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ABSTRACT

Dynamical Compact Objects in Numerical Relativity

Hyun Lim
Department of Physics and Astronomy, BYU

Doctor of Philosophy

The work of this dissertation will study various aspects of the dynamics of compact 
objects using numerical simulations. We consider BH dynamics within two modified 
or alternative theories of gravity. Within a family of Einstein-Maxwell-Dilaton-Axion 
theories, we find that the GW waveforms from binary black hole (BBH) mergers differ 
from the standard GW waveform prediction of GR for especially large axion values. For 
more astrophysically realistic (i.e. smaller) values, the differences become negligible and 
undetectable. We establish the existence of a well-posed initial value problem for a second 
alternative theory fo gravity (quadratic gravity) and demonstrate in spherical symmetry 
that a linear instability is effectively removed on consideration of the full nonlinear theory. 
We describe the key components and development of a code for studying BBH mergers 
for which the mass ratio of the binaries is not close to one. Such intermediate mass 
ratio inspirals (IMRIs) are much more difficult to simulate and present greater demands 
on resolution, distributed computing, accuracy and efficiency. To this end, we present a 
highly-scalable framework that combines a parallel octree-refined adaptive mesh with a 
wavelet adaptive multiresolution approach. We give results for IMRIs with mass ratios up 
to 100:1. We study the ejecta from BNS in Newtonian gravity. Using smoothed particle 
hydrodynamics we develop and present the highly scalable FleCSPH code to simulate such 
mergers. As part of the ejecta analysis, we consider these mergers and their aftermath 
as prime candidates for heavy element creation and calculate r-process nucleosynthesis 
within the post-merger ejecta. Lastly we consider a non-standard, yet increasingly explored, 
interaction between a BH and a NS that serves as a toy model for primordial black holes 
(PBH) and their possible role as dark matter candidates. We present results from a study of 
such systems in which a small BH forms at the center of a NS. Evolving the spherically 
symmetric system in full GR, we follow the complete dynamics as the small BH consumes 
the NS from within. Using numerical simulations, we examine the time scale for the NS to 
collapse into the PBH and show that essentially nothing remains behind. As a result, and in 
contradiction to other claims in the literature, we conclude that this is an unlikely site for 
ejecta and nucleosynthesis, at least in spherical symmetry.

Keywords: black holes, neutron stars, gravitational waves, modified theories of gravity, 
smoothed particle hydrodynamics, wavelet representation, nucleosynthesis
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Chapter 1

Introduction and Background

1.1 Introduction

General Relativity (GR) is an extraordinarily successful theory. Not only has it radically

modified our understanding of gravity, space and time, but it possesses enormous predictive

power that has been confirmed in a number of rather dramatic ways. Among its predictions,

GR describes exotic objects such as neutron stars and black holes as well as the dynamical,

expanding, cosmological model of the universe that we call the Big Bang.

Significantly, and crucially for the current work, it also predicts the existence of gravita-

tional waves (GW), the propagation of energy via the gravitational interaction. Indeed, it

is fair to say that gravitational waves are among the most important physical predictions

associated with strong, dynamical gravitational fields. As such, they are of great interest

in both astronomy and astrophysics. Understanding their sources and the means of their

production is crucial. While many sources of gravitational waves exist, among the strongest

are binary systems near merger that are composed of compact objects such as black holes

or neutron stars.

Compact objects are the endstates of stellar evolution, and are often referred to as stellar

remnants. The nature of these remnants depends primarily on the mass of the original,

progenitor star from which it was formed. All such objects have a large mass relative

1
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to their size, thereby giving them a very large density as well. Examples of well-known

compact objects are black holes (BHs) and neutron stars (NSs). In addition to these, there

may exist other, possibly very dense, bodies such as quark stars, boson stars, or gravastars.

These more exotic objects have not been detected.

In an extremely significant discovery, Advanced LIGO detected gravitational waves

from a binary black hole (BBH) merger [1] on September 14, 2015. Since this original

detection, there have been nine more GW detections from BBH mergers [2, 3, 4, 5, 6] and

one from a binary neutron star (BNS) merger [7]. Fig 1.1 shows the waveforms from all

confirmed detections during LIGO’s O1 and O2 runs. As of this writing (9 July 2019), 18

additional candidate detections have been announced as part of the third observing (O3)

run1 which began 1 April 2019. This amounts to an average detection rate of more than

one per week.

Figure 1.1 Spectrograms and waveforms for the gravitational-wave transient
catalog from the LIGO O1 and O2 runs. Image credit: [8]

One aspect of the LIGO/VIRGO discoveries that is important to recognize is that the

expected GW signals are so weak that even with the amazing sensitivity of these detectors it

1https://gracedb.ligo.org/latest/
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is necessary to extract the signals from the background noise. As it is much easier to extract

a signal if we know what to look for, detailed and accurate calculations of the dynamics

of these objects are needed in order to provide templates of expected GW signals. An

understanding of these sources and their generated waveforms can be gained by solving the

equations of general relativity. Such studies can provide valuable information on the design

and tuning of future advanced GW detectors as well as the analysis of the received signals

from those sources.

While recent detections have been direct measurements of GW, we have had evidence

for them indirectly for a number of decades. In fact, in 1974, Taylor and Hulse discovered

the first binary pulsar, referred to as PSRB1913+16, and thereby confirmed the general

relativistic prediction of energy outflow (gravitational waves) from this system. A binary

pulsar consists of two neutron stars orbiting around their center of mass. Such a system is

expected in GR to decay over time because massive objects emit gravitational waves and

lose energy. Exactly this prediction was observed in PSRB1913+16 [9]. Today, several

BNS systems are known. Although BH-NS binaries have not been detected to date, BH-NS

binaries are expected to form through mechanisms analogous to BNS binaries. Detecting

both will require templates of the GW signals these binaries can emit.

Due to the complexity of the two-body problem in general relativity, it is essentially

impossible to obtain analytic solutions to the equations of GR for such binary systems. The

Einstein equations are a system of ten coupled, nonlinear, partial differential equations

(PDEs) in 3 (space) + 1 (time) dimensions. Exact solutions of the Einstein equations are

only known in cases with high symmetry such as axisymmetry or for stationary systems. If

we are interested in studying systems with astrophysical relevance, numerical approaches

are required.

Many studies have considered and performed a variety of numerical simulations of

binary systems in a variety of different environments. We have no hope of referencing all

of the relevant work. However, we do mention a few review articles that may provide an

entry point into some of this literature. The article [10] reviews initial data for numerical
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relativity, while [11] surveys calculations of rotating stars in relativity, [12] provides an

introduction to numerical hydrodynamics in special relativity, [13] presents some of the

considerations needed to incorporate hydrodynamics and magnetohydrodynamics into

general relativity, [14] considers issues in simulating BH-NS binary mergers, and [15]

reviews BNS mergers.

Despite considerable progress in numerical relativity over several decades, a number

of interesting problems are only now beginning to be addressed, including the structure

of accretion disks around black holes, the amplification of magnetic field strength in

hypermassive neutron stars, the structure and strength of magnetic fields in neutron stars

after merger, and the variety of effects that can arise due to different theoretical equations

of state (EOS) for neutron stars. Studying binary systems can help address a number of

highly energetic and still somewhat mysterious systems in the universe.

Successful simulations of binary mergers in which gravitational wave emission can

be correctly calculated require substantial resolution. However, obtaining such resolution

still taxes the largest supercomputers in terms of time and memory. Various techniques

have been developed over the years to obtain the required resolution while simultaneously

attempting to shorten run times. Two such examples include adaptive mesh refinement

(AMR) and parallel computing. AMR adapts the computational domain of a problem

based on the local error of a computed solution and the fine features that may develop in a

simulation. Additional resolution is added where numerical precision is most needed, and

additional grid points are added to such regions dynamically. In the work to be described

here, we will use a sparse wavelet representation to obtain this adaptivity.

Parallel computing entails partitioning the numerical work one needs to accomplish

over many computer processors or cores. This can reduce computation time significantly.

Message Passing Interface (MPI) and graphical processing units (GPU) are example toolkits

for parallel computation. In the work described in this dissertation, we apply both AMR

and parallel computation in various guises to the problem of simulating binary systems.

In the next section, we will review some of the basic theoretical underpinnings of the
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work represented in this dissertation.

1.2 Background

As mentioned in the previous section, we would like to study the dynamics of compact ob-

jects such as BHs and NSs, particularly as they appear in merging binaries and thereby serve

as sources for the production of gravitational radiation. These systems can be described

by the Einstein equations. At its most basic level, the Einstein equations relate (curvature)

tensors involving second derivatives of the metric tensor to the energy momentum tensor.2

The usual form of the Einstein equations are

Gab = 8πTab, (1.1)

where Gab is the Einstein curvature tensor, and Tab is the energy-momentum tensor. Since

the energy-momentum tensor describes the matter distribution of a system, the vacuum

Einstein equations are completely sufficient and appropriate to describe the dynamics of

black hole spacetimes. The vacuum Einstein equations are then

Gab = 0. (1.2)

If we try to unpack this little bit, we recall that the Einstein curvaature tensor Gab is a

symmetric tensor defined in terms of the Ricci curvature tensor Rab, the metric tensor gab,

and the Ricci curvature scalar R in the following combination:

Gab = Rab−
1
2

gabR. (1.3)

Each of these curvature tensors are defined in terms of contractions of the Riemann curvature

tensor, Rabcd . In particular, the Ricci tensor is formed from a single contraction

Rbd = gacRabcd, (1.4)

2In this section, all tensor objects are defined on a four dimensional, spacetime manifold with Lorentzian

signature.



1.2 Background 6

while the Ricci scalar results from a second contraction: R = gbdRbd . The Riemann

curvature tensor is a combination of derivatives of the metric. It is most often written in the

following form:

Ra
bcd = ∂cΓ

a
bd−∂dΓ

a
bc +Γ

a
ecΓ

e
bd−Γ

a
edΓ

e
bc, (1.5)

where Γa
bc signify the Christoffel symbols that are, themselves, written as

Γ
a

bc =
1
2

gad(∂bgdc +∂cgbd−∂dgbc). (1.6)

Referring to the Einstein equations, we note that these form a system of second order

partial differential equations (PDEs). While not immediately obvious in this covariant

notation, further analysis will show that that they are a combined hyperbolic-elliptic system

of PDEs. In particular, it can be shown that these equations can be rewritten in a form

such that the dynamical degrees of freedom can be propagated via hyperbolic, or wave,

equations, while a subset of the elliptic equations determine a set of constraints that any

valid solution must obey. The numerical solution of the Einstein equations usually consists

of solving the constraint equations for a particular set of initial data which describe some

gravitationally valid configuration.

The description of the previous paragraph is a bit abstract, devoid of mathematical

justification, and perhaps hard to understand. Fortunately, we have an analogy with the

simpler system of Maxwell’s electrodynamics. Recall electromagnetism as described by

Maxwell’s equations, rewritten perhaps in a slightly less familiar form:

∇ ·E = 4πρ, (1.7)

∇ ·B = 0, (1.8)

∂E
∂ t

= ∇×B−4πJ, (1.9)

∂B
∂ t

=−∇×E. (1.10)

Of course, E and B are the electric and magnetic fields, ρ is the charge density, J is the

current density, and ∇ denotes a spatial derivative operator. (We can slip back into a
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special relativistic, flat space formulation – it doesn’t really matter for this discussion.) The

important point that we want to make here and that provides our analogy to GR is that these

equations can be thought of as splitting into two groups of equations. Note that the first

group can be written as

CE ≡ ∇ ·E−4πρ = 0, (1.11)

CB ≡ ∇ ·B = 0. (1.12)

These equations contain only spatial derivatives of the electric and magnetic fields. These

equations must hold at each instant of time independent of the subsequent evolution of

the fields. Therefore, they constrain any possible configuration of the fields for all time,

including the intial time. Hence they tell us what a good initial configuration of electric and

magnetic fields might look like given an arrangement of charge and current densities. We

refer to these as the constraint equations.

The second group of equations are, of course, the time evolution equations. These are

again

∂E
∂ t

= ∇×B−4πJ, (1.13)

∂B
∂ t

=−∇×E. (1.14)

These equations describe how the electric and magnetic fields evolve forward in time once

a good initial configuration, or good initial data, is specified.

This same splitting of the equations of electromagnetism into time evolution, or hyper-

bolic, equations and contraint, or elliptic, equations happens with regard to the Einstein

equations. Appendix A describes some of the details surrounding this division of the

Einstein equations into a set of constraint and evolution equations.

In order to study the evolution in time of a gravitating system, or any physical system

for that matter, it is important that we are able to formulate the system in such a way that

the evolution has a well posed initial value problem. Sometimes this is referred to as the

Cauchy problem for a physical system. With regard to the Einstein equations, we need to be
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able to describe the hyperbolic subset of the equations in such a way that we can prescribe

valid initial data and the evolution of the gravitational field is guaranteed to exist, be unique,

and to be stable (e.g. it does not blow up) arbitrarily far into the future. Setting up the

Einstein equations in such a way is fundamental to being able to solve the system through

numerical simulation. There are a variety of different formalisms relative to how this

specific separation is carried out. In our work, we will concentrate on the 3+1 formalism

(see Appendix A for a detailed description), in which one splits, or foliates, spacetime into

three-dimensional spatial slices with each being parametrized by a quantity labeling the

time. There are multiple ways to formulate such a 3+1 decomposition. Our work will use

primarily the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) [16, 17] formalism though

we also considered the CCZ4 formalism [18].

For non-vacuum spacetimes, the energy-momentum tensor contributes matter source

terms in the 3+1 field equations. The energy-momentum tensor includes all the sources of

energy and momentum in our spacetime, excluding gravity. Therefore, it arises from all

forms of matter: electromagnetic fields, neutrinos, scalar fields etc. To study the dynamics

of matter sources, we also need to solve the evolution equations for possible matter sources.

The evolution equations for matter sources will then be given by

∇aT ab = 0. (1.15)

These conservation equations must be solved together with the evolution equations for the

gravitational field. Some of the quantities in the energy-momentum tensor may require

additional equations. For example, when considering the case of hydrodynamic matter,

continuity equations and equations of state will be required to complete the fluid system.

In certain chapters of this dissertation, we will be interested in systems that will include

gravitating fluids. Both relativistic and nonrelativistic fluids are used to model a variety of

systems in high-energy astrophysics, such as neutron stars, accretion onto compact objects,

supernovae, and gamma-ray burst outflows. Consequently, methods to solve the relevant

hydrodynamic equations are a key scientific kernel in a large number of astrophysics
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simulations and toolkits. Specifically, we will be interested in general relativity coupled to

a perfect fluid.

There are a number of ways to describe this, but we will concentrate on one that allows

us to use a conservative numerical scheme for the matter part. For this, we assume a

energy-momentum tensor of the form

Tab =
[
ρ0(1+ ε)+P

]
uaub +Pgab, (1.16)

where ρ0 is defined as the rest energy density of the fluid, ε is the internal energy of the

fluid, ua is its 4-velocity and P is its pressure. We can include electromagnetic terms in the

above energy-momentum tensor to generalize our study to that of magnetohydrodynamics

(MHD):

Tab =
[
ρ0(1+ ε)+P

]
uaub +Pgab +FacFc

b −
1
4

gabFcdFcd, (1.17)

where the FacFc
b −

1
4gabFcdFcd terms are the electromagnetic parts defined by the Maxwell

tensor Fab. On including this model for the matter, we can begin to simulate a variety of

different astrophysical problems associated with compact objects, their dynamics and their

gravitational wave emission.

Ultimately, solving the combined set of the Einstein equations and the relativistic

magnetohydrodynamics equations numerically provides a route to laying the theoretical and

computational groundwork for eventually doing multimessenger astronomy from binary

compact objects.

1.3 Summary of Dissertation

In this dissertation, we will explore some of the dynamics of BHs and NSs. Our studies

will include these objects both singly and in binaries. The dissertation is organized as

follow: Chapter 2 describes BH dynamics in two modified theories of gravity, namely

Einstein-Maxwell-Dilaton-Axion (EMDA) theory and quadratic gravity (QG). Chapter 3

discusses the motivation for and our efforts towards developing an infrastructure capable
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of performing massively parallel simulations of intermediate mass ratio inspirals using a

recently developed variety of mesh adaptivity. Chapter 4 changes tack a bit while presenting

the development of and results from a code to simulate binary neutron stars and their ejecta

using smoothed particle hydrodynamics. Chapter 5 considers a different version of a BHNS

binary, namely a hypothesized interaction of a primordial black hole with a neutron star in

which the BH sits at the center of a NS. Chapter 6 will provide a conclusion, tie some of

our strands together and provide an outlook for possible future research directions.

Each chapter in this dissertation represents work that has been published or is cur-

rently in preparation to be submitted as journal articles. The work in Chap. 2 represents

manuscripts that are being prepared for submission (both the EMDA [19] and QG [20]

work). The work in Chap. 3 has been published in the SIAM Scientific Computing Jour-

nal [21]. The work in Chap. 4 represents one published article as well as a second that

is in the process of submission. The published article was published in HPCS 2018 [22]

and represents the computer science aspect of the research. A follow-up emphasizing the

physics aspect is currently under internal review at LANL [23]. The work in Chap. 5 is

being prepared for submission to a journal [24].

Of course each project described in this dissertation is a collaborative effort and various

aspects of each project was worked on by, sometimes, a variety of collaborators. The

EMDA project (Sec. 2.2) was done in collaboration with Eric Hirschmann (BYU) with

input from Luis Lehner (Perimeter Institute), Steve Liebling (Long Island University), and

Carlos Palenzuela (Universitat de Iles Baleras). The quadratic gravity project (Sec. 2.3) is a

collaboration with Aaron Held (Universität Heidelberg). The work described in Chap 3)

originates in a collaboration with Milinda Fernando (University of Utah), Hari Sundar

(University of Utah), David Neilsen (BYU), and Eric Hirschmann (BYU). The work on

binary neutron star systems in Chap. 4 was done in collaboration with several people at

LANL. These include Julien Loiseau, Oleg Korobkin, Jonah Miller, Irina Sargert, Wes Even,

and Ben Bergen. The work in Chap. 5 was begun at Perimeter Institute in collaboration

with William East (Perimeter Institute) and continued on my return to BYU.
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1.4 Conventions

In this work, we follow some fairly standard conventions:

• We use geometrized units such that c = G = 1

• Lengths and times are given in units of the mass M:

– Distance : d = M⇒ d = GM/c2

– Time : t = M⇒ t = GM/c3

• The metric signature is mostly plus: (−,+,+,+)

• The standard Einstein summation convention will always hold unless explicitly stated

otherwise:
N

∑
a=1

uaga = uaga

(where N is the number of dimensions) is used

• Indices a,b,c, ...,h and o, p,q, ... will be understood to run over spacetime indices,

while i, j,k, ...n will run over spatial indices only (Sometimes referred to as the

Fortran convention)

• The flat spacetime (or purely spatial) metric will be represented by ηab (or ηi j) in

any coordinate system. For example, we have ηab = diag(−1,1,1,1) in Cartesian

(inertial) coordinates

• In general, we refer to objects associated with

– the spacetime manifold M as gab, (4)Γa
bc, ∇a, (4)Rab, etc.

– a spatial slice, Σ, as γi j, Γi
jk, Di, Ri j, etc.

– a conformally related space as γ̄i j, Γ̄i
jk, D̄i, R̄i j, etc.

• The symmetric and antisymmetic parts of a tensor are defined

T(ab) ≡
1
2
(Tab +Tba) and T[ab] ≡

1
2
(Tab−Tba)
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• Partial derivatives are designated as: ∂ig or g,i

• Covariant derivatives are designated as: ∇a fb or fb;a

• The Lie derivative of a tensor T ab along the vector Xc is designated as: £X T ab



Chapter 2

Black Hole Dynamics in Modified

Theories of Gravity

2.1 Introduction

For over a century, Einstein's theory of general relativity (GR) has been considered as

the consensus best theory of gravity. This consensus is not without reason. To date, all

observations and experiments have lent increasing support to GR within the classical weak

field regime. These include tests such as the perihelion of Mercury, the bending of starlight

around the Sun, as well as the loss of orbital energy to gravitational waves in binary pulsar

systems. As a result, one may reasonably ask why a lot of time and effort has been spent on

studying possible alternative or modified theories of gravity.

One reason is that GR is nonrenormalizable in the ultraviolet limit (i.e. at short distances

and high energies) and hence cannot be extended to a quantum theory [25]. Further, when

GR is treated as a complete theory, it leads to predictions of singularities in two important

scenarios. One is in the formation of a BH with a singularity at its center. Another

relates to the singularity at the beginning of the universe, known as the Big Bang. These

singularities are expected to be unphysical, yet they occur in situations that are important in

understanding the universe. Therefore, they have been the focus of many investigations into

13
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GR and possible modifications. Indeed, many alternative theories of gravity are motivated

by the effort to resolve these singularities and the problems associated with them. Of course,

there are other open questions in gravitational physics and cosmology including the nature

of dark energy, dark matter and the possible unification of the forces. Even such ideas may

ultimately be only approximations to more fundamental theories such as string theory [26].

A related reason to considering alternative and modified theories of gravity, and this

is a main motivation for this work, is that GR may break down in the regime of very

strong gravitational fields [27]. As already mentioned, GR has been tested in weak-field

observations within our solar system and we know GR works well in this regime. However,

in the highly nonlinear and strongly dynamical regime such as the merger of two black holes

or two neutron stars, GR needs additional testing. Before 2015, it was almost impossible to

test GR in the strong field limit. However, with the advent of gravitational wave astronomy,

our interest in gravitational radiation shifts from the effort to detect this radiation to using

observatories such as LIGO/VIRGO to begin to probe not only the physics and predictions

of GR but to explore physics beyond the standard model of gravity which we might take

GR to now be. Observing GWs can tell us more than just the existence of black holes in

binary systems. We are now in the position of being able to use GW observations to test the

fundamental nature of gravity and whether GR describes it entirely.

With the detection of several recent black hole merger events [1, 2, 3, 4, 5], there

is already a considerable and growing literature [28, 29] which discusses the theoretical

implications of GW observations. Therefore, accurate predictions of possible future GW

signals are important to test alternative theories of GR and quantum gravity as well as to

help in future detections and next generation detectors. These tests may possibly indicate

that nature deviates from GR.

Since modified and alternative theories of gravity have been developed for a variety of

reasons, one might expect that there exist a wide range of these theories. In general, we

can categorize these theories by which fundamental aspects of GR they violate [29, 30].

One example is a class of theories that admit massive gravitons. Such theories allow for
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a massive force carrier for gravity as opposed to a massless one as assumed in GR [31].

Other possibilities include alternatives which originate from higher dimensional variants

such as string theory as well as theories which invoke a holographic type principle akin to

the AdS/CFT conjeture or the gauge/gravity correspondence [32]. Suffice it to say, there

are many ideas and alternative gravity theories built out of them. Each is interesting in its

own right, but there are far too many to be able to explore them in detail in this work.

In this chapter, we restrict ourselves to studying black hole dynamics within two

alternative theories. One is Einstein-Maxwell-Dilaton Axion (EMDA) theory and second is

quadratic gravity. For EMDA theory, we study the behavior of different kinds of BHs in

both single and binary form. We also calculate the GW signal from BBH mergers in this

theory and compare with the standard GR result. For quadratic gravity, while our ultimate

goal may be to do the same, because it is a less well developed and understood theory,

for the present work we establish a way to obtain a well-posed initial value problem in

higher derivative gravity and investigate a restricted version of nonlinear stability within

this theory.

As mentioned at the end of Chapter 1, the work described here has been collaborative.

The EMDA project was done with Eric Hirschmann with input from Luis Lehner, Steve

Libeling, and Carlos Palenzuela. We used the long established and verified HAD as our com-

putational infrastructure. This gave us the ability to include AMR, the BSSN formulation,

as well as standard numerical finite difference algorithms. (See Appendix E.1.1 for detailed

information about HAD.) My contribution to this work included deriving the equations

of motion associated with EMDA theory, writing the code for this system into HAD for

numerical simulations, and performing all the tests and simulations that are presented in

this section.

The quadratic gravity (QG) project was a collaboration with Aaron Held. My contribu-

tion to this project included deriving and proving that a well-posed initial value formulation

for QG exists. I also wrote the unigrid code to simulate the evolution system in spherical

symmetry. As the unigrid code does not allow for sufficient resolution in many cases, I also
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adapted the code for use with the PAMR [33] toolkit to allow for parallel AMR functionalities.

(See Appendix E.1.4 for detailed information about PAMR.)

2.2 Einstein-Maxwell-Dilaton-Axion Theory

2.2.1 Introduction

In this section, we will study black hole systems within EMDA theory. This is extended

work based on [34] which studies black hole dynamics in the Einstein-Maxwell-Dilaton

(EMD) theory. This theory originates in the low energy limit of the bosonic sector of

heterotic string theory. This theory allows for black holes that can have mass, angular

momentum, charge and scalar hair together with scalar, vector, and tensor radiation channels.

Further, its mathematical structure guarantees the definition of a well-posed initial value

problem. Therefore, EMDA offers an interesting theoretical and computational model to

explore possible deviations from the “standard model“ GR provides.

2.2.2 Equations

We will begin by sketching a derivation of the equations of motion for EMDA. The action

for Einstein-Maxwell-Dilaton-Axion (EMDA) is (in the Einstein frame)

S =
∫

d4x
√
−g
[

R−2(∇φ)2− e−2α0φ F2− 1
2

e4α1φ (∇κ)2−κFab(∗F)ab
]
, (2.1)

where φ is the dilaton field, κ is the axion field, and ∗F indicates the dual of the Maxwell

stress tensor. We include the parameters α0 and α1 in order to parametrize a broader family

of theories. The strict low energy string theory corresponds to α0 = α1 = 1. Note that if

the parameters are zero, we revert to general relativity with two real scalar fields and an

otherwise uncoupled U(1) gauge field. From this action, we can derive the equations of

motion.



2.2 Einstein-Maxwell-Dilaton-Axion Theory 17

On varying the action with respect to φ we get its equation of motion

∇a∇
a
φ =−1

2
α0 e−2α0φ F2 +

1
2

α0 e4α1φ (∇κ)2. (2.2)

On varying the action with respect to the axion, κ , we obtain

∇a

(
e4α1φ

∇
a
κ

)
= Fab(∗F)ab, (2.3)

while varying with respect to the Maxwell field produces

∇a

(
e−2α0φ Fab

)
=−(∗F)ab

∇aκ. (2.4)

Finally, on varying with respect to the metric, we get the full Einstein equation:

Rab−
1
2

gabR = 2∇aφ∇bφ −gab∇aφ∇
a
φ +2e−2α0φ

(
FacFb

c− 1
4

gabFcdFcd)
+

1
2

e4α0φ
(
∇aκ∇bκ− 1

2
gab∇cκ∇

c
κ). (2.5)

Note that the final term in the action, the so-called Chern-Simons term,

L CS =−
√
−gκ Fab(∗F)ab, (2.6)

does not contain the metric explicitly:

L CS =−
√
−gκ Fab(∗F)ab

=−1
2
√
−gε

abcd
κFabFcd =− [abcd]κ FabFcd,

where [abcd] is the totally antisymmetric alternating symbol and takes values of −1, 0 or

1. As a result, on variation of the Lagrangian density, this term does not contribute to the

evolution equations for the gravitational field. As a result, this term is often referred to as

the topological term.

With the covariant form of the equations in hand, we are now in a position where we

need to decompose these equations into 3+1, or ADM (and eventually BSSN), form.
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2.2.3 The 3+1 Decomposition for EMDA

As mentioned in the introduction, we need to make a split of the spacetime between

spacelike and timelike parts. What Einstein put together, we must separate in order to be

able to define a good evolution scheme to which we can apply numerical techniques. To

this end, we follow a decades old prescription to effect this split [35]. (See Appendix A for

a more detailed discussion of the 3+1 decomposition and its meaning.)

To begin, we foliate the spacetime into a family of three dimensional spacelike hyper-

surfaces we will call Σ and which will be parametrized by a time function t. W define the

usual 3+1 decomposition quantities

gab = γab−nanb,

na = (−α,0,0,0),

na =

(
1
α
,−

~β

α

)
,

Kab =−γa
c
γb

d
∇cnd,

where γab is the metric induced on the 3D spacelike hypersurface Σ, na is the timelike,

normal vector to those same hypersurfaces and which therefore satisfies nana = −1 and

Kab is the extrinsic curvature of the hypersurfaces.

The point of these definitions is to be able to define a timelike direction such that

physical quantities that live and breath in the three dimensional space with their three

spatial directions can be thought of as evolving and developing forward in time. Hence,

by using these quantities, we are effectively projecting out the spatial directions from the

time direction. In the problem of EMDA this includes projecting out an evolution equation

or equation of motion for the dilaton (Eqn. 2.2), the axion (Eqn. 2.3), the Maxwell fields

(Eqn. 2.4), and the metric (Eqn. 2.5). Along the way, additional, related projections will

also provide us constraints that will need to be satisfied. In the end, we are able to obtain an

initial value problem that will allow us to study the time evolution of the combined system.
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Decomposition of the dilaton field, φ

We will start with the equation of motion for the dilaton, φ

∇a∇
a
φ =−1

2
α0 e−2α0φ F2 +

1
2

α0 e4α1φ (∇κ)2. (2.7)

We will project the equation into and normal to the spacelike hypersurface, Σ. Using this,

we will define a new variable Π =−na∇aφ which makes our system of equation into first

order in time

Appendix A.5.1 describes detailed derivation for decomposition of the dilaton field, φ .

After all these algebraic effort, we have

na
∇aφ =

1
α

(
∂tφ −β

i
∂iφ
)
=−Π, (2.8)

nb
∇bΠ =

1
α

(
∂tΠ−β

i
∂iΠ
)

=− 1
α

Da(αDa
φ)+KΠ

−α0e−2α0φ [(⊥B)2− (⊥E)2)]+
1
2

α0e4α1φ (Da
κDaκ− (Ξ)2). (2.9)

Decomposition of equations for the axion field, κ

We now consider the equation of motion for the axion field, κ .

∇a

(
e4α1φ

∇
a
κ

)
= Fab(∗F)ab. (2.10)

It is among the new pieces in our theory on extending EMD. Significantly, it is sourced

by an invariant of the Maxwell field as well as the dilaton. Rewriting the equation to reflect

this, we have

∇a∇
a
κ =−4α1∇aφ∇

a
κ + e−4α1φ Fab(∗F)ab. (2.11)

We follow a similar manner as pervious decomposition of the dilaton equations. Ap-

pendix A.5.2 shows detailed works for decomposition of the axion field, κ . After all these

efforts, we have

nb
∇bΞ =− 1

α
Da(αDa

κ)+KΞ+4α1Da
κDaφ +4α1ΠΞ+4e−4α1φ⊥Bc⊥Ec, (2.12)
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or, in terms of derivatives with respect to the time coordinate

∂tΞ = β
a
∂aΞ−Da(αDa

κ)+αKΞ+4αα1Da
κDaφ +4αα1ΠΞ+4αe−4α1φ⊥Bc⊥Ec.

(2.13)

Decomposition of the electromagnetic field equation

We will next decompose the electromagnetic field equation.

∇a

(
e−2α0φ Fab

)
=−(∗F)ab

∇aκ, (2.14)

or we rewrite the equations into more relevant form for the decomposition.

∇aFab = 2α0(∇aφ)Fab− e2α0φ (∇aκ)(∗F)ab. (2.15)

Again, we follow analogous manner in previous dilaton and axion cases. Appendix A.5.3

shows detailed discussion for decomposition of the electromagnetic fields. With works, we

have

Da⊥Fab = 2α0Π⊥Ea + e2α0φ
Ξ⊥Ba (2.16)

nd
∇d⊥Ec =−Kac⊥Ea−⊥Fa

c Da lnα−K⊥Ec. (2.17)

Of course, in EM, these equations are only half the Maxwell equations; namely the

sourced EM equations. They are supplemented with the mathematical identity ∇[aFbc] = 0,

or the homogeneous Maxwell equations. Thus, we need to decompose this identity in an

analogous way. In particular, we write the equation as

∇a(∗F)ab = 0, (2.18)

and project it again against nb and γbc. We describe this procedure in the Appendix A.5.3.

With works, we have

Da⊥(∗F)ab = 0, (2.19)

nd
∇d⊥Bc =−Kac⊥Ba +⊥(∗F)a

cDa lnα−K⊥Bc. (2.20)
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Eqns. 2.17 and 2.20 provide the evolution equations for the electromagnetic fields. The

other two equations are the constraint equations and can be thought of as being purely

spatial equations. It has been found to be useful to incorporate the constraints into the time

evolution equations to ensure that the constraints are satisfied in numerical simulations.

There are a number of ways to do this including at the level of numerical algorithms. We

choose an alternative procedure that begins at the level of the equations themselves and

involves adding versions of the constraints into the evolutions equations in such a way that

the violation of the constraints becomes a sort of damping term that gets driven to zero

in the course of the evolution. This process is known as constraint damping. We briefly

describe our approach.

We can incorporate constraint damping by including new scalar fields into the electro-

magnetic equations. The purpose for adding these constraints can be understood easily by

considering the usual Maxwell equations. Consider first the equations for the magnetic

field in flat space and the usual notation of vector calculus:

∇ ·B = 0, (2.21)

∂B
∂ t

+∇×E = 0. (2.22)

Of course, the magnetic field must satisfy divergence free condition (Eqn. 2.21). As

mentioned earlier, this condition can be thought of as a constraint on the initial configuration

of magnetic fields because Eqn. 2.22 will then ensure that the magnetic field is divergence

free at any time during the evolution. However, this analytic property of the system will not

necessarily be preserved precisely by most numerical schemes. This lack of consistency

may lead to the corruption of numerical solutions in the creation of creating magnetic

monopoles across the grid. To address this problem, we follow an idea similar to the

so called generalized Lagrange multiplier method [36]. The main idea is to introduce

additional dynamical variables into the original system. This will create a new system

of differential equations that will have the same solution of the original system provided

the initial solution satisfies the constraints of the original system. However, if the initial
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solution does not satisfy the constraints then deviations will decay or are rapidly carried off

the computational domain. Using this idea, we modify the magnetic field equations to be

∂Φ

∂ t
+∇ ·B =−ηΦ, (2.23)

∂B
∂ t
−∇×E+∇Φ = 0, (2.24)

where Φ is a new scalar dynamical variable and η is a positive constant. From these

equation, we can see that Φ satisfies the telegraph equation

−∂ 2Φ

∂ t2 −η
∂Φ

∂ t
+∇

2
Φ = 0. (2.25)

Therefore, Φ is transported away by decaying waves provided η > 0. For real positive η ,

the evolution of Φ is towards zero and strict satisfaction of the constraint. Thus, Eqn. 2.23

shows that in such a state the magnetic field will satisfy the divergence free condition. A

similar argument can also be applied to the electric field.

Based on this idea, we apply constraint damping terms in our 3+ 1 formulation of

the equations for EMDA. In particular, we posit as replacements for the usual constraint

equations of electromagnetism, the following two equations

∇a(Fab +gab
Ψ)−2α0(∇aφ)Fab + e2α0φ (∇aκ)(∗F)ab = η1nb

Ψ, (2.26)

∇a((∗F)ab +gab
Φ) = η2nb

Φ, (2.27)

where η1 and η2 are positive real constants. From the electromagnetic equations, we define

the charge and current to be

Ji
em =−2α0(∇aφ)Fab + e2α0φ (∇aκ)(∗F)ab,

qe = Ji
emni,

where the negative sign in the current is merely a sign convention.

We follow our earlier techniques for decomposing this equation. Again, appendix A.5.3
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describes detailed derivations of this work. After all works, we have

na
∇a⊥Eb =− 1

α
Da(α⊥Fab)−⊥EaKb

a +⊥EbK−Db
Ψ−2α0[Π⊥Eb− ε

abcDaφ⊥Bc]

− e2α0φ [Ξ⊥Bb +DaK⊥(∗Fab)], (2.28)

na
∇a⊥Bb =

1
α

Da(αε
abc⊥Ec)−⊥BaKb

a +⊥BbK +Db
Φ. (2.29)

In terms of time derivatives we can write these as

∂t⊥Eb = β
i
∂i⊥Eb−⊥Ea

∂aβ
b−Da(αε

abc⊥Bc)+α⊥EbK−αDb
Ψ

−2αα0[Π⊥Eb− ε
abcDaφ⊥Bc]−αe2α0φ [Ξ⊥Bb +DaKε

abc⊥Ec], (2.30)

∂t⊥Bb = β
i
∂i⊥Bb−⊥Ba

∂aβ
b +Da(αε

abc⊥Ec)+α⊥BbK +αDb
Φ. (2.31)

Decomposition of the Einstein field equation

The last step in our procedure to derive all equations of motion for the system is the

decomposition of the Einstein equation:

Rab−
1
2

gabR = 2∇aφ∇bφ −gab∇aφ∇
a
φ +2e−2α0φ (FacFc

b −
1
4

gabF2)

+
1
2

e4α1φ (∇aκ∇bκ− 1
2

gab∇aκ∇
a
κ). (2.32)

We will consider the RHS of the Einstein equation first. In our units, the energy-momentum

tensor Tab is

Tab = 2∇aφ∇bφ−gab∇aφ∇
a
φ +2e−2α0φ (FacFc

b −
1
4

gabF2)+
1
2

e4α1φ (∇aκ∇bκ− 1
2

gab∇aκ.∇a
κ)

(2.33)

Using this, we can define the projected stress tensor, ⊥Tab, the momentum flux density, Ji,

and the energy density ρ . On decomposing the energy-momentum tensor along the normal

components, we get

ρ = Tab nanb

= Π
2 +DaφDa

φ + e−2α0φ
[
(⊥B)2 +(⊥E)2]+ 1

4
e4α1φ (Ξ2 +DaκDa

κ). (2.34)
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Here, we use the fact that gabnanb = (hab−nanb)nanb =−1 together with previous defini-

tions and decompositions that relate φ , κ , and Fab. The momentum flux density becomes

Ji =−γ
iaTabnb

= 2Di
φ Π+

1
2

e4α1φ Di
κ Ξ+2e−2α0φ

ε
ie f⊥B f⊥Ee, (2.35)

and finally, the spatial projection of the stress-energy tensor is

⊥Tab = DaφDbφ −hab(DcφDc
φ −Π)

+2e−2α0φ [⊥Fac⊥Fc
b +⊥Ea⊥Eb−

1
2

hab((⊥B)2 +⊥E)2)]

+
1
2

e4α1φ (DaκDbκ− 1
2

hab(DcκDc
κ−Ξ

2)). (2.36)

Contracting γa
cγb

dgcd turns the 4-metric gcd into the spatial 3-metric γab.

The usual decomposition of the Einstein tensor is used for the LHS of the equation. (It

will give constraint equations and evolution equations of extrinsic curvature and induced

metric. See Appendix A for the details of this decomposition.) With all of this done,

we have our basic equations split into time and spatial pieces. We can identify relevant

evolution equations together with constraint equations that our system must obey. However,

long experience has taught us that even with these equations, we do not necessarily have a

well-posed initial value problem and a strongly hyperbolic system of equations. The next

section is intended to provide us that.

2.2.4 The BSSN Formalism

In the previous section, we went to great lengths to derive the relevant 3+1 set of equations

for EMDA. They purport to model an extension of general relativity to include additional

fields that may describe aspects of our universe. These equations can be thought of as

describing various fields interacting on a dynamical spacetime. Hence, these equations

must be augmented with the Einstein equation in 3+1 form. The usual ADM decomposition

which we have used has been shown to be weakly hyperbolic and prone to instabilities [37]
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in numerical simulation. It has been shown that the so-called BSSN formulation of the

Einstein equations is strongly hyperbolic and has better stability properties than the ADM

formulation. We refer to reader Appendix A for details about the BSSN formalism. For

now, we present the entire set of equations in BSSN form:

∂tφ = β
a
∂aφ −αΠ,

∂tκ = β
a
∂aκ−αΞ,

∂tΠ = β
a
∂aΠ−Da(αDa

φ)+αKΠ−α0αe−2α0φ [(⊥B)2− (⊥E)2)]

+
1
2

α0αe4α1φ (Da
κDaκ− (Ξ)2),

∂tΞ = β
a
∂aΞ−Da(αDa

κ)+αKΞ+4αα1Da
κDaφ +4αα1ΠΞ+4αe−4α1φ⊥Bc⊥Ec,

∂tΨ = β
a
∂aΨ−αDa⊥Ea +2αα0(Dcφ)⊥Ec +αe2α0φ (Dcκ)⊥Bc−αη1Ψ,

∂tΦ = β
a
∂aΦ+αDa⊥Ba−αη2Φ,

∂t⊥Eb = β
i
∂i⊥Eb−⊥Ea

∂aβ
b−Da(αε

abc⊥Bc)+α⊥EbK−αDb
Ψ

−2αα0[Π⊥Eb− ε
abcDaφ⊥Bc]

−αe2α0φ [Ξ⊥Bb +DaKε
abc⊥Ec], (2.37)

∂t⊥Bb = β
i
∂i⊥Bb−⊥Ba

∂aβ
b +Da(αε

abc⊥Ec)+α⊥BbK +αDb
Φ.

In order to reach the BSSN formulation, we first consider a conformal transformation

of the 3-metric of the form

γ̄i j = e−4ξ
γi j, (2.38)

where ξ is the conformal factor such that the conformal metric has unit determinant. Thus,

γ = exp(12ξ ) because γ̄ = 1. We also define a conformally rescaled traceless extrinsic

curvature

Āi j = e−4ξ

(
Ki j−

1
3

γi jK
)
. (2.39)

Finally, we define the conformal connection functions

Γ̄
i = γ̄

jk
Γ̄

i
jk =−∂ jγ̄

i j, (2.40)
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where the Γ̄i
jk are the Christoffel symbols built out of the conformal 3-metric such that

Γ̄
k
i j = Γ

k
i j−2(δ k

i ∂ jξ +δ
k
j ∂iξ − γi jγ

kl.∂lξ ) (2.41)

In order to write down the previous ADM equations in BSSN form, we need to be

reminded of a few relations. Let ψ be an arbitrary scalar function. By definition,

Diψ = ∂iψ. (2.42)

This is true because there are no connection coefficients in the derivative of the scalar field.

Therefore, we can easily rewrite the 3D covariant derivative as the 3D partial derivative

(gradient) of a scalar field. For a more realistic case, consider a term such as Da(αDaφ).

Expressed in terms of the BSSN variables we have just defined, we have

Da(αDaφ) = γ
i j

∇i(αD jφ) = γ
i j[∂i(α∂ jφ)−Γ

k
i jα∂kφ ]

= αχ[γ̄ i j
∂i∂ jφ + γ̄

i j(∂i lnα)∂ jφ − Γ̄
i
∂iφ −

1
2

γ̄
i j

∂iφ∂ j ln χ], (2.43)

where we use γ̄i jγ̄
i j = 3, rearrange some dummy indices, and define χ = e−4ξ for purposes

of convenience. From the latter, note that we have the relations:

γ̄i j = χγi j, (2.44)

γ̄
i j =

1
χ

γ
i j, (2.45)

ξ =−1
4

ln χ. (2.46)

Other terms can also be written in a similar way. Consider the divergence of an arbitrary

spatial vector field, f a:

Da f a = ∂a f a + (3)
Γ

a
ac f c = ∂a f a +∂c ln

√
γ f c

=
1
√

γ
∂a(
√

γ f a) =
1√
e12ξ

∂a(
√

e12ξ f a)

=
1√
χ−6

∂a(
√

χ−6 f a) = χ
3/2

∂a(χ
−3/2 f a)

= ∂a f a− 3
2

χ
3/2

χ
−5/2

∂aχ f a

= ∂a f a− 3
2χ

f a
∂aχ, (2.47)
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where (3)Γa
bc are the connection coefficients built from the original induced metric in 3

spatial dimensions and we use the property (3)Γa
ac = ∂c ln

√
γ just as Γa

ac = ∂c ln
√
−g in the

full 4D case. Using this, we can write

Da⊥Ea = ∂a⊥Ea− 3
2χ
⊥Ea

∂aχ, (2.48)

Da⊥Ba = ∂a⊥Ea− 3
2χ
⊥Ba

∂aχ. (2.49)

In general, consider the general covariant vector Va. In this case, DaVb implies the full

projection on both the derivative and the vector such that

DaVb =⊥(∇aVb) = γ
c
a∇c(γ

d
b Vd). (2.50)

To write this down in BSSN form i.e. using the conformal transformation, we need to

evaluate the covariant derivative and change the connection coefficients from Γ to Γ̄. We

must also change the 3-metric γ to γ̄ using the transformation properties that we defined

above. For higher rank tensors such as Wab, we follow the same procedure but include

additional connection coefficients (For Wab, we will have two Γs so we will need two Γ̄s.)

Rewriting the equations for the dilaton, the axion, and the EM equations in BSSN form, we

get

∂tφ = β
a
∂aφ −αΠ, (2.51)

∂tκ = β
a
∂aκ−αΞ, (2.52)

∂tΠ = β
a
∂aΠ−αχ[γ̄ i j

∂i∂ jφ + γ̄
i j(∂i lnα)∂ jφ − Γ̄

i
∂iφ −

1
2

γ̄
i j

∂iφ∂ j ln χ]+αKΠ

−α0αe−2α0φ [(⊥B)2− (⊥E)2)]+
1
2

α0αe4α1φ (∂ a
κ∂aκ− (Ξ)2), (2.53)

∂tΞ = β
a
∂aΞ−αχ[γ̄ i j

∂i∂ jκ + γ̄
i j(∂i lnα)∂ jκ− Γ̄

i
∂iκ−

1
2

γ̄
i j

∂iκ∂ j ln χ]

+αKΞ+4αα1∂
a
κ∂aφ +4αα1ΠΞ+4αe−4α1φ⊥Bc⊥Ec, (2.54)

∂tΨ = β
a
∂aΨ−α

(
∂a⊥Ea− 3

2χ
⊥Ea

∂aχ

)
+2αα0(∂cφ)⊥Ec

+αe2α0φ (∂cκ)⊥Bc−αη1Ψ, (2.55)
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∂tΦ = β
a
∂aΦ+α

(
∂a⊥Ba− 3

2χ
⊥Ba

∂aχ

)
−αη2Φ, (2.56)

∂t⊥Ea = β
i
∂i⊥Ea−⊥Ea

∂bβ
a

−χ
1/2

ε
abc
{

α[∂bγ̄cd⊥Bd + γ̄cd∂b⊥Bd]+ γ̄cd⊥Bd
[

∂bα−α
∂bχ

χ

]}
+αK⊥Ea−αχγ̄

ab
∂bΨ−2αα0[Π⊥Ea− ε

abc
χ

1/2
∂bφ γ̄cd⊥Bd]

−αe2α0φ [Ξ⊥Ba + ε
abc

χ
1/2

∂bKγ̄cdEd], (2.57)

∂t⊥Ba = β
i
∂i⊥Ba−⊥Ba

∂bβ
a

−χ
1/2

ε
abc
{

α[∂bγ̄cd⊥Ed + γ̄cd∂b⊥Ed]+ γ̄cd⊥Ed
[

∂bα−α
∂bχ

χ

]}
+αK⊥Ba +αχγ̄

ab
∂bΦ. (2.58)

The evolution equations for the variables γ̄i j, Γ̄i, Āi j, ξ , and K can be obtained from the

decomposition of the Einstein tensor (again, see Appendix A for details)

∂t γ̄i j = β
k
∂kγ̄i j + γ̄k j∂iβ

k− 2
3

γ̄i j∂kβ
k−2αĀi j, (2.59)

∂tξ = β
k
∂kξ +

1
6

∂kβ
k− 1

6
αK, (2.60)

∂t Āi j = β
k
∂kĀi j + Āk j∂ jβ

k− 2
3

Āi j∂kβ
k + e−4ξ

[
−DiD jα +α

(3)Ri j−8πGα⊥Ti j

]T F

+α

(
KĀi j−2ĀikĀk

j

)
, (2.61)

∂tK = β
k
∂kK−DiDi

α +α

(
Āi jĀi j +

1
3

K2
)
+4πGα(ρ +⊥T ), (2.62)

∂t Γ̄
i = β

j
∂ jΓ̄

i− Γ̄
j
∂ jβ

i +
2
3

Γ̄
i
∂ jβ

j + γ̄
jk

∂ j∂kβ
i +

1
3

γ̄
i j

∂ j∂kβ
k

−2Āi j
∂ jα +2α

(
Γ̄

i
jkĀ jk +6Ā jk− 2

3
γ̄

i j
∂ jK−8πGe4ξ Ji

)
. (2.63)

where TF means the trace free part, the quantities ρ , Ji, and ⊥Ti j were obtained previously

and recall that ⊥T ≡⊥T i
i

2.2.5 Black Hole Initial Data for EMDA

Having established the equations and formalism within which we will work, it is necessary

to consider appropriate initial conditions which will represent the physical system that we
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would like to explore. It therefore becomes necessary to consider black hole solutions as

initial data within EMDA.

There are, of course, well known black hole solutions within Einstein’s gravity. These

include the Kerr-Newman solution which represents the most general black hole solution

with three parameters, namely mass, charge and angular momentum. We should, of course,

also acknowledge that it is also the external, vacuum solution of a massive, charged, rotating

source of matter. As our focus is black hole solutions, we will focus on interpreting it as

such. However, we also want to generalize such black hole solutions to EMDA. Such a

solution has been found [38, 39]. It is known as the Kerr-Sen [38] solution and represents

a massive, charged (under a U(1) gauge field), rotating, black hole that is also endowed

with both dilaton and axion fields. While much is known about this black hole, to our

knowledge it remains unknown whether a single black hole is stable and whether in a

dynamical process of say, the inspiral of two such black holes, the final state remains a

Kerr-Sen black hole.

In addition to the Kerr-Sen black hole, there is also a study [39] which obtains a class

of axisymmetric solutions to EMDA. Furthermore, there are several additional classes of

BHs in EMD theories: [40] finds charged BHs in low energy string theory, [41] describes

rotating dilatonic BHs, and [42, 43] presents rotating BHs in Kaluza-Klein theory which

can be thought of as a subset of EMD.

In this work, we use different known analytic BHs in the literatures [38, 40, 41, 42, 43]

as our initial date for single BH tests. These types of BH initial data admit additional

components such as dilaton and axion as scalar hairs into BHs which are the standard GR

do not allow to have these scalar hairs. We treat these additional scalar hairs as a constant

at the initial BH and perform following dynamics. We also adapt to specific gauge or

coordinate system that is useful for numerical simulations.

Furthermore, one of the main interests of our research is obtaining the GW waveform of

a BBH merger within this theory. To construct initial data for BBH merger, we simply use

puncture initial data to create BBH systems then adding additional constant EM, dilaton,
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and axion fields. Detailed information and derivations for both single and binary BH initial

data is described in the Appendix B.

2.2.6 Results

In this section, we present the results of some of our numerical simulations. To perform

these, we use the HAD infrastructure (See Appendix E.1.1 for details of HAD). HAD is a

longstanding toolkit (over a decade) used within the numerical relativity community for

solving the Einstein equations coupled to a variety of matter systems. It incorporates

Berger-Oliger style block AMR [44]. The HAD code has been well tested and provides us a

basic, trusted computational environment within which to develop the numerical approach

to solving the equations of EMDA.

Figure 2.1 Comparison between the analytic and numerical results for the axion
field. The expression for the axion comes from Eqn. B.166 We extract the profile
at late times when the solution has settled down to a stationary configuration.

As tests of our implementation of EMDA, we first provide a test of a single BH evolved

for checking dynamical stability (or a possible unstable mode) of BH in EMDA as well as

an additional scalar field, axion, in this theory. These tests will provide an insight how BH

properties in EMDA can be understood as comparing with the standard GR.
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Before presenting single BH results, we validate of our code implementation first.

Fig 2.1 shows a comparison plot between analytic and numerical results for the axion field.

The analytic axion field equation is adapted from Eqn. B.166. We extract the radial profile

of the axion field at late times when the BH settles down to some stationary solution. This

result shows that both analytic and numerical results match well.

Figure 2.2 The L2 norm of the Hamiltonian and momentum constraints plotted
over time for a single BH evolution. We use Kerr-Sen initial data for this test.
The feature at early time is apparently due to truncation error from the numerical
integration but it will be stabilized and down to small value at late time.

We also monitor the Hamiltonian and momentum constraints as a check on the validity of

the numerical integration. Analytically, both Hamiltonian and momentum constraints should

be zero during the evolution. However, because of truncation errors and the approximations

inherent in our finite difference approach, we expect that there will be violations of these

constraints across our numerical grid. As a confirmation of the stability and correctness of

our code, we expect these violations to remain small and bounded throughout the simulation.

If we observe large violations during the evolution, this suggests that our implementation

is incorrect or unstable. Fig 2.2 shows the L2 norm of the Hamiltonian and momentum

constraints over time for a single BH evolution. For this case, our initial data is a single
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Kerr-Sen BH. At early times, there are somewhat larger constraint violations, but these

becomes damped out over the course of the evolution. This gives us confidence in the

validity of our code. We have not done thorough convergence testing but should as a more

stringent test of our code. Nonetheless, the two tests that we have done suggest that our

implementation provides a believable evolution of our physical system that we will use for

exploring GW production.

Figure 2.3 Evolution of the axion associated with a single BH for different α1
parameter values. We track the maximum value of the axion with an initial
amplitude of κ0 = 10−7 during the evolution. Note that the system settles down to
a stable configuration at later times. The resulting profiles are rescaled assuming a
linear increase with respect to the coupling parameter value α1 = 100. From the
result, linear scaling fits well.

We now present aspects of the behavior of a single EMDA BH. We are focused in

particular on the behavior of the axion field as it is the new piece in our EMDA theory.

Fig 2.3 shows the evolution of the maximum of the axion field. We use Kerr-Sen initial

data (See Appendix B.4) for these simulations with an initial amplitude of κ0 = 10−7. We

initially choose small initial amplitude of axion to check how this additional field affects

behavior of single BH over EMD BH and its stability. As the purpose of this test is to

examine the behavior of the axion, we fix all other parameters such as the dilaton coupling

constant α0 = 1, the initial dilaton amplitude φ0 = 10−7, and the electric charge qe = 10−4.
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One can see that the maximum value of the axion grows with time and then levels off at a

value that remains unchanged for roughly a dynamical crossing time. The axion field thus

settles into a stationary state. To test this across the family of couplings or theories, we vary

the axion coupling parameter α1 to check whether the stationary solution depends on this

parameter α1. For comparison purposes, we linearly rescale the solutions with respect to

the value α1 = 100. We test with α1 = {1,10,100}. The results show that linear scaling

fits well. Thus, the axion field settle into a stationary state for α1 = {1,10,100}.

One interesting aspect from this result is our full nonlinear dynamics shows some linear

regime result. This is somewhat surprise but here note that our initial value of axion is

small, κ0 = 10−7, thus initial BH with small additional axion field might be interpreted

as linear perturbation of EMD BH. Although this might not be interesting regime to test,

it is suffice to say that EMDA BH shows stable behavior. There might be possibility that

linear scaling will fail if we increase the value of α1 or having large enough initial axion

amplitude value i.e. enter full nonlinear regime for EMDA. However, stability for linear

scaling fail case remains unknown.

Another check of the code and the stability of the solutions is whether the mass of

the BH remains constant over time. As there are different BHs in both EMD and EMDA

theories, knowing whether these are in fact the stable endstates of dynamical collapse is

first investigated by knowing whether these black holes are stable to small perturbations

such as numerical truncation error. Fig. 2.4 shows the result of just such a test; namely

mass conservation for different initial data. For this test, we use KS (Appendix B.4) and

GHS (Appendix B.1) BHs as initial data. In addition, we use different combinations of the

coupling parameters α0 and α1, again to vary across theory space. The initial mass of the

BH is always taken to be M = 0.5 and we fix other initial values to be constant. We take

the dilaton field as φ0 = 10−7, the axion field to be κ0 = 10−7, and the electric charge as

qe = 10−3. Note that at the initial time, there is some oscillatory behavior due to numerical

noise in initial data but mass is stabilized at later time for all test cases. This indicates that

the code conserves the mass of the BHs. This suggests that indeed the mass of the BH is
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Figure 2.4 This figure illustrates tests of mass conservation. Different combi-
nations of initial data and parameters are used for these tests. KS-BH stands
for the Kerr-Sen BH initial data found in Appendix B.4 and GHS-BH stands
for the Garfinkle-Horowitz-Strominger BH found in Appendix B.1. Different
combinations of coupling parameters α0 and α1 are used to check the effects of
these parameters.

conserved during short time evolutions and that the Kerr-Sen black hole of EMDA is, at

least for short times, stable.

These numerical simulations of single BHs suggest that we are able to confirm the

dynamical stability of stationary BH configurations in EMDA theory using numerical

simulations. This further suggests that BHs in EMDA have similar stability properties

to those in standard GR. In addition, this implies that additional solutions exist in the

parameter space of the couplings α0 and α1 that are not now known analytically. These

are generalizations of Kerr-Sen BHs (with dilaton and axion fields) to arbitrary parameter

values.

Furthermore, dynamics of an additional scalar channel shows stable behavior which

has been known a little with regard to their stability properties. This information will be

used to understand dilaton and axion as a actual phenomenological particles but current

understanding of these types of weak interacting particles are quite limited.

We turn now to BBH systems. Based on our single BH simulations, we expect that we
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can construct initial data for BBH systems from individually stable Kerr-Sen black holes

and their generalizations. We expect these BBH systems to emit gravitational radiation

and eventually to merge. Indeed, one of the main aims of this work is generating GW

waveforms and comparing them with standard GR to determine what, if any, deviations

may be present and detectable by LIGO/VIRGO or future detectors. We use BBH initial

data that is described in Appendix. ??.

Figure 2.5 GW waveforms for different theories, namely standard GR, EMD, and
EMDA. We use non-spinning equal mass binary merger for all these tests.

We test differences between GW waveforms for different theories, namely standard GR,

EMD, and EMDA. Fig. 2.5 shows GW waveforms for a binary in each of these theories. We

use non-spinning equal mass binaries for our tests. Mass of each BH is 0.5 and separation

between two BHs is 6. And, the number of orbit for this simulation is roughly 1. For EMD,

we choose the dilaton coupling parameter α0 = 1, the initial dilaton amplitude φ0 = 10−7

with electric charge qe = 10−3. For EMDA, we keep the same parameter values as with

EMD and choose the axion coupling parameter α1 = 1 with an initial axion amplitude of

κ0 = 10−7. In this case, the differences in the GW waveforms, for these small amplitude

scalar fields, between those theories are essentially indistinguishable and would not be

measurable by LIGO/VIRGO.

As we are looking for regions of the parameter space that may hold larger deviations
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Figure 2.6 GW waveforms in the EMDA theory with different initial axion field
values. We use non-spinning equal mass binary merger with fixed coupling
parameters, α0 = α1 = 1, electric charge qe = 10−3, and initial dilaton amplitude
φ0 = 10−4

from the GR prediction, we might ought to look at changing more dramatically those pieces

of our system that are distinct from GR. A more dramatic comparison that can be made is

by examining the effects of the strength of the axion field on BBH mergers. Fig. 2.6 shows

GW waveforms in the EMDA theory for varying initial axion field values. Again, we use

non-spinning equal mass binaries with the same parameter values as in Fig 2.5 except for

initial axion amplitude values. Three different initial axion amplitudes κ0 = 10−4,10−2,1

are chosen. The cases with larger initial axion amplitudes merge slightly earlier. More

noticeable, however, is that the GW amplitude decreases with increasing κ0. Presumably,

in the dynamical process that is merger, increasing amounts of the mass of the binaries is

being radiated away in non-gravitational wave channels. However, this assertion would

need to be checked by examining the power radiated in scalar channels, and, in particular,

the axion radiation.

Thus, if LIGO/VIRGO or other possible future GW detectors can distinguish signals

between scalar radiation channels and GW quadrupole moment radiation, the current

results may provide an interesting testbed in which to check GR in the strong field regime
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and deviation from the GR prediction. However, finding relevant astrophysical is quite

challengeable since our understanding of the beyond Standard Model physics is quite

limited. For example, in this work, the axion is understood by additional scalar field

coupled to the GR but axion is also considered as ultralight particle to resolve the strong

CP problem in QCD. There is no a such thing that fills cap between axion as scalar field

and axion as an actual particle. We expect that this GW waveform will provide some

information to particle physics community also. To sum up, a preliminary investigation in

here does not reveal any dramatic effects in GW waveform but we may see certain deviation

if we consider extremal cases for binary mergers.

From our GW waveform result, scalar radiations from EMD and EMDA might affect

BBH behavior during their evolution. Therefore, extracting these scalar field in addition to

GW waveform will provide additional insight of BBH behavior and how this will change

GW waveforms. Furthermore, we can obtain additional information by comparing quasi-

normal mode frequencies between EMDA and standard GR and this will show the role of

dilaton and/or axion in terms of its effect on the dynamics and the formation of final BH.

2.3 Black Hole Dynamics in Quadratic Gravity

In this section, we discuss a somewhat different modified theory of gravity, namely quadratic

gravity. Where EMDA theory originates in low energy string theory and can be seen to

postulate additional fields describing the gravitational interaction, quadratic gravity is an

example of a higher derivative theory in which gravity continues to be modeled by curvature,

but with an action principle that includes higher derivative terms, i.e. higher curvature

(energy) effects at small distance scales. Some of our aims for this work is implementing a

well-posed initial value problem within this theory and evaluating possible BH solutions

and examining their stability properties within quadratic gravity.
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2.3.1 Quadratic Gravity in the Strong-Gravity Regime

GR is built upon diffeomorphism invariance which consists of the invariance of the form of

physical laws under arbitrary differentiable coordinate transformations. This is manifest in

its formulation in terms of the Einstein-Hilbert action

SEH =
1

16πGN

∫
d4x
√
−g(R−2Λ) , (2.64)

where GN and Λ denote the Newtonian coupling and cosmological constant, respectively.

(Note that we reinsert GN for the remainder of this and the next section.) In some sense, GR,

as built from this action principle is a rather simple theory in that it possesses only two free

parameters and yet purports to describe all gravitational phenomena. However, if we set

aside this notion of simplicity (á la Occam’s razor), there is no fundamental reason within

classical gravity that would explain the absence of higher-order, diffeomorphism-invariant

curvature terms in defining a theory of gravity. Indeed, were we to consider the possibility

of higher order curvature effects as contributing to a theory of gravity, we might ask what

such might look like and how they would affect the standard model of GR. One possibility

would be to consider the next (quadratic) order in curvature invariants. One example, and

the one we will consider here, is what is known as Quadratic Gravity (QG) and is given by

Sgravity = SEH +
∫

d4x
√
−g
(

αRabRab +βR2
)
. (2.65)

In spacetimes topologically equivalent to flat space the Gauss-Bonnet topological invariant

ensures that this is the most general action at quadratic order. Stelle has shown that, in

contrast to GR, QG is perturbatively renormalizable as a quantum field theory [45]. He and

subsequent authors have also discussed the appearence of additional massive ghost-like

modes, one scalar and one spin-2, which spoil the unitarity of the corresponding quantized

theory of gravity. Further, the theory can be motivated as a generic infrared limit of an

effective field theory (EFT) treatment of the quantization of gravity, see e.g. [46] for a

pedagogical review. Significantly, all subsequent (unresummed local) curvature invariants

are suppressed by powers of the Planck scale.
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One might be inclined to argue for the uniqueness of GR by virtue of the fact that it

admits a well-posed initial value problem and hence a well-defined evolutionary dynamical

system. However, as Noakes has shown in [47], the dynamics of quadratic gravity can, in

fact, be formulated as a well-posed initial value problem. Because we regard these concepts

of such crucial importance for all that follows in this chapter, we will review them.

Experiments on solar-system scales only test the weak-gravity regime: the existing con-

straints on higher-order modifications of GR are therefore extremely weak. Submillimeter-

tests using pendulums constrain Yukawa-like corrections to the Newtonian potential that

arise from higher-derivative terms like αRabRab and βR2. But, the constraints are as weak

as α, β < 1060 ∼ 1070 [48, 49, 50]. Further, they do not allow us to distinguish between

the two couplings.

The main motivation for our current efforts is to study the stability of dynamical BHs

and eventually generate gravitational wave templates from QG in order to compare these

with observational data from binary mergers in order to constraint the QG-couplings α and

β , (See also [51, 52] for a similar study in f (R)-gravity.) A simple comparison of typical

curvature scales illustrates by how much studying the strong-gravity regime could improve

these bounds. For that, we compare the curvature at the surface of the earth horizon with

that of a solar-mass BH, by use of the Kretschmann scalar K = RabcdRabcd ∼M2/r6, i.e.,

K⊕-surface

K�-horizon
=

K⊕-surface

K⊕-horizon

K⊕-horizon

K�-horizon
≈ 10−32 . (2.66)

To compute this, we assume that the Schwarzschild type BH. From this test, we have the

constraints are roughly α, β < 1030 which are still weak constraint but improved compare

with solar-system scales. In this scenario, this bound might not be suitable for the most

sensitive detection region of the LIGO/VIRGO (mass range around 30−300M�). However,

for extreme case such as extreme mass ratio inspiral about a 106M�, it might be possible to

constraint the higher order parameters α and β
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2.3.2 Quadratic Gravity from the Point of View of Effective Field The-

ory

Field-theoretic attempts to quantize gravity have difficulties retaining renormalizability.

Without higher-derivative terms, General Relativity is a non-renormalizable theory. The

underlying reason can be associated with the negative canonical dimension of the Newtonian

coupling, i.e., [GN ] =−2. The quantization of gravity is not just an academic problem. If

GN was of order one at accessible energy scales, then the effects of delocalized quantum

matter would directly imply significant quantum fluctuations in the associated gravitational

field. It is only the smallness of the gravitational force, i.e., GN ∼ 10−38 GeV, which hides

these effects from experimental observation. In fact, this is one particularly insightful way of

obtaining the Planck scale. The dimensionless Newtonian coupling gN(µ)=GN×µ2 scales

with a quadratic power-law in the characteristic energy scale µ . Since it is dimensionless

couplings which determine field-theoretic cross sections, gravitational effects become

important whenever gN(µ)≈ 1, i.e., at a mass scale of MPlanck = 1019 GeV, i.e. the Planck

scale.

The most agnostic approach to the quantization of gravity is to look at quantum gravity

as an effective field theory (EFT). In correspondence to, for instance, the Standard Model of

particle physics, this assumes that all operators allowed by symmetry are present at MPlanck.

Neglecting the index structure we can schematically denote those (dimensionful) couplings

and the corresponding curvature invariants as CN ×RN . Since the underlying theory is

not known, all EFT-couplings are assumed to be of order one at the Planck-scale, i.e.,

CN(µ = MPlanck)≈ 1. The EFT draws its predictive power from canonical scaling. Since

in four dimensions the dimension of curvature is [R] = 2, the associated couplings have

dimension [CN ] = 2N−4. The corresponding dimensionless couplings cN(µ) =CN/µ2N−4

scale like cN ∼ µ4−2N . Hence they are suppressed by

cN(Mexp)≈
(

Mexp

MPlanck

)(2N−4)

. (2.67)

In an EFT one would thus conclude that all couplings cN>2 are suppressed by increasing
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powers of the enormously large Planck scale. This does not apply for the quadratic couplings

cN=2, which constitute so-called marginal couplings of the EFT. These are not power-law

suppressed and are hence expected to be of similar order as at the Planck-scale.

The EFT for quantum gravity is valid below the Planck scale. It might be possible to

embed it into a non-perturbatively renormalizable quantum field theory of gravity solely

defined by diffeomorphism symmetry and a corresponding asymptotically safe fixed point.

This theory of Asymptotically Safe Gravity (ASG) was conjectured by Steven Weinberg in

1976 [53]. It is supported by the mounting evidence around the corresponding Reuter fixed-

point [54]. Since the Reuter fixed-point is fully interacting, all higher-order couplings will

be present at Planckian energies. Below the Planck scale the EFT-description applies and

one, again, expects the associated low-energy effective theory to be governed by the four

couplings of QG, i.e., GN , Λ, α and β . It can be added here, that current approximations of

the Reuter fixed-point indicate that there are only three so-called relevant couplings. ASG

restores the predictivity of a quantum field theory of gravity precisely by non-perturbative

relations, which express all other (irrelevant) couplings in terms of the three relevant

ones. Hence, one of the two QG couplings could follow as a prediction from ASG, e.g.,

α = α(β , GN , Λ).

2.3.3 A Well-posed Initial Value Problem for Quadratic Gravity

In this section, we return to a geometrized unit system (GN = c = 1). To understand BH

behaviors within QG, we need to evolve our system of equations in time. Due to the

complexity of the problem, solving the equations analytically is almost certainly impossible.

We need to solve the system numerically and therefore we need to construct the initial

value, or Cauchy, problem. In particular, we must have a well-posed problem in order to

obtain stable numerical integrations. The concept of a well-posed problem is understood to

satisfy the following three conditions

• a solution exists (existence)
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• the solution is unique (uniqueness)

• the solution depends continuously on initial and boundary data (stability)

A well-posed initial value problem is therefore crucial to having a long term stable numerical

simulation.

As an example, consider the following PDE:

∂ 2u
∂ t2 −

∂ 2u
∂x2 = 0, (2.68)

together with initial and boundary conditions

x ∈ [0,1],

ID : u = 0, ∂tu =
sin(2πnx)
(2πn)P , P≥ 1,

BC : u = 0 at x = 0,1.

A solution of Eqn. 2.68 can be obtained straightforwardly as

u(x, t) =
sin(2πnx)sin(2πnt)

(2πn)P+1 . (2.69)

Thus, as n approaches ∞ the initial data approaches zero, and the solution, u(x, t), ap-

proaches zero as well. This is an example of a well-posed system.

Now consider the nearly identical PDE with the same initial and boundary conditions

as previously

∂ 2u
∂ t2 +

∂ 2u
∂x2 = 0, x ∈ [0,1],

ID : u = 0, ∂tu =
sin(2πnx)
(2πn)P , P≥ 1,

BC : u = 0 at x = 0,1.

In this case, the solution is

u(x, t) =
sin(2πnx)sinh(2πnt)

(2πn)P+1 .
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Note that we have only changed a sign in the PDE. However, as n approaches ∞, the

initial data approaches zero, but the solution u(x, t) approaches ∞. In other words, small

perturbations at the initial time will produce an arbitrarily large solution in given finite time.

This is an example of an ill-posed problem.

A number of articles in the literature discuss the well-posedness of GR [37, 55] within

different formulations [56] and in terms of their hyperbolicity [57]. Here, we adapt a

theorem from [47, 58] and apply this to QG. To orient ourselves, we first note that in this

work, second-order quasi-linear hyperbolic systems will play an important role; the generic

form for which is given by

gab(x, t,ui)
∂uq

∂xa∂xb = fq(x, t,ui,∂ jui), (2.70)

where uq with q = 1...n is a vector constructed from the unknowns, gab is an inverse metric

(which can have matrix form), and fq(ui,∂ jui) contains all lower order terms including

possibly nonlinear terms. Our relevant theorem [47, 58] states

Theorem 1 A given quasi-linear, diagonal, second order hyperbolic system with con-

straints on the initial data possesses a well-posed initial value problem.

In subsequent sections, we will derive a well-posed initial value formulation for QG

based on Theorem 1 .

2.3.3.1 Equations of Motion

The equations of motion (eom) of QG are given by

Hab =
1

16π
Gab +Eab =

1
2

Tab, (2.71)

where Gab = Rab− 1/2Rgab is the usual Einstein tensor, which is supplemented by its

quadratic-order counter-part

Eab = (α−2β )∇a∇bR−α�Rab−
(

1
2

α−2β

)
gab�R+2αRcdRacbd

−2βRRab−
1
2

gab(αRcdRcd−βR2). (2.72)
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QG propagates, besides the graviton, an additional massive scalar mode associated with

the Ricci-scalar R and a massive spin-2 mode corresponding to the traceless part of the

Ricci-tensor R̃ab = Rab− 1
4gabR [59]. Knowing this, it is useful to split the equations of

motion into a trace and a traceless part, i.e.,

�R =
1

32π(3β −2α)
R , (2.73)

α�R̃ab =−
1

16π
R̃ab− (2β −α)

(
1

128π(3β −2α)
gab−∇a∇b

)
R

− (α−2β )RR̃ab−2α

(
Racbd−

1
4

gabR̃cd

)
R̃cd. (2.74)

As anticipated, these equations are fourth order in derivatives. Following [47], there are two

additional essential steps needed in order to cast the equations of motion into a well-posed

IVP. These are: (i) We must employ harmonic coordinates in order to treat gab, R̃ab, and

R as independent variables and which reduces the system to having only second-order

derivatives and (ii) We use a differentiation procedure to diagonalize the resulting equations

and put them in quasilinear form.

2.3.3.2 Reduction to a Second Order System

Our aim now is to reduce our system from its fourth order current form to a system that is

second order in derivatives. To this end, we collect terms in an after-the-fact “obvious" way.

Note that the Ricci tensor in a general coordinate system is given by

Rab =−
1
2

gcd
∂c∂dgab +Qab(g,∂g)+

1
2

(
gad∂bFc +gbc∂aFd

)
, (2.75)

where

Qab(g,∂g) = gcd
(

Γ
a

ce∂dgbe +Γ
b

ce∂dgae−2Γ
e
cd∂egba

)
, (2.76)

and

Fa = gcd
Γ

a
cd =

1√
−g

∂

∂xb

(√
−ggab

)
. (2.77)
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Note that this collection of terms groups them in such a way that the terms involving Fa can

be isolated and ultimately simplified on recourse to harmonic coordinates. Indeed, harmonic

coordinates are defined by Fa = 0. This choice is advantageous exactly because it allows

us to reduce the expression of the Ricci tensor into one that takes a strictly quasilinear form.

Therefore we will take that the last term in Eq. (2.75) vanishes in harmonic coordinates.

Hence,

−1
2

gcd
∂c∂dgab +Qab(g,∂g) = Rab = R̃ab +

1
4

gabR. (2.78)

Combining this into the equations of motion and treating gab, R̃ab, and R as independent

variables reduces the system to second order. Notice that Eq. (2.78) and therefore all

following equations only hold in harmonic coordinates. The second order set of equations

reads

1
2

gcd
∂c∂dgab = Qab(g,∂g)− R̃ab−

1
4

gabR, (2.79)

�R =
1

36π(3β −2α)
R, (2.80)

α�R̃ab = (2β −α)∇a∇bR− 1
16π

R̃ab−
2β −α

128π(3β −2α)
gabR

+(α−2β )
[
gcdgmngmn,cd−2Q(g,∂g)

]
R̃ab

+
α

4
gab

[
gcdgmn,cd−2Qmn(g,∂g)

]
gomgpnR̃op

−α

[
gcd,ab +gab,cd−gcb,ad−gad,cb +4gmnΓ

m
c[bΓ

n
d]a

]
R̃cd. (2.81)

Here we have written 2β R and Racbd− 1
4gab R̃ρσ in Eq. (2.74) in terms of the metric (using

again harmonic coordinates). This set of equations is now only of second order, but the last

equation is still not quasilinear (because of terms like ∇a∇bR and, gcd,ab).

2.3.3.3 Diagonalization and a Quasilinear Hyperbolic System

We can diagonalize the equations to a quasilinear system by introducing additional variables

Va = ∂aR and habc = gab,c and adding derivatives of the first two (already quasilinear)
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equations to the system. We obtain

−1
2

gcd
∂c∂dgab =−Qab(g,∂g)+ R̃ab +

1
4

gabR, (2.82)

gab
∂a∂bR =

1
36π(3β −2α)

R, (2.83)

−1
2

gde
∂d∂ehabc =

1
2

gde
,chabd,e−Qab,c(g,∂g,h)+ R̃ab,c +

1
4

gab,cR+
1
4

gabVc, (2.84)

gab
∂a∂bVc =

1
32π(3β −2α)

Vc (2.85)

α�R̃ab = (2β −α)∇aVb−
1

16π
R̃ab−

2β −α

128π(3β −2α)
gabR

+(α−2β )
[
gcdgmnhmnc,d−2Q(g,∂g)

]
R̃ab

+
α

4
gab

[
gcdhmnc,d−2Qmn(g,∂g)

]
R̃op

−α

[
hcda,b +habc,d−hcba,d−hadc,b +4gmnΓ

m
c[bΓ

n
d]a

]
R̃cd. (2.86)

These final forms are quasi-linear hyperbolic equations (see Eqn. 2.70) as we desired. In

order to see this, first consider the vector uq constituted by all unknowns

uq = (gab, R,Va, habc, R̃ab), (2.87)

The LHS of Eqns. 2.82 - 2.85 already satisfy the form gab∂a∂buq (which is the LHS of

Eqn. 2.70. The Laplacian in Eqn. 2.86 can be written as

�R̃ab = gcd
∂c∂dR̃ab +Hab(R̃ab, ∂cR̃ab, Γ

a
bc), (2.88)

where the term Hab(R̃ab, ∂cR̃ab, Γa
bc) is a linear combination of its arguments. The

Christofell symbols Γa
bc depend on the inverse metric and its first derivative. Moving

the Hab term into the RHS of Eqn. 2.86 makes the LHS of Eqn. 2.86 also satisfy the form

gab∂a∂buq. The RHS of Eqns. 2.82 - 2.86 do not contain any second or mixed derivatives so

these terms satisfy the RHS of Eqn. 2.70 fq(x, t,ui,∂ jui). Therefore, the system of equations

Eqns. 2.82 - 2.86 satisfy the form in Eqn. 2.70 so these are well-posed by Theorem 1.
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2.3.4 Results

Many quantum theories including string theory, asymptotic safety, and generic EFTs predict

the presence of higher order curvature operators. In QG, these higher order derivative terms

are likewise present. Stelle [45] shows that, in linearized theory, the Ricci scalar R and

the trace-free Ricci tensor R̃ab give rise to a massive spin-0 and a massive spin-2 degree

of freedom in addition to the usual massless spin-2 graviton. While these massive modes

guarantee renormalizability, the kinetic pieces for the massive spin-2 mode and the graviton

have opposite signs. This results in a linearly unstable Hamiltonian and is known as the

so-called the Ostrogradsky instability.

We have shown that the full nonlinear theory admits a well-posed initial value problem.

We might expect that numerically, the resulting nonlinear evolution is stable. Such a

conclusion is further supported by the stability of cosmological perturbations [60] as well as

the perturbative stability of BH solutions [61]. It would therfore be interesting to understand

the interplay in stability between the linear and nonlinear cases and its possible impact

on the the Ostrogradsky instability. As a preliminary effort, we first consider a simple

spherically symmetry case in order to explore the nonlinear stability of BHs in QG via

numerical simulation.

2.3.4.1 Black Hole Stability in Spherical Symmetry

For this preliminary study, we will focus on spherically symmetric systems. We assume a

spherically symmetric spacetime in polar areal coordinates

ds2 =−α(r, t)2dt2 +a(r, t)2dr2 + r2dΩ
2. (2.89)

The equations of motion, Eqns. 2.82 - 2.86, in spherically symmetric case are obtained by us-

ing xAct1. The script can be found in https://github.com/hlim88/quadGrav/tree/master/script.

We use the Schwarzschild BH as initial data. We evolve it and check mass conservation of

the Schwarzschild BH.
1http://www.xact.es/
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Figure 2.7 Mass conservation test of Schwarzschild type BH. Initial mass of BH
is M = 0.5. There is small oscillatory behavior at early time but it settles to stable
configuration at late time.

Fig. 2.7 shows that mass of the Schwarzschild BH. The initial mass of the BH is M = 0.5

and we evolve it for roughly a dynamical crossing time. A small perturbation will be noticed

at early times but it quickly settles down to a stable configuration remains so for the duration

of the simulation. This result suggests a Schwarzschild black hole is numerically stable in

the fully nonlinear regime within a spherically symmetric ansatz. This is, of course, not

unexpected because the Schwarzschild solution is itself an analytic solution to quadratic

gravity. Nevertheless, it is important to stress that this stability is not, in fact, possible

within the linearized version of this theory due to the Ostrogradski instability. Thus, within

the spherically symmetric sector of the full, nonlinear theory, we restore stability of a BH

solution. One might therefore imagine that having added higher order curvature terms to

the standard GR theory has not disturbed some of these BH stability properties.

Another interesting aspect of QG is the existence of non-Schwarzschild families of

BH solutions which GR does not admit in static, spherically symmetric spacetimes. It

would be interesting to test some of these other possible solutions [62]. Note that there is a

perturbative stability analysis of BH in QG in [61].
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Figure 2.8 Classical stability ranges for Schwarzschild and non-Schwarzschild
type BHs. BH masses are plotted as a function of horizon radius r0. The figure is
adapted from [61]

Fig. 2.8 shows the phase structure of stable and unstable regimes for Schwarzschild and

non-Schwarzschild BH families. BH masses are plotted as a function of horizon radius

r0 with a crossing point rCross
0 ≈ 0.876. This suggests that there exists a threshold for the

unstable modes in linear perturbation away from the Schwarzschild and non-Schwarzschild

BH families near the Lichnerowicz crossing point. We show a stable evolution of the

Schwarzschild BH in the full nonlinear dynamical regime so we can explore further possible

(un)stable branches in dynamics and for physical conditions/implications.

2.4 Conclusions

In this chapter, we have explored BH behaviors in two different theories, EMDA and

quadratic gravity. For EMDA, we have examined various BHs in order to examine their

stability in the presence of different scalar and EM radiation channels. We also performed

BBH mergers to obtain GW signature within this theory. From our simulations, we have

found several stable BH configurations dynamically using different analytic BH as our
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initial data. To our knowledge this is the first demonstration of the existence of different

families of BHs that are generalizations of the Kerr-Sen BH across a family of theories

different from both GR and low energy string theory. This expands the range of possible

alternative/modified theories of gravity that do admit stable BH dynamics and provide

possibly more interesting compact objects with beyond-GR physics. Furthermore, our

comparison of GW waveforms suggests that deviations from GR will not be significant if

we use similar initial parameter as standard GR. However, there might be dramatic effects

in GW waveform if we consider certain extreme cases such as large axion field values.

It remains possible that such could be revealed by future detection studies and provide a

different energy regime for high energy theory. However, the likelihood of the astrophysical

relevance of these more extreme cases remains highly questionable.

For quadratic gravity, we have established that well-posed initial value problem using

generalized harmonic coordinates exists and can be constructed. This allows us to make

the system of equations a quasilinear hyperbolic system. We claim that this method

should work for other theories including massive gravity etc. Such will allow standard

numerical techniques to be used and eventually provide a means of probing the nonlinear

behavior of, say, BHs in these theories. In a move in that directions, we have examined the

spherically symmetric case in numerical evolution and established the nonlinear stability

(for short times) of the standard Schwarzschild BH in QG. This is an important nonlinear

counterpoint to the known linear instability that arises due to the Ostrogradsky theorem.

Indeed, it suggests that we might have nonlinear stability in QG. Also we observe the

possibility of non-Schwarzschild type solutions in QG (which are not solutions in GR) and

show that our nonlinear results do not rule out such new solutions in spherical symmetry.

The question of their nonlinear stability, however, remains open.

To sum up, it is safe to say that studying alternative or modified theories of gravity

using BH dynamics numerically provides an interesting testbed to check different theories

beyond GR and to provide insight into gravitational physics beyond our current standar

model, peering even, perhaps, into quantum gravity.



Chapter 3

Intermediate Mass Ratio Inspirals

Using a Wavelet Adaptive Mesh

Refinement Scheme

3.1 Introduction

In 2015, shortly after beginning its first observing run, the Laser Interferometer Gravitational-

Wave Observatory (LIGO) [63, 64] made the first direct detection of gravitational waves

from the merger of two black holes [65]. Since that time, gravitational waves from nine

other binary black hole mergers [2, 3, 4, 5, 6] have been detected by LIGO and the European

Virgo detectors [66, 67]. In August 2017, LIGO and Virgo detected gravitational waves

from the merger of a neutron star binary [7]. This latter detection was particularly exciting

because electromagnetic radiation from the resulting gamma-ray burst was detected by the

Fermi Gamma-Ray Burst Monitor [68] and INTEGRAL [69], as well as by several other

observatories [70]. The combination of gravitational and electromagnetic observations of

binary mergers will give new insight into the physics of black holes (BHs) and neutron

stars [71, 72, 73]. As the sensitivity of the LIGO detectors improves, gravitational wave

detections will increase in frequency and open a new era of gravitational wave astronomy.

51
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Gravitational waves carry the imprint of their origins within the complicated pattern of

their waveform. The information therein can be untangled through a careful comparison

of the gravitational wave signal with a library of possible waveforms constructed using

approximate methods and results from numerical simulations. Indeed, waveform infor-

mation from numerical relativity is particularly important for certain binary black hole

configurations. Examples include binary black holes with arbitrary spin configurations [74],

binaries with orbital eccentricity, and binaries for which the black holes have very differ-

ent masses [75, 76]. In this chapter, we use q to denote the mass ratio of a binary with

q≡ m1/m2, where m1 ≥ m2. At this time, very few large mass-ratio BH binaries (q� 1)

have been studied in numerical relativity. This is to be compared to studies with nearly

equal mass (q ≈ 1) [77, 78] which have been simulated much more extensively. Codes

developed for q≈ 1 binaries are accurate and well tuned, so the problem is well-understood

and numerical results are confidently used in the LIGO data-analysis pipeline. However,

configurations with large q remain largely beyond the capabilities of current techniques in

numerical relativity. Examples include Intermediate Mass-Ratio Inspiral (IMRI) binaries

and are characterized roughly by q' 100. It is estimated that about 5% of the detections in

LIGO might come from these IMRIs [79, 80].

For an IMRI, the size of the smaller black hole adds an extra length-scale to the

problem, compared to the q≈ 1 case. The need to resolve this new scale, together with the

large range of other important length scales, makes this a very challenging computational

problem. It requires a highly adaptive and efficient computational algorithm tuned to

handle binaries with large mass ratios. While BH evolutions with q = 100 have been

performed [81, 82, 83] previously, they did not include full merger events or simulated

unrealistic head-on collisions.

The central goal of our effort is to create a general purpose framework to study the

evolution of spacetimes with black holes or neutron stars, including binary black holes with

large mass ratios up to q' 100.

Here we present our portable, highly-scalable, extensible, and easy-to-use framework
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for general relativity (GR) simulations that will be forward-compatible with next-generation

heterogeneous clusters.

We build on our octree-based adaptive mesh refinement (AMR) framework Dendro [84,

85] to support Wavelet Adaptive Multiresolution (WAMR) [86, 87, 88]. The fast wavelet

transform can be used to create a sparse representation of functions that retains sharp

features and an a priori error bound.

In Sec. 3.2, we introduce our wavelet adaptive multiresolution scheme. Sec. 3.3 provides

detailed descriptions for the implementation of the DENDRO-GR code. In Sec. 3.5, we

present our results. We show the efficiency of our toolkit as well as our preliminary IMRI

simulations.

This work described in this chapter has been collaborative work with Milinda Fernando,

Hari Sundar, David Neilsen, and Eric Hirschmann. My contribution to it includes imple-

menting the calculation of the Weyl scalar, Ψ4, that is required to extract GW waveforms.

In addition, I generated all the data used in the comparisons with EINSTEIN TOOLKIT in

Sec. 3.5.3. I also performed all the basic tests to verify stable evolutions of both single and

binary BHs.

3.2 Wavelet Adaptive Multiresolution Implementation

Figure 3.1 (left) A example of the adaptive mesh created by DENDRO for the binary
black-hole system. (right) the hierarchical wavelet grids generated for the binary black
hole system.

In this section, we describe a detailed implementation of the wavelet adaptive multires-

https://einsteintoolkit.org/
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olution (WAMR) scheme that is used in our code. (See Appendix C for a more detailed

derivation and discussion of the sparse wavelet representation through iterated interpolating

wavelets.) WAMR uses a basis of interpolating wavelets to create a sparse, quasi-structured

grid that naturally adapts to the features of the solution [86, 87, 88]. This grid adaptivity is

realized by expanding functions using the fast wavelet transform [89], and thresholding (i.e.

based on a user-specified tolerance ε > 0) the solution to create a sparse representation that

retains small-scale features [90]. In WAMR, we start with the coarsest representation (V0)

of a given function f . Then we compute wavelet coefficients based on the interpolation

error as a result of the interpolation of f from the coarser representation to the next finer

representation (V1). Hence the wavelet coefficient denotes the interpolation error that occurs

when f is constructed from the immediate coarser level. The sparse representation of the

function f is computed based on the user-specified tolerance and removing the spatial

points whose wavelet coefficients are within the specified threshold (see Fig. 3.2).

Wavelet basis functions are localized (i.e. have compact support) both spatially and

with respect to scale. In comparison, spectral bases are infinitely differentiable, but have

global support; basis functions used in finite difference or finite element methods have

small compact support, but poor continuity properties. As an example, in Figure 3.1 we

show a binary black hole spacetime generated with WAMR using Dendro-GR.

Wavelets encode solution features at different scales very efficiently, a characteristic that

leads to many applications in data and image compression [91]. Studies of WAMR have

shown the method to be significantly more efficient in terms of computational cost when

compared with traditional numerical schemes [92]. The wavelet amplitudes also provide a

direct measure of the local approximation error and serve as a refinement criterion. We work

simultaneously with both the point and wavelet representations [93, 94, 95, 96, 97, 98].

This gives wavelet methods some of the same advantages as the discontinuous Galerkin

method [99, 100], including exponential convergence. Combining the sparse grid generated

by the truncated wavelet expansion with DENDRO yields a wavelet adaptive multiresolution

method that enables a promising improvement for simulating the mergers of compact object
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V0

V1

V2

(a) f (x) ∈V0 ⊂V1 ⊂V2

V0

W1

W2

(b) Wi,k = | f (Vi,k)− I( f (V i−1, :))|

V0

W1

W2

(c) Wi,k ≥ ε ≥ 0

V0

W1

W2

(d) Wavelet/sparse representation of f (x)

Figure 3.2 For a given function f : V →R let Vi ⊂V be the finite dimensional approxi-
mation of f (see Figure 3.2a). As the number of nodes increases (i.e. going from Vi to
Vi+1) for each additional node introduced, we compute wavelet coefficients based on the
absolute difference between f (Vi,k) and the interpolated value from the previous level
f (Vi−1,:) (see Figure 3.2b). Figure 3.2c illustrates those nodes that violate the specified
wavelet tolerance ε and are subsequently stored as the sparse/wavelet representation of
function f (see Figure 3.2d).
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binaries.

3.3 Computational Framework

We now give an overview of the approach that DENDRO takes to obtain excellent scalability

in the context of the WAMR method. Our parallel WAMR framework is based on adaptive

spatial octrees [101, 102] where the adaptivity is determined by the hierarchical computation

of wavelet coefficients and a user-specified tolerance. The construction of adaptive octrees

is similar to other octree-codes such that every element at level l gets replaced by eight

finer (smaller) elements (i.e. level l + 1) if the computed wavelet coefficient is larger

than the user-specified tolerance. The main steps in building the parallel octree-WAMR

framework are partitioning, construction and enforcement of constraints on the relative

sizes of neighboring octants, and meshing. By meshing, we refer to the process of building

required data structures to perform numerical computations on a topological octree.

3.3.1 Preliminaries

Octree based spatial subdivisions are fairly common in computational science applications

[85, 103, 104, 105, 106], due to their simplicity and scalability. Here we present some

basic concepts and notation related to the octrees used in this chapter. A distributed octree

T consists of p subtrees τi, i = 1, . . . , p, where p is the number of processes and T = ∪τi.

For an octant e, F(e) denotes the faces, E(e) denotes the edges and V (e) denotes the

vertices of e. The neighbors of e are given by N(e) = NF(e)∪NE(e)∪NV (e), where

NF(e) denotes the octants that share only a face, NE(e) denotes the octants that share only

an edge and NV (e) denotes the octants that share only a vertex with e. If τi spans the

sub-domain ωi ⊂Ω, the boundary octant set, bdy(τi), consists of those octants that share

faces, edges and vertices with ∂ωi. Correspondingly, the set of interior octants is given by

int(τi) = τi \bdy(τi). Finally, the octree τ is said to be 2 : 1 balanced if and only if for any

ek ∈ τ where level(ek) = lk, ∀e ∈ N(ek) then level(e) = max(lk± 1,0). In this work, we
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enforce a 2 : 1 balance constraint on our octrees.

3.3.2 Octree Partitioning

The problem size or the local number of octants varies significantly during WAMR based

octree construction (in WAMR we start with the coarsest representation and add grid points

until all the wavelet coefficients are within the specified tolerance), balancing, meshing and

during the simulation as well.

This necessitates efficient partitioning of the octree to make it load balanced. We

use a space-filling curve (SFC) [107] based partitioning scheme [102], specifically the

Hilbert-curve. An SFC specifies a surjective mapping from the one-dimensional space to

higher dimensional space. This can be used to enforce an SFC based ordering operator on

higher dimensional space. The Hilbert ordering maps higher dimensional data (octants)

to a 1D curve which makes the process of partitioning trivial. The key challenge is to

order the octants or regions according to the SFC, usually performed using an ordering

function and sorting algorithm. This approach is easily parallelized using efficient parallel

sorting algorithms such as SampleSort [108] and BitonicSort [109] which is the approach

used by several state-of-the-art packages [84, 103, 110]. We use a comparison-free SFC

sorting algorithm TREESORT, based on the radix sort. In TREESORT, we start with the

root octant and hierarchically split each dimension while bucketing points for each octant

and reordering the buckets, based on the specified SFC ordering (see Fig. 3.3). This

is performed recursively on depth-first traversal until we reach all the leaf nodes (see

Algorithm 3.1). Additional details on our partitioning algorithm can be found in [102].

3.3.3 Octree Construction and Refinement

The octree construction is based on expanding user-specified functions (e.g. initial condi-

tions for a hyperbolic differential equation) via the wavelet transformation and truncating

the expansion (i.e. stopping the refinement at that level) when the coefficients are smaller
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Figure 3.3 Bucketing each point and reordering the buckets based on the SFC
ordering at each level l with top-down traversal. Each color-coded point is repre-
sented by its x and y coordinates. From the MSD-Radix perspective, we start with
the most-significant bit for both the x and y coordinates and progressively bucket
(order) the points based on these. The bits are colored based on the points and
turn black as they get used to (partially) order the points.

than a user-specified tolerance ε > 0. Intuitively, the wavelet coefficient measures the

failure of the field to be interpolated from the coarser level. In distributed memory, all

processes start from the root and refine until at least p2 octants are produced, where p

denotes the number of processors. These are equally partitioned across all processes. Sub-

sequent refinements happen in an element-local fashion, and are embarrassingly parallel. A

re-partition is performed at the end of construction to load-balance.

3.3.4 2 : 1 Balancing

Following the octree construction, we enforce a 2 : 1 balance condition. This makes subse-

quent operations (Secs. sec:meshing, 3.3.6 and 3.3.7) simpler without affecting the adaptive

properties. Our balancing algorithm [110, 111] is an updated version of the algorithm

presented in [84]. The octree is divided into small blocks, that are independently balanced

by preemptively generating all balancing octants [111], followed by ripple propagation

for balancing across the blocks. The ripple propagation inter-block balancing approach

performs poorly at large levels of parallelism, and we instead extend the generation algo-

rithm [111]. The basic idea is to generate all balancing octants for a given octant and then

to remove duplicates. While this approach can generate up to eight times the number of

total octants, it is very simple and highly parallel. We ensure that the overall algorithm

works efficiently, by relying on our TREESORT algorithm to sort and remove duplicates
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ALGORITHM 3.1TREESORT

Input: A list of points or regions W , the starting level l1 and the ending level l2

Output: W is reordered according to the SFC.

1: counts[]← 0 . |counts|= 2d , 8 for 3D

2: for w ∈W do

3: increment counts[child_num(w)]

4: end for

5: counts[]← Rh(counts) . Permute counts using SFC ordering

6: offsets []← scan(counts)

7: for w ∈W do

8: i← child_num(w)

9: append w to Wi at offsets[i]

10: increment offset[i]

11: end for

12: if l1 > l2 then

13: for i := 1 : 2d do

14: TREESORT(Wi, l1−1, l2) . local sort

15: end for

16: end if

17: return W

periodically, ensuring that the number of octants generated remains small.

3.3.5 Meshing

By meshing or mesh generation we simply refer to the construction of data structures

required to perform numerical computations on topological octree data. We use 4th order

Finite Differences (FD) with 5-point stencils for ∂i,∂
2
i j, and 7-point stencils for ∂i, i, j ∈

[1,2,3] with upwind/downwind and Kriess-Oliger derivatives. We use a Runge-Kutta time

integrator with the method of lines to solve the BSSN equations. In this section, we present

the data structure choices that we have made and how everything comes together to perform
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numerical computations on adaptive octree data to evolve the BSSN equations in time.

Embedding nodal information on an octree: In order to perform FD computations

on an octree, we need to embed spatial/nodal points for each octant. Assuming that we

want to perform dth order FD computations, we uniformly place (d+1)× (d+1)× (d+1)

points for each octant. In our simulations, we have used d = 4 since we are performing

4th order FD computations, but the meshing algorithms presented in the paper are valid

for any integer value of d. The nodes obtained by uniform node placement are referred

to as octant local nodes (VD). Octants that share a face or an edge will have duplicate

nodal points in VD, and we need to remove the duplicate nodes from VD to get shared octant

nodes (VS) for several reasons. (1) VS has a lower memory footprint compared to VD. (2)

A function representation, on a VD, can be discontinuous due to node duplications, unless

function values of duplicate nodes are synchronized. Due to the above reasons, we use VS

as our prime nodal representation (also referred as the zipped representation) of the octree.

Since the octrees are generated with WAMR, finding the duplicate and hanging nodes

(see Figure 3.6) from VD becomes non-trivial and requires an octant level neighborhood

data structure which is referred to as octant to octant (O2O) mapping. Also, we need an

additional mapping to map the octants to the VS representation which is referred to as octant

to nodal (O2N) mapping.

Figure 3.4 A 2D example of octant local nodes (in the center) and shared octant
nodes (the rightmost figure) nodal representation (with d = 2, where d denotes the order
of FD computations) of the adaptive quadtree shown in the leftmost figure. Note that in
octant local nodes representation nodes are local to each octant and contain duplicate
nodes. By removing all the duplicate and hanging nodes by the rule of nodal ownership
we get the shared octant nodes representation. Note that the nodes are color coded based
on the octant level.

We now describe the methods for building these maps. Note that for the mesh generation,
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we assume the input is a complete, ordered and 2:1 balanced octree.
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Figure 3.5 For a given ordered octree τ and a set of keys (leftmost figure),
TREESEARCH performs the traversal in a top-down order over the set of keys, while
flagging k2,k4,k5 at the level 1 split, k3 at level 2 split, and k1 at level 3 split.

TREESEARCH: amortized search operations on octrees: The common approach for

building the maps O2O and O2N is to generate keys corresponding to the location of

neighboring octants and to perform a parallel binary search on the octree and build the maps

[84, 103]. Assuming the number of keys we need to search is O(n), where n is the number

of octants, the cost of performing binary searches for all the keys is O(n log(n)). The log(n)

term corresponding to the binary search is inefficient due to poor memory access and can

end up being very expensive for large n. We present an alternative TREESEARCH, with

better memory access for performing search operations on an ordered octree. To the best of

our knowledge this algorithm is new. The approach used in TREESEARCH is influenced by

radix sort, where we traverse the set of search keys and the octree in the space filling curve

(SFC) induced ordering. As shown in Figure 3.5, we start at level 1, split and calculate

bucket counts |b| generated by the split while reordering the keys in the same traversal

order dictated by the SFC. |b|= 1 suggests that octant e ∈ τ . At this point, b is an ancestor

of all keys k ∈ b, and we have found the index for the octant. In contrast with the other

approaches, TREESEARCH performs a serial traversal over the set of keys and the elements

of the ordered octree leading to better memory and cache performance (see Algorithm

3.2). Although the complexity for this approach is still O(n log(n)), it can be thought of as

performing logn streaming sweeps over the O(n) octants, leading to better performance.

Ghost/Halo octants: Since the octree is partitioned into disjoint subtrees owned by

different processes, we need access to a layer of octants belonging to other processes. These
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ALGORITHM 3.2TREESEARCH: Searching in octrees

Input: ordered octree τ on domain Γ, list keys K ∈ Γ,

Output: list keys K ∈ Γ with flagged search results.

1: oct_counts[]← 0

2: key_counts[]← 0 . |oct_counts|= |key_counts|= 2d , 8 for 3D

3: for e ∈ τ do

4: increment oct_counts[child_num(e)]

5: end for

6: for k ∈K do

7: increment key_counts[child_num(k)]

8: k.result← /0

9: end for

10: oct_counts[],key_counts []← Rh(oct_counts,key_counts) . Permute counts using SFC ordering

11: offsets_oct []← scan(oct_counts)

12: offsets_key []← scan(key_counts)

13: for k ∈K do

14: i← child_num(k)

15: append k to Ki at offsets_key[i]

16: increment offset_key[i]

17: end for

18: for i := 1 : 2d do

19: if oct_counts > 1 then

20: TREESEARCH(Ki,τi)

21: else

22: for k ∈Ki do

23: k.result← offset_oct[i]

24: end for

25: end if

26: end for

27: return K
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are commonly known as the halo or a ghost layer. The computation of ghost octants can

be reduced to a distributed search problem where each octant in each partition generates

a set of keys that can be searched for to determine the ghost layer. Note that after the

ghost-exchange all search operations are local to each partition/process.

Octant to octant map (O2O): Once the ghost layer has been received, we compute the

O2O map by performing local searches using TREESEARCH for the neighbors (along the

x,y and z axes) of all octants and storing their indices. Therefore for a given octant e ∈ τ ,

O2O(e) = {e1, ...,e8} will return 8 neighbor octants of e. The algorithm for the O2O map

construction is listed in Algorithm 3.3.

ALGORITHM 3.3BUILDOCTANTTOOCTANT: compute O2O

Input: an ordered 2:1 balanced distributed octree T on Γ, comm, p, pr of current task in comm.

Output: compute O2O

1: ˆτpr ← COMPUTEGHOSTOCTANTS(T ,comm, p, pr)

2: O2O← /0

3: keys[]← compute K ( ˆτpr)

4: TREESEARCH( ˆτpr ,keys)

5: for key ∈ keys do

6: if key is found then

7: O2O[key.owner][key.neighbor]=key.result

8: end if

9: end for

10: return O2O

Octant to nodal map (O2N): Since we use the shared octant nodes (VS) to store all

the simulation variables, we need a mapping between the underlying octree and VS. The

O2N map simply specifies the subset v of shared octant nodes (where |v| = (d + 1)3)

of a given octant e ∈ τ . When computing O2N we initially start with octant to the VD

map which is trivially constructed by definition of VD. In order to remove duplicate nodes

(see Figure 3.4), we need to define a globally consistent rule of nodal ownership. The
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Figure 3.6 An example of a hanging face and a hanging edge where in both cases octant
(�) has a hanging face (left figure) and a hanging edge (right figure) with octant (�).
Nodes on the hanging face/edge are mapped to the larger octant and the hanging nodal
values are obtained via interpolation. Note that for illustrative purposes, the two octants
are drawn separately, but are contiguous.

ALGORITHM 3.4BUILDOCTANTTONODAL: Octant to nodal map generation - O2N

Input: an ordered 2:1 balanced distributed octree T on Γ, comm, p, pr of current task in comm.

Output: compute O2N

1: ˆτpr ← COMPUTEGHOSTOCTANTS(T ,comm, p, pr)

2: O2N []← initialize(VL) . O2N initialized with octant local nodes

3: VS← VL \VD

4: for e ∈ τ̂k do

5: for v ∈ Nd(e) do . Nd(e) denotes (d +1)3 nodes of e

6: owner_idx← compute O(v)

7: O2N← owner_idx

8: end for

9: end for

10: return O2N
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ownership of nodes which lie on a hanging face or edge (see Fig. 3.6) will belong to

the coarser octant (since they can be interpolated from coarser level) while ties and non-

hanging nodal ownership are determined by the SFC ordering of octants. Duplicate nodes

are removed from the octant local nodes (VD) to obtain the shared octant nodes (VS) while

modifying octant to VD map to generate octant to VS map (O2N). The overview of computing

O2N map is presented in Algorithm 3.4. By the assumption that the octree is 2:1 balanced,

the owner nodes (see Figure 3.6) of hanging nodes cannot be hanging, which simplifies the

construction of the O2N mapping.

3.3.6 The unzip and zip Operations

All simulation variables are stored in their most compact or zipped representation, i.e.,

without any duplication. Due to the use of 2:1 balanced adaptive octrees, performing

FD computation on the octree is non-trivial. In order to overcome the above, we use the

unzip representation (a representation in between shared octant nodes and octant local

nodes). Any given adaptive octree τk can be decomposed into a set of regular grid blocks

of different sizes–basically a set of octants that are all at the same level of refinement. Due

to the memory allocation and performance, we enforce block sizes to be powers of two. In

order to perform stencil operations on these blocks, we need information from neighboring

blocks, similar to the ghost layer which is required by the distributed case. In the context of

blocks, we refer to this layer as the padding. During meshing, we compute and save the

octree-to-block decomposition, i.e., which octants are grouped together as a block. The

computation of octree-to-block decomposition primarily involves a top-down traversal over

the local octants and stopping when all elements in the block are at the same level. In order

to convert the zipped to the unzipped representation, we copy the data from the zipped

representation to the blocks with padding region. This involves copying the data within the

block, and copying–potentially with interpolation–from neighboring octants. Nodes on the

block boundary which are hanging need to be interpolated during the copy. The 2:1 balance
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condition guarantees that at most a single interpolation is performed for any given octant.

The stencil and other update operations are only performed on the block internal while

the padding region is read-only. At the end of the update, the simulation variables are

zipped back, i.e., injected back to the zipped representation. This step does not involve any

interpolations or communication and is very fast. Note that several key operations such as

the RK update and inter-process communications operate using the zip representation, and

are extremely efficient which is depicted in strong and weak scaling results (see Figures

3.12 and 3.13). There are several additional advantages for the unzipped representation. 1).

The unzipped representation decouples the octree adaptivity from the FD computations.

2). The block representation enables code portability and enables to perform architecture

specific optimizations.

Figure 3.7 A simplistic example of octree to block decomposition and the unzip op-
eration. The leftmost figure shows the considered adaptive octree with shared octant
nodes and its block decomposition is shown in the middle. Note that the given octree is
decomposed into four regular blocks of different sizes. The rightmost figure shows the de-
composed blocks padded with values coming from neighboring octants with interpolation
if needed. In order to perform the unzip operation both O2O and O2N mappings are used.

Although, several similar approaches [112, 113] exist for zip and unzip operations,

these approaches rely on structured or block structured adaptivity. In contrast to existing

approaches we have designed efficient scalable data structures to perform zip and unzip

operations on fully adaptive 2 : 1 balanced grids.
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3.3.7 The re-mesh and inter-grid transfer Operations

As the BHs orbit around each other, we need to remesh so that maximum refinement occurs

around the singularities. We do not enforce maximum refinement at singularities artificially,

this is automatically performed by WAMR due to the fact that, BSSN variables might not

even be C0 continuous at BH locations. The unzip representation at the end of the time-step

is used to determine the wavelet coefficients for each block based on a user-specified

threshold. This allows us to tag each octant with refine, coarsen or no change. This is used

to remesh, followed by a repartition to ensure load-balance. Once the re-mesh operation

is performed we transfer the solution from the old mesh to the newly generated mesh

using interpolations as needed. We refer to this as inter-grid transfer and this is done via

interpolations or injections at the block level.

3.3.8 Symbolic Interface and Code Generation

The Einstein equations are a set of non-linear, coupled, partial differential equations.

Upon discretization, one can end up with 24 or more equations with thousands of terms.

Sustainability, code optimizations and keeping it relevant for architectural changes are

additional difficulties. To address these issues, we have developed a symbolic interface

for DENDRO-GR. Note that there are several significant attempts such as Kranc[114] and

NRPy [115] on symbolic code generation for computational relativity due to the complexity

of the BSSN equations. We leverage symbolic Python (SymPy) as the backend for this

along with the Python package cog to embed Python code within our application-level

C++ code. The Dendro_sym package allows us to write the discretized versions of the

equations similar to how they are written mathematically and enable improved usability for

DENDRO-GR users. An example for the BSSN equations are shown in Figure 3.8, with

the equations on the left and the corresponding Python code on the right.

There are several advantages to using a symbolic interface like Dendro_sym for the

application-specific equations. First, it improves the portability of the code by separating
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the high-level description of the equations from the low-level optimizations, which can be

handled by architecture-specific code generators. We support avx2 code generators and

are working on developing a CUDA generator as well. Since these are applied at a block

level, it is straightforward to schedule these blocks across cores or GPUs. Note that the

auto-generated code consists of several derivative terms that are spatially dependent as well

as other point-wise update operations. We perform common subexpression elimination

(CSE) [116, 117] to minimize the number of operations. Additionally, we auto-vectorize the

pointwise operations and have specialized implementations based on the stencil-structure

for the derivative terms.
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Ãi j
∂ jχ−

2
3

γ̃
i j

∂ jK
)

from DENDRO_sym import *

a_rhs = Dendro.Lie(b, a) - 2*a*K

b_rhs = [3/4 * f(a) * B[i] +

l2*vec_j_del_j(b, b[i]) for i in e_i]

l2*vec_j_del_j(b, b[i])

for i in e_i]

B_rhs = [Gt_rhs[i] - eta * B[i] +

l3 * vec_j_del_j(b, B[i]) -

l4 * vec_j_del_j(b, Gt[i])

for i in e_i]

gt_rhs = Dendro.Lie(b, gt) - 2*a*At

chi_rhs = Dendro.Lie(b, chi) +

2/3*chi*(a*K - del_j(b))

At_rhs = Dendro.Lie(b, At) + chi *

Dendro.TF(-DiDj(a) +

a*Dendro.Ricci) +

a*(K*At -2*At_ikAtKj)

K_rhs = vec_k_del_k(K) - DIDi(a) +

a*(1/3*K*K + A_ij_A_IJ(At))

Figure 3.8 The left panel shows the BSSN formulation of the Einstein equations. These
are tensor equations, with indices i, j, . . . taking the values 1,2,3. On the right we show
the Dendro_sym code for these equations. Dendro_sym uses SymPy and other tools to
generate optimized C++ code to evaluate the equations. Note that Lβ , D, ∂ denote Lie
derivative, covariant derivative and partial derivative respectively, and we have excluded
∂tΓ

i from Dendro_sym to save space. (See [118, 119] for more information about the
equations and the differential operators.)
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ALGORITHM 3.5 Overview of our approach

1: M← initialize mesh . §3.3.5

2: u← initialize variables (M)

3: while t < T do

4: for r = 1 : 3 do . RK stages

5: B, û← Unzip(M,u) . §3.3.6

6: for b ∈ B do

7: Compute derivatives . Machine generated code §3.3.8

8: Compute ûrhs(b) . Machine generated code §3.3.8

9: end for

10: urhs← Zip(M,B, ûrhs) . §3.3.6

11: RK update

12: end for

13: t← t +dt

14: if need remesh M then . §3.3.7

15: M′← remesh(M)

16: u′← Intergid_Transfer(M,M′,u) . §3.3.7

17: end if

18: end while
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3.3.9 Putting Everything Together

We use an RK time stepper to perform the time evolution. The algorithmic choices we

have made in DENDRO-GR support arbitrary dth order RK time integration. The initial

octree is constructed based on the WAMR method until the generated grid converges to

capture specified initial data, which is followed by the 2 : 1 octree balancing and mesh

generation phase which result in all the distributed data structures that are needed to

perform ghost/halo exchange, unzip and zip operations. A given RK stage is computed by

performing unzip operations with overlapped exchange of the ghost layer for the evolution

variables, computation of the derivatives and right-hand-sides (rhs) using the code generated

by the symbolic framework for all local blocks and finally performing zip operations to

get the computed zipped rhs variables. The RK update is then performed on the zipped

variables. After a specified number of timesteps, we compute the wavelet coefficient for

the current solution represented on the grid, and perform remesh and inter-grid transfer

operations if the underlying octree grid needs to be changed. Note that wavelet computation

for the grid is a local to each process while remesh and inter-grid transfer need interprocess

communication. A complete outline of our approach for simulating binary BH mergers

demonstrating how the various components come together is listed in Algorithm 3.5

3.4 Other Numerical Methods

There is an extensive literature on solving the BSSN equations in general relativity, and

some general reviews include [119, 120, 121]. In this section we briefly outline our

particular choices for solving the BSSN equations. We write the BSSN equations in terms

of the conformal factor χ [122]. We use the parameterization of the “1+ log” slicing

condition and the Γ-driver shift used in [123]. Spatial derivatives are calculated using

finite difference operators that are O(h4) in the grid spacing, h, with upwind derivatives

for Lie derivative terms [124]. We calculate derivatives for the Ricci tensor and enforce
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the algebraic constraints as described in [125]. Outgoing radiative boundary conditions

are applied to each BSSN function. The BSSN equations are integrated in time using an

explicit RK scheme. The solution at each point is integrated with a single global time step,

that is set by the smallest grid spacing and the Courant condition [126]. While we support

3rd and 4th order RK, the tests in this work were done using 3rd order RK with a Courant

factor of λ = 0.1. Kreiss-Oliger dissipation is added [119, 127] to the solution to eliminate

high-frequency noise that might be generated near the black hole singularities.

3.5 Results

In this section we perform a thorough evaluation of our code, including detailed comparisons

with the EINSTEIN TOOLKIT. We first describe the machines used for these experiments

followed by results demonstrating the improvements to DENDRO and comparisons with

EINSTEIN TOOLKIT. Finally, we push our code to the limit of extreme adaptability to

demonstrate its capability, using cases that are currently–to the best of our knowledge–

beyond the capability of EINSTEIN TOOLKIT.

Experimental Setup: The large scalability experiments reported in this chapter were

performed on Titan and Stampede2. Titan is a Cray XK7 supercomputer at Oak Ridge

National Laboratory (ORNL) with a total of 18,688 nodes, each consisting of a single

16-core AMD Opteron 6200 series processor, with a total of 299,008 cores. Each node

has 32GB of memory. It has a Gemini interconnect and 600TB of memory across all

nodes. Stampede2 is the flagship supercomputer at the Texas Advanced Computing Center

(TACC), University of Texas at Austin. It has 1,736 Intel Xeon Platinum 8160 (SKX)

compute nodes with 2×24 cores and 192GB of RAM per node. Stampede2 has a 100Gb/sec

Intel Omni-Path (OPA) interconnect in a fat tree topology. We used the SKX nodes for the

experiments reported in this work.

Implementation Details: The DENDRO-GR framework is written in C++ using MPI. The

https://einsteintoolkit.org/
https://einsteintoolkit.org/
https://einsteintoolkit.org/
https://www.olcf.ornl.gov/titan/
https://portal.tacc.utexas.edu/user-guides/stampede2
https://www.olcf.ornl.gov/titan/
https://portal.tacc.utexas.edu/user-guides/stampede2
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symbolic interface and code generation module uses symbolic Python (SymPy). In the

comparisons with the EINSTEIN TOOLKIT, we have used Cactus v4.2.3 and the Tesla

release of the Einstein Toolkit. We integrated the BSSN equations with third-order RK for

all comparisons in this chapter. The constraint analysis, apparent horizon finder, and output

were turned off for these runs.

unbalanced octants balanced octants 2:1 balance ([84]) (s) 2:1 balance (DENDRO-GR ) (s)

3K 5K 0.0087 0.0043

33K 59K 0.0908 0.0541

338K 553K 0.7951 0.5461

3M 5M 7.7938 6.9313

6M 11M 16.1828 14.7374

Table 3.1 A comparison study for the 2:1 balancing approach used in [84] and the
new balancing approach on a single core in Stampede2 (SKX node), with varying
input octree sizes ranging from 3K to 6M octants.

3.5.1 Meshing Performance

In this section, we briefly present results for the improved scalability and performance of

the proposed balancing and meshing algorithms. In Table 3.1, we list the improvement

in enforcing 2:1 balancing by using TREESORT instead of the ripple propagation used in

[84]. We present only single core results, as the algorithmic changes are for the sequential

portions of the algorithms. In Table 3.1 we demonstrate significant savings for a range of

problem sizes.

Similarly, significant savings are also obtained by the use of TREESEARCH compared

to the use of binary searches for the various search operations needed for meshing. In this

experiment, we searched for k keys in an array of size n = 33M octants. This size was

chosen based on the average grain size we used in our experiments. Note that for meshing,

k = O(n), and therefore we plot results up to k = n. Having a large array that is being

searched in (large n), results in the first few steps of the binary search resulting in cache

misses affecting overall performance. TREESEARCH utilizes the deep memory hierarchy in

https://einsteintoolkit.org/
https://portal.tacc.utexas.edu/user-guides/stampede2
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Figure 3.10 Comparison of std::bsearch with partial ordering operator < and
comparison free TREESEARCH approach for performing, varying number of keys
on 33M sorted complete octree using single core in Stampede2 SKX node.
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Figure 3.11 Comparison between ET and DENDRO-GR for number of spatial points
with increasing mass ratios. Note that these are not from complete simulations and the
size of the problem as well as the time per RK-step is likely to increase, but it illustrates
the rate of increase for both approaches. Parameters for the above experiment generated
such that total mass of black holes equals to 1 and the separation distance is 32 for all
cases and MAXDEPTH is set in a way that the spatial discretization dx < min(m1,m2)

16 where
m1,m2 denotes the individual masses of black holes.

a more effective fashion, but because of the additional work involved in sorting, requires

a minimum number of keys to be searched for before it is cheaper. This can be seen in

our results plotted in Figure 3.10, where TREESEARCH scales better than std::bsearch,

and is faster for k > 1M. Given the number of keys being searched for during meshing,

TREESEARCH improves the overall meshing performance and scalability significantly.

https://portal.tacc.utexas.edu/user-guides/stampede2
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3.5.2 Correctness of the Code

We performed a number of tests to assess the correctness of our code, including simulations

of static (Appendix E.1.2.8) and boosted black holes (Appendix E.1.2.8.1), as well as

comparisons to other codes. To verify the automatic generation of the computer code for the

BSSN equations, we evaluated these equations using arbitrary analytic functions of order

unity over a grid of points, and compared the results to a known solution. The L2-norms of

the error are equivalent to machine zero, given the limitations of finite-precision arithmetic.

Additional results on the correctness are presented in Appendix E.1.2.

3.5.3 Comparison with the Einstein Toolkit

We compare our code with the BSSN formulation implemented in ET. The AMR driver

for Cactus, CARPET [128], only supports block adaptivity. Therefore, we would expect

DENDRO-GR to require fewer degrees of freedom (dof) for a given simulation and conse-

quently be faster. Although ET uses vectorization for improved performance [129],

DENDRO-GR outperforms ET. Note that for all comparison studies with EINSTEIN

TOOLKIT , we have used the non-vectorized version of the DENDRO-GR generated code.

To highlight the improvements over ET, we perform two independent experiments. First,

we compare the performance of both codes without adaptivity, and then in a separate

experiment we show that DENDRO-GR provides a more efficient adaptivity and scaling

than CARPET.

Uniform Grid Tests: In Figure 3.9, we present a comparison between DENDRO-GR

and ET. This uses a regular grid for ET, and serves to highlight the efficiency of the

DENDRO-GR code including the overhead of adaptivity (i.e., zip and unzip). These runs

were performed on Stampede2, and we show strong and weak scaling for both codes.

Although both codes demonstrate good scaling, the performance (as measured by the time

for one complete timestep) is better for DENDRO-GR at higher core counts. EINSTEIN

TOOLKIT has better performance for large number of unknowns per core at low core

https://einsteintoolkit.org/
https://einsteintoolkit.org/
https://portal.tacc.utexas.edu/user-guides/stampede2
https://einsteintoolkit.org/
https://einsteintoolkit.org/
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Figure 3.13 Strong scaling results in ORNL’s Titan for a single RK step (averaged over
10 steps) with derivative computation (deriv), right hand side (rhs) computation, unzip
cost and communication cost (comm) for a fixed problem size of 10.5B unknowns where
the number of cores ranging from 4,096 to 65,536 cores on 4096 nodes. Note that for
strong scaling results re-meshing is disabled in order to keep the problem size fixed.

counts. This effectively captures the overhead of zip and unzip compared to an efficient and

mature code. For cases with higher core counts as well as smaller number of unknowns per

core, DENDRO-GR performs better. This is largely due to better cache utilization due to

blocking, that largely compensates for the overhead of zip/unzip. Additionally, DENDRO-

GR demonstrates better strong and weak scaling. The plot in Figure 3.9 highlights the strong

and weak scaling of both codes for a representative grain and problem size. DENDRO-GR

scales well far beyond the 3072 cores, as shown in Figure 3.12 and discussed in Sec. 3.5.4.

Octree Adaptivity vs. Block Adaptivity: As motivated earlier, we wish to perform

simulations of binary black hole mergers with large mass-ratios, q' 100. Large mass-ratios

require extensive refinement, increasing the number of spatial degrees of freedom. For

an example let’s assume an equal mass binary requires a certain resolution for the BSSN

equations, about 100 points per BH in each dimension. For a BH 100 times smaller, we need

https://www.olcf.ornl.gov/titan/
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mass ratio q 1 2 5 10 20 50 70 100

cores 27 31 64 79 89 90 99 96

Table 3.2 The number of cores required to maintain 24K unknowns per core with different
mass ratios using MAXDEPTH 12, a wavelet tolerance of 10−4 and a black hole separation
distance of 32.

a resolution equivalent to 1/10,000 times the total mass and 100× more time steps. The

consequent high computational cost is the primary reason that current catalogs of numerical

waveforms contain templates with a maximum mass ratio of q < 10 [130, 131, 132].

The efficient adaptivity of DENDRO is a big advantage over the block adaptivity of

the ET. To assess the effect of adaptivity on code performance, we compared both codes

for increasing mass-ratios from q = 1–100, measuring the dofs, as shown in Figure 3.11.

As the mass ratio increases, the number of dofs for ET increases much more rapidly

than for DENDRO-GR. While these results capture the differences at the beginning of the

simulation1, they are representative of the full simulation in terms of comparing the two

codes. Because of better adaptivity and better scalability, DENDRO-GR keeps the cost of

a single RK-step fairly flat as we scale up from q = 1–100 mass-ratio. In Table 3.2 we

present the number of cores needed to maintain a 24K unknowns per core with increasing

mass ratio using the DENDRO-GR framework. Finally, to illustrate the advantages of

octree-adaptivity over block-adaptivity, even with the overhead of zip/unzip, we plot the

reduction in runtime for 10 timesteps for different levels of adaptivity in Figure 3.14. Based

on these results, it is clear that zip/unzip togehter with adaptivity will be a benefit for

simulations of large mass ratio configurations and that the overhead is about 20% even for

a full regular grid simulation. These results further support our findings in Figure 3.9.

3.5.4 Parallel Scalability

Scalability is a key requirement for large-scale codes such as DENDRO. In the context of our

target application this could be in order to run simulations of black hole mergers with large

1It would be very expensive to run full simulations with ET due to its scalability for large q.
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Figure 3.14 An illustrative single core example to evaluate the overhead of zip/un-
zip operations to evaluate BSSN equations on a sequence of octree grids over
10 timesteps. The parameter α here denotes the ratio between the number of
octants to the number of regular grid octants for MAXDEPTH 8. Hence moving
towards the right direction on the x axis the octree grids converge towards a regular
grid. RG and RG+ zip+unzip denotes the baseline performance for regular grid
computations and regular grid computation with zip/unzip overhead respectively.
The shaded q = 1 region denotes the α value for an equal mass ratio simulation
until the merger event using MAXDEPTH 12 over 2×105 timesteps. For larger
mass ratio runs the MAXDEPTH will be determined by the smaller black hole,
hence for q = 10 with 15, α reached a maximum value of 1.4×10−8 over 6000
time steps and for q = 100 with MAXDEPTH 20, the maximum value of α reached
5.51×10−13 over 1000 timesteps. Note that the value of α can increase during
the simulation. For the largest problem (see Figure 3.12) that was run on Titan
with 131K cores for q = 10 case the α value was 4.8× 10−7. In the plot, we
have marked the Lk values for k = 3,4,5 where Lk is the computed α ratio for an
adaptive octree for which an equal number of octants spans across k levels.
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mass ratios, or to be able to run these simulations much faster. These cases correspond to

weak and strong scaling respectively. As demonstrated in Sec. 3.5.3, DENDRO-GR scales

well in both cases. In this section, we demonstrate the ability of DENDRO-GR to scale to

much larger core-counts for weak scaling. In Figure 3.12, we demonstrate weak scalability

to 131,072 cores on Titan using 1.5× 106 dofs/core for a largest problem of 206× 109

dofs. These correspond to a simulation of q = 10, with increasing levels of refinement.

There is a slight fluctuation in the number of unknowns per core at each problem size.

Therefore, we report the average time for a single RK-step/do f/p. We can see that the

average time per RK-step/do f/p remains less than 10µs. We note that the unzip costs are

high at the lower core-counts and stabilize at higher core counts. This is due to a larger grain

size at the smaller core-counts. The communication for a smaller number of processes is

lower due to architectural reasons, as the majority of the communication happens primarily

within the same node. This is common for most codes, and stabilizes for p > 512 as the

communication starts to get dominated by inter-node communication rather than intra-node

communication.

In Fig. 3.13, we present the strong scaling results for DENDRO-GR to perform a

single RK step (i.e. averaged over 10 steps) for a fixed problem size of 10.5B unknowns in

Titan up to 4096 nodes. This experiment is for a BBH merger with a mass ratio 10 with a

wavelet tolerance of 10−6. Note that for the strong scaling experiment we have disabled the

re-mesh and inter-grid transfer operations in order to keep the problem size constant.

3.5.5 Large Mass Ratios

Finally, we present some representative images from simulations at mass rations of q= 1,10,

and 100 in Figure 3.15. Here we plot one of the evolved variables, χ , (related to the

conformal factor on the 3D spatial slice) along with the adaptively refined mesh. We can

observe the increased refinement needed to handle the increased mass ratio.

https://www.olcf.ornl.gov/titan/
https://www.olcf.ornl.gov/titan/
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(a) q = 1 (b) q = 10 (c) q = 100

(d) q = 1 (e) q = 10 (f) q = 100

Figure 3.15 Time step snapshots of the binary black hole problem of black hole mass
ratios 1,10 and 100 where we in the top row we plot the BSSN variable χ in the lower
row we plot the WAMR grids for each case at that specific instance.

3.6 Conclusions

In this chapter, we have presented a highly-adaptive and highly scalable framework for

relativistic simulations. By combining a parallel octree-refined adaptive mesh with wavelet

adaptive multiresolution and a physics module to solve the Einstein equations of general

relativity in the BSSN formulation, we were able to perform simulations of IMRIs of

binary black holes with mass ratios on the order of 100:1. In designing our framework and

methods, we have focused on ensuring portability and extensibility by the use of automatic

code generation from symbolic notation. This enables portability, since new architectures

can be supported by adding new generators rather than rewriting the application. The

code is extensible as new applications can be created by using the symbolic interface

without having to focus on writing scalable code. Since both of these are achieved using

Python, this reduces the cost of extending and porting the framework, especially by non-

specialist programmers. We also made improvements to fundamental algorithms required

for generating octree-based meshes, specifically an improved 2:1 balancing algorithm and a

scalable search algorithm fundamental to constructing meshing data-structures. Finally, we

performed extensive comparisons with the current state-of-the-art codes and demonstrated
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excellent weak and strong scalability.

In the short time that LIGO and Virgo have been searching for gravitational waves, we

have already learned exciting things about neutron stars [133, 134], the production of heavy

elements (such as gold) [135], and the population of black holes in the universe [136].

The full scientific impact of multi-messenger astronomy is only realized when the

observations are informed by sophisticated computer models of the underlying astrophysical

phenomena. DENDRO provides the ability to run these models in a scalable way, with

local adaptivity criteria using WAMR. While AMR codes with block-adaptivity typically

lose performance as the number of adaptive levels increases, DENDRO achieves impressive

scalability on a real application even with many levels of refinement. The combination

of scalability and adaptivity will allow us to study the gravitational radiation from IMRIs

without simplifying approximations in direct numerical simulations.



Chapter 4

Ejecta Morphology from Binary

Neutron Star Mergers

4.1 Introduction

Recently, Advanced LIGO has detected gravitational waves (GWs) from a binary neutron

star merger (BNS) [7]. BNS mergers have several interesting aspects. The problems that we

are interested in concern high resolution studies of winds and ejecta from binary mergers

of neutron stars and a companion which could be a black hole (BH), neutron star (NS), or

white dwarf (WD). The ejecta from such mergers provide an ideal environment for r-process

nucleosynthesis as the heaviest r-process nuclei may be formed in binary mergers rather

than supernova explosions. Understanding the ejecta from binary mergers is particularly

interesting because r-process nucleosynthesis can power isotropic electromagnetic emission

that may be observable for several days after the merger. This emission, called a macronova

or kilonova [137, 138, 139, 140, 141, 142], would provide an important electromagnetic

counterpart to gravitational wave detections, and help to isolate gravitational wave sources

and provide important complementary information about these mergers and the resulting

gamma ray burst. (For possible observations of a macronova, see [143, 144].) The dynamics

of the ejecta is complicated with different properties and compositions depending on the

84
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process by which it was expelled and its interactions with the hot merger remnant. The low

density of the ejecta, the small-scale structure, the neutrino interactions, and the fact that it

is not localized makes the ejecta particularly difficult to resolve in a convergent manner.

In this work, we study BNS merger systems. We solve the equations of hydrodynamics

within Newtonian gravity using smoothed particle hydrodynamics (SPH) with an extremely

large number of particles. We present a new open source toolkit FleCSPH. FleCSPH is a

complement of the FleCSI 1 framework, focusing on tree data structures with support for

binary, quad and octrees. The framework provides parallel, distributed and accelerated tree

construction and search in the context of multi-physics problems. FleCSI is a compile-time

configurable framework designed to support multi-physics applications and is developed

and maintained by the Los Alamos National Laboratory. FleCSI provides domain scientists

with a set of data structures and tools to target parallel and distributed architectures on

current and future supercomputers, including the ongoing 2020 target to support the first

Exascale supercomputers. In this regard, high performance computing (HPC) faces some

increasingly difficult challenges. For example, we need to provide software systems that

harness the full power of these machines composed of complex hybrid architectures, next

generation runtimes, accelerators, and complex memory hierarchies. In addition, these

systems must promote performance portability, programmer productivity and provide

abstractions that are suitable for domain scientists.

Our work on FleCSPH is based on an SPH that emphasizes different hybrid architectures

as well as runtimes in HPC. This method can be efficiently solved using binary, quad and

octrees while providing irregularities in terms of computation and communication.

This project described in this chapter has been a collaborative effort with many people

at LANL. These include Julien Loiseau, Oleg Korobkin, Jonah Miller, Irina Sargert, Wes

Even, and Ben Bergen. My contributions to this work include being a founder and one of

the main developers of the FleCSPH code. The FleCSPH code project was created during

my 2017 summer graduate internship with another summer student, Julien Loiseau, who

1Visit https://github.com/laristra/flecsi to learn more about FleCSI

https://github.com/laristra/flecsph
https://github.com/laristra/flecsi
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is a computer scientist. My major task was to implement and develop all the necessary

physics and mathematics components for FleCSPH. I also implemented several different

toolkits including visualization and data format transfer for the code. (See Appendix D for

more details and a discussion on how to implement FleCSPH.) I also tested and generated

all the results including the Sod shock, the Sedov blast wave, and the BNS system; not only

validating the code but also obtaining interesting results.

4.2 Numerical Method and Implementation

In this section, we present our numerical technique and the details of its implementation.

This section also includes a detailed discussion about our toolkit and its basic structure for

solving binary neutron star systems. For detailed computer science implementation aspects,

see Appendix D.

4.2.1 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) is a numerical and computational method used

for simulating fluid flow. It works by dividing the fluid into a set of discrete elements, called

particles. These particles have a spatial distance, known as the smoothing length, over

which their properties are smoothed by a kernel function. SPH was originally suggested by

Gingold and Monaghan [145] and Lucy [146] initially for astrophysics problems. There

are already a number of numerical methods handling problems in ideal fluid dynamics.

However, SPH has several advantages for astrophysical and cosmological simulations.

First, SPH allows us to exactly conserve mass, energy momentum, and angular mo-

mentum in a straightforward way; indeed by construction. As a result, simulations are

independent of the numerical resolution. For example, the mass transfer between two

stars and the orbital dynamics of two stars are extremely sensitive to the conservation of

angular momentum. Eulerian methods, which are grid-based methods, have challenges in

accurately simulating this problem. Second, natural adaptivity comes essentially for free
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with SPH. The scale of the smoothing which is set by the smoothing length h varies as the

particles move with the flow without any additional infrastructure such as adaptive meshes

as in Eulerian methods. Another advantage is that SPH is designed to ignore vacuum

regions thus greatly reducing computational costs as vacuum regions do not need to be

evolved. Furthermore, SPH is Galilean invariant and so is independent of the chosen com-

puting frame. If simulations are performed in inappropriate reference frames with Eulerian

schemes, serious artifacts such as spurious inspiral and merger for binary systems can occur.

In contrast, it does not matter in which reference frame the calculation is performed for

SPH.

Another benefit of using SPH is that physical properties attached to SPH particles are

simply carried along as the particles move. This property is helpful to post-process the

nucleosynthesis from a particle trajectory without any need for additional tracer particles.

High velocities with respect to the computational grid can cause inaccurate simulations

otherwise. In addition, this property makes advection effectively automatic so SPH is free

of any errors from advection alone.

The particle structure of SPH allows for a natural computational structure to solve the

N-body problem. SPH can be straightforwardly combined with highly flexible and accurate

gravity (Newtonian) solvers such as the tree method. Many successful SPH methods with

tree algorithms exist to solve a variety of different astrophysical problems. More details

about these implementations can be found in the literature [147, 148, 149, 150, 151, 152,

153, 154].

To formulate and simulate different astrophysical and cosmological problems, different

sets of equations are chosen with appropriate physical assumptions. In the work described

in this chapter, we will solve the hydrodynamical equations with Newtonian gravity.

The method, as illustrated in Fig. 4.1, computes the evolution of physical quantities

for every particle and its neighbors in the radius of its smoothing length h. The particles

within this radius are then valued according to their distance using a smoothing function W ,

called the kernel. The fundamental SPH formulation for any physical quantity A is then to
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𝑟 ≤ 2ℎ

𝑊

𝑟

Figure 4.1 SPH kernel W and smoothing length h representation

compute a weighted average over a subset of all the neighbors of the bth particle using

A(~r)'∑
b

mb

ρb
A(~rb)W (|~r−~rb|,h), (4.1)

where mb is the mass, ρb is the density, and~rb is the position of the bth particle, respectively.

This represents the so-called summation interpolant and its accuracy is dictated by the

number of particles and the choice of the kernel.

In our work, our problem is to simply solve the Lagrangian conservation equations

(Euler equations) for mass, energy, and momentum for an ideal fluid

dρ

dt
=−ρ∇ ·~v, (4.2)

du
dt

=
P
ρ2

dρ

dt
, (4.3)

d~v
dt

=−∇P
ρ

, (4.4)

where ρ is the density, d/dt = ∂t +~v ·∇ is the convective derivative,~v is the fluid velocity,

u is the specific thermal energy, and P is the pressure.

As with other numerical methods, in order to solve this problem within the SPH

formulation, different discrete approximations to the equations can be used. Of course,

these choices can result in a variety of different accuracies. We use the simplest SPH

formulation – sometimes referred to as vanilla ice SPH. This formulation is still used in

many astrophysical simulations and is fully conservative. Detailed derivations of the vanilla

ice SPH formulation can be found in the literature [154, 155].

By using the volume element Vb = mb/ρb, we can reformulate the vanilla ice SPH
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scheme so that

ρa = ∑
b

mbWab(ha), (4.5)

dua

dt
=

Pa

ρ2
a
∑
b

mb~vab ·∇aWab, (4.6)

d~va

dt
=−∑

b
mb

(
Pa

ρ2
a
+

Pb

ρ2
b

)
∇aWab, (4.7)

where Wab =W (|~ra−~rb|,h) is the smoothing kernel. These equations allow for the emer-

gence of discontinuities from smooth initial data. At discontinuities or the formation of

shocsk, the entropy will increase. In addition, dissipation will occur behind shock-fronts.

The SPH formulation here is inviscid so we will need to be able to handle this dissipation in

the vicinity of shock forming regions. There are a number of ways to address this problem.

The most widespread approach is to add artificial viscosity (or artificial dissipation). Within

the SPH formulation we add new terms to the internal energy and acceleration equations of

the form: (
dua

dt

)
art

=
1
2 ∑

b
mbΠab~vab ·∇aWab, (4.8)(

d~va

dt

)
art

=−∑
b

mbΠab∇aWab, (4.9)

where Πab is the artificial viscosity tensor. As long as Πab is symmetric, the conservation

of energy, linear and angular momentum continues to be assured. This is because of the

form of the equations and the antisymmetry of the gradient of the kernel with respect to the

exchange of a and b indicies. Note that the artificial viscosity tensor, Πab, can be defined in

different ways, but the most commonly used form is given by [156]:

Πab =


−α c̄s,abµab+β µ2

ab
ρ̄ab

for~rab ·~vab < 0

0 otherwise.
(4.10)

The condition~rab ·~vab < 0 detects whether particles are approaching. It will only be in this

case that artificial viscosity becomes active. We define µab as

µab =
h̄ab~rab ·~vab

r2
ab + ε h̄2

ab
, (4.11)
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where we use the notation that rab = ra− rb,~vab =~va−~vb, h̄ab = (ha +hb)/2, and c̄s,ab =

(cs,a + cs,b)/2. Note that the term ε h̄2
ab appears in the denominator of Eqn. 4.11 in order

to prevent it from diverging. The sound speed, cs, can be obtained by cs =
√

∂ p
∂ρ

. In this

artificial viscosity term, Πab, we can see a term that is linear in the velocity difference

which produces shear and bulk viscosity. The quadratic term in the velocity difference

is required to control high Mach number shocks. The values of ε , α , and β are often set

specifically with regard to the targeted problem. However, numerical experiments have

suggested the following values for these parameters: ε = 0.01, α = 1.0, and β = 2.0. In

general, we can express the equations for internal energy and acceleration with these new

additional terms
dua

dt
= ∑

b
mb

(
Pa

ρ2
a
+

Πab

2

)
~vab ·∇aWab, (4.12)

d~va

dt
=−∑

b
mb

(
Pa

ρ2
a
+

Pb

ρ2
b
+Πab

)
∇aWab. (4.13)

These combined expressions continue to conserve energy, linear and angular momentum by

construction. Additional discussion of the artificial viscosity can be found in [155].

4.2.1.1 Kernels

Choosing a sufficiently good smoothing, or kernel, function is a key ingredient in computing

certain physical quantities accurately and effectively. Different smoothing kernels within

the SPH method have been explored in the literature [157, 158]. Various requirements

and properties for smoothing kernels have been discussed but here we present some of the

major requirements and properties that are relevant to this work. First, all of the below

listed kernels satisfy the following normalization condition:

∫∫∫
SD(h)

W (~r,h)dD~r = 1, (4.14)

where the integration is performed over the D-dimensional volume of a sphere SD(h) of

radius h.
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Second, all kernels will have compact support, i.e. W (~ra−~rb,h) = 0 for |~ra−~rb|> κh.

The region of the support is defined by the smoothing length h and a constant factor κ .

Furthermore, κ determines the spread in the specified smoothing function.

Third, all kernels will satisfy a positivity condition, namely W (~ra−~rb,h) ≥ 0 for all

points,~rb, within the support domain of the particle point~ra. In addition, the kernal should

decrease monotonically with respect to the relative distance and possess a smooth derivative.

Furthermore, all kernels should satisfy the symmetric property W (~ra−~rb,h)≡W (|~ra−

~rb|,h) and should reduce to a Dirac delta function as the smoothing length h approaches

zero, i.e.

lim
h→0

W (~ra−~rb,h) = δ (~ra−~rb). (4.15)

Any function having the above properties can be considered as a smoothing kernel for SPH.

All the currently implemented kernels in our approach possess spherical symmetry which

makes it easy to impose exact conservation of linear momentum. For such kernels, the

gradients can be computed as follows:

∇aWab ≡ ∇aW (|~ra−~rb|,ha) (4.16)

=
dW
dr

~εab, (4.17)

where~εab ≡~rab/|~rab| is a unit vector in the direction from particle b to particle a. It is

therefore sufficient to implement dW/dr for each kernel. In the formulae below, we define

q≡ |~r|/h.

Cubic spline

The simplest (but not the best) is Monaghan’s cubic spline. This is given by:

W (~r,h) =
σD

hD


1−6q2 +6q3 if 0≤ q≤ 1/2,

2(1−q)3 if 1/2≤ q≤ 1,

0 otherwise,

(4.18)

where q = r/h, D is the number of dimensions and σD is a normalization constant:

σD =

{
4
3
,

40
7π

,
8
π

}
in 1D, 2D and 3D resp. (4.19)
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The radial derivative of the cubic spline is:

dW
dr

=
σD

hD+1


−6q(2−3q) if 0≤ q≤ 1/2,

−6(1−q)2 if 1/2≤ q≤ 1,

0 otherwise.

(4.20)

Gaussian

The Gaussian kernel is given by:

W (~r,h) =
σD

hD


e−q2

if 0≤ q≤ 3,

0 if q > 3,
(4.21)

where σD is :

σD =

{
1

π1/2 ,
1
π
,

1
π3/2

}
in 1D, 2D and 3D resp. (4.22)

The radial derivative of the Gaussian kernel is:

dW
dr

=
σD

hD+1


−2qe−q2

if 0≤ q≤ 3,

0 if q > 3.
(4.23)

Quintic spline

The Quintic spline kernel is given by:

W (~r,h) =
σD

hD



[(3−q)5−6(2−q)5 +15(1−q)5] if 0≤ q≤ 1,

[(3−q)5−6(2−q)5] if 1≤ q≤ 2,

(3−q)5 if 2≤ q≤ 3,

0 if q > 3,

(4.24)

where σD is:

σD =

{
1

120
,

7
478π

,
3

359π

}
in 1D, 2D and 3D resp. (4.25)
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The radial derivative of the quintic spline is:

dW
dr

=
σD

hD+1



[−5(3−q)4 +30(2−q)4−75(1−q)4] if 0≤ q≤ 1,

[−5(3−q)4 +30(2−q)4] if 1≤ q≤ 2,

−5(3−q)4 if 2≤ q≤ 3,

0 if q > 3.

(4.26)

Wendland C2

The Wendland C2 kernel for 2D and 3D is

W (~r,h) =
σD

hD


(
1− q

2

)4
(2q+1) if 0≤ q≤ 2,

0 if q > 2,
(4.27)

where σD is:

σD =

{
7

4π
,

21
16π

}
in 2D and 3D resp. (4.28)

For 1D:

W (~r,h) =
σD

h


(
1− q

2

)3
(1.5q+1) if 0≤ q≤ 2,

0 if q > 2,
(4.29)

where σD is:

σD =
5
8

in 1D. (4.30)

These are examples of smoothing kernels that we use in this work. Certainly, there are

a variety of different kernels usable for improving the performance of the SPH method

and which generalize the requirements for constructing smoothing kernels [158]. Our SPH

resolution scheme and its routines are presented in algorithm 4.1.

The main downside for the implementation of this method is the requirement that every

particle is subject to the SPH loop algorithm. The particles must be grouped locally in order

to perform the computation of Eqns. 4.5, 4.12, and 4.13. A communication step is also

needed before and after Eqn. 4.5 to get the local physical data and to be able to compute

Eqn. 4.12 and Eqn. 4.13. The tree data structure allows us to perform an O(Nlog(N))
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ALGORITHM 4.1 SPH loop algorithm

1: while not last step do

2: Compute density for each particle (4.5)

3: Compute pressure using EOS

4: Compute acceleration from pressure forces (4.13)

5: Compute change of internal energy for acceleration (4.12)

6: Advance particles after integration

7: end while

neighbor search but also adds a domain decomposition and distribution layer. A more

comprehensive discussion of our implementation can be found in Sec. D

4.2.2 Equations of State

An equation of state (EOS) relates various thermodynamic quantities to each other. In

neutron star physics (and more generally in astrophysics), the two relevant equations of

state relate pressure P and the specific internal energy u to the density ρ , electron fraction

Ye, and temperature T :

P = P(ρ,Ye,T ), (4.31)

u = u(ρ,Ye,T ). (4.32)

Together with the Euler equations Eqns. 4.2, 4.3, and 4.4, these equations of state complete

the full system of equations.

4.2.2.1 Analytic EOS

Here we discuss some of the various analytic equations of state which are relevant for

binary neutron star mergers.
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By far the simplest equation of state that completes the Euler equations (4.2), (4.3), and

(4.4) is the ideal gas equation of state

Pid(ρ,u) = (Γ−1)ρu, (4.33)

where Γ is the adiabatic index of the gas (typically 5/3 for a monatomic gas). The ideal gas

equation of state is valid for low-temperature, low-pressure regimes. It can, and should, be

combined with the more sophisticated analytic equations of state to account for the thermal

component of the pressure. At low pressures, we use equation (4.33) combined with other

equations of state to fully describe this regime.

A polytropic process obeys the relationship

P = Kρ
(n+1)/n := Kρ

γ , (4.34)

where P is the pressure of the gas, ρ is the density, n is a free parameter—the so-called

polytropic index—and K is a constant of proportionality.

If constant entropy is assumed, many thermodynamic situations can be approximated as

polytropes or as piecewise functions made up of polytropes—so-called piecewise polytropes.

In the case of a neutron star, a reasonable polytropic equation of state can be achieved by

assuming a (relativistic or non-relativistic) degenerate Fermi gas of neutrons and calculating

P(ρ). For a non-relativistic degenerate neutron gas, we have

K0 =

(
3π2)2/3 h̄2

5m8/3
n

, (4.35)

where mn is the proton mass, h̄ is the reduced Planck constant, and

γ0 = Γ = 5/3. (4.36)

For the relativistic case we have

γ1 = 5/2. (4.37)

In our implementation of the polytropic equation of state, we stitch the relativistic and
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non-relativistic polytropes smoothly together to attain the following piecewise polytrope:

Pppt(ρ) =


K0ργ0 if ρ ≤ ρ0(

K0ρ
γ0
0

ρ
γ1
0

)
ργ1 if ρ > ρ0,

(4.38)

where ρ0 = 5× 1014 g/cm3 is a reasonable transition point between the relativistic and

non-relativistic regimes.

Finally, we combine the piecewise polytrope with the thermal equation of state described

in Eqn 4.33 to obtain an equation of state valid at both low and high densities:

P(ρ,u) = Pppt(ρ)+Pid(ρ,u). (4.39)

Another interesting problem using SPH is binary white dwarfs (BWD). Simulations of

these systems are useful for studying possible progenitors of type Ia supernovae. Here, we

use a zero temperature white dwarf (ZTWD) EOS as a variation of the self consistent field

technique [159, 160]. In ZTWD EOS, the electron degeneracy pressure P varies with the

mass density ρ according to the relation

P = A
[
x(2x2−3)(x2 +1)1/2 +3sinh−1 x

]
, (4.40)

where the dimensionless parameter

x≡
(

ρ

B

)1/3
, (4.41)

and the constants A and B are

A≡ πm4
ec5

3h3 = 6.00288×1022 dynescm−2, (4.42)

B
µe
≡

8πmp

3

(mec
h

)3
= 9.81011×105 gcm−3. (4.43)

Using ZTWD EOS, we can also compute the maximum mass of an isolated non-rotating

WD [161]. Furthermore, we can derive analytic approximations for the mass-radius

relationship of not only WDs [162] but also degenerate stars composed of pure helium [163].
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4.2.2.2 Tabulated EOS

For more realistic descriptions of thermodynamical relations for nuclear matter, an EOS

built from a microphysical finite temperature model for nuclear matter is required. Such

microphysical EOS are too complicated to obtain in analytic form. So, we read thermody-

namical quantities for different models from tabulated forms with interpolation.

In our simulations, we use the Lattimer-Swesty EOS [164], which is a good description

of hot, non-relativistic neutron matter. There are also different tabulated EOS such as the

Shen EOS [165] which provides inhomogeneous matter composition. Tables for these EOS

can be obtained from [166].

In this work, the SPH formulation we are using does not evolve temperature. Rather,

we track specific internal energy. We therefore require the following alternate relationships:

P = P(ρ,Ye,u), (4.44)

T = T (ρ,Ye,u), (4.45)

which we must derive from our original table.

To achieve this, we “invert” the relationship (Eqn. 4.32) at runtime: at iteration i and for

particle p with density ρ i
p, electron fraction (Ye)

i
p, and specific internal energy ui

p, we use a

root-finding algorithm such as Newton-Raphson to solve for the temperature T i
p such that

ui
p = T

(
ρ

i
p,(Ye)

i
p,T

i
p
)
. (4.46)

After finding T i
p, we can simply use Eqn. 4.31 to calculate the pressure.

4.2.3 Initial Data

Initial particle configurations are constructed using various methods, including regular cubic

lattices, random particle distributions, or sequences of spherical shells. It is well-known

that generating good initial data is crucial and necessary for the SPH method to work

well [167]. In this section, we concentrate on two ways to generate an initial star for our
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NS simulations. In the following subsections, we describe both single and binary systems,

the Tolman-Oppenheimer-Volkoff Equation and the Lane-Emden equation, both used to

generate NS initial data.

4.2.3.1 The Tolman-Oppenheimer-Volkoff Equation

The Tolman-Oppenheimer-Volkoff (TOV) equations describe the structure of a spherically

symmetric body of isotropic material. In this section, we constrain ourselves to the

Newtonian case. This gives the simple stellar structure equations which have the form

∂P
∂ r

=−Gm(r)ρ(r)
r2 , (4.47)

∂m
∂ r

= 4πr2
ρ(r), (4.48)

where m(r) is the mass contained in a spherical shell of radius r, ρ is the density of the

object, and P is the pressure. To find the pressure, we match these with an EOS

f (ρ) = P, (4.49)

so we can find the density ρ by inverting this function such that ρ = f−1(P). In this

work, one choice is to assume a piecewise polytropic EOS (Eqn. 4.35) as an analytic

model. Another choice which will include more microphysics is to use a more sophisticated

tabulated EOS. This will provide for more realistic simulations. To solve these Eqns. 4.47

- 4.48, we use conventional finite differencing together with a 4th order Runge-Kutta time

integrator.

If we use a tabulated EOS, the internal energy is generally included. However, in our

case, we must derive the internal energy to complete the system. From the first law of

thermodynamics, we have

dU = T dS−PdV, (4.50)

where U is internal energy, S is entropy, T is temperature, and V is volume. We want to

express this in terms of the specific internal energy u which is energy per unit mass. We
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assume baryon mass conservation so we can express the first law of thermodynamics in

terms of u and ρ so that

du = T ds+
P
ρ2 dρ, (4.51)

where s is specific entropy. A star without a heat source in thermodynamical equilibrium is

isothermal, i.e. T = constant so that dT = 0. Using that, we can integrate a thermodynami-

cal potential which depends on T . Consider the specific Helmholtz free energy, f , to be

f = u−T s. Its differential is

d f = du− sdT −T ds = T ds+
P
ρ2 dρ− sdT −T ds =

P
ρ2 dρ. (4.52)

From a thermodynamical relation, we obtain(
∂ f
∂ρ

)
T
=

P
ρ2 . (4.53)

On considering a polytropic EOS, P = Kργ , we have(
∂ f
∂ρ

)
T
= Kρ

γ−2. (4.54)

On integrating this with respect to ρ , we get the form for the specific Helmholtz free energy

f (ρ,T ) =
K

γ−1
ρ

γ−1 + c(T ), (4.55)

where c(T ) is an arbitrary “constant” of integration which depends on the local temperature.

Using the relation, f = u−T s, we finally derive the specific internal energy

u(T,ρ) = f +T s =
K

γ−1
ρ

γ−1 + c(T )−T
(

∂ f
∂T

)
ρ

=
K

γ−1
ρ

γ−1 + c(T )−T
dc
dT

. (4.56)

If we define uth(T ) = c(T )−T dc
dT as the thermal part of the specific energy (which depends

only on temperature) together with a polytopic EOS, P = Kργ , we then have

u(T,ρ) =
1

1− γ

P
ρ
+uth(T ). (4.57)
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If there is no thermal specific energy initially i.e. uth(T ) = 0, we obtain the usual ideal gas

EOS P = (γ−1)ρu.

On solving for the TOV star, we need to modify the initial data file that is appropriate

for use in the SPH code. To do that, we need to calculate the radial positions of the particles.

We assume that each particle has the same mass so that mass of an individual particle is

mpart =
m(R)
npart

, (4.58)

where R is the radius of the star and npart is the number of particles. The sum of the masses

of all particles within radius ri less than r is given by

msum(r) = ∑
i

mpart for ri ≤ r, (4.59)

where i labels a radial grid point. This should be approximately the same as m(r) which is

given by

msum(r)≈ m(r) =
∫

r2
ρdr. (4.60)

To calculate this, we need the probability of finding the particle at radius r. This is given by

dm
dr

= 4πr2
ρ, (4.61)

with appropriate normalization. We use a rejection sampling method to satisfy this. We

then assume θ and ϕ coordinates for the particles from the radially uniform distribution.

After these, we convert from spherical coordinates to Cartesian coordinates via the usual

coordinate transformation.

To define the smoothing length h, a root finding algorithm is used to demand that each

particle has 10 neighbors within a distance 2h. (This choice is our convention for the radius

of support for most smoothing kernels in this work.) We also set particle velocities to zero.

We set particle internal energies to be ui = u(ri) for particle i at position ri.

4.2.3.2 The Lane-Emden Equation

Another way to obtain the initial data for a star is by solving the Lane-Emden equation. On

doing this, we obtain the density as a function of radius ρ(~r), with polytropic index n = 1.
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We pick particles with variable mass, such that the mass of a particle is computed as:

mi =
ρ(~ri)

nr
with nr =

3N
4πR3 . (4.62)

The smoothing length is set to a constant and is uniform for all particles:

h =
1
2

√
3NN

4πn
. (4.63)

Here we choose NN , the average number of neighbors, to be 100.

The Lane-Emden equation describes equilibrium configurations of a Newtonian star.

The equation determines the density of the star as a function of radius.

Considering the star as a polytropic fluid, the Lane-Emden equation takes the form of a

linear differential equation with nonlinear source:

d2θ

dξ 2 +
2
ξ

dθ

dξ
+θ

n = 0, (4.64)

where ξ and θ are two dimensionless variables which represent rescaled radius and density

respectively. There exist exact solutions to the Lane-Emden equation for polytropic indices

n = 0.5, 1 and 2. In our work we will use a polytropic index of 1 which corresponds to a

NS.

For n = 1 the exact solution of equation 4.64 is:

θ(ξ ) =
sin(ξ )

ξ
. (4.65)

We note that for ξ1 = π , the first value of ξ is θ(ξ ) = 0. The variable θ(ξ ) is as mentioned

previously, the rescaled density, also defined as:

θ(ξ ) =
(

ρ(ξ )

ρc

) 1
n
=

ρ(ξ )

ρc
, (4.66)

where ρ is the star’s density and ρc is its central density. The variable ξ is defined as:

ξ =

√
4πG

K(n+1)
ρ
(n−1)/n
c × r =

√
2πG

K
× r (for n = 1),

where K is the proportionality constant coming from the polytropic relation.
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NS1 NS2 NS3 NS4

Radius (cm) R = G = M = 1 1500000 1400000 960000

K 0.636619 95598.00 83576.48 39156.94

Table 4.1 Proportionality constants with respect to radius for NS.

From the previous equations we can write the stellar radius R as:

R =

√
K(n+1)

4πG
ρ
(1−n)/2
c ξ1 =

√
K

2πG
×ξ1. (4.67)

(We note that for n = 1 the radius does not depend on the central density.) If, for example,

we use dimensionless units as G = R = M = 1 (for other results we use cgs with G =

6.674×10−8cm3g−1s−2), we can compute K as:

K =
R22πG

ξ 2
1

. (4.68)

We then deduce the density function of r as :

ρ(ξ ) =
sin(A1r)

A1r
ρc with A1 =

√
2πG

K
.

As the total Mass M, radius R and the gravitational constant G are known input parameters

we can finally compute the central density as [168]:

ρc =
MA3

1
4π(sin(A1R)−A1Rcos(A1R))

.

Then we normalize the results to fit R = M = G = 1: K′= K/(R2G), m′i = mi/M, h′i = hi/R,

~xi
′ =~xi/R

4.2.4 Time Integration Scheme

For the time integrator, we are use a leapfrog algorithm, specifically its "kick-drift-kick"

variation (see Algorithm 4.2). This algorithm belongs to the family of symplectic integrators

and, in the absence of gravity, conserves energy exactly.
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Leapfrog time integrators are efficient for Hamiltonian systems, specifically for particle

simulations. The name comes from the fact that particle velocities are updated at half-steps

while the positions are updated at integer steps, so that the two effectively “leap” over each

other. A pair of updates from timestep n to n+1 has the following form:

vn+1/2 = vn−1/2 +a(rn)∆t, (4.69)

rn+1 = rn + vn+1/2
∆t. (4.70)

Note that in this simple form the accelerations a(rn) are computed synchronously with

positions and are assumed independent of the velocities vn. This formulation is time-

symmetric and reversible up to roundoff.

An equivalent "kick-drift-kick" formulation was shown to be stable for variable time

steps:

vn+1/2 = vn +a(rn)∆t/2, "kick" (4.71)

rn+1 = rn + vn+1/2
∆t, "drift" (4.72)

vn+1 = vn +a(rn+1)∆t/2, "kick" (4.73)

When applied to the basic SPH formulation (4.12-4.13), this method reads:

vn+1/2 = vn +a[rn,Πab(vn−1/2)]∆t/2, (4.74)

un+1/2 = un +
du
dt

[
rn,vn,Πab(vn−1/2)

]
∆t/2, (4.75)

rn+1 = rn + vn+1/2
∆t, (4.76)

vn+1 = vn+1/2 +a
[
rn+1,Πab(vn+1/2)

]
∆t/2, (4.77)

un+1 = un+1/2 +
du
dt

[
rn+1,vn+1,Πab(vn+1/2)

]
∆t/2. (4.78)

where we have highlighted variable dependencies between different time levels.

In this formulation, the internal energy is stored and updated synchronously with

the velocities rather than with the coordinates. This is done to achieve exact energy
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conservation:

En+1/2−En−1/2 = ∑
a

ma

[
un+1/2

a −un−1/2
a

]
+∑

a

1
2

ma

[(
~vn+1/2

a

)2
−
(
~vn−1/2

a

)2
]

(4.79)

= ∑
a

ma

(
dun

a
dt

+~vn
a ·

d~vn
a

dt

)
, where~vn

a :=
~vn−1/2

a +~vn−1/2
a

2
. (4.80)

If we substitute the corresponding time derivatives from (4.12-4.13), this expression

vanishes:

En+1/2−En−1/2 =−∑
a,b

mamb

(
Pa

ρ2
a
~vn

b +
Pb

ρ2
b
~vn

a +Πab
~vn

a +~vn
b

2

)
·∇aW n

ab = 0. (4.81)

For this expression to vanish, the viscosity tensors Πab in Eqns. 4.74 and 4.75 above (or

in Eqns. 4.77 and 4.77) should be identical. Even though they might depend on the values

of the internal energy at the previous half-step, un−1/2, it does not affect tensor symmetry

and energy conservation at half-steps. Similarly, the pressure in Eqn. 4.81 depends on the

density at the current integer step and the internal energy at the previous half-step, but it

does not violate energy conservation as long as the same value of the pressure is used to

compute accelerations and time derivatives of internal energy. At the same time, when

computing derivatives of internal energy using expression Eqn. 4.12), the dot products,

~vn
ab ·∇aW n

ab, must be computed with velocities~vn
a at integer timesteps, as in Eqn. 4.80.

4.2.4.1 Adaptive timestep

The timestep can be adaptive and determined by ∆t = λCFL min(∆t1,∆t2), where λCFL ≈ 0.1

is a Courant factor limit, and the timescales ∆t1, ∆t2 are [169]:

∆t1 = min
a

(
ha

ca(1+1.2α)+1.2 β maxb µab

)
, (4.82)

∆t2 = min
a

√
ha

|̇~va|
, (4.83)

and where ca is the sound speed, α and β are viscosity parameters, and µab is the viscosity

function as defined in Eqn. 4.10.
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ALGORITHM 4.2 Leapfrog time integration

1: read initial state: {r, v, u}←{r0,v0,u0}

2: compute rho(r), P(rho, u), cs(rho, P, u)

3: save v1/2: v12 = v

4: compute acceleration: a(P,rho,v12)

5: compute Dudt(P,rho,v,v12)

6: while iterations do

7: select timestep dt← ∆t

8: v += a*dt/2 . velocity kick: vn+1/2 = vn +an ∆t
2

9: u += Dudt*dt/2 . internal energy kick: un+1/2 = un +
(du

dt

)n ∆t
2

10: update neighbors

11: r += v*dt . drift: rn+1 = rn + vn+1/2∆t

12: compute rho(r), P(rho, u), cs(rho, P, u) . uses un+1/2!

13: save vn+1/2: v12 = v

14: compute acceleration: a(P,rho,v12) . an+1 = a[Pn+1,ρn+1,Πab(vn+1/2)]

15: v += a*dt/2 . second velocity kick: vn+1 = vn+1/2 +an+1 ∆t
2

16: update neighbors

17: compute Dudt(P,rho,v,v12) .
(du

dt

)n+1
= u̇[Pn+1,ρn+1,vn+1,Πab(vn+1/2)]

18: u += Dudt*dt/2 . second internal energy kick: un+1 = un+1/2 +
(du

dt

)n+1 ∆t
2

19: end while



4.2 Numerical Method and Implementation 106

4.2.5 Computing Gravitational Forces

The gravitational force acting on a particle ~FGrav
a is, of course, due to attraction from other

particles and is described by the standard Newton’s law of gravity

~FGrav
a = ∑

b
G

mamb

(|~ra−~rb|)3~rab. (4.84)

with G being the Newton’s gravitational constant. To avoid O(N2) computational complex-

ity, we use the Fast Multipole Method (FMM) [170], as described below.

4.2.5.1 The Fast Multipole Method

Figure 4.2 Fast multipole method scheme. This figure presents each steps of
scheme: Particle to Multipole (P2M), Multipole to Multipole (M2M), Multipole
to Particles (M2P), Multiploe to Local (M2L), Local to Local (L2L), and Particles
to Particles (P2P). This schematic is inspired from [171]

See Algorithm 4.3 for the basic outline of the method. FMM aims to compute the

gravitational force in as accurate a way as direct summation. Fig. 4.2 shows details of the

scheme for FMM, from left bottom to right bottom for a group of particles. By way of

clarification, we provide some terminology here.

Particles: These are the bodies on which we need to compute the gravitational force

with respect to the other particles. In Fig. 4.2, green particles are separated for which we

are computing the gravitation from the other blue particles
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Multipoles: These represent the center of mass (COM) of a group particles. In this

case, we re-group the mass and barycenter of sub-particles. There are several different

levels of multipoles: particles' multipole and multipoles' multipole.

Locals: These are the COM for the reduction on the particles concerned in this work.

They have the same behavior as the multipoles, but the information goes down to particles

instead of going up.

In order to compute the gravitational force for a group particles in the domain, we

proceed according to the following steps

Particles to Particles (P2P): For the particles that are closed, we use the direct O(N2)

algorithm. This portion will increase the size with greater desired accuracy.

Particles to Multipoles (P2M): This gathers the data from all sub-particles to calculate

the COM and the multipoles. This will become the first layer of the tree, namely the leaves.

Multipoles to Multipoles (M2M): This gathers the data from multipoles at a higher

level of the tree from the leaves to the root.

Multipoles to Local (M2L): This computes the gravitational portion of all the distant

multipoles on the local.

Local to Local (L2L): Going down in the tree and spreading the components to sub-

locals.

Local to Particles (L2P): Compute the application of the local for all sub particles

when a leaf of the tree is reached.

Summation (SUM): Two interactions can be summed up to compute the gravitational

force applied to the particle at the end of computations for both P2P and L2P.

These steps are repeated for every group of particles. The P2M-M2M steps are done

just once before the FMM for all groups of particles. In this algorithm, the macangle is the

angle of the Multipole Acceptance Criterion (MAC) for the choice between P2P or M2L.

We use an angle between the local COM and the edge of distant multipoles. If the angle fits

the criterion, we use the current multipole otherwise we go lower in the tree to consider

smaller multipoles. If the criterion is never satisfied, this implies that the particles are too
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Figure 4.3 Scheme of MAC for FMM

close and consider P2P. Fig. 4.3 shows a version of the MAC scheme of

For the P2P step, we use the classical gravitational computation (like Eqn. 4.84).

However, for the interaction with distant multipoles, we use the Taylor series defined below.

The acceleration is, for the center of mass c, the sum of all the contributions from nearby

particles as well as from the distant cells as given by:

~fc(~rc) =−∑
p

mp.(~rc−~rp)

|~rc−~rp|3
. (4.85)

In this express, p labels the particle inside this cell and cl labels the cells that are accepted

with the MAC. Note that we only consider the gravitational acceleration. We don’t take

into account the mass associated with the center of mass, c. Note we use G = 1.

The acceleration at a point due to the center of mass can be found by the Taylor series:

~f (~r)≈ ~fc(~rc)+
∣∣∣∣∣∣∂~fc

∂~rc

∣∣∣∣∣∣ · (~r−~rc)+
1
2
(~r−~rc)

ᵀ ·
∣∣∣∣∣∣ ∂~fc

∂~rc∂~rc

∣∣∣∣∣∣ · (~r−~rc). (4.86)

The Jacobian matrix, ||∂~fc
∂~r ||, is then:

−∑
p

mp

|~rc−~rp|3


1− 3(xc−xp)(xc−xp)

|rc−rp|2
−3(yc−yp)(xc−xp)

|rc−rp|2
−3(zc−zp)(xc−xp)

|~rc−~rp|2

−3(xc−xp)(yc−yp)

|~rc−~rp|2
1− 3(yc−yp)(yc−yp)

|~rc−~rp|2
−3(zc−zp)(yc−yp)

|~rc−~rp|2

−3(xc−xp)(zc−zp)

|~rc−~rp|2
−3(yc−yp)(zc−zp)

|~rc−~rp|2
1− 3(zc−zp)(zc−zp)

|~rc−~rp|2

 , (4.87)
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and the derivative is∣∣∣∣∣∣∂ f i
c

∂ r j
c

∣∣∣∣∣∣=−∑
p

mp

|~rc−~rp|3
[
δi j−

3.(ri
c− ri

p)(r
j
c− r j

p)

|~rc−~rp|2
]
, (4.88)

where δi j is the Kronecker delta.

The Hessian matrix || ∂ 2~fc
∂~rc∂~rc

|| can be calculated as:

∣∣∣∣∣∣ ∂ 2 f x
c

∂ ri
c∂ r j

c

∣∣∣∣∣∣=−∑
p

3mp

|~rc− ~rp|5


5(xc−xp)

3

|~rc−~rp |2
−3(xc− xp)

5(xc−xp)
2(yc−yp)

|~rc−~rp |2
−3(yc− yp)

5(xc−xp)
2(zc−zp)

|~rc−~rp |2
−3(zc− zp)

5(xc−xp)
2(yc−yp)

|~rc−~rp |2
−3(yc− yp)

5(xc−xp)(yc−yp)
2

|~rc−~rp |2
−3(xc− xp)

5(xc−xp)(yc−yp)(zc−zp)

|~rc−~rp |2

5(xc−xp)
2(zc−zp)

|~rc−~rp |2
−3(zc− zp)

5(xc−xp)(yc−yp)(zc−zp)

|~rc−~rp |2
5(xc−xp)(zc−zp)

2

|~rc−~rp |2
−3(xc− xp)

 , (4.89)

∣∣∣∣∣∣ ∂ 2 f y
c

∂ ri
c∂ r j

c

∣∣∣∣∣∣=−∑
p

3mp

|~rc− ~rp|5


5(xc−xp)

2(yc−yp)

|~rc−~rp |2
−3(yc− yp)

5(xc−xp)(yc−yp)
2

|~rc−~rp |2
−3(xc− xp)

5(xc−xp)(yc−yp)(zc−zp)

|~rc−~rp |2

5(xc−xp)(yc−zp)
2

|~rc−~rp |2
−3(xc− xp)

5(yc−yp)
3

|~rc−~rp |2
−3(yc− yp)

5(yc−yp)
2(zc−zp)

|~rc−~rp |2
−3(zc− zp)

5(xc−xp)(yc−yp)(zc−zp)

|~rc−~rp|2
5(yc−yp)

2(zc−zp)

|~rc−~rp |2
−3(zc− zp)

5(yc−yp)(zc−zp)
2

|~rc−~rp |2
−3(yc− yp)

 , (4.90)

∣∣∣∣∣∣ ∂ 2 f z
c

∂ ri
c∂ r j

c

∣∣∣∣∣∣=−∑
p

3mp

|~rc− ~rp|5


5(xc−xp)

2(zc−zp)

|~rc−~rp |2
−3(zc− zp)

5(xc−xp)(yc−yp)(zc−zp)

|~rc−~rp |2
5(xc−xp)(zc−zp)

2

|~rc−~rp |2
−3(xc− xp)

5(xc−xp)(yc−zp)(zc−zp)

|~rc−~rp |2
5(yc−yp)

2(zc−zp)

|~rc−~rp |2
−3(zr− zp)

5(yc−yp)(zc−zp)
2

|~rc−~rp |2
−3(yc− yp)

5(xc−xp)(zc−zp)
2

|~rc−~rp|2
−3(xc− xp)

5(yc−yp)(zc−zp)
2

|~rc−~rp |2
−3(yc− yp)

5(zc−zp)
3

|~rc−~rp |2
−3(zc− zp)

 , (4.91)

∣∣∣∣∣∣ ∂ 2 f i
c

∂ r j
c∂ rk

c

∣∣∣∣∣∣=−∑
p

3mp

|~rc− ~rp|5

[
5(ri

c− ri
p)(r

j
c− r j

p)(rk
c − rk

p)

|~rc− ~rp|2
− 3

w

(
δi j(rk

c − rk
p)+δ jk(ri

c− ri
p)+δik(r j

c− r j
p)
)]

. (4.92)

where w in the last line is a pure number from the SPH calculation which ensures that

the denominator does not vanish. It is defined by w = δi j + δ jk + δki + εi jk with εi jk the

3D Levi-Civita symbol. We the add the Levi-Civita symbol to avoid getting zero in the

denominator. Here again, Latin indices i, j, and k indicate spatial components.

Eqns. 4.88 and 4.92 are used during the M2L step. Eqn. 4.86 is used during the tree

traversal and when we apply the gravitational calculations to locals then particles in L2L

and L2P.

4.2.6 Gravitational Waves

Our ultimate interest is obtaining GW waveform from BNS mergers using this method. For

example, consider two orbiting bodies, such as neutron stars, of masses m1 and m2. Though

neutron stars are extended bodies, we assume they are point masses for the time being. In

the center-of-mass frame of the bodies, we can can write the equations of motion as [172]:

µ~̈r =−~∇Ueff(~r), (4.93)
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ALGORITHM 4.3 Gravitation computation

1: procedure TREE_TRAVERSAL_GRAV(branch sink)

2: if sink.mass < Mcellmax then . Another choice criterion can be use

3: ~fc←~0

4: ∂~fc
∂~r ←~0

5: TREE_TRAVERSAL_C2C(sink,tree.root,~fc,
∂~fc
∂~r ) . Compute ~fc and ∂~fc

∂~r using

MAC

6: SINK_TRAVERSAL_C2P(sink,~fc,
∂~fc
∂~r ) . Expand to the particles below

7: else

8: for All children c of sink do

9: TREE_TRAVERSAL_GRAV(c)

10: end for

11: end if

12: end procedure

13:

14: function MAC(branch sink,branch source,double macangle)

15: dmax← source.radius×2

16: dist← distance(sink.position,source.position)

17: return dmax/dist < macangle

18: end function
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19: procedure TREE_TRAVERSAL_C2C(branch sink, branch source, acceleration ~fc)

20: if MAC(sink,source,macangle) then

21: ~fc← ~fc +(− source.mass×(sink.position−source.position)
|sink.position−source.position|3 )

22: ∂~fc
∂~r ← ...

23: else

24: if source.is_lea f () then

25: for All particles p of source do

26: ~fc← ~fc +(− p.mass×(sink.position−p.position)
|sink.position−p.position|3 )

27: ∂~fc
∂~r ← ...

28: end for

29: else

30: for All children c of source do

31: TREE_TRAVERSAL_C2C(sink,c,~fc)

32: end for

33: end if

34: end if

35: end procedure
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36: procedure TREE_TRAVERSAL_C2P(branch current, acceleration ~fc)

37: if current.is_lea f () then

38: for All particle p of current do

39: p.grav← ~fc +
δ~fc

δcurrent.position .(p.position− current.position)+ ...

40: end for

41: else

42: for All children c of current do

43: TREE_TRAVERSAL_C2P(c,~fc,
∂~fc
∂~rc

)

44: end for

45: end if

46: end procedure

where~r is the separation vector,

µ :=
m1m2

m1 +m2
, (4.94)

is the reduced mass, and

Ueff(~rr) =−Gm1m2

r
+

L2
z (~r)

2µr2 , (4.95)

is the effective potential energy for some angular momentum vector

~L =~r×m~v,

which we have chosen to align purely along the ẑ-axis of our coordinate system.

For large radii, the gravitational attraction dominates Eqn 4.95. However, for small

radii, the repulsive angular momentum term dominates. This effect is called the angular

momentum barrier. It implies that, at least in Newtonian gravity, binary systems do not

merge.

Of course, neutron stars are general relativistic systems and in general relativity, bi-

nary systems do merge. In the relativistic case, angular momentum is carried away via

gravitational waves and the angular momentum barrier is reduced.

Because our code is Newtonian, in order to study binary mergers, we must account for
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dissipation of angular momentum via gravitational waves. We incorporate this gravitational

wave radiation reaction via post-Newtonian (PN) theory. To implement PN theory, we use

a similar technique in [173] which is based on [174, 175] that develop a framework for

extracting gravitational wave signatures from SPH-type simulations. For a detailed review

of post-Newtonian theory in the context of compact binary coalescence, see [176].

The relativistic 2-body problem can be solved with numerical relativity, or by approxi-

mate analytical methods such as the PN expansion or via a perturbation-based self-force

approach (
m1

m2
� 1). The former is a GR approximation, valid for weak gravitational field

and slow matter motion, so it applies to compact object binary mergers with low mutual

gravity, and breaks down when the stars get too close together.

The nth order PN approximation corresponds to
(v

c

)2n
or
(

Gm
rc2

)n

, often abbreviated

as c−2n, with the zeroth order corresponding to Newtonian gravity.

The NS of radius R1 with respect to the center of mass (that we take to be at the zero

coordinate) has an acceleration in polar coordinates

a1 =

 R̈1−R1Ω2

2Ṙ1Ω+R1Ω̇


r,θ

,

with the Kepler 3rd law generalized as

Ω =

√
Gm
r3

[
1− Gm

rc2
3−η

2
+

(
Gm
rc2

)2 15+47η +3η2

8

]
,

plus terms of order O
(
c−6). The orbital frequency increase is given by

Ω̇ =
96
5

Gmη

r3

(
Gm
rc2

)5/2

+O(c−6), (4.96)

while the secular decrease in the orbital separation becomes

Ṙ1 =−
64
5

G3m2m2η

r3c5 +O(c−6), (4.97)

These are the first PN terms due to GW radiation reaction, taken from [177] at 2.5PN order,

with r in harmonic coordinates. Note that R̈ is zero at this order.
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We use the following definitions: the total mass is m = m1 +m2, the dimensionless

reduced mass is η =
m1m2

m2 =
µ

m
, and the orbital separation is r = R1+R2 and is calculated

by finding the center of mass position of each star.

Then we rest the Keplerian terms from the acceleration:

a1 =


G2mm2

c2r3 (3−η)− G3m2m2

c4r4

(
6+

41
4

η +η2
)

−32
5

G7/2m5/2m2η

c5r9/2


r,θ

, (4.98)

plus terms of order 6. Map it to the set of SPH particles constituting the given NS as

apart
1,r = a1,r, apart

1,θ =
r

R1
a1,θ , and add it to the momentum SPH equation after passing it to

cartesian coordinates through the rotation endomorphismcosθ −sinθ

sinθ cosθ

 .
We input initial velocities including Keplerian velocities to the initial model

v1 =

 Ṙ1

R1Ω


r,θ

, with R1 =
m2

m
r, (4.99)

Another option is to take the acceleration from the computed positions and velocities of

each star center of mass

~ai =−Ω
2~Ri−

32
5
(Gm)3η

c5r4 ~vi +O
(

c−6
)
, (4.100)

with Ω2 given without the Keplerian contribution, plus terms of order 6

Ω
2 =

Gm
r3

[
−Gm

rc2 (3−η)+

(
Gm
rc2

)2(
6+

41
4

η +η
2
)]

.

4.3 Results

As described previously, SPH can handle different types of hydrodynamical and astrophysi-

cal problems. We now present several application tests to validate our toolkit. All the tests

below have been performed on the ROMEO Supercomputer of the University of Reims
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Champagne-Ardenne and the Darwin Supercomputer at Los Alamos National Laboratory.

The ROMEO cluster is composed of 130 nodes each with 2×E5-2650v2 8 cores CPUs

with 32GB RAM memory and 2×K20Xm GPUs. The nodes are linked using InfiniBand

QDR fat-tree topology. The Darwin cluster is a heterogeneous supercomputer. We use 23

specific nodes in our testing. Each node is Hashwell machine with 20.26GHz cores on 2

sockets and 128GB of memory. The nodes are connected by a 56 GB/s FDR infiniBand

network with a latency of 0.7µs.

4.3.1 Sod Shock Tube

The Sod shock tube is a test consisting of a one-dimensional Riemann problem with the

following initial parameters [178].

(ρ,v, p)t=0 =


(1.0,0.0,1.0) if 0 < x≤ 0.5

(0.125,0.0,0.1) if 0.5 < x < 1.0
. (4.101)

In our code, we use the same initial data as in [178] with an ideal gas EOS such as:

P(ρ,u) = (Γ−1)ρu, (4.102)

where Γ is the adiabatic index of the gas which we set to be Γ = 5/3.

This test is used to check the physical accuracy of the code and thus the tree search

itself. One example of our Sod shock simulations is presented in Fig. 4.4.

4.3.2 Sedov Blast Wave

A blast wave is the pressure and flow resulting from the deposition of a large amount of

energy in a small very volume. There are different versions of this blast wave test and

we compare it with the analytic solution for a point explosion as given by Sedov [179].

We make the assumption that the atmospheric pressure relative to the pressure inside the

explosion is negligible. Here, we test the 2D blast wave. In this simulation, we use the ideal
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Figure 4.4 Sod shock tube with FleCSPH

gas EOS with Γ = 5/3 and we assume that the undisturbed area is at rest with a pressure

P0 = 1.0−5. The density, ρ0, is constant in the pressurized region.

An example of our Sedov Blast wave simulations is presented on Fig. 4.5.

4.3.3 Fluid Flow Test

After performing the tests regarding the physics reliability, we worked on the fluid flow

problem in 2D and 3D to reach a high number of particles. The details can be found in

[180]. This test is based on an ideal EOS given by:

P = B
[( ρ

ρ0

)γ

−1
]
, (4.103)

with γ = 7, B = c0ρ0/γ , and reference density ρ0 = 1000kg.m−3.

For this experiment, realistic boundary conditions were needed. Several methods are
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Figure 4.5 Sedov Blast Wave with FleCSPH at respectively t = 0.01, t = 0.03,
t = 0.06 and t = 0.1

possible with SPH including the so-called mirror particles implementation [181] and the

dummy particles implementation [182].

For the current work, we chose to use the dummy particles method. Fig 4.6 shows the

representation of dummy particle to create the boundary i.e. the wall.

In this case, the wall particles are just considered as normal particles and their quantities

are evolved during the run. However, the main difference between wall and fluid particles

is that wall particles do not have their position evolved at the end of each time step.

Furthermore, the pressure of a wall particle has to be obtained from the fluid particle to

accurately approximate the pressure gradient in the fluid near the wall. This creates a

stable boundary when fluid particles interact with the wall particles. A force balance at the
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Figure 4.6 The representation of dummy particle. The gray filled circle indicates
dummy particles that consist a boundary and white circle represent fluid particles

boundary interface gives

dv f

dt
=−

∇Pf

ρ f
+g = aw, (4.104)

where f and w label fluid and wall respectively, and g is the gravitational acceleration. They

are identified in the code with a specific type which is provided during data generation.

Fig 4.7 shows a particle representation of a dam break simulation with the dummy particle

method.

We used this code on up to 8 nodes on the ROMEO supercomputer cluster targeting

500,000 particles for a fluid simulation, the dam break test.

In Fig. 4.8, a test of strong scaling is presented on up to 128 cores. The first part, in

blue, was done using 1 MPI process while increasing the OpenMP threads. Then, keeping 8

OpenMP threads, we increased the number of MPI processes up to 16, having a maximum

of 128 cores.

The current limitation to strong scaling is related to synchronized communication.

Indeed, after the local search, MPI collective operations like All_to_all or All_gather

operations stop the execution.

From our several different fluid problem tests, we confirm that our implementation

can solve/generate a variety of different systems correctly. This implies that using our
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Figure 4.7 Fluid flow simulation, the dam break, for different time, t = 0, t = 0.4,
t = 0.8, and t = 1 seconds. The boundary conditions are based on dummy particles
method

Figure 4.8 Efficiency on strong scaling

code is easily adaptable to different problems within astrophysics, fluid mechanics and

mechanical engineering and provides some interesting testbeds for computer science in

terms of efficiency within an HPC environment.
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4.3.4 Binary Neutron Stars
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Figure 4.9 An equal-mass binary merger with 100,000 particles. The initial stars
are generated by solving TOV equations (Sec. 4.2.3.1). The stars are sufficiently
close that they merge via dynamical friction. The frames are at times (going from
left to right) 9.8 ms, 12.0 ms, 16.0 ms, and 20.0 ms. Distances are in kilometers.
The colormap shows density, integrated along the ẑ-axis in units of 1017 g/cm2.
The color bar is in a log scale. Images made with Splash [183].

In this section, we discuss the binary mergers we simulate. Note that some of these

results are generated using the 2HOT code which was refactored during my 2016 co-

design summer school fellowship at LANL. If the stars are sufficiently close to each other,

dynamical friction will cause them to merge. As a proof of concept, we performed such a

merger with 100,000 particles and the Lattimer-Swesty equation of state. Four frames of

the merger are shown in Fig. 4.9. This binary is of equal mass, where each star is roughly

2M�. Fig. 4.10 shows particle representations of the binary.

As the stars merge, they lose material through the Lagrange points of the system, and
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Figure 4.10 Particle representation for equal mass binary merger with 40,000
particles. This simulation is done by FleCSPH. The initial data for the neutron
stars is generated by solving the Lane-Emden equation (Sec. 4.2.3.2).

these form the spiral arms shown in the second frame of Fig. 4.9. Most of this material

forms the accretion disk shown in the third and fourth frames and eventually accretes back

onto the remnant. However, some of the material becomes gravitationally unbound.

This gravitationaly unbound material, which we call the “ejecta” expands away from

the remnant in a roughly toroidal topology, as shown in Fig. 4.11. Note that at this moment

in time, the ejecta, in terms of spatial size, is roughly one order of magnitude larger than

the remnant and the accretion disk system.

The ejecta are hot and neutron rich, making them an excellent location for r-process

nucleosynthesis. To extract the thermodynamic properties of the ejecta, we track particles

contained in the ejecta, and their thermodynamic quantities such as internal energy and

temperature, back in time for the entire evolution of the system. Fig. 4.12 shows the

trajectories of some of the particles in the ejecta.
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Figure 4.11 The morphology of the ejecta from the merger shown in figure 4.9.
The time shown is 20 ms. Distances are in kilometers. The colormap shows
density, integrated along the ẑ-axis in units of 1017 g/cm2. The color bar is in a
log scale. Images made with Splash [183].

After obtaining particle trajectories, we pass them into an r-process nucleosynthesis

code which produces r-process residuals, as shown in Fig. 4.13. The solar system abun-

dances are shown as green dots while the r-process abundances predicted by our ejecta

are shown in purple. The highest peak in our r-process abundances plot is mass number

around 196, which represents gold. Thus, we confirm that BNS mergers are a main source

of gold which cannot be produced in the same abundances via core collapse supernovae. In

addition, BNS mergers also play an important role in generating elements that have mass

number around 130, which represents xenon (and possibly cesium).

As we push to larger particle numbers, we will be able to obtain significantly more

accurate ejecta morphologies and commensurately more accurate r-process residuals.
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Figure 4.12 Traces of the trajectories of particles in the ejecta. The color indicates
time—bluer is earlier and red is later.

Figure 4.13 r-process residuals. We plot atomic abundance as a function of atomic
mass. The green dots are observed solar abundances and the purple curve is as
predicted by our ejecta.
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4.4 Conclusion

In this chapter, we propose a new toolkit to solve merging BNS as well as other possible

hydrodynamics problems including the investigation of fluid instabilities and turbulence

using SPH. We have tested several basic fluid problems to validate our toolkit and have

shown that our toolkit can solve various different problem in different spatial dimensions

very efficiently. Further, all current development stage promises that we can incorporate

with additional physics component such as neutrinos and

In addition, we investigate the ejecta morphology from binary neutron star coalescence.

We develop realistic neutron star initial data for SPH and gravitational wave radiation.

Furthermore, we test different EOS to see how this affects NSs. We run several stable

BNS merger simulations with analysis of ejecta using SPH. The r-process nucleosynthesis

results show that BNS coalescence is a primary source for the production of elements with

mass numbers in the vicinity of 130 and 196. This result will be useful in providing detailed

analyses of future BNS mergers and provide new insights into nuclear and neutrino physics

in these extreme environments. Additionally, these simulations will provide guidance for

the development of future observational instruments for kilonovae and their electromagnetic

counterparts. Finally, current development stage promise that we can incorporate with more

complicated physics component such as neutrinos and general relativistic effects.

Furthermore, the development of the computational methods will help guide software

requirements for future exascale machines. Currently as main developer of FleCSPH,

advanced parallel programming models such as task-based parallelism and potential GPU

accelerator is already started to investigate and implement. These efforts for developing

FleCSPH will provide efficient and state-of-art mesh free code for the larger community.

All code developed for this project is intended to be open source in order to provide the

broadest impact on not only the astrophysics community but also other disciplines.



Chapter 5

Exotic Primordial Black Hole and

Neutron Star “Binaries”

5.1 Introduction

Many astrophysical observations suggest that on galactic as well as larger scales there is

missing mass-energy. The observed and known luminous matter together with non-luminous

matter for which we can account are not enough to explain galactic and cosmological scales

dynamics. Some of this missing energy is referred to as dark matter (DM). Evidence for the

existence of DM comes from the rotational velocities of galaxies, the equation of state of the

primordial universe, and the gravitational lensing of colliding galactic clusters. However,

both our theoretical understanding and direct detections of DM remain limited.

Many theoretical candidates for the DM have been considered in previous work. In

particle physics, DM is associated with new stable particles beyond the Standard Model. A

famous example of this are weakly interacting massive particles (WIMPs). However, there

are alternative DM candidates which do not require new stable particles and which remain

viable candiates. One interesting candidate of this type is primordial black holes (PBHs).

PBHs can account for all or some parts of the DM [184, 185].

Previous studies have shown that NSs can be used to probe the DM [186]. In one

125
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scenario [187], NS are used to set constraints on the characteristics of WIMPs. Some

special WIMP classes would be trapped in NSs, concentrated towards the star’s center, and

become self-gravitating. This process may form a very small BH that eventually consumes

the NS. This could be an interesting phenomenon because the NS transforms into a BH on

a time scale shorter than the observed ages of NSs in many astrophysical systems. Another

interesting possibility is that a PBH is captured by a NS and then settles into the center,

growing rapidly until the supply of nuclear matter is exhausted by accretion and ejection.

Indeed, there are a number of ongoing astrophysical searches to try to unveil DM that forms

interior to a BH and which causes the implosion of the old NS [188, 189]. This, then, may

provide yet another viable site for r-processes and nucleosynthesis [190]. Such have also

been suggested as models for fast radio bursts [191].

With regard to nucleosynthesis, several recent studies suggest that interesting aspects

of a combined NS and PBH may be used to explore the possible signature of DM in

astrophysical observations. In [192], it is shown that NS disruptions by PBHs in a DM-rich

environment, such as galactic centers and dwarf spheroidal galaxies, provide a viable site

for r-process nucleosynthesis. The article [193] demonstrates how NS mergers observed in

galaxies can be used to unmask DM with nucleon scattering cross-sections. Additionally,

the article describes distinct signatures of DM-induced NS implosions, which may be

discoverable by upcoming gravitational, optical, and radio surveys. In reference [194], the

authors study the constraints on the fraction of PBHs in the total amount of DM that arises

from the requirement that PBHs be captured by NSs. Finally, [195] proposes that DM may

scatter into the dense core of pulsars and exceed the Schwarzschild limit within the lifetime

of galactic center pulsars, especially millisecond pulsars.

In our work here, we construct a general relativistic model of such systems wherein

a small BH has formed at the center of a NS by gravitational collapse. We follow the

dynamics as the small BH consumes the NS from within. We numerically solve the

Einstein equations coupled to hydrodynamics under spherical symmetry. Using numerical

simulations, we explore the time scale on which the NS collapses into the small mass BH,
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and consider the possible unbounded material and ejecta from the NS.

This project has been done in collaboration with William East during my fellowship at

the Perimeter Institute for Theoretical Physics. My contribution to this work consisted of

deriving all the systems of equations, developing good coordinate conditions, and developed

the initial data. I developed all the necessary code using PAMR/AMRD driver in order to

exploit this parallel AMR infrastructure. (See Appendix E.1.4 for more details regarding

the implementation of this project.) I also performed all the tests and simulations.

5.2 Horizon Penetrating Coordinates

As already mentioned, our aim is to study the dynamics of a NS being consumed by a

small mass BH from within. To do this, we need to capture all the dynamics of NS material

that can pass within the event horizon of a small BH. Therefore, our choice of coordinate

system is particularly crucial to obtaining a good numerical simulation.

As an example of the issue we are considering, recall the usual Schwarzschild line

element in Boyer-Lindquist type coordinates

ds2 =−
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ
2, (5.1)

where M is the mass of BH. Compare this with the usual 3+1 line element in the form

ds2 =−α2dt2 + γi j(dx2 +β idt)(dx j +β jdt). We identify the lapse as α2 =
(
1− 2M

r

)
. As

we know, the line element (Eqn. 5.1) is singular and the lapse goes to zero on the event

horizon (r = 2M).

On the application of regular boundary conditions, we have a well-posed problem for all

fields in the exterior of the BH; in our case within and exterior to the NS. In principle, we

should be able to ask about the stability of such fields and compute their dynamics. Because

the interior of the BH is not physically observable, the event horizon is a natural boundary.

However, in this version of our model, the event horizon is not only a natural boundary, the

coordinates in which we express this are, in fact, also singular on this boundary. This is
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problematic from a numerical point of view because the equations of motion involving the

metric can become unstable in the vicinity of such a coordinate singularity without some

regularization technique.

One way to resolve this problem is to change to coordinate that are not singular at the

event horizon and which “penetrate” the horizon in some sense. Such horizon penetrating

coordinate systems would allow evolutions that do not suffer from the pathology of bad

dynamical behavior on this, otherwise, natural boundary. So-called Kerr-Schild coordinates

are one such coordinate system.

For example, the Schwarzschild solution in spherical Kerr-Schild coordinates is given

by

α =

√
r

r+2M
, (5.2)

β
r =

2M
r+2M

, (5.3)

βr =
2M
r
, (5.4)

β
θ = β

ϕ = 0, (5.5)

Ki j = diag

[
− 2M(r+M)√

r5(r+2M)
,2M

√
r

r+2M
,Kθθ sin2

θ

]
. (5.6)

The Schwarzschild solution in Cartesian type Kerr-Schild coordinates is given

α =

√
r

r+2M
, (5.7)

β
i =

2M
r

xi

r+2M
, (5.8)

βi =
2Mxi

r2 , (5.9)

Ki j =
2M
r4

√
r

r+2M

[(
M
r
+2
)

xix j− r2
δi j

]
, (5.10)

where xi = (x,y,z) are the usual spatial Cartesian coordinates. In both cases, we can see

that the lapse is regular at the horizon (r = 2M).

A general spherically symmetric line element in polar-areal form becomes

ds2 =−α(r)2dt2 +a(r)2dr2 + r2dΩ
2. (5.11)
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On comparing with the above Schwarzschild solution, clearly α = 1/a.

Now consider a transformation of the Schwarzschild time coordinate, t, to a new generic

coordinate t̂ according to

dt̂ = dt +a2
√

1− g
a2 drm (5.12)

where g(r) is an arbitrary function. Substituting this into the line element gives

ds2 =−α
2
(

dt̂−a2
√

1− g
a2 dr

)2

+a2dr2 + r2dΩ
2

=−α
2dt̂2 +2

√
1− g

a2 dt̂dr+gdr2 + r2dΩ
2. (5.13)

On comparing this with the usual 3+1 framework:

ds2 =−α
2dt̂2 + γi j(dxi +β

idt̂ )(dx j +β
jdt̂ ), (5.14)

and we recognize the lapse α = 1/
√

g, the shift βi = (
√

1−g/a2,0,0) (or β i = γ i jβ j) and

the spatial metric of the constant t̂ hypersurface γi j = diag(g,r2,r2 sin2
θ).

If we choose α =
√

1−2M/r = 1/a and g = 1+2M/r, we get

ds2 =−
(

1− 2M
r

)
dt̂2 +

4M
r

dt̂dr+
(

1+
2M
r

)
dr2 + r2dΩ

2, (5.15)

which is the Schwarzschild metric in Kerr-Schild coordinates (also referred to as Eddington-

Finkelstein coordinates). Correspondingly, α =
√

r/(r+2M), βi = (2M/r,0,0), and

γi j = diag(1+2M/r,r2,r2 sin2
θ) which are the same as above.

As can be seen here, the Kerr-Schild form of the metric represents an analytic continu-

ation of the Schwarzschild solution from the region 2M < r < ∞ to 0 < r < ∞. Thus, we

apply this coordinate transformation to our equations.

It is convenient to rewrite the metric into a slightly more general form. For this we will

use the 3+1 ADM form so as to consider time dependent case.

ds2 = (−α
2 +a2

β
2)dt2 +2a2

βdtdr+a2dr2 + r2b2dΩ
2. (5.16)
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The quantities α , a, b, and β are functions of r and t, and dΩ2 is the metric on the unit

sphere. From this, we can calculate all the non-vanishing components of the connection

coefficients and the Ricci tensor. These are

Γ
r
rr =

∂ra
a

, Γ
r
θθ =−rb∂r(rb)

a2 , Γ
θ

rθ =
∂r(rb)

rb
,

Γ
r
ϕϕ =−sin2

θ
rb∂r(rb)

a2 , Γ
ϕ

rϕ = Γ
θ

rθ ,

Γ
θ

ϕϕ =−sinθ cosθ , Γ
ϕ

ϕθ
=−cotθ ,

Rr
r =−

2
arb

∂r

(
∂r(rb)

a

)
, (5.17)

Rθ
θ =

1
ar2b2

[
a−∂r

(
rb∂r(rb)

a

)]
. (5.18)

(5.19)

5.3 Theoretical Model

To begin, we use the perfect fluid approximation for the matter model. The stress-energy

tensor takes the form

Tab = (ρ +P)uaub +Pgab, (5.20)

where ua(r, t) is the 4-velocity of a given perfect fluid element, P(r, t) is the isotropic

pressure, ρ(r, t) = ρ0(r, t)(1+ ε(r, t)) is the energy density, ρ0(r, t) is the rest-mass energy

density, and ε(r, t) is the specific internal energy.

The equations of motion for this problem are derived from the local conservative

equations for energy and baryon number such that

∇aT a
b = 0, (5.21)

∇a(ρ0ua) = 0. (5.22)

We use a high-resolution shock capturing method so we would like to write this in terms
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of a flux-conservative form such that

∂tU+∂iFi = , (5.23)

where U,

U =


√

γWρ0

√
γαT t

j

α2√γT tt−√γWρ0

 , (5.24)

and Fi

Fi =


√

γWρ0vi

√
γαT i

j

α2√γT ti−√γWρ0vi

 , (5.25)

and

=


0

1
2
√

γαT abgab, j

α2√γ(T at∂aα−Γ0
abT abα)

 , (5.26)

where W is Lorentz factor such that W = αut and vi = ui/ut . Under our choice of spherical

symmetry, ua = (ut ,ur,0,0) so we can reduce our equations to

∂t(r2abWρ0)+∂r(r2abWρ0vr) = 0, (5.27)

∂t(r2abαT t
r )+∂r(r2abαT r

r ) =
1
2

r2abT abgab,r, (5.28)

∂t(α
2r2abT tt− r2abWρ0)+∂r(α

2r2abT tr− r2abWρ0vr) = αr2ab(T at
∂aα−Γ

0
abT ab

α).

(5.29)

It is useful to define following variables

D = ρ0abW, (5.30)

E = ρ0hW 2−P, (5.31)

S = ρ0hW 2v, (5.32)

τ = E−D. (5.33)
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The nonzero components of T a
b which we are using become

T t
t =−E, (5.34)

T t
r =

ab
α

S, (5.35)

T r
r = Sv+P, (5.36)

T θ
θ = T ϕ

ϕ = P, (5.37)

where we have defined the fluid velocity as measured by an Eulerian observer to be

v =
ab
α

vr =
abur

αut . (5.38)

We also define W = 1/
√

1− v2 and h = 1+ ε +P/ρ0 is the specific enthalpy. We can

rewrite our equations as

∂t(r2D)+∂r

(
r2α

ab
Dv
)
= 0, (5.39)

∂t(r2S)+∂r

(
r2α

ab
(Ev+P)

)
=

1
2

r2abT abgab,r, (5.40)

∂t(r2
τ)+∂r

(
r2α

ab
(S−Dv)

)
= αr2ab(T at

∂aα−Γ
0

abT ab
α), (5.41)

this can take the form

∂tu+
1
r2 ∂r(Xr2f) = ψ, (5.42)

where

u =


D

S

τ

 , f =


Dv

Ev+P

S−Dv

 , ψ =


0

ab
2 abT abgab,r

αab(T at∂aα−Γ0
abT abα)

 , (5.43)

and X = α/(ab) which is purely geometric factor.

Now consider the Einstein equations. We define the quantities appearing in the 3+1
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equations as

ρhydro = nanbT ab = ρ0hW 2−P, (5.44)

Ji =−γianbT ab = ρ0hWui, (5.45)

⊥Ti j = γiaγibT ab = Pγi j +ρ0huiu j, (5.46)

⊥T = γ
i j⊥Ti j = 3P+ρ0h(W 2−1). (5.47)

With all of this in hand, we can write the Einstein equations in ADM form as

∂tγi j =−2αKi j +Diβ j +D jβi, (5.48)

∂tKi
j = α(Ri

j +KKi
j )−DiD jα−8πα

(
⊥T i

j −
1
2

δ
i
j (⊥T −ρhydro)

)
+β

k
∂kKi

j +Ki
k ∂ jβ

k−Kk
j ∂kβ

i, (5.49)

where Di is the covariant derivative on spatial hypersurfaces. The momentum and Hamilto-

nian constraints are given by

R+K2−Ki jKi j = 16πρhydro, (5.50)

DiKi
j −D jK = 8πJ j. (5.51)

On substituting the hydrodynamic source terms (ρhydro, Ji etc) from above we have

∂tKi
j = α(Ri

j +KKi
j )− γ

ik(∂i∂kα−Γ
l
ik∂lα)−8πα

(
1
2

δ
i
j (ρ0h−2P)+ρ0huiu j

)
+β

k
∂kKi

j +Ki
k ∂ jβ

k−Kk
j ∂kβ

i, (5.52)

∂tγi j =−2αKi j +Diβ j +D jβi, (5.53)

R+K2−Ki jKi j = 16π(ρ0hW 2−P), (5.54)

DiKi
j −D jK = 8πρ0hWu j. (5.55)

From our choice of coordinates, we calculate the non-trivial connection coefficients

and Ricci tensor. The metric form suggests that β i = (β r,0,0), Ki
j = diag(Kr

r ,K
θ

θ
,Kθ

θ
).
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Using these facts, the evolution equations for the geometric quantities are

∂ta =−αaKr
r +∂r(aβ

r), (5.56)

∂tb =−αbKθ
θ +

β r

r
∂r(rβ

r), (5.57)

∂tKr
r = β

r
∂rKr

r +αKr
r K− 1

a
∂r

(
∂rα

a

)
− 2α

arb
∂r

(
∂r(rb)

a

)
−4πα [(1+2urur)ρ0h−2P] , (5.58)

∂tKθ
θ = β

r
∂rKθ

θ +αKθ
θ K− α

r2b2 −
1

ar2b2 ∂r

(
αrb∂r(rb)

a

)
−4πα(ρ0h−2P). (5.59)

while the constraint equations are

1
ar2b2

[
a−∂r

(
rb∂r(rb)

a

)]
− 2

arb
∂r

(
∂r(rb)

a

)
+2Kθ

θ (K
θ

θ +2Kr
r ) = 16π(ρ0hW 2−P),

∂t(rb)
rb

(Kθ
θ −Kr

r )−∂rKθ
θ = 4πρ0hWur.

(5.60)

Note that we have residual coordinate freedom including the choice of slicing condition.

We can apply different choice of slicing (i.e. a gauge choice) to simplify and reduce

the above system. Two possible choices include maximal (∂tK = 0) or polar slicing

(Kθ
θ
+Kϕ

ϕ = 0).

5.3.1 Choice of Gauge

In the previous section, we derived our system of equations in horizon penetrating co-

ordinates. This set of equations is not quite ready for numerical integration. We must

still impose coordinate conditions by specifying the lapse α and the shift β r. In general,

finding kinematical conditions for the coordinates that allow for a well-behaved and a

stable evolution is not trivial. Even if all the equations are written in terms of horizon

penetrating coordinates, a simulation may fail without a good coordinate choice as matter

passes through the event horizon. In this work, we present two possible choices of gauge.

The first is maximal slicing(∂tK = 0). The other is 1+log slicing with Γ driver condition.
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5.3.1.1 Maximal Slicing

We first consider maximal slicing. For this case, K = ∂tK = 0 and the evolution equations

become

∂ta =−αaKr
r +∂r(aβ

r), (5.61)

∂tb =
αb
2

Kr
r +

β r

r
∂r(rβ

r), (5.62)

∂tKr
r = β

r
∂rKr

r −
1
a

∂r

(
∂rα

a

)
− 2α

arb
∂r

(
∂r(rb)

a

)
− 2α

r2b2 −
2

ar2b2 ∂r

(
αrb∂r(rb)

a

)
−8πα [(2+2urur)ρ0h−4P] . (5.63)

with the constraints taking the form

1
ar2b2

[
a−∂r

(
rb∂r(rb)

a

)]
− 2

arb
∂r

(
∂r(rb)

a

)
− 3

2
(Kr

r )
2 = 16π(ρ0hW 2−P),

∂rKr
r −

3∂t(rb)
rb

Kr
r = 8πρ0hWur. (5.64)

The equation of motion for the fluid remains the same as previously

Because of the slicing condition, the lapse now obeys

∂tK =−D2
α +α(Ki jKi j +4π(ρ +S))+β

iDiK. (5.65)

In our choice of gauge, this can be re-written as

D2
α = α(Ki jKi j +4π(ρ +S)) = α

(
Ki jKi j +8π

[
P+ρ0h

(
W 2− 1

2

)])
= α

(
2(Kr

r )
2 +8π

[
P+ρ0h

(
W 2− 1

2

)])
. (5.66)

For the shift, we use

∂t ln
√

γ =−αK +Diβ
i, (5.67)

which, in maximal slicing, reduces to

Diβ
i =−∂t ln

√
γ. (5.68)
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Alternatively, we can write this equation as

∂iβ
i =−∂t

√
γ. (5.69)

This shows that the proper volume element
√

γ satisfies a continuity equation in maximal

slicing.

In terms of our metric choice and variables, this equation becomes

∂rβ
r =

b
2b+β r

[
αKr

r
2
− (β r)2b

r
− ∂ra

a
β

r
]
. (5.70)

5.3.1.2 Spherical-BSSN formulation with 1+log and Γ driver

Another possible way to describe this system is by writing the equations in the BSSN

formulation. This allows us to take advantage of the strong hyperbolicity of the BSSN

formulation. We follow the usual treatment in defining BSSN variables. (See Appendix A

or Chapter 2 for a detailed discussion of this formulation.) We will continue to use horizon

penetrating coordinates described in the previous section.

On considering the usual BSSN formulation, we make the conformal transformation

(γ̄i j = e4φ γi j) and define the conformal factor

φ =
1

12
ln(γ/γ̄). (5.71)

It is common to define a new variable χ = e−2φ instead of using the conformal factor φ .

The evolution equation for χ becomes

∂t χ = β
r
∂rχ− 1

3
χ

[
αK−∂rβ

r−β
r
(

∂r(ab2)

2ab2 +
2
r

)]
. (5.72)

We also use the traceless part of the extrinsic curvature

Āi j = e−4φ

(
Ki j−

1
3

γi jK
)
. (5.73)

In spherical symmetry, we have Ār
r and Āθ

θ
. Note that as Āi j is traceless so Ār

r +2Āθ
θ
=

0. The evolution equations for the spatial metric eventually give

∂ta = β
r
∂ra+2a∂rβ

r− 2a
3

[
∂rβ

r +β
r
(

∂r(ab2)

2ab2 +
2
r

)]
−2αaĀr

r, (5.74)

∂tb = β
r
∂rb+2b

β r

r
− 2b

3

[
∂rβ

r +β
r
(

∂r(ab2)

2ab2 +
2
r

)]
+αbĀr

r. (5.75)
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The evolution equation for the trace of the extrinsic curvature K is given by

∂tK = β
r
∂rK−

χ2

α

[
∂

2
r α−∂r

(
∂ra
2a
− ∂rb

b
+

∂rχ

χ
− 2

r

)]
+α

(
3
2
(Ār

r)
2 +

1
3

K2
)
+4πα(ρhydro +⊥T r

r +⊥T θ
θ ). (5.76)

We have only one independent component of the traceless part of the extrinsic curvature.

The evolution equation for it is

∂t Ār
r = β

r
∂rĀr

r−
χ2

α

([
∂

2
r α−∂r

(
∂ra
2a
− ∂rχ

χ

)]
− 1

3

[
∂

2
r α−∂r

(
∂ra
2a
− ∂rb

b
+

∂rχ

χ
− 2

r

)])
+

α

3
(2Rr

r−Rθ
θ )+αKĀr

r−16πα(⊥T r
r −⊥T θ

θ ). (5.77)

Finally, we obtain the evolution equation for ∆̄r which is the radial component of the

conformal connection functions which are defined by ∆̄i = γ̄mn(Γ̄i
mn− Γ̊i

mn) where Γ̊i
mn

is defined by γ̊i j which is the flat metric in spherical coordinate i.e. γ̊ = r2 sin2
θ . This

equation is

∂t ∆̄
r = β

r
∂r∆̄

r− ∆̄
r
∂rβ

r +
1
a

∂
2
β

r +
2
b

∂r

(
β r

r

)
+

1
3

[
1
a

{
∂

2
r β

r +∂rβ
r
(

∂r(ab2)

2ab2 +
2
r

)
+β

r
∂r

(
∂r(ab2)

2ab2 +
2
r

)}

+2∆̄
r
{

∂rβ
r +β

r
(

∂r(ab2)

2ab2 +
2
r

)}]

− 2
a
(Ār

r∂rα +α∂rĀr
r)+2α

(
Ār

r∆̄
r +

3
rb

Ār
r

)
+

2α

a

[
∂rĀr

r−
2
3

∂rK−
3Ār

r
χ

∂rχ +
3
2

Ār
r

(
2
r
+

∂rb
b

)
−8πJr

]
. (5.78)

We also evaluate the Hamiltonian and momentum constraints in order to monitor the fidelity

of our numerical evolutions. These are

H =− 2
arb

∂r

(
∂r(rb)

a

)
+

1
ar2b2

[
a−∂r

(
rb∂r(rb)

a

)]
− 3

2
(Ār

r)
2 +

2
3

K2−16πρhydro,

(5.79)

M = ∂rĀr
r−

2
3

∂rK−
3Ār

r
2χ

∂rχ +
2
3

Ār
r

(
2
r
+

∂rb
b

)
−8πJr. (5.80)
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Both of these are analytically zero. In numerical simulations, these will not be zero. How

close to zero provides a measure of the accuracy of our numerical simulations.

In addition to BSSN variables in spherical symmetry, we still have two more variables

that need to be chosen. This amounts to the gauge condition which we have not yet chosen.

Here, we use the 1+log condition for the lapse and the gamma driver condition for the shift.

The form of this slicing condition is

∂tα =−2αK. (5.81)

As we have only the radial component for the shift vector, the gamma driver condition is

simply

∂tBr =
3
4

∂t ∆̄
r, (5.82)

∂tβ
r = Br, (5.83)

into which we have introduced the auxiliary variable Br to reduce the derivative order in

time from second to first.

5.3.2 Initial Data

Our initial NS model is approximated by a TOV star. After this initial data calculation, an

in-going velocity profile is added to induce the star’s collapse. We follow the method as

described in [196]. We first specify the coordinate velocity

U ≡ dr
dt

=
ur

ur , (5.84)

of the star. In general, the profile takes the algebraic form Ug(x) = A0(x3−B0x) where

x≡ r/Rstar and Rstar is the radius of the TOV solution.

In this work, we set two profiles

U(x) =


U1(x) =Ucrit(x3−3x) x < xtlv

U2(x) = 0 otherwise

, (5.85)
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where Ucrit is the amplitude that occurs for critical collapse, and xtlv defines the region that

forms a black hole.

Figure 5.1 Description for generation of ID. Small mass BH is created in the
center of TOV star by imposing large ingoing velocity that occurs critical collapse

Fig 5.1 shows a schematic view of our initial data problem. Our interest, of course, is in

the interaction between the BH interior to the NS and the enveloping NS. We set xtlv to be

a small value such as 1% the size of the star i.e. xtlv = 0.01 because x is the normalized star

radius (xtlv must be smaller than 1).

5.4 Results

In this section, we present some results of our research. One important question this model

addresses is the collapse time of the neutron star, or the time when all the NS matter has

been consumed by the BH. This quantity, should, in principle, vary with respect to the

initial size of the small, interior BH. After the BH is formed due to gravitational collapse at

the center of the NS, all the star material will eventually be consumed. Since the small BH

can have different sizes by setting xtlv, we expect that this collapse time will be different. In

some sense, this scenario is a toy model for the similarly interesting astrophysical problem

of a BH-NS binary merger. If a BH-NS binary has a total mass on the order of 1M�

(i.e. less than the Chandrasekhar limit), it is still expected that much of the NS material

exterior to the BH will be consumed by the BH. It becomes important to check the time
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scale in which BH-NS binaries may merge and have the NS material fall down the BH.

Comparing it to our timescale might provide a similar measure. Of course, our simplified

model concentrates on the spherically symmetric case, i.e. no rotation but this provides

some basic insight for future studies.

Figure 5.2 Different collapse times with respect to different initial sizes of the
BH. The mass of the TOV star is 1M� and x is the normalized radius for the BH.
We set the star’s radius Rstar to be one.

Fig. 5.2 shows different collapse times with respect to different initial sizes of the

interior BH. We measure tcollapse when all the TOV material has been consumed by the

BH. For this test, the mass of the TOV star is 1M�, the star radius Rstar = 1, and x is

the normalized radius that can be varied by setting xtlv. We test various values, namely

x = 0.0001,0.00025,0.0005,0.001,0.0025, and 0.005. Note that there are distinct time dif-

ferences until x = 0.001 but after this, the difference in collapse time becomes insignificant.

Typical interesting relevant mass regimes for the PBH include 10−14−10−7M� which can

be 10−3−0.5% of 1Rstar for 1M� NS. We observe that there are distinct time differences

until x = 0.001 (or 0.1% of 1Rstar) which is an interesting mass regime for the PBH. This
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suggests that we can constrain the time scale for various sizes of BH formation and the

NS materials that fall down the BH. For the x ≥ 0.001 case, the time scale will not be

distinguishable and might be shorter than the observed ages of NS in various astrophysical

channels. Another interesting aspect for this system is searching for possible r-process

nucleosynthesis. Because the mass of the BH is small, we expect that the resulting ejecta

will have relatively cold neutron rich material. However, in this study, we do not observe

any remnant or ejected materials. This does not necessarily imply that we will not have any

ejecta or accretion around the PBH but finding the correct regime to have ejecta remains

open. Ou results do show different time scales and we expect that these time scales may

differ when compared between the two major sources of r-process nucleosynthesis: BNS

mergers and core-collapse supernovae. Therefore, combining different collapse times with

possible ejecta or remnants will provide precise information about r-process nucleosynthe-

sis channel which may explain the primary source for different heavy elements that might

not be produced via BNS mergers or core collapsne supernovae in the universe.

Because this work is limited to the spherically symmetric case, we would like to extend

these results to axisymmetry and even the full 3D case thereby enabling rotations. One

interesting question will be to explore the final phase of these dynamics. In the final stage

of BH-NS binaries, the NS is either tidally disrupted or fully swallowed by the companion

BH so we could compare these scenarios with our problem. Eventually, we will compute

GW waveforms of this system and this will provide complementary information for future

GW detectors as well as DM searches [14, 188, 189, 190, 192].

5.5 Conclusions

In this work, we have explored the interaction of a small mass BH interior to a NS by

solving the Einstein equations coupled to hydrodynamics in spherical symmetry. As initial

data, we started with a TOV star within which we formed a small BH. Once formed, we

performed the dynamical evolution in order to examine the collapse times of the NS matter
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into the BH as a function of the initial BH size. From our experiments, we found the

forming a BH at the center of the NS is indeed possible and that the subsequent evolution

results in the complete consumption of the NS. We do not observe any remnant or ejected

material from this system. This indicates that the spherically symmetric system alone does

not capture all the necessary physics to permit r-process nuclearsynthesis from this system.

Note that this is in contrast to other studies which have suggested possible remnant material

and ejecta being present in this system. Although the theoretical understanding for the

progenitors of this system is debatable, our dynamical, toy model version of this system at

least suggests that interaction between a small mass BH and NS can provide new insights

for future observations and detections.



Chapter 6

Conclusion

In this thesis, we have explored various aspects of dynamical compact objects. First, we

explored BH dynamics in a modified theory of gravity. Using numerical simulations, we

investigated dynamical black holes in EMDA theory. We consider a variety of initial data

types in order to examine both the stability of single black holes in this theory as well as

possible alternate scalar and electromagnetic field channels for emission. We also investigate

BBH mergers in order to probe deviations from the standard gravitational wave signatures

of GR. In addition, we explore quadratic gravity which is known to be perturbatively

renormalizable as an effective quantum field theory. Corresponding unitarity problems only

arise at trans-Planckian scales, where a full quantum theory of gravity is assumed to take

over. Firstly, we review a proof of a well-posed initial value problem in quadratic gravity

in generalized harmonic coordinates. We argue that this method can be applied to other

possible alternative theories of gravity. Secondly, we explore possible physically stable

dynamical black hole configurations in this theory using numerical simulations. Lastly, we

discuss the possible generation of GW templates from BBH mergers in quadratic gravity.

Next we present some early results from a study of a more exotic merger scenario,

namely intermediate mass ratio inspirals (IMRIs) of BBHs with mass ratios on the order of

100:1. To achieve this, we present a highly-scalable framework that targets problems of

interest to the numerical relativity and broader astrophysics communities. This framework

143
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combines a parallel octree-refined adaptive mesh with a wavelet adaptive multiresolution

approach together with a physics module to solve the Einstein equations of GR in the

BSSN formulation. These studies will be used to generate waveforms as used in LIGO data

analysis and to calibrate semi-analytical approximate methods. Our framework consists

of a distributed memory octree-based adaptive meshing framework in conjunction with a

node-local code generator. The code generator makes our code portable across different

architectures. The equations corresponding to the target application are written in symbolic

notation and generators for different architectures can be added independently of the

application. Additionally, this symbolic interface also makes our code extensible, and as

such has been designed to easily accommodate many existing algorithms in astrophysics

for plasma dynamics and radiation hydrodynamics. Our adaptive meshing algorithms and

data-structures have been optimized for modern architectures with deep memory hierarchies.

This enables our framework to achieve excellent performance and scalability on modern

leadership architectures. We demonstrate excellent weak scalability up to 131K cores on

ORNL’s Titan for binary mergers for mass ratios up to 100.

Third, we study binary neutron star coalescence and their resulting ejecta. Observational

signatures include GWs and faint supernova-like transients powered by radioactive decay

of freshly synthesized heavy elements. Due to the complexity of the problem, the only

way to understand these observations is to confront them with the predictions obtained

via simulation. We use smoothed particle hydrodynamics, which is well suited for such

problems, and introduce the highly scalable FleCSPH code to simulate these mergers.

Furthermore, we augment FleCSPH by incorporating tabulated equations of state to improve

the physics accuracy.

Finally, we consider a toy model of interactions between BHs and NSs. Several recent

studies show that constraints can be put on primordial black holes (PBH) as a candidate for

dark matter by considering their capture by NSs. If a PBH is captured by a NS, the NS is

accreted onto the PBH and eventually collapses. A related scenario arises from asymmetric

dark matter particles collecting in the center of NS, and eventually forming a small BH. In
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this work, we study such systems where a small BH has formed in the center of a NS, and

follow the dynamics as the small BH consumes the NS from inside. We solve numerically

the coupled system of equations formed by the Einstein equations and hydrodynamics

under spherical symmetry. Using numerical simulations, we examine the time scale for the

NS to collapse into the PBH, and the possible unbounded material from the NS.

For future work, we will continue to explore additional aspects of compact object

dynamics using various method and toolkits that have been described in this dissertation.

These future works include:

For EMDA, we will perform more extreme cases such as high spin, large EM and

scalar counterparts to explore possible deviations from GR. Also, improving the initial data

for the BBHs may provide an interesting aspect to the simulations. Extending Maxwell

fields to massive fields, or so-called Proca fields, will also be studied. For quadratic

gravity, we will implement a full 3D code to extract GW information from the BBH

merger. Comparing the linear stability analysis with our fully nonlinear evolutions will

help determine stability considerations in higher order derivative gravity theories such as

massive gravity, dRGT gravity. Also, searching for possible star formation scenario in this

theory can provide interesting playgrounds for future detections. With IMRIs, we plan to

perform more comprehensive tests for different mass ratio and create a GW catalogue for

IMRIs across a range of mass ratios. This data might be used for future LISA detections.

Also, we expect to include additional ingredients such as hydrodynamics, different EOS,

an apparent horizon finder, and mesh generations for problems in different spacetime

dimensions. Clearly, this will enhance the overall capabilities of our code. For BNS, we

will include a nuclear network in order to perform more realistic nucleosynthesis analyses.

Furthermore, coupling the BNS code with GRMHD will be considered to broaden the range

of astrophycial phenomena that we can study. Relativistic formulations of SPH will also be

studied and implemented. For PBH-NS, we will extend our work to situations more general

than spherical symmetry, such as have rotating NS. Such dynamical studies may provide

additional clues for constraining dark matter via PBH.
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In summary, our detailed studies of compact objects can provide complementary infor-

mation for not only current ground based GW detectors but also future space based GW

detectors such as LISA. This will open new windows to study graviational physics from

quantum particles to cosmos.



Appendix A

At Introduction to the Mathematical

Formulation of Numerical Relativity

A.1 The 3+1 Decomposition

There are numerous introductions to the Einstein equations of general relativity and how

to determine their dynamical evolution. In this appendix, we will not consider all the

mathematical and physical details associated with the dynamics of the Einstein equations.

Our focus will be an a few formalisms and techniques needed to decompose the Einstein

equations into forms amenable for numerical simulation. More detailed discussions can be

found in the references [197, 198]

A.1.1 Foliation of Spacetime

Consider first a curved four dimensional spacetime manifold M and the metric in this

spacetime gab. We assume that the spacetime (M,gab) can be foliated into a family of

nonintersecting spacelike 3-surfaces Σ (hypersurface). These can be thought to arise as the

level surfaces of a scalar function t that can be interpreted as a global time function. From

147



A.1 The 3+1 Decomposition 148

t, we can define the 1-form

Ωa = ∇at, (A.1)

which, by construction, satisfies

∇[aΩb] = ∇[a∇b]t = 0. (A.2)

The 4-metric gab defines the norm of Ωa such that

∣∣∣∣Ω∣∣∣∣2 ≡ΩaΩ
a = ∇at∇at = gab

∇at∇bt ≡− 1
α2 , (A.3)

where α measures how much proper time elapses between neighboring time slices along

the normal vector Ωa to the slice, and is therefore called the lapse function. We assume

α > 0 so that Ωa is future directed timelike and the hypersurface Σ is spacelike everywhere.

Further, we define the normalized 1-form

ωa ≡ αΩa, (A.4)

note that ωa is rotation free i.e. ω[a∇b ωc] = 0. With this, we can define the unit normal to

the slices as

na ≡−gab
ωb, (A.5)

so that na =−ωa. Note that the negative sign is chosen so that na points in the direction of

increasing t. As such, we, of course, have

na
ωa =−gab

ωaωb =−α
2gab

ΩaΩb = 1, (A.6)

so that na is normalized and timelike by construction

nana = gab
ωaωb =−1. (A.7)

With a normal vector in hand, we can construct the spatial metric γab that is induced on the

3-dimentional hypersurfaces by the foliation in terms of it and gab:

γab = gab +nanb. (A.8)
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Thus γab can be considered a projection operator or tensor that takes geometric objects

out of the full spacetime into the hypersurfaces alone. It is also a metric as it allows us

to compute distances within a slice, Σ. We can further see that γab is purely spatial i.e. it

resides entirely in Σ with no part lying along the orthogonal direction given by na:

na
γab = na(gab +nanb) = nagab +nananb = nagab +nana︸︷︷︸

=−1

nb = nb−nb = 0. (A.9)

The inverse spatial metric can be shown to be

γ
ab = gacgbd

γcd = gacgbd(gcd +ncnd) = gab +nanb. (A.10)

Our intent here is to break up 4-dimensional tensors by decomposing them into purely

spatial parts which lie wholly in the hypersurfaces Σ and timelike parts which remain

normal to Σ. To do that, we need two projection operators. The first one, which projects

a 4-dimensional tensor into a spatial slice, can be found by raising only one index of the

spatial metric γab

γ
a

b = ga
b +nanb = δ

a
b +nanb. (A.11)

To project higher rank tensors into the spatial surface, each free index has to be contracted

with a projection operator. We sometimes denote this projection with a symbol ⊥. For

example, a completely projected second rank tensor will read

⊥Tab = γ
c
aγ

d
b Tcd. (A.12)

Similarly, we define the normal projection operator

Na
b ≡−nanb = δ

a
b− γ

a
b. (A.13)

Using these two projection operators, we can decompose any tensor into its spatial and

timelike parts. For example, an arbitrary vector va can be decomposed in the following way

va = δ
a
b vb = (γa

b +Na
b )v

b =⊥va−nanbvb. (A.14)
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Similarly, we find for a second rank tensor:

Tab = δ
c
aδ

d
bTcd = (γc

a +Nc
a)(γ

d
b +Nd

b)Tcd

= (γc
aγ

d
a + γ

c
aNd

b + γ
d

bNc
a +Nc

aNd
b)Tcd

= γ
c
aγ

d
aTcd− γ

c
andnbTcd− γ

d
bncnaTcd +ncnandnbTcd

=⊥Tab−nb⊥(Tadnd)−na⊥(ncTcb)+nanbncndTcd. (A.15)

In this example, note that the use of the⊥ symbol must be used with some care, as it applies

only to the free indices of the tensor on which it operates. To avoid confusion, we will often

write out the projection operators explicitly.

We also need a 3-dimensional covariant derivative that maps spatial tensors into spatial

tensors. It is uniquely defined by requiring that it be compatible with the 3-dimensional

metric γab. We can construct this derivative by projecting all indices present in a 4-

dimensional covariant derivative into Σ. For example, for a scalar, we define

Da f ≡ γ
b

a∇b f . (A.16)

For a higher rank tensor, the pattern simply repeats

DaT b
c ≡ γ

d
aγ

b
eγ

f
c∇dT e

f . (A.17)

Other types tensors follow similar rules to those above. Further, the 3-dimensional covariant

derivative is compatible with the spatial metric i.e. Daγbc = 0. Note too, that for purely

spatial vectors, the 3-dimensional covariant derivative satisfies the usual Leibniz rule.

As in the 4-dimensional case, we can define the connection coefficients, the Riemann

tensor, and the Ricci tensor associated with the 3D hypersurfaces using Da and γab
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Γ
a

bc =
1
2

γ
ad(∂cγdb +∂bγdc−∂dγbc), (A.18)

2D[aDb]wc = Rd
cbawd, Rd

cband = 0, (A.19)

R d
abc = ∂bΓ

d
ac−∂aΓ

d
bc +Γ

e
acΓ

d
eb−Γ

e
bcΓ

d
ea, (A.20)

Rab = Rc
acb, (A.21)

R = Ra
a. (A.22)

A.1.2 The Extrinsic Curvature

The Einstein equations relate contractions of the 4-dimensional Riemann tensor (4)Ra
bcd

to the stress-energy tensor Tab. The goal of the 3+1 decomposition is to break (4)Ra
bcd

into spatial tensors that live wholly in the 3-slices and other pieces that have “legs” in the

orthogonal, timelike direction. This decomposition will naturally involve the 3-dimensional

Riemann tensor Ra
bcd which contains information about the intrinsic curvature of these

spacelike slices. However, this cannot contain all the information residing in the full 4D

spacetime. Ineeded. Ra
bcd is a purely spatial object and can be computed from spatial

derivatives of the spatial metric alone, while (4)Ra
bcd describes the curvature of the full 4D

spacetime. Of course, this will also contain time derivatives of the 4-dimensional metric.

Another way to say this is that the 3-dimensional curvature Ra
bcd only contains information

about the curvature intrinsic to a slice Σ, but it gives no information about how these slices

“fit” into the larger spacetime M in which it is embedded. This extra information is contained

in a tensor called the extrinsic curvature.

The extrinsic curvature, Kab, can be found by projecting gradients of the normal vector

into the slice Σ. The projection of the gradient of the normal vector γc
aγd

b∇cnd can be split

into a symmetric part, also known as the expansion tensor

θab = γ
c
aγ

d
b∇(cnd), (A.23)
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and an antisymmetric part, also known as the rotation 2-form or twist

ωab = γ
c
aγ

d
b∇[cnd]. (A.24)

We now define the extrinsic curvature, Kab, as the negative expansion

Kab =−γ
c
aγ

d
b∇(cnd) =−γ

c
aγ

d
b∇cnd. (A.25)

By definition, the extrinsic curvature is symmetric and purely spatial. It is a measure of

the change in the normal vector na. Since the latter is normalized, it does on only in the

direction in which it is pointing, and thus the extrinsic curvature is the indication of how

much this direction changes from point to point across a spatial hypersurface. Said another

way, the extrinsic curvature measures the rate at which the hypersurface deforms as it is

carried forward along a normal.

We can express the extrinsic curvature in terms of the acceleration of the unit normal

vector field

aa ≡ nb
∇bna. (A.26)

By definition, the acceleration is purely spatial i.e. naaa = 0. Signficantly, there is a

key relationship between the lapse and the acceleration which we now derive. From the

definition of aa together with na =−ωa =−αΩa =−α∇at we can write

aa = nb
∇bna =−nb

∇b(α∇at)

=−nb(∇bα)(∇at)−nb
α∇b∇at

=
1
α

nbna∇bα−nb
α∇a∇bt =

1
α

nbna∇bα−nb
α∇a

(
− 1

α
nb

)
=

1
α

nbna∇bα +nb
α

1
α

∇anb +nbnbα∇a
1
α
, (A.27)

where we have used the fact that ∇[a∇b]t = 0 to swap the order of the derivatives. We now
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simplify this expression on using the relations nb∇anb = 0 and nbnb =−1 and write

aa =
1
α

nbna∇bα +nb
α

1
α

∇anb +nbnbα∇a
1
α

=
1
α

nbna∇bα− (−α
1

α2 ∇aα)

=
1
α
(∇aα +nbna∇bα) =

1
α
(δ b

a ∇bα +nbna∇bα) =
1
α
(δ b

a +nbna)∇bα

=
1
α

γ
b
a ∇bα =

1
α

Daα

= Da lnα. (A.28)

We see, therefore, that the acceleration is proportional to the gradient of the lapse.

We can now expand the RHS of Eqn. A.25

Kab =−γ
c
aγ

d
b ∇cnd =−(δ c

a +nanc)(δ d
b +nbnd)∇cnd

=−(δ c
a δ

d
b ∇cnd +δ

c
a nbnd

∇cnd +δ
d
b nanc

∇cnd +nancnbnd
∇cnd)

=−(∇anb +δ
c
a nb nd

∇cnd︸ ︷︷ ︸
=0

+nanc
∇cnb +nancnb nd

∇cnd︸ ︷︷ ︸
=0

)

=−(∇anb +na nc
∇cnb︸ ︷︷ ︸
=ab

)

=−∇anb−naab. (A.29)

We can also express the extrinsic curvature as the Lie derivative of the spatial metric

along na:

£nγab = nc
∇cγab + γab∇bnc + γcb∇anc

= nc
∇c(gab +nanb)+(gac +nanc)∇bnc +(gcb +nbnc)∇anc

= nc[∇cgab︸ ︷︷ ︸
=0

∇c(nanb)]+gac∇bnc +na nc∇bnc︸ ︷︷ ︸
=0

+gcb∇anc +nb nc∇anc︸ ︷︷ ︸
=0

= ncnb∇cna +ncna∇cnb +∇b(gacnc)+∇a(gcbnc)

= nb nc
∇cna︸ ︷︷ ︸
=aa

+na nc
∇cnb︸ ︷︷ ︸
=ab

+∇bna +∇anb

= nbaa +naab +∇bna +∇anb = 2(n(aab)+∇(anb)). (A.30)

Using Eqn. A.29 and the fact that the extrinsic curvature is symmetric then we can conclude

£nγab =−2Kab, (A.31)



A.1 The 3+1 Decomposition 154

or, equivalently

Kab =−
1
2

£nγab. (A.32)

To sum up, we have three equivalent expressions for the extrinsic curvature

Kab =−γ
c
aγ

d
b ∇cnd

=−∇anb−naab

=−1
2

£nγab.

The mean curvature is a scalar defined by the trace of the extrinsic curvature

K = gabKab = γ
abKab. (A.33)

Taking the trace of Eqn. A.32 thus yields

K = γ
abKab =−

1
2

γ
ab£nγab =−

1
2γ

£nγ =− 1
2
√

γ
£n
√

γ =−£n ln
√

γ. (A.34)

This expression can be given a geometrical interpretation. Because
√

γd3x is the proper

volume element in the spatial slice Σ, the negative of the mean curvature can be understood

to measure the fractional change in the proper 3-volume along na.

A.1.3 The Equations of Gauss, Codazzi, and Ricci

In previous sections, we defined the spatial metric γab and the extrinsic curvature Kab.

Of course, neither can be chosen arbitrarily. Instead, they must satisfy certain constrains

which dictate how the 3D spatial slices fit into the larger, 4D spacetime M. To find these

constraints, we need to understand the relation between the 3-dimensional Riemann tensor

Ra
bcd and the 4-dimensional Riemann tensor (4)Ra

bcd .
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First, we need to rewrite (4)Ra
bcd in terms of combinations of projections

(4)Rabcd = δ
p
a δ

q
b δ

r
c δ

s
d
(4)Rpqrs

= (γ p
a −npna)(γ

q
b −nqnb)(γ

r
c −nrnc)(γ

s
d−nsnd)

(4)Rpqrs

= (γ p
a γ

q
b − γ

q
b npna− γ

p
a nqnb +nanbnpnq)(γr

c −nrnc)(γ
s
d−nsnd)

(4)Rpqrs

=
(

γ
p
a γ

q
b γ

r
c − γ

p
a γ

q
b nrnc− γ

p
a γ

r
cnqnb + γ

p
a nqnbnrnc− γ

q
b γ

r
cnpna + γ

q
b npnanrnc

+ γ
r
cnanbnpnq−nrncnanbnpnq

)
(γs

d−nsnd)
(4)Rpqrs

=
[
γ

p
a γ

q
b γ

r
cγ

s
d− γ

p
a γ

q
b γ

r
cnsnd− γ

p
a γ

q
b γ

s
dnrnc + γ

p
a γ

q
b nrncnsnd− γ

p
a γ

r
cγ

s
dnqnb

+ γ
p
a γ

r
cnqnbnsnd + γ

p
a γ

s
dnqnbnrnc− γ

p
a nqnbnrncnsnd− γ

q
b γ

r
cγ

s
dnpna− γ

q
b γ

r
cnpnansnd

+ γ
q
b γ

s
dnpnanrnc− γ

q
b npnanrncnsnd + γ

r
cγ

s
dnanbnpnq− γ

r
cnanbnpnqnsnd

− γ
s
dnrncnanbnpnq +nanbncndnpnqnrns

](4)
Rpqrs. (A.35)

There are a lot of terms in the above expression but we can simplify it. Using the symmetry

properties of the Riemann tensor, we can eliminate terms like npnq (4)Rpqrs = 0 because

npnq is symmetric under swapping p,q and (4)Rpqrs is anti-symmetric under this swapping.

Thus

(4)Rabcd = γ
p
a γ

q
b γ

r
cγ

s
d
(4)Rpqrs− γ

p
a γ

q
b γ

r
cnsnd

(4)Rpqrs− γ
p
a γ

q
b γ

s
dnrnc

(4)Rpqrs + γ
p
a γ

q
b nrncnsnd

(4)Rpqrs︸ ︷︷ ︸
=0

− γ
p
a γ

r
cγ

s
dnqnb

(4)Rpqrs + γ
p
a γ

r
cnqnbnsnd

(4)Rpqrs + γ
p
a γ

s
dnqnbnrnc

(4)Rpqrs

−γ
p
a nqnbnrncnsnd

(4)Rpqrs︸ ︷︷ ︸
=0

−γ
q
b γ

r
cγ

s
dnpna

(4)Rpqrs− γ
q
b γ

r
cnpnansnd

(4)Rpqrs

+ γ
q
b γ

s
dnpnanrnc

(4)Rpqrs− γ
q
b npnanrncnsnd

(4)Rpqrs︸ ︷︷ ︸
=0

+γ
r
cγ

s
dnanbnpnq (4)Rpqrs︸ ︷︷ ︸

=0

− γ
r
cnanbnpnqnsnd︸ ︷︷ ︸

(4)Rpqrs

−γ
s
dnrncnanbnpnq (4)Rpqrs︸ ︷︷ ︸

=0

+nanbncndnpnqnrns (4)Rpqrs︸ ︷︷ ︸
=0

.

(A.36)

A careful examination of this last expression shows that we have three types of projections:

completely spatial projections, projections with one index projected in the normal direction,
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and projections with two indices projected in the normal direction. All other projections

vanish. On collecting the terms by these types of projection and rearranging dummy indices,

we get

(4)Rabcd = γ
p
a γ

q
b γ

r
cγ

s
d
(4)Rpqrs

− γ
p
a γ

q
b γ

r
cnsnd

(4)Rpqrs− γ
p
a γ

q
b γ

s
dnrnc

(4)Rpqrs︸ ︷︷ ︸
=γ

p
a γ

q
b γr

dnsnc (4)Rpqsr

−γ
p
a γ

r
cγ

s
dnqnb

(4)Rpqrs︸ ︷︷ ︸
γr

aγ
p
c γ

q
d nsnb

(4)Rrspq

− γ
q
b γ

r
cγ

s
dnpna

(4)Rpqrs︸ ︷︷ ︸
γr

bγ
p
c γ

q
d nsna (4)Rsrpq

+γ
p
a γ

r
cnqnbnsnd

(4)Rpqrs + γ
p
a γ

s
dnqnbnrnc

(4)Rpqrs︸ ︷︷ ︸
γ

p
a γr

dnqnbnsnc (4)Rpqsr

− γ
q
b γ

r
cnpnansnd

(4)Rpqrs︸ ︷︷ ︸
γ

p
b γr

c nqnansnd
(4)Rqprs

+γ
q
b γ

s
dnpnanrnc

(4)Rpqrs︸ ︷︷ ︸
γ

p
b γr

dnqnansnc (4)Rqpsr

= γ
p
a γ

q
b γ

r
cγ

s
d
(4)Rpqrs

− γ
p
a γ

q
b γ

r
cndns (4)Rpqrs− γ

p
a γ

q
b γ

r
dncns (4)Rpqsr︸ ︷︷ ︸

=−(4)Rpqrs

−γ
p
c γ

q
d γ

r
anbns (4)Rrspq︸ ︷︷ ︸

=(4)Rpqrs

− γ
p
c γ

q
d γ

r
bnans (4)Rsrpq︸ ︷︷ ︸

=(4)Rpqsr=−(4)Rpqrs

+γ
p
a γ

r
cnbndnqns (4)Rpqrs

+ γ
p
a γ

r
dnbncnqns (4)Rpqsr︸ ︷︷ ︸

=−(4)Rpqrs

−γ
p
b γ

r
cnandnqns (4)Rqprs︸ ︷︷ ︸

=−(4)Rpqrs

+γ
p
b γ

r
dnancsnqns (4)Rqpsr︸ ︷︷ ︸

=(4)Rpqrs

= γ
p
a γ

q
b γ

r
cγ

s
d
(4)Rpqrs

− γ
p
a γ

q
b (γ

r
cnd− γ

r
dnc)︸ ︷︷ ︸

=2γr
[cnd]

ns (4)Rpqrs− γ
p
c γ

q
d (γ

r
anb− γ

r
bna)︸ ︷︷ ︸

=2γr
[anb]

ns (4)Rpqrs

+ γ
p
a (γ

r
cnd− γ

r
dnc)︸ ︷︷ ︸

=2γr
[cnd]

nbnqns (4)Rpqrs− γ
p
b (γ

r
cnd− γ

r
dnc)︸ ︷︷ ︸

=2γr
[cnd]

nanqns (4)Rpqrs. (A.37)

Thus, the 4-dimensional Riemann tensor (4)Rabcd can be written as

(4)Rabcd = γ
p
a γ

q
b γ

r
cγ

s
d
(4)Rpqrs−2γ

p
a γ

q
b 2γ

r
[cnd]n

s (4)Rpqrs−2γ
p
c γ

q
d γ

r
[anb]n

s (4)Rpqrs

+2γ
p
a γ

r
[cnd]nbnqns (4)Rpqrs−2γ

p
b γ

r
[cnd]nanqns (4)Rpqrs. (A.38)

Using the above projections, we can establish the relation between (4)Ra
bcd and Ra

bcd

which gives Gauss, Codazzi, and Ricci equations. Recall that the Riemann tensor can be
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defined in terms of the noncommutivity of second covariant derivatives of a vector. So, we

need to be able to relate 4-dimensional and 3-dimensional covariant derivatives.

Consider the first derivative of a spatial vector V b. Using definitions which we made

before, we can write

DaV b = γ
p
a γ

b
q ∇pV q = γ

p
a (δ

b
q +nbnq)∇pV q

= γ
p
a δ

b
q ∇pV q + γ

p
a nbnq∇pV q = γ

p
a ∇pV b + γ

p
a nb(∇p(V qnq)−V q

∇pnq). (A.39)

As V q is assumed to be purely spatial then nqV q = 0, and we can write

DaV b = γ
p
a ∇pV b− γ

p
a nbV q

∇pnq = γ
p
a ∇pV b−nbV e

γ
q
e γ

p
e ∇pnq︸ ︷︷ ︸

=−Kae

= γ
p
a ∇pV b−nbV eKae. (A.40)

Writing out the second derivative, we get

DaDbV c = γ
p
a γ

q
b γ

c
r ∇p∇qV r = γ

p
a γ

q
b γ

c
r ∇p(γ

d
q γ

r
e∇dV e)

= γ
p
a γ

q
b γ

c
r γ

d
q γ

r
e∇p∇dV e + γ

p
a γ

q
b γ

c
r γ

r
e∇pγ

d
q ∇dV e + γ

p
a γ

q
b γ

c
r γ

d
q ∇pγ

r
e∇dV e

= γ
p
a γ

d
b γ

c
e ∇p∇dV e + γ

p
a γ

q
b γ

c
e ∇p(δ

d
q +ndnq)∇dV e + γ

p
a γ

d
b γ

c
r ∇p(δ

r
e +nrne)∇dV e,

(A.41)

as δ a
b is just a numerical tensor so the derivative of δ a

b is zero. Recall that ∇a(nbnc) can be

expressed as

∇a(nbnc) = nb∇anc +nc
∇anb

=−nb(Kc
a +naac)−nc(Kab +naab) (A.42)

where we have used the definition of the extrinsic curvature in Eqn. A.29. The second

derivative can now be expressed as

DaDbV c = γ
p
a γ

d
b γ

c
e ∇p∇dV e− γ

p
a γ

q
b γ

c
e [n

d(Kpq +npaq)+nq(Kd
p +npad)]∇dV e

− γ
p
a γ

d
b γ

c
r [n

r(Kpe +npae)+ne(Kr
p +npar)]∇dV e. (A.43)
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Using the fact that naγab = 0 we can simplify further

DaDbV c = γ
p
a γ

d
b γ

c
e ∇p∇dV e− [γ p

a γ
q
b γ

c
e ndKpq +nd

γ
q
b γ

c
e γ

p
a np︸︷︷︸
=0

aq + γ
p
a γ

c
e γ

q
b nq︸︷︷︸
=0

(Kd
p +npad)]∇dV e

− [γ p
a γ

d
b γ

c
r nr︸︷︷︸
=0

(Kpe +npae)+ γ
p
a γ

d
b γ

c
r neKr

p + γ
d
b γ

c
r γ

p
a np︸︷︷︸
=0

ar]∇dV e

= γ
p
a γ

d
b γ

c
e ∇p∇dV e− γ

c
e ndKab∇dV e− γ

d
b Kc

a ne∇dV e︸ ︷︷ ︸
=−V e∇dne

= γ
p
a γ

d
b γ

c
e ∇p∇dV e−Kabγ

c
e nd

∇dV e + γ
d
b Kc

aV e
∇d(γ

s
ens)

= γ
p
a γ

d
b γ

c
e ∇p∇dV e−Kabγ

c
e nd

∇dV e +V eKc
a γ

d
b γ

s
e∇dns︸ ︷︷ ︸

=−Kbe

. (A.44)

On rearranging the indices (for convenience) the second derivative can now be written as

DaDbV c = γ
p
a γ

q
b γ

c
r ∇p∇qV r−Kabγ

c
r np

∇pV r−Kc
aKbpV p. (A.45)

The definition of the 3-dimensional Riemann tensor is

Rdc
baVd = 2D[aDb]V

c. (A.46)

Inserting Eqn. A.45 into the RHS of with the anti-symmetrization we get

Rdc
baVd = 2γ

p
a γ

q
b γ

c
r ∇[p∇q]V

r−2K[ab].γ
c
r np

∇pV r−2Kc
[aKb]pV p (A.47)

Because Kab is symmetric we have K[ab] = 0 and because ∇[p∇q]V r gives the 4-dimensional

Riemann tensor via

2∇[p∇q]V
r = (4)Rdr

qpVd. (A.48)

we can combine these results to get

Rdc
baVd = γ

p
a γ

q
b γ

c
r
(4)Rdr

qpVd−2Kc
[aKb]pV p, (A.49)

RdcbaV d = γ
p
a γ

q
b γ

r
c
(4)RdrqpV d−2Kc[aKb]dV d

= γ
p
a γ

q
b γ

r
cγ

s
d
(4)RsrqpV d−2Kc[aKb]dV d. (A.50)
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This final relation must hold for any arbitrary spatial vector so we can conclude

Rabcd +KabKbd−KadKcb = γ
p
a γ

q
b γ

r
cγ

s
d
(4)Rpqrs. (A.51)

This final expression, Eqn. A.51, is called Gauss' equation. It relates the full spatial

projection of (4)Ra
bcd to the 3-dimensional Riemann tensor, Ra

bcd , and terms quadratic in

the extrinsic curvature.

Next, consider a spatial derivative of the extrinsic curvature

DaKbc = γ
p
a γ

q
b γ

r
c∇pKqr =−γ

p
a γ

q
b γ

r
c∇p(∇qnr +nqar)

=−(γ p
a γ

q
b γ

r
c∇p∇qnr + γ

p
a γ

r
c γ

q
b nq︸︷︷︸
=0

∇par + γ
r
car γ

p
a γ

a
b ∇pnq︸ ︷︷ ︸

=−Kab

)

=−γ
p
a γ

q
b γ

r
c∇p∇qnr +acKab. (A.52)

On antisymmetrization:

D[aKb]c =−γ
p
a γ

q
b γ

r
c ∇[p∇q]nr︸ ︷︷ ︸
= 1

2
(4)Rsrqpns

+ac K[ab]︸︷︷︸
=0

=−1
2

γ
p
a γ

q
b γ

r
cns (4)Rpqrs. (A.53)

this can be rewritten as

DbKac−DaKbc = γ
p
a γ

q
b γ

r
cns (4)Rpqrs. (A.54)

The Eqn. A.54 is called the Codazzi equation. This relates the projection of Riemann with

one index projected in the normal direction to the derivatives of the extrinsic curvature.

Considering now the remaining projection namely with two indices projected in the normal

direction, we look at a quantity involving a time derivative of Kab. We compute the Lie

derivative of the extrinsic curvature along na:

£nKab = nc
∇cKab+Kac∇bnc +Kcb∇anc

=−nc
∇c(∇anb +naab)−Kac(Kc

b +nbac)−Kcb(Kc
a +naac)

=−nc
∇c∇anb−ncab∇cna−ncna∇cab− (KacKc

b +KcbKc
a)− (Kabnb +Kcbna)ac.

(A.55)
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Using the definition of the Riemann tensor we have

(4)Rdbacnd = 2∇[c∇a]nb = ∇c∇anb−∇a∇cnb, (A.56)

→ ∇c∇anb =
(4)Rdbacnd +∇a∇cnb. (A.57)

Substituting Eqn. A.57 into Eqn. A.55 then gives

£nKab =−(4)Rdbacndnc−nc
∇a∇cnb−ncab∇cna−ncna∇cab− (KacKc

b +KcbKc
a)

− (Kabnb +Kcbna)ac. (A.58)

Using the definition of ab = nc∇cnb then we can find the relation

∇aab = ∇a(nc
∇cnb) = nc

∇a∇cnb +∇anc
∇cnb, (A.59)

→ nc
∇a∇cnb = ∇aab−∇anc

∇cnb

= ∇aab− (Kc
a +naac)(Kcb +ncab)

= ∇aab−Kc
aKcb−Kc

anc︸︷︷︸
=0

ab−naacKcb−na ncac︸︷︷︸
=ncnd∇dnc=0

ab

= ∇aab−Kc
aKcb−naacKcb. (A.60)

On inserting Eqn. A.60 into Eqn. A.58 and simplifying, we get

£nKab =−(4)Rdbacndnc− (∇aab−Kc
aKcb−naacKcb)−ncab∇cna−ncna∇cab

− (KacKc
b +KcbKc

a)− (Kabnb +Kcbna)ac

=−(4)Rdbacndnc−∇aab−ab nc
∇cna︸ ︷︷ ︸
=aa

−ncna∇cab−Kc
bKac−Kcanbac

=−ncnd (4)Rdbac−∇aab−ncna∇cab−aaab−Kc
bKac−Kcanbac. (A.61)

Note that Eqn. A.61 is purely spatial. To see that, we project the equation into the normal

direction:

na£nKab =−nancnd (4)Rdbac︸ ︷︷ ︸
=0

−na
∇aab−nc nana︸︷︷︸

=−1

∇cab−naaa︸︷︷︸
=0

ab−Kc
b naKac︸ ︷︷ ︸

=0

−naKca︸ ︷︷ ︸
=0

nbac

=−na
∇aab +nc

∇cab = 0. (A.62)
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where the last line came from swapping dummy indices (c to a). Since £nKab is purely

spatial, projecting the two free indicies in Eqn. A.61 leaves the LHS unchanged

γ
q
a γ

r
b£nKqr = £n(γ

q
a γ

r
bKqr) = £nKab. (A.63)

The RHS, then, becomes

£nKab =−γ
q
a γ

r
bncnd (4)Rdrqc− γ

q
a γ

r
b∇qar− γ

r
bnc

γ
q
a nq︸︷︷︸
=0

∇car− γ
q
a γ

r
baqar− γ

q
a γ

r
bKc

r Kqc−Kcqγ
q
a γ

r
bnr︸︷︷︸
=0

ac

=−ndnc
γ

q
a γ

r
b
(4)Rdrqc−Daab−aaab−Kc

bKac. (A.64)

We know that aa = Da lnα so

Daab = DaDb lnα = Da

(
1
α

Dbα

)
=

1
α

DaDbα− 1
α2 DaαDbα =

1
α

DaDbα−
(

1
α

Daα

)
︸ ︷︷ ︸

=aa

(
1
α

Dbα

)
︸ ︷︷ ︸

=ab

=−aaab +
1
α

DaDbα. (A.65)

Therefore, we conclude that

£nKab = ndnc
γ

q
a γ

r
b
(4)Rdrcq−

1
α

DaDbα−Kc
bKac. (A.66)

Note that this final expression in Eqn. A.66 is referred to as Ricci's equation. It gives the

twice projected Riemann tensor with two indices projected in the normal direction.

A.1.4 The Constraints and Evolution Equations

We are now ready to rewrite the Einstein equations in a 3+1 form. We just need to use the

equations of Gauss, Codazzi, and Ricci to eliminate the 4-dimensional Riemann tensor

using the Einstein equations

Gab =
(4)Rab−

1
2
(4)Rgab = 8πTab. (A.67)
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In this section, we will complete the derivation of the constraint equations from the

Gauss (Eqn. A.51) and the Codazzi's equations (Eqn. A.54). We will also then derive the

evolution equations from Eqn. A.32 and Ricci's equation (Eqn. A.66).

Starting with Gauss' equation (Eqn. A.51)

Ra
bcd +Ka

c Kbd−Ka
d Kcb = γ

pa
γ

q
b γ

r
cγ

s
d
(4)Rpqrs. (A.68)

we contract with γc
a

Ra
bad +Ka

a Kbd−Kc
dKcb = γ

pc
γ

q
b γ

r
cγ

s
d
(4)Rpqrs. (A.69)

Denoting Ka
a = K, for the trace of extrinsic curvature, and using the 3-dimensional Ricci

tensor we have

γ
pr

γ
q
b γ

s
d
(4)Rpqrs = Rbd +KKbd−Kc

dKcb. (A.70)

On rearranging indices

γ
pr

γ
q
b γ

sd (4)Rpqrs = Rb
d +KKb

d −KcdKcb. (A.71)

and on contracting again with γb
d , we get

γ
pr

γ
b
d γ

q
b γ

sd (4)Rpqrs = γ
b
d Rb

d + γ
b
d KKb

d − γ
b
d KcdKcb,

γ
pr

γ
qs (4)Rpqrs = R+K2−KcbKcb. (A.72)

The LHS of the above equation can be written as

(gpr +npnr)(gqs +nqns) (4)Rpqrs = gprgqs (4)Rpqrs +gprnqns (4)Rpqrs +gqsnpnr (4)Rpqrs

+npnqnrns (4)Rpqrs︸ ︷︷ ︸
=0

= (4)R+nqns (4)Rpq +npnr (4)Rpr

= (4)R+2npnr (4)Rpr, (A.73)

where the last line comes from swapping dummy indices (q,s to p,r). So, we have

(4)R+2npnr (4)Rpr = R+K2−KabKab. (A.74)
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where again, we swap the dummy index (c to a). Contracting the Einstein tensor with npnr

gives

2npnrGpr = 2npnr
(

(4)Rpr−
1
2

gpr
(4)R
)

= 2npnr (4)Rpr−npnr(γpr +npnr)
(4)R

= 2npnr (4)Rpr−npnr
γpr︸ ︷︷ ︸

=0

(4)R−npnp︸︷︷︸
=−1

nrnr︸︷︷︸
=−1

(4)R

=(4) R+2npnr (4)Rpr. (A.75)

Combining this with the above, we get

2npnrGpr = R+K2−KabKab. (A.76)

From the Einstein equations, we have

2npnrGpr = 16πnpnrTpr. (A.77)

We now define the energy density ρ to be the total energy density as measured by a normal

observer na

ρ ≡ nanbT ab = nanbTab. (A.78)

Finally, we get

R+K2−KabKab = 16πρ. (A.79)

The Eqn. A.79 is called the Hamiltonian constraint

Proceeding analogously with the Codazzi equation (Eqn. A.54), we have

DbKc
a−DaKc

b = γ
p
a γ

q
b γ

rcns (4)Rpqrs. (A.80)
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Contracting this with γb
c gives

DbKb
a −DaKb

b = γ
p
a γ

q
b γ

b
c γ

rc︸︷︷︸
=γrb

ns (4)Rpqrs,

DbKb
a −DaK = γ

p
a γ

q
b γ

rb︸ ︷︷ ︸
γqr

ns (4)Rpqrs

= γ
p
a (g

qr +nqnr)ns (4)Rpqrs

=−γ
p
a nsgqr (4)Rqprs + γ

p
a nqnrns (4)Rpqrs︸ ︷︷ ︸

=0

=−γ
p
a ns (4)Rps. (A.81)

Likewise, contracting the Einstein tensor with ns and γ
p
a yields

γ
p
a nsGps = γ

p
a ns
(

(4)Rps−
1
2

gps
(4)R
)

= γ
p
a ns (4)Rps−

1
2

γ
p
a gpsns︸ ︷︷ ︸

=γasns=0

(4)R

= γ
p
a ns (4)Rps. (A.82)

Putting these together, we have

DbKb
a −DaK =−γ

p
a nsGps. (A.83)

From the Einstein equations again we have

γ
p
a nsGps = 8πγ

p
a nsTps. (A.84)

We now define Sa to be the momentum density as measured by a normal observer na

Sa ≡−γ
b
a ncTbc, (A.85)

and with that, we can finally write

DbKb
a −DaK = 8πSa. (A.86)

The Eqn. A.86 is called the momentum constraint.
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We also need to derive the evolution equations that evolve the data (γab,Kab) forward

in time. These can be found from Eqn. A.32, which can be considered as the definition of

the extrinsic curvature, and Ricci's equation (Eqn. A.66). These equations involve the Lie

derivative along na. However, the £n is not a natural time derivative. This is because the

normal, na, is not dual to the surface 1-form Ωa:

na
Ωa =−αgab

∇at∇bt =
1
α
. (A.87)

As an alternative, consider instead the new vector

ta = αna +β
a (A.88)

which is, in fact, dual to Ωa for any spatial vector β a

ta
Ωa = α na

Ωa︸ ︷︷ ︸
=1/α

+β
a
Ωa︸ ︷︷ ︸

=0

= 1. (A.89)

We will refer to the vector β a as the shift vector. Geometrically, we will think of the vector

ta as connecting points with the same spatial coordinate on neighboring time slices. The

shift vector β a will then measure the amount by which the spatial coordinates are shifted

within a slice with respect to the normal vector. As we discussed before, the lapse function

α measures how much proper time elapses between neighboring time slices along the

normal vector. Thus, the lapse and shift determine how the coordinates evolve in time. Note

that the choice of α and β a is quite arbitrary and there are many discussions of choices for

lapse and shift in literatures. Recall that β a is spatial and so naβa = 0, hence only three of

its components may be freely specified. Therefore, we have a total of four components

or functions that can be freely chosen. These gauge functions,α and β a, are completely

arbitrarily and embody the four-fold coordinate degrees of freedom.

Consider now the Lie derivative of Kab along ta

£tKab = £αn+β Kab = α£nKab +£β Kab, (A.90)



A.1 The 3+1 Decomposition 166

which follows from the definition of the Lie derivative. Inserting this into Ricci's equation

to eliminate £nKab gives

£nKab = ndnc
γ

q
a γ

r
b
(4)Rdrcq−

1
α

DaDbα−Kc
bKac. (A.91)

Rewriting the first term of the RHS provides

ndnc
γ

q
a γ

r
b
(4)Rdrcq = (γdc−gdc)γq

a γ
r
b
(4)Rdrcq

= γ
dc

γ
q
a γ

r
b
(4)Rdrcq− γ

q
a γ

r
b
(4)Rrq. (A.92)

Using the Hamiltonian constraint (Eqn. 70), we have the relation

γ
cd

γ
q
a γ

r
b
(4)Rdrcq = Rab +KKab−Kc

bKac. (A.93)

Contracting the Einstein equations with grq gives

grq
(

(4)Rrq−
1
2

grq
(4)R
)
= grq (4)Rrq−

1
2

grqgrq︸ ︷︷ ︸
=4

(4)R =− (4)R

= 8πgrqTrq = 8πT,

→ (4)R =−8πT. (A.94)

Again, invoking the Einstein equations, we get

(4)Rrq−
1
2

grq
(4)R = 8πTrq,

→ (4)Rrq =
1
2

grq
(4)R+8πTrq = 8π

(
Trq−

1
2

grqT
)
. (A.95)

Using these results, Eqn. A.92 can be expressed as

ndnc
γ

q
a γ

r
b
(4)Rdrcq = Rab +KKab−Kc

bKac−8πγ
q
a γ

r
b

(
Trq−

1
2

grqT
)

= Rab +KKab−Kc
bKac−8π

(
γ

q
a γ

r
bTrq−

1
2

γ
q
a γ

r
bgrqge f Te f

)
= Rab +KKab−Kc

bKac−8π

(
γ

q
a γ

r
bTrq−

1
2

γab(γ
e f −nen f )Te f

)
.

(A.96)
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We now define the spatial stress and its trace by

Sab ≡ γ
c
aγ

d
b Tcd, S≡ Sa

a = γ
abTab. (A.97)

Thus, we obtain

ndnc
γ

q
a γ

r
b
(4)Rdrcq = Rab +KKab−Kc

bKac−8π

(
Sab−

1
2

γab(S−ρ)

)
, (A.98)

so that Ricci's equation can be rewritten as

£nKab = Rab +KKab−Kc
bKac−8π

(
Sab−

1
2

γab(S−ρ)

)
− 1

α
DaDbα−Kc

bKac

= Rab +KKab−2Kc
bKac−8π

(
Sab−

1
2

γab(S−ρ)

)
− 1

α
DaDbα. (A.99)

In terms of the Lie derivative along ta, we rewrite

1
α
(£tKab−£β Kab) = Rab +KKab−2Kc

bKac−8π

(
Sab−

1
2

γab(S−ρ)

)
− 1

α
DaDbα.

(A.100)

Finally, we have the first evolution equation

£tKab = £β Kab−DaDbα +α(Rab +KKab−2Kc
bKac)−8πα

(
Sab−

1
2

γab(S−ρ)

)
.

(A.101)

Eqn. A.101 is the evolution equation for the extrinsic curvature. Note that all the differential

operators together with the Ricci tensor Rab are built out of the spatial metric γab and not

the full 4-dimensional metric gab.

Now we consider Eqn. A.32

Kab =−
1
2

£nγab =−
1

2α
(£tγab−£β γab),

→ £tγab = £β γab−2αKab. (A.102)

and Eqn. A.102 has become the evolution equation for the spatial metric. In summary,

we have four constraint equations (Eqns. A.79 and A.86) and twelve evolution equations

(Eqns. A.101 and A.102). These equations are completely equivalent to the Einstein

equations.
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A.1.5 The ADM Equations

So far, we have derived our equations in a covariant, coordinate-independent manner i.e.

the basis vectors have been completely arbitrary and have no particular relationship to

the 1-form Ωa or to the congruence defined by ta. Here we consider a specific choice of

basis vector. (There are various motivations with regard to this choice but here we are

concentrating only on the formulation itself.) We take it to be

ta = (1,0,0,0). (A.103)

This implies that the Lie derivative along ta can be written as a partial derivative with

respect to t i.e. £t = ∂t . Since spatial tensors vanish when contracted with the normal vector,

this also means that all components of spatial tensors with a contravariant index equal to

zero must vanish. For the shift vector, this implies naβ a = n0β 0 = 0. Note, too, that spatial

basis vectors, ea
(i), where the (i) distinguishes the vectors and not vector components, should

satisfy Ωaea
(i) = 0. From this choice and condition, we can conclude Ωaea

(i) =−
1
α

naea
(i) = 0

which implies that the covariant spatial components of the normal vector have to vanish

ni = 0. (A.104)

Consequently, the shift vector should have the form

β
a = (0,β i). (A.105)

Defining the vector ta = αna +β a gives the contravariant components

na =

(
1
α
,−β i

α

)
. (A.106)

and from the normalization condition nana =−1 we find

na = (−α,0,0,0). (A.107)

Then from the definition of the spatial metric γab = gab +nanb we have

γi j = gi j. (A.108)
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this implies that γi j, the metric on Σ, is just the spatial part of the covariant form of the

4-metric gab. Because the zeroth component of all spatial contravariant tensors must vanish,

we also have γa0 = 0. The inverse metric can therefore be expressed as

gab = γ
ab−nanb =

− 1
α2

β i

α2

β j

α2 γ i j− β iβ j

α2

 . (A.109)

From this, we can check

γ
ik

γk j = (gik +nink)gk j = gikgk j +ni nkgk j︸ ︷︷ ︸
=0

= δ
i
j. (A.110)

This implies that γ i j and γi j are 3-dimensional inverses, and can hence be used to raise and

lower spatial indices of spatial tensors i.e. βi = γi jβ
j. Inverting gab gives gab

gab =

−α2 +βlβ
l βi

β j γi j

 . (A.111)

So the line element may be decomposed as

ds2 = gabdxadxb =−α
2dt2 + γi j(dxi +β

idt)(dx j +β
jdt), (A.112)

which is often referred to as the metric in 3+1 form. The entire content of any spatial tensor

is available from their spatial components. This is true for contravariant components, since

their zeroth component vanishes, but it is also true for covariant components. Therefore, the

entire content of the decomposed Einstein equations is contained in their spatial components

alone. Thus, we can rewrite the constraint and evolution equations in the same form as

previously but only with reference to spatial indices.

For the Hamiltonian constraint (Eqn. A.79), we rewrite

R+K2−KabKab = 16πρ,

⇒ R+K2−Ki jKi j = 16πρ. (A.113)

For the momentum constraint (Eqn. A.86), we again rewrite

DbKb
a −DaK = 8πSa,

⇒ D jK
j

i −DiK = 8πSi, (A.114)
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or equivalently

D jK ji−DiK = 8πSi,

⇒ D jKi j− γ
i jD jK = D j(Ki j− γ

i jK) = 8πSi. (A.115)

For the evolution equation of the extrinsic curvature (Eqn. A.101), we get

£tKab = £β Kab−DaDbα +α(Rab +KKab−2Kc
bKac)−8πα

(
Sab−

1
2

γab(S−ρ)

)
,

⇒ ∂tKi j = £β Ki j−DiD jα +α(Ri j +KKi j−2Kk
j Kik)−8πα

(
Si j−

1
2

γi j(S−ρ)

)
= β

kDkKi j +KikD jβ
k +Kk jDiβ

k−DiD jα +α(Ri j +KKi j−2Kk
j Kik)

−8πα

(
Si j−

1
2

γi j(S−ρ)

)
. (A.116)

For the evolution equation of the spatial metric (Eqn. A.102), we have

£tγab = £β γab−2αKab,

⇒ ∂tγi j = £β γi j−2αKi j

=−2αKi j +β
k Dkγi j︸ ︷︷ ︸

=0

+γikD jβ
k + γk jDiβ

k

=−2αKi j +D j(γikβ
k)+Di(γk jβ

k)

=−2αKi j +Diβ j +D jβi. (A.117)

with the matter sources appearing in the above equations defined by

ρ = nanbT ab, Si =−γ
i jnaTa j, Si j = γiaγ jbT ab, S = γ

i jSi j (A.118)

Eqns A.113, A.115, A.116, and A.117 are equivalent to the Einstein equations and comprise

the standard 3+1 equations. These equations are also referred to as the ADM (Arnowiit-

Deser-Misner) equations.

Using these ADM equations, we can derive other equations for the determinant of the

spatial metric γ = det(γi j) and the trace of the extrinsic curvature K = Ki
i .

Consider a version of Jacobi's formula for γ

∂t ln
√

γ =
1
2γ

∂tγ =
1
2

γ
i j

∂tγi j. (A.119)
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Then, using Eqn. A.117, we can write

∂t ln
√

γ =
1
2

γ
i j(−2αKi j +Diβ j +D jβi)

=−αK +
1
2
(D j

β j︸︷︷︸
=Diβi

+Di
βi)

=−αK +Di
βi =−αK +Diβ

i. (A.120)

Contracting Eqn. A.116 with γ i j gives

γ
i j

∂tKi j = γ
i j

[
β

kDkKi j +KikD jβ
k +Kk jDiβ

k−DiD jα +α(Ri j +KKi j−2Kk
j Kik)

−8πα

(
Si j−

1
2

γi j(S−ρ)

)]

= β
kDk(γ

i jKi j︸ ︷︷ ︸
=K

)+ γ
i jKikD jβ

k︸ ︷︷ ︸
=K j

k D jβ k=Ki
kDiβ k

+γ
i jKk jDiβ

k︸ ︷︷ ︸
=Ki

kDiβ k

−γ
i jDiD j︸ ︷︷ ︸
≡D2

α

+α(γ i jRi j︸ ︷︷ ︸
=R

+Kγ
i jKi j︸ ︷︷ ︸
K2

−2γ
i jKk

j︸ ︷︷ ︸
Kik

Kik)−8πα

γ
i jSi j︸ ︷︷ ︸
=S

−1
2

γ
i j

γi j︸ ︷︷ ︸
=3

(S−ρ)


= β

kDkK +2Ki
kDiβ

k−D2
α +α(R+K2−KikKik︸ ︷︷ ︸

=16πρ

−KikKik)−4πα(3ρ−S)

= β
kDkK +2Ki

kDiβ
k−D2

α−αKikKik +4πα(S+ρ). (A.121)

On evaluating the LHS expression γ i j∂tKi j, we get

γ
i j

∂tKi j = ∂t(γ
i jKi j)−Ki j∂tγ

i j = ∂tK−Ki j∂tγ
i j. (A.122)

We need to find the evolution equations for the inverse of the spatial metric. To do that, we

use the fact γ ikγk j = δ i
j

∂t(γ
ik

γk j) = ∂tδ
i
j = 0 = γ

ik
∂tγk j + γk j∂tγ

ik,

⇒ γk j∂tγ
ik =−γ

ik
∂tγk j. (A.123)
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Now, contracting both sides with γ jl and using Eqn. A.117, we get

γ
jl

γk j∂tγ
ik =−γ

jl
γ

ik
∂tγk j,

⇒ δ
l
k∂tγ

ik = ∂tγ
il =−γ

jl
γ

ik(−2αKk j +Dkβ j +D jβk) = 2αKil− γ
ikDkβ

j− γ
k jDkβ

i.

(A.124)

Thus, we have

∂tK−Ki j∂tγ
i j = ∂tK−Ki j(2αKi j− γ

ikDkβ
j− γ

k jDkβ
i)

= ∂tK−2αKi jKi j +Kk
j Dkβ

j +Kk
i Dkβ

i

= ∂tK−2αKi jKi j +2Kk
i Dkβ

i. (A.125)

On rearranging dummy indices in Eqns. A.121 and A.125 then we are able to find

∂tK−2αKi jKi j +2Ki
kDiβ

k = β
iDiK +2Ki

kDiβ
k−D2

α−αKi jKi j +4πα(S+ρ),

⇒ ∂tK =−D2
α +α

[
Ki jKi j +4π(S+ρ)

]
+β

iDiK. (A.126)

Here we have obtained additional evolution equations for the determinant of the spatial

metric γ and the trace of the extrinsic curvature K. Eqns A.120 and A.126 will be used for

some calculations in later sections.

A.2 Conformal Transformations

The previous section derived the decomposition of the Einstein equations into 3+1 form (or

the ADM form) which gives the basic evolution and constraint equations for gravitational

interactions. The constraint equations provide consistent initial data that we can use for

black hole simulations. The evolution equations provide means by which the dynamics of

spacetime metrics can be investigated. Oftentimes, solving those equations is very hard

so techniques have been developed in order to try to solve them differently and attempt to

isolate the pertinent degrees of freedom.

In this section, we consider aspects of conformal transformations. In particular, we

consider conformal transformations of the spatial metric. In other contexts it may also



A.2 Conformal Transformations 173

be useful to study conformal transformations of the spacetime metric. For our purposes,

it has been found that a rewriting of the Einstein equations through a certain conformal

transformation renders the relevant equations more stable than the ADM form we have

previously derived.

A.2.1 Conformal Transformation of the Spatial Metric

Let's begin by writing the spatial metric γi j as a product of some power of a positive scaling

factor ψ and a background metric γ̄i j

γi j = ψ
p
γ̄i j. (A.127)

This identification is a conformal transformation of the spatial metric. We call ψ as the

conformal factor and γ̄i j as the conformally related metric. In general p could be any integer,

but here we will choose p = 4 as the conformal power. From the property of the metric

γikγk j = γ̄ikγ̄k j = δ i
j, the conformal transformation for the inverse metric should be

γ
i j = ψ

−4
γ̄

i j. (A.128)

Superficially, the conformal transformation just shows rewriting one unknown as a product

of two unknowns in order to make solving some equations easier but the conformal

transformation serves to define an equivalence class of manifolds and metric. (See Wald's

GR book for a more detailed discussion.)

Using this transformation, we can find a transformation rule for the connection coeffi-

cients and etc. In three dimensions, the connection coefficients must transform according
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to

Γ
i
jk =

1
2

γ
il(∂kγl j +∂ jγlk−∂lγ jk)

=
1
2

ψ
−4

γ̄
il(∂k(ψ

4
γ̄l j)+∂ j(ψ

4
γ̄lk)−∂l(ψ

4
γ̄ jk))

=
1
2

ψ
−4

γ̄
il(ψ4

∂kγ̄l j + γ̄l j∂kψ
4 +ψ

4
∂ jγ̄lk + γ̄lk∂ jψ

4−ψ
4
∂l γ̄ jk− γ̄ jk∂lψ

4)

=
1
2

ψ
−4

γ̄
il
ψ

4(∂kγ̄l j +∂ jγ̄lk−∂l γ̄ jk)+
1
2

ψ
−4(γ̄ il

γ̄l j∂kψ
4 + γ̄

il
γ̄lk∂ jψ

4− γ̄
il
γ̄ jk∂lψ

4)

= Γ̄
i
jk +

1
2

ψ
−4(δ i

j∂kψ
4 +δ

j
k ∂ jψ

4− γ̄
il
γ̄ jk∂lψ

4), (A.129)

where we define

Γ̄
i
jk ≡

1
2

γ
il(∂kγ̄l j +∂ jγ̄lk−∂l γ̄ jk), (A.130)

and we can further simplify

ψ
−4

∂iψ
4 = ψ

−4(4ψ
3
∂iψ) =

4
ψ

∂iψ = 4∂i lnψ. (A.131)

As a result, we get

Γ
i
jk = Γ̄

i
jk +2(δ i

j∂k lnψ +δ
j

k ∂ j lnψ− γ̄ jkγ̄
il
∂l lnψ)

= Γ̄
i
jk +2(δ i

jD̄k lnψ +δ
j

k D̄ j lnψ− γ̄ jkγ̄
ilD̄l lnψ). (A.132)

In the last line, because ψ is a scalar function, we can replace partial derivatives with

spatial covariant derivatives built from the conformally related metric. In addition, D̄i will

be compatible with the conformally related metric i.e. D̄iγ̄ jk = 0 in the usual way.

Without detailed proof, we can easily make relationship between Di and D̄i. For an

arbitrary vector vi, D jvi and D̄ jvi are related by the formula

D jvi = D̄ jvi +Ci
jkvk, (A.133)

where Ci
jk is

Ci
jk ≡ Γ

i
jk− Γ̄

i
jk = 2(δ i

jD̄k lnψ +δ
j

k D̄ j lnψ− γ̄ jkγ̄
ilD̄l lnψ). (A.134)
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Thus Ci
jk has the same property as the connection coefficients. For example, Ci

jk =Ci
k j

for a torsion free manifold. Without loss of generality, this relation still works for higher

rank tensors. For example,

DiF
j

k = D̄iF
j

k +C j
il F

l
k −Cl

kiF
j

l . (A.135)

This relation is useful for many calculations.

We next consider the Ricci tensor. From the Riemann tensor relation, Rdbacni =

2D[lDk]n j, the Ricci tensor can be expressed as

Ri jv j = D jDiv j−DiD jv j. (A.136)

Express Di in terms of D̄i

Ri jv j = D jDiv j−DiD jv j

= D̄ j(Div j)+C j
jkDivk−Ck

i jDkv j− (D̄i(D jv j)+C j
ikD jvk︸ ︷︷ ︸

=Ck
jiDkv j

−Ck
jiDkv j)

= D̄ j(D̄iv j +C j
ikvk)+C j

jk(D̄ivk +Ck
il v

l)− D̄i(D̄ jv j +C j
jkvk)−Ck

ji(D̄kv j +C j
kl v

l)

= D̄ jD̄iv j +(D̄ jC
j
ik)v

k︸ ︷︷ ︸
=(D̄kCk

i j )v
j

+C j
ikD̄ jvk +C j

jkD̄ivk +C j
jkCk

il v
l︸ ︷︷ ︸

=Cl
lkCk

i j v
j

− D̄iD̄ jv j− (D̄iC
j
jk)v

k︸ ︷︷ ︸
=(D̄iCk

k j )v
j

−C j
jkD̄ivk−Ck

jkD̄kv j︸ ︷︷ ︸
=C j

kiD̄ jvk

−Ck
jiC

j
kl v

l︸ ︷︷ ︸
=Ck

liC
l
k j v

j

= D̄ jD̄iv j− D̄iD̄ jv j +(D̄kCk
i j)v

j− (D̄iCk
k j)v

j +Cl
lkCk

i jv
j−Ck

liC
l
k jv

j, (A.137)

where we have relabeled some dummy indices ( j↔ k or j↔ l). Defining a conformally

related Ricci tensor

R̄i jv j = D̄ jD̄iv j− D̄iD̄ jv j, (A.138)

where, because this is true for all arbitrary v j, we can conclude

Ri j = R̄i j + D̄kCk
i j − D̄iCk

k j +Cl
lkCk

i j −Ck
liC

l
k j . (A.139)
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We can express this relation in terms of the conformally related metric and the conformal

scalar function. Evaluating term by term in Eqn. A.139, we get

D̄kCk
i j = 2D̄k(δ

k
i D̄ j lnψ +δ

k
i D̄i lnψ− γ̄i jγ̄

klD̄l lnψ)

= 2(δ k
i D̄k︸ ︷︷ ︸
=D̄i

D̄ j lnψ +δ
k
i D̄k︸ ︷︷ ︸
=D̄ j

D̄i lnψ− γ̄i jγ̄
klD̄kD̄l lnψ)

= 4D̄iD̄ j lnψ−2γ̄i jγ̄
klD̄kD̄l lnψ. (A.140)

Here we have used the fact that D̄iD̄ j f = D̄ jD̄i f i.e. covariant derivatives commute when

applied to scalar functions. Now, we perform some calculations for later

Ck
k j = 2( δ

k
k︸︷︷︸

=3

D̄ j lnψ +δ
k
j D̄k︸ ︷︷ ︸
=D̄ j

lnψ− γ̄k jγ
klD̄l︸ ︷︷ ︸

=δ l
jD̄l=D̄ j

lnψ)

= 6D̄ j lnψ, (A.141)

⇒ D̄iCk
k j = 6D̄iD̄ j lnψ. (A.142)

Cl
lkCk

i j = 12D̄k lnψ(δ k
i D̄ j lnψ +δ

k
j D̄i lnψ− γ̄i jγ̄

klD̄l lnψ)

= 12(δ k
i D̄k︸ ︷︷ ︸
D̄i

lnψD̄ j lnψ +δ
k
j D̄k︸ ︷︷ ︸
D̄ j

lnψD̄i lnψ− γ̄i jγ̄
klD̄k lnψD̄l lnψ)

= 24D̄i lnψD̄ j lnψ−12γ̄i jγ̄
klD̄k lnψD̄l lnψ. (A.143)
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Ck
liC

l
k j = 4(δ k

l D̄i lnψ +δ
k
i D̄l lnψ− γ̄liγ̄

kmD̄m lnψ)(δ l
kD̄ j lnψ +δ

l
jD̄k lnψ− γ̄k jγ̄

lmD̄m lnψ)

= 4(δ k
l δ

l
k︸︷︷︸

=3

D̄i lnψD̄ j lnψ +δ
k
l δ

l
j︸︷︷︸

=δ k
j

D̄i lnψD̄k lnψ−δ
k
l γ̄k jγ̄

lm︸ ︷︷ ︸
γ̄l j γ̄

lm=δ m
j

D̄i lnψD̄m lnψ

+δ
k
i δ

l
k︸︷︷︸

=δ l
i

D̄l lnψD̄ j lnψ

+δ
k
i δ

l
jD̄l lnψD̄k lnψ−δ

k
i γ̄k j︸ ︷︷ ︸
=γ̄i j

γ̄
lmD̄l lnψD̄m lnψ− δ

l
k γ̄kiγ̄

km︸ ︷︷ ︸
=γ̄liγ̄

lm=δ m
i

D̄m lnψD̄ j lnψ

−δ
l
j γ̄l j︸︷︷︸
γ̄i j

γ̄
kmD̄k lnψD̄m lnψ + γ̄liγ̄

lm
γ̄k jγ̄

km︸ ︷︷ ︸
=δ m

i δ m
j

D̄m lnψD̄m lnψ)

= 4(3D̄i lnψD̄ j lnψ + D̄i lnψD̄ j lnψ− D̄i lnψD̄ j lnψ + D̄i lnψD̄ j lnψ

+ D̄ j lnψD̄i lnψ− γ̄i jγ̄
lmD̄l lnψD̄m lnψ− D̄i lnψD̄ j lnψ

− γ̄i jγ̄
kmD̄k lnψD̄m︸ ︷︷ ︸

=γ̄i j γ̄ lmD̄l lnψD̄m

lnψ + D̄i lnψD̄ j lnψ)

= 20D̄i lnψD̄ j lnψ−8γ̄i jγ̄
lmD̄l lnψD̄m lnψ. (A.144)

Combining these results gives

Ri j = R̄i j + D̄kCk
i j − D̄iCk

k j +Cl
lkCk

i j −Ck
liC

l
k j

= 4D̄iD̄ j lnψ−2γ̄i j γ̄
klD̄k︸ ︷︷ ︸

=γ̄mlD̄m

D̄l lnψ−6D̄iD̄ j lnψ +24D̄i lnψD̄ j lnψ−12γ̄i j γ̄
klD̄k︸ ︷︷ ︸

=γ̄mlD̄m

lnψD̄l lnψ

− (20D̄i lnψD̄ j lnψ−8γ̄i jγ̄
lmD̄l lnψD̄m lnψ)

= R̄i j−2(D̄iD̄ j lnψ + γ̄i jγ̄
lmD̄lD̄m lnψ)+4(D̄i lnψD̄ j lnψ− γ̄i jγ̄

lmD̄l lnψD̄m lnψ).

(A.145)
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For the Ricci scalar, we obtain

R = γ
i jRi j

= ψ
−4

γ̄
i j[R̄i j−2(D̄iD̄ j lnψ + γ̄i jγ̄

lmD̄lD̄m lnψ)+4(D̄i lnψD̄ j lnψ− γ̄i jγ̄
lmD̄l lnψD̄m lnψ)]

= ψ
−4[γ̄ i jR̄i j−2(γ̄ i jD̄iD̄ j lnψ + γ̄

i j
γ̄i j︸ ︷︷ ︸

=3

γ̄
lmD̄lD̄m lnψ)

+4(γ̄ i jD̄i lnψD̄ j lnψ− γ̄
i j

γ̄i j︸ ︷︷ ︸
=3

γ̄
lmD̄l lnψD̄m lnψ)]. (A.146)

Defining the conformally related Ricci scalar as R̄ = γ̄ i jR̄i j and defining the covariant

Laplacian associated with γ̄i j as D̄2 = D̄iD̄i = γ̄ i jD̄iD̄ j, we get

R = ψ
−4[R̄−8(D̄2 lnψ− γ̄

i jD̄i lnψD̄ j lnψ)]. (A.147)

Here again we do some relabeling of dummy indices. We can rewrite this using

D̄2 lnψ = γ̄
i jD̄iD̄ j lnψ = γ̄

i jD̄i

(
1
ψ

D̄ jψ

)
= γ̄

i j
(

1
ψ

D̄iD̄ jψ−
1

ψ2 D̄iψD̄ jψ

)
=

1
ψ

γ̄
i jD̄iD̄ jψ− γ̄

i j
(

1
ψ

D̄iψ

)
︸ ︷︷ ︸

=D̄i lnψ

(
1
ψ

D̄ jψ

)
︸ ︷︷ ︸

D̄ j lnψ

=
1
ψ

D̄2
ψ− γ̄

i jD̄i lnψD̄ j lnψ. (A.148)

Therefore, we can get

R = ψ
−4R̄−8ψ

−5D̄2
ψ. (A.149)

A.2.2 Conformal Transformation of the Extrinsic Curvature

It is useful to rescale the extrinsic curvature Ki j conformally. Practically, it is convenient to

split Ki j into its trace part K and a traceless, symmetric part Ai j such that

Ki j = Ai j +
1
3

γi jK. (A.150)
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It is easy to check that the above definition makes Ai j traceless

γ
i jAi j = γ

i jKi j︸ ︷︷ ︸
=K

−1
3

γ
i j

γi j︸ ︷︷ ︸
=3

K = 0. (A.151)

Consider the transformations

ai j = ψ
α Āi j, (A.152)

K = ψ
β K̄. (A.153)

where α and β are arbitrary exponents. The choices of α and β are completely free. The

purpose of these transformations is that the transformation should bring the systems of

equation into a simple and solvable form. We can choose different exponents subject to

the system we want to solve. For example, α =−10 is widely used to solve the constraint

equations while α =−4 is chosen to build the standard BSSN formalism.

A.3 Reformulating: The Evolution Equations

At this point, we derive the 3+1 decomposition of the Einstein equations (Eqns. A.113,

A.114, A.116, and A.117, i.e. the ADM equations) that provides the initial value problem (or

Cauchy problem). Unfortunately, despite many efforts over many years (including careful

numerical implementation and methodological preparation), most simulations would crash

a rather short time.

Ultimately, it came to be realized that The ADM equations are not in a form that is

suitable for stable numerical integration. The failure of these equations can be understood

in terms of their mathematical properties, including notions of hyperbolicity and well-

posedness. Detailed discussions of these problems can be found in a number of places [37,

55, 56, 57]. Here, we comment only that the ADM equations are indeed only weakly

hyperbolic. Consequently, the ADM equations are not well-posed, and we have no guarantee

with which to expect the solutions of numerical implementations will be stable well-behaved

for long simulation times.
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In the following, we will discuss a different approach that leads to different reformula-

tions of the evolution equations that are both strongly hyperbolic and that have been used

successfully in numerical simulations. There are many different approaches but we will

concentrate on the BSSN (Baumgarte, Shapiro, Shibata, Nakamura) formulation.

A.3.1 The BSSN Equations

To derive this formulation, we choose the conformal factor ψ as ψ = e−φ so that we have

the following conformal transformation for the spatial metric:

γi j = e4φ
γ̄i j. (A.154)

We then require that the determinant of the conformally related metric γ̄i j be equal to that

of the flat metric ηi j in whatever coordinate system we are using such that

φ =
1

12
ln

γ

η
. (A.155)

In the following, we adopt a Cartesian coordinate system so that γ̄ = η = 1.

Also, we choose a conformal rescaling for Ãi j such that

Ai j = e4φ Ãi j. (A.156)

For the inverse Ai j, we get

Ai j = γ
ik

γ
jlAkl = e−4φ

γ̄
ike−4φ

γ̄ jle4φ Ãkl

= e−4φ Ãi j. (A.157)

Here we use Ã instead of Ā to avoid confusion between different conformal transformations

for the evolution scheme and the constraint equations. So, the extrinsic curvature can be

expressed

Ki j = Ai j +
1
3

γi jK = e4φ

(
Ãi j +

1
3

γ̄i jK
)
. (A.158)
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Now we need to find evolution equations for the new variables γ̄i j, Ãi j, and φ . From the

evolution equation for γi j (Eqn. A.117)

∂tγi j = £β γi j−2αKi j. (A.159)

Applying the conformal transformation gives

∂t(e4φ
γ̄i j) = £β (e

4φ
γ̄i j)−2αe4φ

(
Ãi j +

1
3

γ̄i jK
)
,

4e4φ
γ̄i j∂tφ + e4φ

∂t γ̄i j = 4e4φ
γ̄i j£β φ + e4φ £β γ̄i j−2αe4φ

(
Ãi j +

1
3

γ̄i jK
)
. (A.160)

Multiplying both sides by e−4φ we get

4γ̄i j∂tφ +∂t γ̄i j = 4γ̄i j£β φ +£β γ̄i j−2α

(
Ãi j +

1
3

γ̄i jK
)
. (A.161)

Now we need to find the evolution equation for φ . To do that, contract both sides with γ̄ i j

4 γ̄
i j

γ̄i j︸ ︷︷ ︸
=3

∂tφ + γ̄
i j

∂t γ̄i j = 4 γ̄
i j

γ̄i j︸ ︷︷ ︸
=3

£β φ + γ̄
i j£β γ̄i j−2α

γ̄
i jÃi j︸ ︷︷ ︸
=0

+
1
3

γ̄
i j

γ̄i j︸ ︷︷ ︸
=3

K

 . (A.162)

and use a version of Jacobi's formula:

γ̄
i j

∂t γ̄i j =
1
2γ̄

∂t γ̄ = 0. (A.163)

Note that the final equality is because γ̄ = 1. We now get

12∂tφ = 12£β φ + γ̄
i j(β k D̄kγ̄i j︸ ︷︷ ︸

=0

+γ̄ikD̄ jβ
k + γ̄k jD̄iβ

k)−2αK

= 12β
iD̄iφ + γ̄

i j
γ̄ik︸ ︷︷ ︸

δ
j

k

D̄ jβ
k + γ̄

i j
γ̄k j︸ ︷︷ ︸

δ i
k

D̄iβ
k−2αK. (A.164)

Here we require that the determinant of the conformally related metric be equal to the flat

metric so we can replace the conformally related covariant derivative D̄i with the usual

partial derivative ∂i. Rearranging the indices and simplifying yields

∂tφ =−1
6

αK +β
k
∂kφ +

1
6

∂kβ
k. (A.165)
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Substituting Eqn. A.165 into Eqn. A.161

4γ̄i j

(
−1

6
αK +β

k
∂kφ +

1
6

∂kβ
k
)
+∂t γ̄i j = 4γ̄i j£β φ +£β γ̄i j−2α

(
Ãi j +

1
3

γ̄i jK
)
,

⇒ ∂t γ̄i j =
2
3

γ̄i jαK−4γi jβ
k
∂kφ − 2

3
γ̄i j∂kβ

k +4γ̄i j £β φ︸︷︷︸
=β k∂kφ

+£β γ̄i j−2αÃi j−
2
3

γ̄i jαK

=−2αÃi j +β
k
∂kγ̄i j + γ̄ik∂ jβ

k + γ̄k j∂iβ
k− 2

3
γ̄i j∂kβ

k. (A.166)

Again partial derivatives come from the Lie derivative of γ̄i j. Next consider splitting the

evolution equation for the extrinsic curvature. From Eqn. A.126

∂tK =−D2
α +α[Ki jKi j +4π(S+ρ)]+β

i
∂iK. (A.167)

Note that we change DiK to ∂iK because K is a scalar function. The only term that affected

under the transformation is Ki jKi j, so

Ki jKi j =

(
e4φ Ãi j +

1
3

e4φ
γ̄i jK

)(
e−4φ Ãi j +

1
3

e−4φ
γ̄

i jK
)
= Ãi jÃi j +

1
3

K2. (A.168)

Thus, we get

∂tK =−D2
α +α

[
Ãi jÃi j +

1
3

K2 +4π(S+ρ)

]
+β

i
∂iK

=−γ
i jD jDiα +α

(
Ãi jÃi j +

1
3

K2
)
+4πα(ρ +S)+β

i
∂iK. (A.169)

From Eqn. A.116, we obtain

∂tKi j = β
kDkKi j +KikD jβ

k +Kk jDiβ
k−DiD jα +α(Ri j +KKi j−2Kk

j Kik)

−8πα

(
Si j−

1
2

γi j(S−ρ)

)
= £β Ki j−DiD jα +α(Ri j +KKi j−2Kk

j Kik)−8πα

(
Si j−

1
2

γi j(S−ρ)

)
.

For convenience, we define the operator dt ≡ ∂t−£β . We can then rewrite

dtKi j =−DiD jα +α(Ri j +KKi j−2Kk
j Kik)−8πα

(
Si j−

1
2

γi j(S−ρ)

)
. (A.170)
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Using dt we can also write

∂tγi j = £β γi j−2αKi j,

⇒ dtγi j =−2αK, (A.171)

∂tK =−D2
α +α[Ki jKi j +4π(S+ρ)]+β

i
∂iK︸ ︷︷ ︸

=£β K

,

⇒ dtK =−D2
α +α[Ki jKi j +4π(S+ρ)]. (A.172)

The LHS of Eqn. A.170 can now be written as

dtKi j = dt

(
Ai j +

1
3

γi jK
)
= dtAi j +

1
3

γi jdtK +
1
3

Kdtγi j

= dtAi j +
1
3

γi j(−D2
α +α[ Ki jKi j︸ ︷︷ ︸

R+K2−16πρ

+4π(S+ρ)])+
1
3

K(−2αKi j)

= dtAi j−
1
3

γi j(D2
α−α[R+K2 +4π(S−3ρ)])− 2

3
αKKi j. (A.173)

So Eqn. A.170 can be rewritten as

dtAi j =
1
3

γi jD2
α− 1

3
γi jαR− 1

3
γi jK2 +

4
3

πγi jα(S−3ρ)− 2
3

αKKi j−DiD jα

+α(Ri j +KKi j−2Kk
j Kik)−8παSi j−4παγi j(S−ρ)

=−
(

DiD jα−
1
3

γi jD2
α

)
+α

(
Ri j−

1
3

γi jR
)
−8πα

(
Si j−

1
3

γi jS
)

+α

(
5
3

KKi j−2Kk
j Kik−

1
3

γi jK2
)
, (A.174)

where we can further split

5
3

KKi j−2Kk
j Kik−

1
3

γi jK2 =
5
3

K
(

Ai j +
1
3

Kγi j

)
−2
(

Aik +
1
3

γikK
)(

Ak
j +

1
3

Kδ
k
j

)
− 1

3
γi jK2

=
5
3

KAi j +
5
9

K2
γi j−2

AikAk
j +

1
3

K Aikδ
k
j︸ ︷︷ ︸

Ai j

+
1
3

K γikAk
j︸︷︷︸

Ai j

+
1
9

γikδ
k
j︸︷︷︸

γi j

K2


− 1

3
γi jK2

=
5
3

KAi j +
5
9

γi jK2−2AikAk
j−

4
3

KAi j−
2
9

γi jK2− 1
3

γi jK2

=
1
3

KAi j−2AikAk
j, (A.175)
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and dwe efine the trace-free part of a tensor such that

DiD jα−
1
3

γi jD2
α = (DiD jα)T F , (A.176)

Ri j−
1
3

γi jR = RT F
i j , (A.177)

Si j−
1
3

γi jS = ST F
i j . (A.178)

Therefore, we get

dtAi j =−(DiD jα)T F +α(RT F
i j −8πST F

i j )+α

(
1
3

KAi j−2Aik.Ak
j

)
(A.179)

We now perform the conformal transformation for Ai j. The LHS of the above equation

gives

dt(e4φ Ãi j) = 4e4φ Ãi jdtφ + e4φ dt Ãi j. (A.180)

From Eqn. A.165, we can get dtφ

dt(e4φ Ãi j) = 4e4φ Ãi j

(
1
6

∂kβ
k− 1

6
αK
)
+ e4φ dt Ãi j

= e4φ dt Ãi j +
2
3

e4φ Ãi j∂kβ
k− 2

3
e4φ

αKÃi j. (A.181)

For AikAk
j, we have

AikAk
j = γ

klAikA jl = e−4φ
γ̄

kle4φ Ãike4φ Ã jl

= e4φ
γ̄

klÃikÃ jl = e4φ ÃikÃk
j. (A.182)

Combining these results, we get

e4φ dt Ãi j +
2
3

e4φ Ãi j∂kβ
k− 2

3
e4φ

αKÃi j =−(DiD jα)T F +α(RT F
i j −8πST F

i j ),

+α

(
1
3

Ke4φ Ãi j−2e4φ ÃikÃk
j

)
⇒ e4φ dt Ãi j =−

2
3

e4φ Ãi j∂kβ
k− (DiD jα)T F +α(RT F

i j −8πST F
i j )

+α

(
Ke4φ Ãi j−2e4φ ÃikÃk

j

)
. (A.183)
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Multiplying both sides by e−4φ and returning to dt = ∂t−£β , we have

∂t Ãi j = e−4φ
[
−(DiD jα)T F +α(RT F

i j −8πST F
i j )
]
+α

(
KÃi j−2ÃikÃk

j

)
+£β Ãi j−

2
3

Ãi j∂kβ
k

= e−4φ
[
−(DiD jα)T F +α(RT F

i j −8πST F
i j )
]
+α

(
KÃi j−2ÃikÃk

j

)
+β

k
∂kÃi j + Ãik∂ jβ

k + Ãk j∂iβ
k− 2

3
Ãi j∂kβ

k. (A.184)

Note that the divergence of the shift ∂iβ
i appears because the choice γ̄ = 1 makes φ a tensor

density of weight 1/6, and γ̄i j and Ãi j are tensor densities of weight −2/3.

Using Eqn. A.145, we can split the Ricci tensor into two terms

Ri j = R̄i j +Rφ

i j, (A.185)

where Rφ

i j only depends on the conformal factor such that

Rφ

i j =−2(D̄iD̄ jφ + γ̄i jγ̄
lmD̄lD̄mφ)+4(D̄iφ D̄ jφ − γ̄i jγ̄

lmD̄lφ D̄mφ), (A.186)

and R̄i j is defined in terms of γ̄i j such that

R̄i j =
1
2

γ̄
kl(∂i∂l γ̄k j +∂k∂ jγ̄il−∂i∂ jγ̄kl−∂k∂l γ̄i j)+ γ̄

kl
(

Γ̄
m

ilΓ̄mk j− Γ̄
m

i jΓ̄mkl

)
. (A.187)

In R̄i j, we still have the mixed second derivative terms that we are trying to avoid. To

eliminate these, we define the conformal connection functions

Γ̄
i ≡ γ̄

jk
Γ̄

i
jk = γ̄

jk 1
2

γ̄
il(∂ jγ̄lk +∂kγ̄ jl−∂l γ̄ jk)

=
1
2
(γ̄ il

γ̄
jk

∂ jγ̄ jk + γ̄
il
γ̄

jk
∂kγ̄ jl− γ̄

jl
γ̄

jk
∂l γ̄ jk︸ ︷︷ ︸
=0

)

=
1
2
(γ̄ il

∂
k
γ̄lk + γ̄

il
∂

j
γ̄ jl︸︷︷︸

∂ k γ̄lk

) = γ̄
il
∂

k
γ̄lk

= ∂
k(γ̄ il

γ̄lk)︸ ︷︷ ︸
=∂ kδ i

k=0

−γ̄lk∂
k
γ̄

il =−∂l γ̄
il. (A.188)

Using these, we can express the Ricci tensor R̄i j in terms of these conformal connection

functions. First, consider the following term

∂i∂l(γ̄
kl

γ̄k j) = ∂i(γ̄
kl

∂l γ̄k j + γ̄k j∂l γ̄
kl)

= ∂iγ̄k j∂l γ̄
kl + γ̄

kl
∂i∂l γ̄k j +∂iγ̄

kl
∂l γ̄k j + γ̄k j∂i∂l γ̄

kl, (A.189)
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Because the LHS of Eqn. A.189 is zero so we have

γ̄
kl

∂i∂l γ̄k j =−∂iγ̄k j ∂l γ̄
kl︸︷︷︸

−Γ̄k

−∂iγ̄
kl

∂l γ̄k j− γ̄k j∂i ∂l γ̄
kl︸︷︷︸

Γ̄k

= ∂iγ̄k jΓ̄
k + γ̄k j∂iΓ̄

k−∂iγ̄
kl

∂l ¯γk j. (A.190)

Using this, we can rewrite Eqn. A.187

R̄i j =−
1
2

γ̄
kl

∂k∂l γ̄i j +
1
2
(∂iγ̄k jΓ̄

k + γ̄k j∂iΓ̄
k−∂iγ̄

kl
∂l γ̄k j)+

1
2
(∂ jγ̄ilΓ̄

l + γ̄il∂ jΓ̄
l−∂kγ̄

il
∂ jγ̄kl)

− 1
2

γ̄
kl

∂i∂ jγ̄kl + γ̄
kl

Γ̄
m

ilΓ̄mk j− γ̄
kl

Γ̄
m

i jΓ̄mkl. (A.191)

The last term in the above equation can be written

γ̄
kl

Γ̄
m

i jΓ̄mkl = γ̄
kl

Γ̄
m

klΓ̄mi j =−Γ̄
m

Γ̄mi j. (A.192)

Rearranging dummy indices and collecting terms yields

R̄i j =−
1
2

γ̄
kl

∂k∂l γ̄i j +
1
2
(γ̄k j∂iΓ̄

k + γ̄ik∂ jΓ̄
k)+

(
1
2

∂iγ̄k j +
1
2

∂ jγ̄ik + Γ̄ki j

)
Γ̄

k

+ γ̄
kl

Γ̄
m

ilΓ̄mk j−
1
2
(∂iγ̄

kl
∂l γ̄k j +∂kγ̄

il
∂ jγ̄kl + γ̄

kl
∂i∂ jγ̄kl). (A.193)

After some additional algebra we can conclude

R̄i j =−
1
2

γ̄
lm

∂m∂l γ̄i j + γ̄k(i∂ j)Γ̄
k + Γ̄

k
Γ̄(i j)k + γ̄

lm(2Γ̄
k
l(iΓ̄ j)km + Γ̄

k
imΓ̄kl j). (A.194)

Because we are treating Γ̄i as a new independent function, we have to find the evolution

equation for it. Taking its time derivative gives

∂t Γ̄
i = ∂t(−∂ jγ̄

i j) =−∂ j(∂t γ̄
i j). (A.195)

Here we interchange a partial time and spatial derivative because they commute. Now we

need to evaluate ∂t γ̄
i j. From Eqn. A.166 we have

∂t γ̄
i j =−γ̄

ik
γ̄

jl
∂t γ̄kl

=−γ̄
ik

γ̄
jl
(
−2αÃkl +β

m
∂mγ̄kl + γ̄ml∂kβ

m + γ̄mk∂lβ
m− 2

3
γ̄kl∂mβ

m
)

= 2α γ̄
ik

γ̄
jlÃkl︸ ︷︷ ︸

=Ãi j

−β
m

γ̄
ik

γ̄
jl

∂mγ̄kl︸ ︷︷ ︸
=−∂mγ̄ i j

−γ̄
ik

γ̄
jl

γ̄ml∂kβ
m− γ̄

ik
γ̄

jl
γ̄mk∂lβ

m +
2
3

γ̄
ik

γ̄
jl

γ̄kl︸ ︷︷ ︸
=γ̄ i j

∂mβ
m.

(A.196)
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We perform some re-arrangement of metrics and indices to simplify further

γ̄
ik

γ̄
jl

γ̄ml∂kβ
m = δ

j
m∂

i
β

m = δ
j

m∂
i(δ m

i β
i) = δ

j
mδ

m
i ∂

i
β

i = δ
j

mδ
m
i γ̄

im
∂mβ

i

= γ̄
jm

∂mβ
i. (A.197)

Similarly, we obtain

γ̄
ik

γ̄
jl

γ̄mk∂lβ
m = δ

i
m∂

j
β

m = δ
i
m∂

j(δ m
j β

j) = δ
i
mδ

m
j ∂

j
β

j = δ
i
mδ

m
j γ̄

jm
∂mβ

j

= γ̄
im

∂mβ
j. (A.198)

Thus ∂t γ̄
i j is

∂t γ̄
i j = 2αÃi j− γ̄

m j
∂mβ

i− γ̄
mi

∂mβ
j +

2
3

γ̄
i j

∂lβ
l +β

l
∂l γ̄

i j, (A.199)

where we relabel some dummy indices. So ∂t Γ̄
i is

∂t Γ̄
i =−∂ j

(
2αÃi j− γ̄

m j
∂mβ

i− γ̄
mi

∂mβ
j +

2
3

γ̄
i j

∂lβ
l +β

l
∂l γ̄

i j
)

=−2Ãi j
∂ jα−2α∂ jÃi j +∂ jγ̄

m j︸ ︷︷ ︸
=−Γ̄m

∂mβ
i + γ̄

m j
∂ j∂mβ

i +∂ jγ̄
mi

∂mβ
j + γ̄

mi
∂ j∂mβ

j︸ ︷︷ ︸
=γ̄ ji∂ j∂lβ

l

− 2
3

∂ jγ̄
i j︸︷︷︸

=−Γ̄i

∂lβ
l− 2

3
γ̄

i j
∂ j∂lβ

l−∂ jβ
l
∂l γ̄

i j− β
l
∂ j∂l γ̄

i j︸ ︷︷ ︸
=∂mβ j∂ j γ̄ im

, (A.200)

where we apply the definition of Γ̄i. Again, on relabeling indices and simplifying

∂t Γ̄
i =−2(α∂ jÃi j + Ãi j

∂ jα)− Γ̄
j
∂ jβ

i + γ̄
l j

∂l∂ jβ
j +

1
3

γ̄
li
∂l∂ jβ

j +
2
3

Γ̄
i
∂ jβ

j +β
j
∂ jΓ̄

i.

(A.201)

The divergence of Ãi j can be simplified by using the momentum constraint. From Eqn. A.114,

we have

D j(Ki j− γ
i jK) = 8πSi. (A.202)

Splitting the extrinsic curvature via Ki j + γ i jK/3 gives

D j

(
Ai j− 2

3
γ

i jK
)
= D jAi j− 2

3
γ

i jD jK = 8πSi. (A.203)
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We need to find a conformal relation between D jAi j and D̄ jÃi j. From the conformal

transformation section, we know the relation between D jAi j and D̄ jAi j

D jAi j = D̄ jAi j +Ci
jkAk j +C j

jkAik, (A.204)

where again Ci
jk ≡ Γi

jk− Γ̄i
jk and ψ = eφ

Ci
jk = 2(δ i

jD̄kφ +δ
i
kD̄ jφ − γ̄ jkγ̄

ilD̄lφ), (A.205)

so C j
jk = 6D̄kφ . Substituting these into Eqn. A.204

D jAi j = D̄ jAi j +2(δ i
jD̄kφ +δ

i
kD̄ jφ − γ̄ jkγ̄

ilD̄lφ)Ak j +6AikD̄kφ

= D̄ jAi j +2(δ i
jA

k jD̄kφ +δ
i
kAk jD̄ jφ −Ak j

γ̄ jk︸ ︷︷ ︸
=0

γ̄
ilD̄lφ)+6AikD̄kφ

= D̄ jAi j +2(AikD̄kφ +Ai jD̄ jφ)+6AikDkφ = D̄ jAi j +10Ai jD̄ jφ . (A.206)

Note that we can further simplify D̄ jAi j +10Ai jD̄ jφ = e−10φ D̄ j(e10φ Ai j). From this rela-

tion, we can rescale Ai j as Ai j = e−10φ Āi j and this is widely used in solving the momentum

constraints. Here we keep our choice Ai j = e−4φ Ãi j

D jAi j = D̄ j(e−4φ Ãi j)+10e−4φ Ãi jD̄ jφ

= e−4φ D̄ jÃi j−4e−4φ Ãi jD̄ jφ +10e−4φ Ãi jD̄ jφ

= e−4φ (∂ jÃi j + Γ̄
i
jkÃk j + Γ̄

j
jkÃi j +6e−4φ Ãi jD̄ jφ). (A.207)

Using the following formula

Γ̄
j
jk =

1
2

γ̄
lm

∂kγ̄lm =
1
2γ̄

∂kγ̄ = 0, (A.208)

we obtain

D jAi j = e−4φ (∂ jÃi j + Γ̄
i
jkÃk j +6Ãi j

∂ jφ). (A.209)

Substituting this into the momentum constraint gives

D jAi j− 2
3

γ
i jD jK = e−4φ (∂ jÃi j + Γ̄

i
jkÃk j +6Ãi j

∂ jφ)−
2
3

e−4φ
γ̄

i jD jK = 8πSi

⇒ e−4φ (∂ jÃi j + Γ̄
i
jkÃk j +6Ãi jD̄ jφ)−

2
3

e−4φ
γ̄

i jD jK = 8πSi = 8πγ
i jS j = 8πe−4φ

γ̄
i jS j.

(A.210)
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Multiplying both sides by e4φ and replacing covariant derivatives of φ and K with partial

derivatives then ∂ jÃi j can be expressed

∂ jÃi j =−Γ̄
i
jkÃk j−6Ãi j

∂ jφ +
2
3

γ̄
i j

∂ jK +8πγ̄
i jS j. (A.211)

Substitute this into Eqn. A.201

∂t Γ̄
i =−2Ãi j

∂ jα +2α

(
Γ̄

i
jkÃk j +6Ãi j

∂ jφ −
2
3

γ̄
i j

∂ jK−8πγ̄
i jS j

)
+β

j
∂ jΓ̄

i− Γ̄
j
∂ jβ

i +
2
3

Γ̄
i
∂ jβ

j + γ̄
l j

∂l∂ jβ
j +

1
3

γ̄
li
∂l∂ jβ

j. (A.212)

Eqns. A.165, A.166, A.169, A.184, and A.212 are called the BSSN equations. In summary,

we have

∂tφ =−1
6

αK +β
k
∂kφ +

1
6

∂kβ
k, (A.213)

∂t γ̄i j =−2αÃi j +β
k
∂kγ̄i j + γ̄ik∂ jβ

k + γ̄k j∂iβ
k− 2

3
γ̄i j∂kβ

k, (A.214)

∂tK =−γ
i jD jDiα +α

(
Ãi jÃi j +

1
3

K2
)
+4πα(ρ +S)+β

i
∂iK, (A.215)

∂t Ãi j = e−4φ
[
−(DiD jα)T F +α(RT F

i j −8πST F
i j )
]
+α

(
KÃi j−2ÃikÃk

j

)
+β

k
∂kÃi j + Ãik∂ jβ

k + Ãk j∂iβ
k− 2

3
Ãi j∂kβ

k, (A.216)

∂t Γ̄
i =−2Ãi j

∂ jα +2α

(
Γ̄

i
jkÃk j +6Ãi j

∂ jφ −
2
3

γ̄
i j

∂ jK−8πγ̄
i jS j

)
+β

j
∂ jΓ̄

i− Γ̄
j
∂ jβ

i +
2
3

Γ̄
i
∂ jβ

j + γ̄
l j

∂l∂ jβ
j +

1
3

γ̄
li
∂l∂ jβ

j. (A.217)

The ADM equations have (γi j,Ki j) as evolved variables and the BSSN equations split these

variables into (φ , γ̃i j,K, Ãi j, Γ̄
i). Note that there are variants of the BSSN formulation. For

example, people set χ = e−4φ so that (this is used in order to regularize the system near

puncture)

∂aχ =−4e−4φ
∂aφ =−4χ∂aφ .⇒ ∂aφ =− 1

4χ
∂aχ (A.218)
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So, Eqn. A.165 is changed

− 1
4χ

∂t χ =−1
6

αK +β
k
(
− 1

4χ
∂kχ

)
+

1
6

∂kβ
k, (A.219)

⇒ ∂t χ =
2
3

χ(αK−∂kβ
k)+β

k
∂kχ. (A.220)

There are also minor changes to the equations for Ãi j and Γ̄i. The χ method is used for

many binary black hole simulations. (Our code is also based on this.) The BSSN equations

for the black hole case, i.e. the vacuum Einstein equations, with this method are

∂t χ =
2
3

χ(αK−∂kβ
k)+β

k
∂kχ, (A.221)

∂t γ̄i j =−2αÃi j +β
k
∂kγ̄i j + γ̄ik∂ jβ

k + γ̄k j∂iβ
k− 2

3
γ̄i j∂kβ

k, (A.222)

∂tK =−γ
i jD jDiα +α

(
Ãi jÃi j +

1
3

K2
)
+β

i
∂iK, (A.223)

∂t Ãi j = χ
[
−(DiD jα)T F +αRT F

i j
]
+α

(
KÃi j−2ÃikÃk

j

)
+β

k
∂kÃi j + Ãik∂ jβ

k + Ãk j∂iβ
k− 2

3
Ãi j∂kβ

k, (A.224)

∂t Γ̄
i =−2Ãi j

∂ jα +2α

(
Γ̄

i
jkÃk j− 3

2χ
Ãi j

∂ jχ−
2
3

γ̄
i j

∂ jK
)

+β
j
∂ jΓ̄

i− Γ̄
j
∂ jβ

i +
2
3

Γ̄
i
∂ jβ

j + γ̄
l j

∂l∂ jβ
j +

1
3

γ̄
li
∂l∂ jβ

j. (A.225)

These are a relatively standard form of the BSSN equations for the binary black hole

problem.

A.4 The Generalized Harmonic Formulation

There is an alternative hyperbolic formalism for the Einstein equations, the so called

generalized harmonic formalism. The idea is to generalize of the harmonic coordinate

condition in the form

�xa = Ha, (A.226)
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where � is the usual wave operator, xa is coordinate, and Ha is an arbitrary source function.

Starting from Eqn. A.226, we can have

Ha =�xa =
1√
−g

∂c(
√
−g gcb

∂bxa︸︷︷︸
=δ a

b

) =
1√
−g

∂c(
√
−g gca), (A.227)

therefore

Ha = gabHb = gab
1√
−g

∂c(
√
−g gcb)

= gabgcb 1√
−g

∂c
√
−g︸ ︷︷ ︸

=∂c ln
√
−g

+gab
1√
−g
√
−g∂cgcb

= ∂a ln
√
−g+gab∂cgcb. (A.228)

Using the fact that gab∂cgcb =−gcb∂cgab we can also write

Ha = ∂a ln
√
−g−gcb

∂cgab. (A.229)

On taking the gradient

∂bHa = ∂b∂a ln
√
−g−∂bgcd

∂cgad−gcd
∂b∂cgad, (A.230)

and symmetrizing

H(a,b) = (ln
√
−g),ab−gcdgc(a,b)d−gcd

(,agb)c,d, (A.231)

where f,a = ∂a f which is usual partial derivative

On considering the Einstein equation

Rab−
1
2

gabR = 8πTab. (A.232)

we rewrite this into its trace reversed form

Rab = 4π(2Tab−gabT ). (A.233)

In vacuum, we need only consider the Ricci tensor decomposition. This gets expressed as

Rab = Γ
c
ab,c−Γ

c
cb,a +Γ

d
abΓ

c
dc−Γ

d
cbΓ

c
da. (A.234)
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Using the definition of the connection coefficients, we can express the Ricci tensor in terms

of the metric. Evaluating term by term

Γ
c
ab,c = ∂c

[
1
2

gcd(∂agdb +∂bgda−∂dgab)

]
=

1
2

∂cgcd(∂agdb +∂bgda−∂dgab)+
1
2

gcd(∂c∂agdb +∂c∂bgda−∂c∂dgab). (A.235)

Using the identity Γa
ab = ∂b ln

√
−g, the second and third terms of Eqn. A.234 can be

expressed as

Γ
c
cb,a = ∂a∂b ln

√
−g, (A.236)

Γ
d

abΓ
c
dc = ∂d ln

√
−g Γ

d
ab. (A.237)

Substituting all of these into Eqn. A.234 gives

Rab =
1
2

∂cgcd(∂agdb +∂bgda−∂dgab)+
1
2

gcd(∂c∂agdb +∂c∂bgda−∂c∂dgab)

−∂a∂b ln
√
−g+∂d ln

√
−g Γ

d
ab +Γ

d
cbΓ

c
da

=−1
2

gcd
∂c∂dgab +

1
2

gcd(∂c∂agdb +∂c∂bgda)︸ ︷︷ ︸
=gcd∂c∂(agb)d=gcdgc(a,b)d

+∂cgcd 1
2
(∂agdb +∂bgda−∂dgab)︸ ︷︷ ︸

=Γdab

−∂a∂b ln
√
−g+∂d ln

√
−g Γ

d
ab +Γ

d
cbΓ

c
da

=−1
2

gcdgab,cd +gcd
,cΓdab− (ln

√
−g),ab +gcdgc(a,b)d +(ln

√
−g),dΓ

d
ab +Γ

d
cbΓ

c
da.

(A.238)

Using Eqn. A.231, we have

−(ln
√
−g),ab +gcdgc(a,b)d =−H(a,b)−gcd

(,agb)c,d. (A.239)

On using Eqn. A.228, we can rewrite

(ln
√
−g),dΓ

d
ab = (Hd−gdegce

,c)Γ
d

ab = HdΓ
d

ab−gce
,cΓeab. (A.240)

Substituting these into Eqn A.238 we get

FRab =−
1
2

gcdgab,cd +gcd
,cΓdab−H(a,b)−gcd

(,agb)c,d +HdΓ
d

ab−gce
,cΓeab︸ ︷︷ ︸

=gcd
,cΓdab

+Γ
d

cbΓ
c
da

=−1
2

gcdgab,cd−H(a,b)−gcd
(,agb)c,d +HdΓ

d
ab +Γ

d
cbΓ

c
da. (A.241)
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Thus, the Einstein equations can be written as

−1
2

gcdgab,cd−H(a,b)−gcd
(,agb)c,d +HdΓ

d
ab +Γ

d
cbΓ

c
da = 4π(2Tab−gabT ), (A.242)

or more explicitly

gcd
∂c∂dgab +∂agcd

∂dgbc +∂bgcd
∂dgac +2∂(bHa)−2HdΓ

d
ab +Γ

d
cbΓ

c
da =−8π(2Tab−gabT ).

(A.243)

A.5 The 3+1 Decomposition for Other Fields

The techniques that we have described so far can be applied to other quantities in addition

to the metric, including scalar fields, U(1) gauge fields, and fluids. In this section, we

present an example of the 3+1 decomposition for some of these other fields which are part

of EMDA and which are discussed in Sec. 2.2

A.5.1 Decomposition of the dilaton field, φ

We will start with the equation of motion for the dilaton, φ .

∇a∇
a
φ =−1

2
α0 e−2α0φ F2 +

1
2

α0 e4α1φ (∇κ)2. (A.244)

First, we consider the LHS of the equation

∇a∇
a
φ = gb

a ∇b(gac
∇cφ)

= (γb
a−nanb)∇b((γ

ac−nanc)∇cφ)

= γ
b

a∇b(γ
ac

∇cφ)−nanb
∇b(γ

ac
∇cφ)− γ

b
a ∇b(nanc

∇cφ)+nanb
∇b(nanc

∇cφ).

(A.245)

Note that the derivatives of the physical field are being projected into and normal to the

spacelike hypersurfaces, Σ. Using this, we will define a new variable Π =−na∇aφ . This,

of course, is the time derivative (the velocity, essentially) of the field as measured by an

observer following the world line of na. Knowing that γab lives in Σ, the quantity γab∇b
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turns out to simply be the 3D covariant derivative, or gradient, which we will call Da and

which lives on the slices Σ. Using these definitions, we rewrite the equation for φ as

∇a∇
a
φ = Da(Da

φ)−nanb
∇b(Da

φ)− γ
b

a∇b(−na
Π)+nanb

∇b(−na
Π). (A.246)

The first term on the right hand side is simply the spatial Laplacian while the remaining

pieces all include some kind of time component. The second term on the right hand side of

Eqn. A.246, can be rewritten as nanb∇b(Daφ) = nb∇(naDaφ)− (nb∇bna)Daφ . As Da is

defined as a spatial gradient living wholly on Σ and na is orthogonal to Σ, clearly naDaφ = 0.

Using the definition of na, nb∇bna = Da lnα . So we have nanb∇b(Daφ) =−Da lnαDaφ .

Turning to the third term on the RHS of Eqn. A.246, we see that

γ
b

a∇b(na
Π) = γ

b
ana(∇bΠ)+ γ

b
a (∇bna)Π = γ

b
a(−Ka

b)Π =−K Π,

where we have used the fact that γb
ana = 0 and the definition of the extrinsic curvature

Kab =−γa
cγb

d∇cnd and that its trace is K = γabKab.

The final term on the RHS in Eqn. A.246 is

nanb
∇b(na

Π) = nanb (∇bna)Π+nananb
∇bΠ = nb

∇bΠ, (A.247)

where we have used nana =−1 and the orthogonality between na and the extrinsic curvature

living on Σ. Using all of these, the LHS of equation for φ can be written as

∇a∇
a
φ = na

∇aΠ+
1
α

Da(αDa
φ)−KΠ. (A.248)

In order to consider the RHS of the dilaton equation, we must also consider the 3+1 split

of the Maxwell tensor, Fab. Of course, we follow an analogous approach in that we project

along both free indices:

Fab = ga
cgb

dFcd = (γa
c−nanc)(γb

d−nbnd)Fcd

= γa
c
γb

dFcd−nancFcdγ
d
b − γ

c
aFcdnbnd +nancnbndFcd. (A.249)

The fourth term on the RHS vanishes by the antisymmetry of Fcd . We define the quantity

⊥Ea = γa
bFbcnc and recognize it as the electric 3-vector measured by an observer moving
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normal to the spatial hypersurfaces. We also make the definition εabcBc ≡ γa
cγb

dFcd

which identifies the purely spatial components of the Maxwell tensor as the magnetic field

components on Σ. Combining these, we can write

Fab = εabc⊥Bc +na⊥Eb−nb⊥Ea. (A.250)

Straightforward computation then shows

F2 = 2
[
(⊥B)2− (⊥E)2)

]
. (A.251)

Kinetic terms such as (∇κ)2 can be decomposed in a now obvious way

(∇κ)2 ≡ ∇aκ∇
a
κ = ga

b
∇bκgca

∇cκ

= (γb
a −nbna)∇bκ(γca−ncna)∇cκ

= Da
κDaκ− (Ξ)2, (A.252)

where we have used naγab = 0 and the previously made definition of Ξ.

Using all of the above, the equation of motion for the dilaton φ can now be written in

terms of two first order in time equations for φ and Π given by

na
∇aφ =

1
α

(
∂tφ −β

i
∂iφ
)
=−Π, (A.253)

nb
∇bΠ =

1
α

(
∂tΠ−β

i
∂iΠ
)

=− 1
α

Da(αDa
φ)+KΠ

−α0e−2α0φ [(⊥B)2− (⊥E)2)]+
1
2

α0e4α1φ (Da
κDaκ− (Ξ)2). (A.254)

Note we have used the notation na∇a f = 1
α
(∂t−β i∂i) f for f a scalar. (This will not be true

for a higher rank tensor field.) Note as well that the definition of Ξ provides the evolution

equation for κ:

∂tκ = β
i
∂iκ−αΞ. (A.255)

We will return to this momentarily. Finally, we note that Da and ∂a both indicate partial

derivatives but Da is a spatial derivative living on Σ. In general, however, we cannot say

that Da and ∂a are equivalent.
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A.5.2 Decomposition of the axion field, κ

We now consider the axion equations

∇a

(
e4α1φ

∇
a
κ

)
= Fab(∗F)ab, (A.256)

or we can rewrite the equations into

∇a∇
a
κ =−4α1∇aφ∇

a
κ + e−4α1φ Fab(∗F)ab. (A.257)

For LHS of the equations, we use a completely analogous manner in A.5.1, Note that in

a completely analogous manner, ∇a∇aκ can be decomposed as

∇a∇
a
κ = nb

∇b Ξ+
1
α

Da(αDa
κ)−K Ξ, (A.258)

where we define the auxiliary variable, Ξ =−na∇aκ .

Using our previous results, it is straightforward to show that the decomposition of the

term on the RHS involving κ becomes

∇aφ∇
a
κ = Da

κDaφ −ΠΞ,

Using earlier definitions, it is tedious but straightforward to verify that the contraction

of the Maxwell tensor with its dual is the usual ~E ·~B invariant, or in our notation

Fab(∗F)ab = 4⊥Ec⊥Bc. (A.259)

Using all of the above, the equation of motion for the axion, κ , can be written as

nb
∇bΞ =− 1

α
Da(αDa

κ)+KΞ+4α1Da
κDaφ +4α1ΠΞ+4e−4α1φ⊥Bc⊥Ec, (A.260)

or, in terms of derivatives with respect to the time coordinate

∂tΞ = β
a
∂aΞ−Da(αDa

κ)+αKΞ+4αα1Da
κDaφ +4αα1ΠΞ+4αe−4α1φ⊥Bc⊥Ec.

(A.261)
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A.5.3 Decomposition of the electromagnetic field equation

We will next consider the equations for the electromagnetic field

∇a

(
e−2α0φ Fab

)
=−(∗F)ab

∇aκ, (A.262)

or we rewrite the equations into more relevant form for the decomposition.

∇aFab = 2α0(∇aφ)Fab− e2α0φ (∇aκ)(∗F)ab. (A.263)

Again, the procedure has already been outlined and we will not follow each step. As this is

a vector equation, we must decompose it along and perpendicular to the spatial slices, Σ.

To this end, we contract Eqn. A.263 along na and γab separately. The first will give us an

evolution equation and the second a constraint equation. With work, we can show that the

EM equation contracted with the normal vector, na, becomes

Di⊥E i = 2α0(Diφ)⊥E i + e2α0φ (Diκ)⊥Bi. (A.264)

Likewise, the EM equation projected into the spatial slice with γbc is

γbcDa⊥Fab +Kac⊥Ea +⊥Fa
c Da lnα +K⊥Ec

+nd
∇d⊥Ec−2α0Π⊥Ea

γbc− e2α0φ
Ξ⊥Ba

γbc = 0. (A.265)

Rearranging, we can express both equations as

Da⊥Fab = 2α0Π⊥Ea + e2α0φ
Ξ⊥Ba (A.266)

nd
∇d⊥Ec =−Kac⊥Ea−⊥Fa

c Da lnα−K⊥Ec. (A.267)

These equations are only half the Maxwell equations; namely the sourced EM equation.

We have the homogeneous Maxwell equations which we need to decompose this in an

analogous way as for the Fab equation.

In particular, we write the equation as

∇a(∗F)ab = 0, (A.268)
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and project it again against nb and γbc. We follow the same procedure as for the Fab

equation. On contracting with nb, we can get this immediately with the definition of

⊥Ba =−γa
b (∗F)bcnc

nb∇a(∗F)ab =−Da⊥Ba = 0. (A.269)

This is a divergence free condition for the magnetic field (in more familiar notation we

might say ∇ ·B = 0). On contraction with γbc, we can write

γbc∇a(∗F)ab = γbcDa⊥(∗F)ab−Kac⊥Ba +⊥(∗F)a
cDa lnα−K⊥Bc−nd

∇d⊥Bc = 0.

(A.270)

Thus, it gives

Da⊥(∗F)ab = 0, (A.271)

nd
∇d⊥Bc =−Kac⊥Ba +⊥(∗F)a

cDa lnα−K⊥Bc. (A.272)

In addition to this, we incorporate with constraint damping terms. The necessity of

additional constraint damping terms is discussed in Sec. 2.2.3. In this appendix, we focus on

the decomposition technique. We have a new set of EM equations with constraint dampings

∇a(Fab +gab
Ψ)−2α0(∇aφ)Fab + e2α0φ (∇aκ)(∗F)ab = η1nb

Ψ, (A.273)

∇a((∗F)ab +gab
Φ) = η2nb

Φ, (A.274)

where η1 and η2 are positive real constants.

We follow our earlier techniques for decomposing this equation. Indeed, most of the

terms have already been decomposed. We need only consider the decomposition of the

constraint damping fields. After a little bit of work, we have

na
∇aΨ+Da⊥Ea−2α0(Dcφ)⊥Ec− e2α0φ (Dcκ)⊥Bc =−η1Ψ, (A.275)

na
∇aΦ−Da⊥Ba =−η2Φ. (A.276)

In terms of time derivatives, these equations become

∂tΨ = β
a
∂aΨ−αDa⊥Ea +2αα0(Dcφ)⊥Ec +αe2α0φ (Dcκ)⊥Bc−αη1Ψ, (A.277)

∂tΦ = β
a
∂aΦ+αDa⊥Ba−αη2Φ. (A.278)
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Combining these with Eqns. A.265 and A.270, we have

nd
∇d⊥Ec =−γbcDa⊥Fab−Kac⊥Ea−⊥Fa

c Da lnα−K⊥Ec+

+2α0Π⊥Ea
γbc + e2α0φ

Ξ⊥Ba
γbc−DcΨ, (A.279)

nd
∇d⊥Bc = γbcDa⊥(∗F)ab−Kac⊥Ba +⊥(∗F)a

cDa lnα−K⊥Bc +DcΦ0. (A.280)

Here we need to evaluate na∇a⊥Ab in order to write the time derivative term in scalar

form. Since ⊥Ab is a vector, we cannot write this as in the scalar field case. Let f a be an

arbitrary spatial vector. We want to show

γbcna
∇a f b = γbc(na

∂a f b−Kb
a f a +

1
α

f a
∂aβ

b). (A.281)

To show this, we use the definition of the Lie derivative:

Lxya ≡ xb
∇bya− yb

∇bxa = xb
∂bya− yb

∂bxa. (A.282)

From the RHS of Eqn. A.281, we have

na
∂a f b−Kb

a f a +
1
α

f a
∂aβ

b =
1
α
(∂t f b−β

i
∂i f b)−Kb

a f a +
1
α

f a
∂aβ

b

=− 1
α

Lβ f b− f aKb
a +

1
α

∂t f b,

while from the LHS of Eqn. A.281, we have

na
∇a f b = na

∇a f b− f a
∇anb + f a

∇anb = Ln f b + f a
∇anb.

Combining these results gives

γbc(Ln f b + f a
∇anb) = γbc(−

1
α

Lβ f b− f aKb
a +

1
α

∂t f b). (A.283)

On evaluating this, we get

γbc f a
∇anb = γbc f d(γa

d−nand)∇anb = γbc f d
γ

a
d∇anb− γbc f dndna

∇anb

= f d(γbcγ
a

d∇anb) =− f dKdc. (A.284)
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Because f d is an arbitrary spatial vector, f dnd = 0, and therefore we can rewrite Eqn. A.283

as

γbc(Ln f b +
1
α

Lβ f b) = γbc(
1
α

∂t f b− f a
∇anb− f aKb

a )

= γbc
1
α

∂t f b + f dKdc− f a
γbcKb

a

= γbc
1
α

∂t f b. (A.285)

Alternatively, we could also write this as

γbc(αLn +Lβ ) f b = γbc∂t . (A.286)

By the definition of na and β a, αna +β a = α

(
1
α
,−β i

α

)
+(0,β i) = (1,0,0,0) = ta. And

using the property of the Lie derivative

(αLn +Lβ ) f b = Lαn+β f b = Lt f b = ta
∂a f b− f a

∂atb = ∂t f b, (A.287)

which shows that Eqn. A.281 is indeed correct. Using this property, we can write

na
∇a⊥Eb = na

∂a⊥Eb−Kb
a⊥Ea +

1
α
⊥Ea

∂aβ
b. (A.288)

This can be applied to the electric and magnetic spatial vectors. To sum up, the decomposi-

tion of the EM equations becomes

na
∇a⊥Eb =− 1

α
Da(α⊥Fab)−⊥EaKb

a +⊥EbK−Db
Ψ−2α0[Π⊥Eb− ε

abcDaφ⊥Bc]

− e2α0φ [Ξ⊥Bb +DaK⊥(∗Fab)], (A.289)

na
∇a⊥Bb =

1
α

Da(αε
abc⊥Ec)−⊥BaKb

a +⊥BbK +Db
Φ. (A.290)

In terms of time derivatives we can write these as

∂t⊥Eb = β
i
∂i⊥Eb−⊥Ea

∂aβ
b−Da(αε

abc⊥Bc)+α⊥EbK−αDb
Ψ

−2αα0[Π⊥Eb− ε
abcDaφ⊥Bc]−αe2α0φ [Ξ⊥Bb +DaKε

abc⊥Ec], (A.291)

∂t⊥Bb = β
i
∂i⊥Bb−⊥Ba

∂aβ
b +Da(αε

abc⊥Ec)+α⊥BbK +αDb
Φ. (A.292)



Appendix B

Black Hole Initial data for EMDA

In this appendix, we describe several analytic BH solutions as possible initial data. We

present several different types of BHs in both EMD and EMDA theories. First, we explore

several different BH solutions for EMD then we review a BH solution for EMDA.

To use these BH solutions, they will need to be adapted to gauge or coordinate conditions

that are useful for numerical simulations. In particular, we will need to consider BH initial

data in so called quasi-isotropic coordinates. For the single BHs that we will consider, the

(r,θ) part of the metric will, in general, be conformally related to

dr2

∆(r)
+dθ

2, (B.1)

where ∆(r) is some radial factor related to the labeling of surfaces of constant r. For

numerical purposes, this coordinate choice can be prone to singularity formation. So, a

better coordiate system, again for numerical purposes, would be of the form

dr2

∆(r)
+dθ

2 =
1
r̄2 (dr̄2 + r̄2dθ

2). (B.2)

We denote r̄ as a new radial coordinate which can be used to express this portion of

the metric in a form that is conformally flat and with respect to standard circular type

coordinates. This implies a coordinate transformation defined as∫ dr̄
r̄

=
∫ dr√

∆
, (B.3)
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such that r̄→ r as r̄→ ∞. We will generally rewrite our BH initial data in terms of this

isotropic coordinate.

We also note that because our use of the BSSN variables in our code will be based

on a Cartesian style coordinate system, this will be based the istropic radial coordinate

and standard angular coordinate (r̄, θ , ϕ). (r̄). The resulting Cartesiian coordinate system

will be denoted x̄, ȳ, z̄. We will also continue to reference the Boyer-Lindquist type r

for convenience, but it should be understood that r is not a coordinate here but rather a

complicated function of r̄ and other related coordinates.

B.1 The Garfinkle-Horowitz-Strominger Black Hole

Garfinkle, Horowitz, and Strominger (GHS) [40] constructed a charged EMD black hole

(α0 = 1). This BH can be electrically or magnetically charged. We will consider the

magnetically charged case first. The solution to the static, spherically symmetric, EMD

equations with a regular event horizon and magnetic charge takes the following form in

Schwarzschild like coordinates

ds2 =−
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r
(

r− Q2
me−2φ0

M

)
dΩ

2, (B.4)

Fθϕ = Qm sinθ , (B.5)

e−2φ = e−2φ0

(
1− Q2

me−2φ0

Mr

)
, (B.6)

where Qm is the magnetic charge, M is the ADM mass, and φ0 is the asymptotic value of

the dilaton. There is a curvature singularity at r = Q2
me−2φ0/M and a regular horizon at

r = 2M if Q2
m < 2M2e2φ0 which becomes singular when the inequality is saturated, in other

words, the extremal limit.

There is a discrete electromagnetic duality in this theory which leaves the equations of

motion unchanged although the action does change as the F2 term picks up a minus sign.
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The transformation is (with α0 = 1)

Fab→
1
2

e−2φ
εabcdFcd, (B.7)

φ →−φ , (B.8)

gab→ gab. (B.9)

In this theory, this amounts to a means of generating new solutions. In particular, one can

take the above magnetically charged solution and generate an electrically charged black

hole solution that is also static and spherically symmetric. The solution is

ds2 =−
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r
(

r− Q2
ee2φ0

M

)
dΩ

2, (B.10)

Ftr =
Qm

r2 e−2φ0 =
Qe

r
, (B.11)

e2φ = e2φ0

(
1− Q2

ee2φ0

Mr

)
, (B.12)

where Qe is the electric charge (up to a constant), and M, φ0 are the ADM mass and

(negative) asymptotic value of the dilaton which are the same as in the magnetically

charged case. There is a curvature singularity at r = Q2
ee−2φ0/M and a regular horizon at

r = 2M if Q2
e < 2M2e2φ0 which becomes singular in the extremal limit.

Another generalization to consider is the case of these same black holes across theories

i.e. with general α0. In this case, the solution to the static, spherically symmetric, EMD

equations with a regular event horizon and magnetic charge takes the form (with β =

2α2
0/(1+α2

0 ))

ds2 =−
(

1− r+
r

)(
1− r−

r

)1−β

dt2 +
(

1− r+
r

)−1(
1− r−

r

)β−1
dr2

+ r2
(

1− r−
r

)β

dΩ
2, (B.13)

Fθϕ = Qm sinθ , (B.14)

e−2α0φ = e−2α0φ0
(

1− r−
r

)β

, (B.15)

where r+ and r− give the outer and inner event horizons and their combination gives the
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ADM mass, M, magnetic charge, Qm, and asymptotic dilaton value, φ0, as follows

2M = r+(1−β )r−, (B.16)

2Q2
m = e2α0φ0r+r−(2−β ). (B.17)

Note that for α0 = 0 (β = 0) this reduces to Reissner-Nordstrom with a constant dilaton

whilc α0 = 1 (β = 1) reproduces the above magnetic solution for low energy string theory.

Again, we can use a discrete electromagnetic duality to generate the electrically charged

solution. The transformation is

Fab→
1
2

e−2α0φ
εabcdFcd, (B.18)

φ →−φ , (B.19)

gab→ gab. (B.20)

Taking the previous magnetically charged solution then we get

ds2 =−
(

1− r+
r

)(
1− r−

r

)1−β

dt2 +
(

1− r+
r

)−1(
1− r−

r

)β−1
dr2

+ r2
(

1− r−
r

)β

dΩ
2, (B.21)

Ftr =
Qm

r2 e−2α0φ0 =
Qe

r
, (B.22)

e−2α0φ = e2α0φ0
(

1− r−
r

)β

, (B.23)

where, again, r+ and r− give the outer and inner event horizons and their combinations

gives the ADM mass, M, electric charge, Qe, and asymptotic value of the dilaton, φ0, as

follows

2M = r+(1−β )r−, (B.24)

2Q2
e = e−2α0φ0r+r−(2−β ). (B.25)

Note that we have not changed the value of the constant, φ0, in the duality transformation. It

was originally introduced in the magnetic case as the asymptotic value of the dilaton. Notice

that here, under the duality transformation, it is the negative of the asymptotic value of the
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dilaton in the electric case. In a similar vein, while Qe is a constant, it is not, in fact, strictly

the electric charge on doing the surface integral at infinity of the relevant divergenceless

quantity. That woudl actually be Qm without the exponential factor. Nonetheless, we are

going to call Qe the electric charge and understand that it is effectively in slightly different

units.

Now, express these solutions in isotropic coordinates. Define a new radial coordinate r̄

such that

dr̄
r̄

=
dr√

(r− r+)(r− r−)
, (B.26)

On performing the integration and letting r̄ approach r at spatial infinity, we get

r =
1
r̄

[(
r̄+

r++ r−
4

)2

− r+r−
4

]
, (B.27)

where we have

r+ = M

[
1+
(

1− (1−α
2
0 )

Q2

M2

)1/2
]
, (B.28)

r− =
Q2

M2 (1+α
2
0 )

[
1+
(

1− (1−α
2
0 )

Q2

M2

)1/2
]−1

, (B.29)

where Q2 = Q2
me−2α0φ0 for the magnetic case and Q2 = Q2

ee2α0φ0 for the electric case.

With this isotropic, radial coordinate, the metric for both magnetic and electric solutions

takes the form

ds2 =−α
2dt2 +χ

−1(dr̄2 + r̄2dΩ
2)

=−(r̄− r̄H)
2(r̄+ r̄H)

2(1−β )

(r̄+ r̄H)2−β (r̄+ r̄2)2−β
dt2 +

1
r̄4 (r̄+ r̄1)

2−β (r̄+ r̄2)
2−β (r̄+ r̄H)

2β [dr̄2 + r̄2dΩ
2],

(B.30)

where we have defined

r̄1 =
1
4
(
√

r+−
√

r−)2, (B.31)

r̄2 =
1
4
(
√

r++
√

r−)2, (B.32)

r̄H =
1
2
(r+− r−), (B.33)
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with r̄H being the radial location of the horizon in these coordinates.

In the magnetically charged case, the EM and dilaton fields take the form

Fθϕ = Qm sinθ , (B.34)

⊥Br̄ = Qm
r̄4

(r̄+ r̄1)3(r̄+ r̄2)3

[
(r̄+ r̄1)(r̄+ r̄2)

(r̄+ r̄H)2

]3β/2

=
Qm

r̄2 χ
3/2, (B.35)

e−2α0φ = e−2α0φ0
(r̄+ r̄H)

2β

(r̄+ r̄1)β (r̄+ r̄2)β
. (B.36)

In the electrically charged case, the EM and dilaton fields take the form

Ftr̄ = Qe
(r̄2− r̄2

H
(r̄+ r̄1)2(r̄+ r̄H)2 , (B.37)

⊥E r̄ =−Qe
r̄4

(r̄+ r̄1)3(r̄+ r̄2)3

[
(r̄+ r̄1)(r̄+ r̄2)

(r̄+ r̄H)2

]β/2

=−Qe
r̄2

(r̄+ r̄1)2(r̄+ r̄2)2 χ
1/2,

(B.38)

e2α0φ = e2α0φ0
(r̄+ r̄H)

2β

(r̄+ r̄1)β (r̄+ r̄2)β
. (B.39)

It turns out there is quantity associated with the dilaton that is also conserved. It is not

an additional, independent conserved quantity as it is defined in terms of other conserved

quantities. GHS define this dilaton charge according to

D =
1

4π

∫
dΣ

a
∇aφ , (B.40)

where the integral is over an S2 at infinity. In the spherically symmetric magnetic case with

α0 = 1 and a nonzero asymptotic value for the dilaton, this becomes

D =
1

4π
lim
r→∞

∫
S2

∂rφ

[
r
(

r− Q2
me−2φ0

M

)]
sinθdθdϕ =−Q2

me−2φ0

2M
. (B.41)

For the electric case, this dilaton charge becomes

D =− 1
4π

lim
r→∞

∫
S2

∂rφ

[
r
(

r− Q2
ee2φ0

M

)]
sinθdθdϕ =

Q2
ee2φ0

2M
. (B.42)

We can extend this with general α0. For the magnetic case, the dilaton charge is

D =−α0Q2
m

M
1

1+
√

1+(α0−1)Q2
m/M2

. (B.43)
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For the electric case, the dilaton charge becomes

D =
α0Q2

e
M

1

1+
√

1+(α0−1)Q2
e/M2

. (B.44)

Note that as α0→ ∞, the dilaton charge is just the EM charge

lim
α0→∞

D =−|Qm|, (B.45)

(or Qe for the electrically charged case). As well, in the limit of infinite α0, the spherically

symmetric metric becomes (with β → 2)

ds2 =−
(

1− r+
r

)(
1− r−

r

)−1
dt2 +

(
1− r+

r

)−1(
1− r−

r

)
dr2 +(r− r−)2dΩ

2. (B.46)

while the dilaton become φ = φ0. The form for the EM field in either the electric or

magnetic case is unchanged. However, the charge in each case is proportional to 2−β

which goes to zero in the limit. Thus, the EM field vanishes. Also note that if we define

rs = r−r− with r+−r−= 2M, then we can identify this metric as the Schwarzschild metric

with respect to the new Schwarzschild radial coordinate rs.

B.2 The Horne-Horowitz-Kaluza-Klein Black Hole

The Horne-Horowitz-Kaluza-Klein (HHKK) black hole is a rotating member of the EMD

family of theories with α0 =
√

3. It is constructed in the following way [41]. We begin by

working in 5D GR. We take a product of 4D Kerr with R. The resulting 5D manifold is, of

course, a vacuum solution to the 5D Einstein equations. Now take this solution and make a

simple Lorentz boost in the extra dimension (which we will denote as x5):

t ′ = γ(t− vx5), (B.47)

x′ = γ(x5− vt). (B.48)

This boosted product manifold is a 5D BH and a solution which can be dimensionally

reduced to 4D according to usual the Kaluza-Klein compactification prescription. On
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performing the compactification, we can re-interpret the solution, now in 4D, in terms of a

4D metric with the additional Maxwell field and dilaton. The electrically charged solution

in this case is

ds2 =−Bρ2

Σ
dt2 +

Σ

Bρ2 sin2
θ

[
dϕ− 2amr

Σ
√

1− v2
dt
]
+Bρ

2
(

dr2

∆
+dθ

2
)
, (B.49)

Aadxa =
v

2(1− v2)

2mr
B2ρ2 dt− av

2
√

1− v2

2mr
B2ρ2 sin2

θdϕ, (B.50)

φ =−
√

3
2

lnB, (B.51)

where each quantity is defined with respect to the Boyer-Lindquist radial type coordinate, r:

ρ
2 = r2 +a2 cos2

θ , (B.52)

∆ = r2−2mr+a2, (B.53)

B2 = 1+
v2

1− v2
2mr
ρ2 , (B.54)

Σ = B2
ρ

2(r2 +a2)+2mra2 sin2
θ . (B.55)

Here, the constants m, a, and v are parameters carried over from the 4D Kerr solution and

the subsequent boost. The ADM mass and spin parameters of this BH solution are

M = m
[

1+
v2

2(1− v2)

]
, (B.56)

Qe =
mv

1− v2 , (B.57)

J =
ma√
1− v2

. (B.58)

The event horizon and ergosphere are in the same coordinate locations as in Kerr, i.e. ∆ = 0

and ∆ = a2 sin2
θ respectively. The radial isotropic coordinate is again defined by

∫ dr̄
r̄

=
∫ dr√

∆
, (B.59)

so that

r =
1
r̄

[(
r̄+

m
2

)2
− a2

4

]
. (B.60)
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The metric determinant remains
√
−g = Bρ2 sinθ while the components of the inverse

metric are

gtt =− Σ

∆Bρ2 , (B.61)

gtϕ =− 2amr

∆Bρ2
√

1− v2
, (B.62)

gϕϕ =
1

B∆sin2
θ

(
1− 2mr

ρ2

)
, (B.63)

grr =
∆

Bρ2 , (B.64)

gθθ =
1

Bρ2 . (B.65)

The nonzero components of the extrinsic curvature are

Krϕ =
amsin2

θ√
1− v2

1
Bρ2

(∂rΣ)r−Σ√
∆Bρ2Σ

, (B.66)

Kθϕ =
amsin2

θ√
1− v2

1
Bρ2

∂θ Σ√
∆Bρ2Σ

. (B.67)

The nonzero components of the Maxwell tensor are

Ftr =
mv

1− v2
2r2−ρ2

B4ρ4 , (B.68)

Ftθ =− mv
1− v2

2r
B4ρ4 a2 sinθ cosθ , (B.69)

Frϕ =
amv√
1− v2

2r4−ρ2

B4ρ4 sin2
θ , (B.70)

Fθϕ =− 2amrv√
1− v2

1
B4ρ4 (B

2
ρ

2 +a2 sin2
θ)sinθ cosθ . (B.71)

We could rewrite the components of the extrinsic curvature in Cartesian like coordinates
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(x̄, ȳ, z̄) as

Kx̄x̄ =−
2x̄ȳ
r̄ρ̄3

(
ρ̄

∂ r
∂ r̄

Krϕ +
z̄
r̄

Kθϕ

)
, (B.72)

Kx̄ȳ =−
x̄2− ȳ2

r̄ρ̄3

(
ρ̄

∂ r
∂ r̄

Krϕ +
z̄
r̄

Kθϕ

)
, (B.73)

Kx̄z̄ =−
ȳ

r̄ρ̄2

(
z̄
∂ r
∂ r̄

Krϕ −
ρ̄

r̄
Kθϕ

)
, (B.74)

Kȳȳ =−Kx̄z̄, (B.75)

Kȳz̄ =−
x̄
ȳ

Kx̄z̄, (B.76)

Kz̄z̄ = 0. (B.77)

Similar to the above, the components of Maxwell components in Cartesian like coordinates

are

Ftx̄ =
x̄

r̄ρ̄

(
ρ̄

∂ r
∂ r̄

Ftr +
z̄
r̄

Ftθ

)
(B.78)

Ftȳ =
ȳ
x̄

Ftx̄ (B.79)

Ftz̄ =
1
r̄

(
z̄
∂ r
∂ r̄

Ftr−
ρ̄

r̄
Ftθ

)
(B.80)

Note that these components refer to the electric field. The remaining components are

(implies B field)

Fx̄ȳ =
1

r̄ρ̄

(
ρ̄

∂ r
∂ r̄

Frϕ +
z̄
r̄

Fθϕ

)
, (B.81)

Fx̄z̄ =
ȳ

r̄ρ̄

(
z̄
∂ r
∂ r̄

Frϕ −
ρ̄

r̄
Fθϕ

)
, (B.82)

Fȳz̄ =−
x̄
ȳ

Fx̄z̄. (B.83)

The components of the shift vector are

β
x̄ =−ȳβ

ϕ , (B.84)

β
ȳ = x̄β

ϕ , (B.85)

β
z̄ = 0. (B.86)
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Because of the discrete electromagnetic duality present in EMD, we can also write

down a magnetically charged black hole solution as we could for the spherically symmetric

case. The duality transformation is as before and the metric takes the same form as for the

electric case. The Maxwell and dilaton fields in the magnetically charged case become

Aadx2 =− amv√
1− v2

cosθ

ρ2 dt +
mv

1− v2
r2 +a2

ρ2 cosθdϕ, (B.87)

φ =

√
3

2
lnB. (B.88)

And, the nonzero components of the Maxwell tensors are

Ftr =−
2amrv√
1− v2

cosθ

ρ4 , (B.89)

Ftθ =
amv√
1− v2

2r2−ρ4

ρ4 sinθ , (B.90)

Frϕ =− 2mrv
1− v2

a2 sin2
θ cosθ

ρ4 , (B.91)

Fθϕ =− mv
1− v2

2r2−ρ2

ρ4 (r2 +a2)sinθ . (B.92)

This represents a magnetic monopole with a radial field and magnetic charge Qm =

−mv/(1−v2). Radial and poloidal electric field components as well as a poloidal magnetic

field component are generated by the rotation of the black hole

B.3 The Rasheed-Larsen Black Hole

Rasheed [43] and Larsen [42] present a dyonic generalization of the above rotating, charged,

EMD black hole for α0 =
√

3. We refer the reader to those works for the details of the

derivations. We do note that we largely follow Laresn’s notation. This solution has metric,
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dilaton and gauge potential such that

ds2 =− H3√
H1H2

(dt + B̃dφ)2 +
√

H1H2

[
1
∆

dr2 +dθ
2 +

∆

H3
sin2

θdϕ
2
]
, (B.93)

φ =−
√

3
2

ln
√

H2

H1
, (B.94)

Aadxa =− 1
H2

[
Q
(

r+
p−2m

2

)
+q

√
q(p2−4m2)

16m2(p+q)
acosθ

]
dt

− 1
H2

[
P(H2a2 sin2

θ)cosθ

+

√
p(q2−4m2)

16m2(p+q)

(
pr−m(p−2m)

q(p2−4m2)

p+q

)
asin2

θ

]
dϕ, (B.95)

where each quantity is defined (in Boyer-Lindquist radial type coordinate r)

H1 = r2 +a2 cos2
θ + r(p−2m)

p(p−2m)(q−2m)

2(p+q)
− p

√
(q2−4m)(p2−4m)

2m(p+q)
acosθ ,

(B.96)

H2 = r2 +a2 cos2
θ + r(q−2m)

p(p−2m)(q−2m)

2(p+q)
+

q
√

(q2−4m)(p2−4m)

2m(p+q)
acosθ ,

(B.97)

H3 = r2 +a2 cos2
θ −2mr, (B.98)

B̃ =
√

pg
(pq+4m2)r−m(p−2m)(q−2m)

2m(p+q)H3
asin2

θ , (B.99)

∆ = r2 +a2−2mr, (B.100)

and the constants m and a are the mass and rotation parameters carried over from the 4D

Kerr solution. The constants p and q define the magnetic and electric charges.

P2 =
p(p2−4m)

4(p+q)
, (B.101)

Q2 =
q(q2−4m)

4(p+q)
. (B.102)

Note that p > 2m and q > 2m in order to obtain real values of P and Q. The zero magnetic

charge case or the zero electric charge case correspond to p = 2m and q = 2m respectively.
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The mass and angular momentum of this spacetime are

M =
p+q

4
, (B.103)

J =
√

pq
pq+4m2

4m(p+q)
a. (B.104)

Alternative forms of the metric can be written as

ds2 =−
√

H1H2∆

Σpq
dt2 +

Σpq sin2
θ√

H1H2

[
dϕ−

a
√

pq(c0(r−m)+ r)
Σpq

dt
]2

+
√

H1H2

(
dr2

∆
+dθ

2
)

(B.105)

=−ρ2−2mr√
H1H2

dt2−
2asin2

θ
√

pq(c0(r−m)+ r)
√

H1H2
dtdϕ +

√
H1H2

(
dr2

∆
+dθ

2
)

+
Σpq sin2

θ√
H1H2

dϕ
2, (B.106)

where we define

Σpq = (r2 +a2)

[
ρ

2 + r(q−2m)+ r(p−2m)+
1
2
(p−2m)(q−2m)

]
+2mra2 sin2

θ

+∆c1(q− p)acosθ

+(p−2m)(q−2m)

[
r2 +

r
2(p+q)

(q(p−2m)+ p(q−2m))

]
+ pq(c2

0m2− c2
1a2)

(B.107)

ρ
2 = r2 +a2 cos2

θ , (B.108)

c0 =
(p−2m)(q−2m)

2m(p+q)
=

pq+4m2

2m(p+q)
−1, (B.109)

c1 =

√
(p2−4m2)(q2−4m2)

2m(p+q)
=
√

c0(c0+2). (B.110)

A convenient identity used in the calculations is the following:

(ρ2−2mr)Σpq + pqa2 sin2
θ(c0(r−m)+ r)2 = H1H2∆. (B.111)

Again, the event horizon and ergosphere are in the same coordinate locations as in Kerr

(like the HHKK BH case). The radial isotropic coordinate is defined by∫ dr̄
r̄

=
∫ dr√

∆
, (B.112)
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so

r =
1
r̄

[(
r̄+

m
2

)2
− a2

4

]
. (B.113)

The components of the inverse metric are

gtt =−
Σpq

∆
√

H1H2
, (B.114)

gtϕ =−
a
√

pq(c0(r−m)+ r)
∆
√

H1H2
, (B.115)

gϕϕ =
ρ2−2mr

∆
√

H1H2 sin2
θ
, (B.116)

grr =
∆√

H1H2
, (B.117)

gθθ =
1√

H1H2
. (B.118)

The nonzero components of the extrinsic curvature are

Krϕ =−
a
√

pqsin2
θ

2
√

∆Σpq
√

H1H2

[
(c0 +1)Σpq− (c0(r−m)+ r)∂rΣpq

]
, (B.119)

Kθϕ =−
a
√

pqsin2
θ

2
√

∆Σpq
√

H1H2

∂θ Σpq√
H1H2

(c0(r−m)+ r). (B.120)

The nonzero components of the Maxwell tensors are

Ftr =
Q
H2
− ∂rH2

(H2)2

[
Q
(

r+
p−2m

2

)
+q

√
q(p2−4m)

16m2(p+q)
acosθ

]
, (B.121)

Ftθ =− ∂rHθ

(H2)2

[
Q
(

r+
p−2m

2

)
+q

√
q(p2−4m)

16m2(p+q)
acosθ

]

− q
H2

√
q(p2−4m)

16m2(p+q)
asinθ , (B.122)
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Frϕ =
∂rH2

(H2)2

[
Pa2 sin2

θ cosθ +

√
p(q2−4m2)

16m2(p+q)

(
pr−m(p−2m)+

q(p2−4m2)

p+q

)
asin2

θ

]

− 1
H2

p

√
p(q2−4m2)

16m2(p+q)
asin2

θ , (B.123)

Fθϕ = Psinθ +
1

H2

[
Pa2 sinθ(sin2

θ −2cos2
θ)

−

√
p(q2−4m2)

16m2(p+q)

(
pr−m(p−2m)+

q(p2−4m2)

p+q

)
2asinθ cosθ

]

+
∂θ H2

(H2)2

[
Pa2 sin2

θ cosθ +

√
p(q2−4m2)

16m2(p+q)

(
pr−m(p−2m)+

q(p2−4m2)

p+q

)
asin2

θ

]
,

(B.124)

where derivatives are

∂rH1 = 2r+ p−2m, (B.125)

∂rH2 = 2r+q−2m, (B.126)

∂θ H1 =−2a2 sinθ cosθ + pc1asinθ , (B.127)

∂θ H2 =−2a2 sinθ cosθ −1c1asinθ , (B.128)

∂rΣpq = 2r
[

ρ
2 + r(q−2m)+ r(p−2m)+

1
2
(p−2m)(q−2m)

]
+(r2 +a2)(2r+q+ p−4m)+2ma2 sin2

θ +2(r−m)c1(q− p)cosθ

+(p−2m)(q−2m)

[
2r+

1
2(p+q)

(q(p−2m)+ p(q−2m))

]
, (B.129)

∂θ Σpq =−2(r2 +a2)a2 sinθ cosθ +4mra2 sinθ cosθ − c1(q− p)∆sinθ . (B.130)

The BSSN variables are

ds2 =−α
2dt2 + e4ξ

γ̄i j(dxi +β
idt)(dx j +β

jdt), (B.131)

where ξ is a conformal factor and det γ̄ = 1. From here, we have

α
2 =

√
H1H2∆

Σpq
, (B.132)

β
ϕ =−

a
√

pq(c0(r−m)+ r)
Σpq

. (B.133)
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We can write the metric γ̄i j in Cartesian like coordinates (with r̄2 = x̄2 + ȳ2 + z̄2, ρ̄2 =

x̄2 + ȳ2)

e12ξ =

√
H1H2Σpq

r̄6 , (B.134)

γ̄x̄x̄ =
C−2/3

ρ̄2 (x̄2C+ ȳ2), (B.135)

γ̄x̄ȳ =
x̄ȳC−2/3

ρ̄2 (C−1), (B.136)

γ̄ȳȳ =
C−2/3

ρ̄2 (ȳ2C+ x̄2), (B.137)

γ̄z̄z̄ =C1/3, (B.138)

where C = H1H2/Σpq. The components of the inverse metric are

γ̄
x̄x̄ =

C−1/3

ρ̄2 (ȳ2C+ x̄2), (B.139)

γ̄
x̄ȳ =

x̄ȳC−1/3

ρ̄2 (1−C), (B.140)

γ̄
ȳȳ =

C−1/3

ρ̄2 (x̄2C+ ȳ2), (B.141)

γ̄
z̄z̄ =C−1/3. (B.142)

The components of conformal connection coefficients are

Γ̄
x̄ =−x̄

[
C−1/3

ρ̄2 (3−C)+(r̄ sin2
θ +∂r̄ + sinθ cosθ∂θ )

C−1/3

ρ̄2

]
, (B.143)

Γ̄
ȳ =

ȳ
x̄

Γ̄
x̄, (B.144)

Γ̄
z̄ =−∂z̄C−1/3. (B.145)

We can rewrite other quantities such as the extrinsic curvature components and the

Maxwell tensor in Cartesian like coordinates in a way similar to the HHKK solution as

described in the previous section.
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B.4 The Kerr-Sen Black Hole

A rotating black hole solution also exists in EMDA for α0 = α1 = 1. Sen finds [38] this

solution in the low-energy limit of heterotic string theory. The action in this case is given,

in the string frame, as

∫
d4x
√
−gstre−2φ

(
R+4(∇φ)2− 1

12
H2−F2

)
. (B.146)

We prefer to consider things in the Einstein frame and thuse we perform the conformal

transformation to give the action in give the Einstein frame which is

∫
d4x
√
−g
(

R−2(∇φ)2− 1
12

e−4φ H2− e−2φ F2
)
. (B.147)

Note that H2 ≡ HabcHabc is the kinetic term for the 3-form field and is derivable from a

2-form gauge potential according to H = dB−A∧F where F is our U(1) gauge field in

the action and given, in turn, by F = dA.

Without derivation, Sen’s solution for the metric in Boyer-Lindquist coordinate is then

ds2 =−∆ρ2

Σ
dt2 +ρ

2
(

dr2

∆
+dθ

2
)
+

Σsin2
θ

ρ2

(
dϕ− 2amr cosh2

α

Σ
dt
)2

, (B.148)

where we use the definitions

∆ = r2−2mr+a2, (B.149)

ρ
2 = ∆−a2 sin2

θ +2mr cosh2
α, (B.150)

Σ = (ρ2 +a2 sin2
θ)2−∆a2 sin2

θ , (B.151)

and the associated gauge, dilaton and two-form fields being

Aadxa =
mr sinh2α√

2ρ2
(dt−asin2

θdϕ), (B.152)

e−Φ = e−2φ =
ρ2

r2 +a2 cos2 θ
, (B.153)

Btϕ =
2mar sinh2

α

ρ2 sin2
θ . (B.154)
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The quantities m, α , and a are integration parameters. (Note that α here is not the lapse

function.) Thus, the mass, electric charge, angular momentum, and magnetic dipole moment

of the spacetime can be expressed in terms of these parameters

M = mcosh2
α, (B.155)

Q =
m√

2
sinh2α, (B.156)

J = aM, (B.157)

µ = aQ. (B.158)

The event horizon is at rH = m+
√

m2−a2 such that a BH exists provided m2 > a2 or

M2 ≥ |J|+Q2/2. The inverse relations are

m = M− Q2

2M
, (B.159)

sinh2α =
2
√

2QM
2M2−Q2 , (B.160)

a =
J
M
. (B.161)

We choose to use the axion pseudo-scalar rather than the 3 form field H. To this end,

we need to find the expression of the 3 form field in terms of the axion field κ . To do that,

we must solve

Habc =
1
2

e4φ
ε

d
abc ∂d κ, (B.162)

where we need to know what the 3 form Habc, is in terms of its potential, the 2 form Bab.

For the normalization in the current action, the 3 form Habc is given as

Habc = ∂aBbc +∂bBca +∂cBab−2(AaFbc +AbFca +AcFab). (B.163)

From this, we obtain the following integrability conditions for the axion field κ

∂θ κ = 2e−4φ 1√
−g

1
gθθ

∂rBtφ , (B.164)

∂rκ =−2e−4φ 1√
−g

1
grr

(
∂θ Btϕ +2A2

t ∂θ

Aϕ

At

)
. (B.165)
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Integrating both above expressions gives

κ = 4masinh2
α

cosθ

r2 +a2 cos2 θ
. (B.166)

This shows self-consistency of field and this suggests that the definition above for the H

field in terms of B and A is correct.

The radial isotropic coordinate is defined by

∫ dr̄
r̄

=
∫ dr√

∆
, (B.167)

so

r̄ =
1
2
(r−m±

√
(r−m)2− (m2−a2)). (B.168)

This is the quasi-isotropic coordinates for this case. The inverse should be obtained by

r = r̄+m+
m2−a2

4r̄

=
1
r̄

[(
r̄+

m
2

)2
− a2

4

]
=

1
r̄
(r̄+ r̄1)(r̄+ r̄2), (B.169)

where r1,2 = (m±a)/2 such that r̄1 < r̄2. The metric with respect to the isotropic coordinate

becomes

ds2 =−∆ρ2

Σ
dt2 +

ρ2

r̄2 (dr̄2 + r̄2dθ
2)+

Σsin2
θ

ρ2

(
dφ − 2amr cosh2

α

Σ
dt
)2

. (B.170)

Note that now r is a function of r̄ i.e. r(r̄). All metric components depend on the isotropic
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coordinate, r̄

∆(r̄) = r2−2mr+a2 = (r−m)2− (m2−a2)

=

(
r̄+

m2−a2

4r̄

)2

− (m2−a2) =

(
r̄+

r̄1r̄2

r̄

)2

−4r̄1r̄2

= r̄2−2r̄1r̄2 +
r̄2

1 r̄2
2

r̄2

=

(
r̄− r̄1r̄2

r̄

)2

=
1
r̄2 (r̄

2− r̄1r̄2)
2, (B.171)

ρ
2(r̄) = ∆−a2 sin2

θ +2mr cosh2
α = r2 +a2 cos2

θ +2mr sinh2
α

=
1
r̄2 (r̄+ r̄1)

2(r̄+ r̄2)
2 +a2 cos2

θ +
2m
r̄
(r̄+ r̄1)(r̄+ r̄2)sinh2

α, (B.172)

Σ(r̄) = (ρ2(r̄)+a2 sin2
θ)2−∆(r̄)a2 sin2

θ . (B.173)

The nonzero components of the inverse metric are

gtt =− Σ

∆ρ2 , (B.174)

gtφ =−2amr cosh2
α

∆ρ2 , (B.175)

gϕϕ =
1

∆sin2
θ

(
1− 2mr cosh2

α

ρ2

)
, (B.176)

grr =
∆

ρ2 , (B.177)

gθθ =
1

ρ2 . (B.178)

The nonzero components of the extrinsic curvature are

Krϕ = amsin2
θ cosh2

α
(∂rΣ)r−Σ

ρ2
√

∆ρ2Σ
, (B.179)

Krϕ = amsin2
θ cosh2

α
∂θ Σ

ρ2
√

∆ρ2Σ
. (B.180)
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The nonzero components of the Maxwell fields are

Ftr =
m√

2
sinh2α

(
r2−a2 cos2 θ

ρ4

)
, (B.181)

Ftθ =−
√

2msinh2α

(
r

ρ4

)
a2 sinθ cosθ , (B.182)

Frϕ =
am√

2
sinh2α

(
r2−a2 cos2 θ

ρ4

)
sin2

θ , (B.183)

Fθϕ =−
√

2masinh2α

(
r

ρ4

)
(r2 +a22mr sinh2

α)sinθ cosθ . (B.184)

Again, the BSSN variables are written such that

ds2 =−α
2dt2 + e4ξ

γ̄i j(dxi +β
idt)(dx j

β
jdt). (B.185)

So, we have

α
2 =

∆ρ2

Σ
, (B.186)

β
ϕ =−2amr cosh2

α

Σ
, (B.187)

with respect to the radial isotropic coordinates. Calculate derivatives of metric quantities

that we need in several places

∂r(ρ
2) = 2r+2msinh2

α, (B.188)

∂θ (ρ
2) =−2a2 sinθ cosθ , (B.189)

∂rΣ = 4ρ
2(r+msinh2

α)+2a2 sin2
θ(r+mcosh2α), (B.190)

∂θ Σ =−2∆a2 sinθ cosθ . (B.191)

We can write the metric γ̄i j in Cartesian like coordinates (with r̄2 = x̄2 + ȳ2 + z̄2, ρ̄2 =
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x̄2 + ȳ2)

e12φ̄ =
ρ2Σ

r̄6 , (B.192)

γ̄x̄x̄ =
C−2/3

ρ̄2 (x̄2C+ ȳ2), (B.193)

γ̄x̄ȳ =
x̄ȳC−2/3

ρ̄2 (C−1), (B.194)

γ̄ȳȳ =
C−2/3

ρ̄2 (ȳ2C+ x̄2), (B.195)

γ̄z̄z̄ =C1/3 (B.196)

where C = ρ4/Σ. The components of the inverse metric are

γ̄
x̄x̄ =

C−1/3

ρ̄2 (ȳ2C+ x̄2), (B.197)

γ̄
x̄ȳ =

x̄ȳC−1/3

ρ̄2 (1−C), (B.198)

γ̄
ȳȳ =

C−1/3

ρ̄2 (x̄2C+ ȳ2), (B.199)

γ̄
z̄z̄ =C−1/3. (B.200)

The components of the conformal connection coefficients are

Γ̄
x̄ =−x̄

[
C−1/3

ρ̄2 (3−C)+(r̄ sin2
θ +∂r̄ + sinθ cosθ∂θ )

C−1/3

ρ̄2

]
, (B.201)

Γ̄
ȳ =

ȳ
x̄

Γ̄
x̄, (B.202)

Γ̄
z̄ =−∂z̄C−1/3. (B.203)

We can rewrite other quantities such as the extrinsic curvature components and the

components of the Maxwell tensor in Cartesian like coordinates in a way similar to the

HHKK solution as described in the previous section.

Of course, there are other possible BH solutions in different energy sector and even

higher dimensions. Searching more black hole forms with respect to EMD and EMDA can

give more parameterization of theories that we described so far.



Appendix C

Sparse Wavelet Representation via

Iterated Interpolating Wavelets

In this Appendix, we review the wavelet method that we use in this work. We will describe

the essential ingredients that are crucial in order to obtain wavelet adaptivity. Two of these

essential ingredients are the construction of iterative interpolating wavelets and the notion

of sparse wavelet representations for the numerical grid [199, 200, 201].. Both of these we

describe below.

C.1 Interpolating Bases

The starting point for our wavelet method are iterated interpolating functions. Before

we define these functions, we need to provide a mathematical definition of the notion of

grids. To begin, let us work in one dimension and assume that we have a set of points (or

grids) on the real line described by Vj. Each grid Vj is set of uniformly spaced grid points

that satisfies Vj = {x j,k ∈ R : x j,k = 2− j k, k ∈ Z} where j is an integer, and x j,k are the

coordinate locations of the points on level j. The integer k labels points on level j.

It is clear that grid Vj+1 contains all grid points in Vj with additional points inserted

halfway in between the points in Vj. The locations of points on these grids are illustrated in

223
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Fig 3.2. The index k runs from 0 to 2 jN0 for some number of base grid points N0 +1. The

number of grid points at level j is given by N j = 2 jN0 +1. One of the crucial aspects of

our grids is that every point in Vj is also in Vj+1 at all higher level grids. If the index k is

evenly divided by 2( j−m), then the point in question also corresponds to a point on level Vm

(for m < j). Another way of saying this is that, at a given level, the points on an odd index

appear at that level for the first time. All points with even index exist on at least one of the

previous levels.

Now consider function values on our set of grids, Vj. Call this { f j,k}k∈Z+ where

f j,k = f (x j,k), is a function defined on the grid points in Vj. We would like to extend these

function values to higher levels of the grid using interpolation. To do that, we define a very

simple basis set. Take the function φ j,k(x) to be defined so that at points at level j, e.g. x j,l ,

the function is either zero or one:

φ j,k(x j,l) = δk,l. (C.1)

Of course, at other x values, φ j,k(x) will take on values other than zero or one. Indeed, our

task will to be to construct φ j,k(x). So, we want to begin with this sequence of numbers and

turn it into a function by using interpolation to fill in values at higher levels, copying the

values from lower levels onto corresponding higher levels. Note that the basis functions

satisfy the following translation property:

φ j,k(x) = φ j,m(x+(x j,m− x j,k)), (C.2)

which implies that they have the same shape but are translated in x. Further, these functions

will satisfy a scaling relation given by:

φ j,k(2x) = φ j+1,2k(x). (C.3)

In general, the basis we are constructing is a dilated translated version of a single abstract

function φ(x) such that:

φ j,k(x) = φ(2 jx− x j,k). (C.4)
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Note another interesting property of these functions. If we consider a basis element

with an odd position index, then the value of the function on all grid points at a lower level

will be zero:

φ j,k(xg,m) = 0 when g < j. (C.5)

This is because the one nonzero value at level j will be for a location that is not in any of

the other lower level grids.

The idea of interpolation from level j+1 to level j can be expressed as

φ j,k =
N j+1

∑
l=0

h j+1,l
j,k φ j+1,l(x), (C.6)

where the coefficients h j+1,l
j,k define the chosen interpolation scheme. These coefficients are

easily found. Consider a basis function at level j evaluated on level j+1

φ j,k(x j+1,m) =
N j+1

∑
l=0

h j+1,l
j,k φ j+1,l(x j+1,m)

=
N j+1

∑
l=0

h j+1,l
j,k δl,m = h j+1,m

j,k .

The h coefficients are thus just values of the j level basis on the nearby j+1 level points,

which are either known from Eqn. C.1 or can be found using the interpolation scheme. Note

that the vast majority of these values are zero, and it is only a few points near the index 2k

(on level j+1) that will contribute non-zero coefficients. For the particular case of four

point interpolation we have that the most relevant coefficients are:
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m h j+1,m
j,k

2k−4 0

2k−3 -1/16

2k−2 0

2k−1 9/16

2k 1

2k+1 9/16

2k+2 0

2k+3 -1/16

2k+4 0

Table C.1 The coefficients for four point interpolation

This procedure can be iterated to any higher level because the basis at any level can

be written in terms of the basis at any higher level. Indeed, there was nothing special in

the previous expressions about the difference in levels being 1. For any two levels j and g,

where g > j:

φ j,k(x) =
Ng

∑
l=0

hg,l
j,kφg,l(x), (C.7)

where

hg,l
j,k = φ j,k(xg,l). (C.8)

C.2 An Interpolating Wavelet Basis

So far, we have defined a basis for different levels on our set of grids. The basis on one

level can be written in terms of the basis at a higher level. Using this, we can efficiently

represent complicated functions on a very high level i.e. a very fine grid. Consider a basis

made from the following functions:

{φ0,k,ψ j,k}, (C.9)
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where

ψ j,k = φ j+1,2k+1, (C.10)

and j takes the values from 0 to J− 1, where J is some specified maximum refinement

level of the grid. The ψ j,k functions are those from the basis that do not live on the base

grid. However, this set of functions can act as a basis for all the finer grid levels available.

Each point of the finest grid can be associated with a single function from the given set.

Note that even though ψ j,k is centered on a point at level j+1, we nevertheless index the

ψ function at level j.

Thus, we can write any function on the finest grid as a weighted sum of these functions:

f (x) =
N0

∑
k=0

f0,kφ0,k(x)+
J−1

∑
j=0

N j−1

∑
k=0

d j,kψ j,k(x). (C.11)

It is easy to verify the coefficients, f0,k, in the first term are just those values of the function,

f , on the base grid, f (x0,l) = f0,l .

To derive the coefficients d j,k, we can proceed recursively. Start with a point on level 1:

f (x1,l) =
N0

∑
k=0

f0,kφ0,k(x1,l)+
J−1

∑
j=0

N j−1

∑
k=0

d j,kψ j,k(x1,l),

f1,l =
N0

∑
k=0

f0,kφ0,k(x1,l)+
J−1

∑
j=0

N j−1

∑
k=0

d j,kφ j+1,2k+1(x1,l)

=
N0

∑
k=0

f0,kφ0,k(x1,l)+
J−1

∑
j=0

N0−1

∑
k=0

d0,kφ j+1,2k+1(x1,l)

=
N0

∑
k=0

f0,kφ0,k(x1,l)+
J−1

∑
j=0

N0−1

∑
k=0

d0,kδ2k+1,l

=
N0

∑
k=0

f0,kφ0,k(x1,l)+d0,(l−1)/2, (C.12)

where we have used the notational shorthand f (x j,k) = f j,k and Eqn. C.10. Note that we

also use Eqn. C.5 to eliminate all the terms in the second summation that vanish. Finally,

we use Eqn. C.1, and the Kronecker delta to eliminate all the rest of the terms. We find:

d0,(l−1)/2 = f1,l−
N0

∑
k=0

f0,kφ0,k(x1,l). (C.13)
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This can be simplified slightly by using Eqn. C.6 in the second term, and applying Eqn. C.1:

d0,(l−1)/2 = f1,l−
N0

∑
k=0

f0,kφ0,k(x1,l)

= f1,l−
N0

∑
k=0

f0,k

N1

∑
m=0

h1,m
0,k φ1,m(x1,l)

= f1,l−
N0

∑
k=0

f0,k

N1

∑
m=0

h1,m
0,k δm,l

= f1,l−
N0

∑
k=0

f0,k

N1

∑
m=0

h1,l
0,k.

For the case of four point interpolation the last sum expands out to give (see Table 3.1 for

the specific h values),

d0,(l−1)/2 = f1,l− f0,(l−3)/2h1,l
0,(l−3)/2− f0,(l−1)/2h1,l

0,(l−1)/2

− f0,(l+1)/2h1,l
0,(l+1)/2− f0,(l+3)/2h1,l

0,(l+3)/2. (C.14)

and note that the summation is over locations in the base level:

d0,(l−1)/2 = f1,l−
(
− 1

16
f0,(l−3)/2 +

9
16

f0,(l−1)/2 +
9

16
f0,(l+1)/2−

1
16

f0,(l+3)/2

)
.

(C.15)

We recognize this last sum as being exactly the formula for interpolating from level 0

to level 1. As such we can now interpret the coefficients d0,(l−1)/2 as just the difference

between the actual function value at level 1 points and those interpolated values at level 1

based on the level 0 values. For brevity, we will on occasion call the term in parenthesis

P1,l , the interpolation at point l on level 1 from points on the previous level. We can extend

this notation to arbitrary levels:

Pj,k( f ) =− 1
16

f j−1,(k−3)/2 +
9

16
f j−1,(k−1)/2 +

9
16

f j−1,(k+1)/2−
1

16
f j−1,(k+3)/2. (C.16)

Of course for other interpolation schemes the coefficients may be different. However, this

leads to the general expression for the coefficients as given by:

d0,(l−1)/2 = f1,l−P1,l( f ). (C.17)
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C.2.1 Computing Wavelet Coefficients

As just noted in Eqn. C.17, we recognize the d0,k coefficients as the difference between the

function value at the level 1 points and the interpolations of the level 0 values at that point.

We can always recombine the sum in Eqn. C.11 to start at level 1.

We will treat each term in Eqn. C.11 separately. We start with the sum over the base

level functions:

N0

∑
k=0

f0,kφ0,k(x) =
N0

∑
k=0

f0,k

N1

∑
l=0

h1,l
0,kφ1,l(x)

=
N0

∑
k=0

f1,2k

N1

∑
l=0

h1,l
0,kφ1,l(x)

=
N0

∑
k=0

f1,2k

N1

∑
l=0

h1,2l
0,k φ1,2l(x)+

N0

∑
k=0

f1,2k

N0−1

∑
l=0

h1,2l+1
0,k φ1,2l+1(x)

=
N0

∑
k=0

f1,2kφ1,2k(x)+
N0

∑
k=0

f0,k

N0−1

∑
l=0

h1,2l+1
0,k φ1,2l+1(x), (C.18)

where we have used the fact that f0,k = f1,2k.

For the second term in Eqn. C.11, the basic idea is to split the sum over levels into the

zero level contribution and everything else. We plug in our result for d0,l and get

J−1

∑
j=0

N j

∑
k=0

d j,kψ j,k(x) =
N0−1

∑
k=0

d0,kψ0,k(x)+
J−1

∑
j=1

N j−1

∑
k=0

d j,kψ j,k(x)

=
N0−1

∑
k=0

d0,kφ1,2k+1(x)+
J−1

∑
j=1

N j−1

∑
k=0

d j,kψ j,k(x)

=
N0−1

∑
k=0

(
f1,2k+1−

N0

∑
w=0

f0,wh1,2k+1
0,w

)
φ1,2k+1(x)+

J−1

∑
j=1

N j−1

∑
k=0

d j,kψ j,k(x)

=
N0−1

∑
k=0

f1,2k+1φ1,2k+1(x)−
N0

∑
w=0

f0,w

N0

∑
k=0

h1,2k+1
0,w φ1,2k+1(x)

+
J−1

∑
j=1

N j−1

∑
k=0

d j,kψ j,k(x). (C.19)

Here, the second term in Eqn. C.18 will now exactly cancel the second term from Eqn. C.19
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resulting in the final expression

f (x) =
N0

∑
k=0

f1,2kφ1,2k(x)+
N0−1

∑
k=0

f1,2k+1φ1,2k+1(x)+
J−1

∑
j=1

N j−1

∑
k=0

d j,kψ j,k(x)

=
N1

∑
k=0

f1,kφ1,k(x)+
J−1

∑
j=1

N j−1

∑
k=0

d j,kψ j,k(x). (C.20)

Eqn. C.20 is essentially identical to the original expansion in the multilevel basis, Eqn. C.11.

The upshot of this is that we can now easily find the d1,k coefficients. They will be, by

analogy with Eqn. C.17, d1,k = f2,2k+1−P2,2k+1( f ). This process can be repeated to add

all levels and clearly will yield the following expression:

d j,k = f j+1,2k+1−Pj+1,2k+1( f ). (C.21)

The coefficients d j,k are called wavelet coefficients.

C.3 The Sparse Wavelet Representation

Having constructed our expansion for functions in terms of the wavelet coefficients with

the wavelet basis, we will use these not only to express our function but also to define

our adaptive grid. First realize that we have two possible expressions for our function.

One is the collection of function values at all the points. The other are the function values

at the base level with d j,k values at the points in between. These d j,k values are not the

function values, but we can use them to recreate all function values that we might need.

This involves rearranging C.21 for the values of the functions at the higher levels.

Notice that in the above, we only ever needed to use a few values of the basis functions.

This is because of the iterated interpolation property of each of the basis functions and the

manner in which they are constructed. Their very construction creates the details on the

finer levels from the interpolation from the coarser levels. We emphasize that this is not

the same as saying that the functions only have non-zero values at a few locations. Every

basis function, at every level, has a large number of nonzero values. The special way that
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we construct them allows us to use a few values to generate others, but this is not the same

as saying these functions are only defined in a few places.

Now that we are able to compute the d j,k coefficients given some function f (x), we can

now represent that function with fewer points than exist on the finest level. As we have

seen, the wavelet coefficients, d j,k, give the difference between the function values and

the interpolated values. If this coefficient at a certain point is close to zero, then if we are

willing to accept a certain level of error in our representation, we can ignore that coefficient

because the interpolated value will be close enough for our needs. This is the essence of

the sparse representation.

If we choose some tolerance ε , we can group the terms in Eqn. C.11 according to

whether |d j,k|< ε or not. For those terms that are less than ε , we can ignore them in our

sum, and we will pick up an error there that is on the order of ε . Each of the terms in

Eqn. C.11 are naturally associated with a grid point. The f0,k terms are associated with

points on the base level, and the d j,k terms are associated with points on higher levels.

When ignoring d terms that are below the tolerance, we may want to throw out points of

the grid. This could potentially save on computational costs.

However, just because we do not have to store extra information at points where

|d j,k|< ε , does not mean there is no value at that location. Indeed, the basis elements of

all the other terms that will overlap the missing point will contribute to the value of the

function represented by the expression Eqn. C.11. So the lack of one of the locations in

the grid is really a statement that all the relevant information at that location is covered by

other functions. In addition, because all of the base level points will always be in the grid,

there will be a number of the base level basis functions that will contribute at every location

in the grid.



Appendix D

FleCSPH Implementation

D.1 FleCSI Framework

FleCSI [202] is a compile-time configurable framework designed to support multi-physics

application development. It is developed at the Los Alamos National Laboratory as part of

the Los Alamos Ristra project. As such, FleCSI provides a very general set of infrastructure

design patterns that can be specialized and extended to suit the needs of a broad variety of

solver and data requirements. FleCSI currently supports multi-dimensional mesh topology,

geometry, and adjacency information, as well as n-dimensional hashed-tree data structures,

graph partitioning interfaces, and dependency closures.

FleCSI introduces a functional programming model with control, execution, and data

abstractions that are consistent both with MPI and with state-of-the-art, task-based runtimes

such as Legion[203] and Charm++[204]. The abstraction layer insulates developers from

the underlying runtime, while allowing support for multiple runtime systems including

conventional models like asynchronous MPI.

The intent is to provide developers with a concrete set of user-friendly programming

tools that can be used now, while allowing flexibility in choosing runtime implementations

and optimizations that can be applied to future architectures and runtimes.

FleCSI’s control and execution models provide formal nomenclature for describing

232
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poorly understood concepts such as kernels and tasks. FleCSI’s data model provides a

low-buy-in approach that makes it an attractive option for many application projects, as

developers are not locked into particular layouts or data structure representations.

FleCSI currently provides a parallel but not distributed implementation of Binary,

Quad and Oct-tree topology. This implementation is based on space filling curve domain

decomposition, the Morton order. The current version allows the user to specify the code

main loop and the data distribution requested. The data distribution feature is not available

for the tree data structure needed in our SPH code and we provide it in the FleCSPH

implementation. The next step will be to incorporate it directly from FleCSPH to FleCSI as

we reach a decent level of performance. As FleCSI is an in-development code the structure

may change in the future and we will keep track of these updates in FleCSPH.

Based on FleCSI the intent is to provide a binary, quad and oct-tree data structure

and the methods to create, search and share information for it. In FleCSPH this will be

dedicated, applied and tested on the SPH method. In this part we first present the domain

decomposition, based on space filling curves, and the tree data structure. We describe the

HDF5 file structure used for the I/O. Then we describe the distributed algorithm for the

data structure over the MPI processes.

D.2 Domain Decomposition

The number of particles can be high and represent a huge amount of data that does not

fit in a single node of memory. This implies the distribution of the particles over several

computational nodes. As the particles move during the simulation, static distribution is

not possible and they have to be redistributed at some point in the execution. Furthermore,

this distribution needs to keep local particles in the same computation node to optimize

exchanges and the computation itself.

A common approach is to distribute the particles over computational nodes using space

filling curves as in [205, 206, 207]. It intends to assign to each particle a key which is based
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Figure D.1 Morton and Hilbert space filling curves

on its spatial coordinates, then sorting particles based on those keys keeps particles grouped

locally. Many space filling curves exist: Morton, Hilbert, Peano, Moore, Gosper, etc.

This domain decomposition is used in several layers of our implementation. On one

hand, the domain decomposition must spread the particles over all the MPI processes and

provide a decent load balancing regarding the number of particles. On the other hand,

the same domain decomposition must be used locally to store efficiently the particles

and provide a O(N log(N)) neighbor search, instead of O(N2), using a tree representation

described in Sec. D.3.

Several space filling curves can suit our purposes. Morton curves [208], or Z-Order,

is the most widespread method. This method can produce irregularly shaped domain

decomposition as shown in green in Fig. D.1. The main advantage of these curves is their

speed and their ease of computation. Key to this is their ability to directly interlace three

coordinate directions without invoking rotations. Hilbert curves [209] are constructed by

interlacing bits but also by adding rotation based on the Gray code [210]. This work is

based on Peano curves and are also sometimes referred to as Hilbert-Peano curves. Their

construction is more complicated than for Morton curves but they do allow for a better

distribution of data.

We present the Morton (left) and Hilbert (right) space-filling curves in Fig. D.1. The

particles are distributed over 3 processes. The set of particles in the second process appears

in green. As we can see there are discontinuities in the Morton case due to the Z-order

“jump” over the space. This can lead to non-local particles and over-sharing of particles



D.3 Hierarchical Trees 235

that will not be needed during the computation. In the Hilbert curve, the locality over the

processes is conserved.

In this first implementation of FleCSPH we used Morton ordering due to the compu-

tational cost. In future work, we will compare computation time of different space filling

curves.

Technically the keys are generated for each particle at each iteration because their

position is expected to change over time. To be more efficient, the keys can stay the same

during several steps and the final comparison can be made on the real particles'positions.

This increases the search time but allows fewer tree reconstructions.

We use 64 bits to represent the keys to avoid conflicts. The FleCSI code allows us

to use a combination of memory words to reach the desired size of keys (possibly more

than 64 bits) but there is an extra cost in memory occupancy. The particle keys are

generated by normalizing the space and then converting the floating-point representation

to 64 bits for each dimension. Then the Morton interlacing is done and the keys are

created. Unfortunately, in some arrangements, as with isolated particles, or in scenarios

with particles very close to each other, the keys can be either badly distributed or duplicate

keys can appear. Indeed, if the distance between two particles is less than 2−64 ≈ 10−20, in

a normalized space, the key generated through the algorithm will be the same. This problem

is handled during the particle sort and the tree generation. In both cases, two particles can

be differentiated based on their unique ID generated at runtime.

D.3 Hierarchical Trees

The method we use for the tree data structure creation and search comes from Barnes-

Hut trees presented in [211, 212]. By reducing the search complexity from O(N2) for

direct summation to O(N log(N)) it allows us to do very large simulations with billions

of particles. It also allows the use of the tree data structure to compute gravitation using

multipole methods.
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Figure D.2 Quadtree, space and data representation

We consider binary trees, for 1 dimension, quad-trees, for 2 dimensions, and oct-

trees, for 3 dimensions. The construction of those trees is directly based on the domain

decomposition using keys and space-filling curves presented in Sec. D.2.

As explained in the previous section, we use 64 bit keys. That gives us up to 63, 31 and

21 levels in the tree for respectively 1, 2 and 3 dimensions. As presented on in Fig. D.2 the

first bit is used to represent the root of the tree, 1. This allows us to have up to 263 different

keys and unique particles.

D.4 Tree Generation

After each particle gets distributed on its final process using its space-filling curve key,

we can recursively construct the tree. Each particle is added and the branches are created

recursively if there is an intersection between keys. Starting from the root of key “1” the

branches are added at each level until the particles are reached. An example of a final tree

is shown in Fig. D.2.
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D.5 Tree Search

When all the particles have been added, the data regarding the tree nodes are computed

with a bottom up approach. Then we add all necessary information such as summing up the

mass, position called COM, and the boundary box of all sub-particles of this tree node.

For the search algorithm the basic idea would be to do a tree traversal for all the particles

and once we reach a particle or a node that interacts with the particle smoothing length, we

add it for computation or in a neighbor list. Besides being easy to implement and to use

in parallel, this algorithm requires a full tree traversal for every particle and will not take

advantage of the particle’s locality.

Our search algorithm, presented on Algorithm D.1, is a two step algorithm as with

Barnes trees. We first create the interaction lists and then use them on the sub-tree particles.

In the first step we look down for nodes with a target sub-mass of particles tmass. Then for

those branches we compute an interaction list and continue the recursive tree search. When

a particle is reached, we compute the physics using the interaction list as the neighbors.

The interaction list is computed using an opening-angle criterion comparing the boundary

box and a user defined angle. In this way we will not need a full tree traversal for each

particle but a full tree traversal for every group of particles.

D.6 Distribution Strategies

The previous section presented the tree data structure that can be used locally on every node.

The distribution layer is added on top of it, keeping each sub-tree on the computation nodes.

The current version of FleCSPH is still based on synchronous communications using the

Message Passing Interface (MPI).

The main distributed algorithm is presented in Algorithm D.2:
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ALGORITHM D.1 Tree search algorithm

1: procedure FIND_NODES

2: stack stk← root

3: while not_empty(stk) do

4: branch b← stk.pop()

5: if b is leaf then

6: for each particles p of b do

7: apply_sub_tree(p,interaction_list(p))

8: end for

9: else

10: for each child branch c of b do

11: stk.push(c)

12: end for

13: end if

14: end while

15: end procedure
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16: procedure APPLY_SUB_TREE(node n, node-list nl)

17: stack stk← n

18: while not_empty(stk) do

19: branch b← stk.pop()

20: if b is leaf then

21: for each particles p of b do

22: apply_physics(p,nl)

23: end for

24: else

25: for each child branch c of b do

26: stk.push(c)

27: end for

28: end if

29: end while

30: end procedure
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31: function INTERACTION_LIST(node n)

32: stack stk← root

33: node-list nl ← /0

34: while not_empty(stk) do

35: branch b← stk.pop()

36: if b is leaf then

37: for each particles p of b do

38: if within() then

39: nl ← nl + p

40: end if

41: end for

42: else

43: for each child branch c of b do

44: if mac(c,angle) then

45: nl ← nl + c

46: else

47: stk.push(c)

48: end if

49: end for

50: end if

51: end while

52: end function
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ALGORITHM D.2 Main algorithm

1: procedure SPECIALIZATION_DRIVER(input data file f )

2: Read f in parallel

3: Set physics constant from f

4: while iterations do

5: Distribute the particles using distributed quick sort

6: Compute total range

7: Generate the local tree

8: Share branches

9: Compute the ghosts particles

10: Update ghosts data

11: PHYSICS

12: Update ghosts data

13: PHYSICS

14: Distributed output to file

15: end while

16: end procedure
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Figure D.3 Binaries tree for a 2 processes system. Exclusive, Shared and Ghosts
particles resp. red, blue, green.

Particle distribution

The sort step, line 5, is based on a distributed quick sort algorithm. The keys are

generated using the Morton order described in Sec. D.2. As we associate a unique number

to each particle we are able to sort them using the keys and, in case of collision keys, using

their unique ID. This gives us a global order for the particles. Each process sends to a

master node (or submaster for larger cases) a sample of its keys. We determined this size

to be 256 KB of key data per process for our test cases but it can be refined for larger

simulations. Then the master determines the general ordering for all the processes and

shares the pivots. Each process locally sorts its local keys and, in a global communication

step, the particles are distributed to the process on which they belong. This algorithm gives

us a good partition in terms of number of particles. Some downsides can be identified:

• The ordering may not be balanced in terms of the number of particles per process.

But by optimizing the data exchanged to the master can lead to better affectation.

• The load balance also depends on the number of neighbors of each particle. If a
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particle finds itself in a non-smooth region or large distance from other particles, this

can lead to bad load balancing too.

This is why we also provide another load balancing based on the particles’ neighbors.

Depending on the problem, the choice can be to distribute the particles on each process

regarding the number of neighbors, having the same amount of physical computation to

perform on each process.

After this first step, the branches are shared between the different processes, line

Algorithm 8. All of them communicate with their neighbors’ several boundaries boxes.

Then particles from the neighbors are computed, exchanged and added in the local tree.

Those particles are labeled as NON_LOCAL particles. At this point a particle can be

referenced as EXCLUSIVE in which they will never be exchanged and will only be used on

this process. SHARED particles may be needed by another process during the computation.

GHOST particles have information that the process needs to retrieve from another process.

An example is given for 2 processes on Fig. D.3.

Exchange Shared and Ghost particles

The previous distribution shares the particles and the general information about neigh-

bors’ particles. Each process is able to do synchronous or asynchronous communications

to gather distant particles. In the current version of FleCSPH an extra step is required to

synchronously share data needed during the next tree traversal and physics components.

After this step, ghost data can be exchanged as wanted several times during the same time

step.

D.7 I/O

Regarding the high number of particles, an efficient, parallel and distributed I/O imple-

mentation is required. Several choices were available but we wanted a solution that can be

specific for our usage. The first requirement is to allow the user to work directly with the
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Paraview visualization tool and splash1 [183].

We base this first implementation on the HDF5 [213] file structure with H5Part and

H5Hut [214]. The HDF5 file structure supports MPI runtime with distributed read and

write in a single or multiple files. We added the library H5hut to add normalization in the

code to represent global data, steps, steps’ data and the particles data for each step. The

I/O code was developed internally at LANL and provides a simple way to write and read

the data in H5Part format. The usage of H5Hut to generate H5part data files allows us

to directly read the output in Paraview without using a XDMF descriptor as requested in

HDF5 format.

1http://users.monash.edu.au/~dprice/splash/

http://users.monash.edu.au/~dprice/splash/


Appendix E

Artifact Evaluations

The purpose of artifact evaluation is mainly reproducing computational results which are

presented here. In this appendix, we provide instructions for various codes that we use as

part of this dissertation. More detailed information and codes themselves can be found

Hyun Lim's github webpage (https://github.com/hlim88).

E.1 Toolkits/Softwares

E.1.1 HAD

HAD is a computational toolkit providing distributed adaptive mesh refinement for partial

differential equations. It provides a flexible environment for diverse applications which can

be combined or employed individually.

This code is used in Chap 2 to study the dynamics of BHs in EMDA theory and quadratic

gravity. To install the code, please follow the instructions at http://relativity.phys.lsu.edu/postdocs/matt/software/had-

docs/had/docs/index.html. We recommend that you create your own environment file that

enables the correct export of compliers and project source codes. For example, we show

below the local environment file to build HAD using intel complers for the EMDA project.

e x p o r t NEED_LORENE_NAMESPACE=" t r u e "

245

http://had.liu.edu/
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e x p o r t CCTK_C_PTR_TYPE=" i n t e g e r 8 "

e x p o r t CCTK_F77_QUAD_TYPE=" r e a l 1 6 "

e x p o r t MPIHOME= " / apps / mpich / 3 . 1 . 4 _ i n t e l −15 .0 .3"

e x p o r t LSV=""

e x p o r t IMPI="−I$MPIHOME / i n c l u d e "

e x p o r t LMPI="−L$MPIHOME/ l i b −lmpi "

e x p o r t MPIF90=" mpif90 "

e x p o r t CC=" mpicc "

e x p o r t CXX_COMMAND=" i c p c "

e x p o r t LOCALIB="−L$HOME/ i n t e l −1 5 . 0 . 3 / l i b −L / o p t / gm / l i b "

e x p o r t LOCALINCLUDE="−I$HOME / i n t e l −1 5 . 0 . 3 / i n c l u d e "

e x p o r t F90FLAGS="−O3 −r8 −mcmodel=medium − f p i c "

e x p o r t CCFLAGS="−O3 − f p i c −mcmodel=medium "

e x p o r t F90_FREEFORM_FLAG="−FR"

e x p o r t F90_FIXEDFORM_FLAG="−FI "

e x p o r t MASS_SCALE_FACTOR= " 1 . 0 "

e x p o r t LFFTW=− l f f t w 3

e x p o r t EQS="hyperEMDA"

e x p o r t EXECNAME=" hemda "

Note that the last two lines show which project you would like to include and the name of

the binary executable. All projects can be found in the src directory. Using this, you can

create .ENV_local which is sourced prior to invoking make. After that, one simply types

make to build the code.
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E.1.1.1 Running the Application

After successful installation of HAD, you will see the binary executable in the bin directory.

In this work, you should have hemda for simulation.

After collecting all the necessary files, you can run simulations. For example, EMDA

projects can be simulated via

$ mpirun −np <number o f mpi t a s k s > hemda < p a r a m e t e r f i l e name>

All parameter files can be found in https://github.com/hlim88/EMDA-material/tree/master/params.

You may not need to change many parameters but the following do are some key parameters

that are used particularly for EMDA project.

• dil_mass, dil_alpha, dil_infty

Parameters of the dilaton field.

• axn_mass, axn_alpha, axn_infty

Parameters of the axion field.

• geometry_type

Options for various BH initial data. Put numbers to choose initial data. Options for

relevant EMDA projects are:

– 11: Garfinkle-Horowitz-Strominger BH

– 12: Horne-Horowitz-Kaluza-Klein BH

– 13: Kerr-Sen BH

– 14: Rasheed-Larsen BH

– 15: BBH for EMDA

• sf_amp

Initial amplitude for the dilaton field
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• sf_amp_axn

Initial amplitude for the axion field

• sen_alpha

α constant for Kerr-Sen BH. If you are not choosing geometry_type = 13, this

value defaults to zero

E.1.2 Dendro-GR

Dendro-GR is a distributed memory partial differential equations (PDEs) solver using

numerical methods such as Finite Differences, Finite Elements, the Wavelet Method etc. It

uses adaptive octree meshes as the geometric discretization. This code is used in Chap 3 to

study BH IMRIs.

The DENDRO simulation code is freely available at GitHub (https://github.com/paralab/Dendro-

GR) under the MIT License. The latest version of the code can be obtained by cloning the

repository

$ g i t c l o n e g i t @ g i t h u b . com : p a r a l a b / Dendro−GR. g i t

The following dependencies are required to compile DENDRO

• C/C++ compilers with C++11 standards and OpenMP support

• MPI implementation (e.g. openmpi, mvapich2 )

• ZLib compression library (used to write .vtu files in binary format with compression

enabled)

• BLAS and LAPACK are optional and not needed for the current version of DENDRO

• CMake 2.8 or higher version

Note: We have tested the compilation and execution of DENDRO with intel, gcc

4.8 or higher, openmpi, mpich2 and intelmpi and craympi (in Titan) using the linux

operating systems.

https://github.com/paralab/Dendro-GR
https://www.olcf.ornl.gov/titan/
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To compile the code, execute the following commands

$ cd < p a t h t o DENDRO d i r e c t o r y >

$ mkdir b u i l d

$ cd b u i l d

$ ccmake . . /

The following options for DENDRO can then be set in cmake:

• DENDRO_COMPUTE_CONSTRAINTS: Enables the computation of Hamiltonian and mo-

mentum constraints.

• DENDRO_CONSEC_COMM_SELECT: If ON sub-communicators are selected from consec-

utive global ranks, otherwise sub-communicators are selected from a complete binary

tree of global ranks (note that in this case the global communicator size needs to be a

power of two).

• DENDRO_ENABLE_VTU_CONSTRAINT_OUT: Enables constraint variable output

while time-stepping.

• DENDRO_ENABLE_VTU_OUTPUT: Enables evolution variable output while time-stepping.

• DENDRO_VTK_BINARY: If ON vtu files are written in binary format, else ASCII format

(binary format is recommended).

• DENDRO_VTK_ZLIB_COMPRES: If ON binary format is compressed (only effective if

DENDRO_VTK_BINARY is ON).

• HILBERT_ORDERING: Hilbert space filling curve is used if ON, otherwise the Morton

curve is used. (The Hilbert curve is recommended to reduce communication costs.)

• NUM_NPES_THRESHOLD: When running in large scale set this to
√

p where p is the

number of mpi tasks for better performance.
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• RK_SOLVER_OVERLAP_COMM_AND_COM: If ON non blocking communication is used

and enables overlapping of communication and computation unzip (recommended

option), otherwise blocking synchronized unzip is used.

After configuring DENDRO, generate the Makefile (use c to configure and g to generate).

Then execute make all to build all the targets. On completion, bssnSolver will be the

main executable as related to the current project.

E.1.2.1 Getting Started: Running bssnSolver

bssnSolver can be run as follows.

$ mpirun −np <number o f mpi t a s k s > \

. / b s s n S o l v e r \

< p a r a m e t e r f i l e name > . p a r

Example parameter files can be found in BSSN_GR/pars/. The following is an example

parameter file for equal mass ratio binary inspirals.
{

"DENDRO_VERSION " : 5 . 0 ,

"BSSN_RESTORE_SOLVER " : 0 ,

"BSSN_IO_OUTPUT_FREQ " : 10 ,

"BSSN_REMESH_TEST_FREQ " : 5 ,

"BSSN_CHECKPT_FREQ " : 50 ,

"BSSN_VTU_FILE_PREFIX " : " b s s n _ g r " ,

"BSSN_CHKPT_FILE_PREFIX " : " bs sn_cp " ,

" BSSN_PROFILE_FILE_PREFIX " : " b s s n _ r 1 " ,

"BSSN_DENDRO_GRAIN_SZ " : 100 ,

"BSSN_ASYNC_COMM_K" : 4 ,

"BSSN_DENDRO_AMR_FAC" : 1e0 ,

"BSSN_WAVELET_TOL " : 1e−4,

"BSSN_LOAD_IMB_TOL " : 1e−1,

"BSSN_RK_TIME_BEGIN " : 0 ,

"BSSN_RK_TIME_END " : 1000 ,

"BSSN_RK_TIME_STEP_SIZE " : 0 . 0 1 ,

"BSSN_DIM " : 3 ,

"BSSN_MAXDEPTH" : 12 ,

"ETA_CONST " : 2 . 0 ,

"ETA_R0 " : 3 0 . 0 ,

"ETA_DAMPING " : 1 . 0 ,

"ETA_DAMPING_EXP " : 1 . 0 ,

"BSSN_LAMBDA" : {

"BSSN_LAMBDA_1 " : 1 ,

"BSSN_LAMBDA_2 " : 1 ,
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"BSSN_LAMBDA_3 " : 1 ,

"BSSN_LAMBDA_4 " : 1

} ,

"BSSN_LAMBDA_F " : {

"BSSN_LAMBDA_F0 " : 1 . 0 ,

"BSSN_LAMBDA_F1 " : 0 . 0

} ,

"CHI_FLOOR " : 1e−4,

"BSSN_TRK0 " : 0 . 0 ,

"KO_DISS_SIGMA " : 1e−1,

"BSSN_BH1 " : {

"MASS" : 0 . 4 85 28 1 37 42 3 85 69 54 ,

"X" : 4 .00000000 e +00 ,

"Y" : 0 . 0 ,

"Z " : 1 .41421356 e−05 ,

"V_X " : −0.00132697 ,

"V_Y " : 0 .1123844 ,

"V_Z " : 0 ,

" SPIN " : 0 ,

"SPIN_THETA " : 0 ,

" SPIN_PHI " : 0

} ,

"BSSN_BH2 " : {

"MASS" : 0 . 4 85 28 1 37 42 3 85 69 54 ,

"X":−4.00000000 e +00 ,

"Y" : 0 . 0 ,

"Z " : 1 . 4 1 4 2 1 3 5 6 e−05 ,

"V_X " : 0 .00132697 ,

"V_Y " : −0.1123844 ,

"V_Z " : 0 ,

" SPIN " : 0 ,

"SPIN_THETA " : 0 ,

" SPIN_PHI " : 0

}

}

Here we list a few key options for bssnSolver with a short description.

• BSSN_RESTORE_SOLVER: Set to 1 to restore RK solver from latest checkpoint.

• BSSN_IO_OUTPUT_FREQ: IO (i.e. vtu files) output frequency

• BSSN_CHECKPT_FREQ: Checkpoint file output frequency

• BSSN_REMESH_TEST_FREQ: Remesh test frequency (i.e. frequency in time steps that

is being tested for re-meshing)

• BSSN_DENDRO_GRAIN_SZ: Number of octants per core
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• BSSN_ASYNC_COMM_K: Number of variables that are being processed during an asyn-

chronous unzip (< 24)

• BSSN_DENDRO_AMR_FAC: Safety factor for coarsening i.e. coarsen if and only if

Wc ≤ AMR_FAC×WAV ELET _TOL where Wc is the computed wavelet coefficient.

• BSSN_WAVELET_TOL: Wavelet tolerance for WAMR.

• BSSN_MAXDEPTH: Maximum level of refinement allowed (≤ 30)

• KO_DISS_SIGMA: Kreiss-Oliger dissipation factor for BSSN formulation

• MASS: Mass of the black hole

• X: x coordinate of the black hole

• Y: y coordinate of the black hole

• Z: z coordinate of the black hole

• V_X: momentum of the black hole in x direction

• V_Y: momentum of the black hole in y direction

• V_Z: momentum of the black hole in z direction

• SPIN: magnitude of the spin of the black hole

• SPIN_THETA: magnitude of the spin of the black hole along θ

• SPIN_PHI: magnitude of the spin of the black hole along φ

E.1.2.2 Generating Your Own Parameters

The initial data parameters for a binary black hole [215] depend on the total mass (M =

m1+m2), the mass ratio q and the separation distance d. These parameters are calculated

using the Python script BSSN_GR/scripts/id.py. The command to generate parameters

for q = 10, total mass M = 5 and separation d = 16 is
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$ python3 i d . py −M 5 −r 10 16

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

PUNCTURE PARAMETERS ( p a r f i l e f o r a m t )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

"BSSN_BH1 " : {

"MASS" : 4 . 4 8 9 5 2 9 ,

"X" : 1 . 4 5 4 5 4 5 ,

"Y" : 0 . 0 0 0 0 0 0 ,

"Z " : 0 . 0 0 0 0 1 4 ,

"V_X " : −0.020297 ,

"V_Y " : 0 . 4 2 3 3 8 0 ,

"V_Z " : 0 . 0 0 0 0 0 0 ,

" SPIN " : 0 . 0 0 0 0 0 0 ,

"SPIN_THETA " : 0 . 0 0 0 0 0 0 ,

" SPIN_PHI " : 0 .000000

} ,

"BSSN_BH2 " : {

"MASS" : 0 . 3 9 8 6 2 0 ,

"X" :−14 .545455 ,

"Y" : 0 . 0 0 0 0 0 0 ,

"Z " : 0 . 0 0 0 0 1 4 ,

"V_X " : 0 . 0 2 0 2 9 7 ,

"V_Y " : −0.423380 ,

"V_Z " : 0 . 0 0 0 0 0 0 ,

" SPIN " : 0 . 0 0 0 0 0 0 ,

"SPIN_THETA " : 0 . 0 0 0 0 0 0 ,

" SPIN_PHI " : 0 .000000

}

The t a n g e n t i a l momentum i s j u s t an e s t i m a t e , and t h e v a l u e f o r a

f o r a c i r c u l a r o r b i t i s l i k e l y between (0 .5472794147860968 , 0 .29947988193805547)

E.1.2.3 Symbolic Interface and Code Generation

The BSSN formulation is a decomposition of the Einstein equations into 24 coupled hy-

perbolic PDEs. Writing the computation code for the BSSN formulation can be a tedious

task. Hence we have written a symbolic Python interface to generate optimized C code to

compute the BSSN equations. All the symbolic utilities necessary to write the BSSN for-

mulation in symbolic Python can be found in GR/rhs_scripts/bssn/dendro.py and the

symbolic BSSN code can be found in GR/rhs_scripts/bssn/bssn.py. This could be

modified for more advanced uses of the code such as including new equations to describe

additional physics or for introducing a different formulation of the Einstein equations.
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E.1.2.4 Profiling the Code

DENDRO contains built-in profiler code which enables one to profile the code exten-

sively. On configuration, a user can enable/disable the internal profiling flags using

ENABLE_DENDRO_PROFILE_COUNTERS and the profile output can be changed between a hu-

man readable version and a tab separated format using the flag BSSN_PROFILE_HUMAN_READABLE.

Note that in order to profile communication, internal profile flags need to be enabled. The

following is an example of profiling output for the first 10 time steps.
a c t i v e npes : 16

g l o b a l npes : 16

c u r r e n t s t e p : 10

p a r t i t i o n t o l : 0 . 1

w a v e l e t t o l : 0 .0001

maxdepth : 12

Elemen t s : 4656

DOF( z i p ) : 279521

DOF( u n z i p ) : 2078609

============ MESH =================

s t e p min ( # ) mean ( # ) max ( # )

g h o s t E lemen t s 634 824 .062 1065

l o c a l E lemen t s 263 291 319

g h o s t Nodes 43781 55671 .7 71693

l o c a l Nodes 14292 17470 .1 20705

send Nodes 18760 24872 .9 36861

r e c v Nodes 18113 24872 .9 33777

========== RUNTIME =================

s t e p min ( s ) mean ( s ) max ( s )

++2:1 b a l a n c e 0 0 0

++mesh 1 .9753 1 .98299 1 .98946

++ r k s t e p 20 .159 20 .1856 20 .1996

++ ghos tExchge . 1 .81442 3 .15703 4 .49568

++ u n z i p _ s y n c 8 .27839 9 .67293 11 .0991

++ u n z i p _ a s y n c 0 0 0

++isReMesh 0 .04642 0 .117357 0 .207305

++ g r i d T r a n s f e r 1 .53709 1 .54899 1 .56531

++ d e r i v 1 .98942 2 .34851 2 .76695

++ compute_rhs 4 .00119 4 .61547 5 .11566

−−compute_ rhs_a 0 .0137962 0 .0245449 0 .0351532

−−compute_rhs_b 0 .0296426 0 .0503471 0 .069537

−−c o m p u t e _ r h s _ g t 0 .111898 0 .12846 0 .15463

−−c o m p u t e _ r h s _ c h i 0 .0170642 0 .0315392 0 .044856

−−compute_rhs_At 2 .40738 2 .72922 3 .05622

−−compute_rhs_K 0.358215 0 .39879 0 .457139

−−compute_rhs_Gt 0 .774211 0 .933581 1 .05702

−−compute_rhs_B 0.0575426 0 .071209 0 .0855094

++ boundary con 0 0 .0421986 0 .134712

++ z i p 0 .23529 0 .260862 0 .291513

++ v t u 0 .0872362 0 .101362 0 .128246

++ c h e c k p o i n t 3 . 2 7 e−06 3 . 8 5 e−06 5 .7469 e−06
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derivative grid points ‖.‖2 ‖.‖
∞

∂x 4913 0.0201773 0.00144632

∂x 99221 0.000849063 2.74672e-05

Table E.1 The normed difference between the numerical and analytic derivatives
evaluated at grid points for the function f (x,y,z) = sin(2πx)sin(2πy) sin(2πz). In
both cases, the wavelet tolerance is 10−8 while the maximum refinement level (i.e.
maxDepth) has been increased from 4 to 6. Note that when maxDepth increases,
the number of grid points increases. Hence, the normed difference goes down
significantly.

In this section, we present experimental evaluations that we performed to ensure the

accuracy of the simulation code.

E.1.2.5 Accuracy of Stencil Operators

In order to test the accuracy and convergence of WAMR and the derivative stencils, we

used a known function to generate an adaptive octree grid based on the wavelet expansion.

Then we compute numerical derivatives using finite difference stencils which are compared

against the analytical derivatives of f (x,y,z). L2 and L∞ norms of the comparison are given

in Table E.1.

E.1.2.6 Accuracy of Symbolic Interface and Code Generation

Given the complexity of the BSSN equations, writing code to evaluate these equations

can be an error-prone and tedious task. For example, to evaluate the equations we need to

calculate more than 300 finite derivatives. Hence DENDRO provides a symbolic framework

written in SymPy for automatically generating C++ code for the equations. The user writes

equations in a high-level representation that more closely resembles their symbolic form.

We can then use the computational graph of the equations to generate optimized C++ code.

The accuracy of the symbolic framework and code generation is certified by comparing

results from the generated C++ code to those from the HAD code, an established and tested

code for numerical relativity.
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This table shows a comparison of BSSN equations (i.e. all 24 equations), evaluated

over a grid of 1283 points by arbitrary, non-zero functions by both the DENDRO and HAD

codes. All spatial derivatives in the equations are evaluated using finite differences, for

both the DENDRO and HAD codes. The table reports the L2 norm of the difference in

the equations as evaluated in both codes, as well as the L2 norms of the functions used to

evaluate the equations. Equations with residual norms of order 10−15 are clearly at machine

zero, but this low level is reached for only the simplest equations. Residuals with norms of

order 10−12 arise in complicated equations, where finite precision errors can accumulate in

hundreds of floating point operations. The optimized equations require about 4500 floating

point operations to evaluate at a single point.
L2 Norms d i f f e r e n c e s i n t h e HAD and DENDRO e q u a t i o n s on 128^3 p o i n t s .

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| | d i f f 0 | | = 1 .18413 e−15 , | | r h s HAD | | = 1 . 2 8 1 1 4 , | | r h s DENDRO | | = 1 .28114

| | d i f f 1 | | = 7 .53412 e−16 , | | r h s HAD | | = 2 . 1 8 8 7 7 , | | r h s DENDRO | | = 2 .18877

| | d i f f 2 | | = 4 .98271 e−16 , | | r h s HAD | | = 1 . 6 6 3 1 5 , | | r h s DENDRO | | = 1 .66315

| | d i f f 3 | | = 1 .03346 e−15 , | | r h s HAD | | = 0 . 7 2 0 4 7 7 , | | r h s DENDRO | | = 0 .720477

| | d i f f 4 | | = 5 .82489 e−16 , | | r h s HAD | | = 1 . 4 0 1 4 2 , | | r h s DENDRO | | = 1 .40142

| | d i f f 5 | | = 4 .93128 e−16 , | | r h s HAD | | = 0 . 7 9 7 5 6 7 , | | r h s DENDRO | | = 0 .797567

| | d i f f 6 | | = 1 .94194 e−11 , | | r h s HAD | | = 1 9 . 0 1 0 7 , | | r h s DENDRO | | = 19 .0107

| | d i f f 7 | | = 2 .14958 e−11 , | | r h s HAD | | = 1 9 . 5 2 2 1 , | | r h s DENDRO | | = 19 .5221

| | d i f f 8 | | = 4 .0673 e−12 , | | r h s HAD | | = 8 . 9 6 3 6 4 , | | r h s DENDRO | | = 8 .96364

| | d i f f 9 | | = 1 .58532 e−11 , | | r h s HAD | | = 1 0 . 1 4 5 9 , | | r h s DENDRO | | = 10 .1459

| | d i f f 10 | | = 4 .31184 e−12 , | | r h s HAD | | = 8 . 7 0 0 5 3 , | | r h s DENDRO | | = 8 .70053

| | d i f f 11 | | = 4 .95696 e−12 , | | r h s HAD | | = 1 0 . 8 6 4 4 , | | r h s DENDRO | | = 10 .8644

| | d i f f 12 | | = 4 .27211 e−15 , | | r h s HAD | | = 1 9 . 3 5 4 6 , | | r h s DENDRO | | = 19 .3546

| | d i f f 13 | | = 2 .29542 e−10 , | | r h s HAD | | = 9 3 . 4 8 2 9 , | | r h s DENDRO | | = 93 .4829

| | d i f f 14 | | = 1 .7484 e−11 , | | r h s HAD | | = 4 0 . 0 8 0 4 , | | r h s DENDRO | | = 40 .0804

| | d i f f 15 | | = 4 .79216 e−11 , | | r h s HAD | | = 3 0 . 9 2 7 9 , | | r h s DENDRO | | = 30 .9279

| | d i f f 16 | | = 2 .03434 e−11 , | | r h s HAD | | = 2 6 . 0 6 0 3 , | | r h s DENDRO | | = 26 .0603

| | d i f f 17 | | = 1 .07479 e−15 , | | r h s HAD | | = 1 5 . 5 7 6 5 , | | r h s DENDRO | | = 15 .5765

| | d i f f 18 | | = 3 .00151 e−15 , | | r h s HAD | | = 3 2 . 9 8 9 1 , | | r h s DENDRO | | = 32 .9891

| | d i f f 19 | | = 7 .79103 e−16 , | | r h s HAD | | = 8 . 1 0 1 0 7 , | | r h s DENDRO | | = 8 .10107

| | d i f f 20 | | = 7 .77113 e−16 , | | r h s HAD | | = 9 . 0 1 3 6 9 , | | r h s DENDRO | | = 9 .01369

| | d i f f 21 | | = 1 .74839 e−11 , | | r h s HAD | | = 4 6 . 3 1 4 1 , | | r h s DENDRO | | = 46 .3141

| | d i f f 22 | | = 4 .79217 e−11 , | | r h s HAD | | = 3 2 . 7 9 8 1 , | | r h s DENDRO | | = 32 .7981

| | d i f f 23 | | = 2 .03434 e−11 , | | r h s HAD | | = 3 2 . 7 2 5 6 , | | r h s DENDRO | | = 32 .7256

E.1.2.7 Constraint Equations

Similar to the Maxwell equations of electrodynamics, the Einstein equations contain both

hyperbolic evolution equations and elliptic constraint equations, which must be satisfied at

all times. Following the common practice in numerical relativity, we evolve the hyperbolic
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Time (M) ‖Hr>a‖2 ‖M1r>a‖2 ‖M2r>a‖2 ‖M3r>a‖2

0 0.000777861 1.01855e-05 1.23443e-05 7.17572e-06

0.976562 0.000808294 3.05681e-05 2.91217e-05 2.79631e-05

1.95312 0.000793783 5.03912e-05 3.93872e-05 4.06693e-05

2.92969 0.00079551 7.54643e-05 5.068e-05 5.42466e-05

3.90625 0.000956987 0.000102901 7.38208e-05 7.47156e-05

4.88281 0.00247348 0.000200055 0.000140583 0.000139008

Table E.2 Violation of constraint equations with time for an equal mass ratio
binary merger simulation done using OT. Note that H , M1,M2,M3 denotes the
Hamiltonian and 3 momentum component constraints that is being monitored
through the evolution.

equations and monitor the quality of the solution by checking that the constraint equations

are satisfied. The choice of coordinates for the BBH evolution (the puncture gauge) does

induce constraint violations in the vicinity of each black hole. The violations of the

constraint equations in our runs are consistent with the discretization error expected for

the numerical derivatives in the constraint equations and the constraint violations near the

black holes (punctures). An example of monitored constraint violations are listed in the

Table E.2.

E.1.2.8 Single Black Hole

Prior to simulating binary inspirals, we perform simple experiments with a single black

hole to ensure the accuracy of the simulation code. While a single black hole is a stable,

static solution of the Einstein equations, there is some transient time dependence due to

our particular coordinate conditions. The black hole parameters for this test is given below.

(The parameter file can be found in SC18_AE/par/single_bh1.par in the repository.)

Note that to generate initial data for a single black hole, we place one of the black holes in

the binary far from the computational domain and set its mass to zero.

"BSSN_BH1 " : { "MASS" : 1 . 0 , "X" : 0 . 0 , "Y" : 0 . 0 ,
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"Z " : 0 .00123 e−6, "V_X " : 0 . 0 , "V_Y " : 0 . 0 ,

"V_Z " : 0 . 0 , " SPIN " : 0 ,

"SPIN_THETA " : 0 , " SPIN_PHI " : 0 } ,

"BSSN_BH2 " : { "MASS" : 1 e−15 ,"X" : 1 e15 , "Y" : 0 . 0 ,

"Z " : 0 . 0 0 1 2 3 e−6, "V_X " : 0 . 0 , "V_Y " : 0 . 0 ,

"V_Z " : 0 . 0 , " SPIN " : 0 ,

"SPIN_THETA " : 0 , " SPIN_PHI " : 0 }

E.1.2.8.1 Boosted Single Black Hole The next experiment is an extension of the single

BH test. It “boosts” the BH with constant velocity in the x-direction. The constant velocity

of the BH should be apparent in the evolution. The parameter file for this test can be found

in the repository at SC18_AE/par/single_bh1_boost.par. The black hole parameters

are given below (note that BSSN_BH1 has a momentum of 0.114 in x-direction).

"BSSN_BH1 " : { "MASS" : 1 . 0 , "X" : 0 . 0 , "Y" : 0 . 0 ,

"Z " : 0 .00123 e−6, "V_X " : 0 . 1 1 4 , "V_Y " : 0 . 0 ,

"V_Z " : 0 . 0 , " SPIN " : 0 ,

"SPIN_THETA " : 0 , " SPIN_PHI " : 0 } ,

"BSSN_BH2 " : { "MASS" : 1 e−15 ,"X" : 1 e15 , "Y" : 0 . 0 ,

"Z " : 0 . 0 0 1 2 3 e−6, "V_X " : 0 . 0 , "V_Y " : 0 . 0 ,

"V_Z " : 0 . 0 , " SPIN " : 0 ,

"SPIN_THETA " : 0 , " SPIN_PHI " : 0 }



E.1 Toolkits/Softwares 259

(a) step = 0, time = 0 M
(b) step = 500, time =
21.97 M

(c) step = 1000, time =
43.94 M

(d) step = 1500, time =
65.91 M

(e) step = 2000, time =
87.88 M

(f) step = 2500, time =
109.85 M

(g) step = 3000, time =
131.82 M

(h) step = 3500, time =
153.79 M

(i) step = 4000, time =
175.76 M

(j) step = 4500, time =
197.73 M

(k) step = 5000, time =
219.70 M

(l) step = 5500, time =
241.67 M

(m) step = 6000, time =
263.64 M

(n) step = 6500, time =
285.61 M

Figure E.1 A single black hole boosted in the x-direction, with MAXDEPTH=12
and wavelet tolerance of 10−3. Time is given in terms of the black hole mass, M.
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E.1.2.9 Binary Black Holes

E.1.2.9.1 Mass ratio q = 1 We performed a series of short-term binary BH evolutions

with different mass ratios. This run was used to validate the code by comparing the

trajectories of the BHs calculated using DENDRO to the trajectories calculated by HAD.

Frames from the evolution are shown in the Figure E.3, and the BH parameters used for

this run are listed below.

"BSSN_BH1 " : {

"MASS" : 0 . 4 8 5 ,

"X" : 4 . 0 0 e +00 , "Y" : 0 . 0 , "Z " : 1.41−05 ,

"V_X " : −0.00133 , "V_Y " : 0 . 1 1 2 , "V_Z " : 0 ,

" SPIN " : 0 , "SPIN_THETA " : 0 , " SPIN_PHI " : 0 } ,

"BSSN_BH2 " : {

"MASS" : 0 . 4 8 5 ,

"X":−4.00+00 , "Y" : 0 . 0 , "Z" :1 .41 −05 ,

"V_X " : 0 . 0 0 1 3 2 , "V_Y " : −0.112 , "V_Z " : 0 ,

" SPIN " : 0 , "SPIN_THETA " : 0 , " SPIN_PHI " : 0 }

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
·104

0

0.2

0.4

0.6

0.8

timestep→

||.
|| 2
→

||H ||2
||P1||2
||P2||2
||P3||2

Figure E.2 L2 norm of the Hamiltonian and momentum constraint violation as
hyperbolic equations are evolved in time for equal mass ratio binary black hole
configuration test run performed using DENDRO-GR. Note that the final spike in
constraint violation happens during the merging event of the binary black holes.
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(a) step = 0, time = 0 M
(b) step = 500, time =
21.97 M

(c) step = 1000, time =
43.94 M

(d) step = 1500, time =
65.91 M

(e) step = 2000, time =
87.88 M

(f) step = 2500, time =
109.85 M

(g) step = 3000, time =
131.82 M

(h) step = 3500, time =
153.79 M

(i) step = 4000, time =
175.76 M

(j) step = 4500, time =
197.73 M

(k) step = 5000, time =
219.70 M

(l) step = 5500, time =
241.67 M

Figure E.3 This figure shows frames from the evolution of a black hole binary
with an equal mass ratio, q = 1. Time is measured in terms of the total black hole
mass M.
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E.1.2.9.2 Mass ratio q = 10 We performed a short simulation with a mass ratio q = 10.

This is a short demonstration run to show that DENDRO easily handles large mass ratios

and gives consistent results for the binary evolution. Frames from the evolution are shown

in Figure E.4, and the BH parameters used for this run are listed below.

"BSSN_BH1 " : {

"MASS" : 0 . 9 0 3 ,

"X" :5 .45 −01 , "Y" : 0 . 0 , "Z " : 1.41−05 ,

"V_X " : −3.90e−04 , "V_Y " : 0 . 0 4 7 0 , "V_Z " : 0 ,

" SPIN " : 0 , "SPIN_THETA " : 0 , " SPIN_PHI " : 0 } ,

"BSSN_BH2 " : {

"MASS" : 0 . 0 8 4 5 ,

"X":−5.45+00 , "Y" : 0 . 0 , "Z" :1 .41 −05 ,

"V_X " : 3 . 9 0 e−04 , "V_Y " : −0.0470 , "V_Z " : 0 ,

" SPIN " : 0 , "SPIN_THETA " : 0 , " SPIN_PHI " : 0 }

E.1.2.9.3 Mass ratio q = 100 We performed a short simulation with a mass ratio

q = 100 This is a short demonstration run to show that DENDRO produces the proper grid

structure for this system and reasonable results for a very challenging binary configuration.

Frames from the evolution are shown in Figure E.5 and the BH parameters used for this run

are listed below.

"BSSN_BH1 " : {

"MASS" : 0 . 9 8 9 ,

"X" :5 .94 −02 , "Y" : 0 . 0 , "Z " : 1.41−05 ,

"V_X " : −5.60−06 , "V_Y " : 5.61−03 , "V_Z " : 0 ,

" SPIN " : 0 , "SPIN_THETA " : 0 , " SPIN_PHI " : 0 } ,

"BSSN_BH2 " : {

"MASS" : 0 . 0 0 9 1 4 ,

"X":−5.94+00 , "Y" : 0 . 0 , "Z " : 1 . 4 1 4 2 1 3 5 6 e−05 ,

"V_X " : 5.60−06 , "V_Y " : −5.61−03 , "V_Z " : 0 ,
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(a) step = 0, time = 0 M
(b) step = 500, time =
21.97 M

(c) step = 1000, time =
43.94 M

(d) step = 1500, time =
65.91 M

(e) step = 2000, time =
87.88 M

(f) step = 2500, time =
109.85 M

(g) step = 3000, time =
131.82 M

(h) step = 3500, time =
153.79 M

(i) step = 4000, time =
175.76 M

(j) step = 4500, time =
197.73 M

(k) step = 5000, time =
219.70 M

(l) step = 5500, time =
241.67 M

Figure E.4 This figure shows frames from the evolution of a black hole binary
with mass ratio q = 10. Time is measured in terms of the total black hole mass M.
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(a) step = 0, time = 0 M
(b) step = 500, time =
21.97 M

(c) step = 1000, time =
43.94 M

(d) step = 1500, time =
65.91 M

(e) step = 2000, time =
87.88 M

(f) step = 2500, time =
109.85 M

(g) step = 3000, time =
131.82 M

(h) step = 3500, time =
153.79 M

(i) step = 4000, time =
175.76 M

(j) step = 4500, time =
197.73 M

(k) step = 5000, time =
219.70 M

(l) step = 5500, time =
241.67 M

Figure E.5 This figure shows frames from the evolution of a black hole binary
with mass ratio q = 100. Time is given in terms of the total mass M.

" SPIN " : 0 , "SPIN_THETA " : 0 , " SPIN_PHI " : 0 }

E.1.3 FleCSPH

FleCSPH implements the method of smoothed particle hydrodynamics (SPH) in order

to simulate fluids and gases using the FleCSI framework. Currently, particle affinity and

gravitation is handled using the parallel implementation of the octree data structure provided

by FleCSI.

https://github.com/laristra/flecsph
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This code is used in Chap 4 to study BNS mergers. To build the code, please follow the

instructions at https://github.com/laristra/flecsph#building-the-flecsph.

E.1.3.1 Running FleCSPH Applications

Current FleCSPH contains several initial data generators and two evolution drivers: hydro

and Newtonian. Initial data generators are located in app/id_generators/:

• sodtube: 1D/2D/3D sodtube shock test;

• sedov: 2D and 3D Sedov blast wave;

• noh: 2D and 3D Noh implosion test.

• etc.

Evolution drivers are located in app/drivers:

• hydro: 1D/2D/3D hydro evolution without gravity;

• newtonian: 3D hydro evolution with self-gravity.

To run a test, one needs a valid input parameter file which specify the parameters of the

problem. The link at https://github.com/laristra/flecsph/tree/master/data shows parameter

files for various simulations. One can easily copy one of these parameter files and use it.

In the next section, we provide a description of some of these parameters. Running an

application consists of two steps:

• generating initial data;

• running evolution code.

For instance, to run a sodtube 1D shock test, do the following (assuming you are in your

build directory after having successfully built FleCSPH):
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cp ../data/sodtube_t1_n1000.par sodtube.par

# edit the file sodtube.par to adjust the number of particles etc.

app/id_generators/sodtube_1d_generator sodtube.par

app/driver/hydro_1d sodtube.par

E.1.3.2 Description of Parameters

In this section, we provide key parameters that are used in any type of application

• sph_variable_h

yes: Particles can have variable smoothing length over and in each iteration. no:

Particles will have the same smoothing length in each iteration.

• initial_dt (default 1)

Value of the initial timestep

• adaptive_timestep (default no)

yes: The timestep will be recomputed at every iteration based on either: acceleration,

viscosity and energy.

no: Constant timestep.

• timestep_cfl_factor (default 0.25)

Courant-Friedrichs-Lewy factor (between the timestep and particle separation)

• initial_iteration (default 0)

initial iteration

• final_iteration (default, 10)

final iteration (= total iterations + 1, if counting from 0)

• initial_time (default, 0)

initial time
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• final_time (default, 1.0)

final time

• initial_dt (default, 0.001)

initial timestep

E.1.4 PAMR/AMRD lib

AMRD is a library consisting of a main function which implements a Berger and Oliger

(B&O) style adaptive mesh refinement (AMR) driver, with modifications to allow one to

solve elliptic equations within the B&O time stepping framework. In addition, PAMR is a

library of routines designed to manage distributed grid hierarchies with AMRD. The project

code can be found in https://github.com/hlim88/PBH-NS.

This code is used in Chap 5 to study interactions of small mass BH with NS

First, we need to build PAMR/AMRD lib. To build this lib, you will need the following

dependencies:

• C++14 compatible complier such as gcc >=5.4

• MPI lib, complied with the complier above

• Basic GSL lib

• HDF5 lib

Once you have all these, you need to configure via:

./configure –prefix=/usr/local

(If you are trying to build this code on a supercomputer, you may want to configure it with

./configure –prefix=/home/<your username>/local)

If no problems arise during configuration, type make install to build the lib. If the

lib has been correctly built you should find libpamr.a and libamrd.a in /usr/local (or

/home/<your username>/local)
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Next, we need to build the code. If you have built PAMR/AMRD correctly, you can

simply type make to compile the code. You will see ss_gr_hydroSolver. The link at

https://github.com/hlim88/PBH-NS/tree/master/ss_gr_hydro/Instruction shows different

makefiles with respect to various architecture. You can also use these for future reference.

After you have successfully built the code, you can simply use runScript to run the

code. This script can be found in https://github.com/hlim88/PBH-NS/tree/master/ss_gr_hydro/run.

E.1.4.1 Parameter Generation

There are two different types of parameter files: .rtparam and .fparam .

.fparam contains fixed parameters that define evolution variables and AMR related

variables. Most users will not need to change this parameter file unless they introduce new

variables.

.rtparam contains run-time parameters that are used for simulations. Also, you can

choose which variables are output.

Both .rtparam and .fparam can be found at https://github.com/hlim88/PBH-NS/tree/master/par.

Note as well that both parameter files are required to start simulations. Check runScript

(https://github.com/hlim88/PBH-NS/tree/master/ss_gr_hydro/run) on how to use these

parameter files.

Below we show some key parameters for our work

• Pressure_c

Central pressure value for initial data

• U_amp

Initial fluid velocity. We find that 0.48639 provides collapsing into BH

• MG_*

Parameters with MG_ are related with multigrid methods for solving elliptic equations.

If you are using BSSN form, you do not need these.



E.2 Visualization of Results 269

E.2 Visualization of Results

Data visualization tools and technologies are key to analyze massive amounts of information.

By using visual elements like charts, graphs, and maps, data visualization tools provide an

accessible way to see and understand physical consequencess in data. There are number of

ways to visualize large data from industrial packages such as Matlab and Mathematica to

lower level coding. In this work, we are using many different techniques to visualize our

data but we review specific toolkits that could be adapted different projects

E.2.1 DV/xvs

DV/xvs is a set of visualization toolkits to aid in the development of numerical codes that

solve partial differential equations via grid-based methods, in particular those utilizing

adaptive mesh refinement (AMR) and/or running in a parallel environment. Both HAD and

PAMR/AMRD generate output file for DVxvs/

E.2.1.1 Getting DV/xvs and Installation

Both DV and xvs require several dependencies. In particular they require

• C99 compatible complier such as gcc >=4.8

• Fortran 77 complier such as f77 or gfortran

• Perl

• OpenGL

• Jpeg libs for Mpeg encoding

• For linux user, Flex and GNU Bison

• XForms

• RNPL and related libs

http://laplace.physics.ubc.ca/Group/Software.html
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Most of these dependencies can be downloaded from http://laplace.physics.ubc.ca/Doc/rnpletal/.

Note that there may be additional packages or libraries that are required due to different

computer operating systems. For example, Ubuntu users may want to additionally install

libform (https://launchpad.net/ubuntu/precise/+source/libforms) with xforms to satisfy

some contingencies.

Once all the required packages have been downloaded, installation can be done by

following the instructions at http://laplace.physics.ubc.ca/Doc/rnpletal/

After successful installation, starting DV/xvs can be done by simply typing DV (or xvs)

in your terminal. Then you will see below start window.

E.2.1.2 Visualizing sdf Files

This toolkit is suitable to visualize sdf files. Once you have your simulation results, you

can send the sdf files to this visualization server. Note that XVS aims to visualize 1D

results and DV visualizes higher dimensional results but it also can visualize 1D result. In

this section, we will concentrate on DV and review its basic usage. (xvs has a very similar

structure so a user familiar with DV should fairly readily be able to pick up xvs.) More
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detailed instructions for DV can be found at http://laplace.physics.ubc.ca/Doc/DV/ and for

xvs at http://laplace.physics.ubc.ca/Doc/xvs/

Starting DV can be done by typing DV at a command line on your local machine. Once

DV is running, you can send data files that are in sdf format to the DV server using sdftodv

(sdftoxvs for xvs) command. Before using sdftodv, you will need to specify the host

address of the machine on which DV is running. You can do this by settin

export DVHOST=<your hostname> (for xvs, you need to specify XVSHOST).

In a different OS, you may need to setenv DVHOST <your hostname>. After setting

the hostname, you can send the sdf file through

sdftodv -i <ivec> <your sdf file name>

where ivec is an option to control which data sets within the sdf files will be sent to

DV. If you successfully send data sets to DV, you will see data register in the DV contents

panel. An example is given below

In the above example, we have two different registers that represent the lapse function

(alpha). We can merge these two data into one single register that contains all the grid

functions for a variable, and it will be identified by its time, resolution, and coordinate
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domain. The Merge button on the right side of the main window can be used to collate the

different data sets. After this, you will see two data sets merge into one data set as in the

picture below. Note that you can merge with a specific time rather than the whole register.

Also, you can expand the register to see different time and coordinate resolutions by

double-clicking on the data contents as shown in the figure below.

To visualize your data, simply click the Send to local view button on the right side

of the main window. After sending your data into local view, you will see a separate window

that shows your data as in the figure below.
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As you can see from above, there are different options for the visualization panel.

See http://laplace.physics.ubc.ca/Doc/DV/sec_33.html#Other_functions for details of these

functionalities.

E.2.2 Paraview

Paraview is an open source multiple-platform application for interactive, scientific visual-

ization. It has a client-server architecture to facilitate remote visualization of datasets, and

generates level of detail (LOD) models to maintain interactive frame rates for large datasets.

It is an application built on top of the Visualization Toolkit (VTK) libraries. ParaView

is an application designed for data parallelism on shared-memory or distributed-memory

multicomputers and clusters. It can also be run as a single-computer application. It can be

downloaded via https://www.paraview.org/download/. One can easily download and install

Paraview on different operating systems. It also provides a user manual through download

webpages.

After successfully installing Paraview, we are ready to plot our data. In this instruction,
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we only consider results from our BSSN_GR project. Other possible applications of and

with Paraview can be found in the manual pages.

Here we use simple functionalities in Paraview. Once you finish your simulation, you

will get a bunch of different output files. Here, we only need to consider .pvtu for visual-

ization purposes. Our example below shows a step-by-step procedure to plot our binary

black hole data.

1. Click the Open icon (in the red box in the figure below) or Ctrl-O (Command-O for

mac) then load the <filename>.pvtu file into your directory. Once the data has been

successfully loaded, you will see something akin to the figure below.
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2. The lower left part of the panel shows your data fields (red-boxed area in figure). You

can choose the data set that you want to plot. Here, the data fields show BSSN variables.

After you choose your data, click Apply right above. Then you should see something

to the picture below. This shows the whole 3D box of data that we have. To see the

data more precisely, we slice the box. Click on the slice icon (the red-boxed icon in the

third-from-the-top menu bar) or find the slice option in the Filters/Common tab

3. After applying Slice, you will see many options in the Properties section (the red-

boxed area in the figure below). This shows the direction of the slice axes. You can choose

your own coordinates or just choose X ,Y, or Z axes. After choosing one of these options

click Apply. You should see a picture similar to below.
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4. We can change the data field that we want to see. The default set up is Solid Color.

You can change the fields via second top lines in the below figure (the first red-boxed

area in the figure). In this example, U_Alpha is chosen. Also, Paraview has different

representations such as Surface, Points, and Wireframe etc. The second red-boxed

area in the figure shows different options for these representations. You can also change

the representation in Properties section (left lower section). In this figure, we choose

Surface. If you want to turn off the plane frame in the figure, disable Show Plane (the

red-boxed area in the Properties section in below figure).
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5. If you want to change the color scheme and/or the level, go to the View tab, then enable

Color Map Editor. Once you enable, you can see mapping data in the color map editor

panel. In many cases, the default color space is Diverging. In this example, I choose HSV

as the color space and Wireframe as the representation.

6. With our previous steps, we have created a visualization of our data via a 2D surface.

We would, of course, also like to elevate our data to see how each field scales. There

are several different representations in Paraview. Here, we use Warp By Scalar. Go

to the Filters/Alphabetical tab and then enable Warp By Scalar. After this, you

should see a picture similar to below. The scaling can be changed via Scale Factor in

the Properties window (red-boxed area in the left lower corner).

Individual image files can be saved and video can also be created of these results within
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Paraview. Go to the File tab, and check Save Screenshot and Save Animation to

make images and videos

These are just a few, basic features of Paraview used to plot our binary black hole simula-

tion results. Additional functions include clip or contour. Check https://www.paraview.org/download/

to learn about some of these additional features.

E.2.2.1 Visualize Data using a Script

Normally, production runs will generate huge output files. Using a personal laptop or

sequential usage with Paraview can require a great deal of time for plotting the data.

Fortunately, Paraview can be run in parallel.

Paraview has a function name Trace which records all your commands/usages during

a plotting session. With Trace, it will generate a python script which will automatically

perform all procedures saved. On accessing the Dendro-5.0 repository, one can find a

python script called bssnVis.py. bssnVis.py was created from Paraview trace and

includes additional parser features to generate images efficiently. This script can be found

in the Dendro-5.0/scripts directory.

To use this, a user will need PvBatch and PvPython. PvPython is the Python interface

to Paraview. You can think of PvPython as ParaView with a Python interface. PvBatch is

like PvPython, with two exceptions. PvBatch only accepts commands from input scripts,

and PvBatch will run in parallel if it was built using MPI. Input is exactly like PvPython.

In these instructions, we will use bssnVis.py. Additional details about these functions

can be found at https://www.paraview.org/Wiki/ParaView_and_Batch and https://www.paraview.org/Wiki/ParaView/Python_Scripting.

On successful installation of Paraview, pvbatch will be found in the bin directory of Par-

aview. For example, pvbatch should be in /Users/<user name>/<path to Paraview

build>/bin/ directory. The command to use bssnVis.py is:

pvbatch -b <beginning time steps> -e <end time> -f <frequency> -pvtu

<path>/bssn_gr

(or file name) -img <image saving path> (if not, save locally)/<image name>
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As an example:

pvbatch bssnVis.py -b 0 -e 400 -f 50 -pvtu gr_sp1/bssn_gr -img img1/img_slice

On using this, we can run Paraview in parallel with:

mpirun -np <number of cores> pvbatch bssnVis.py -b 0 -e 400 -f 50 -pvtu

gr_sp1/bssn_gr

-img img1/img_slice

After generation, image files are labelled automatically. Using these image files, one can

generate video files. For example, using ffmpeg:

ffmpeg -r 10 -i 0%03d.png <movie name>.mp4

For more details, please refer ffmpeg website (https://www.ffmpeg.org/).

We assume that most supercomputers will have Paraview as a module. So, you can

follow either ways to plot the data. If you have more questions about it, please check the

Paraview manual or contact Milinda Fernando (milindasf@gmail.com) for more specific

inquiries.

E.2.2.2 pvbatch in Marylou

In this section, we explore how we can use pvbatch in marylou. First, a user will need

specific modules. These include

module load gcc/6.4

module load python/2.7_gcc-6

paraview/5/4

Once the correct modules have been loaded, the script can be used in the normal way. If an

error arises related to the X-server, a possible fix is to try with the no display option

such that

DISPLAY=:0 pvbatch -b <beginning time steps> -e <end time> -f <frequency>

-pvtu <path>/bssn_gr (or file name) -img <image saving path>/<image name>

This can be exported as the default with export DISPLAY=:0. pvbatch can be run in
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parallel using the usual mpirun command.

E.2.2.3 Remote Visualization

Paraview supports remote access for visualization purposes. Instead of using a script, one

accesses the supercomputer (or some other server) remotely and then visualization of data

can happen without transferring the data. Here is a simple example of how can use this

functionality. We use marylou as an example.

To begin using Paraview for remote data processing and visualization, we must first

start the server application pvserver on the remote system. To do this, call the paraview

module in marylou then type

pvserver

You will see this startup message on the terminal

m7int01: hlim10$ pvserver

Waiting for client...

Connection URL: cs://m7int01:11111

Accepting connection(s): m7int01:11111

Note that you can run pvserver in parallel with the command mpirun -np <number of

cores> pvserver.



E.2 Visualization of Results 281

After this, run Paraview and then select File/Connect or click the button that is highlighted

with the red box in the below figure (in the upper left portion of the screen). You should

then see the Choose Server Configuration dialog box

Now, an entry to the list must be added by clicking Add Server. At this point, you should

see Edit Server Configuration. You will need to set a name for the connection, the

server type, the DNS name of the host on which you just started the server, and the port.



E.2 Visualization of Results 282

When you are done, click the Configure button. Another dialog box, as shown in the

figure below, will appear where you specify how to start the server. In this example, we

started the server manually, we are not able to change this setting. Alternatively, we can

optionally set the Startup Type to Command and specify an external shell command to

launch a server.

After all of this, you should see a list similar to below. Clicking on Connect will connect to

the server (in this example marylou). After a successful connection, you can use Paraview

exactly the same as with a usual GUI environment. The only difference in user interfaces is

the Pipeline Browser (red-boxed in left figure) which will reflect the name of the server

to which you are connected.
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