |         | •           | •       | •     | •  | 2      | •        | ~            | 1                              |
|                                        | 21       | 9a     |   |   |   |     |         |         |         |         | 2           | 2       | 2     | 2  |        | 2        | 2<br>6       | 6<br>6                         |
|                                        | 16       | 9b     |   |   |   |     | 1       | <u></u> | 1. 1.   | ~0      | <i>(</i> ). | - (     | -0    | -1 | - 1.   | 4        |              |                                |
|                                        | 21<br>16 | 10a    |   |   |   |     | 6       | 28      | 44      | 58      | 64<br>6     | 56<br>8 | 52    | 56 | 54     | 54<br>46 | 52<br>52     | 48<br>50                       |
|                                        | To       | 10b    | · |   |   |     |         |         |         | 4       | 0           | 0       | 12    | 24 | 50     | 40       |              | 50                             |

TABLE 4--Continued

.-

| Species                     | Temp     | Cul-   |   |   |   | Numb | er o   | f Weel | ks Fra | om Sta | art o | f Inc | ubatio | on |        |        |    |        |
|-----------------------------|----------|--------|---|---|---|------|--------|--------|--------|--------|-------|-------|--------|----|--------|--------|----|--------|
|                             | ° C.     | ture   | 1 | 2 | 3 | 4    | 5      | 6      | 7      | 8      | 9     | 10    | 11     | 12 | 13     | 14     | 15 | 16     |
|                             | 21       | 2      |   |   |   | _    |        |        |        |        |       |       |        | 4  |        |        |    |        |
| Sporormia                   | 21       | 3<br>4 |   |   |   | 6    | 2      | 4      | 6      | 6      | 8     | 2     | 2      |    |        |        |    | 2      |
| intermedia                  | 21<br>21 | 4<br>5 |   |   |   | 2    |        | 2      |        |        |       |       |        |    |        |        |    |        |
|                             | 21       | 5<br>6 |   |   |   | 2    | 2      |        |        | 2      |       |       |        |    |        |        |    |        |
|                             | 21       | 1      |   |   |   |      |        | 2      |        |        |       |       |        |    |        |        |    |        |
| A                           | 21       | 2<br>4 |   |   |   |      | -      |        | 2      |        |       |       | 2      | 2  |        |        |    |        |
| Ascophanus<br>granuliformis | 21<br>21 | 4      |   |   |   | 12   | 2<br>8 | 2<br>4 | 6      | 4      | 4     | 4     |        |    |        |        |    |        |
| grandints                   | 21       | 9a     |   |   |   | 12   | 0      | 4      | 0      | 4      | 4     | 4     |        | 2  |        |        |    |        |
|                             | 16       | 9Ъ     |   |   |   |      |        | 2      |        |        |       |       |        | ~  |        | •      |    |        |
|                             | 21       | 10a    |   |   |   |      | 2      | 4      | 2      | 6      | 4     | 4     | 4      | 6  | 2<br>2 | 2<br>2 | 2  | 2<br>2 |
|                             | 16       | 10b    |   |   |   |      | 4      | 8      | 24     | 14     | 10    | 12    | 10     | 2  | 2      | 2      | 2  | 2      |
| Ascophanus                  | 21       | 2      |   |   |   |      |        | 2      |        |        |       |       |        |    |        |        |    |        |
| argenteus                   | 21       | 4      |   |   |   | 2    |        | ι.     |        |        |       |       |        |    |        |        |    |        |
|                             | 21       | 6      |   |   |   |      |        | 4      |        |        |       |       |        |    |        |        |    |        |
| Sporormia<br>vexans         | 21       | 5      |   |   |   |      | 2      | 4      |        |        |       |       |        |    |        |        |    |        |
| Podospora                   | 21       | 3      |   |   |   |      |        |        |        |        |       | 8     | 10     | 14 | 10     | 8      | 6  | 2      |
| sp. #1                      | 21       | 3<br>6 |   |   |   |      |        | 12     | 20     | 22     | 22    | 22    | 22     | 20 | 20     | 20     | 18 | 18     |
| Sporormia<br>kansensis      | 21       | 5      |   |   |   |      |        | 2      |        |        |       |       |        |    |        |        |    |        |
| Peziza<br>granulata         | 21       | 10a    |   |   |   |      |        | 2      | 2      | 2      |       |       |        |    |        |        |    |        |

TABLE 4--Continued

| Species                           | Temp       | Cul-      |   |   |                                        | Numb | er of | Week | s Fr | om Sta | art of | fIncu | ibatio | on     |    |    |         |    |
|-----------------------------------|------------|-----------|---|---|----------------------------------------|------|-------|------|------|--------|--------|-------|--------|--------|----|----|---------|----|
|                                   | °C.        | ture      | 1 | 2 | 3                                      | 4    | 5     | 6    | 7    | 8      | 9      | 10    | 11     | 12     | 13 | 14 | 15      | 16 |
| Podospora<br>pilosa               | 21         | 6         |   |   |                                        |      |       |      | 2    |        | •      |       |        |        |    |    |         |    |
| Podospora<br>sp. #2               | 21<br>21   | 2<br>5    |   |   |                                        |      |       |      | 8    | 12     | 16     | 14    | 4      | 2      |    |    |         |    |
| Sporormia<br>megalospora          | 21         | 5         |   |   |                                        |      |       |      |      | 2      |        |       |        |        |    |    |         |    |
| Ascophanus<br>brunneus            | 16         | 10b       |   |   |                                        |      |       |      |      |        | 4      | 4     | 4      | 4      | 6  | 6  | 4       | 4  |
| <b>Saccobolus</b><br>depauperatus | 21         | 10a       |   |   | ······································ |      |       |      |      |        |        | 2     | 2      |        |    |    |         |    |
| Bombardia<br>caerulea             | 21<br>21   | 2<br>9a   |   |   |                                        |      |       |      |      |        |        | 8     | 16     | 14     | 2  |    |         | 2  |
| Coprinus<br>hexagono sporus       | 16<br>5 16 | 9Ъ<br>10Ъ |   |   |                                        |      |       |      |      |        |        |       |        | 2      |    | 2  | 2       |    |
| Podospora<br>sp. #3               | 21<br>21   | 2<br>6    |   |   |                                        |      |       |      |      |        |        |       |        | 2<br>4 | 2  | 2  | 2       | 2  |
| Sporormia<br>australis            | 21         | 7a        |   |   |                                        |      |       |      |      |        |        |       |        |        | 2  | 2  | 2       | 2  |
| Coprinus<br>cordisporus           | 16         | 10b       |   |   |                                        |      |       |      | -    |        |        |       |        |        | 2  |    |         |    |
| Sporormia<br>pascua               | 21         | 6         |   |   |                                        |      |       |      |      |        |        |       |        |        |    | 2  | <u></u> |    |

TABLE 4-Continued

.

| Species                   | Temp           | Cul-        |   |                                        |    | Num | per o | f Wee    | eks Fr | om St     | art c     | of Inc          | ubati            | .on              |                  |                   |                   |                   |
|---------------------------|----------------|-------------|---|----------------------------------------|----|-----|-------|----------|--------|-----------|-----------|-----------------|------------------|------------------|------------------|-------------------|-------------------|-------------------|
|                           | ° C.           | ture        | 1 | 2                                      | 3  | 4   | 5     | 6        | 7      | 8         | 9         | 10              | 11               | 12               | 13               | 14                | 15                | 16                |
| Chaetomium<br>sp. #1      | 16             | 10b         |   |                                        |    |     |       |          |        |           |           |                 |                  |                  |                  |                   | 2                 | 2                 |
| Ascophanus<br>sp. #1      | 16             | 9Ъ          |   | ······································ |    |     |       | <u> </u> |        |           |           |                 |                  |                  | ****             |                   | 2                 | 2                 |
| Quadrats                  | 21<br>21       | 1<br>2      |   | 66                                     | 82 | 90  | 90    | 92       | 100    | 100       | 100       | 100             | 100              | 100              | 100<br>98        | 100<br>100        | 100<br>100        | 100<br>100        |
| distributed<br>by insects | 21<br>21<br>21 | 3<br>4<br>5 |   |                                        | 18 | 18  | 20    | 92       | 100    | 100<br>36 | 100<br>84 | 74<br>100<br>98 | 90<br>100<br>100 | 96<br>100<br>100 | 98<br>100<br>100 | 100<br>100<br>100 | 100<br>100<br>100 | 100<br>100<br>100 |

## TABLE 5

THE WEEKLY ABSOLUTE DENSITY OF THE SPECIES ON EACH OF THE CULTURES

| Species                            | Temp                                                                 | Cul                                            |                                                 |                                                       |                                                   | Num                                            | ber o                                | f Wee                     | ks Fr           | om St              | art o         | f Inc         | ubati         | on       |          |          |          |          |
|------------------------------------|----------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------|-------------------------------------------------------|---------------------------------------------------|------------------------------------------------|--------------------------------------|---------------------------|-----------------|--------------------|---------------|---------------|---------------|----------|----------|----------|----------|----------|
|                                    | ° C.                                                                 | tur                                            | e T                                             | 2                                                     | 3                                                 | 4                                              | 5                                    | 6                         | 7               | 8                  | 9             | 10            | 11            | 12       | 13       | 14       | 15       | 16       |
| Ascobolus<br>furfuraceous          | 21<br>21<br>21<br>21<br>21<br>21<br>21<br>16                         | 1<br>2<br>4<br>5<br>6<br>10a<br>10b            | 3<br>2<br>12<br>37<br>48<br>56<br>25            | 6<br>21<br>61<br>45<br>64<br>25                       | 4<br>12<br>23<br>43<br>33<br>22                   | 2<br>6<br>11<br>40<br>20<br>19                 | 3<br>7<br>32<br>15<br>14             | 1<br>31<br>13<br>10       | <b>30</b><br>56 | 28<br>3<br>6       | 25<br>5       | 24<br>2       | 24            | 22       | 21       | 17       | 12       | 10       |
| Ascobolus<br>immersus              | 21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>16 | 1<br>2<br>3<br>4<br>5<br>6<br>9a<br>10a<br>10b | 195<br>56<br>16<br>347<br>167<br>52<br>1<br>168 | 28<br>46<br>10<br>305<br>128<br>35<br>17<br>117<br>12 | 12<br>16<br>4<br>252<br>96<br>13<br>7<br>74<br>34 | 7<br>5<br>4<br>218<br>80<br>8<br>4<br>39<br>12 | 1<br>3<br>173<br>76<br>7<br>25<br>12 | 1<br>26<br>68<br>12<br>11 | 38<br>9<br>8    | 23<br>3<br>8       | 14<br>2<br>7  | 12            | 9             |          |          |          |          |          |
| <b>Asc</b> ophanus<br>holmskjoldii | 21<br>21<br>21<br>21<br>21<br>21<br>21                               | 1<br>3<br>4<br>5<br>6<br>10a                   | 10<br>130                                       | 45<br>373                                             | 2<br>18<br>387                                    | 3<br>4<br>5<br>12<br>354                       | 2<br>1<br>7<br>315                   | 27<br>262                 | 14<br>238<br>2  | 1<br>2<br>221<br>6 | 2<br>216<br>9 | 4<br>207<br>7 | 1<br>203<br>7 | 198<br>7 | 186<br>7 | 179<br>7 | 165<br>7 | 165<br>8 |
| Coprinus<br>pellucidus             | 21<br>21                                                             | 2<br>3                                         | 1                                               |                                                       | 4                                                 |                                                |                                      |                           |                 |                    |               |               |               |          |          |          |          |          |

TABLE 5--Continued

| Species                                  | Temp | Cul-           |            |     |     | Num | ber o      | f Wee | ks Fr | om St | art o | f Inc | ubati | on  |     |     |     |         |
|------------------------------------------|------|----------------|------------|-----|-----|-----|------------|-------|-------|-------|-------|-------|-------|-----|-----|-----|-----|---------|
| -                                        | ° Ċ. | ture           | 1          | 2   | 3   | 4   | 5          | 6     | 7     | 8     | 9     | 10    | 11    | 12  | 13  | 14  | 15  | 16      |
|                                          | 21   | 7a             |            | 40  | 46  | 50  | 50         | 44    | 34    | 18    | 20    | 19    | 16    | 16  | 17  | 17  | 17  | 17      |
|                                          | 26   | 7b             | 8          | 6   | 3   | 4   | 3          | 3     | 6     | 6     | 6     | 6     | 6     | 6   | 6   | 6   | 6   | 6       |
| Chaetomium                               | 21   | 8a             |            | 16  | 37  | 36  | 18         | 15    | 11    | 7     | 7     | 7     | 3     | 4   | 4   | 4   | 4   | 4       |
| globo sum                                | 26   | 8ъ             |            |     |     | -   |            | Ĩ4    | 4     | 4     | 6     | 4     | Ĩ4    | 4   | 4   | 4   | 4   | 4       |
| 0 -                                      | 21   | 9a             | 38         | 141 | 204 | 226 | 227        | 232   | 226   | 209   | 197   | 185   | 181   | 181 | 176 | 176 | 176 | 176     |
|                                          | 16   | 9Ъ             | -          |     |     | 5   | 10         | -4    | 4     | 4     | 3     | 3     | 3     | 3   | 3   | 3   | 3   | 3       |
|                                          | 21   | 10a            |            |     |     | -   |            |       | l     | 1     | -     | -     | -     | 2   | -   | -   | -   | -       |
| Sordaria<br>humana                       | 21   | 7a             | 10         | 30  | 22  | 21  | 16         | 9     | 9     | 7     | 3     |       |       |     |     |     |     |         |
| Sordaria<br>fimicola                     | 21   | 7a             | 56         | 60  | 60  | 55  | <b>3</b> 8 | 38    | 24    |       |       |       |       |     |     |     |     | <u></u> |
| Ascobolus<br>furfuraceus<br>v. coronatus | 16   | 9Ъ             |            | 13  | 15  | 13  | 11         |       |       |       |       |       |       |     |     |     |     |         |
|                                          | 21   | 1              |            |     |     |     |            | 1     |       |       |       | 1     |       |     |     |     |     |         |
| Chaetomium                               | 21   | $\overline{2}$ |            |     | 1   | 1   | l          | ī     | l     | 1     | 1     | -     |       |     |     |     |     |         |
| <b>sp.</b> #2                            | 21   | 3              |            |     | _   | _   | _          |       | _     |       |       | 2     |       | 1   |     |     |     |         |
| -T. • 11                                 | 21   | í4             |            | 2   |     |     |            |       |       |       |       |       |       |     |     |     |     |         |
|                                          | 21   | 2              | ********** | 343 | 556 | 632 | 771        | 803   | 787   | 768   | 749   | 727   | 663   | 634 | 182 | 12  | l   |         |
| Podospora                                | 21   | 3              |            |     | 276 | 389 | 501        | 519   | 462   | 376   | 295   | 223   | 138   | 38  | 9   | 3   | l   |         |
| coronifera                               | 21   | 4              |            |     | 17  | 55  | 128        | 12    |       | -     |       | -     | -     | -   |     | -   |     |         |
|                                          | 21   | 5<br>6         |            |     | 11  | 14  | 18         | 37    | 39    | 26    | 13    | 9     |       |     |     |     |     |         |
|                                          | 21   | 6              |            | 33  | 38  | 36  | 40         | 30    | 31    | 27    | 25    | 25    | 28    | 27  | 27  | 26  | 26  | 25      |
| Tripterospora                            | 26   | 7Ъ             |            | 44  | 43  | 47  | 35         | 25    | 23    | 20    | 15    | 11    | 9     | 8   | 5   |     |     |         |

| Species                | Temp     | Cul-      |   |     |         | Num         | ber o        | f Wee                    | ks Fro                             | om Sta    | art o    | f Inci  | ubatio  | on |    |    |    |    |
|------------------------|----------|-----------|---|-----|---------|-------------|--------------|--------------------------|------------------------------------|-----------|----------|---------|---------|----|----|----|----|----|
|                        | ° C.     | ture      | 1 | 2   | 3       | 4           | 5            | 6                        | 7                                  | 8         | 9        | 10      | 11      | 12 | 13 | 14 | 15 | 16 |
|                        | 21       | 1         |   |     | 3       | 7           |              |                          | 2                                  | 1         | 1        | 1       |         |    |    |    |    |    |
|                        | 21       | 2         |   | 4   |         | 2<br>2<br>9 | ļ            | 2<br>5<br>1              |                                    |           | _        |         | 1       | 6  |    | 1  |    | l  |
| 0                      | 21       | 3<br>4    |   |     | ~       | 2           | 1<br>6<br>7  | 5                        | 2                                  | l         | 1        |         |         | ٦  |    |    | ~  |    |
| Coprinus               | 21<br>21 | 4         |   |     | 9       | 9           | 7            | T                        | 2                                  | 3         | З        | 3       |         | 1  |    |    | 2  |    |
| spp.                   | 21       | 5<br>6    |   |     | 9       | 8           | 3            | 2                        | 2<br>1                             | ر         | 3<br>1   | ر       |         |    |    |    |    |    |
|                        | 21       | 8a        |   |     |         | •           |              | ~                        | -                                  |           | -        |         |         | 1  |    |    |    |    |
|                        | 21       | 10a       |   | l   |         |             |              |                          |                                    |           |          |         |         |    |    |    |    |    |
|                        | 16       | 10b       |   |     |         |             |              |                          | 2                                  | 2         |          |         |         |    |    |    |    | •  |
|                        | 21       | 3<br>4    |   |     |         | 8           |              |                          |                                    |           |          |         |         |    |    |    |    |    |
|                        | 21       | 4         |   |     |         | 2<br>6      | 1<br>6       |                          |                                    |           |          |         |         |    |    |    |    |    |
| <b>~</b> 1             | 21       | 6         |   | 2   | 4       |             | 6            | 1                        | 1                                  | 1<br>20   | 1<br>23  |         | ~       |    |    |    |    |    |
| Podospora<br>decipiens | 21<br>26 | 7а<br>7Ъ  |   | 2   | 24<br>6 | 27<br>6     | 29           | 20                       | 20                                 | 20        | 23       | 11      | 7       |    |    |    |    |    |
| decipiens              | 20<br>21 | 70<br>8a  |   | ٢   | 0       | 1           | 29<br>7<br>1 | 2                        | 2                                  |           |          |         |         |    |    |    |    |    |
|                        | 21       | 9a        |   |     | 17      | 35          | 44           | 26<br>2<br>2<br>35<br>12 | 1<br>26<br>3<br>2<br>23<br>18<br>3 | 19        | l        |         |         |    |    |    |    |    |
|                        | 16       | 9Ъ        |   |     |         |             | 5<br>3       | 12                       | 18                                 | 19<br>22  | 23       | 15      | 19      | 15 | 14 | 13 | 12 | 12 |
|                        | 21       | 10a       |   |     | 4       | 3           | 3            | 3                        | 3                                  |           | _        |         |         |    |    |    |    |    |
| <b></b>                | 16       | 10Ъ       |   |     |         |             |              |                          |                                    | 3         | 1        |         |         |    |    |    |    |    |
|                        | 21       | 2         |   | l   | 2       |             |              |                          |                                    |           |          |         |         |    |    |    |    |    |
| ~                      | 26       | 7b        |   |     |         | 1           | 4            | 2                        | 7                                  |           | 1        | 1       |         |    |    |    |    |    |
| Saccobolus             | 21       | 8a        |   | 144 | 171     | 157         | 128          | 105<br>22                | 100                                | 66<br>7 5 | 55<br>10 | 54<br>6 | 53<br>3 |    |    |    |    |    |
| kerverni               | 26<br>21 | 8Ъ<br>9а  |   | 72  | 55      | 40          | 47           | 22                       | 24<br>1                            | 15<br>1   | To       | 0       | 3       |    |    |    |    |    |
|                        | 21       | 9a<br>10a |   | 6   | 4       |             |              |                          | 1<br>3                             | i<br>1    |          |         |         |    |    |    |    |    |
|                        | 16       | 10ъ       |   | •   | ì       | 1           | 1            |                          | )                                  |           | 1        |         |         |    |    |    |    |    |

TABLE 5--Continued

.

TABLE 5--Continued

| Species       | Temp     | Cul-        |   |    |         | Numi    | be <b>r o</b> l | [ Weel   | ks Fr    | om St       | art o  | f Inc | ubati     | on       |          |          |          |          |
|---------------|----------|-------------|---|----|---------|---------|-----------------|----------|----------|-------------|--------|-------|-----------|----------|----------|----------|----------|----------|
|               | ° C.     | ture        | 1 | 2  | 3       | 4       | 5               | 6        | 7        | 8           | 9      | 10    | 11        | 12       | 13       | 14       | 15       | 16       |
|               | 21       | 2           |   |    | 3       | 4       | 6               | 10       | 7        | 7           | 7      | 8     | 7         | 5        |          |          |          |          |
|               | 21       | 3<br>4      |   |    |         | 13      | 15              | 8        | 6        | 4           | 4      |       |           |          |          |          |          |          |
|               | 21       | 4           |   |    |         | 9       | 13              |          |          |             | 0      | _     |           |          |          |          |          |          |
| Podospora     | 21       | 5<br>6      |   |    | 4       | 25      | 32<br>1         | 43       | 37<br>60 | 19          | 8      | 1     | 4.7       | 1.0      | •••      | ~        | •••      | ~        |
| curvula       | 21<br>21 | 6<br>7a     |   | 8  | 10      | 1       | 1<br>64         | 47<br>97 | 00       | 50          | 44     | 41    | 41<br>106 | 43<br>80 | 39<br>61 | 37<br>57 | 32<br>50 | 30<br>43 |
|               | 21       | 7a<br>7b    |   | 0  | 12<br>8 | 27<br>1 | 6               | 87<br>2  | 95<br>4  | 113<br>9    | 131    | 123   | 100       | 00       | OT       | 51       | 50       | 43       |
|               | 20<br>21 | 70<br>8a    |   |    | 0       | 10      |                 | 10       | 2<br>7   | 3           | 3<br>1 |       |           |          |          |          |          |          |
|               | 21       | 9a          |   |    |         | 2       | 7<br>6          | 17       | 3<br>17  | 21          | 22     | 23    | 17        | 19       | 18       | 13       |          |          |
|               | 16       | 9b          |   |    |         | -       | -               | -,       | ī3       | 9           | 32     | 33    | 40        | 39       | 38       | 13<br>38 | 40       | 40       |
| Saccobolus    | 21       | 6           |   |    |         |         |                 |          |          | 10          | 9      | 3     | 4         |          |          |          |          |          |
| intermedius   | 21       | 10a         |   | 16 | 12      | 10      | 14              | 13       | l        | 5           | 2      |       |           |          |          |          |          |          |
| Coprinus      | 21       | 3           |   |    | 2       |         |                 |          |          |             |        |       |           |          |          |          |          | -        |
| parvisporus   | 21       | 10a         |   |    |         |         |                 |          |          |             | 2      | 1     |           |          |          |          |          |          |
|               | 21       | 3<br>6      |   |    |         |         | 5               | 1<br>2   |          |             |        | 1     |           |          |          |          |          |          |
| Sporomia      | 21       |             |   |    |         |         |                 | 2        | 2        |             |        |       |           |          |          |          |          |          |
| minima        | 21       | 7a          |   |    | 6       | 5       |                 |          |          |             |        |       |           |          |          |          |          |          |
|               | 21       | 9a          |   |    | 9       |         |                 |          | ·····    |             |        |       |           |          |          |          |          |          |
| Coprinus      | 21       | 10a         |   |    | 28      | 19      | 12              | 20       | 10       | 6           |        |       |           |          |          |          |          |          |
| <b>sp.</b> #2 | ~-       |             |   |    |         |         | ~~              |          |          |             |        |       |           |          |          |          |          |          |
|               | 21       | 7a          |   |    |         |         | 36              | 16       | 19       | 32          | 63     | 84    | 79        | 97       | 102      | 99       | 97       | 97       |
| Ascophanus    | 21       | 9a          |   |    |         |         |                 |          |          |             | 2      |       | - 1       |          |          |          | 4        | 4        |
| ochraceous    | 16       | 9Ъ          |   |    |         |         |                 | 73       | 218      | <b>3</b> 63 | 371    | 312   | 296       | 262      | 243      | 229      | 232      | 220      |
|               | 21       | 10a         |   |    |         | 0       | 7.0             | l        | 1        | 1           | 76     | 1     | ~         | ~        |          | 6        | 2        |          |
|               | 16       | <b>10</b> Ъ |   |    |         | 8       | 13              | 20       | 20       | 28          | 16     | 15    | 9         | 5        | 5        | 6        | 5        |          |

TABLE 5--Continued

.

.

| Species                  | Temp                                                                             | Cul-                                                                           |   |   | _ | Num      | ber o    | f Wee          | ks Fr                | om St                | art o                         | f Inc                               | ubati                         | on                                 |                                  |                                         |                                               |                                          |
|--------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---|---|---|----------|----------|----------------|----------------------|----------------------|-------------------------------|-------------------------------------|-------------------------------|------------------------------------|----------------------------------|-----------------------------------------|-----------------------------------------------|------------------------------------------|
|                          | ° C.                                                                             | ture                                                                           | 1 | 2 | 3 | 4        | 5        | 6              | 7                    | 8                    | 9                             | 10                                  | ш                             | 12                                 | 13                               | 14                                      | 15                                            | 16                                       |
| Podospora<br>vestita     | 21<br>21<br>26<br>21<br>16<br>21                                                 | 7a<br>8a<br>8b<br>9a<br>9b<br>10a                                              |   |   |   | 18<br>13 | 39<br>13 | 4<br>121<br>15 | 10<br>2<br>145<br>15 | 25<br>5<br>134<br>27 | 28<br>20<br>136<br>28         | 37<br>29<br>119<br>23               | 80<br>52<br>127<br>32         | 101<br>53<br>146<br>35             | 129<br>57<br>128<br>42<br>3<br>4 | 143<br>50<br>125<br>42<br>4<br>6        | 192<br>49<br>124<br>44<br>19<br>4             | 186<br>35<br>120<br>43<br>19<br>3        |
| Saccobolus<br>neglectans | 21<br>26                                                                         | 7a<br>7b                                                                       |   |   |   | 19<br>5  | 14<br>9  | 40<br>17       | 32<br>23             | 30<br>16             | 26<br>12                      | 17<br>11                            | 13<br>10                      | 9<br>6                             | 12                               | 7                                       |                                               |                                          |
| Podospora<br>piriformis  | 21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>26<br>21<br>16<br>21<br>16<br>21 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>b<br>9<br>a<br>9<br>b<br>10<br>a<br>10<br>b |   |   |   | 5        | 16       | 10<br>1<br>13  | 20<br>4<br>67        | 9<br>8<br>114<br>8   | 1<br>6<br>8<br>1<br>153<br>10 | 2<br>6<br>13<br>1<br>1<br>162<br>10 | 6<br>1<br>2<br>1<br>148<br>15 | 1<br>9<br>2<br>1<br>1<br>144<br>32 | 4<br>1<br>3<br>1<br>143<br>61    | 3<br>4<br>2<br>1<br>1<br>2<br>123<br>80 | 3<br>21<br>2<br>2<br>2<br>2<br>8<br>118<br>92 | 1<br>25<br>2<br>1<br>8<br>8<br>112<br>88 |
| Sporormia<br>intermedia  | 21<br>21<br>21<br>21<br>21                                                       | 2<br>3<br>4<br>56                                                              |   |   |   | 4<br>2   | 2<br>3   | 13<br>4        | 12                   | 11<br>1              | 16                            | 2                                   | l                             | 7                                  |                                  |                                         |                                               | 2                                        |

| Species                                                                                  | Temp           | Cul-             |   |   |   | Numb | per of  | f Wee         | ks Fra    | om Sta   | art o    | f Inc    | ubatio   | on       |          |          |          |         |
|------------------------------------------------------------------------------------------|----------------|------------------|---|---|---|------|---------|---------------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|---------|
| Species<br>Ascophanus<br>granuliformis<br>Ascophanus<br>argenteus<br>Sporormia<br>vexans | ° C.           | ture             | 1 | 2 | 3 | 4    | 5       | 6             | 7         | 8        | 9        | 10       | 11       | 12       | 13       | 14       | 15       | 16      |
|                                                                                          | 21<br>21<br>21 | 1<br>2<br>4      |   |   |   |      | 8       | 1<br>6        | 2         |          |          |          | 10       | 10       |          |          |          |         |
|                                                                                          | 21             | 6<br>9a<br>9b    |   |   |   | 29   | 28      | 23            | 24        | 15       | 15       | 12       |          | 1        |          |          |          |         |
|                                                                                          | 10<br>21<br>16 | 98<br>10a<br>10b |   |   |   |      | 7<br>58 | 2<br>45<br>80 | 29<br>109 | 28<br>64 | 20<br>45 | 17<br>42 | 17<br>31 | 18<br>20 | 14<br>14 | 14<br>14 | 12<br>14 | 9<br>14 |
|                                                                                          | 21<br>21<br>21 | 2<br>4<br>6      |   |   |   | 3    |         | 4<br>23       |           |          |          |          |          |          |          |          |          |         |
| -                                                                                        | 21             | 5                |   |   |   |      | 1       | 4             |           |          |          |          |          |          |          |          |          |         |
| Podospora<br>sp. #1                                                                      | 21<br>21       | 36               |   |   |   |      |         | 23            | 56        | 68       | 68       | 18<br>65 | 38<br>65 | 43<br>58 | 21<br>53 | 12<br>51 | 7<br>49  | 4<br>46 |
| Sporormia<br>kansensis                                                                   | 21             | 5                |   |   |   |      |         | 4             |           |          |          |          |          |          |          |          |          |         |
| Peziza<br>granulata                                                                      | 16             | 10ъ              |   |   |   |      |         | 1             | 1         | 1        |          |          |          |          |          |          |          |         |
| Podospora<br>pilosa                                                                      | 21             | 6                |   |   |   |      |         |               | 1         |          |          |          |          |          |          |          |          |         |
| Podospora<br>sp. #2                                                                      | 21<br>21       | 2<br>5           |   |   |   |      |         |               | 13        | 17       | 29       | 24       | 2        | 1        |          |          |          |         |

TABLE 5--Continued

TABLE 5--Continued

| <b>S</b> pecies                    | Temp       | Cul-        |   |   |   | Numb | er of | Weeks | s Fron | n Sta | art o | f Inci | ubati   | on      |    |    |    |    |
|------------------------------------|------------|-------------|---|---|---|------|-------|-------|--------|-------|-------|--------|---------|---------|----|----|----|----|
|                                    | ° C.       | ture        | l | 2 | 3 | 4    | 5     | 6     | 7      | 8     | 9     | 10     | 11      | 12      | 13 | 14 | 15 | 16 |
| <b>S</b> porormia<br>megalospora   | 21         | 5           |   |   |   |      |       | 5     |        |       |       |        |         |         |    |    |    |    |
| Ascophanus<br>brunneus             | 16         | <b>10</b> Ъ |   |   |   |      |       |       |        |       | 2     | 2      | 2       | 2       | 3  | 3  | 2  | 2  |
| Saccobolus<br>depaupertus          | 21         | 10a         |   |   |   |      |       |       |        |       |       | 1      | 1       |         |    |    |    |    |
| Bombardia<br>caerulea              | 21<br>21   | 2<br>8a     |   |   |   |      |       |       |        |       |       | 30     | 42      | Щ.      | 21 |    |    | 1  |
| <b>Coprinus</b><br>hexagono sporus | 16<br>5 16 | 9Ъ<br>10Ъ   |   |   |   |      |       |       |        |       |       |        |         | 1       |    | 1  | 1  | ,  |
| Podospora<br>sp. #3                | 21<br>21   | 2<br>6      |   |   |   |      |       |       |        |       |       |        |         | 4<br>12 | 10 | 10 | 9  | 9  |
| Sporormia<br>australis             | 21         | 7a          |   |   |   |      |       |       |        |       |       |        |         |         | 17 | 17 | 17 | 17 |
| Coprinus<br>cordisporus            | 16         | 10b         |   |   |   |      |       |       |        |       |       |        | <u></u> |         | 1  |    |    |    |
| Chaetomium<br>sp. #1               | 16         | <b>10</b> b |   |   |   |      |       |       |        |       |       |        |         |         |    |    | 4  | 4  |
| Ascophanus<br>sp. #1               | 16         | 9Ъ          |   |   |   |      |       |       |        |       |       |        |         |         |    |    | 3  | 3  |
| Sporormia<br>pascua                | 21         | 6           |   |   |   |      |       |       |        |       |       |        |         |         |    | 1  |    |    |

| TABLE 6 |
|---------|
|---------|

· · . .

...

THE AVERAGE PERCENTAGE FREQUENCIES AS DETERMINED WEEKLY OF THE SPECIES FRUITING ON THE TEN CULTURES INCUBATED AT 21° C.

| Species               |      |          |             | Numb        | per of        | Weel  | s Fro | om the     | e Star   | rt of | Incut | pation       |         |                |     |       |
|-----------------------|------|----------|-------------|-------------|---------------|-------|-------|------------|----------|-------|-------|--------------|---------|----------------|-----|-------|
| 5500705               | 1    | 2        | 3           | 4           | 5             | 6     | 7     | 8          | 9        | 10    | 11    | 12           | 13      | 14             | 15  | 16    |
| *Ascobolus            |      |          |             |             |               |       |       |            |          |       |       |              |         |                |     |       |
| furfuraceous          | 13.0 | 13.6     | 12.0        | 9.6         | 7.0           | 5.2   | 4.0   | 3.6        | 2.8      | 2.8   | 2.8   | 2.6          | 2.4     | 1.8            | 1.4 | 1.2   |
| *Ascobolus            |      |          |             |             |               |       |       | <b>a</b> 1 |          |       | _     |              |         |                |     |       |
| immersus              | 34.4 | 29.6     | 21.8        | 16.0        | 12.4          | 7.6   | 4.2   | 2.4        | 1.6      | 1.2   | Т     |              |         |                |     |       |
| *Ascophanus           | -    |          |             |             |               |       |       | ~ <        | ~ <      | ~ ^   | 0.1   | 0.0          | 0.0     | 0.0            | 0.0 | 0 0   |
| holmskjoldii          | 3.0  | 10.8     | 11.4        | 11.4        | 10.4          | 11.6  | 10.6  | 8.6        | 8.6      | 9.0   | 8.4   | 8.2          | 8.0     | 8.0            | 8.0 | 8.0   |
| Coprinus              |      |          |             |             |               |       |       |            |          |       |       |              |         |                |     |       |
| pellucidus            | Т    |          | 1.2         |             |               |       |       |            |          |       |       |              |         |                |     |       |
| *Chaetomium           | _    |          | 1. 0        | 1. 1.       | 1. 1          | ~ (   | ~ (   | ~ ~        | <u> </u> | 2 (   | ~ ~   | <u> </u>     | 2 0     | ~ ^            | 2 0 | 2 0   |
| globosum              | Т    | 3.2      | 4.8         | 4.4         | 4.6           | 3.6   | 3.0   | 2.8        | 2.8      | 2.0   | 2.2   | 2.2          | 2.0     | 2.0            | 2.0 | 2.0   |
| Sordaria              |      |          |             | 4 0         | -             | ~     |       |            |          |       |       |              |         |                |     |       |
| fimicola              | 1.2  | 1.6      | 1.6         | 1.2         | Т             | Т     | Т     |            |          |       |       |              |         |                |     |       |
| Sordaria              |      | <u> </u> | ~ ~         | ~ ~         |               | 1 0   | 1 0   | 1 0        | -        |       |       |              |         |                |     |       |
| humana                | 1.6  | 2.8      | 2.0         | 2.0         | 2.0           | 1.2   | 1.2   | 1.2        | Т        |       |       |              |         |                |     |       |
| Chaetomium            |      | -        | -           | -           | -             |       |       |            | Т        | m     |       | T            |         |                |     |       |
| sp. #2                |      | Т        | Т           | Т           | Т             | Т     | Т     | Т          | T        | Т     |       | T            |         |                |     |       |
| Coprinus              |      | 1 0      | 1 4         | 20          | 2.2           | 1 0   | 1 0   | Т          | 1.2      | т     | т     | 1.2          |         | ጥ              | Т   | Т     |
| spp.                  |      | 1.0      | 1.0         | 2.0         | 2.2           | 1.2   | 1.2   | T          | Τ·Ζ      | T     | T     | 1.2          |         | T              | T   | 1     |
| *Podospora            |      | 0 1      | 16 11       | 22 0        | 24 6          | 24 6  | 22 8  | 22 h       | 20 6     | 18.8  | 17 /. | 14.8         | 88      | 4.2            | 28  | 24    |
| coronifera            |      | 0.4      | 10.4        | 22.0        | 24.0          | 24.0  | 0•ر م | 4•ر~       | 20.0     | 10.0  | -/•4  | 14.0         | 0.0     | <b>+</b> •~    | ~•• | ~ • - |
| *Podospora            |      | Т        | 2 2         | 52          | 4.4           | 2 2   | 24    | 22         | 2 /1     | 1 2   | т     |              |         |                |     |       |
| decipiens             |      | Т        | 3.2         | 3.2         | + <b>*</b> •4 | 3.2   | 4•ر   | L • L      | ~+H      | ***   | Ŧ     |              |         |                |     |       |
| *Saccobolus           |      | 2.4      | 2 2         | 2 0         | 2.2           | 2 2   | 1 8   | 1 九        | т        | т     | т     |              |         |                |     |       |
| kerverni              |      | 2.4      | 2.0         | 2.0         | 6.6           | 2.2   | τ•O   | ± • 4      | T        | Ŧ     | T     |              |         |                |     |       |
| *Podospora<br>curvula |      | ጥ        | 4 Ji        | 76          | 06            | 12 2  | 11 8  | 11 2       | 0 K      | 8 2   | 72    | 6.4          | 4.6     | 4.2            | 2.8 | 2.6   |
| Jurvula               |      | 1        | <b>+</b> •4 | <b>γ</b> •0 | 7.0           | 14.64 | 11.0  | <b>.</b>   | 2.0      | 0.2   | 1.00  | <b>○</b> •++ | · • • • | · <b>* • 4</b> | ~•0 | ~••   |

TABLE 6--Continued

| Species                     |   |   |     | Numb | er of | Week | s Fro | m the | Star | t of | Incub | ation | L   |     |     |     |
|-----------------------------|---|---|-----|------|-------|------|-------|-------|------|------|-------|-------|-----|-----|-----|-----|
| *                           | 1 | 2 | 3   | 4    | 5     | 6    | 7     | 8     | 9    | 10   | 11    | 12    | 13  | 14  | 15  | 16  |
| Saccobolus                  |   |   |     |      |       |      |       |       |      |      |       |       |     |     |     |     |
| intermedius<br>Coprinus     |   | Т | Т   | т    | Т     | Т    | т     | т     | 1.0  | Т    | т     |       |     |     |     |     |
| sp. #2<br>Sporormia         |   |   | 3.0 | 2.6  | 2.0   | 3.0  | 1.6   | 1.0   |      |      |       |       |     |     |     |     |
| ninima<br>Coprinus          |   |   | Т   | T    | Т     | Т    | Т     |       |      |      | Т     |       |     |     |     |     |
| parvisporus<br>*Podospora   |   |   | Т   |      |       |      |       |       | Т    | Т    |       |       |     |     |     |     |
| piriformis<br>Sporormia     |   |   |     | Т    | 2.2   | 4.4  | 6.0   | 7.2   | 8.0  | 8.0  | 6.4   | 7.6   | 6.4 | 6.8 | 7.0 | 6.4 |
| intermedia<br>*Ascophanus   |   |   |     | т    | Т     | Т    | Т     | Т     | T    | Т    | Т     | т     |     |     |     | Т   |
| granuliformis<br>Saccobolus |   |   |     | 1.2  | 1.2   | 1.2  | 1.0   | 1.0   | Т    | Т    | Т     | 1.0   | т   | Т   | Ŧ   | Т   |
| neglectans<br>*Podospora    |   |   |     | 1.4  | 1.0   | 2.0  | 1.6   | 1.6   | 1.6  | 1.2  | 1.0   | Т     | Т   | T   |     |     |
| vestita<br>*Ascophanus      |   |   |     | Т    | Т     | т    | 1.4   | 2.2   | 2.8  | 3.6  | 5.2   | 5.8   | 7.4 | 6.8 | 8.0 | 8.0 |
| argenteus<br>Ascophanus     |   |   |     | Т    |       | т    |       |       |      |      |       |       |     |     |     |     |
| chraceous<br>Sporormia      |   |   |     |      | 1.8   | 1.4  | 1.2   | 1.4   | 1.8  | 1.2  | 1.0   | 1.2   | 1.4 | 1.4 | 1.8 | 1.4 |
| vexans<br>*Podospora        |   |   |     |      | Т     | т    |       |       |      |      |       |       |     |     |     |     |
| sp. #1<br>Sporormia         |   |   |     |      |       | 1.2  | 2.0   | 2.2   | 2.2  | 3.0  | 3.2   | 3.4   | 3.0 | 2.8 | 2.4 | 2.0 |
| kansensis                   |   |   |     |      |       | Т    |       |       |      |      |       |       |     |     |     |     |

 $\boldsymbol{\omega}$ 

TABLE 6--Continued

| Species                          |   |   |   | Num | ber o | f Wee | ks Fro | om the | Star | t of | Incub | ation | 1  |    |    |    |
|----------------------------------|---|---|---|-----|-------|-------|--------|--------|------|------|-------|-------|----|----|----|----|
| -                                | 1 | 2 | 3 | 4   | 5     | 6     | 7      | 8      | 9    | 10   | 11    | 12    | 13 | 14 | 15 | 16 |
| Podospora                        |   |   |   |     |       |       |        |        |      |      |       |       |    |    |    |    |
| oilosa                           |   |   |   |     |       |       | Т      |        |      |      |       |       |    |    |    |    |
| Podospora<br>sp. #2<br>Sporormia |   |   |   |     |       |       | Т      | 1.2    | 1.6  | 1.4  | т     | т     |    |    |    |    |
| egalospora<br>Bombardia          |   |   |   |     |       |       |        | Т      |      |      |       |       |    |    |    |    |
| aerulea<br>Saccobolus            |   |   |   |     |       |       |        |        |      | Т    | 1.6   | 1.4   | Т  |    |    | Т  |
| epauperatus<br>Podospora         |   |   |   |     |       |       |        |        |      | Т    | Т     |       |    |    |    |    |
| p. #3<br>Sporormia               |   |   |   |     |       |       |        |        |      |      |       | Т     | Т  | Т  | Т  | Т  |
| ustralis<br>Sporormia            |   |   |   |     |       |       |        |        |      |      |       |       | Т  | Т  | Т  | Т  |
| ascua                            |   |   |   |     |       |       |        |        |      |      |       |       |    | Т  |    |    |

\* Major Species

 $\frac{1}{2}$ 

## TABLE 7

THE AVERAGE ABSOLUTE DENSITY AS DETERMINED WEEKLY OF THE SPECIES FRUITING ON THE TEN CULTURES INCUBATED AT 21° C.

|                                         |       |      |                                        | Nur    | box of   | - Wook | e from                                        | the St | ant of | f Tra   | hati.          |      |      |      |      |      |
|-----------------------------------------|-------|------|----------------------------------------|--------|----------|--------|-----------------------------------------------|--------|--------|---------|----------------|------|------|------|------|------|
| Species                                 | 1     | 2    | 3                                      | 4      | 5        | 6      | 7                                             | 8      | 9      | 10      | 11             | 12   | 13   | 14   | 15   | 16   |
| *Ascobolus                              |       |      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ****** |          |        | n, t <sub>er e</sub> ter stranger nager en ge | ****   |        | <b></b> |                |      |      |      |      |      |
| furfuraceous                            | 15.8  | 19.7 | 11.5                                   | 7.9    | 5.7      | 4.5    | 3.5                                           | 3.1    | 2.5    | 2.4     | 2.4            | 2.2  | 2.1  | 1.7  | 1.2  | 1.0  |
| *Ascobolus                              | 300 0 | 10 1 | 1.00 1.                                |        | <u> </u> | 10 0   |                                               | ~ (    | - /    |         | <b>~</b> +     |      |      |      |      |      |
| immersus                                | 100.2 | 68.0 | 47.4                                   | 36.5   | 28.5     | 10.7   | 4.7                                           | 2.6    | T•0    | 1.2     | Т <del>т</del> |      |      |      |      |      |
| *Ascophamus<br>holmskjoldii<br>Coprinus | 14.0  | 41.8 | 40.7                                   | 37.8   | 32.5     | 28.9   | 25.4                                          | 23.0   | 22.7   | 21.8    | 21.1           | 20.5 | 19.3 | 18.6 | 17.2 | 17.3 |
| pellucidus<br>*Chaetomium               | Т     |      | Т                                      |        |          |        |                                               |        |        |         |                |      |      |      |      |      |
| globo sum<br>Sordaria                   | 3.8   | 19.7 | 28.7                                   | 31.2   | 29.5     | 29.1   | 27.2                                          | 23.5   | 22.4   | 21.1    | 20.1           | 19.7 | 19.7 | 19.7 | 19.7 | 19.7 |
| fimicola<br>Sordaria                    | 5.6   | 6.0  | 6.0                                    | 5.5    | 3.8      | 2.4    |                                               |        |        |         |                |      |      |      |      |      |
| humana<br>Chaetomium                    | 1.0   | 3.0  | 2.2                                    | 2.1    | 1.6      | Т      | T                                             | T      | T      |         |                |      |      |      |      |      |
| sp. #2<br>Coprinus                      |       | Τ    | Т                                      | T      | Т        | T      | Т                                             | Т      | Т      | Т       |                | T    |      |      |      |      |
| spp.<br>*Podo spora                     |       | T    | 2.1                                    | 2.8    | 1.7      | 1.0    | Τ.                                            | Т      | T      | T       | T              | Т    |      | T    | T    | Т    |
| coronifera<br>*Podo spora               |       | 37.6 | 89.8                                   | 112.6  | 145.8    | 140.1  | 131.9                                         | 119.7  | 108.2  | 98.4    | 82.0           | 60.0 | 21.8 | 4.1  | 2.8  | 2.5  |
| decipiens<br>*Saccobolus                |       | Т    | 4.9                                    | 8.2    | 8.3      | 6.7    | 5.5                                           | 4.0    | 2.5    | 1.1     | Т              |      |      |      |      |      |
| kerverni                                |       | 15.1 | 17.7                                   | 15.7   | 12.8     | 10.5   | 10.4                                          | 6.8    | 5.5    | 5.4     | 5.3            |      |      |      |      |      |

 $\frac{\omega}{\omega}$ 

TABLE 7--Continued

| Species                     |   |     |     | Numb | er of       | Weeks | from t | he Sta     | rt of | Incu             | batio        | n                  |             |             |                                       |      |
|-----------------------------|---|-----|-----|------|-------------|-------|--------|------------|-------|------------------|--------------|--------------------|-------------|-------------|---------------------------------------|------|
| ±                           | 1 | 2   | 3   | 4    | 5           | 6     | 7      | 8          | 9     | 10               | 11           | 12                 | 13          | 14          | 15                                    | 16   |
| *Podospora                  |   |     |     |      |             |       |        |            |       |                  |              |                    |             |             | · · · · · · · · · · · · · · · · · · · |      |
| curvula                     |   | Т   | 1.9 | 8.2  | 14.0        | 23.5  | 22.5   | 21.7       | 21.7  | 19.6             | 17.1         | 14.7               | 11.8        | 10.7        | 8.2                                   | 7.3  |
| Saccobolus                  |   | - / |     |      | <b>-</b> J. |       | _      | <b>.</b> . |       | -                | -            |                    |             |             |                                       |      |
| intermedius                 |   | 1.6 | 1.2 | 1.0  | 1.4         | 1.3   | T      | 1.5        | 1.1   | Т                | T            |                    |             |             |                                       |      |
| Coprinus<br>sp. #2          |   |     | 2.8 | 1.9  | 1.2         | 2.0   | 1.0    | т          |       |                  |              |                    |             |             |                                       |      |
| Sporormia                   |   |     | 2.0 | 1. Y | T.C         | 2.0   | T.O    | 1          |       |                  |              |                    |             |             |                                       |      |
| minima                      |   |     | 1.5 | Т    | Т           | т     | Т      |            |       | Т                |              |                    |             |             |                                       |      |
| Coprinus                    |   |     | _•• | -    | -           | -     | -      |            |       | -                |              |                    |             |             |                                       |      |
| parvisporus                 |   |     | Т   |      |             |       |        |            | т     | Т                |              |                    |             |             |                                       |      |
| *Podospora                  |   |     |     |      |             |       |        |            |       |                  |              |                    |             |             |                                       |      |
| piriformis                  |   |     |     | Т    | 1.6         | 2.4   | 9.1    | 13.1       | 16.9  | 18.4             | 15.8         | 15.8               | 15.1        | 13.4        | 14.8                                  | 14.9 |
| Sporormia                   |   |     |     | _    | _           | • •   |        |            | - /   | _                | _            | _                  |             |             |                                       |      |
| intermedia                  |   |     |     | Т    | Т           | 1.7   | 1.2    | 1.2        | 1.6   | $\mathbf{T}_{i}$ | Τ            | Т                  |             |             |                                       |      |
| Ascophanus<br>granuliformis |   |     |     | 2.9  | 4.3         | 7.5   | 5.5    | 4.3        | 25    | 2.9              | 2 7          | 1.4                | ם <i>ו</i>  | ין ד        | 1.2                                   | ጥ    |
| Saccobolus                  |   |     |     | 2.9  | ر 4• )      | 7•2   | フ・フ    | 4• )       | 5.5   | 2.7              | 2.1          | .⊥• <sup>.</sup> * | ⊥• <i>4</i> | <b>⊥</b> •4 | 1.2                                   | Ţ    |
| neglectans                  |   |     |     | 1.9  | 1.4         | 4.0   | 2.1    | 2.0        | 2.6   | 1.7              | 1.3          | ጥ                  | 1.2         | ጥ           |                                       |      |
| *Podospora                  |   |     |     | -• / |             | •••   |        | ~.         |       |                  | -• )         | -                  | -•~         | -           |                                       |      |
| vestita                     |   |     |     | 1.2  | 1.3         | 1.9   | 2.7    | 5.7        | 7.6   | 8.9              | 16.4         | 18.9               | 23.2        | 24.1        | 28.9                                  | 26.7 |
| <b>Asco</b> phanus          |   |     |     |      | -           |       |        | -          |       |                  |              |                    | -           |             |                                       |      |
| argenteus                   |   |     |     | Т    |             | 2.7   |        |            |       |                  |              |                    |             |             |                                       |      |
| *Ascophanus                 |   |     |     |      |             | _     |        |            |       | •                |              |                    |             |             |                                       |      |
| ochraceous                  |   |     |     |      | 3.6         | 1.7   | 2.0    | 3•3        | 6.5   | 8.5              | 7.9          | 9.7                | 10.2        | 9.9         | 10.3                                  | 10.1 |
| Sporormia                   |   |     |     |      | m           | m     |        |            |       |                  |              |                    |             |             |                                       |      |
| vexans<br>*Podo spora       |   |     |     |      | Т           | T     |        | 1          |       |                  |              |                    |             |             |                                       |      |
| sp. #1                      |   |     |     |      |             | 2.3   | 5.6    | 6.8        | 68    | 8 2              | <b>1</b> 0 2 | ר חר               | <b>n</b> 1  | 6.3         | БŔ                                    | 5.0  |

 $\frac{1}{2}$ 

TABLE 7--Continued

| Species                                       |   |   |   | Nur | nber o | f Weeks | from | the St | art o | f Inc | ubatio | on  |     |          |     |     |
|-----------------------------------------------|---|---|---|-----|--------|---------|------|--------|-------|-------|--------|-----|-----|----------|-----|-----|
|                                               | 1 | 2 | 3 | 4   | 5      | 6       | 7    | 8      | 9     | 10    | 11     | 12  | 13  | 14       | 15  | 16  |
| Sporormia<br>kansensis<br>Podospora<br>pilosa |   |   |   |     |        | Т       | Т    |        |       |       |        |     |     |          |     |     |
| Podospora<br>sp. #2<br>Sporormia              |   |   |   |     |        |         | 1.3  | 1.7    | 2.9   | 2.4   | T      | Т   |     |          |     |     |
| negalospora<br>Bombardia<br>saerulea          |   |   |   |     |        |         |      | Т      |       | 3.0   | 4.2    | 4.4 | 2.1 |          |     | T   |
| Saccobolus<br>lepauperatus<br>Podospora       |   |   |   |     |        |         |      |        |       | Т     | T      |     |     |          |     |     |
| p. #3<br>Sporormia                            |   |   |   |     |        |         |      |        |       |       |        | 1.6 |     | 1.0      |     | T   |
| ustralis<br>Sporormia<br>pascua               |   |   |   |     |        |         |      |        |       |       |        |     | 1.7 | 1.7<br>T | 1.7 | 1.7 |

\*Major Species

T\* - An average of less than 1.0 fruiting bodies per culture (Trace)

## TABLE 8

# THE AVERAGE RELATIVE DENSITY AS DETERMINED WEEKLY OF THE SPECIES FRUITING ON THE TEN CULTURES INCUBATED AT 21° C.

| Species                    |      |      |      | Numbe | er of | Week | s Fron | 1 the | Star | t of : | Incuba | ation |      |      |      |      |                                                           |
|----------------------------|------|------|------|-------|-------|------|--------|-------|------|--------|--------|-------|------|------|------|------|-----------------------------------------------------------|
| Species                    | 1    | 2    | 3    | 4     | 5     | 6    | 7      | 8     | 9    | 10     | 11     | 12    | 13   | 14   | 15   | 16   | n - 16 16 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 |
| *Ascobolus                 |      |      |      |       |       |      |        |       |      |        |        |       |      |      |      |      |                                                           |
| furfuraceous<br>*Ascobolus | 11.2 | 9.1  | 4.4  | 2.8   | 1.9   | 1.6  | 1.3    | 1.3   | 1.0  | 1.1    | 1.1    | 1.1   | 1.5  | 1.5  | 1.1  | Т    |                                                           |
| immersus<br>*Ascophanus    | 71.3 | 31.9 | 18.3 | 13.1  | 9.5   | 3.7  | 1.8    | 1.1   | Т    | Т      | Τ      |       |      |      |      |      |                                                           |
| holmskjoldii<br>Coprinus   | 10.0 | 19.4 | 15.7 | 13.5  | 10.8  | 10.0 | 9.5    | 9•3   | 9.5  | 9.6    | 10.1   | 10.6  | 14.0 | 16.4 | 15.3 | 16.0 |                                                           |
| pellucidus<br>*Chaetomium  | Т    |      | T    |       |       |      |        |       |      |        |        |       |      |      |      |      |                                                           |
| globosum<br>Sordaria       | 2.7  | 9.1  | 11.1 | 11.2  | 9.8   | 10.1 | 10.2   | 9.5   | 9.4  | 9•3    | 9.5    | 10.4  | 14.3 | 17.4 | 17.5 | 18.2 |                                                           |
| fimicola<br>Soradaria      | 4.0  | 2.8  | 2.3  | 2.0   | 1.3   | 1.3  | Т      |       |      |        |        |       |      |      |      |      |                                                           |
| humana<br>Chaetomium       | Т    | 1.4  | Т    | T     | Т     | T    | Τ      | Т     | Т    |        |        |       |      |      |      |      |                                                           |
| sp. #2<br>Coprinus         |      | Т    | Т    | Т     | T     | T    | Т      | т     | Т    | Т      |        | Т     |      |      |      |      |                                                           |
| spp.<br>*Podospora         |      | Т    | Τ    | 1.0   | Т     | T    | Т      | Т     | Т    | T      | Т      | Т     |      | Т    | Т    | Т    |                                                           |
| coronifera<br>*Podospora   |      | 17.5 | 34•7 | 40.3  | 38.6  | 48.6 | 49.3   | 48.4  | 45.4 | 43.4   | 39•5   | 36.0  | 15.8 | 3.6  | 2.5  | 2.3  |                                                           |
| decipiens<br>*Saccobolus   |      | T    | 1.9  | 2.9   | 2.8   | 2.3  | 2,1    | 1.6   | 1.0  | Т      | T      |       |      |      |      |      |                                                           |
| kerverni                   |      | 7.0  | 6.8  | 5.6   | 4.3   | 3.6  | 3•9    | 2.7   | 2.3  | 2.4    | 2.5    |       |      |      |      |      |                                                           |
| *Podospora<br>curvula      |      | т    | Т    | 2.9   | 4.6   | 8.1  | 8.4    | 8.8   | 9.1  | 8.6    | 8.1    | 7.6   | 8.6  | 9.4  | 7.3  | 6.7  |                                                           |

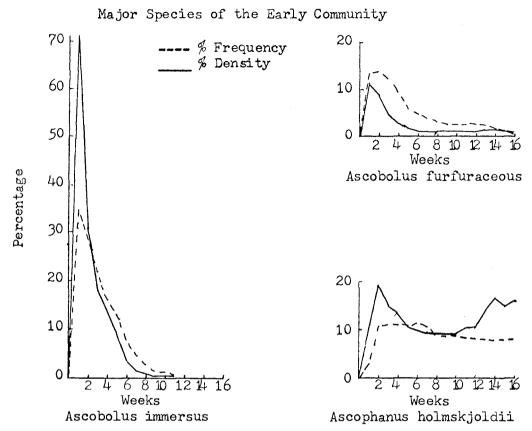
TABLE 8--Continued

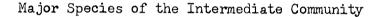
| 0             |   | _ |     | Number       | c of         | Weeks        | From         | the          | Start | of           | Incuba       | tion         |      |      |      |      |
|---------------|---|---|-----|--------------|--------------|--------------|--------------|--------------|-------|--------------|--------------|--------------|------|------|------|------|
| Species       | 1 | 2 | 3   | 4            | 5            | 6            | 7            | 8            | 9     | 10           | 11           | 12           | 13   | 14   | 15   | 16   |
| Saccobolus    |   |   |     |              |              |              |              |              |       |              |              |              |      |      |      |      |
| Intermedius   |   | Т | Т   | Ť            | т            | Т            | т            | Т            | т     | Т            | Т            |              |      |      |      |      |
| Coprinus      |   |   |     |              |              |              |              |              |       |              |              |              |      |      |      |      |
| sp. #2        |   |   | 1.1 | Т            | $\mathbf{T}$ | Т            | Т            | Т            |       |              |              |              |      |      |      |      |
| Sporormia     |   |   |     |              |              |              |              |              |       |              |              |              |      |      |      |      |
| ninima        |   |   | т   | т            | Т            | $\mathbf{T}$ | $\mathbf{T}$ |              |       | $\mathbf{T}$ |              |              |      |      |      |      |
| Coprinus      |   |   |     |              |              |              |              |              |       |              |              |              |      |      |      |      |
| parvisporus   |   |   | Т   |              |              |              |              |              | Т     | Т            |              |              |      |      |      |      |
| *Podospora    |   |   |     |              |              |              |              |              |       |              |              |              |      |      |      |      |
| oiriformis    |   |   |     | Т            | Т            | Т            | 3.4          | 5.3          | 7.1   | 8.1          | 7.5          | 8.4          | 10.9 | 11.8 | 13.1 | 13.7 |
| Sporormia     |   |   |     |              |              |              |              |              |       |              |              |              |      |      |      |      |
| Intermedia    |   |   |     | т            | $\mathbf{T}$ | Т            | Т            | $\mathbf{T}$ | т     | Т            | T            | $\mathbf{T}$ |      |      |      | Т    |
| *Ascophanus   |   |   |     |              |              |              |              |              |       |              |              |              |      |      |      |      |
| granuliformis |   |   |     | 1.0          | 1.4          | 2.6          | 2.1          | 1.7          | 1.5   | 1.3          | 1.3          | 1.5          | 1.0  | 1.2  | 1.1  | Т    |
| Saccobolus    |   |   |     |              |              |              |              |              |       |              |              |              |      |      |      |      |
| neglectans    |   |   |     | Т            | Т            | 1.4          | 1.2          | 1.2          | 1.1   | $\mathbf{T}$ | $\mathbf{T}$ | Τ            | Т    | Т    |      |      |
| *Podospora    |   |   |     |              |              |              |              |              |       |              |              |              |      |      |      |      |
| restita       |   |   |     | $\mathbf{T}$ | Т            | Т            | 1.0          | 2.3          | 3.2   | 2.9          | 7.8          | 9.7          | 16.8 | 21.2 | 25.6 | 24.6 |
| Ascophanus    |   |   |     |              |              |              | ·            |              |       |              |              |              |      |      |      |      |
| argenteus     |   |   |     | т            |              | Т            |              |              |       |              |              |              |      |      |      |      |
| *Ascophanus   |   |   |     |              |              |              |              |              |       |              |              |              |      |      |      |      |
| chraceous     |   |   |     |              | 1.2          | $\mathbf{T}$ | Т            | 1.3          | 2.7   | 3.8          | 3.8          | 5.3          | 7.4  | 8.7  | 9.1  | 9.3  |
| Sporormia     |   |   |     |              |              |              |              |              |       |              |              |              |      |      |      |      |
| vexans        |   |   |     |              | Т            | Т            |              |              |       |              |              |              |      |      |      |      |
| *Podospora    |   |   |     |              |              |              |              |              |       |              |              |              |      |      |      |      |
| sp. #1        |   |   |     |              |              | Т            | 2.1          | 2.7          | 2.9   | 3.7          | 4.9          | 5.2          | 5.4  | 5.6  | 5.0  | 4.6  |
| Sporormia     |   |   |     |              |              |              |              |              |       |              |              |              |      |      |      |      |
| ansensis      |   |   |     |              |              | Т            |              |              |       |              |              |              |      |      |      |      |
| Podospora     |   |   |     |              |              |              |              |              |       |              |              |              |      |      |      |      |
| oilosa        |   |   |     |              |              |              | т            |              |       |              |              |              |      |      |      |      |

| TABLE | 8Continued |
|-------|------------|
|-------|------------|

| Species      |   |   |   | Number | of | Weeks | From | the          | Start | of           | Incuba | tion |     |              |     |              |
|--------------|---|---|---|--------|----|-------|------|--------------|-------|--------------|--------|------|-----|--------------|-----|--------------|
| Dheeres      | 1 | 2 | 3 | 4      | 5  | 6     | 7    | 8            | 9     | 10           | 11     | 12   | 13  | 14           | 15  | 16           |
| Podospora    |   |   |   |        |    |       |      |              |       |              |        |      |     |              |     |              |
| sp. #2       |   |   |   |        |    |       | Т    | $\mathbf{T}$ | 1.2   | 1.1          | Т      | Т    |     |              |     |              |
| Sporormia    |   |   |   |        |    |       |      |              |       |              |        |      |     |              |     |              |
| negalospora  |   |   |   |        |    |       |      | Т            |       |              |        |      |     |              |     |              |
| Bombardia    |   |   |   |        |    |       |      |              |       |              |        |      |     |              |     |              |
| aerulea      |   |   |   |        |    |       |      |              |       | 1.3          | 2.0    | 2.3  | 1.5 |              |     | $\mathbf{T}$ |
| Saccobolus   |   |   |   |        |    |       |      |              |       |              |        |      |     |              |     |              |
| lepauperatus |   |   |   |        |    |       |      |              |       | $\mathbf{T}$ | Т      |      |     |              |     |              |
| Podospora    |   |   |   |        |    |       |      |              |       |              |        |      |     |              |     |              |
| sp. #3       |   |   |   |        |    |       |      |              |       |              |        | Т    | Т   | Т            | т   | Т            |
| Sporormia    |   |   |   |        |    |       |      |              |       |              |        |      |     |              |     |              |
| ustralis     |   |   |   |        | ,  |       |      |              |       |              |        |      | 1.2 | 1.5          | 1.5 | 1.6          |
| Sporormia    |   |   |   |        |    |       |      |              |       |              |        |      |     | _            |     |              |
| ascua        |   |   |   |        |    |       |      |              |       |              |        |      |     | $\mathbf{T}$ |     |              |

\* Major Species


 $^{30}_{80}$ 


are rare species. In Figure 2 the percentage frequency and relative density of the major species are presented in line graphs. By comparing the peak values of the percentage frequency and relative density of each major species with those of the other major species, it is possible to arrange the species into three successional communities. The period of each community on the cultures is based on the duration of the dominance of the dominant species of the communities.

## The Early Community

The period of the early community extended from the start of incubation to the second week. This community was characterized by the presence of three discomycete species, <u>Ascobolus immersus</u>, <u>Ascobolus furfuraceous</u>, and <u>Ascophanus holmskjoldii</u>. These three species were the only major species to reach a peak in their absolute density, relative density and percent frequency during this period (Fig. 2 and Tables 6-8).

On the basis of its frequency and density <u>Ascobolus immersus</u> was the dominant species of this community (Fig. 2 and Tables 6-8). This species averaged per culture a maximum absolute density of 100.2 ascocarps, a maximum relative density of 71.3% and a maximum percent frequency of 34.4% during this period of this community (Tables 6-8). Of all the species fruiting on cultures 1-6 and 7a-10a, <u>A. immersus</u> reached the highest relative density and percentage frequency and was second only in absolute density to <u>Podospora coronifera</u> which averaged 145.8 ascocarps per culture at its maximum absolute density (Table 4). In both percentage frequency and relative density <u>A. immersus</u> had values at least two and one-half times greater than either of the





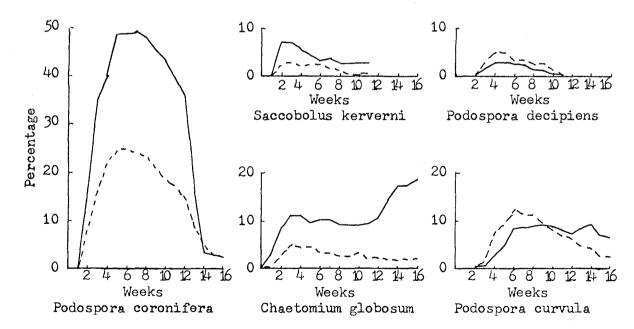
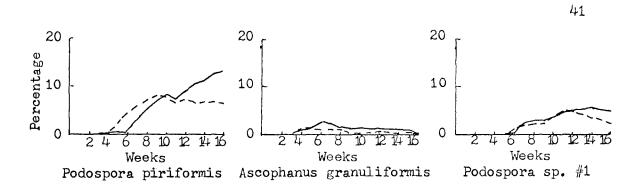
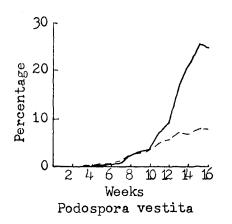





Fig. 2--Comparison of the summarized relative density and percentage frequency values of major species fruiting at 21° C. on cultures 1-6 and 7a-10a.



Major Species of the Late Community



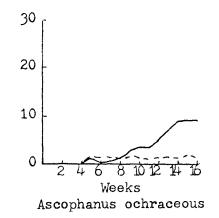
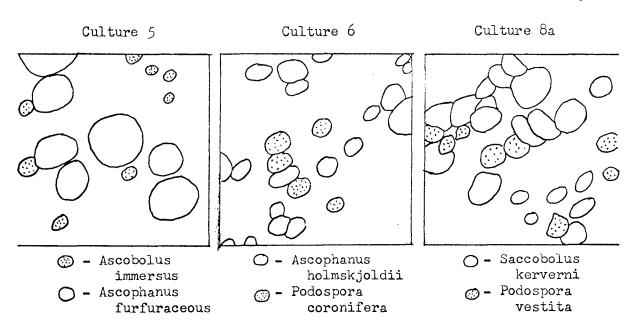



Fig. 2--Continued


other two major species, <u>Ascobolus furfuraceous</u> and <u>Ascophanus</u> <u>holmskjoldii</u>, of this community (Tables 6 and 8). The relative sizes of these four species can be seen in Figure 3.

Both <u>A. furfuraceous</u> and <u>A. holmskjoldii</u> persisted on the cultures throughout the incubation period. <u>A. holmskjoldii</u> reached a second, though lower, peak in its relative density during the fourteenth week. This second rise in its relative density was due to the persistence of large numbers of ascocarps of <u>A. holmskjoldii</u> on culture 6 and by late fruiting on culture 10a (Table 5).

There were three minor species in the early community: <u>Sordaria</u> <u>fimicola</u>, <u>Sordaria humana</u>, and <u>Saccobolus intermedius</u>. These had constancy percentages on the cultures incubated at 21° C. of 20% or less as compared to 80% for <u>Ascobolus immersus</u> and 60% for both <u>Ascobolus furfuraceous and Ascophanus holmskjoldii (Table 2)</u>.

Coprinus sp. #1 was the only rare species to fruit on cultures 1-6 and 7a-10a in the early community.

Five major species, which started to fruit during the period of the early community, reached their greatest absolute and relative densities and percentage frequencies during the period of the succeeding community (Table 6-8 and Fig. 2). These five species were <u>Chaetomium globosum</u>, <u>Podospora coronifera</u>, <u>Podospora decipiens</u>, <u>Saccobolus kerverni</u>, and <u>Podospora curvula</u>. During the second week of incubation the relative densities of <u>P. coronifera</u> and <u>C. globosum</u> were approximately equal to the relative densities of <u>Ascophanus</u> <u>holmskjoldii</u> and <u>Ascobolus furfuraceous</u>, respectively.



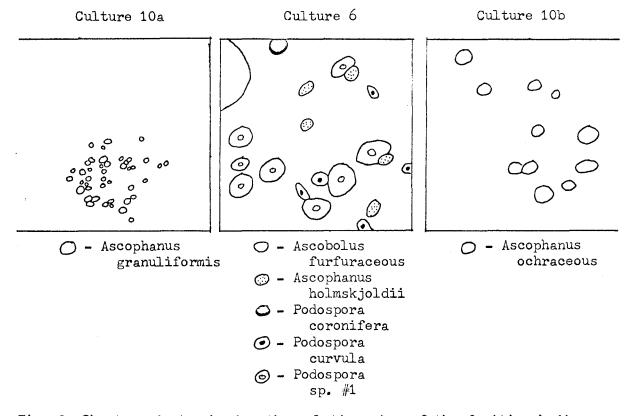



Fig. 3--Chart quadrats showing the relative size of the fruiting bodies of some of the major species fruiting on cultures 1-10b. The quadrats were 5 mm square. They are drawn here 50 mm square or 10X normal size.

#### The Intermediate Community

The period of the intermediate community extended from the third to the twelfth week. This community was characterized principally by pyrenomycete species. Of the eight major species in this community, six (<u>Podospora coronifera, Podospora decipiens, Podospora curvula</u>, <u>Chaetomium globosum, Podospora piriformis</u>, and <u>Podospora sp. #1</u>) are Pyrenomycetes (fig. 2). The two remaining species, <u>Saccobolus kerverni</u> and <u>Ascophanus granuliformis</u> are Discomycetes (Fig. 2).

<u>Podospora coronifera</u> was the dominant species in this community (Fig. 2). Unlike <u>Ascobolus immersus</u>, the dominant species of the early community, <u>P. coronifera</u> persisted on the cultures and thus retained its dominance for a larger period of time. Its dominance diminished rapidly during the final four weeks of incubation, however (Fig. 2). This rapid decrease was caused principally by the fungus fly larvae which had disturbed 100% of the quadrats on cultures 1-5 by the fourteenth week of incubation (Table 4).

The next most important species of this community were <u>Podospora</u> <u>curvula</u>, <u>Podospora piriformis</u> and <u>Chaetomium globosum</u>. These three species had frequency peaks approximately one-half, one-third, and one-fifth, respectively, that of <u>Podospora coronifera</u> (Fig. 2). Although <u>Chaetomium globosum</u> and <u>Podospora piriformis</u> reached their maximum percentage density during the period of the late community (Fig. 2), they and <u>P. curvula</u> each reached their maximum absolute density on the cultures during the period of this community (Table 7). When compared at the time of their maximum absolute densities, <u>P</u>. <u>coronifera</u> had an absolute density that was approximately  $4\frac{1}{2}$ , 6 and 8

times the absolute densities of <u>C</u>. <u>globosum</u>, <u>P</u>. <u>curvula</u>, and <u>P</u>. <u>piriformis</u> respectively (Table 7). The relative sizes of most of these species can be seen in Figure 3.

Of the eight major species in this community, six fruited most abundantly during the first half (between the third and seventh week) of the period of this community. These six species were <u>Podospora</u> <u>coronifera</u>, <u>Podospora curvula</u>, <u>Chaetomium globosum</u>, <u>Podospora decipiens</u>, <u>Saccobolus kerverni</u> and <u>Ascophanus granuliformis</u>. The two major species which fruited most abundantly during the last half (between the seventh and the thirteenth week) of the period were <u>Podospora piriformis</u> and <u>Podospora</u> sp. #1. Seven of these major species had constancy percentages of 40% or greater: <u>P. piriformis</u> (90%), <u>P. curvula</u> (80%), <u>P. decipiens</u> (70%), <u>A. granuliformis</u> (60%), <u>P. coronifera</u> (50%), <u>S</u>. kerverni (40%), and C. globosum (40%) (Table 2). The remaining species Podospora sp. #1 had a constancy of 20%.

Sixteen minor species were in this community (Table 8). Four were basidiomycete (<u>Coprinus</u>) species, ten were pyrenomycete species and two were discomycete species. The basidiomycete species were <u>Coprinus</u> spp. (probably a mixture of immature coprinus species), <u>Coprinus parvisporus, Coprinus pellucidus</u>, and <u>Coprinus</u> sp. #2. The pyrenomycete species were <u>Sporormia minima</u>, <u>Sporormia neglectans</u>, <u>Sporormia vexans, Sporormia kansensis, Sporormia megalospora, Sporormia intermedia, Podospora sp. #2, Podospora sp. #3, <u>Chaetomium</u> sp. #2 and <u>Bombardia caerulea</u>. The discomycete species were <u>Ascophanus argenteus</u> and <u>Saccobolus depauperatus</u>. Ten of these minor species fruited most abundantly during the first half of the period of the intermediate</u> community. These ten species were <u>Coprinus</u> spp., <u>Coprinus</u> sp. #2 <u>C. parvisporus</u>, <u>C. pellucidus</u>, <u>S. minima</u>, <u>S. neglectans</u>, <u>S. vexans</u>, <u>S. kansensis</u>, <u>S. intermedia</u>, and <u>A. argenteus</u> (Table 7). The six remaining minor species fruited most abundantly during the last half of the period. These six species were <u>S. megalospora</u>, <u>Podospora</u> sp. #2 and #3, <u>Chaetomium</u> sp. #2, <u>B. caerulea</u> and <u>S. depauperatus</u> (Table 7).

Of these sixteen minor species, four species had constancy values over 20%: <u>Sporormia intermedia</u> (50%), <u>Sporormia minima</u> (40%) <u>Chaetomium</u> sp. (40%), and <u>Ascophanus argenteus</u> (30%) (Table 2). (Although <u>Coprinus</u> spp. had a constancy of 80% it was excluded from this list because it is probably a mixture of species.) The relatively high constancy values of these species indicate that they may have a relatively regular occurrence on the cow platters from Santaquin Canyon, although on each platter they may be represented by only a few fruiting bodies.

Twelve rare species fruited on the cultures incubated at 21° C. Ten of these species fruited during the period of the intermediate community. Of these ten species <u>Lasiobolus equinis</u>, <u>Coprinus fimetarius</u>, <u>Ascophanus microsporus</u>, <u>Ascophanus argenteus var. macrosporus</u>, <u>Chaetomium sp. #1 and Peziza granulata</u> fruited during the first half of this period. During the last half of the same period <u>Conocybe</u> <u>bulbifera</u>, <u>Coprinus stercorarius</u>, <u>Coprinus</u> sp. #3 and <u>Ascophanus carneus</u> fruited.

During this period the major species of the succeeding community, <u>Podospora vestita</u> and <u>Ascophanus ochraceous</u>, started to fruit on the cultures. The three major species of the early community also extended

into the intermediate community. Although the relative density of <u>Ascobolus immersus</u> and <u>Ascobolus furfuraceous</u> decreased rapidly to reach a level of 1% at about the eighth week, the relative density of <u>Ascophanus holmskjoldii</u> only decreased to a level of 10% (Fig. 2). Thus <u>A. holmskjoldii</u>, on the basis of its relative density during the period of the intermediate community, should be considered with <u>Podospora piriformis</u>, <u>Chaetomium globosum</u>, and <u>Podospora curvula</u> as one of the important species of this community.

## The Late Community

The period of the late community extended from the thirteenth week to the end of the incubation period and as characterized by the dominance of <u>Podospora vestita</u> in absolute density, relative density, and percentage frequency (Tables 6-8). The maximum absolute density and relative density attained by <u>Ascophanus ochraceous</u>, the only other major species to reach its absolute density and percentage frequency peaks during this community, were approximately one-third of the maximum absolute density and relative density reached by <u>P. vestita</u> (Tables 6-8).

<u>Podospora vestita</u>, <u>Ascophanus ochraceous</u> and two minor species, <u>Sporormia australis</u> and <u>Sporormia pascua</u>, were the only species which reached their greatest abundance during the period of the late community (Table 7). Both of these minor species had a constancy of 10% as compared to 40% for <u>P. vestita</u> and 30% for <u>A. ochraceous</u> (Table 2). These four species at their peak relative densities only composed 38% of the ascomycete and basidiomycete vegetation of this community. The remainder of this vegetation was composed of the species persisting on

the cultures from the early and intermediate communities. During the fourteenth week of incubation four of these species, <u>Ascophanus</u> <u>holmskjoldii</u> of the early community and <u>Podospora piriformis</u>, <u>Chaetomium</u> <u>globosum</u>, and <u>Podospora curvula</u> of the intermediate community each composed an equal or greater percentage of the ascomycete and basidiomycete vegetation of the late community than did <u>Ascophanus ochraceous</u> (Fig. 5 and Table 8).

<u>Pleospora</u> sp. #1 was the only rare species that fruited in the late community.

## Insect Disturbance

On the last page of Table 4 the percentage frequency of the quadrats disturbed by burrowing of the fungus fly larvae is presented. The larvae disturbance started as early as the scond week of incubation and by the fourteenth week all the quadrats on cultures 1-5 were disturbed. Only culture 6 of the first experiment and the eight cultures of the second experiment received no insect disturbance.

## Effect of Incubation under Different Temperature

The purpose of part of this study was to investigate what effect incubation under different temperatures might have on the fruiting patterns of the coprophilous Ascomycetes and Basidiomycetes. The data in Table 9 show the general response in the number of fruiting bodies produced collectively by species fruiting on the cultures incubated at each of the three different temperatures,  $26^{\circ}$  C.,  $21^{\circ}$  C., and  $16^{\circ}$  C. These data show that when presented collectively, the highest density reached by the species growing at  $21^{\circ}$  C. was two weeks

#### TABLE 9

AVERAGE NUMBER OF FRUITING RODIES PER CULTURE SETS INCUBATED AT 21° C., 26° C., AND 16° C.

| Culture                  |           |     |           |                   |           |           |           |            |     |           |           |           |           |           |           |           |           |
|--------------------------|-----------|-----|-----------|-------------------|-----------|-----------|-----------|------------|-----|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Set                      | <u>с.</u> | 1   | 2         | 3                 | Ľ;        | 5         | 6         | 7          | 8   | 9         | 10        | 11        | 12        | 13        | 14        | 15        | 16        |
| <b>1_10</b> a<br>7b & 8b | 21<br>26  | 141 | 215<br>62 | <b>25</b> 9<br>58 | 280<br>62 | 300<br>75 | 289<br>98 | 267<br>120 | 247 | 238<br>95 | 227<br>79 | 210<br>80 | 188<br>85 | 137<br>72 | 114<br>68 | 113<br>67 | 108<br>65 |
| 9b & 10t                 |           |     |           |                   |           |           |           |            |     |           |           |           |           |           |           |           |           |

\*The numbers are rounded off to the nearest whole integer.

earlier and 2.5 times greater than the highest density reached by the species growing at  $26^{\circ}$  C., and was four weeks earlier but only 1.2 times greater than the highest density reached by the species growing at  $16^{\circ}$  C.

The following lists, which are based on the data in Tables 2 and 10 show the responses of the individual species to incubation under the three different temperatures. These lists include only those species which fruited on the cultures of the second experiment.

The effect of incubation under different temperatures on the composition of the communities can be seen in Table 11. In this table the major species of each community are presented at each of the incubation temperatures,  $21^{\circ}$  C.,  $26^{\circ}$  C., and  $16^{\circ}$  C. The species were assigned to the respective communities at  $21^{\circ}$  C. by the methods previously described. The species were assigned to the respective communities at  $26^{\circ}$  C. and  $16^{\circ}$  C. on the basis of when they reached their maximum average absolute density at each of these temperatures as listed in Table 10. At each temperature only those species with an

List l

Species fruiting only at 26° C.

Tripterospora sp. #1 Chaetomium sp. #3 Coprinus sp. #4

#### List 2

## Species fruiting only at 21° C.

Sordaria fimicola Sordaria humana Sporormia minima Ascophanus holmskjoldii Bombardia caerulea Coprinus sp. #2 Coprinus parvisporus Saccobolus depauperatus Podo spora pilo sa Ascophanus micro sporus Conocybe bulbifera

## List 4

Species which fruited earlier at  $26^{\circ}$  C. on cultures 7b and 8b than at 21° C. on cultures 7a and 8a.

Chaetomium globosum Podospora decipiens Podospora vestita

#### List 5

Species which fruited later at  $26^{\circ}$  on cultures 7b and 8b than at  $21^{\circ}$  C. on cultures 7a and 8a.

Podospora curvula Podospora piriformis

## List 6

Species which fruited earlier at 16° C. on cultures 9b and 10b than at 21° C. on cultures 9a and 10a.

## List 3

Species fruiting only at 16° C.

Ascobolus furfuraceous var. coronatus Ascophanus brunneus Ascophanus sp. #1 Chaetomium sp. #1 Coprinus hexagono sporus Chaetomium murorum Preussia typharum Coprinus sp. #5 Coprinus ephemerus Ascophanus argenteus Ascophanus ochraceous

## List 7

Species which fruited later at 16° C. on cultures 9b and 10b than at 21° C. on cultures 9a and 10a.

Ascobolus immersus Chaetomium globosum Podospora curvula Podospora decipiens Podospora piriformis Podospora vestita Saccobolus kerverni

## TABLE 10

## A SUMMARY OF THE WEEKLY ABSOLUTE DENSITY OF THE SPECIES FRUITING ON THE CULTURES OF THE SECOND EXPERIMENT WHICH WERE INCUBATED UNDER DIFFERENT TEMPERATURES

| Species o                                                                                                       | Temp.          | Cul      |       |                  | Number of Weeks H                       |                             |                    |     |                                                                                                                 |               |                   |                                        |                                                                  | art o                                                                                                           | f Inc                                           | ubati                   | on                                                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
|-----------------------------------------------------------------------------------------------------------------|----------------|----------|-------|------------------|-----------------------------------------|-----------------------------|--------------------|-----|-----------------------------------------------------------------------------------------------------------------|---------------|-------------------|----------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------|---------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
|                                                                                                                 | 6 С.           | tur      | 'e    | 11.000           | 1                                       | 2                           | 3                  | 4   | 5                                                                                                               | 6             | 7                 | 8                                      | 9                                                                | 10                                                                                                              | 11                                              | 12                      | 13                                                | 14                           | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16                                                       |
| Sordaria                                                                                                        | 21             | 7a       | 8 &   | 2                | 10                                      | 30                          | 22                 | 21  | 16                                                                                                              | 9             | 9                 | 7                                      | 6                                                                |                                                                                                                 |                                                 |                         |                                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
| humana                                                                                                          | 26             | 7b       | & 8   | С                |                                         |                             |                    |     |                                                                                                                 |               |                   |                                        |                                                                  |                                                                                                                 |                                                 |                         |                                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
| Sordaria                                                                                                        | 21             | 7a       | & 8   | 3                | 56                                      | 60                          | 60                 | 55  | 38                                                                                                              | 38            | 24                | 19                                     | 8 <b>9</b> -e* <b>0</b> 093603803803                             | <b>Bankord</b> er generalit                                                                                     | Bet - Contractory                               |                         | 1722/0000 Beact 2004                              | Deris Daris II 484 e         | 400 Berger 797 - 48 da.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8-7-4-4-3-7- <b>40</b> %-8-9-                            |
| fimicola                                                                                                        | 26             | 7b       | & 8   | С                |                                         |                             |                    |     |                                                                                                                 |               |                   |                                        |                                                                  |                                                                                                                 |                                                 |                         |                                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
| anna anna colaineann annaichean annaichean annaichean annaichean annaichean annaichean annaichean annaichean an | 21             | 7a       | 8 \$  |                  | and relations                           | 56                          | 83                 | 86  | 68                                                                                                              | 59            | 45                | 25                                     | 27                                                               | 26                                                                                                              | 19                                              | 20                      | 21                                                | 21                           | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21                                                       |
| Chaetomium                                                                                                      | 26             | 7b       | & 8   | С                | 8                                       | 6                           | 3                  | 4   | 3                                                                                                               | 7             | 10                | 10                                     | 12                                                               | 10                                                                                                              | 10                                              | 10                      | 10                                                | 10                           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                       |
| globosum                                                                                                        | 21             |          | & 1   |                  | <b>3</b> 8                              | 141                         | 204                | 226 | •                                                                                                               | 232           | 227               | 210                                    | 197                                                              | 185                                                                                                             | 181                                             | 181                     | 176                                               | 176                          | 176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 176                                                      |
|                                                                                                                 | 16             | 9b       | & 1   | Эb               |                                         |                             |                    | 5   | 10                                                                                                              | 4             | 4                 | 4                                      | 3                                                                | 3                                                                                                               | 3                                               | 3                       | 3                                                 | 3                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                        |
| Ascobolus                                                                                                       | 21             | 9a       | & 1   | Da               | 169                                     | 134                         | 81                 | 43  | 23                                                                                                              | 12            | 9                 | 3                                      | 2                                                                | Estado de la constructione de la construction de la construction de la construction de la construction de la co | ante e com a sus ecos                           | Carolorian (1999)       | arti ti                                           | - 1949 - 1995 - 1            | therations of an international states of the second states of the secon | · · · · · · · · · · · · · · · · · · ·                    |
| immorsus                                                                                                        | 16             | 9Ъ       | & 1   | ЭЪ               |                                         | 12                          | 34                 | 12  | 12                                                                                                              | 11            | 8                 | 8                                      | 7                                                                | 6                                                                                                               | 5                                               |                         |                                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
| Ascobolus                                                                                                       | 21             | 9a       | & 1   | Da               | 56                                      | 64                          | 33                 | 20  | 15                                                                                                              | 13            | 5                 | 3                                      | ng katalan in i                                                  | 2290-827-92 AD                                                                                                  |                                                 | 2002 - Joseph J 19 - 19 |                                                   |                              | an a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Colling and a second                                     |
| furfuraceous                                                                                                    | 16             | 9Ъ       | & 1   | Эb               | 25                                      | 25                          | 22                 | 19  | 14                                                                                                              | 19            | 6                 | 6                                      | 5                                                                | 2                                                                                                               |                                                 |                         |                                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
| ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩                                                                          | 21             | 7a       | & 8   | t.<br>L          | 968 C240,950                            | 8                           | 12                 | 37  | 71                                                                                                              | 97            | 98                | 116                                    | 132                                                              | 123                                                                                                             | 106                                             | 80                      | 61                                                | 57                           | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 43                                                       |
| Podospora                                                                                                       | 26             | 7b       | & 8   | c                |                                         |                             | 8                  | 1   | 6                                                                                                               | 2             | 4                 | 9                                      | 3                                                                |                                                                                                                 |                                                 |                         |                                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
| curvula                                                                                                         | 21             |          | & 1   |                  |                                         |                             |                    | 2   | 6                                                                                                               | 17            | 17                | 21                                     | 22                                                               | 23                                                                                                              | 17                                              | 19                      | 18                                                | 13                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
|                                                                                                                 | 16             | 9Ъ       | & 1   | ЭЪ               |                                         |                             |                    |     |                                                                                                                 |               | 13                | 9                                      | 32                                                               | 33                                                                                                              | 40                                              | 39                      | 38                                                | 38                           | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40                                                       |
| nen ander ander en fan de f | 21             | 7a       | & 8   | 3.<br>1          | 18.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | 144                         | 171                | 157 | 128                                                                                                             | 105           | 100               | 60                                     | 55                                                               | 54                                                                                                              | 53                                              | L gaffergalan i saa     | Do Bir & Charles                                  | NC 2 1 2 1 2 1 2 1 2 1 2 2 1 | e andag son por la mono                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 940 B 20 340 F F F F F F F F F F F F F F F F F F F       |
| Saccobolus                                                                                                      | 26             | 7b       | & 8   | С                |                                         | 72                          | 55                 | 42  | 51                                                                                                              | 24            | 31                | 15                                     | 11                                                               | 6                                                                                                               | 3                                               |                         |                                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
| kerverni                                                                                                        | 21             |          | & 1   |                  |                                         | 6                           | 4                  |     |                                                                                                                 |               | 4                 | 1                                      |                                                                  |                                                                                                                 |                                                 |                         |                                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
|                                                                                                                 | 16             | 9b       | & 1   | Db               |                                         |                             | 1                  | 1   | 1                                                                                                               |               |                   |                                        | 1                                                                |                                                                                                                 |                                                 |                         |                                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
| Saccobolus                                                                                                      | 21             | 9a       | & 1   | )a               | www.constrations                        | 16                          | 12                 | 10  | 14                                                                                                              | 13            | 1                 | 5                                      | 2                                                                |                                                                                                                 | 2000 - C. 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 | a national de la cal    | CTURNED PARTS &                                   | rengi bengi be bebri         | ana da en la militaria e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27112799 g. 3 a 11279                                    |
| intermedius                                                                                                     | 16             | 9b       | & 1   | Db               |                                         |                             |                    |     |                                                                                                                 |               |                   |                                        |                                                                  |                                                                                                                 |                                                 |                         |                                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
| ······································                                                                          | 21             | Za<br>Zb | & 8   | a                | 188715.9848 ALM                         | hille a spine and an end of | tilletedge som dag |     | 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - | RETERING LAND | ar 14 260 42 m 71 | ************************************** | 9 <b>6</b> . 19 <b>10</b> 10 10 10 10 10 10 10 10 10 10 10 10 10 |                                                                                                                 | terreges a financia. An                         | 1                       | n ar faire an | izania registri Dabilitari   | 3.019701990-073.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | niko kana postati kana kana kana kana kana kana kana kan |
| Coprinus<br>spp.                                                                                                | 21<br>26<br>21 | 20<br>95 | 88888 | )<br>B<br>B<br>B |                                         | 1                           |                    |     |                                                                                                                 |               | 2                 | 2                                      |                                                                  |                                                                                                                 |                                                 |                         |                                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |

| TABLE | 10 | Continued |
|-------|----|-----------|
|       |    |           |

|                                          | Temp                 | Cul-                                       | 2 Y 1 2 Y 1 2 Y 1 2 Y 1                                   |                   |                               | Nur                  | ıber                  | of V                              | Veeks           | s Fro                                                             | om St                                                    | art o                   | f Inc                                          | ubati                                    | on                                |                       |                                          |                            |
|------------------------------------------|----------------------|--------------------------------------------|-----------------------------------------------------------|-------------------|-------------------------------|----------------------|-----------------------|-----------------------------------|-----------------|-------------------------------------------------------------------|----------------------------------------------------------|-------------------------|------------------------------------------------|------------------------------------------|-----------------------------------|-----------------------|------------------------------------------|----------------------------|
| Species                                  | ° C.                 | ture                                       | 1                                                         | 2                 | 3                             | 4                    | 5                     | 6                                 | 7               | 8                                                                 | 9                                                        | 10                      | 11                                             | 12                                       | 13                                | 14                    | 15                                       | 16                         |
| Podospora                                | <b>2</b> 1<br>26     | 7a & 8a<br>7b & 8b                         |                                                           | 2                 | 24<br>6                       | 28<br>6              | 30<br>7               | 28<br>2                           | 28<br>3         | 20                                                                | 23                                                       | 11                      | 7                                              |                                          |                                   |                       |                                          |                            |
| decipiens                                | 21<br>16             | 9a & 10a<br>9b & 10b                       |                                                           |                   | 21                            | 38                   | 47<br>5               | 38<br>12                          | 26<br>18        | 19<br>25                                                          | 1<br>23                                                  | 15                      | 19                                             | 15                                       | 14                                | 13                    | 12                                       | 12                         |
| Tripterospora<br>sp. #1                  | 21<br>26             | 7a & 8a<br>7b & 8b                         | 27 <b>4 16</b> 4 - 64 164 164 164 164 164 164 164 164 164 | 44                | 43                            | 47                   | 35                    | 25                                | 23              | 20                                                                | 15                                                       | 11                      | 9                                              | 8                                        | 5                                 | ten novis⊾ kappanosis |                                          | 5.997g-23231.06309g3.999   |
| Ascobolus<br>furfuraceus<br>v. coronatus | 21<br>26             | 9a & 10a<br>9b & 10b                       | 23.724 ° 24.7 Mar.                                        | 13                | 15                            | 13                   | 11                    | a na m <b>ana</b> ta              | aan Eulamada    | <b>παφα</b> κ (ΝΒ <sup>1</sup> 12)β τι γ <b>α</b> <sub>α</sub> ιο | a na sana sa kata sa | and an and a second of  |                                                | 1 - 24960, 1922, 1987 -                  | eneralizzatu oranograz            | g on perfektion       | ni n | ια.: , φτα, δυγκα          |
| Sporormia<br>minima                      | 21<br>26<br>21<br>16 | 7a & 8a<br>7b & 8b<br>9a & 10a<br>9b & 10b | 2. 11 You, 23 <b>- Yu</b> ,                               | ∉ಗಾರ್ ಕ್ಲಿರಿ ಇರು  | 6<br>9                        | 5                    | 944 - 249 (MAR HOLD - | . <b>94.76</b> 301 <b>8</b> 17 44 |                 | 11479 BUCCUC (1798)                                               | 1.971 g. 276 (* 1 5                                      | ≰unni +agarat wet, er   | 2 or 1997 trading to be a first start of the s | an a | nnannan inanna                    | ¢r.σταγ               | interpresentations                       | £1,1                       |
| Coprinus<br>sp. #2                       | 21<br>16             | 9a & 10a<br>9b & 10b                       | tueone terro la                                           | \$10794.097775341 | 28                            | 19                   | 12                    | 20                                | 10              | 6                                                                 | ng tin kanan                                             | 475,633,253,837,754,789 | a a nargo area ga ga ann ann                   | era anna 2016 - 2016 - 2016 -            | an bhaile an t <b>-abhaile</b> an | nes na fasta an       |                                          | tri, ann 1975 à sug dù     |
| Saccubol.us<br>neglectans                | 21<br>26             | 7a & 8a<br>7b & 8b                         | naere s Ornaur                                            | and notice        | ales an Calaberhorts          | 19<br>5              | 14<br>9               |                                   | 32<br>23        | 30<br>16                                                          | 26<br>12                                                 | 17<br>11                | 13<br>10                                       | 9<br>6                                   | 12                                | 7                     | Charles - Charles Carlos                 | 36-06874-28-08723-9-96-774 |
| Podospora<br>vestita                     | 21<br>26<br>21<br>16 | 7a & 8a<br>7b & 8b<br>9a & 10a<br>9b & 10b | L248094457.                                               |                   | ರು - ನೆಯರ್ <b>ಕ್ರಾ</b> ರಿಕಾರಿ | 18<br>13             | 39<br>13              | 4<br>121<br>15                    | 12<br>145<br>15 | 30<br>134<br>27                                                   | 48<br>136<br>28                                          | 66<br>119<br>12         | 136<br>127<br>21                               | 154<br>146<br>25                         | 186<br>128<br>46<br><b>3</b>      | 193<br>125<br>48<br>4 | 241<br>124<br>48<br>19                   | 221<br>120<br>46<br>19     |
| Ascophanus<br>ochraceous                 | 21<br>26<br>21       | 7a & 8a<br>7b & 8b<br>9a & 10a             | 01. <b></b>                                               | ₩7 19 6 8 7 240   |                               | ale alle entre and a | 36                    | 16<br>1                           | 19<br>1         | 32<br>1                                                           | 63<br>2                                                  | 84<br>1                 | 79                                             | 103                                      | 102                               | 99                    | 97<br>6                                  | 97<br>4                    |
|                                          | 16                   | 9b & 10b                                   |                                                           |                   |                               | 8                    | 13                    | -                                 | 238             | 391                                                               | 328                                                      | 328                     | -                                              | 271                                      | 248                               | 234                   | 238                                      | 22.5                       |
| Ascophanus<br>granuliformis              | 21<br>16             | 9a & 10a<br>9b & 10b                       |                                                           |                   |                               |                      | 7<br>58               | 45<br>82                          | 29<br>109       | 20<br>64                                                          | 17<br>45                                                 | 17<br>42                | 19<br>31                                       | 14<br>20                                 | 14<br>14                          | 14<br>14              | 12<br>14                                 | 9<br>12                    |

TABLE 10--Continued

| Species                                                                                                        | Temp | Cul-   |               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           | Num                       | oer                               | of W                                      | leeks                          | s Fro   | om St                                    | art o                                       | f Inc | ubati                     | on                                      |                                      |                                       |                                                         |
|----------------------------------------------------------------------------------------------------------------|------|--------|---------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------|-----------------------------------|-------------------------------------------|--------------------------------|---------|------------------------------------------|---------------------------------------------|-------|---------------------------|-----------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------------------------|
| - <u>T</u> <u>-</u>                                                                                            | ° C. | ture   |               | 1                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                         | 4                         | 5                                 | 6                                         | 7                              | 8       | 9                                        | 10                                          | 11    | 12                        | 13                                      | 14                                   | 15                                    | 16                                                      |
| nandari mangan ing kananga kangkan kangkan di kanangkan kanya kangkan kanya kangkan kangkan kang terdi.        | 21   | 7a &   | 8a            | 12 - 19 - 48 and 19 -       | NUD'S CO. MINUS CO. O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1997 - 18 <b>2</b> 19 19 19 19 19 19 19 19 19 19 19 19 19 | ·/#3-116.4 Mg/4.494       | (*\$* <b>#</b> #194               | an si | 6 19736 NG F 46 4              |         |                                          | aran ang ang ang ang ang ang ang ang ang a  | 2     | 1                         | ana ang ang ang ang ang ang ang ang ang | 1                                    | 2                                     | 1                                                       |
| Podospora                                                                                                      | 26   | 7b &   |               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                           |                                   |                                           |                                |         |                                          |                                             |       |                           | 1                                       |                                      |                                       |                                                         |
| piriformis                                                                                                     | 21   | 9a &   |               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                           |                                   | 13                                        | 67                             | 114     | 154                                      | 163                                         | 149   | 149                       | 143                                     | 124                                  | 120                                   | 120                                                     |
| Na se constant film de la sette de la setterio da la constante de la constante de la constante de la constante | 16   | 9b &   |               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                           |                                   |                                           |                                | 8       | 10                                       | 10                                          | 15    | 32                        | 61                                      | 82                                   | 100                                   | 96                                                      |
| Peziza                                                                                                         | 21   | 9a &   | 10a           | d'a clarker record          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                           | 204 CA1 & DE3                     |                                           |                                |         |                                          |                                             |       |                           |                                         | C 1977 1970 1970 1980 1980 1980 1980 |                                       |                                                         |
| granulata                                                                                                      | 16   | 9b &   | 10b           |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                           |                                   | 1                                         | 1                              | 1       |                                          |                                             |       |                           |                                         |                                      |                                       |                                                         |
| Ascophanus                                                                                                     | 21   | 9a. &  | 10a           |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           | a secondo a consegura     |                                   | 1 Mar 1 1 1 1 4 4                         | 2                              | 6       | 9                                        | 7                                           | 7     | 7                         | 7                                       | 7                                    | 7                                     | 8                                                       |
| nolmskjoldii                                                                                                   | 16   | 9b &   | 10b           |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                           |                                   |                                           |                                |         |                                          |                                             |       |                           |                                         |                                      |                                       |                                                         |
| Coprinus                                                                                                       | 21   | 9a &   | 10a           |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           | . 1997 - Floring          | n right ruide die                 | LAD.                                      |                                |         | 2                                        | 1                                           |       |                           |                                         |                                      |                                       |                                                         |
| pervisporus                                                                                                    | 16   | 9Ъ&    | 10b           |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                           |                                   |                                           |                                |         |                                          |                                             |       | an and a star             |                                         |                                      |                                       |                                                         |
| Ascophanus                                                                                                     | 21   | 9a &   | 10 <i>a</i> . | and angeoints of the second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                           |                                   |                                           | for the state                  |         |                                          |                                             |       |                           |                                         |                                      |                                       |                                                         |
| orunneus                                                                                                       | 16   | 9b &   | 10b           |                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                           |                           |                                   |                                           |                                |         | 2                                        | 2                                           | 2     | 2                         | 3                                       | 3                                    | 2                                     | 2                                                       |
| Saccobolus                                                                                                     | 21   | 9a &   | 10a           | 1929) - North Games         | an the device the second of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -+-+ario ++4                                              |                           | . e                               | · · · • • • • • • • • • • • • • • • • •   | 500 <b>- 631 6-37 - 346</b> 94 |         |                                          | 1                                           | 1     |                           | 1. 199.22.1                             | tizite ener i z t                    |                                       | Construction (1990)                                     |
| depenperatus                                                                                                   | 16   | 9b &   | 10b           |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                           |                                   |                                           |                                |         |                                          |                                             |       |                           |                                         |                                      |                                       |                                                         |
| Doprinus                                                                                                       | 21   | 9a &   | 10a           |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                           | 1. 10. 44. 2                      |                                           |                                | ma +1 + | 96 973                                   |                                             |       | and the production of the |                                         |                                      |                                       |                                                         |
| lexagonosporus                                                                                                 | 16   | 9b &   | 10Ъ           |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                           |                                   |                                           |                                |         |                                          |                                             |       |                           | 1                                       |                                      | 1                                     | 1                                                       |
| Sporomia                                                                                                       | 21   | 7a & 1 | 8a            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                           |                                   |                                           |                                |         |                                          |                                             |       | ,                         | 17                                      | 17                                   | 17                                    | 17                                                      |
| australis                                                                                                      | 26   | 7b &   | 8b            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                           |                                   |                                           |                                | <b></b> |                                          |                                             |       |                           |                                         |                                      |                                       | - 14 - 14 M M                                           |
| Coprinus                                                                                                       | 21   | 9a &   | 10a           |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                           |                                   |                                           |                                |         |                                          |                                             |       |                           |                                         |                                      |                                       |                                                         |
| cordisporus                                                                                                    | 16   | 9b &   | 10b           |                             | 1998 - 1998 - 1996 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19 |                                                           |                           |                                   |                                           |                                |         |                                          |                                             |       |                           | 1                                       |                                      |                                       |                                                         |
| Iscophanus                                                                                                     | 21   | 9a &   | 10a           |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                           | 1213 - <b>No</b> 11-1 <b>7</b> -1 |                                           |                                |         |                                          |                                             |       |                           |                                         | a na se an an a sa anna              | 9 <b>1</b> 6-1                        |                                                         |
|                                                                                                                | 16   | 9b &   | 10b           | 7. NRV 100 100 100          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                           |                                   |                                           | 10 1 1 J 1 1                   |         | an a |                                             |       | ****                      |                                         |                                      | 3                                     | 3                                                       |
| Chaetomium                                                                                                     | 21   | 9a &   | 10a           |                             | <b>*</b> *************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20 CAMP 17 10.010                                         | an aller for ordered site |                                   | nga sta star - "Al"                       | • • • • • • • • •              |         | <b></b>                                  | an na antar e deserve e deserve de la fille |       |                           | ••••••••••••••••••••••••••••••••••••••  | 1.1.107-1.1.2.207                    | an in the second second second second | 99 (199 <b>6) 1</b> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| sp. #1                                                                                                         | 16   | 9b &   | 10b           |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                           |                                   |                                           |                                |         |                                          | -                                           |       | يە ھروھر دىر م            |                                         |                                      | 4                                     | 4                                                       |
| Iombardia                                                                                                      | 21   | 9a &   | 10a           | an stadio a taga            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           | - 197 LA CATHOLIN & S (   |                                   | a an chuir an sha sha sha sh              |                                |         |                                          | nann 6 - Nevis Adelina (n. 2                |       |                           | <ul> <li>CETTOLETY-LEG.</li> </ul>      | ing an an an angarang ag             | arian (a <b>na</b> nakéhé             | 1                                                       |
| caerulea                                                                                                       | 16   | 9b &   | 10b           |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                           |                                   |                                           |                                |         |                                          |                                             |       |                           |                                         |                                      |                                       |                                                         |

## TABLE 11

## THE COMPOSITION OF THE COMMUNITIES AT EACH OF THE DIFFERENT INCUBATION TEMPERATURES

| At 21° C.                                                                                                                                                                           | At 26° C                                                            | At 16° C.                                                                                                                                                    |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| *Ascobolus immersus<br>Ascobolus furfuraceous<br>Ascophanus holmskjoldii                                                                                                            | *Saccobolus kerverni                                                | *Ascobolus furfuraceous                                                                                                                                      |  |  |  |  |  |
| Major Spe                                                                                                                                                                           | cies of the Intermediate                                            | Community                                                                                                                                                    |  |  |  |  |  |
| At 21° C.                                                                                                                                                                           | At 26° C.                                                           | At $16^{\circ}$ C.                                                                                                                                           |  |  |  |  |  |
| *Podospora coronifera<br>Podospora decipiens<br>Podospora curvula<br>Podospora piriformis<br>Chactomium globosum<br>Podospora #1<br>Saccobolus kerverni<br>Ascophanus granuliformis | *Podospora vestita<br>Tripterospora sp. #1<br>Saccobolus neglectans | *Ascophanus ochraceous<br>Ascobolus imersus<br>Podospora decipiens<br>Podospora curvula<br>Ascophanus granuliformi<br>Ascobolus furfuraceous<br>v. coronatus |  |  |  |  |  |
| Major                                                                                                                                                                               | Species of the Late Comm                                            | unity                                                                                                                                                        |  |  |  |  |  |
| At 21° C.                                                                                                                                                                           | At 26° C.                                                           | At 16° C.                                                                                                                                                    |  |  |  |  |  |
| *Podospora vestita                                                                                                                                                                  |                                                                     | *Podospora piriformis                                                                                                                                        |  |  |  |  |  |

\*Species with the highest absolute density

Ascophanus ochraceous

Podospora vestita

average of at least 7.5 fruiting bodies per culture were considered major species.

## Temperature and Light Fluctuations

During the incubation period from October 7 through February 1 there were no known fluctuations in the 21° C. incubation chamber. During the incubation period from February 1 through May 26, the electrical power to the research laboratory was shut off on the following dates for the specified length of time: (1) March 19--51 hours, (2) March 20\_ $-2\frac{1}{2}$  hours, (3) April 18\_-6 hours, and (4) April 20\_ $-4\frac{1}{2}$ hours. During these periods without electricity, all the cultures were, of course, in darkness. The electrical shortages also caused the following fluctuations in the temperature in the incubation chambers. (1) On March 19 the temperature dropped from  $26^{\circ}$  C. to  $23^{\circ}$ C. in the 26° C. incubation chamber where cultures 7b and 8b were incubated. In the 16° C. chamber where cultures 9b and 10b were incubated, the temperature rose to 21° C. (2) On April 18 the temperature rose in the  $16^{\circ}$  C. chamber to  $20^{\circ}$  C. It also rose to  $24^{\circ}$  C. in the 21° C. chamber where cultures 7a-10a were incubated. This rise was followed immediately by a drop to 18° C. in the 21° C. chamber.

Six rises in temperature unrelated to the electrical shortage were observed in the  $26^{\circ}$  C. chamber. During the first week of incubation on February 7, the temperature rose to approximately  $40^{\circ}$  C. during a six hour period and during the fourteenth week the temperature rose to  $29^{\circ}$  C. five different times.

It is not known if any of the variation in the fruiting of the fungi growing on the cultures incubated at the different temperatures can be attributed directly to the temperature and light fluctuations. However, it is possible that <u>Tripterospora</u> sp. #1 may have been induced to fruit on culture 7b by the rise from  $26^{\circ}$  C. to  $40^{\circ}$  C. in the  $26^{\circ}$  C. chamber. Fruiting bodies of this species were observed only on the culture the following examination after the temperature rise.

## DISCUSSION

## General Considerations

It is significant that in this study sixty ascomycete and basidiomycete species representing fifteen different genera were found fruiting on the fourteen cultures. These cultures were taken from only ten different cow dung platters collected from the same general area in Santaquin Canyon, Utah. Hanks (1963) found fifty-nine ascomycete species on cow dung collected from fifteen different areas throughout Utah and one area each in Idaho and Arizona. Twenty-nine of these species found by Hanks were also found on the cow dung from Santaquin Canyon. Seventeen additional ascomycete species were found on the cow dung from Santaquin Canyon which were not reported by Hanks. Some of these additional species may be accounted for by the longer incubation period and additional temperatures used in this study. Hanks incubated his cultures at 20° C. for only four to six weeks while in the current study the cultures were incubated for sixteen weeks and at three different temperatures (21° C., 26° C. and 16° C.).

Hanks (loc. cit.) also reported that <u>Podospora decipiens</u><sup>1</sup> and <u>Ascobolus immersus</u> were common and widely distributed throughout Utah. The results of this study are in agreement with Hanks' report since both species were major species and had constancy ratings of 70% and

<sup>1</sup>Hanks listed this species as Sordaria decipiens.

80%, respectively (Table 6). However, for <u>Lasiobolus equinis</u>, which Hanks reported as being one of the most frequently collected species in his study, the results of the present study are not in agreement since this species was only a rare species on the cultures incubated during this study (Table 2).

Although the genus Coprinus was represented on the cultures incubated at 21° C. by eight different species none of them were major species (Table 3). This was due mainly to the fruiting of the Coprini usually around the periphery of the cultures and thus out of the range of the quadrats. This pattern of fruiting of the Coprini may be accounted for in at least one of three ways. The first way may be that the basidiocarps are inhibited by light as explained by Buller (1922) who found that all the mature fruiting bodies of the coprophilous agaric, Anellaria separata, grew from dark crevices underneath or between the dung pieces. He reported this was probably due to the fact "that as in Coprinus sterquilinus, strong light inhibits the development of small fruit-body rudiments" (loc. cit., p. 348). If strong light likewise inhibited the development of the Coprini in this study, this inhibition could account for the usual absence of mature Coprinus fruiting bodies from the surface of the cultures. Coprini in the button-stage were sometimes found in the quadrats, but these often failed to mature and thus could not be identified. The presence and number of such immature Coprini are recorded under Coprinus spp.

The second way may be that the tips of the stipes are heliotropic. Buller (1909) found that fruiting bodies of <u>Coprinus niveus</u> are at first strongly positively heliotropic. This enables the stipes to

push their yet unexpanded pilei outwards between or from under the dung pieces into the open. Therefore, if young basidiocarps are closer to the side than to the surface of the dung pieces, they may grow out from the side into the light. Thereafter as the pilei begin to expand, the tips of the stipes cease to be heliotropic and become negatively geotropic instead (Buller, loc. cit.). This causes the fruiting bodies to then grow vertically upwards around the periphery of the dung pieces.

The third way may be that the <u>Coprinus</u> basidiocarps are unable to penetrate up through the firm less moist surfaces of the cow dung cultures. Dr. K. H. McKnight has observed the appearance of broken or otherwise damaged caps of <u>Coprinus</u> basidiocarps that had penetrated through the surfaces of some of his cultures. He believes the damage may be due to the pressure exerted on the caps as they were pushed by the elongating stiped up through the firm surfaces (Personal communication).

<u>Sporormia</u> also had no species in the major category (Table 3). The author has observed that the <u>Sporormia</u> species either were represented by only a few isolated ascocarps or when more numerous, the ascocarps were grouped into small isolated areas of the culture. This may be due to the mycelium of the <u>Sporormia</u> being restricted in its growth and either fruiting sparingly to produce the few isolated ascocarps of such species as <u>Sporormia vexans</u> and <u>Sporormia pascua</u>, or fruiting more profusely to produce the small isolated groups of ascocarps of such species as <u>Sporormia australis</u>. This species was represented on culture 7a by 17 fruiting bodies in only one quadrat

(Table 4 and 5).

In contrast to the <u>Sporormia</u> species, <u>Podospora coronifera</u> and <u>Ascobolus immersus</u> were represented on the cultures by abundant well distributed ascocarps. Therefore, the mycelium of these two species must have been well distributed throughout the dung. The mycelium of these two species also produced fruiting bodies profusely since these species were the only ones which averaged over 100 ascocarps per culture at their maximum absolute densities (Table 7).

Of the six major discomycete species which fruited during this study, three, <u>Ascobolus immersus</u>, <u>Ascobolus furfuraceous</u>, and <u>Ascophanus holmskjoldii</u>, fruited most abundantly during the period of the early community; two, <u>Saccobolus kerverni</u> and <u>Ascophanus granuliformis</u>, fruited most abundantly during the first half of the period of the intermediate community; and one, <u>Ascophanus ochraceous</u>, fruited most abundantly during the late community (Table 7). Of the minor discomycete species which fruited, <u>Saccobolus intermedius</u> fruited most abundantly during the second week of the early community; <u>Saccobolus neglectans</u> and <u>Ascophanus argenteus</u> fruited most abundantly during the tenth week of the intermediate community (table 7). Typically, then, the discomycete species fruited early in the study since only two, <u>S. depauperatus</u> and <u>A. ochraceous</u>, fruited most abundantly after the sixth week of incubation.

When presented collectively, as in Tables 6-8, the species which fruited during this study seem to fruit in an orderly manner. However, some variation does exist among the various cultures and their species as shown in Tables 4 and 5. Following are possible reasons which could

account for some of these variations; (1) unequal innoculation of the various platters, (2) variations in the nutrients, pH, mineral, and water content of the different platters, (3) differences in the age and weathering of the platters, (4) variations in the activities of insects, bacteria, and other microorganisms prior to or concurrently with, or both, the fruiting of the higher fungi, (5) effects of incubation under different temperatures, and (6) possible errors in the observations, and identifications of the species.

In addition to the above possible causes of variation, cultures 7a-10b of the second experiment were stored in the laboratory four months before incubation while cultures 1-6 of the first experiment were stored only four days before incubation. Although this extra storage period was evidently harmful to such species as Podospora coronifera, it seemed not to harm other species such as Podospora vestita and Ascophanus ochraceous. P. coronifera, which was so plentiful on cultures 1-6, only appeared as a rare species on cultures 7a-10a (Table 2). In contrast to P. coronifera, however, P. vestita and A. ochraceous, which were the major species of the late community, fruited only on cultures 7a-10b(Table 6). Perhaps the spores of such species as P. vestita and A. ochraceous need to age before germination, or if already germinated, the mycelium of such species may be able to retain its vitality while being stored. For species such as P. coronifera, however, the storage period may have been too long for the survival of most or all of their spores or mycelium.

### The Successional Communities

In the current study the successional patterns of Ascomycetes

and Basidiomycetes which grow on cow dung from Santaquin Canyon, Utah, were studied in detail for sixteen weeks. From the data obtained it was found that the species of these two classes of fungi could be assigned to one of three successional communities based on the time the species reached their greatest distribution and abundance on the cultures.

The early successional community was characterized by Discomycetes while both the intermediate community and the late community were characterized by Pyrenomycetes. The Basidiomycetes were distributed among two of the three communities as follows: in the early community one basidiomycete species fruited, in the intermediate community eight basidiomycete species fruited, while in the late community no basidiomycete species fruited. Thus, the Basidiomycetes seemed to fruit concurrently with the Ascomycetes. However, it should be noted that the majority of the ascomycete species started to fruit before the fifth week, whereas the majority of the Basidiomycetes started to fruit during or after the fifth week (Table 4). Thus, on the basis of time of fruiting alone, the statement of Ingold (1953) that the Basidiomycetes follow the Ascomycetes would hold true for this study as well.

Ingold (1953) has postulated that the later development of the Basidiomycetes may be due to the relatively slow growth of their mycelium and the late stage at which their basidiocarps are formed. Gwynn-Vaughn and Barnes (1937) have stated that the Basidiomycetes probably play an important part in the final break-down of the coprophilous substratum. Buller (1931) postulated that ability of

early germination of the spores of a species is important in determining the success of that species in meeting the competition of other fungi in gaining possession of the substratum. Thus, the early fruiting of the Discomycetes may be an indication that they had rapid spore germination and mycelial growth followed by early development of their fruiting bodies. They are probably primary decomposers and rapidly use up the less complex nutrients in the substratum. As these nutrients are used up, the Pyrenomycetes and Basidiomycetes, which may be more adapted than the Discomycetes for the decomposition of the more complex materials left in the substratum, replace the Discomycetes in the two later communities.

In contrast to the other major discomycete species which fruited in the earlier communities, <u>Ascophanus ochraceous</u> reached its maximum absolute density and percent frequency during the late community on the cultures incubated at  $21^{\circ}$  C. (Fig. 2 and Tables 6 and 7). However, on the cultures incubated at  $16^{\circ}$  C., the average maximum density per culture reached by this species was approximately nineteen times greater and three weeks earlier than on the culture incubated at  $21^{\circ}$  C. (Tables 7 and 10). Apparently <u>Ascophanus ochraceous</u> was delayed in its fruiting at  $21^{\circ}$  C. because this temperature was less favorable for its growth and sporulation than the lower temperature.

## Insect Disturbance

The insect disturbance to the cultures had several effects on the fungal population. First, there was generally a rapid decrease in the number of fruiting bodies on the cultures as the disturbance

to the cultures increased. This was effectively demonstrated by the rapid decrease in the number of ascocarps of <u>Podespora coronifera</u> during the last four weeks of incubation (Table 5) when the insect disturbance was so extensive to the culture on which <u>P. coronifera</u> was growing (Table 4). Had this disturbance not occurred, <u>P. coronifera</u> might have remained the dominant species throughout the period of the late community as well as throughout the period of the intermediate community.

The second effect was that some species failed to fruit on the disturbed cultures if the disturbance occurred before the species typically started to fruit. The disturbance probably broke up or otherwise damaged the mycelium enough to prevent the species from becoming established sufficiently in the culture to fruit. Examples of this effect are <u>Podospora coronifera</u> and <u>Podospora curvula</u>. These two species, which usually started to fruit between the second and the fourth week, failed to fruit on culture 1 which was 66% disturbed by the second week and 90% disturbed by the fourth week (Table 4). Also it should be noted that both major species, <u>Podospora vestita</u> and <u>Ascophanus ochraceous</u> of the late community, failed to fruit on any of the cultures disturbed by the insect larvae (Table 4). Since these two species are late in fruiting the disturbance may have occurred before they were able to establish themselves on the cultures which were disturbed.

A third effect which might be attributed to the insect disturbance was that some species fruited, or at least continued to fruit, on disturbed cultures. As examples, <u>Coprinus</u> spp. continued to fault on

cultures 1, 2, and 4 after all the quadrats in these cultures had been disturbed (Table 4), and <u>Podospora piriformis</u> fruited on cultures 1 and 4 only after all the quadrats had been disturbed. On cultures 2, 3, and 5, however, <u>P. piriformis</u> fruited before the disturbance occurred and then gradually decreased in density as the disturbance increased on these three cultures (Table 5). Since <u>P. piriformis</u> fruited on culture 4 eight weeks after 100 % disturbance had occurred, the insect activity in these two cultures had probably ceased and the species was able to re-establish itself sufficiently to fruit.

Since there was no fungus fly larvae disturbance on cultures 7a-10b which were stored four months before incubation the storage condition may have been unfavorable for the survival of the flies.

## Effect of Incubation under Different Temperatures

The optimum temperature for twenty-three of the forty-five species which fruited on the eight cultures of the second experiment was 21° C. From Lists 5 and 7 and Tables 2 and 10, it can be seen that eleven of these species fruited earlier or more abundantly, or both, at 21° C. than at either 16° C. or 26° C. These eleven species were <u>Chaetomium globosum</u>, <u>Ascobolus immersus</u>, <u>Ascobolus furfuraceous</u>, <u>Podospora curvula</u>, <u>Saccobolus kerverni</u>, <u>Saccobolus intermedius</u>, <u>Podospora decipiens</u>, <u>Saccobolus neglectans</u>, <u>Podospora vestita</u>, <u>Podospora pirifornis</u>, and <u>Sporormia australis</u>. The twelve species on List 2 fruited only at 21° C.

The optimum temperature for fifteen of the forty-five species was 16° C. <u>Ascophanus ochraceous</u>, <u>Ascophanus granuliformis</u>, <u>Peziza</u>

granulata, Coprinus spp., and Coprinus cordisporus fruited earlier or more abundantly, or both, at  $16^{\circ}$  C. than at either  $21^{\circ}$  C. or  $26^{\circ}$  C. In addition to these five species, the ten species shown on List 3 fruited only on the cultures incubated at  $16^{\circ}$  C. Although <u>Ascophanus</u> granuliformis started to fruit the same week at both  $21^{\circ}$  C. and  $16^{\circ}$  C. it fruited approximately two and one-half times more abundantly at the cooler temperature (Table 10).

The optimum temperature for three of the species, <u>Tripterospora</u> sp. #1, <u>Chaetomium</u> sp. #3, and <u>Coprinus</u> sp. #4, was  $26^{\circ}$  C. since they fruited only at this temperature (List 1). These species may have been induced to fruit on the cultures incubated at  $26^{\circ}$  C. by the high temperature fluctuation to  $40^{\circ}$  C. during the first week of incubation. According to Lilly and Barnett (1951) exposure to high temperature is one of the factors which may be necessary in breaking the dormancy of some fungal spores. This may have been the case with the spores of these three species.

The four remaining species which fruited on the cultures of the second experiment were only rare species; therefore, no density data was obtained for them. These species were <u>Podospora anserina</u> which fruited at both  $16^{\circ}$  C. and  $26^{\circ}$  C., <u>Coprinus fimetarius</u> and <u>Coprinus</u> sp. #3 which fruited at both  $21^{\circ}$  and  $16^{\circ}$  C., and <u>Pleospora</u> sp. #1 which fruited at  $21^{\circ}$  C. and  $26^{\circ}$  C. Since no density data were obtained for these species it is not known which temperature was optimum for them.

Thus 21° C. seems to be the optimum temperature for the fruiting of the majority (51.1%) of the species growing on the cultures

incubated during the second experiment, and  $26^{\circ}$  C. seems to be the optimum temperature for only 6.7% of the species. It is interesting that although the majority of species fruited most abundantly at 21° C. more species fruited on the cultures incubated at 16° C. than on the cultures incubated at either 26° C. or 21° C. An average of sixteen species fruited on the cultures incubated at 16° C. as compared to an average of 13.5 for cultures 7a-7b which were incubated at 21° C. and an average of 9.0 on the cultures incubated at 26° C.

It is significant that of the 18 discomycete species which fruited on cultures 1-10b (Table 1) the only ones to fruit at  $26^{\circ}$  C. were three <u>Saccobolus</u> species. These species were <u>Saccobolus kerverni</u>, which fruited at all three temperatures, and <u>Saccobolus intermedius</u> and <u>Saccobolus neglectans</u>, which fruited at  $21^{\circ}$  C. and  $26^{\circ}$  C. (Table 2). <u>Saccobolus depauperatus</u> also fruited on the cultures but it fruited only at  $21^{\circ}$ C. (Table 2). Evidently,  $21^{\circ}$  C. and  $26^{\circ}$  C. are more favorable than  $16^{\circ}$  C. for growth and sporulation of the <u>Saccobolus</u> species. <u>S. Kerverni</u> which was the only <u>Saccobolus</u> to fruit at  $16^{\circ}$  C. did so in only trace amounts (Table 10).

The effect of incubation under different temperatures on the composition of the communities was very pronounced (Table 11). This demonstrated that temperature has a great effect on the growth and fruiting patterns of the fungal species which compose these communities.

#### SUMMARY

1. The succession and structure of some ascomycete and basidiomycete communities growing on cow dung platters collected from Santaquin Canyon, Utah, were studied in detail.

2. These communities were composed of sixty ascomycete and basidiomycete species representing four series, and fifteen genera. Two of the species were from the series Plectomycetes, twenty-six species were from the series Pyrenomycetes, eighteen species were from the series Discomycetes and fourteen species were from the series Hymenomycetes.

3. Fifteen (25%) of the sixty species had a constancy percentages of 40% or above. These species were <u>Podospora piriformis</u> with a constancy of 90%; <u>Ascobolus immersus</u>, <u>Podospora curvula</u> and <u>Coprinus</u> spp. with constancies of 80%; <u>Podospora decipiens</u> with a constancy of 70%; <u>Ascobolus furfuracecus</u>, <u>Ascophanus holmskieldii</u> and <u>Ascophanus</u> <u>granuliformis</u> with constancies of 60%; <u>Podospora coronifera</u>, <u>Sporormia</u> <u>intermedia</u>, and <u>Saccobolus kerverni</u> with constancies of 50%; <u>Chaetomium globosum</u>, <u>Chaetomium</u> sp. #2, <u>Sporormia minima</u> and <u>Podospora</u> <u>vestita</u> with constancies of 40%. Forty-five (75%) of the species had constancy percentages below 40%.

4. Data for determining the absolute density, relative density, and percentage frequency of the species fruiting in the communities were obtained from 50 twenty-five square millimeter quadrats placed on each of ten cultures which were incubated at  $21^{\circ} + 2^{\circ}$  C. The quadrats

were examined weekly for sixteen consecutive weeks.

5. From the data obtained it was determined that three successional communities developed on the ten cultures during the sixteen week incubation period.

6. The first community to develop was characterized principally by three major discomycete species. Of these species, <u>Ascobolus immersus</u> was the dominant fungus as determined from its density and frequency. This community was present on the cultures during the first two weeks of incubation.

7. The second community to develop was characterized principally by six major pyrenomycete species. One of these species, <u>Podospora</u> <u>coronifera</u>, was the dominant fungus of this community as determined from its density and frequency. The second community was present on the cultures from the second to the thirteenth week.

8. The third community to develop was characterized by a pyrenomycete species, <u>Podospora vestita</u>, and a discomycete species, <u>Ascophanus</u> <u>ochraceous</u>. <u>Podospora vestita</u> was the dominant species. Most of the major species from the preceeding communities extended into this community which was present on the cultures during the final four weeks of the incubation period.

9. The effect of incubation under three different temperatures on the fruiting patterns of the species was also studied. Eight cultures were obtained by sectioning four cow platters into halves. Four cultures, one from each of the four platters, were incubated at  $21^{\circ} \pm 2^{\circ}$  C. Of the four remaining cultures, two were incubated at  $16^{\circ} \pm 2^{\circ}$  C. and two were incubated at  $26^{\circ} \pm 2^{\circ}$  C.

10. The data obtained from these eight cultures showed that  $21^{\circ} \pm 2^{\circ}$  C. was the optimum of the three temperatures,  $26^{\circ} \pm 2^{\circ}$  C.,  $21^{\circ} \pm 2^{\circ}$  C.,  $16^{\circ} \pm 2^{\circ}$  C., for the fruiting of twenty-three of the forty-five ascomycete and basidiomycete species which fruited on these cultures;  $16^{\circ} \pm 2^{\circ}$  C. was found to be the optimum temperature for the fruiting of fifteen of the forty-five species;  $26^{\circ} \pm 2^{\circ}$  C. was found to be the optimum temperature for the fruiting of only three of the thirty species. The optimum temperature for four of the forty-five species was not possible to determine from the data collected.

11. The data obtained from all the cultures incubated showed that of the sixty species which fruited on them, seven fruited at all three temperatures, ten fruited at 16° C. and 21° C., two fruited at 16° and 26° C. three fruited at 21° C. and 25° C., 27 fruited only at 21° C. three fruited at only 26° C., and eight fruited at only 16° C. 12. The insect population on the dung was found to have a great effect on the structure and succession of the dung fungal communities. 13. Possible reasons for variation is the fruiting patterns of various species were discussed.

#### BIBLIOGRAPHY

- Buller, A. H. R. 1909. Researches on Fungi, Vol. 1, New York. Hafner Publishing Co. 287 p.
  - . 1922. Researches on Fungi, Vol. 2. New York. Hafner Publishing Co. 492 p.
- \_\_\_\_\_. 1931. Researches on Fungi, Vol. 4. New York. Hafner Publishing Co. 329 p.
- Cain, R. F. 1934. Studies of coprophilcus Sphaeriales of Ontario. Toronto. The University of Toronto Press. 126 p.
- Cooke, W. B. 1948. A survey of literature on fungus sociology and ecology. Ecology 29:376-382.

\_\_\_\_\_. 1963. A survey of literature on fungus sociology and ecology. II. Ecology 34:211-222.

- Ellis, J. B. and B. M. Everhart. 1892. North American Pyrenomycetes. Newfield, New Jersey. Published by the Authors. 793 p.
- Griffin, D. M. 1960. Fungal colonization of sterile hairs in contact with soil. Trans. Brit. Mycol. Soc. 43:583-596.
- Gwynne-Vaughan, H. C. I. and B. Barnes. 1937. The Structure and Development of the Fungi. London. Cambridge University Press. 449 p.
- Hanks, D. L. 1963. A study of the coprophilous Ascomycetes of Utah. Master's Thesis. Brigham Young University. Provo, Utah.
- Hudson, H. J. and J. Webster. 1958. Succession of fungi on decaying stems of <u>Agropyron</u> repens. Trans. Brit. Mycol. Soc. 41:165-177.

\_\_\_\_\_. 1962. Succession of micro-fungi on ageing leaves of Saccharum officinarum. Trans. Brit. Mycol. Soc. 45:395-423.

- Ingold, C. T. 1953. Dispersal in Fungi. London. Oxford University Press. 197 p.
- Lilly, V. G. and H. I. Barnett. 1951. Physiology of the Fungi. New York. McGraw-Hill Sc Co., Inc. 464 p.
- Lundqvist, N. 1960. Coprophilous Ascomycetes from Northern Spain. Svensk Botanish Tidskrift 54:523-529.

- Massee, G. and E. S. Salmon. 1901. Researches on coprophilous fungi. Ann. Bot. 15:313-357.
- McKnight, K. H. and D. Hanks. 1964. Koys to common coprophilous fungi. Unpublished manuscript. Brigham Young University. Provo, Utah.
- Pugh, G. J. F. 1958. Leaf litter fungi found on <u>Carex paniculata</u>. Trans. Brit. Mycol. Soc. 41:185-195.
- Seaver, F. J. 1961. The North American cup-fungi (Operculates). Supplemented Edition. New York. Harner Publishing Co., Inc. 377 p.
- Watting, R. 1963. The fungal succession on hawk pellets. Trans. Brit. Mycol. Soc. 46:81-90.
- Westers, J. 1956. Succession of fungi on decaying cocksfoot culms I. Jour. Ecology 44:517-544.
- . 1957. Succession of fungi on weaving cocksfoot culms II. Jour. Ecology 45:1-30.
- , and N J. Nix. 1960. Succession of fungi on decaying cocksfoot culms III. Trans. Brit. Mycol. Soc. 43:85-99.
- Wilson, C. M. 1947. Coprophilous Ascomycetes of Virgina. Mycologia 39:374-377.

## A PHYTOSOCIOLOGICAL STUDY OF COPROPHILOUS ASCOMYCETE AND BASIDIOMYCETE COMMUNITIES FROM SANTAQUIN CANYON, UTAH

An Abstract

of a Thesis Presented to the Department of Botany Brigham Young University

In Partial Fulfillment of the Requirements for the Degree Master of Science

> by A. Clyde Blauer August 1965

## AESTRACT

Numerous reports have been published on the taxonomy and distribution of the coprophilous Ascomycetes and Basidiomycetes. No known quantitative work has been done, however, on the succession and structure of the communities formed by these higher fungi. This research was undertaken to study those two phases of the ascomycete and basidiomycete communities which grow and fruit on cow dung collected from Santaquin Canyon, Utah.

Sixty ascomycete and basidiomycete species representing four series and fifteen genera fruited on this cow dung. Four of these species had constancy percentages of 80% or 90%, four had constancy percentages of 60% or 70%, seven had constancy percentages of 40% or 50%, and forty-five (75%) had constancy percentages of below 40%.

Data on the succession and structure of the communities were obtained by making weekly examinations of 500 small quadrats distributed evenly over ten cow dung cultures. The cultures were incubated at  $21^{\circ} \pm 2^{\circ}$  C. under continuous illumination.

The ascomycete and basidiomycete species which fruited on the cultures were arranged into three successional communities. The early community was characterized by the major discomycete species <u>Ascobolus</u> <u>immersus</u>, <u>Ascobolus furfuraceous</u> and <u>Ascothanus holmskjoldii</u>. They were accompanied by four minor and rare species consisting of one basidiomycete species, two pyrenomycete species, and one discomycete species.

The intermediate community was characterized principally by six major pyrenomycete species and two major discomycete species. These pyrenomycete species were <u>Podospora corunifers</u>, <u>Podospora decipiens</u>, <u>Podospora curvula, Chaotonium globasum</u>, <u>Podospora piriformis</u> and <u>Podospora sp. #1. The discomycete species were <u>Saccobalus kerverni</u> and <u>Ascophanus granuliformis</u>. These major species well accompanied by sixteen minor species and ten rare species. The three major species of the early community extended into this community.</u>

The late community was characterized by two major species, <u>Podospora vestita</u>, a pyrenomycete species and by <u>Ascophanus ochraceous</u>, a discomycete species. These two major species were accompanied by two minor species, one rare species, and by eight of the eleven major species of the preceeding communities which continued to persist on the cultures.

Part of this study was an investigation of the effect of incubation under different temperatures on the fruiting pattern of the coprophilous Ascomycetes and Basidiomycetes. From four cultures incubated at  $21^{\circ} \pm 2^{\circ}$  C., two cultures incubated at  $16^{\circ} \pm 2^{\circ}$  C., and two cultures incubated at  $26^{\circ} \pm 2^{\circ}$  C. it was found that  $21^{\circ} \pm 2^{\circ}$  C. was the optimum temperature for the fruiting of twenty-three of the forty-five species which grew on these cultures,  $16^{\circ} \pm 2^{\circ}$  C. was the optimum temperature for the fruiting of fifteen of the species, and  $26^{\circ} \pm 2^{\circ}$  C. was the optimum temperature for the fruiting of only three of the species. It was not possible to determine the optimum temperature for the fruiting of four of the forty-five species.