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ABSTRACT

Robust Coil Combination for bSSFP MRI and the Ordering Problem
for Compressed Sensing

Nicholas Brian Patrick McKibben
Department of Electrical and Computer Engineering, BYU

Master of Science

Balanced steady-state free precession (bSSFP) is a fast, SNR-efficient magnetic resonance
(MR) imaging sequence suffering from dark banding artifacts due to its off-resonance dependence.
These banding artifacts are difficult to mitigate at high field strengths and in the presence of metal-
lic implants. Recent developments in parametric modelling of bSSFP have led to advances in band-
ing removal and parameter estimation using multiple phase-cycled bSSFP [1], [2]. With increasing
number of coils in receivers, more storage and processing is required [3]. Coil combination is used
to reduce dimensionality of these datasets which otherwise might be prohibitively large or com-
putationally intractable for clinical applications [4]. However, our recent work demonstrates that
some combination methods are problematic in conjunction with elliptical phase-cycled bSSFP [5].

This thesis will present a method for phase estimation of coil-combined multiple phase-
cycled bSSFP to reduce storage and computational requirements for elliptical models. This method
is general and works across many coil combination techniques popular in MR reconstruction in-
cluding the geometric coil combine and adaptive coil combine algorithms [6], [7]. A viable phase
estimate for the sum-of-squares is also demonstrated for computationally efficient dimension re-
duction. Simulations, phantom experiments, and in vivo MR imaging is performed to validate the
proposed phase estimates.

Compressed sensing (CS) is an increasingly important acquisition and reconstruction frame-
work. CS MR allows for reconstruction of datasets sampled well-under the Nyquist rate and its ap-
plication is natural in MR where images are often sparse under common linear transforms [8]. An
extension of this framework is the ordering problem for CS, first introduced in 2008 [9]. Although
the assumption is made in CS that images are sparse in some specified transform domain, it might
not be maximally sparse. For example, a signal ordered such that it is monotonic is maximally
sparse in the finite differences domain. Knowledge of the correct ordering of an image’s pixels
can lead to much more sparse and powerful regularizers for the CS inverse problem. However, this
problem has met with little interest due to the strong dependence on initial image estimates.

This thesis will also present an algorithm for estimating the optimal order of a signal such
that it is maximally sparse under an arbitrary linear transformation without relying on any prior
image estimate. The algorithm is combinatoric in nature and feasible for small signals of interest
such as T1 mapping time curves. Proof of concept simulations are performed that validate perfor-
mance of the algorithm. Computationally feasible modifications for in vivo cardiac T1 mapping
are also demonstrated.

Keywords: MRI, bSSFP, compressed sensing, coil combination
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CHAPTER 1. INTRODUCTION

Magnetic resonance (MR) imaging is a powerful imaging modality with virtually limitless

possibilities for interesting and useful contrast generation. However, with great power comes great

imaging times, perhaps the most troublesome issue plaguing the whole of the entire MR ecosystem.

With each advancement in fast imaging new possibilities emerge and new issues arise requiring

further study and innovation. With each publication in the field of MR signal processing and

advanced pulse sequence design, one gets the feeling that these researchers will not be satisfied:

they have a need for speed.

The present work is concerned with two specific areas: 1) the intersection of coil combina-

tion and multiple phase-cycled balanced steady-state free precession (bSSFP) and 2) the ordering

problem for compressed sensing (CS). Both of these areas are deeply concerned with speeding up

the MR experiment. The former considers speeding up data processing through data compression

and the latter considers reconstruction techniques that assist in potential speed-ups during data

acquisition.

This introduction describes the specific contributions made by the thesis in the aforemen-

tioned areas as well as informing the reader about where those contributions can be found.

1.1 Contributions

The main contributions of this thesis are as follows:

• We propose a novel phase-substitution method for coil combination of multiple phase-cycled

bSSFP imaging. This method can be applied in conjunction with many coil combination

strategies. The method is a direct answer to the question we first asked in [5] where we

demonstrated that upstream coil combination is detrimental to downstream processing re-

sults relying on the bSSFP elliptical signal model. There are two phase estimation variants

presented: a more computationally demanding but more accurate full phase estimate and a
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faster, less accurate simple phase estimate. In simulation and under a variety of SNR condi-

tions, both phase substitutions outperform standard coil combination techniques. Phantom

and in vivo experiments validate the method under real imaging conditions and show that

the simple, more computationally efficient method performs very well and is viable for com-

pression of large datasets during preprocessing for phase sensitive bSSFP elliptical signal

model algorithms.

• We present a prior-less version of the ordering problem for CS and an algorithm designed

to find the best ordering for any arbitrary sparsifying linear transformation. The ordering

problem is a niche area in signal processing for CS MR image reconstruction that has con-

ventionally relied on prior image estimates in the form of low resolution priors, reference

datasets, or first-pass CS solutions. This has made it unattractive as a mainstream solution

for the CS MR reconstruction problem as these prior image estimates are sometimes not

good indicators of order relations between pixels. Herein we recast the problem using an

implicit model defined by the order relations to show that optimal ordering estimates can be

found without an image prior. An exhaustive simulation is performed to validate the pro-

posed theory using a computationally tractable T1 mapping problem. Inclusion of additional

priors for in vivo cardiac T1 mapping is demonstrated as a computationally feasible extension

of the proposed framework.

1.2 Outline

The thesis is organized as follows:

Principles of Magnetic Resonance Imaging

Chapter 2 introduces the basic concepts of magnetic resonance imaging (MRI) that will be

assumed in later chapters.
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Balanced Steady-State Free Precession

Chapter 3 presents the balanced steady-state free precession sequence and the basic termi-

nology of MR pulse sequence design. The bSSFP signal equations and the elliptical signal model

are derived. Understanding of this sequence is fundamental for Chapter 4 and many appendices.

Robust Coil Combination for the bSSFP Elliptical Signal Model

Chapter 4 presents the proposed method for phase estimation to be used in conjunction with

existing coil combination methods. The problem of multiple phase-cycled bSSFP coil combination

is motivated and demonstrated. The proposed method is derived theoretically in the context of

existing coil combination methods and parallel imaging methods. The method is validated using

simulations over a range of SNRs as well as phantom and in vivo experiments to demonstrate the

validity of the phase estimate in real imaging scenarios.

Compressed Sensing

Chapter 5 presents the theory of compressed sensing. The general problem is described

and contextualized for the CS MR inverse imaging problem. Two algorithms are detailed and their

updates derived: gradient descent and iterative soft thresholding. These algorithms will reappear

in Chapter 6.

The Ordering Problem for Compressed Sensing

Chapter 6 introduces the ordering problem for CS MRI. A brief literature review is followed

by the proposal of a new class of ordering problem. Previously, orderings have been generated

using image priors. However, these priors are often suspect. This chapter proposes a combinatorial

algorithm to find an optimal ordering for the ordered CS problem without an image prior. The

algorithm is validated through simulation of a T1 mapping time curve reconstruction. Modifications

are made to incorporate additional priors for computationally feasible in vivo cardiac T1 mapping.
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Appendices

The appendices contain derivations which are not strictly necessary to the development of

the chapters as well as selected conference proceedings related to the topics in the present thesis. I

am the first author or an equally contributing author on all included conference proceedings except

when otherwise indicated.

Coil Combination for ESM bSSFP

Appendix A details the Roemer maximum SNR coil combination and Walsh’s adaptive coil

combination methods [7], [11]. Derivations are presented for the nonlinear geometric relationships

when applying the elliptical signal model for multiple phase-cycled bSSFP.

Deep Convolutional Neural Networks for Estimation of Pre-Reconstruction Data Reorder-
ings [5]

Appendix B contains an accepted proceeding to the International Society of Magnetic Res-

onance in Medicine’s (ISMRM) 2018 Workshop on Machine Learning which is related to the or-

dering problem for CS MRI. Dynamic contrast enhanced cardiac MR datasets using a golden angle

radial sampling pattern were fed into a convolutional neural network which learned the orderings

for the real and imaginary parts of the images. This architecture generates orderings directly from

corrupted image estimates and compares favorably to those generated using orderings from simple

low resolution priors.

Synthetic Banding for bSSFP Data Augmentation [12]

Appendix C contains an accepted proceeding to the 2019 ISMRM annual conference.

Many algorithms exist that can effectively remove banding artifacts from bSSFP images, typi-

cally by requiring multiple phase-cycled acquisitions, which increases scan time. While some of

the algorithms can suppress some banding with two sets of phase-cycled acquisitions, much more

accurate band suppression is typically achieved with at least four phase-cycled acquisitions. In this

work, we present a deep learning method for synthesizing additional phase-cycled images from a
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set of at least two phase-cycled images that can then be used with existing band reduction tech-

niques in order to reduce scan time. These synthesized phase-cycles are shown to be effective

when used in conjunction with the bSSFP elliptical signal model.

Deep Learning Super-FOV for Accelerated bSSFP Banding Reduction [13]

Appendix D contains an accepted proceeding to the 2019 ISMRM annual conference. We

present a machine learning technique for bSSFP band removal using two undersampled phase-

cycled bSSFP image acquisitions. A deep convolutional neural network was trained to solve a

generalized SENSE reconstruction problem where bSSFP banding sensitivities are used as opposed

to coil sensitivity maps. We demonstrate that a deep neural network can reduce banding artifacts in

multiple acquisition bSSFP with comparable performance to the elliptical signal model and reduce

overall scan time by requiring half as many phase-cycled images.

Generation of Arbitrary Spectral Profiles Using Orthonormal Basis Combinations of bSSFP
MRI [14]

Appendix E contains an accepted proceeding to the 2018 ISMRM annual conference on

which I was the second author. We present a technique for generating an arbitrary spectral pro-

file by using multiple-acquisition bSSFP. Multiple phase-cycled bSSFP images with increasing

TRs were acquired and Gram-Schmidt orthogonalization was applied to spectral basis functions to

generate an orthonormal basis. We demonstrate simple proof-of-concept spectrum filtering.
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CHAPTER 2. PRINCIPLES OF MAGNETIC RESONANCE IMAGING

In this chapter we will outline the basic principles of magnetic resonance (MR) imaging

as they apply to the present thesis. We will not shy away from simple classical derivations, but

necessarily this discussion will be abbreviated. The exceptionally curious reader is directed to the

excellent references: [15], [16]. Our discussion of MR physics below will focus on a classical un-

derstanding of MR. For a more nuanced presentation including the underlying quantum mechanical

effects governing the nuclear magnetic resonance (NMR) phenomenon, Levitt’s wonderful book is

recommended: [17].

2.1 Physics of MRI

Unless otherwise stated, we will assume a constant magnetic field in the k̂ direction for the

external main magnetic field, i.e., ~B = B0k̂.

2.1.1 Nuclear Spin and Magnetic Moments

Because hydrogen is abundant in humans and we often want to look inside humans, we are

interested in single protons. Protons (as well as electrons and neutrons) possess intrinsic angular

momentum called “spin.” In fact, nuclei with an odd number of protons and neutrons have an

unpaired component of spin angular momentum resulting in a net nonzero value. This property

can be measured and quantified, its existence first inferred by the results of the Stern-Gerlach ex-

periment [18]. Enigmatically, a stationary proton’s spin gives rise to a magnetic dipole moment,

usually associated with a spinning or rotating charge. Thus it is useful (though not entirely ac-

curate) to think of a proton as a spinning charge generating a current, which, in turn, produces a

magnetic moment.

Sticking to our classical model, we here introduce the concept of an Amperian loop. After

Hans Christian Ørsted discovered that electric currents induce magnetic fields and Andre-Marie
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Figure 2.1: Amperian loop: a point charge with charge e travels in circular loop with radius r and
velocity~v.

Ampere found that electric currents, like magnets, attract and repel each other, Ampere proposed

that all magnetic fields are due to electric current loops [19]. In this model, the magnetic dipole

resulting from nuclear spin is modeled as a sufficiently small Amperian loop with current I. Thus

we consider a point charge with charge e and set it in motion with velocity v around a circle with

radius r and area S as in Figure 2.1. This induces a magnetic dipole moment ~µ:

~µ = I~S, (2.1)

where the direction of ~S is consistent with the right hand rule. Recall that current is simply charge

per unit time:

I =
charge
time

=
e
t
. (2.2)

We know the total time the point charge takes to make a complete orbit:

t =
distance
velocity

=
2πr

v
. (2.3)

Putting these all together, we get an expression for the moment:

I =
e

2πr
v

=
ev

2πr
(2.4)

µ = IS =
ev

2πr
πr2 =

e
2m

mvr. (2.5)

We will call attention to the quantity γ = e
2m . This is the gyromagnetic ratio (also called the

magnetogyric ratio), a fundamental property of the nucleus. We want the gyromagnetic ratio in

terms of the so called nuclear magneton µN corresponding to a proton with g-factor g ≈ 5.6 as
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found in standard tables [20]:

γ =
gµN

}
(2.6)

µN =
e}

2mp
. (2.7)

Importantly, we get for a proton:
γ

2π
= 42.58

MHz
T

. (2.8)

Looking back at equation (2.5), we also find L = mvr is the apparent angular momentum. Thus we

have the simple relationship for the dipole:

~µ = γ~L. (2.9)

Surprisingly enough, this 18th century classical model is consistent with modern observations of

dipole and angular momentum measurements.

2.1.2 Larmor Frequency

This section derives the famous Larmor frequency, but to get there, we must first briefly

touch on the Bloch equations. The Bloch equations were derived by Bloch himself in his 1946

seminal paper [21]. They describe the dynamics of a magnetic moment in response to external

magnetic fields and continue to be foundational in modern MR analyses and reconstruction tech-

niques [19]. In a uniform magnetic field, ~B, a magnetic dipole ~µ will experience some torque~τ as

represented by the cross product:

~τ =~µ×~B. (2.10)

Analogous to Newton’s second law, we also have a simple relationship between angular momentum

and torque:
d~L
dt

=~τ. (2.11)
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We can now derive an expression for d~µ
dt :

γ
d~L
dt

=
dγ~L
dt

=
d~µ
dt

= γ~µ×~B. (2.12)

This last result informs us that~µ will precess, or nutate, when the cross product is non-zero.

We are interested in how fast the moment is precessing or spinning due to the torque, i.e., we want

to find the precession angular velocity. This precession frequency is ωLarmor, also known as the

Larmor frequency. By simply noting that ωLarmor is the time derivative of φ (the angle traveled in

the direction of~v along the Amperian loop) we get the following:

τ =
dL
dt

(2.13)

=
Lsinθdφ

dt
(2.14)

= |~µ×~B| (2.15)

= |µBsinθ | (2.16)

= γLBsinθ . (2.17)

Then, after a bit of algebra, we get the desired expression for the Larmor frequency:

ωLarmor =
dφ

dt
= γB. (2.18)

We will be returning to the Bloch equations to revise them in section 2.1.6. For now, we have

shown that ~µ is acted on by torque~τ due to the external magnetic field ~B resulting in precessing at

the Larmor frequency.

2.1.3 Net Magnetization

In tissue, we are almost always dealing with a large number of nuclei that give rise to

a large number of magnetic moments. If a strong static external field is applied to this large

number of nuclei, they will align either parallel or anti-parallel to the field, corresponding to low

and high energy states, respectively. The parallel orientation is slightly preferred over the anti-

parallel one as it is the lower energy state, however thermal energy is significant enough to keep
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the two populations nearly balanced. The small majority in the parallel orientation leads to a

net magnetization in the direction of the applied static field. This polarization in presence of an

external magnetic filed is depicted in Figure 2.2. Since we can practically only deal with huge

numbers of nuclei at a time, we consider only the net magnetization, ~M, or the sum of all moments

in a given volume (usually a voxel):

~M = ∑
volume

~µ. (2.19)

Most literature will refer to these net magnetization vectors as “spins” as we can visualize it pre-

cessing in a stationary frame according to equation (2.20). We will also refer to these as “magneti-

zation vectors.” By linearity, these spins behave for the most part as if they were a large magnetic

dipole moment in the magnetic field ~B:

d ∑~µ

dt
=

d ~M
dt

= γ ~M×~B. (2.20)

At this point we abandon the notion of dipole moments and substitute spins as the underlying MR

signal of interest.

Figure 2.2: Red arrows represent that magnetic moments of hydrogen nuclei. On the left, when no
magnetic field is applied, the moments are randomly oriented and the net magnetization of large
groups of moments is zero. However, as depicted on the right, in the presence of a magnetic field,
the moments tend to align parallel or anti-parallel to the field. Slightly more will align with the
field leading to a non-zero net magnetization in the direction of the field.
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2.1.4 Excitation

From equation (2.20), it is clear that when a spin has a nonzero angle with an external

magnetic field ~B, the spin will precess at the Larmor frequency given by equation (2.18). In fact,

this is what we mean when we say ~M exhibits nuclear magnetic resonance: when ~M precesses,

a circularly polarized radio-frequency (RF) wave is emitted at the Larmor frequency. Conversely,

when ~M is aligned with ~B, there is no precession and ~M is said to be at thermal equilibrium.

Dealing with RF, it is natural to expect reciprocity of the resonance: when an RF wave at the

Larmor frequency with nonzero component orthogonal to ~B is applied to ~M, the spin is “knocked”

out of alignment. This is called excitation. The RF wave itself is more commonly referred to as an

RF pulse in MR pulse sequence design. Assume for convenience that the applied RF pulse ~B1(t)

is completely orthogonal to ~B, that is, ~B1(t) = B1,x î+B1,y î. After the RF pulse has been applied

to ~M for a time T , we say that ~M has been tipped into the transverse plane (which by convention

is the xy-plane, as ~B = B0k̂ is in the longitudinal direction). The angle that ~M has been tipped is

called the flip angle α and is given by the following relationship:

α =
∫ T

0
γ~B1(t)dt. (2.21)

Now that ~M has been tipped, it has a nonzero angle with ~B and a receiver coil tuned to the Larmor

frequency may be used to record the wave generated by the transverse magnetization, Mxy, of the

resulting precession. This is the MR signal. Notice that the larger Mxy is, the stronger the resulting

signal will be. As the strength of the signal that can be detected is proportional to the transverse

component of the magnetization, maximum signal is obtained by using α = 90◦ to place all signal

in the transverse plane.

2.1.5 Relaxation

Once an RF pulse has been applied to ~M, contrary to equation (2.20), it does not precess

forever. In fact, in the absence of an RF pulse, ~M will return to thermal equilibrium at a rate which

is characteristic of the tissue that was excited. The process of returning to thermal equilibrium is

called relaxation. There are two components of relaxation: longitudinal relaxation and transverse

relaxation. Longitudinal relaxation is also known as spin-lattice relaxation and is described by the
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equation:
∂Mz

∂ t
=
−(Mz−M0)k̂

T1
, (2.22)

where Mz is the longitudinal magnetization and M0 is the magnitude of the magnetization at thermal

equilibrium. Note that Mz cannot be directly measured using commercial MR scanners. We call T1

the longitudinal relaxation constant. The differential equation (2.22) has the following solution:

Mz(t) = M0 +(Mz(0)−M0)e−t/T1, (2.23)

where the time elapsed, t, is set to 0 when relaxation begins.

Transverse relaxation or spin-spin relaxation is governed by the following differential equa-

tion:
∂Mxy

∂ t
=
−Mxy

T2
, (2.24)

where Mxy is the transverse magnetization and T2 is called the transverse relaxation constant.

Again, there is a simple solution:

Mxy(t) = Mxy(0)e−t/T2. (2.25)

Figure 2.3 shows representative relaxation curves for T1 and T2 along with an illustration of the

magnetization vector ~M. We should also note that T2 is (almost always) less than T1. T1 and T2

are tissue specific and vary with field strength. For example, Table 2.1 gives values for common

organic tissues at 1.5T (see Appendix II of [22]) We now have a mathematical model of how

relaxation affects the dynamics of the magnetization vector ~M and we are now ready to present the

Bloch equations incorporating relaxation effects.

2.1.6 Bloch Equations

We introduce transverse (T2) and longitudinal (T1) exponential relaxation time constants to

describe how the net magnetization reaches thermal equilibrium when perturbed. Assuming an

externally applied static magnetic field ~B = B0k̂, we have the modified equation (2.20), known as
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Table 2.1: Longitudinal and transverse relaxation
constants for some common organic

tissues at 1.5T.

Tissue T1 (in ms) T2 (in ms)
Brain white matter 790 90
Brain grey matter 920 100
Cerebral-spinal fluid ≥ 4000 ∼2000
Myocardium 870 60
Skeletal muscle 870 50
Lipids 260 80

Figure 2.3: The longitudinal and transverse components of the magnetization vector ~M are gov-
erned by equations (2.23) and (2.25), respectively. These exponential curves are illustrated here
with the inclusion of a visualization of the longitudinal and transverse components of ~M. At t = 0
the magnetization vector is tipped fully into the transverse plane followed by relaxation back to
thermal equilibrium.

the Bloch equations, describing the dynamics of ~M in an external magnetic field:

d ~M
dt

= γ ~M×B0k̂−
Mx î+My ĵ

T2
− (Mz−M0)k̂

T1
. (2.26)
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Note that the unit vectors (î, ĵ, k̂) are used to represent the three coupled partial differential equa-

tions present in the above equation. The Bloch equations are often written in matrix form:

d
dt


Mx

My

Mz

=


− 1

T2
γBz −γBy

−γBz − 1
T2

γBx

γBy −γBx − 1
T1




Mx

My

Mz

+


0

0
M0
T1

 , (2.27)

with obvious simplifications when ~B = Bzk̂. The MR signal Mxy is the result of projecting ~M onto

the transverse plane.

2.2 Spatial Localization

An essential concept in MR imaging is that the Larmor frequency, ωLarmor, can be made

to be position-dependent. Imagine a scenario where we place a person in a magnetic field ~B and

an RF pulse is applied. Every spin in the body would be excited regardless of its spatial location.

When we receive the resulting MR signal, the only information we have is a relative measure of

how much hydrogen was in their body. This is not very interesting information. If the Larmor

frequency was position-dependent, say, a unique frequency corresponded to the leg, then when we

apply the RF pulse we would only excite and receive signals from spins in the leg. With more

precise control of the Larmor frequency as a function of position, more interesting detail can be

acquired from the MR signal. According to equation (2.18), the Larmor frequency depends on

magnetic field strength, i.e., ωLarmor ∝ B0. That suggests that if we can make the external magnetic

field position-dependent, then the Larmor frequency will be as well.

In an MR scanner, the main field is maintained by a superconducting magnet designed to

produce a very uniform field (usually within a few parts per million) across an imaging region,

the center of which is referred to as the isocenter. Position-dependence is accomplished with extra

conventional electromagnets, often just called “gradients” and denoted G. MR scanners are usually

equipped with three linear gradients: Gx, Gy, and Gz, one along each axis. “Linear” refers to the

fact that the amplitude of the gradient varies linearly with position. The combined gradient fields
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can be expressed as a time-varying function:

~G(t) = Gx(t)î+Gy(t) ĵ+Gz(t)k̂, (2.28)

and the total field is given by:

B(r, t) = B0 + ~G(t) · r, (2.29)

where r is the position vector or current (x,y,z) spatial coordinates. Then by manipulating lin-

ear gradients we can easily change the Larmor frequency as a function of location. Below we

will discuss common strategies for spatial localization of the MR signal using the linear gradient

magnets.

2.2.1 Slice-Selective Excitation

Slice-selective excitation uses a band-limited RF pulse and the Gz gradient to select and

excite just a single slice of the imaging volume. Application of the Gz gradient leads to spatially

varying Larmor frequency along the z-axis as described above. Applying an RF pulse carrying

power only in those frequencies corresponding to a narrow band around ω0 = γB0 leads to only

nuclei lying in the slice at those frequencies being selected and excited. This is illustrated in Figure

2.4. This is in contrast to non-selective excitation where everything in the imaging volume receives

RF power.

2.2.2 Frequency and Phase Encoding

The signal from a single slice is still not very informative. Frequency and phase encoding

allow us to resolve signals coming from individual voxels, or three-dimensional volumes from

within the object being imaged. Phase encoding relies on another orthogonal gradient, for example

the Gy gradient. This gradient is applied for a time T before readout, during which it is switched

off. This means that nuclei along the y-axis have precessed either more quickly or slowly than

ω0 = γB0 when the gradient was turned on. Once the Gy gradient is switched off, all nuclei

resonate at ω0 proper, but now the relative phases between them have changed as a function of
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Figure 2.4: We often want to excite spins in just a slice or slab only, rather than exciting the
entire volume. Application of the linear gradient field Gz varies the resonant frequencies as a
function of position along the z-axis. When a band-limited RF pulse is applied in conjunction with
this gradient, only spins resonating at frequencies within the bandwidth of the RF pulse will be
excited, “selecting” the slice as shown.

position along the y-axis. Thus position in y has been encoded in the phase of MR signals emitted

from each nuclei.

Frequency encoding uses another orthogonal gradient, for example, Gx, to encode spatial

information during readout. The Gx gradient is played during signal acquisition, meaning that in

the x direction, nuclei are precessing at different frequencies. In fact, after acquisition we can

decompose the data into its frequency components and map the frequency bins directly to spatial

locations. Thus using both phase and frequency encoding, the data are sums of sinusoids at differ-

ent frequencies and phases corresponding to spatial location. Chapter 3 includes a pulse sequence

diagram detailing how Gx, Gy, and Gz are applied to achieve slice-election and frequency/phase

encoding.
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2.2.3 Signal Equation

The discussion of spatial localization leads us to the realization that the data being received

are sums of sinusoids. We can easily represent these sinusoids as complex exponentials spinning

in the complex plane:

Mxy(r)e− jφ(r,t), (2.30)

where Mxy(r) is the transverse magnetization at position r. Assuming a uniformly sensitive RF

receive coil and negligable T2 decay effects, the received signal, s(t), is given by integrating over

the volume, V :

s(t) =
∫

r∈V

Mx,y(r)e− jφ(r,t)dr. (2.31)

Instantaneous frequency is ω = dφ

dt , so we can integrate ω = γB to find φ :

φ(r, t) =
t∫

0

ω(r, t ′)dt ′ = γ

t∫
0

B(r, t ′)dt ′. (2.32)

In the presence of linear gradients we have the combined magnetic field B(r, t), given by

equation (2.29). Using these results, we find s̃r(t), the received modulated signal equation:

s̃r(t) = e− jγB0t
∫

r∈V

Mxye
− jγ

t∫
0
~G(t ′)·rdt ′

dr. (2.33)

We then demodulate this signal by multiplying by the conjugate complex exponential at the Larmor

frequency to get sr(t), the demodulated received MR signal as a function of time:

sr(t) = e jγB0t s̃r(t) =
∫

r∈V

Mxye
− jγ

t∫
0
~G(t ′)·rdt ′

dr. (2.34)
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2.2.4 k-space

Consider the Fourier transform of Mxy:

F [Mxy] = M (kx,ky,kz), (2.35)

M (kx,ky,kz) =
∫

x,y,z

Mxye− j2π(kxx+kyy+kzz)dxdydz, (2.36)

and compare it to the expression obtained for sr(t) in equation (2.34). Comparing terms, we find:

sr(t) = M
(

γ

2π

t∫
0

Gx(t ′)dt ′,
γ

2π

t∫
0

Gy(t ′)dt ′,
γ

2π

t∫
0

Gz(t ′)dt ′
)
. (2.37)

Beautifully, each measurement acquired using our gradients corresponds to filling k-space at some

position (kx,ky,kz). This not only suggests how we may use our linear gradients to “drive around”

in k-space, but it tells us that we may simply perform an inverse Fourier transform of our received

signal to recover Mxy if we have acquired the data on a Cartesian grid and have satisfied the Nyquist

sampling criterion. In fact, turning on the Gx gradient corresponds to traveling in the kx direction

in k-space and similarly for Gy and Gz. Higher gradient amplitude corresponds to traveling more

quickly through k-space. Then by manipulating our gradients, we move in arbitrary trajectories

around k-space.

Without any real surprise, we note that the patterns that we sample k-space with are called

“k-space trajectories.” One of the most common trajectories is Cartesian, where we sample k-

space line-by-line, after which the inverse Fourier transform may be directly applied as described

above. If more exotic trajectories are used, such as radial, spiral, or Poisson, more sophisticated

reconstruction techniques must be used. Often the strategy is to resample or regrid the data onto

a Cartesian grid so we can apply the FFT algorithm. Chapters 5 and 6 will explore reconstruction

methods for specialized trajectories meant to save time by sampling below the Nyquist rate.

2.3 Real World Imaging

The development of MR imaging thus far has expected a lot out of the world: perfectly

homogeneous magnetic fields, flawless gradient performance, sharp RF power spectra, perfectly
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homogeneous tissue samples, no motion, unitary receive coil sensitivities, etc. These are all, of

course, not the case when acquiring data on the job. This section will briefly detail some con-

founders while admitting that this thesis does not have enough room to tackle every struggle with

non-ideal imaging conditions.

2.3.1 Magnetic Field Inhomogeneity

The condition of a homogeneous main magnetic field is very important for spatial localiza-

tion and signal generation as it can influence the Larmor frequency unpredictably. Unfortunately,

inhomogeneities inevitably exist across the imaging volume. This is due to hardware imperfec-

tions, magnetic susceptibility interfaces that introduce complicated variations to the magnetic field,

and even subtle changes like temperature drift or slight motion by the subject inside the magnet.

Some large imperfections may be unavoidable, such as when imaging a subject with metallic im-

plants. In order to achieve as homogeneous a magnetic field as possible, extra “shim” coils are

built into MR scanners which can be tuned to counteract field inhomogeneities. This becomes

even more difficult at higher field strengths as the magnitude of susceptibility mismatch artifacts

grows with field strength. Correcting for these imperfections is a sub-field in its own right; [23]

provides a good review of current correction strategies.

2.3.2 Chemical Shift

Chemical shift may be understood as interactions between electron clouds and B0. The

errors introduced by chemical shift are due to a shift in resonant frequency induced by bonding

electrons. The bonding electrons are diamagnetic and are magnetized in the presence of a magnetic

field. This means that using the same magnetic field, some nuclei in molecules of type A experi-

ence potentially different magnetic fields than nuclei in a molecule of type B. For example, water

molecules are made up of two hydrogen and one oxygen and experience little electronic shielding.

In contrast, fat molecules’ electronic interactions cause the protons to feel a weaker magnetic field,

causing the resonant frequency to drop by about 3.5 parts per million [16]. Because of this, care

must be taken when imaging regions containing both water and fat.
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2.3.3 Noise

The MR signal we measure is a voltage induced in one or more coils. In fact, quadrature

detection of the MR signal yields both magnitude and phase information in the form of real and

imaginary channels. As such, we must expect some amount of electrical noise. However, usually

the dominant source of noise in an MR experiment is that which originates from the subject, un-

less poor coils are used or imaging is done at low field strengths. Brownian motion of electrons

and random motion of ions in the fluids of the subject being imaged contribute to body noise.

The aggregate noise is well-modeled by a bivariate (complex) zero-mean Gaussian process with a

uniform power spectral density (i.e., white noise) [16].
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CHAPTER 3. BALANCED STEADY-STATE FREE PRECESSION

3.1 Introduction

Due to its high speed, efficient SNR, and unique contrast, balanced steady-state free preces-

sion (bSSFP) has become a popular MR imaging sequence with desirable contrast for applications

such as cardiac imaging, abdominal imaging, angiography, functional MRI, and musculoskeletal

imaging [24]–[28]. As Chapter 4 relies heavily on bSSFP imaging, we will briefly review the pulse

sequence design and signal models that characterize this important steady-state sequence.

3.2 Pulse Sequence

The bSSFP sequence was first described by Carr in his 1958 NMR paper [29]. The se-

quence itself is fundamentally very simple: a rapid train of identical excitation pulses in the pres-

ence of “balanced” gradients that induce no net phase to the magnetization by the end of each

repetition. The time from one RF pulse to the next is called the repetition time, or TR. Figure

3.1 shows a typical pulse sequence diagram for a 2D bSSFP sequence. The diagram describes the

timing of the RF and gradient pulses used. Notice that the “echo time” is the time from the RF

pulse to the center of the gradient being played during data acquisition, or the “readout gradient.”

The echo time is notated “TE” and, for a bSSFP experiment, is always set to TE = TR/2.

BSSFP is also sometimes called “fully-refocused” SSFP, calling attention to the fact that

the gradient waveforms are balanced, or refocused, such that the area of each gradient waveform

integrates to zero across any given TR. We also say that the zeroth moments of the gradient fields

are nulled. This implies that the gradients have no net effect on spin precession from one excitation

to the next: any phase accumulation due to the gradients across a TR is undone prior to subsequent

excitation.
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Figure 3.1: A typical bSSFP pulse sequence diagram. Depicted are four waveforms: one for each
the RF transmitter and linear gradient fields. The RF is played repeatedly with a period TR. Notice
that the gradients’ waveforms integrate to zero, eliminating coherences TR to TR.

Repetition time, TR, is usually chosen to be short; that is, the repeated excitation pulses tip

the spins at regular, short intervals. Between excitations, the spins freely precess – hence, “free

precession.” But as the spins decay, they are re-excited quickly enough that there is very little

relaxation, and after a short time the spins reach steady-state. The time required to reach steady-

state is usually several times the longest T1 present in the imaging sample, but there are many

methods designed to reduce the transient response and “catalyze” the steady-state, for example,

see [30]–[33].

3.3 Off-resonance and the bSSFP Spectrum

The bSSFP signal has well-known off-resonance dependence (see Figure 3.2) which is

perhaps one of the most interesting and problematic properties of the sequence. A plot of signal

magnitude vs off-resonance is called the bSSFP spectrum or profile and depicts how off-resonant

precession affects the measured transverse magnetization. The shape of the spectral profile is

dominated by off-resonance frequency and flip angle rather than T1, T2, or other properties that
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commonly dictate MR contrast. It must be noted that bSSFP also yields T2/T1 contrast in common

conditions [27].
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Figure 3.2: Magnitude and phase components of a simulated bSSFP spectral profile using TR =
12ms, α = 30◦, T1 = 830ms, and T2 = 80ms. The horizontal axis measures off-resonance rang-
ing between ±1/TR Hz. Two phase components are shown. The phase predicted directly after
excitation is different than when measured at TE = TR/2 as the magnetization vector at TE/2 has
already gone through half of its total precession angle. Its not necessary to do so, but we can com-
pensate for this by subtracting half of the phase-cycle value from the phase at t = TE/2 to recover
the phase at t = 0 [10].

An important property of RF pulse design for bSSFP imaging is phase-cycling [34]. BSSFP

spectra are periodic in off-resonance (with a period of 2/TR) and typically have a pass-band region

where the profile is relatively constant and a transition band region where signal nulls are intro-

duced. These nulls are often referred to “banding artifacts.” Interestingly, by linearly varying

the phase of the RF pulse each TR (i.e., adding a constant phase increment each excitation) the

bSSFP spectra are shifted along the off-resonance axis by a corresponding amount. There are

many interesting applications of this so-called phase-cycled bSSFP, one of which will be explored

in Chapter 4.
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3.4 Signal Model

Here we derive the bSSFP steady-state signal model. This derivation closely follows that

of Freeman and Hill and other similar discrete-time system derivations due to Jaynes [32], [35],

[36].

We start by noting that each pulse tips the spin vectors through a tip angle α . Assume

for this discussion that the flip angle rotates the spins about the x-axis. Thus we can find that the

magnetization directly after the pulse, ~M+, is related to the magnetization directly before the pulse,

~M−, by the rotation operator:

~M+ = Rx(α)~M−. (3.1)

Between excitations and during free precession, the spins precess through an angle θ given by their

off-resonance , ∆ f0 (in Hz), and phase-cycle increment, ∆θ (in radians):

θ = 2πTR+∆θ . (3.2)

θ can also take into account non-idealities such as chemical shift, but for simplicity we will con-

sider these negligible. During this same period, relaxation also occurs according to the dynamics

of the Bloch equations. Longitudinal and transverse relaxation are applied using the following

relaxation operator:

S(TR,T1,T2) =


E2 0 0

0 E2 0

0 0 E1

 , (3.3)

where Ei = eTR/Ti . Realizing that precession is a rotation in z, we have the following magnetization,

~M†, at the end of the free precession period:

~M† = Rz(θ)S(TR,T1,T2)~M++(1−E1)M0, (3.4)
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where M0 is the magnetization at thermal equilibrium. For the steady-state expression, we know

~M† = ~M−:

~M† = Rz(θ)S(TR,T1,T2)Rx(α)~M† +(1−E1)M0 (3.5)

=


cosθ sinθ 0

−sinθ cosθ 0

0 0 1




E2 0 0

0 E2 0

0 0 E1




1 0 0

0 cosα sinα

0 −sinα cosα

 ~M† +(1−E1)M0 (3.6)

=


E2 cosθ E2 cosα sinα E2 sinα sinθ

−E2 cosθ E2 cosα cosθ E2 cosθ sinα

0 −E1 sinα E1 cosα

 ~M† +(1−E1)M0. (3.7)

Then, solving for the transverse components directly after exciting, we arrive at the familiar bSSFP

signal equations:

M+
x =

M0(1−E1)E2 sinα cosθ

(1−E1 cosα)(1−E2 cosθ)−E2(E1− cosα)(E2− cosθ)
, (3.8)

M+
y =

M0(1−E1)sinα(1−E2 cosθ)

(1−E1 cosα)(1−E2 cosθ)−E2(E1− cosα)(E2− cosθ)
. (3.9)

3.5 Elliptical Signal Model

Equations (3.8) and (3.9) appear to be a complicated function of T1, T2, α , and θ . However,

when we plot the complex valued I = Mx + jMy in the complex plane, we find that locus of the

magnetization vectors simply traces out an ellipse. In fact it has a well known parameterization

given in [37] and summarized in [1]:

M =
M0(1−E1)sinα

1−E1 cosα−E2
2(E1− cosα)

, (3.10)

a = E2, (3.11)

b =
E2(1−E1)(1+ cosα)

1−E1 cosα−E2
2(E1− cosα)

, (3.12)

I = M
1−ae jθ

1−bcosθ
. (3.13)
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Thus we have an ellipse I parameterized by the θ -independent quantities M, a, and b. This for-

mulation is known as the elliptical signal model for bSSFP and gives useful insight on multiple

phase-cycled bSSFP image combination and parameter estimation [1], [2].
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CHAPTER 4. ROBUST COIL COMBINATION FOR THE BSSFP ELLIPTICAL
SIGNAL MODEL

4.1 Introduction

Since the inception of magnetic resonance imaging (MRI), improvements to both scanner

hardware and software have significantly improved imaging time and quality. Among these im-

provements is the receive array coil, used to acquire signals simultaneously from several locations

in order to provide greater coverage and higher signal to noise ratio (SNR) than an equivalently

sized single surface coil [11]. Phased-array coils have also allowed the implementation of parallel

imaging (PI) techniques to reduce the required scan time [38], [39]. Combined, these advances

have revolutionized image acquisition techniques while also posing new challenges to clinicians

and researchers.

Today, with the large number of coil channels in use, large amounts of raw data need to be

acquired and processed when reconstructing images. In order to reduce the complexity and time

required for computation, the amount of data is usually compressed by combining coil channel

information using one of a variety of linear or nonlinear combination methods, generally with

negligible effects on image quality [6], [7], [11], [40].

Balanced steady-state free precession (bSSFP) acquisition is a fast, SNR-efficient sequence

that suffers from dark banding artifacts due to its off-resonance dependence [29]. These banding

artifacts can be mitigated in a number of ways, usually by acquiring multiple linear phase-cycled

images and constructively combining them [1], [34], [41]. The elliptical signal model (ESM) is a

parametric representation of the bSSFP signal equation where phase-cycles correspond to points

along an ellipse in the complex plane defined by tissue parameters (i.e., T1, T2, proton density,

etc.) [1], [42]. Chemical shift, off-resonance, and RF phase correspond to rotations of the ellipse

in the complex plane about the origin. The linearized geometric solution (lGS) was presented by

Xiang et al. as an analytic solution for the single de-banded image given four appropriately phase-
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cycled images [1]. Although first proposed for fast imaging near metallic implants, the lGS is

useful for imaging at high fields where low TRs are not feasible, leading to more frequent banding,

and where off-resonance is more difficult to correct [43].

The lGS is only defined for single coil data sets, requiring large data sets with many

coil channels to be solved independently before coil combination at the end of the reconstruc-

tion pipeline [44]. This may be prohibitively long for clinical applications, such as fast imaging

near metallic implants or at high field strengths. In order to reduce reconstruction times, coil com-

bination prior to the lGS reconstruction would be desirable, but unfortunately due to the nonlinear

nature of the lGS and nonlinearities introduced by some coil combination methods, the results

produce extremely poor quality images with large artifacts [5]. These artifacts arise largely due

to distortion of the required elliptical relationships between pixels of phase-cycled images. Coil

compression, in general, succeeds on each phase-cycled image individually, creating artifact-free

bSSFP-contrast phase-cycled images. However, the elliptical relationships between the pixels of

each combined phase-cycled image may not be preserved, violating the lGS’s assumptions. This

is especially true when coil combination methods apply phase alignment or other techniques to

produce smoothly varying coil sensitivity maps [6], [45], [46]. Note that coil compression in con-

junction with phase-sensitive auto-calibrating PI techniques will succeed on non-ESM datasets,

as only one set of virtual coil images are produced: there is in general no relationship between

multiple sets of virtual coils to maintain [6], [39], [47]. Application of auto-calibrating PI meth-

ods to phase-cycled bSSFP datasets precludes upstream coil combination as elliptical relationships

between the interpolated datasets are crucial for downstream processing.

Preserving accurate phase information during coil combination has been much studied in

fields including susceptibility weighted imaging, quantitative susceptibility mapping, MR ther-

mometry, and phase contrast imaging methods [48]–[54]. Some of these techniques, while ef-

fective, are unsuited for use with multiple acquisition phase-cycled bSSFP. Multi-echo techniques

including COMPOSER and ASPIRE require additional images acquired at short TEs, multiply-

ing the number of images required for use with the lGS [54], [55]. Virtual body coil and virtual

reference coil techniques break down in areas of low SNR, such as around banding artifacts in

bSSFP images, and for larger fields of view at high magnetic field strengths, e.g., at 7T [4], [50],

[53]. They also do no guarantee compatible reference phases that preserve the elliptical relation-
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ship between the combined phase-cycled images. We do not consider methods with explicit prior

knowledge of the complex coil sensitives in this paper and restrict our attention to maximum coil

compression, that is, a single image from multiple coil images.

In this work, we will describe the performance of several well-known coil combination

methods to describe their performance when applied prior to the lGS. We will also present a phase

substitution scheme that successfully mitigates these artifacts.

4.2 Theory

Figure 4.1: The geometric solution to the bSSFP elliptical signal model describes the cross point,
Id , of two pairs of 180◦ phase-cycled pixels plotted in the complex plane as the demodulated value.

Given phase-cycled images Ii, 0 ≤ i < 4, the direct geometric solution to the ESM is the

result of a nonlinear function given pixel-wise by:

Id(x,y) =
Im
[
M∗0M2

]
(M1−M3)− Im [M∗1M3] (M0−M2)

Re [M0−M2] Im [M1−M3]+Re [M1−M3] Im [M2−M0]
, (4.1)

where Mi = Ii(x,y) is the complex-valued pixel of the ith phase-cycled image [1]. This can be

graphically understood as the cross point between two pairs of 180◦ phase-cycles as shown in
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Figure 4.1. As there are often singularities due to noise in the direct solution, we assume that Id

has been regularized by replacing errant pixels with the complex sum solution. Xiang et al. also

propose a second pass solution, recognizing that the single coil demodulated bSSFP signal can be

represented as a weighted sum with weights 0<w0,1(x,y)< 1 applied to each pixel. The linearized

geometric solution is given by:

IlGS =
1
2
[w0I0 +(1−w0)I2 +w1I1 +(1−w1)I3] , (4.2)

where w0,1 are computed using the nonlinear direct solution, Id , such that the regional differential

energy is minimized:

w0(x,y) =
∑region(M2−Md)

∗(M2−M0)+(M2−M0)
∗(M2−Md)

2∑region(M0−M2)∗(M0−M2)
, (4.3)

and similarly for w1 within small regions around (x,y), e.g., a 5×5 pixel patch.

Consider Ii j to be the ith phase-cycle acquired by the jth coil using a phased-array receiver

with N elements. Then we rewrite the lGS reconstruction with multiple coils:
IlGS,0

IlGS,1
...

IlGS,N−1

=
1
2

w0


I0,0

I0,1
...

I0,N−1

+(1−w0)


I2,0

I2,1
...

I2,N−1

+w1


I1,0

I1,1
...

I1,N−1

+(1−w1)


I3,0

I3,1
...

I3,N−1



 ,

(4.4)

which we can write more succinctly, adopting the following matrix notation:

IlGS =
1
2
[w0I0 +(1−w0)I2 +w1I1 +(1−w1)I3] . (4.5)

Notice that each coil image corresponding to the same phase-cycle shares the same weights, as the

coil ellipses (the ellipse generated by each coil image) are similar, i.e., scaled and rotated versions

of each other (see Figure 4.2). There may also be a translation if any coil element adds a DC offset.

The absolute rotation and scaling of the coil combined ellipse is determined by both off-resonance

and coil sensitivity. As we only have N measurements, off-resonance and coil-dependent phase
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(N +1 unknowns) cannot be determined uniquely unless we have accurate coil sensitivity maps or

additional phase-cycles (> 4) [2] 1. We also note that the accuracy of the weights are determined by

the quality of the corresponding direct solution, Id , and the properties of the steady-state at which

the phase-cycles were acquired. Since we know weights are shared between coils, the optimal

strategy for a coil-by-coil lGS is to solve for the weights w j
0,1 for the jth coil and then take the

variance weighted mean before using them to solve equation (4.5):

w0,1(x,y) =
∑ j w j

0,1(x,y)σ
−2
j

∑ j σ
−2
j

, (4.6)

where σ2
j is the jth coil’s noise variance estimate. (The coil noise covariance matrix may be

substituted if known [11]).

Equation (4.5) describes the lGS being solved N times: once for each coil. Coil combina-

tion must then be accomplished after evaluating equations (4.6) and (4.5). We desire a solution that

requires the weights to be solved for only once, that is, solve the coil combination problem first as

opposed to last. This is desirable for large datasets, as the regional differential energy minimiza-

tion step includes pixel-wise computations that cannot be vectorized. The challenge is to choose

an appropriate coil combination method and choice of weights, w0,1.

It is clear that any linear coil combination method2 can be used with equation (4.2) us-

ing the substitution Îi = Ii,coil combined. Phase-unwrapping of the phase-cycled images may also

be necessary, adding another complication into the image reconstruction pipeline as 4 points are

usually not sufficient to reliably unwrap the ellipse [2]. Appropriate weights can be obtained by

evaluating equation (4.6) across a reduced number of averages, i.e., evaluate a reduced number of

coils. If a nonlinear coil combination method is used, equation (4.2) cannot be evaluated using

the substitution Îi = Ii,coil combined, as the elliptical relationship between the phase-cycled images in

the complex plane may no longer hold. Figure 4.2 shows the effect of the nonlinear GSS and lin-

ear stochastic matched filter (SMF) coil combinations on the resulting combined coil ellipses [6],
1The lGS requires only 4 phase-cycled images while an ellipse is fully defined by 5 points. In this paper we refer

to the 4 phase-cycle points plotted in the complex plane as “coil ellipses.” Perhaps they are better described as “coil
quadrilaterals.” However, because they are points generated from an underlying elliptical model, we will persist in
calling them ellipses.

2This is an abuse of terminology. Virtually all coil combination methods are linear combinations of coil images.
However, when considering coil combination as an operator, the nonlinearities introduced during coefficient estimation
become more clear. A more full discussion is found in Appendix A.

31



Im
ag

in
ar

y

Coil Ellipses

Real

Figure 4.2: Phased-array receivers produce an ellipse per channel in the complex plane. The GCC
method is nonlinear and leads to unpredictable combined phase-cycle points. The ellipse is mapped
chaotically through the coil combination and the phase-cycle points show that a solution to the lGS
does not exist for this pixel, i.e., there is no cross-point. But the SMF is a linear mapping and the
elliptical model is preserved after a phase-unwrapping step. The artifact at the bottom of the SMF
ellipse is due to errors during phase-unwrapping.

[7]. The nonlinear geometric coil combine (GCC) loses the elliptical relationship and does not

reliably have a cross-point (i.e., no solution exists), whereas the linear SMF retains the elliptical

relationship from which a cross-point can be found.

For any coil combination method (linear or nonlinear), the magnitude of the coil combined

phase-cycles are generally good estimates of the magnitude of the equivalent single coil phase-

cycle:

|Ii,coil combined|≈ |Ii,single coil|, (4.7)

for example: sum-of-squares (SOS), maximum SNR coil combination, adaptive coil combination,

GCC, etc. [6], [7], [11], [46]. Then, only the phase of the combined images is problematic. If

we can estimate the phase of the combined phase-cycled images, then nonlinear coil combination

methods may become viable as a preprocessing step to the lGS. To estimate the phase for each

phase-cycle value, a phase substitution may be made by taking the phase of each phase-cycle point

on a composite ellipse at each pixel. This composite ellipse is constructed by finding the inverse

transformation Tj(x,y) required to co-register the jth coil ellipse at pixel (x,y) and treating these
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as the “sensitivities” relating intra-phase-cycle coil images:

6


I0,composite(x,y)

I1,composite(x,y)

I2,composite(x,y)

I3,composite(x,y)

= 6


T H(x,y)σ−2

T H(x,y)σ−2T (x,y)


I0(x,y)

I1(x,y)

I2(x,y)

I3(x,y)



 . (4.8)

This is in fact the SENSE reconstruction with an acceleration factor of 1 using the inverse affine

transformations as the sensitivity weightings [11], [38]. Coil ellipses in the complex plane are

formed through the linear transformation, Tj(x,y). Tj(x,y) is a complex number giving the proper

rotation and scaling of the phase-cycle points on the coil ellipse to match an arbitrary reference

ellipse. Assuming additive white Gaussian noise, we use the least squares solution to the following

for each pixel:

Tj(x,y) =


I0,ref(x,y)

I1,ref(x,y)

I2,ref(x,y)

I3,ref(x,y)



T 
I0, j(x,y)

I1, j(x,y)

I2, j(x,y)

I3, j(x,y)



∗



I0, j(x,y)

I1, j(x,y)

I2, j(x,y)

I3, j(x,y)



T 
I0, j(x,y)

I1, j(x,y)

I2, j(x,y)

I3, j(x,y)



∗


−1

. (4.9)

The reference should be the same shape and location in the complex plane as the unknown true

ellipse (up to a complex scaling factor). This means that for each pixel the reference ellipse is,

in general, a differently shaped ellipse. As in practice we do not know the true ellipse, a simple

choice for the reference coil ellipse is the largest ellipse at each pixel, i.e., choose the coil ellipse

with greatest average phase-cycle magnitude. However, equation (4.9) requires a least squares

solution for each pixel, negating some of the savings of coil combination prior to the lGS. Figure

4.3 shows the steps to form the composite ellipse. For increased computational savings, a simple

approximation to the full phase substitution scheme is to choose the dominant term of equation

(4.8), i.e., choose the phase for each phase-cycle to be the phase of the coil image that has the

highest maximum intensity at that pixel. Only a max operation is required across the coil dimen-

sion which leads to significant computational savings compared to both the full composite ellipse

described in (4.9) and the coil-by-coil lGS. We will dub the phase substitution technique described
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in Figure 4.3 as the “full phase substitution” and the simple approximation to this as the “simple

phase substitution.”

Figure 4.3: Steps to form a composite ellipse. The underlying true ellipse is unknown. With a
phased-array receiver, multiple coil ellipses are observed. The coil ellipses are related to the true
ellipse by the complex coil sensitivities. Coil ellipse registration is performed which maps each coil
ellipse to an arbitrarily scaled and rotated reference of the same shape. The inverse affine transform
describes how to map from the registered reference to the coil ellipse. This transformation is
interesting because the magnitude of the transformation gives us a relative confidence measure to
weight the linear combination of registered coil ellipses. It serves the same function coil sensitivity
maps do in the optimal coil combination reconstruction proposed by Roemer et al. Therefore, we
use the same combination scheme to form the composite ellipse.

A potential complication of the simple phase substitution method is that phase disconti-

nuities will exist at coil boundaries where adjacent pixels of the composite ellipse take the phase

from different coils. We expect the discontinuities to lie smoothly along the intersections of the

coil sensitivity maps as shown in Figure 4.4. There will also be discontinuities due to the bSSFP

acquisition, as the phase polarization flips at the nulls [34]. As these discontinuities are not rep-
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resentative of the underlying true image, we enforce a simple rule that, for any given pixel, the

substitute phase must come from a common coil ellipse.

Figure 4.4: This figure shows the phase of the composite coil sensitivity map constructed by taking
the phase of the maximum intensity coil sensitivity at each pixel for the simulated coil sensitivity
map. Phase discontinuities can clearly be seen at the coil boundaries.

In the remainder of this paper, we will show that nonlinear coil combination techniques

can use both the proposed full and simple phase substitution techniques to effectively mitigate

artifacts and banding with acceptable image quality. The simple substitution is intended for use

where quick post-processing is desired. The full substitution will be provided for comparison.

4.3 Methods

As we only want to validate the proposed methods for a prior coil combination step, ex-

haustive validation across coil combination techniques is outside the scope of this paper. We have

selected three representative coil combination algorithms to use for the experiments we describe in

this section: SOS, GCC, and SMF. The SOS and GCC methods are nonlinear whereas the SMF is

linear. The SOS method is especially interesting as it clearly does not preserve phase information

and cannot be applied alongside the lGS without some additional method for phase estimation.
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The GCC is representative of nonlinear SVD-based methods. The SMF approach is representative

of linear coil combination methods. None of the methods require prior coil sensitivity estimates.

4.3.1 Simulation

We have performed numerical simulations to validate the proposed phase substitution meth-

ods. The purpose of the simulations are to demonstrate the effectiveness of the methods across

multiple coil combination techniques and to quantify error as compared to a coil-by-coil lGS re-

construction. Simulations used a 256×256 2D slice through a uniform cylindrical phantom with

T1 = 1.5s, T2 = 0.8s, and M0 = 1 (a.u.). Simple coil sensitivity maps for a 5 element array were

simulated. The bSSFP acquisition simulation for 0◦, 90◦, 180◦, and 270◦ phase-cycles used param-

eters: TR = 3ms, FA = 30◦. Off-resonance was simulated as a linear gradient along the x direction

from −1/TR Hz to 1/TR Hz to clearly show banding artifacts.

Coil combination was performed along the coil dimension of the acquisition and recon-

structed both with and without the proposed phase substitutions. The simulation was also run

under various levels of additive white Gaussian noise on both real and imaginary channels. The

normalized root mean squared error (NRMSE) and structural similarity index (SSIM) are plotted

as a function of SNR to compare reconstruction quality. The gold standard is taken to be the single

coil lGS with no added noise.

4.3.2 Phantom

Axial slices of a cylindrical doped water phantom were acquired on a Siemens TIM Trio

3T scanner. A modified TrueFISP sequence with the following parameters was used to acquire

0◦,90◦,180◦, and 270◦ phase-cycled bSSFP images: TE/TR: 3ms/6ms, BW: 558 Hz/Px, matrix

size: 256×256, FOV: 150mm×150mm, averages: 8, and FA: 70◦. 200 dummy pulses were used

to ensure steady-state was reached. A 4-channel head coil was used. Again, coil combination

was performed and the images reconstructed with and without the proposed phase substitution

methods. The gold standard is the coil-by-coil lGS, the solution we wish to achieve. Unlike in

the simulations, we do not know the underlying true image, so each coil combination method is

compared separately.
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4.3.3 In vivo

Axial slices of a 24 year old, healthy female participant’s brain were also acquired on a

Siemens TIM Trio 3T scanner. This participant had a permanent retainer on her bottom teeth. The

participant gave written informed consent prior to participation according to institutional review

board guidelines. The same modified TrueFISP sequence was employed to acquire 0◦,90◦,180◦,

and 270◦ phase-cycled bSSFP images using the following parameters: TR/TE: 10ms/5ms, BW:

543 Hz/Px, matrix size: 512× 512, FOV: 250mm× 250mm, averages: 16, and FA: 15◦. Again,

200 dummy pulses were used to ensure steady-state was reached. A 4-channel head coil was used

to acquire all data. The same post-processing steps as were used for the phantom experiment were

applied. The gold standard was again taken to be the coil-by-coil lGS as no suitable true reference

is available.

4.4 Results

4.4.1 Simulation

Figure 4.5 shows the phase substitution generated by the proposed simple method for the

SOS coil combined 0◦phase-cycled image. The magnitude image shows a well-combined com-

posite image without any phase information available. The proposed simple phase estimate has

discontinuities along the coil boundaries and bSSFP signal nulls as predicted. The results of the

simulation are summarized in Figure 4.6. The error is given at the bottom of the images along

with a normalization factor to create sensible contrast for the residual images, as the performance

between methods varied wildly. The residual images are normalized to have a maximum of 1.

This also means that the residual error for the naive SOS method appears lower than it is due to a

singularity, despite being the worst performing solution. The singularity is pointed out with a red

arrow in the figure.

The images generated without substitution and nonlinear coil combination have unusable

image quality. Interestingly, the SOS coil combination with both full and simple phase substitu-

tions provided the lowest NRMSE among all coil combinations simulated. This suggests that the

proposed phase substitutions are reliable estimates, as the SOS provides the optimal magnitude es-

timate with respect to maximizing SNR [11]. This is desirable, as the SOS reconstruction is easily
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computed compared to the SMF, the next best coil combination method with and without the pro-

posed phase substitutions. GCC is greatly improved using both the proposed simple and full phase

substitution methods but appears to be limited compared to the SOS and linear coil combination.

Figure 4.6 also depicts some biases in the reconstructions when using different upstream

coil combination methods. The SOS method is the maximum SNR solution (while discarding

phase information, of course) and produces a noise-like residual when coil-by-coil lGS is per-

formed. This is expected, as the lGS has noise characteristics similar to the complex-sum solu-

tion [1]. We find that the desirable noise-like residual is found in both of the proposed methods’

residuals with similar error to that of the coil-by-coil residual. The GCC solution has spatial bias

with the edges consistently containing more error (except in the naive case where the image qual-

ity is unusable). The SMF consistently finds more error at the boundaries of the coils. This is not

surprising as the method includes an implicit coil sensitivity map estimation in its algorithm.

Figure 4.5: The left image shows the SOS coil combined 0◦phase cycle (SNR=47). The right image
shows the simple phase substitution for the SOS reconstruction with the phase discontinuities
predicted in the Theory section. The discontinuities lie along the coil intersections as well as along
the horizontal bSSFP “null.”

Figures 4.7 and 4.8 show NRMSE and SSIM, respectively, plotted against various simu-

lated SNRs. For nonlinear coil combination techniques, the proposed full and simple phase sub-

stitutions perform very well. The simple phase substitution reduces the NRMSE considerably

for nonlinear coil combination methods while slightly improving the performance of the linear
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Figure 4.6: This figure shows the comparative results of the residual error images for a simulation
run with SNR=47. At the bottom of each image the error is given along with a contrast factor that
normalizes the residual image. The true reference image is the single coil lGS with no additive
noise of a uniform circular phantom. The columns are labeled according to the reconstruction
method: “coil-by-coil” lGS, “naive” (meaning that the coil combination and lGS were performed
without any phase substitution), the proposed “full” phase substitution, and the proposed “simple”
phase substitution. The proposed methods consistently outperform the naive approach. The red
arrow points out a singularity in the naive SOS residual.

method. All methods perform best over the range of SNRs simulated when the full phase substitu-

tion is used, indicating good estimation of phase. The simple phase substitution does not perform

significantly worse than the full substitution, suggesting that the computationally more efficient

simple substitution may be used without too much penalty.

4.4.2 Phantom

Figure 4.9 shows the results of the phantom experiments. The naive coil combination fol-

lowed by the lGS demonstrates low reconstruction quality for nonlinear coil combination methods

and artifacts due to phase singularities for the SMF (see red arrow in figure) [46]. These non-

smooth phase issues did not arise during simulation where the off-resonance was simulated as a
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Figure 4.7: NRMSE plotted as a function of SNR using a logarithmic scale for prior coil combi-
nation with and without the proposed phase substitutions. Nonlinear coil combination techniques
greatly benefit from the simple phase substitution and all coil combination methods benefit from
the proposed methods. When the full composite ellipse is constructed, the quality of the reconstruc-
tion for the SOS coil combined images are superior to the SMF. SOS with the phase substitutions
provide the best reconstruction in terms of raw NRMSE over the SNR range simulated.

smooth gradient. When using adaptive coil combination, singularities in phase can occur in areas

of low SNR where differences in individual coil measurements lead to signal cancellation or where

a better estimate of absolute phase is required for phase unwrapping [51], [53]. This in turn leads

to distortion of the magnitude image (as seen in the figure) and difficulties in phase unwrapping.

As seen in simulations, the naive SOS and GCC show serious artifacts making the image quality

unusable.

Figure 4.10 shows the residual error due to coil combination. The NRMSE is shown at the

bottom of each image. The gold standard is the first column which naturally has no error. Again, to

provide reasonable contrast, the residual images have been scaled by the factor shown in the right

hand corner of each image. The full phase substitution provides the closest reconstruction to the

coil-by-coil target image with the proposed simple phase substitution only yielding slightly higher

NRMSE. This is in close agreement with both the theory and simulated results. Figure 4.11 shows

the proposed simple phase substitution for the phantom. The coil boundaries are clearly shown by

the phase discontinuities, again agreeing with theoretical and simulated results.
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Figure 4.8: SSIM plotted as a function of SNR using for prior coil combination with and without
the proposed phase substitutions. The GCC solution with the proposed phase substitutions provide
the best similarity score over the range simulated.

4.4.3 In vivo

Figure 4.12 shows the comparative results for the in vivo axial brain reconstructions. The

corresponding residual error results are depicted in Figure 4.13 with the same scaling convention as

used in previous residual error figures. Again, the full substitution always outperforms the simple

phase substitution for each coil combination method compared, although the NRMSE for the full

and simple substitutions are similar. The SOS alongside the full phase substitution provided the

closest reconstruction to the coil-by-coil lGS, consistent with previous results demonstrating the

performance of the proposed substitutions.

Figure 4.14 shows the simple phase substitution. There are no obvious phase discontinuities

between the 4 coils in the brain matter, but there appear to be discontinuities in the skull. Again,

the proposed methods produce the most consistent and lowest error results.

4.5 Conclusion

The proposed phase substitution methods consistently produce faithful reconstructions us-

ing the lGS algorithm. While the full phase substitution was explored as a solution to the ellipse

combination problem, the simple phase substitution was presented as a computationally efficient
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Figure 4.9: This figure shows the comparative results of the uniform phantom experiment. The
naive and proposed methods are compared to the coil-by-coil lGS reconstruction. The columns are
labeled according to the reconstruction method. The proposed methods consistently outperform
the naive approach, showing virtually no artifacts in this uniform phantom. The red arrow points
out an artifact due to phase discontinuities of the naive SMF coil combination. The SMF may
have artifacts if the combined image’s phase is non-smooth while the proposed method exhibits no
comparable artifacts.

alternative that does not degrade performance significantly. Simulations were performed that re-

vealed biases in the solutions for the lGS when employing the GCC and SMF coil combination

methods. Not only was the SOS shown to be feasible using the proposed phase-substitution, but

the reconstruction with phase substitution was found to avoid these systematic biases and produce

solutions with the lowest error. This gives confidence that the proposed phase substitutions are

accurate, as the SOS estimate is the optimal magnitude estimate. SOS and the proposed phase

substitutions are also significantly easier to compute compared to the SMF and GCC methods.

Interestingly, as shown in the simulation, similarity index was maximized using the GCC, which

can be understood as exploitation of the spatial correlations between coil channels [6]. Both the

proposed phase substitutions are promising avenues for answering the coil combination problem

for multiple phase-cycled bSSFP.
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Figure 4.10: This figure shows the comparative results of the uniform phantom experiment along
with the NRMSE between the results using each coil combination method. Notice the scaling
applied to the images for more obvious contrast. All naive methods produce varying levels of
error: the SOS and GCC, as expected, produce images of unusable quality. Errors due to a phase
singularity in the naive SMF can be seen. The full phase substitution consistently provides the best
performance with the simple phase substitution performing not much worse.

Figure 4.11: This image shows the simple phase substitution of the 90◦ phase-cycled image for the
uniform phantom experiment. The phase discontinuities clearly shown at the boundaries of the 4
coils matching the results of the simulation.

43



Figure 4.12: This figure shows the comparative results of the in vivo brain experiment. The naive
and proposed methods are compared to the coil-by-coil lGS reconstruction. The columns are
labeled according to the reconstruction method. The proposed methods clearly outperform the
naive approaches for the SOS and GCC.

Figure 4.13: This figure shows the comparative residual error in the form of NRMSE for the in
vivo brain experiment. As expected, massive error is found for the naive SOS reconstruction where
all phase information has been discarded. Performance of the naive GCC also matches that of the
simulation and phantom experiments.
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Figure 4.14: This image shows the simple phase substitution of the 90◦ phase-cycled image for the
in vivo brain experiment. Interestingly, the phase discontinuities cannot be obviously seen from
the 4 coils in the brain matter, but are clear in the outer skull-shell, matching the results of the
phantom and simulation experiments.
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CHAPTER 5. COMPRESSED SENSING

5.1 Introduction

Compressed Sensing (CS, also referred to in the literature as “compressive sensing”) is a

growing paradigm in signal processing used to subvert the classical Shannon-Nyquist sampling

theorem1 [56]. Signals of interest can be reconstructed accurately with far fewer samples than

the desired resolution. Since its creation, magnetic resonance imaging (MRI) has suffered from

restrictive and costly acquisition times, relying mostly on coil improvements and clever pulse

sequence programming to mitigate scan time and improve resolution (e.g., GRAPPA, SENSE,

partial Fourier sampling, etc.) [57], [58]. The application of CS to MRI (CS MRI) has proven to be

very effective, with k-space lending itself naturally as a sparsifying transform domain for the CS

formulation. In practice, discrete wavelet transforms (DWT), the discrete cosine transform (DCT),

and finite differences transformations, among others, have been found to reliably sparsify natural

images, including those arising from MR [8], [9], [59].

It should be noted that better sparse approximations can be made by adapting the recon-

struction using a priori learned information about the signal of interest, referred to as data adaptive

CS [60]. The adaptive CS literature is divided into two groups: dictionary methods and non-

dictionary methods. Dictionary methods, while they have been well studied, are largely being

replaced by non-dictionary methods, especially those involving deep convolutional neural net-

works, and are fast gaining ground across many fields within MR due to increasing availability of

computational power, comprehensive open-source software packages, and the growing number of

large, anonymized, public datasets [61]–[66]. The obvious drawbacks to adaptive approaches are

the need for reliable training data and inability to generalize reconstruction pipelines. A complete

1Perhaps “subvert” is not quite the right word for it, as all the traditional notions of information theoretic criteria
can be met for exact reconstruction while still not sampling at the Nyquist rate. Any deficit required by sub-sampling
is rectified by imposing additional constraints and regularization terms during the reconstruction process. It is really
a trade-off between taking the time to measure and make sure, or assuming that something is the case and cutting
corners.
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survey of adaptive CS is not in the scope of this thesis. Fortunately, much of the existing CS theory

and methods are based on non-adaptive techniques, relying on transform bases arising naturally in

specific application domains [67]. It is on this non-adaptive theory that the work in this Chapter

will be focused.

CS was introduced into MR to combat the aforementioned trade off between acquisition

time and resolution. It grew out of the pioneering work of Candès, Romberg, Tao, and Donoho,

who demonstrated that n-dimensional signals with sparse representations can be reconstructed

from a set of linear, non-adaptive measurements [67]–[73]. Further, they showed that in a wide

variety of cases these reconstructions can exactly recover the desired signal. Thus, it is possible to

sense sparse signals by taking far fewer measurements.

CS differs from classical sampling theory in a few important ways. First, classical sam-

pling theory considers infinite dimensional, continuous-time signals. CS restricts itself to finite,

n-dimensional signals (usually in Rn, but also in Cn). Secondly, CS formulations usually do not

sample the signal at specific points in time as is done classically. Rather, measurements are ac-

quired in the form of inner products between the signal and more general test functions (usually

including some random component, although some regular sampling schemes have been found

to satisfy the CS requirements) [67], [74]. Lastly, Nyquist-Shannon formulations rely on sinc in-

terpolation, whereas CS signal reconstruction typically uses highly non-linear reconstruction and

interpolation methods [67], [75].

The notion of sparse representation and reconstruction is actually a well-studied problem

within mathematics and statistics as first described by Santosa and Symes in 1986 [76]. But the

ramifications of the robustness of the reconstructions provided by this theory have only started to

be realized in the past decade, with an emphasis on sparse sensing instead of retroactive application

to already complete datasets, hence the name “compressed sensing” [73].

5.2 Problem Statement

Intuitively, we can understand CS as inducing a pseudo-noisefloor by randomly under-

sampling the signal of interest. While uniform undersampling leads to coherent artifacts, random

undersampling leads to incoherent aliasing in the measurement domain. In the sparse domain (the

domain where the signal is sparsely represented), the incoherent aliasing leads to a noise floor
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Figure 5.1: Iterative method for CS recovery. (a) shows the desired signal. (b) shows the mea-
sured signal with incoherent aliasing due to random undersampling. The threshold we will use to
detect peaks is shown. (c) With the pseudo-noise thresholded away, we are left with two out of
the three desired peaks. We use the two detected peaks to calculate their expected interference.
(d) shows the calculated interference subtracted from the measured signal revealing another, third
peak just above the noise threshold. The peaks’ magnitudes are adjusted back to original measure-
ments, ensuring data consistency iteration to iteration. (e) Now the interference caused by all three
peaks is calculated. (f) shows this last calculated interference subtracted from the measured signal,
effectively recovering the desired signal.

with identifiably high sparse coefficients representing true signal components. An iterative method

based on thresholding, recovering the strong components, calculating the interference caused by

them, and subtracting the calculated interference from the noisefloor while retroactively enforcing

data consistency can be used to understand the reconstruction process [8]. This intuitive, iterative

method is presented in Figure 5.1.
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While this intuitive method is appealing, it is not sufficiently generalizable nor efficient

to be effective and we require a more rigorous definition. Formally, CS can be understood as a

method of finding an exact (or close) solution to the highly under-determined system Ax = b, with

A being an m×n matrix such that m� n. To find a unique solution, the system is regularized by

imposing sparsity using the `0 pseudo-norm in the constrained, highly non-convex optimization

problem:

min
∀x∈Rn

||x||0 subject to Ax = b (5.1)

as in [77], [78], with Lagrangian form given in [67] as:

min
∀x∈Rn

{||b−Ax||22+λ ||x||0}. (5.2)

Solutions to equation (5.2) incorporating the `0 quasi-norm are known to be NP-hard2 [79]. In

nearly all practical CS algorithms and implementations, the `0 quasi-norm is substituted with its

more tractable convex relaxation, the `1 norm [77]. This leads to favorable forms of solutions

and algorithms for the class of L1-regularized problems (see Section 5.4 for a larger discussion of

algorithms for CS signal recovery).

We note briefly here that while we assume the matrix A (sometimes called the “sensing

matrix”) samples the signal randomly or pseudo-randomly, it must in fact satisfy certain criteria

for the inverse problem defined by equation (5.2) to be solvable via linear programming. Although

there are a number of ways to say that A has the right properties, the most common is the restricted

isometry property (RIP) [67], [80]. If A satisfies the RIP, then the CS problem is well defined.

Unfortunately, verifying that A does indeed satisfy the restricted isometry condition is NP-hard.

Thus, we usually choose A to be something we know does satisfy or with high probability satisfies

the RIP. In this way, the randomness of A is too important to be left up to chance [81].

2In fact, for any fixed Lp norm (0 < p < 1), finding the global minimum of the problem is strongly NP-hard [79].
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5.3 MR Problem Statement

We can adapt equation (5.2) into a form more natural for the MR experiment:

x̂ = argminx
1
2
||F−1

u x− y||22+λ ||T x||1, (5.3)

where x̂ is the n-dimensional reconstructed image, F−1
u is the undersampled inverse Fourier trans-

form operator, y is the acquired k-space data, T is the sparsifying transformation operator, e.g.,

the DWT operator, and λ is the tunable regularization parameter giving relative weights between

the fidelity and sparsity terms. This form takes into account k-space formalism by recognizing

F−1
u as the sensing matrix A. Here we have somewhat relaxed our mathematical notation without

becoming ambiguous. We, and much of the literature, will prefer this more relaxed style.

5.4 Algorithms

Algorithms designed to solve equations (5.2), (5.3), or variants of these can be broadly

classified under the following headings as in [82]:

• Convex

• Greedy

• Thresholding

• Combinatorial/Graph-based

• Non-Convex

• Bayesian

Convex approaches, such as linear programming (including the well-known basis pursuit, basis

pursuit denoising, and LASSO algorithms), have been most prevalent in MR due their simplicity

of implementation, robustness to noise, and existing software solutions [83]–[86]. However, these

algorithms tend to scale poorly leading to increasing computational requirements as datasets get

larger. Greedy and thresholding algorithms are faster and scale well but have stricter sparsity

constraints; that is, the assumption of sparsity is stronger, with some algorithms requiring signals
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to be k-sparse (contain at most k non-zero coefficients in the sparsifying transform domain), and

as a result have less prevalence in CS MR reconstruction.

A complete review of algorithms for CS signal recovery is outside the scope of this thesis,

however, the interested reader is directed to: [87]. We will now briefly describe gradient descent (a

convex method) for its intuition and simplicity as well as iterative soft thresholding (a thresholding

method) for its desirable computational efficiency.

5.4.1 Gradient Descent

One of the simplest first-order algorithms for unconstrained optimization is gradient de-

scent (also called “steepest descent”) [88]. The gradient descent algorithm has the form of an

update:

xt+1 = xt−λt∇ f (xt), (5.4)

where f (x) is the objective or cost function that we wish to minimize, xt is the value of its argument

at iteration t, and λt is the step size for the current iteration. This update is evaluated either for a

fixed number of iterations or until some end condition is satisfied, e.g., ||∇ f (xt)||2 is sufficiently

small. From an initial starting point x = x0, the minimum of f (x) is found by continually taking

steps in the negative direction of the gradient at each point until a stationary point is reached –

hopefully, a local minimum. The negative gradient,−∇ f (x), gives the direction that f (x) decreases

at the fastest rate.

In the case of CS MR reconstruction, the cost function f (x) is equation (5.3) and step size is

usually constant, chosen by trial and error or using a technique similar to the L-curve method [89].

We recognize that the gradient operator is linear and may be applied to each term of equation (5.3)

individually. The first term is derived using simple matrix calculus:

∂

∂x
1
2
||F−1

u x− y||22 = (F−1
u )H(F−1

u x− y) (5.5)

= Fu(F−1
u x− y). (5.6)

The second regularizing term is a little more troublesome as it includes an arbitrary operator

T inside the `1 norm. The `1 norm is defined as the sum of absolute values. Unfortunately, the
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absolute value function is non-smooth and not well-defined for all argument values. So, as any

good engineer would, we fudge the relation to create a smooth function [8]:

|x|≈
√

xHx+ ε, (5.7)

where ε is some small smoothing factor usually in the interval [10−15,10−6]. Then we have the

approximation:
∂ |x|
∂x

=
x√

x∗x+ ε
. (5.8)

We can then define the diagonal matrix M with elements Mi =
√
(T x)H

i (T x)i + ε and get the

following result:

∇||T x||1= T HM−1T x. (5.9)

It has been suggested that applying a finite differences approximation to the gradient can

also be effective [90], [91]. When the finite differences transform is chosen for T , we recognize

the second term as simply the total variation (TV) [8]. Total variation is a popular regularizing

term for both reconstruction and image enhancement, famously introduced by Rudin, Osher, and

Fatemi (ROF) in 1992 for image denoising [90]. While the ROF formulation derives the gradient

using variational calculus, TV regularization terms have well-known, though cumbersome, finite

differences gradient expressions, for example, calculated explicitly in [91]. When other sparsifying

transforms are used, other algorithms tend to be favored, i.e., the famous Split-Bregman iterations

or more general linear programming solvers [86]

5.4.2 Iterative Soft Thresholding

Iterative soft thresholding (also known as “iterative shrinkage thresholding”) is a member

of the proximal gradient descent family and was introduced first in 2004 by Daubechies [92]. It

may be thought of as an extension of the gradient descent algorithm. IST is strongly related to

iterative hard thresholding (IHT) algorithms, both of which have the form:

xt+1 = Sλ (xt +Fu(y−F−1
u xt)), (5.10)
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where Sλ (·) is the soft thresholding operator for IST and hard thresholding operator for IHT. The

soft thresholding operator was originally derived using variational calculus, but a more straight-

forward derivation is found using proximal mapping since equation (5.3) is in the form of the sum

of two convex functions [92], [93]. A proximal mapping is a generalization of the concept of a

projection operator and was defined by Moreau in the 1960s as [93], [94]:

proxg(x) = argminug(u)+
1
2
||u− x||22. (5.11)

Then for g(x) = λ |x|,λ > 0, we know that proxg minimizes the function:

h(u) =

h1(u) = λu+ 1
2 ||u− x||22, u > 0,

h2(u) =−λu+ 1
2 ||u− x||22, u≤ 0.

(5.12)

Thus for u > 0 we minimize h1(u) by taking the derivative and setting it equal to zero:

0 = h′1(u) = λ +u− x (5.13)

=⇒ u = x−λ . (5.14)

Therefore, for x> λ , proxg(x)= x−λ . A similar argument finds that for x<−λ , proxg(x)= x+λ .

Now for |x|≤ λ , proxg(x) must be the only point of nondifferentiability of h which is at 0. We now

define the soft thresholding function as proxg:

Sλ (x) = proxg(x) =


x−λ , x≥ λ ,

0, |x|< λ ,

x+λ , x≤−λ .

(5.15)

We may write Sλ (x) more succinctly as:

Sλ (x) = max(|x|−λ ,0)sign(x). (5.16)
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We also have a suitable counterpart for complex-valued functions presented here without derivation

(see Remark 2.5 in [92]): Sλ (re jθ ) = Sλ (r)e jθ .

For the (not strictly) convex function ||T x||1 in equation (5.3), we notice that the `1 norm is

a summation of functions of the form g(x). Thus by Theorem 6.6 (proximal mapping of separable

functions) in [94], we can write the proximal mapping of ||T x||1 element-wise as:

proxλ ||·||1(T x) = Sλ (T x). (5.17)

Now we view IST in the proximal forward-backward framework, i.e., minimization of

the residual followed by a “projection” back into a sparse subspace via the proximal mapping

Sλ (x) [93]. Notice that we now consider the step-size from gradient descent as the threshold for the

soft thresholding function. Convergence of this class of algorithms is well-studied and guaranteed

for an appropriately chosen threshold [92], [93], [95]. An appropriate threshold is usually chosen

empirically (as is custom with gradient descent) with an additional gradual contraction factor, i.e.,

λt+1 = µλt ,0 < µ < 1 [82].
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CHAPTER 6. THE ORDERING PROBLEM FOR COMPRESSED SENSING

6.1 Introduction

Compressed sensing is an image reconstruction framework that allows for reconstruction

of datasets sampled well-under the Nyquist rate as described in Chapter 5. Its application is natural

in MR where images are often sparse under common transforms such as variants of the discrete

wavelet transform (DWT) and discrete cosine transform (DCT). While prior information about

the signal of interest is often incorporated in the inverse problem through the use of a sparsifying

linear transformation, other forms of prior information exist; for example: we might expect that the

underlying image has small total variation (TV) measure or we might like to enforce a low-rank

solution by minimizing the nuclear norm.

An incredibly interesting and non-standard prior was proposed very early on in CS MR by

Adluru and DiBella in [9]. They proposed that knowledge of pixel order relations gives strong

prior information from which to regularize the inverse problem. These order relations contain in-

formation about relative pixel intensities of the true image. By “true image” we mean the image

that would exist if it were fully sampled, or equivalently, if we had the perfect reconstruction. The

orderings are applied to the current image estimate for sparsity constraints, i.e., the image estimate

is sorted before a sparsifying transform is applied and unsorted after inverse transformation. Order-

ing of both pixel magnitudes and real/imaginary pixel intensities have been considered as powerful

regularizers of the ill-posed inverse problem. Monotonic ordering has been the most common in

the literature for its simplicity and effectiveness under a variety of transforms.

It has been found that enforcing monotonic pixel ordering is incredibly effective when

the orderings of the true image are known a priori, especially in conjunction with TV [9], [59].

Unfortunately, the true image’s monotonic orderings are difficult to estimate from the corrupted

initial image estimates. In fact, reconstruction quality can degrade when ordering estimates are not

correct [96]. Thus some researchers have proposed using an ordering-based reconstruction as a
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second-pass solution: obtain a first-pass solution using conventional CS reconstruction techniques

and feed this result into a second reconstruction using the orderings estimated from the first-pass

solution [97]. This can be effective but it is still sensitive to errors in the first-pass result, i.e., the

first-pass result might not contain order relations completely consistent with the true image.

Other researchers have asked the question: which ordering is the “best” ordering? In the

literature it is understood that the best ordering is that which most enhances the sparsity of the

sparsifying linear transform, T . This takes the ordering information and presents it as a new spar-

sity assumption: the true image is sparse under T after proper ordering. Initial results showed that

prior-based monotonic sorting was simple and led to impressive results for such a small investment.

It was also recognized that searching for the most effective ordering is equivalent to the infamous

traveling salesman problem (TSP), which is known to be NP-hard [98], [99]. The cities in this case

are pixels or patches from a prior image estimate and the distances between the patches are some

measure of smoothness between them. The TSP solution defines a permutation of the signal. It is

natural that simple monotonic orderings of prior image estimates have been used: sorting such that

the signal is monotonic is a useful heuristic, as it removes high frequency content from the signal.

It can also be used as a simple way to find a solution to the TSP when represented as a complete

graph. Sorting the weights and choosing the next vertex that minimizes the cost at each step is very

similar to Kruskal’s algorithm for finding the minimum spanning tree [100].

Further, Wu et al. applied the ordering problem to parallel imaging CS also using a TV

constraint during reconstruction [59]. This work also demonstrated feasibility of the ordered DCT

for sparsifying 1D signals. The theory of using relative orderings for reconstruction priors was for-

malized by Ramirez et al. as a Technique for Reconstruction Using Intensity Order (TRIO) [97].

This framework, again, only considers monotonically ordered data but incorporates smoothness

conditions on phase and allows for block orderings, i.e., smaller groupings of pixels that main-

tain monotonic relationships rather than enforcing global monotonicity. Ram et al. introduced a

more general signal processing framework based on smooth ordering of patches (not necessarily

monotonic) and first recognized the ordering step as a solution to the TSP [98]. Using patches is

desirable if the statistics of the underlying image cannot be estimated well using single pixels, a

condition we find ourselves with in CS MRI. Adluru et al. also considered orderings of the Caso-

rati matrix for multi-image reconstructions using low-rank regularizers via the nuclear norm [96].
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Various wavelet transformations have been considered in both [99] and [101]. The former takes

orderings similar to Ram et al., i.e., via an approximation to the solution of the TSP on a graph of

image patches, while the latter uses an appropriate image prior to train permutations of patches for

a locally adaptive DWT. Similar work including orderings has been presented in [102] and [103]

but seem to be more related to the convenience of sorting by pixel intensity when computing the

Gini index, an alternate measure of sparsity [104], [105]. The easy-path wavelet transform can

also be viewed in the context of locally optimized orderings at each decomposition level [106].

As mentioned, previous works have chosen monotonic orderings or trained orderings based

on low-resolution or CS reconstruction priors. Most previous work has restricted attention to

2D or 3D image sets which present computational challenges for solutions to the TSP or any

brute force training approaches. Multi-image datasets have received attention mainly focusing

on large datasets such as dynamic cardiac perfusion and diffusion imaging [96]. To the author’s

knowledge, no previous work has considered cases where orderings are known a priori in one or

more dimensions or on datasets small enough to allow computationally challenging combinatorial

searches.

Here we depart from the existing CS ordering literature by presenting a prior-less formula-

tion for order estimation based on implicit models defined by ordering constraints. The goal is to

decouple the orderings from potentially untrustworthy image priors. It also includes imaging sit-

uations where orderings are known by virtue of physical principles but for which simple ordering

schemes do not produce appreciable improvement to the reconstruction quality. Examples include

T1 and T2 mapping where the acquisition is comprised of k-space data collected at various time

points. T1 mapping datasets have time curves which are strictly increasing whereas T2 mapping

datasets have strictly decreasing. Both of these properties are due to the underlying physical re-

laxation properties described in Chapter 2. Importantly for our development, the number of time

points is small (∼ 7). As we know that the ordering problem is NP-hard, then even for small

images the computational burden of using a brute force method for finding the optimal order is

not feasible. However, for time curves with a small number of points, combinatoric searches are

possible.

T1 mapping datasets have naturally monotonically sorted time curves. However, the time

curves are exponential, leading to poor sparsity under the gradient operator which also lead to
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largely unimproved TV regularization. Sparsity of ordered exponential functions under other spar-

sifying transforms have been largely unstudied. Thus we require a method for selecting optimal

orderings for datasets with few time frames. We can do this without a prior image estimate by bas-

ing the ordering on minimization of the final reconstruction objective function. The assumption

that the objective function is a good surrogate for reconstruction quality is at the heart of any CS

reconstruction algorithm. By finding the most desirable objective function value, we can assume

that we have found the most desirable reconstruction and optimal ordering.

In this chapter we will consider the CS ordering problem where one dimension is known

to be monotonically varying. In the Theory section we will formally state the problem and present

a simple algorithm to find the optimal ordering for an arbitrary sparsifying transformation. We

will also present a computationally tractable method to find the best ordering on average for T1

mapping experiments with more than one T1 species. To validate the theory we will present the

results of simulated T1 mapping experiments on simple phantoms and an in vivo reconstruction

experiment using cardiac MR datasets.

6.2 Theory

CS reconstruction algorithms typically consider two types of terms in their objective func-

tions: fidelity terms and sparsity regularization terms. In this paper we consider CS MR recon-

struction algorithms of the form:

x = argminx
1
2
||F−1

u x− y||22+λ ||T x||1, (6.1)

where x is the current image estimate, y is the complex k-space measurement, F−1
u is the under-

sampled inverse Fourier transformation, T is the sparsifying linear transform, and λ is the reg-

ularization constant that determines the trade-off between fidelity and sparsity. The sparsifying

transform may be any linear transform operator. The `1 regularization term is often replaced by

the TV measure, as it has the form of an `1 norm. In fact, in one dimension, it is the `1 norm of the

finite difference:

TV(x) = ∑
i
|xi+1− xi|= ||∇x||1, (6.2)
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over valid indices of the signal x.

The ordering problem restates the basic CS formulation by simply inserting the permutation

operator Π which maps pixels to their ordered locations:

x = argminx
1
2
||F−1

u x− y||22+λ ||T Πx||1. (6.3)

The goal is then to construct an operator Π j that produces, in general:

||T Πix||1> ||T Π jx||1,∀i 6= j, (6.4)

that is, the permutation operator that yields the lowest `1 norm. For TV, it has long been known

that monotonic orderings produce good results but it has never been proved optimal [9]. Here we

present a simple argument that monotonic ordering is the best such ordering for TV minimization.

To maximize the number of zeros under the finite differences operator, simply group the

elements with the same value. Transition coefficients between groups are minimized when the

distance between groups is minimized. We accomplish this by sorting the groups. But this is just

monotonic ordering. Notice that the set of transition coefficients obtained in this way has cardi-

nality less than or equal to that of any other ordering, since the number of zeros was maximized at

the start. The transition coefficients are a subset of the set of coefficients for all other orderings. In

fact, it is the subset of smallest coefficients. Thus the `1 norm is less than or equal to that of any

other ordering. Therefore monotonic ordering is an optimal solution for TV minimization.

However, other transforms do not have obvious solutions for optimal sortings, leading re-

searchers to consider patch-based TSP solutions, advanced data-learning techniques, or heuris-

tics [59], [99], [101].

T1 time curves have exponential shapes. Under the finite differences transform, an expo-

nential retains the same shape with a change of multiplicative factor, which ideally should not

change the sparsity measure [105]. This is actually not true for the `1 norm, as a scaling factor

< 1 will reduce the norm. For this reason, we choose to utilize the Gini index as proposed by

both [105] and [104]. Thus we have that T1 curves are inherently monotonically sorted and that

TV regularization is potentially ill-suited for the reconstruction of exponential curves. For these
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reasons we must consider other transforms and, in general, non-monotonic orderings generated

without prior image estimates.

Here we present a simple brute force algorithm that finds the orderings which minimize

the objective function described in equation (6.3): For all possible orderings Π, reconstruct x

according to equation (6.3) and choose the reconstruction which minimizes equation (6.3). In

fact, this is equivalent to a model based reconstruction under the same assumptions. The sparsity

assumption defines an implicit model that selects signals which can be represented sparsely after

permutation. Adluru and DiBella proposed monotonic ordering for TV which defined an implicit

model enforcing contrast between disparate regions of the image. However, other transformations,

after ordering, do not have as easily divinable implicit models, such as those presented by Lai et

al. and Lui et al. [99], [101]. However, if the implicit model is reasonable (whether intuitively or

empirically), then the order corresponding to the minimum value of the objective function should

be chosen, as it has simultaneously minimized the data fidelity term and maximized sparsity under

equivalent reconstruction conditions, satisfying the implied model. If the ordering that produces

the minimum mean squared error (MSE) differs from that which minimizes the cost function, then

the original assumption of sparsity was flawed and the implicit model does not model the signal

well. All existing CS ordering literature has considered empirical evidence of enhanced sparsity

sufficient justification for their proposed models.

In the case of T1 mapping, the sparsity constraint implies that exponential time curves

arising in MR have sparse permutations under the transformation T . While it is not clear that

this must be the case, using numerical simulations, we have confirmed that this implicit model is

reasonable across a variety of tissues and leads to improved reconstruction quality compared to

similar reconstructions with and without ordering. Figure 6.1 shows the results of the Gini sparsity

measure for optimal orderings found according to our simple algorithm over 1000 simulations

for 7-point T1 time curves of tissue parameters with T1 simulated from 100ms to 2000ms. A T1

exponentially decaying model was chosen:

s(t) = A−Be−t/T1, (6.5)
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where s(t) is the simulated time curve at inversion times t and A and B are model parameters

chosen to be 1 and 2, respectively.

The following transforms were compared: the identity transformation, one-dimensional fi-

nite differences (FD), DCT, and the one-dimensional Cohen-Daubechies-Feauveau bi-orthogonal

wavelet (a common wavelet transform in MR [107]). As expected, all optimal orderings for the

FD transform were monotonically ordered. The orderings for the other transforms were not pre-

dictable, but the DCT did lead to greater sparsity as measured by the Gini index. This transform

is interesting for the present discussion because the best orderings are not obvious and it is effi-

cient to compute. For these reasons, we choose T to be the Type II DCT for the remainder of our

discussion. The fact that orderings other than the identity permutation were chosen indicates that

ordering improved the sparsity measure. We consider this significant, as sparse representation is

usually more difficult for small datasets (in this case a single 7-point time curve).
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Figure 6.1: Mean Gini index for several transforms of 1000 optimally ordered T1 time curves. FD,
DCT, and wavelet (WVLT) transforms see improved sparsity over no transformation at all. The
DCT empirically sparsifies the time curve best in this experiment. The error bars show the standard
deviations.

As the DCT does not lend itself to an obvious solution for optimal ordering, in the Methods

section we will apply the aforementioned brute force algorithm to present proof-of-concept simu-

lation results for the prior-less CS ordering problem. We predict that we will find more accurate
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reconstructions by using our proposed method than from the standard CS prior. Notice that the

standard CS prior corresponds to the identity permutation which is the best theoretical ordering for

finite differences.

In the context of T1 mapping, up to this point we have assumed a single-tissue imaging

sample. This single species required N! reconstructions to be performed to find the optimal or-

dering. In general, it is unreasonable to assume only a single species is present, but rather that

each voxel may contain a unique T1 relaxation value. Of course this translates to quickly escalat-

ing computational burden for the brute force method we have presented, as the optimization must

consider all combinations of orderings for all pixels simultaneously. In lieu of this, we propose

that simple priors derived from the imaging context can be used to find acceptable, if sub-optimal,

orderings that still provide reduced objective function value. For this chapter, we propose that we

know a range of expected T1 values present in the sample, e.g., we expect each voxel will have

0.2s < T1 < 2.0s. The intuitive argument is that similar exponential curves have similar orderings,

therefore if we optimize with respect to a range of values, then we can find an ordering that works

well on average. Figure 6.2 shows the results of a simulation of 8-point time curves over a range of

1000 T1 values using the optimal orderings (the orderings that produce the most sparse representa-

tion of the T1 signal model), the monotonic ordering, and the three most common orderings. The

frequency of the three most common orderings is shown in Figure 6.3. Note that the frequencies

include occurrences of multiple optimal orderings, i.e., more than one ordering produces optimal

results. We find that these average optimal orderings are effective at maximizing the sparsity over

particular ranges of T1. The two most common orderings account for about 20% of all optimal

orderings found. In this case, the first and second most common orderings were effective over the

widest range of values and were at least as effective as monotonic ordering for almost the entire

range. As the two orderings overlap, we consider them to be equivalent orderings, i.e., they lead

to equivalent sparsity measures. We then take one of these to be the average optimal ordering to

apply during subsequent CS reconstruction.

Using the average optimal ordering scheme, all simulations to determine the correct order-

ing are performed prior to application during the actual reconstruction. This reduces the compu-

tational burden significantly once an average optimal ordering is found for a particular imaging

context: only one optimization must be performed. We also decouple assumptions about orderings
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from the naive image priors based on acquired data, a property we found desirable when perform-

ing brute force cost function evaluations. We rely on the assumption that maximizing sparsity

minimizes the cost function and that we have chosen the correct range of T1 values over which to

optimize orderings.

Figure 6.2: Gini index of the DCT of T1 relaxation curves across a range of 1000 T1 values.
Monotonic ordering, optimal ordering, and the three most common orderings are plotted. The
most common orderings are near-optimal over certain ranges of T1 values. Notice that while the
first two most common optimal ordering are distinct, they are equivalent orderings: they produce
the same sparsity measure. The first and second most common orderings are near-optimal for much
of the entire simulated range. Some common orderings are only optimal over a small range of T1
values and become worse than monotonic ordering for some ranges.

The remainder of this chapter will describe numerical experiments (both simulated and in

vivo) to validate the ordering methods proposed in the Theory section.

6.3 Methods

6.3.1 Simulations

We wish to demonstrate that orderings for the DCT can be found that outperform the mono-

tonic ordering strategy. To this end, we choose a simple 128×128 numerical phantom consisting

of seven circles with identical tissue parameters: T1 = 1200ms, T2 = 100ms, and M0 = 1 (a.u.).
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Figure 6.3: Frequency of the three most common optimal orderings. The ordering indices are
shown along the x-axis. The two most common orderings account for almost 20% of all orderings.

These are approximate MR parameters for gray matter at 1.5T. This phantom is depicted in Figure

6.4. This choice of phantom is similar to conventional T1 vial experiments, but in this case, all vials

contain similar tissue. A spin-echo inversion recovery sequence was simulated with TR = 2500ms

and TE = 10ms for seven time points corresponding to inversion times TI = 1.14s, 1.55s, 1.93s,

2.26s, 2.54s, 2.76s, and 2.93s. The resulting k-spaces were retroactively undersampled, keeping

only 30% of the k-space phase-encoding lines while guaranteeing that the center 10 lines were

always acquired. A representative sampling mask is shown in Figure 6.5 and the corresponding

zero-filled naive inverse Fourier transform of the undersampled phantom is shown in Figure 6.6.

For the proposed method we performed reconstructions using an iterative soft thresholding

(IST) algorithm as described in Chapter 5 with starting threshold λ0 = 0.09 and threshold contrac-

tion parameter µ = 0.98. T was chosen to be the one-dimensional Type II DCT across the time

dimension. For N = 7 time points, we ran the reconstruction for each of the N!= 5,040 possible

orderings. The IST algorithm was run for a fixed 50 iterations for each reconstruction. The ending

value of the objective function was evaluated and the ordering corresponding to the minimum was

chosen as the best ordering. For comparison, the cost function and normalized root mean square

error (NRMSE) was evaluated for the chosen ordering, i.e., the ordering which produced the low-

est NRMSE, and for the ordering corresponding to the standard CS recon. We also performed a

nonlinear least squares estimate for T1 using the Levenberg–Marquardt algorithm, as this is the

actual value desired when reconstructing datasets for T1 mapping.

64



Figure 6.4: Numerical phantom used to simulate inversion recovery pulse sequence to validate the
proposed theory of prior-less ordering estimation for compressed sensing.

All iterative reconstructions for the simulations were run on Brigham Young University’s

Mary Lou Fulton supercomputer.

6.3.2 In vivo

We wish to demonstrate that average optimal orderings for the DCT can outperform the

monotonic ordering heuristic. Single-slice cardiac data was acquired on a 3T Siemens Magne-

tom Prisma Fit. The patient was imaged head first-supine using a Cartesian MOLLI 5(3)3 se-

quence [108] with the following parameters: TR/TE: 460.9ms/1.12ms, FA: 35◦, averages: 1, FOV:

315mm× 360mm, slice thickness: 7mm, matrix size: 224× 256, BW: 1080 Hz/Px, and inver-

sion times at 117ms, 257ms, 1172ms, 1282ms, 2172ms, 2325ms, 3174ms, and 4189ms. The

Levenberg–Marquardt algorithm was used to create a reference T1 map pixel-by-pixel using the

model adjustments for MOLLI:

s(t) = A−Be−t/T ∗1 , (6.6)

T1 ≈ T ∗1 (B/A−1), (6.7)
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Figure 6.5: Cartesian k-space undersampling pattern for one time frame of the numerical phantom
simulation.

where T ∗1 is the apparent T1 value from the modified Look-Locker experiment, t are the inversion

times, and A and B are model parameters [109].

We retroactively under-sampled the fully acquired Cartesian 8-point cardiac dataset using

the same Cartesian undersampling strategy as in the simulation but this time sampling 30% of

k-space and ensuring the center 15 lines were always acquired. The average optimal ordering

was chosen suitably from a simulation over the range: 0.25s < T1 < 2.5s. An IST reconstruction

using regularization parameter λ0 = 1.5 and contraction parameter µ = 0.98 was run for a fixed

50 iterations for both monotonic orderings and average optimal orderings. After reconstruction, T1

maps were generated and compared.

6.4 Results

6.4.1 Simulations

Table 6.1 summarizes the results of the simulation. The bold quantities indicate the best

values in the given row. NRMSE decreased and T1 estimates were closer to the true value (1.2s)

when using the ordering generated from the proposed algorithm in a fixed number of iterations.
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Figure 6.6: Corrupted phantom image due to random Cartesian undersampling in the phase-encode
direction.

The best NRMSE and best cost orderings are different. However this is not surprising, as there are

in general multiple optimal or near-optimal orderings. Both orderings lead to virtually the same

NRMSE and cost scores as well as equal improvement over the monotonic ordering heuristic. The

final average nonlinear least squares estimate for T1 is also closer using the proposed method with

lower mean error and standard deviation. Figure 6.7 shows the comparative reconstructions using

both monotonic orderings and best cost ordering estimates for a representative time frame. The

residual is consistently lower using the best cost estimate. Notice there are still residual artifacts

seen inside the circles. These artifacts are due to the fact that the IST algorithm has not run enough

iterations. A cap on maximum iterations was necessary for reasonable run-time. Figure 6.8 shows

the NRMSE for both ordering strategies as a function of iteration. It is clear that the best cost

ordering NRMSE trends below that of the monotonic ordering as iteration number goes past that

of diminishing returns.

Figure 6.9 shows a representative pixel time curve from the variously-ordered reconstruc-

tions and the naive zero-filled inverse Fourier transform of the undersampled k-space. The differ-

ences in individual ordered time curves appear to be small, but on the whole, given every pixel’s

contribution, the result corresponding to the best cost function value yields improvement over the
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Table 6.1: Summary of results for exhaustive simulation of optimal
ordering simulation. Bold entries indicate the best values. We find

that the optimal ordering was found using the proposed algo-
rithm, i.e., the minimum cost ordering corresponding to a

comparable minimum NRMSE ordering.

Monotonic Best NRMSE Best Cost
Order [0 1 2 3 4 5 6] [2 4 6 5 3 1 0] [3 2 1 5 4 0 6]

NRMSE 4.29e-2 3.97e-2 3.97e-2
Cost 620.38 568.47 568.47

T1 estimate 1.23s ± 0.083 s 1.21s ± 0.062 s 1.21s ± 0.062 s

Figure 6.7: Comparative reconstruction of the last time frame of the simulated T1 mapping dataset.
The reconstruction using monotonic ordering is shown on the left with residual underneath, while
the reconstruction on the right uses the best cost orderings.

monotonic heuristic, verifying that orderings other than monotonic can provide better reconstruc-

tion fidelity and they can be found without a prior image estimate.

6.4.2 In vivo

Figure 6.10 shows the normalized cost function value versus iteration for a fixed number

of iterations with and without the proposed average optimal ordering. It is clear that the chosen
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Figure 6.8: NRMSE plotted as a function of IST iteration for monotonically ordered and best cost
ordered reconstructions.

ordering induces a lower cost function over the same iterations. This is consistent with the theory

and performed simulations for finding the average optimal orderings. Figure 6.11 shows the recon-

structed T1 map of the cardiac data using monotonic ordering and a fixed number of iterations and

its corresponding residual image. The residual image was generated by subtracting the reconstruc-

tion from the T1 map generated from the fully sampled cardiac dataset. Correspondingly, Figure

?? shows the results of the reconstructed T1 map using the average optimal ordering. Compared to

the monotonic ordering, the average optimally ordered image is smoother and has smaller residual

error, verifying that average optimal orderings can produce better quality reconstructions in a fixed

number of iterations.

6.5 Discussion

At the cost of running the reconstruction N! times, we achieve the goal of obtaining an

ordering that is not tied to a prior estimate or reliant on the heuristic of sorting monotonically.

We consider this an encouraging result for a first-of-its-kind study. We have also chosen a target

application that has a small number of time points, ensuring computational feasibility of the brute

force search method. The computational burden is further lightened by easy parallelization of

the small reconstructions. Using a simple modification of the proposed framework, we can find
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Figure 6.9: Comparative reconstruction results for a representative pixel’s time curve. The naive
inverse fast Fourier transform (IFFT) corresponds to a zero-filled reconstruction. The curves cor-
responding to the monotonic ordering and best cost/NRMSE orderings appear close, with the best
cost/NRMSE slightly better aligning with the true time curve. These small improvements for each
pixel lead to improved reconstruction fidelity on the whole.

average optimal orderings across a range of T1 values for T1 mapping. These average optimal

orderings were effective at reducing residual error and producing more accurate T1 maps. It is left

to future work to study the optimization of the proposed methods and extension to datasets with

more time points and the complications of multiple tissue characteristics.
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Figure 6.10: The normalized cost function over a fixed number of iterations for a single-slice
cardiac reconstruction. The reconstruction using the average optimal ordering shows reduced cost
function for all computed iterations.

Figure 6.11: The image on the left is a T1 map generated from reconstructed retroactively under-
sampled cardiac data. No data reordering was applied during the reconstruction. The image on the
right shows the residual image generated using the fully sampled cardiac data. The red bounding
box shows an area of interest with mean error 1.03e-2±0.25s. The scales are indicated in seconds.
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Figure 6.12: The image on the left is a T1 map generated from reconstructed retroactively un-
dersampled cardiac data. The average optimal orderings for the expected range of T1 values was
was applied during the reconstruction. The image on the right shows the residual image generated
using the fully sampled cardiac data. The red bounding box shows an area of interest with mean
error 3.20e-3±0.26s. The scales are indicated in seconds.
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APPENDIX A. COIL COMBINATION FOR ESM BSSFP

A.1 Introduction

General coil combination is simply a linear combination of coil images using some set of

weights. The central conceit of Chapter 4 was that nonlinear coil combination methods (those that

use nonlinear methods to derive weights) distort the elliptical relationship between multiple phase-

cycled datasets that rely on the elliptical signal model (ESM). This appendix will show how these

weights change for two of the most popular coil combination techniques: the Roemer method

and the adaptive coil combine method (referred to in this thesis as the stochastic matched filter

method). The Roemer method was not analyzed in Chapter 4 as it relies on prior coil sensitivity

map estimates, but nonetheless it will be instructive to derive the geometric solution to see the

complicated ways upstream coil combination can affect downstream computations.

A.2 Maximum SNR Coil Combination

Roemer et al. proposed the maximum SNR combination strategy when coil sensitivity

maps, S j, and noise correlation matrices, Cn, are known [11]. For a single phase-cycle, the com-

bined image can be calculated pixel-wise as:

Îi(x,y) =
∑ j,k S∗j(x,y)C

−1
n, jkIi,k(x,y)

∑ j,k S∗j(x,y)C
−1
n, jkSk(x,y)

, (A.1)

which can be written more succinctly when S(x,y) and Cn are suitably defined matrices:

Îi(x,y) =
SH(x,y)C−1

n

SH(x,y)C−1
n S(x,y)

Ii(x,y) (A.2)

= AIi(x,y). (A.3)
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Then A is simply the corresponding SENSE operator with an acceleration factor of 1 [38]. Notice

that S and Cn do not vary with phase-cycle as they are only coil dependent.

Substituting equation (A.3) into the pixel-wise version of the linearized geometric solution

(lGS) to the ESM (equation (4.2)), by linearity we have that the coil combined lGS solution is the

same as coil combination prior to the lGS, as desired:

AIlGS(x,y) =
1
2
[
w0(x,y)Î0(x,y)+ (1−w0(x,y))Î2(x,y)+w1(x,y)Î1(x,y)+ (1−w1(x,y))Î3(x,y)

]
.

(A.4)

What remains is to determine the weights from regional differential energy required for

the lGS: w0,1 (see Chapter 4). Substitution of equation (A.3) into the direct geometric solution

(equation (4.1)) yields the following expression for Id(x,y):

Im
[
MH

0 AHAM2
]

A(M1−M3)− Im
[
MH

1 AHAM3
]

A(M0−M2)

Re [A(M0−M2,:)] Im [A(M1−M3)]+Re [A(M1−M3)] Im [A(M2−M0)]
. (A.5)

It is clear that the resulting weights will differ from those found using a coil-by-coil strategy due

to the nonlinear nature of this solution. Numerical evaluation is required to determine how the

weights change and what effect this has on the final reconstruction.

A.3 Stochastic Matched Filter Coil Combination

When coil sensitivities and noise correlation matrices are unknown, the Roemer phased-

array combination strategy cannot be used. To overcome this limitation, Walsh et al. proposed the

maximum expected SNR solution to the coil combination problem [7]. For a single phase-cycle

this solution has a simple linear form given as:

Îi = mH
i


Ii,0

Ii,1
...

Ii,N−1

 . (A.6)

Each mi is the eigenvector corresponding to the largest eigenvalue of the matrix P = R−1
n Rs, where

Rn and Rs are the autocorrelation matrices for the signal and noise processes, respectively. We
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further recognize that the matched filter coefficients, mi, are the same for each phase-cycle as the

coil geometry has not been altered. Using the linearity of both the lGS reconstruction and the

chosen matched filter coil combination method, it is simple to show that substituting in Ii = Îi into

equation (4.2) yields the desired demodulated signal with only a single evaluation of the lGS.

Given K phase-cycled images and N coils we need to estimate m, the most significant

eigenvector of P = R−1
n Rs. We have K observations of autocorrelation matrices: Rl

n and Rl
s, 0≤ l <

K. A first guess might be to perform coil combination separately on each phase-cycle set, i.e., find

and apply each mi. However, this is ignoring the fact that all mi should be the same and, as a result,

this method can perform poorly. Noting that the eigenvectors mi are not additive, a simple and

effective estimator of m is to use the average over the autocorrelation matrices. We recognize that

the lth observation corresponds to a linear phase-cycle ∆θl =
l2π

K , but the autocorrelation function

is only sensitive to intra-phase-cycle variation; thus, we may neglect phase unwinding due to ∆θl:

Rl
s,i j = E

[(
Il
i e−i∆θl

)(
Il

je
−i∆θl

)∗]
(A.7)

= E
[
Il
i Il∗

j

]
, (A.8)

R̂s =
1
K ∑

l
Rl

s, (A.9)

and similarly for R̂n.

To find the weights, w0,1, required for the lGS, we substitute equation (A.6) into equation

(4.1) to find the direct solution, Id(x,y):

Im
[
MH

0 mmHM2
]

mH(M1−M3)− Im
[
MH

1 mmHM3
]

mH(M0−M2)

Re [mH(M0−M2)] Im [mH(M1−M3)]+Re [mH(M1−M3)] Im [mH(M2−M0)]
. (A.10)

Again, due to this nonlinear solution, the weights will differ from those found using a coil-by-coil

strategy and require numerical techniques for a more full analysis.
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APPENDIX B. DEEP CONVOLUTIONAL NEURAL NETWORKS FOR ESTIMATION
OF PRE-RECONSTRUCTION DATA REORDERINGS

B.1 Purpose

Successful reconstruction of highly undersampled datasets requires the successful naviga-

tion of an ill-posed inverse problem. Regularization is a process that introduces assumptions about

the data in order to find an acceptable solution. As natural images are often piece-wise smooth,

a reasonable assumption is that they are sparse in the finite differences domain, such that total

variation (TV) is minimized. However, some MR datasets do not have this smoothness property.

Several papers have proposed methods of predicting the pixel reordering that minimizes the recon-

structed image’s TV norm [9], [96], [99]. All previous methods use prior image estimates to infer

the optimal reordering (e.g., reference images, low resolution estimates). It has been shown that

using poor prior estimates can be detrimental to reconstructed image quality [9]. This work stud-

ies the use of a neural network to produce more optimal image reorderings for use in constrained

reconstruction algorithms.

B.2 Methods

222 golden angle radially sampled 2D cardiac images from dynamic contrast enhanced car-

diac perfusion MR datasets were retroactively undersampled from 72 rays to 16 rays. Non-uniform

fast Fourier transform (NUFFT) reconstructions of the 72 ray datasets were used as the ground

truth for training the network, which estimated the reordering for use as a prior in subsequent re-

construction. Only column reordering was considered. A U-net architecture was implemented with

complex 16 ray k-space datasets as input and reordering matrices for both real and imaginary parts

of the image as output (depicted in Figure B.1). The cost function for the network was the mean

squared error between the true and prospective reorderings. 80% of the priors were fed as input to

the neural network to train with the remaining reserved for evaluation of the network. The results
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of the network were compared by reordering the columns of the 72 ray image reconstructions us-

ing both the true reorderings and reorderings based on the image priors, and then computing the

anisotropic TV norm, similar to that used in [9]:

C(x) =
1
2
||F−1

u x− y||22+λ ||
√

∇yx2 + ε||1, (B.1)

where ∇y is the gradient operator across the columns, x is the image, y is the measured k-space,

F−1
u is the undersampled Fourier operator, λ is the regularization weight, and ε is some small

positive constant to avoid singularities in the derivative of the functional.

Figure B.1: A U-net architecture with 16 ray undersampled images as input and reordering matri-
ces (real and imaginary) as output.

B.3 Results

The network generated reorderings that reduced the anisotropic TV norm on average 13.4±

1.2% relative to a naive reordering taken from a low resolution prior. Figure B.2 shows (a) the

magnitude image of the 72 ray NUFFT reconstruction, (b) the optimally reordered real part of the

reconstruction (TV = 1.42 · 10−4), (c) the magnitude image of the prior image estimate, (d) the
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reordered real part of the reconstruction based on the network’s output (TV = 1.34 ·10−3), and (e)

the reordered real part of the reconstruction based on the prior image estimate (TV = 1.68 ·10−3).

On each image a red line is drawn. Below the image, the real pixel intensity values along this line

are plotted to demonstrate how the pixels changes across the column. The network results were

consistently superior to the prior reordering estimate, although still an order of magnitude shy of

the optimum.

Figure B.2: Results generated by the neural network compared to a magnitude image of the 72 ray
NUFFT reconstruction.

B.4 Discussion

On inspection, it is apparent that the network-reordered image shows fewer misplaced high-

intensity pixels and corresponds better to the optimal column reordering than the naive reordering.

Both the network reordering and naive reordering fail to capture smooth transitions, perhaps stem-

ming from the difficulty of sorting lower intensity pixels when highly corrupted image priors are

used as input. However, it is clear from this study that more accurate reorderings may be inferred
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by a neural network than from low quality image priors alone. It is expected that using larger

training sets and more training iterations will yield more optimal reorderings.

B.5 Conclusion

This network demonstrates that accurate reorderings may be found for use in constrained

image reconstructions that use total variation regularization [9], [96] and wavelet [99] regulariza-

tion without requiring an initial high quality image estimate. This reduces preprocessing time and

injects accurate prior information into the ill-posed inverse imaging problem. Preprocessing time

is especially important in graph-based techniques that must solve NP-hard problems (e.g., traveling

salesman) to find a reordering estimate [99]. This work only considers the simplest case of pixel

reordering along one dimension. More research is needed to compare performance with other deep

learning approaches, patch-based reordering approaches [98], and to study the network’s perfor-

mance along multiple dimensions, including graph-based reordering models [98].
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APPENDIX C. SYNTHETIC BANDING FOR BSSFP DATA AUGMENTATION

Balanced Steady State Free Precession (bSSFP) MRI is a highly-efficient MRI pulse se-

quence but suffers from banding artifacts caused by its high sensitivity to magnetic field inhomo-

geneity. Many algorithms exist that can effectively remove these banding artifacts, typically by

requiring multiple phase-cycled acquisitions, which increase scan time [34]. While some of the

algorithms can suppress banding to some degree with two sets of phase-cycled acquisitions, much

more accurate band suppression is typically achieved with at least four phase-cycled acquisitions.

In this work, we present a deep learning method for synthesizing additional phase-cycled images

from a set of at least two phase-cycled images that can then be used with existing band reduction

techniques in order to reduce scan time.

C.1 Introduction

Banding reduction techniques for balanced steady state free precession (bSSFP) acquisi-

tion often require the collection of many phase-cycled images [34]. In general, a minimum of two

phase-cycled images are required to reduce banding since with only one phase-cycled image, parts

of the image may fall in a signal null. By having a combination of two different phase-cycled

images it is possible to acquire signal for each voxel in a field-of-view. While a minimum of two

phase-cycles is required, many banding reduction techniques and post-processing algorithms rely

on the availability of at least four phase-cycled images [1], [14], [110]. However, in some applica-

tions such as dynamic contrast enhanced cardiac MR, it is not possible to collect four fully sam-

pled phase-cycles for each slice or time point. Recently, methods have been proposed that collect

multiple phase-cycled images simultaneously, greatly reducing the acquisition time required [41].

Inspired by these methods, we propose a deep learning model that generates phase-cycled images

in order to reduce the number of acquired phase-cycled images. These generated images augment

the existing phase-cycled datasets. The combination of acquired and augmented images can be
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used in existing band reduction methods to reduce scan time. Additionally, by producing these

supplemental images a variety of post processing techniques for parameter estimation such as T1,

T2 or field map estimates can be generated from augmented datasets.

C.2 Theory

A bSSFP data augmentation method was creating using a deep neural network. Figure

C.1 outlines the image reconstruction architecture for the method. A modified U-net architecture

was used as the basis for the neural network. The mean squared error between the output and

truth data was used as the cost function for training. As input to the network, two phase cycled

images with RF phase-cycles of 0◦and 180◦were used. The ground truth for the network was a

pair of phase-cycled images with incremental RF phases of 90◦, and 270◦. As verification of the

experiment, the four phase-cycled images used in training were input into the geometric solution

of the elliptical signal model (ESM) to generate a band free image. Then the combination of

the acquired phase-cycled images (0◦, 180◦) and the generated phased-cycled images (90◦, 270◦)

were input into the same ESM model. This verification procedure is outlined in Figure C.2. The

resultant band reduced images were then compared.

Figure C.1: An illustration of the model architecture.
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Figure C.2: An illustration of model verification using the geometric solution from elliptical signal
model. (Left) Band reduced image is generated using four acquired images. (Right) Band reduced
image is generated using two acquired images and two synthetically generated images.

C.3 Methods

To train the deep neural network, four phase-cycled 3D knee volumes were acquired on a

Siemens 3T TIM Trio with increasing RF phase increments of 0◦, 90◦, 180◦, and 270◦. All images

were acquired using a bSSFP pulse sequence with parameters TR = 2.3ms, TE = 4.6ms, a flip

angle α of 50◦, FOV 220mm, matrix size 256×256×128, and 4 averages.

C.4 Results

The synthetically generated phase-cycled images are shown alongside the original images

in Figure C.3. After training the model, the network successfully generated additional phase-

cycles (90◦, 270◦) from the acquired phase-cycled images (0◦, 180◦). The generated images are

comparable to the acquired images. The synthetically generated images compared to acquired

images have average mean squared error of (6.21±1.96) ·10−4, mSSIM of 0.86987±0.042, and

average PSNR of 38.35± 1.58. As further verification of the method, Figure C.4 shows that the
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reconstruction from the elliptical signal model of four acquired images exhibits band reduction

similar to reconstruction from the elliptical signal model of two acquired images combined with

the synthetically generated images.

Figure C.3: bSSFP knee images. (a–d) are the acquired bSSFP phase-cycled images (0◦, 180◦,
90◦and 270◦) (e–f) are the synthetically generated bSSFP phase-cycled images (90◦and 270◦).

Figure C.4: bSSFP band reduced images using the geometric solution to the elliptical signal model.
(a) Inputs into the model are four acquired bSSFP phase-cycled images. (b) Inputs into the model
are two acquired and two synthetically generated bSSFP phase-cycled images.

C.5 Conclusion and Discussion

We have demonstrated that given two phase-cycled bSSFP acquisitions, a deep convolu-

tional neural network can be trained to augment the dataset to four phase-cycled images without the

need for additional acquisitions. Using a set of four images consisting of acquired and augmented

phase-cycled images, ESM-based algorithms can be used to eliminate banding [1]. Additionally,

this data is suitable as input to algorithms estimating tissue parameters and field maps [2], [110].
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We have also demonstrated that correct phase information is synthesized, as the solution to the

ESM is very close to the true solution, allowing phase information to propagate through a post-

processing pipeline. Future work could involve more complicated network architectures: recent

work suggests that sharper images may be generated by generative adversarial networks [111].

Some algorithms also require or are improved with more than four input phase-cycled images,

leading to the possibility of synthesizing more than two phase-cycled output images [14].
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APPENDIX D. DEEP LEARNING SUPER-FOV FOR ACCELERATED BSSFP
BANDING REDUCTION

We present a technique for bSSFP band removal using two undersampled phase-cycled

bSSFP image acquisitions.

D.1 Introduction

Balanced Steady State Free Precession (bSSFP) is an imaging technique capable of fast

image acquisition with a high signal-to-noise ratio (SNR). However, bSSFP is highly sensitive to

magnetic field inhomogeneities. This sensitivity is known to create characteristic banding artifacts

which degrade image quality. Several methods for reducing banding artifacts have been developed

using the combination of multiple phase-cycled images in order to effectively reduce the banding.

The acquisition of multiple phased-cycled images increases scan time and is a limiting factor. We

present a technique for state-of-the-art band reduction using undersampled bSSFP acquisitions

combined with synthetic images generated from a deep neural network. This method uses fewer

images compared to some techniques for band reduction, like the Elliptical Signal Model, and is

capable of reducing scan time [34]. We validate our technique with in-vivo experimental results.

D.2 Theory

A banding artifact reduction method was created using a deep neural network. Previously

it was shown that such a network could be designed to effectively reduce banding artifacts using

a U-Net architecture. [112], [113]. The ground truth data was generated using four phased-cycled

images combined with the geometric solution to the elliptical signal model in order to generate a

band reduced image [1]. Using this work as a basis, this network was improved to utilize undersam-

pled SSFP images as the inputs to the network to solve a generalized SENSE reconstruction. This

improvement is analogous to previous work for SSFP banding artifact reduction Super-FOV [114].
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In the Super-FOV method, the banding artifacts of SSFP are used as a sensitivity map in order to

reconstruct a pair of undersampled phased-cycled bSSFP images. The sensitivity maps are used in

a similar manner to other subsampled reconstruction techniques like GRAPPA and SENSE. Figure

D.1 outlines the imaging and reconstruction process for this technique.

Figure D.1: Undersampled k-space data from two phase-cycled acquisitions is fed to the model as
input. The output is compared using mean squared error to the geometric solution to the elliptical
signal model generated from four fully sampled phase-cycled acquisitions.

D.3 Methods

We acquired sets of four phase-cycled images using a 3T Siemens TIM Trio scanner. This

experiment produced the data necessary for both training and testing the model. The model was

trained using two undersampled phase-cycled images and the truth data was generated from the

results of the geometric solution to the elliptical signal model. As inputs to the elliptical model,

four images corresponding to the RF phase increments of 0◦, 90◦, 180◦, and 270◦from the coronal

slice of a knee were acquired. This data was acquired using a FOV of 250 mm, a TR = 4.6ms,

a TE = 2.3ms, a tip angle of 55◦, and an acquisition matrix size of 256× 256× 128. Two of

the bSSFP images with RF phase increments 0◦and 180◦were undersampled retroactively with an

undersampling factor of R = 2.
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D.4 Results

The results of the experiment are shown in Figure D.2. After training the model, the recon-

struction exhibits band reduction similar to the geometric solution of the elliptical signal model.

The network generated banding-free image compared to the true solution to the elliptical signal

model has average mean squared error of (5.38± 2.06) · 10−7, mSSIM of 0.9998± 6.66 · 10−5,

and average PSNR of 69.02±1.61. We have demonstrated that a deep neural network can reduce

banding artifacts in multiple acquisition bSSFP with comparable performance to the elliptical sig-

nal model and reduce overall scan time by requiring fewer phase-cycled images.

Figure D.2: (a–b) is the combined k-space and image domain representation, respectively, from
the two undersampled acquisitions (even lines from first phase-cycled image, odd lines from the
second) as it was input to the neural network for training. (c–d) show the k-space and image space
representations of the geometric solution to the elliptical signal model which was used as ground
truth for training. (d–e) shows the model’s estimate of the banding-free image.

D.5 Conclusion and Discussion

There are a variety of applications which could benefit from the excellent bSSFP contrast

and SNR efficiency, but which cannot tolerate severe banding at low repetition times such as in

musculoskeletal imaging [34], dynamic cardiac MR [115], and transition band functional MRI

[27]. This technique might be improved by measuring an auto-calibration signal in the center of

k-space in addition to the undersampled acquisitions taken. This would increase acquisition time,

but allow for much better estimation of the phase sensitivity maps required for reconstruction. The

model could also be improved with the addition of an additional decoder that reconstructs the fully

sampled input images, allowing for the inclusion of a data fidelity term in the training cost function.
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APPENDIX E. GENERATION OF ARBITRARY SPECTRAL PROFILES USING
ORTHONORMAL BASIS COMBINATIONS OF BSSFP MRI

We present a technique for generating an arbitrary spectral profile by using multiple-acquisition

bSSFP. Multiple phase-cycled bSSFP images with increasing TRs were acquired and Gram-Schmidt

orthogonalization was applied to spectral basis functions to generate an orthonormal basis. This

generated orthonormal basis was used to approximate an arbitrary spectral profile by using linear

combinations of the calculated basis functions. A variety of spectral functions were simulated and

used as a template to approximate spectral profiles in water and fat phantoms.

E.1 Introduction

Balanced steady-state free precession (bSSFP) is a high SNR, fast imaging technique suf-

fering from banding artifacts which degrade image quality. These banding artifacts are a function

of off-resonance frequency and magnetic field inhomogeneities. Over the past two decades, several

methods have been developed using multiple-acquisition bSSFP to either reduce the appearance

of banding artifacts [1], [34], [116] or to move the location of a banding artifacts to suppress

undesired off-resonance frequencies [117]–[120].

This work focuses on developing a novel technique for generating an arbitrary off-resonance

spectral profile using multiple-acquisition bSSFP.

E.2 Theory

Using multiple phase-cycled bSSFP images with increasing TR, it is possible to form an

orthonormal basis from which to approximate any arbitrary spectral profile. An orthonormal basis

is a set of linearly independent vectors that can be used to span the complex numbers. A linear

combination of basis vectors, fn , can be used to approximate any analytic function f according
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to its basis expansion: f ≈ f̂ = ∑an fn . Increasing the number of terms in the basis expansion

decreases the approximation error.

At large flip angles, bSSFP images have a sinusoidally-shaped spectral profiles for certain

tissues with a pass band region and region of signal null. Since the bSSFP profile is similar to

sines and cosines, we can use multiple phase-cycled acquisitions to generate a basis similar to

a Fourier series. The spectra used to generate this basis are shown in Figure E.1. As this set of

vectors is not exactly sinusoidal, it is not necessarily orthonormal. We therefore use Gram-Schmidt

orthogonalization to generate an orthonormal basis. At moderate flip angles, the spectra generated

appear less sinusoidal but can still form an acceptable approximating basis set (see Figure E.2).

Figure E.1: Magnitude plots of six basis functions generated from a high tip angle ( 90◦ ) SSFP
simulation. The shape of this spectral profile was observed in images from the fat phantom. The
top three basis functions are similar to the sine terms of the Fourier series, while the bottom three
basis functions are similar to the cosine terms of the Fourier series.

Multiple-echo acquisitions can be used to manipulate the spectral profile of a bSSFP image

in order to create different contrast features and to suppress unwanted off-resonant frequencies

(e.g., fat suppression). Using this technique we can approximate an arbitrary band-pass and notch

filter as shown in Figures E.3 and E.4.

E.3 Methods

Six phase-cycled bSSFP images were acquired of a fat and water phantom using a high tip

angle ( 90◦). These images were generated using two phase-cycled values ( dφ = 0◦,180◦) at three
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Figure E.2: Magnitude plots of six basis functions generated from a moderate tip angle SSFP
simulation. The shape of this spectral profile was observed in images from the water phantom.
The top three basis functions are odd functions, while the bottom three basis functions are even
functions. Despite the unusual shape of this set of basis functions, it can be used to generate
a variety of arbitrary off-resonance spectra after it has been orthogonalized with Gram-Schmidt
orthogonalization.

different TR values, namely TR = 6ms, 12ms, and 24ms, with TE = TR/2. We then used Gram-

Schmidt orthogonalization to generate an orthonormal basis. Using the desired spectral profile as a

template function, the basis function coefficients were selected to approximate the desired bSSFP

spectrum. These basis coefficients were computed by solving a linear system of equations, Ac = f ,

with the basis forming the column space of A, f the desired function, and c the coefficients.

E.4 Results

After generating spectra for both the notch and band-pass filters, the resulting linear com-

binations shown in Figures E.3 and E.4 show successful filtering of the phantoms. In both the fat

and water phantoms, the spectral profile was observed to be similar to those shown in Figures E.1

and E.2, respectively.

In fat, the notch filter was well approximated by the simulated and measured data, with side

ripple levels below 10%. The band-pass, with high frequency content, was approximated using a

near sinusoidal basis, performing similarly to a Fourier series expansion. The resultant images

show the spectrum profiles with strong induced signal peaks and nulls. The spectral approxima-

tions for the notch and band-pass filters in water were less accurate, with ripple levels in excess

of 20%. Although the measured data deviates from the simulated spectra, the general profile is

observed in both filters and the signal peaks and nulls are pronounced in the resultant image.
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Figure E.3: Generated spectra from a fat phantom using the high flip angle basis functions. A shim
gradient was applied from the top to the bottom of each image to create a range of off-resonance
frequencies. The top row shows the spectral profile generated using a notch spectrum while the
bottom row shows the spectral profile generated from a band-pass spectrum.

E.5 Discussion

The method successfully generates off-resonance spectral profiles of both notch and band-

pass filters in fat and water using multiple-acquisition bSSFP. Coefficients may be generated for

arbitrary functions and may be more accurately approximated using additional terms. However,

each term in the basis expansion corresponds to a new bSSFP acquisition at an increased TR

value. High resolution is required to resolve banding artifacts for high TR values, leading to long

acquisition times for desired spectrum profiles with high frequency content.

Fat suppression could be achieved with this technique by creating a notch filter spectrum

and shifting the notch to the off-resonance frequency needed to suppress fat. This process requires

the recalculation of basis coefficients such that the location of the null is steered to the desired

location, similar to beam forming in phased-array antennas. In addition, accurate pixel-by-pixel

reconstructions require a field map due to field inhomogeneities, further increasing acquisition

time.
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Figure E.4: Generated spectra from a water phantom using the moderate flip angle basis functions.
A shim gradient was applied from the top to the bottom of each image to create a range of off-
resonance frequencies. The top row shows the spectral profile generated using a notch spectrum
while the bottom row shows the spectral profile generated using a band-pass spectrum.
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