
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2019-07-01

Hyperparameters for Dense Neural Networks Hyperparameters for Dense Neural Networks

Christopher James Hettinger
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Hettinger, Christopher James, "Hyperparameters for Dense Neural Networks" (2019). Theses and
Dissertations. 7531.
https://scholarsarchive.byu.edu/etd/7531

This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more
information, please contact ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F7531&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/7531?utm_source=scholarsarchive.byu.edu%2Fetd%2F7531&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu

Hyperparameters for Dense Neural Networks

Christopher James Hettinger

A dissertation submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Jeffrey C. Humpherys, Chair
Emily J. Evans

Christopher P. Grant
Tyler J. Jarvis

Jared P. Whitehead

Department of Mathematics

Brigham Young University

Copyright c© 2019 Christopher James Hettinger

All Rights Reserved

abstract

Hyperparameters for Dense Neural Networks

Christopher James Hettinger
Department of Mathematics, BYU

Doctor of Philosophy

Neural networks can perform an incredible array of complex tasks, but successfully train-
ing a network is difficult because it requires us to minimize a function about which we know
very little. In practice, developing a good model requires both intuition and a lot of guess-
and-check. In this dissertation, we study a type of fully-connected neural network that
improves on standard rectifier networks while retaining their useful properties. We then
examine this type of network and its loss function from a probabilistic perspective. This
analysis leads to a new rule for parameter initialization and a new method for predicting
effective learning rates for gradient descent. Experiments confirm that the theory behind
these developments translates well into practice.

Keywords: neural networks, backpropagation, gradient descent, crelu

Acknowledgments

Thanks to Jeff Humpherys and Tyler Jarvis for years of mentorship; to Emily Evans, Chris

Grant, and Jared Whitehead for correcting my errors and clarifying my explanations; to

Lonette Stoddard for guidance on the administrative aspects of graduate school; and to

Tanner Christensen for collaborating on the research that led to this work.

Contents

Contents iv

List of Tables vi

List of Figures vii

1 Introduction 1

1.1 Contributions . 2

2 Background 4

2.1 Neurons . 4

2.2 Neural Networks . 11

2.3 Hyperparameters . 17

2.4 Convolutions . 24

3 Crelu Networks 32

3.1 Depth and Universality . 32

3.2 Concatenated Relu . 35

3.3 Eliminating Biases . 38

3.4 Loss Functions . 41

3.5 Backpropagation . 42

4 Optimal Hyperparameters 45

4.1 Initialization Scale . 45

4.2 Preprocessing . 50

4.3 Quadratic Approximation . 52

4.4 The Learning Rate Schedule . 58

4.5 Experiments . 61

iv

5 Looking Forward 66

5.1 Neural Network Tools . 66

5.2 Special Layers . 67

5.3 Optimal Architectures . 67

5.4 Conclusion . 67

A Expectations 68

Bibliography 94

v

List of Tables

4.1 We use networks with the following dimensions to show how the optimal

learning rate changes with architecture. 62

vi

List of Figures

2.1 The logistic, or ‘sigmoid,’ activation function. 5

2.2 The binary cross-entropy loss function. 6

2.3 The binary hinge loss function. 9

2.4 An example squared error loss function. 10

2.5 Here we see that logistic regression does very well when the data is linearly

separable, but poorly otherwise because it can’t learn nonlinear patterns in

the data. The dots represent the data points and their colors represent the

corresponding targets — blue for zero and red for one. The colored background

shows the output of the neuron at each location in the data space, which ranges

from zero to one. 10

2.6 A single neuron with two inputs. 11

2.7 A neural network with a single hidden layer. 12

2.8 A network with just four hidden neurons easily fits these simple nonlinear

patterns without any manual feature engineering. In this case, all neurons

used logistic activation functions. 12

2.9 The weights of a layer comprise a matrix. 13

2.10 These are just some of the many activation functions (and their derivatives)

that are used in neural networks. Relu is by far the most popular due to its

combination of simplicity and effectiveness. Variants such as leaky relu and

elu are similarly effective. Other activations are sometimes used in special

applications. 19

2.11 Example subnetworks active during a given training step with dropout. . . . 21

2.12 Vanilla gradient descent. 22

2.13 Gradient descent with momentum. 22

2.14 Example neural network loss curves with a decreasing learning rate schedule. 23

vii

2.15 A convolution on a single-channel image. 25

2.16 A convolution on a multi-channel image. 26

2.17 A multi-channel convolution on a multi-channel image. 27

2.18 A padding scheme that preserves image size. 28

2.19 A 2× 2 pooling operation. 29

2.20 After two 3× 3 convolutions, a single pixel has a 5× 5 receptive field. 30

2.21 A deptwise convolution. 30

2.22 A 1D Convolution . 31

2.23 A 1D Convolution on Multi-Channeled Input 31

4.1 The average loss across 20,000 trials after a single step of gradient descent.

Note that these values are on a log scale because they grow so quickly. . . . 62

4.2 Trimming the higher values from the previous plot and using a linear axis, we

see that the loss does indeed resemble a quadratic function of the learning rate. 63

4.3 When we let the models train for fifty steps and average across 1,000 tri-

als, we see that there is a range around the optimal learning rates in which

performance is good. Above this range, gradient descent diverges. 63

4.4 When we scale each model’s curve horizontally by the scaling factor for its

archtecture, they line up almost perfectly. This shows that the curvature does

vary as predicted. 64

4.5 As before, the plots line up when multiplied by the scaling factor, suggesting

that the optimal learning rate and the ideal range both scale in the same way. 64

viii

Chapter 1. Introduction

The study of neural networks has exploded in recent years, with new models and training

techniques being published at an incredible and accelerating rate. Unsurprisingly, the theory

of neural networks has lagged behind the practice. Model decisions — even those as fun-

damental as the number of layers or the learning rate — are made based on heuristics and

empirical searches because we lack the necessary understanding to make the correct choices

a priori. These searches are notorious for requiring both tremendous computing resources to

train the models and large numbers of man-hours to find the right hyperparameters, with

the latter leading academics to joke that the best models are found by ‘graduate student

descent.’ The goal of this work is to examine fully-connected neural networks, the basic

model on which all other neural networks are based, and search for mathematical insights

that can reduce the amount of guess-and-check needed to successfully train one.

To this end, we begin by focusing on networks with a concatenated relu (crelu) activation

scheme. This allows us to keep all of the benefits of the relu activation, which has been the

gold standard in deep learning for years, while gaining some additional desirable properties.

In particular, the use of crelu makes it possible to initialize networks such that they are both

better-behaved during gradient descent and more amenable to mathematical analysis than

their relu counterparts.

We then simplify our models through reparametrization. Whereas conventional neural

networks use both weight matrices and bias vectors on each layer, this formulation uses only

weight matrices. This change further facilitates mathematical analysis without compromising

the networks’ expressivity — the ability to approximate arbitrary functions. We also take

advantage of the fact that the crelu activation can be realized as a matrix multiplication,

allowing us to describe the network entirely in linear algebraic terms.

After establishing that crelu networks without bias vectors are at least as capable as

conventional relu networks, we derive explicit formulas for the updates given to the weight

1

matrices during gradient descent. This allows us to mitigate the problematic tendency of

gradient descent to make large changes to small parameters (causing instability) and small

changes to large parameters (requiring long training times). We do this by improving upon

the standard initialization method and using normal random variables with optimal variance

for each layer.

We then turn our attention to the problem of selecting a good learning rate. To do

this, we consider the loss along a straight line through the parameter space. This allows

us to realize the loss as a function of the learning rate λ. We then compute the expected

values (given the previously-established random initialization scheme) of the first and second

derivatives of this function, thus approximating it with a parabola.

From the exact coefficients of this parabola, we derive a useful quantity called the ‘scaling

factor’ which is easy to compute and describes the relationship between network architecture

and their optimal learning rates. We then test networks of different widths and depths on

two data sets and show that they respond to different learning rates in the way predicted by

the scaling factor.

1.1 Contributions

The results presented here are not only of theoretical interest; they have immediate practical

value. The type of network discussed here is easily implemented with standard software tools,

as are the methods for making such a network train more effectively. The main contributions

of this dissertation are as follows:

• The crelu network without bias is a natural replacement for the currently-standard

type of dense neural network, which has bias vectors and uses relu activations.

• The proportional initialization is the unique choice that gives weight matrices updates

of the appropriate relative size. Its special case, the symmetric proportional initializa-

tion, also takes advantage of crelu’s unique properties.

2

• The explicit formulas for the first and second derivatives of the loss with respect to the

learning rate allow us to derive the scaling factor, which in turn tells us how to change

the learning rate to compensate for changes to the network architecture. This greatly

reduces the need to test learning rates empirically.

• The included experiments validate the use of the quadratic approximation in deter-

mining the learning rate. They also show that the scaling factor can be used to predict

whether training with a given fixed learning rate will converge or diverge, significantly

increasing its utility.

In addition to being useful on their own, many of the results included here have the

potential to be stepping stones toward deeper understanding of fully connected networks, as

well as toward analogous results for other network types.

3

Chapter 2. Background

The following is a general-purpose introduction to both fully connected and convolutional

neural networks.

2.1 Neurons

A basic neuron takes a vector x ∈ Rd of inputs and returns a single value ŷ ∈ R as output.

To do this, the neuron needs three components:

• A weight vector w ∈ Rd

• A bias b ∈ R

• An activation function a : R→ R

The output of the neuron is computed in the following way:

ŷ = a (w · x+ b) .

Here, w ·x represents the dot product of w and x. It is sometimes convenient to break down

the operation of the neuron into two steps by defining an intermediate variable z ∈ R; That

is,

z = w · x+ b,

ŷ = a(z).

Suppose that we have a data set of inputs x(1), x(2), . . . , x(n) and corresponding targets

y(1), y(2), . . . , y(n) and we want a neuron’s outputs to approximate the targets. That is, for

each x(i) we want the ŷ(i) produced by the neuron to be as close to y(i) as possible. In order

to make this happen, we first need to specify what we mean by ‘close.’ This is done by

4

choosing a loss function `(ŷ, y). The loss function tells us how poorly the neuron is doing at

the task of producing accurate outputs. A high loss indicates bad performance, a low loss

indicates good performance, and zero loss indicates perfect performance. We compute the

overall loss L on a data set by simply averaging the loss for each data point.

L =
1

n

n∑
i=1

`
(
ŷ(i), y(i)

)
Choosing (or designing) an appropriate loss function is critical and often nontrivial. What

we want a model to do and what the loss function incentivizes it to do are not always the

same thing.

Logistic Regression. Several popular models can be expressed in terms of a single neuron.

For example, suppose we have a binary classification task with y ∈ {0, 1}. The logistic

function

a(z) =
1

1 + e−z

is a natural choice of activation function because it produces values between zero and one.

z

a(z)

Figure 2.1: The logistic, or ‘sigmoid,’ activation function.

We then need a loss function that rewards the values produced by the logistic function

for being close to the target values and punishes them for being far away. We’ll use the

binary cross-entropy function

`(ŷ, y) = −y log(ŷ)− (1− y) log(1− ŷ)

5

because it incentivizes the behavior we want (by producing higher loss values for predicted

labels further from the target) and because, as we will soon see, it pairs very well with the

logistic activation function. In general, it is important to choose activation functions and

loss functions that work well together. Notice that ` is designed such that one of its two

terms will vanish for either choice of y:

`(ŷ, 1) = − log(ŷ),

`(ŷ, 0) = − log(1− ŷ).

By graphing the loss function separately for each of the two targets, we see that it has

the desired property of being zero when ŷ = y and increasing as ŷ moves away from y. In

fact, ` goes to infinity as ŷ approaches the opposite target.

ŷ

`(ŷ, 1) `(ŷ, 0)

Figure 2.2: The binary cross-entropy loss function.

With the activation function and loss function chosen, all that remains is to choose values

for w and b. Specifically, we want the values of w and b that will make the overall loss L for

our model as low as possible.

This is the part where we actually get to do some machine learning. Rather than set

w and b by hand, we ask the neuron to learn its own parameters through gradient descent.

To do this, we need to compute the derivatives of the loss function with respect to each

6

parameter. First, we look at how the loss changes when we change the output ŷ.

∂`

∂ŷ
= −y ∂

∂ŷ
log(ŷ)− (1− y)

∂

∂ŷ
log(1− ŷ)

= −y
ŷ

+
1− y
1− ŷ =

ŷ − y
ŷ(1− ŷ)

In order to change ŷ, we need to change z, so we compute that derivative next.

∂ŷ

∂z
=

∂

∂z
a(z) =

∂

∂z

1

1 + e−z
=

e−z

(1 + e−z)2
= a(z)(1− a(z))

Finally, we need to figure out how changing w and b — the parameters we actually control

— will affect z. We’ll do b first because it’s easy.

∂z

∂b
=

∂

∂b
(w · x+ b) = 1

Really easy. Calculating ∂`/∂w is almost as easy, but requires a little extra thought because

w is a vector. That means that ∂`/∂w is also a vector, each entry of which is the derivative

of ` with respect to the corresponding entry of w. With that in mind, we get

∂z

∂w
=

∂

∂w
(w · x+ b) = x

Note that x is indeed a vector of the same dimension as w, as expected.

Putting all of these derivatives together, we can see how changes in our parameters will

change our loss function:

∂`

∂w
=
∂`

∂ŷ

∂ŷ

∂z

∂z

∂w
=

(
ŷ − y
ŷ(1− ŷ)

)
a(z)(1− a(z))x,

∂`

∂b
=
∂`

∂ŷ

∂ŷ

∂z

∂z

∂b
=

(
ŷ − y
ŷ(1− ŷ)

)
a(z)(1− a(z)).

7

If the derivative of the loss function with respect to a parameter is positive, then increasing

that parameter will increase the loss. We want to decrease the loss, so we will move our

parameters in the direction opposite the derivative.

That’s exactly what gradient descent is. We choose a small positive learning rate λ > 0

and we update our parameters with a simple rule:

w ← w − λ∂L
∂w

b← b− λ∂L
∂b

Recall that L is just an average of the losses from individual points, so

∂L

∂w
=

1

n

n∑
i=1

∂`
(
ŷ(i), y(i)

)
∂w

∂L

∂b
=

1

n

n∑
i=1

∂`(ŷ(i), y(i))

∂b

Using this update rule repeatedly will eventually yield nearly optimal values for w and b and

the neuron will then classify the dataset as accurately as it can. This particular model —

a single neuron that uses the logsitic activation function and the binary cross-entropy loss

function — is known as logistic regression.

Support Vector Machines. With different choices of activation and loss function, we

can realize other popular models as well. For example, we build a support vector machine.

This means doing binary classification a little differently by using targets y ∈ {−1, 1} with

the identity activation

a(z) = z

and the hinge loss function

`(ŷ, y) = max(0, 1− yŷ)

In this case, the loss function looks quite different.

8

ŷ

`(ŷ, 1) `(ŷ, 0)

Figure 2.3: The binary hinge loss function.

Rather than incentivizing the neuron to output exactly y, it asks ŷ to be at least 1 if

y = 1 and at most −1 if y = −1. While this approach looks quite different from logistic

regression, both are reasonable and the two tend to produce similar results.

As before, we can find the optimal values of w and b by working out ∂`/∂w and ∂`/∂b

and then using gradient descent to minimize L. The derivatives will be quite different in

this case, of course, due to the different loss and activation functions.

Linear Regression. Neurons aren’t limited to classification. They can also solve regres-

sion problems where y is allowed to vary continuously. If we again use the identity activation

function

a(z) = z,

and introduce the squared error loss function

`(ŷ, y) = (ŷ − y)2,

then we have a linear regression model. In this case, the loss function tries to drive ŷ toward

y by penalizing errors in both directions equally.

In practice, it would be silly to find w and b through gradient descent because there is a

formula for computing them directly. Gradient descent would still work, just not as quickly.

9

ŷ

`(ŷ, 2)

Figure 2.4: An example squared error loss function.

Nonlinear Modeling. While single neurons can be made to perform a variety of tasks,

they have a glaring limitation: they can only learn linear patterns in the data. Figure 2.5

shows this in the case of logistic regression. The neuron does very well when it’s possible to

separate the two classes with a straight line (in higher dimensions, the analog would be a

hyperplane) but can’t handle even simple curves.

Great Less Great Decidedly Un-great

Figure 2.5: Here we see that logistic regression does very well when the data is linearly
separable, but poorly otherwise because it can’t learn nonlinear patterns in the data. The
dots represent the data points and their colors represent the corresponding targets — blue
for zero and red for one. The colored background shows the output of the neuron at each
location in the data space, which ranges from zero to one.

There are a variety of machine learning methods for dealing with nonlinear patterns. For

the simple data sets in Figure 2.5, we could engineer new features by hand that allowed

linear models to succeed. With higher-dimensional data and more complex patterns, this

10

quickly becomes a terrible approach. It also directly contradicts our goal, which is to have

the model learn as much as possible on its own.

In pursuit of the flexibility to learn a variety of nonlinear functions, we’re going to combine

multiple neurons together into a single model — a neural network. The goal of doing so is

to reduce the need to engineer features by hand and let gradient descent do the hard work.

2.2 Neural Networks

In the above example, we were asking a single neuron to take a two-dimensional input and

return a one-dimensional output. To describe this model visually, We can depict input

dimensions as squares and neurons as circles and end up with a simple diagram like the

following.

Figure 2.6: A single neuron with two inputs.

In a neural network, some neurons can use other neurons’ outputs as their inputs. For

example, we might expand on the model above by having four neurons that each take the

two-dimensional input and produce ouputs. Then the final neuron can take the four earlier

neurons’ outputs as its input and attempt to approximate the target with its output.

A groups of neurons which receive the same inputs is called a layer. The network in

Figure 2.7 has two layers: one consisting of the four intermedite neurons, and one consisting

of the single output neuron. The layers preceding the output layer are called hidden layers.

In this new model, each neuron has its own weight vector, bias, and activation function.

Genrally, all of the neurons in a given layer will use the same activation function. The loss

function only applies directly to the output of the final neuron, but the parameters of every

neuron affect the final output and so must be learned.

11

Figure 2.7: A neural network with a single hidden layer.

In Figure 2.8, we see that this expanded model is much more flexible. It can still handle

linear patterns, but it can also deal with other shapes. However, this model comes with more

parameters and the relationships between them are more complex than in a single neuron.

We need a way of efficiently computing the derivatives with respect to each in order to train

our network.

Great Also Great Still Great

Figure 2.8: A network with just four hidden neurons easily fits these simple nonlinear pat-
terns without any manual feature engineering. In this case, all neurons used logistic activa-
tion functions.

Backpropagation. Let’s return to the diagram of our neural network with a single hidden

layer. Each neuron in the hidden layer has a weight vector, and the first step in computing

the outputs of these neurons is to take the dot product of the input with each weight vector.

That’s exactly what happens when we multiply a matrix by a vector. This allows us to talk

about neural networks in a much more efficient way. Rather than referring to the weight

vectors of individual neurons, we can talk about a layer having a weight matrix. The ith

12

row of the weight matrix is the weight vector of the ith neuron in the layer. Similarly, we

can think of the layer as having a single bias vector, the ith entry of which is the bias value

of the ith neuron.

x ŷ

W0 W1

Figure 2.9: The weights of a layer comprise a matrix.

The Forward Pass. With this in mind, we can describe the entire network above in a

very simple way. The input x is a length 2 column vector. The hidden layer has a 4 × 2

weight matrix W0 and a length 4 bias column vector b0. Even though there is only one

output neuron, we can still think of it as a layer with 1× 4 weight matrix W1 and length 1

bias vector b1. Putting it all together, the output of the network is computed as follows.

ŷ = a (W1a (W0x+ b0) + b1)

We’re abusing notation a little bit by giving the activation function vector inputs. This

simply indicates that we’re applying the activation to each entry of the vector individually.

It will be very helpful to break the computation of ŷ into steps and give names to the

values computed at each step. First, let’s number our layers, starting our count at zero. In

the small network above, the hidden layer is Layer 0 and the output layer is Layer 1. Then

we can say that Layer i has weight matrix Wi and bias vector bi.

Call the input vector x0 because it’s the input to Layer 0. In other words, x0 = x. Then

define xi = a (Wi−1xi−1 + bi−1). In other words, xi is the ouput of Layer i− 1 and the input

to Layer i. For additional convenience, define zi = Wixi + bi. Then we can simply write

xi = a(zi−1).

13

With this notation, we can break down the action of an m-layer network as follows.

x0 = x (input)

z0 = W0x0 + b0

x1 = a(z0)

z1 = W1x1 + b1

x2 = a(z1)

...

zm−1 = Wm−1xm−1 + bm−1

xm = a(zm−1)

(output) ŷ = xm

Writing out all of the network operations in this way will make it much easier to compute

all the derivatives needed for gradient descent.

The Backward Pass. The algorithm for calculating all of the derivatives in a neural

network is called backpropagation because it moves backwards, starting with the output

layer and then addressing the hidden layers one at a time in reverse order.

As in the case of a single-neuron model, the first step is to use the loss function to

compute ∂`/∂ŷ = ∂`/∂xm. With this derivative in hand, it’s simple to compute ∂`/∂zi and

∂`/∂xi for each i according to these rules:

∂xi+1

∂zi
=

∂

∂zi
a(zi) = a′(zi)

∂zi
∂xi

=
∂

∂xi
Wixi + bi = W T

i

As before, we use a′(z) to denote the operation of applying a′ separately to each entry of

the vector z. These two formulas are applied to calculate all of the ∂`/∂zi and ∂`/∂xi

14

sequentially in this way:

∂`

∂xm
=
∂`

∂ŷ

∂`

∂zm−1
=

∂xm
∂zm−1

∂`

∂xm
= a′ (zm−1) ◦

∂`

∂xm

∂`

∂xm−1
=
∂zm−1
∂xm−1

∂`

∂zm−1
= W T

m−1
∂`

∂zm−1

∂`

∂zm−2
=
∂xm−1
∂zm−2

∂`

∂xm−1
= a′ (zm−2) ◦

∂`

∂xm−1

∂`

∂xm−2
=
∂zm−2
∂xm−2

∂`

∂zm−2
= W T

m−2
∂`

∂zm−2

...

∂`

∂z0
=
∂x1
∂z0

∂`

∂x1
= a′ (z0) ◦

∂`

∂x1

∂`

∂x0
=
∂z0
∂x0

∂`

∂z0
= W T

0

∂`

∂z0

Here the ◦ symbol denotes the Hadamard product — the element-wise product of two vectors.

Because the activation function is applied individually to each component of zi, it makes sense

that the derivatives work the same way.

It is instructive to verify that the above algorithm produces derivatives with the correct

dimensions. That is, that each ∂`/∂zi and ∂`/∂xi is a vector with the same length as the

same length as the corresponding zi or xi. In particular, this shows why the weight matrices

are transposed by differentiation.

This is only half of the backpropagation algorithm. We now need to work out the deriva-

tives ∂`/∂Wi and ∂`/∂bi that we’ll actually be using to adjust parameters during gradient

descent.

To derive ∂`/∂Wi and ∂`/∂bi, it’s easier to look at one row at a time. Let wi,r be the

rth row of Wi, bi,r the rth entry of bi, and zi,r the rth entry of zi. Thus zi,r = wi,rxi + bi,r.

Note that wi,r is a row vector and xi is a column vector, so their product is a scalar. This is

15

consistent with the dot product formulation used previously. Now we can easily take some

derivatives.

∂`

∂wi,r
=
∂zi,r
∂wi,r

∂`

∂zi,r

=
∂

∂wi,r
(wi,rxi + bi,r)

∂`

∂zi,r

= xTi
∂`

∂zi,r

=
∂`

∂zi,r
xTi .

The derivative with respect to bi,r is even simpler.

∂`

∂bi,r
=
∂zi,r
∂bi,r

∂`

∂zi,r

=
∂

∂bi,r
(wi,rxi + bi,r)

∂`

∂zi,r

=
∂`

∂zi,r
.

Note that we can reorder the product for ∂`/∂wi,r because ∂`/∂zi,r is a scalar. When we

stack the rows ∂`/∂wi,r to form ∂`/∂Wi, this is not the case. We have to write ∂`/∂Wi =

(∂`/∂zi)x
T
i to capture what we just proved above: that each row of ∂`/∂Wi is simply xTi

multiplied by the corresponding entry of ∂`/∂zi.

Now we have the rules needed to compute all of the ∂`/∂Wi and ∂`/∂bi:

∂`

∂Wi

=
∂`

∂zi
xTi

∂`

∂bi
=

∂`

∂zi

Training a neural network then amounts to repeating two operations:

16

• The forward pass — computing the zi and xi en route to the network output xm = ŷ

• The backward pass — computing the derivatives ∂L/∂Wi and ∂L/∂bi with backprop-

agation and using them to update the Wi and bi via gradient descent.

These two steps are alternated until some stopping criterion is reached.

2.3 Hyperparameters

When designing and training a neural network, one must make a number of choices. Many,

such as the number of neurons in a layer or the learning rate to be used for gradient de-

scent, might reasonably be called parameters of the network. To distinguish these human-

determined quantities from the weights and biases, which are adjusted with gradient descent,

the term hyperparameters is used.

Initialization. Before we can adjust the parameters of a network, we need to choose initial

values for them. In the past, this was a difficult task and initialization algorithms were a

significant area of research. Today, thanks to various innovations in network design and

optimization, successful training is much less dependent on careful initialization. In fact,

most networks are simply initialized with random values.

Most commonly, biases are initially set to zero while weights are randomly sampled from

distributions such as normal, uniform, or truncated normal. All of these distributions are

consistently chosen to have mean zero, while the variance is usually chosen to be l/ki where l

is a constant (popular values for l include 1, 2, and 6) and ki is the length of xi. The scaling

is done to keep the derivatives of the loss function with respect to different parameters from

having wildly differing magnitudes, as this can cause problems for gradient descent.

Pre-processing. Like other machine learning models, neural networks perform apprecia-

bly better when data is processed so as to have certain properties. In particular, it is usually

helpful to normalize inputs — shifting and scaling each feature (dimension) of x0 so as to

17

give it zero mean and unit variance. Like the previously described initialization scheme, this

makes gradient descent more effective by ensuring that different parameters have derivatives

of similar magnitudes.

Categorical data is usually reshaped so as to consist of one-hot vectors. For example, if

a feature can take on three different values, it is better to represent these as [1 0 0], [0 1 0],

and [0 0 1] than to use a single dimension with values in {0, 1, 2}. Additional, specialized

pre-processing techniques exist for structured data types, such as images and text.

Activation Functions. So far, we’ve only discussed two activation functions — sigmoid

(logistic) and identity. While both may be appropriate for output layers, neither is a good

choice for hidden layers. Sigmoid activation functions lead to the vanishing gradient problem.

Because backpropagation involves repeated multiplication by a′(z), an activation function

with a small derivative can cause gradients to shrink exponentially as they move backward

through the network. When this happens, updates to the corresponding parameters are too

small and the network fails to learn at a reasonable speed. It’s also possible, though much

less common, for gradients to become large early in the network and cause instability. This

is called the exploding gradient problem. Activation functions are thus chosen with their

derivatives in mind, especially in the case of deep networks with many hidden layers.

From this perspective, the identity function sounds like an ideal activation. Its derivative

shouldn’t cause any problems; multiplying by one never hurt anybody! In fact, the identity

function is an even worse choice. If the activation function is linear, then the network

simply performs a series of linear transformations on the data. The composition of two

linear transformations is itself linear, so such a network would have the same fundamental

limitation as a single neuron — it could only learn linear patterns. A good activation

function needs to be nonlinear while having a derivative that won’t cause gradients to vanish

or explode.

One of the first alternatives to the sigmoid function was the hyperbolic tangent tanh(z).

This represented a modest improvement. A much larger improvement, and arguably one

18

sigmoid tanh softsign

relu leaky relu elu

gaussian hard tanh cos

Figure 2.10: These are just some of the many activation functions (and their derivatives)
that are used in neural networks. Relu is by far the most popular due to its combination
of simplicity and effectiveness. Variants such as leaky relu and elu are similarly effective.
Other activations are sometimes used in special applications.

of the most important developments in the history of the field, came with the introduction

of the relu (short for ‘rectified linear unit’ and sometimes styled ReLU) activation function

a(z) = max(0, z). Currently, relu is by far the most common choice of activation function

for hidden layers. Several variants have been proposed with the intention of improving on

relu, but none has performed convincingly better in practice.

Regularization. The appeal of neural networks lies largely in their ability to learn complex

patterns in data. However, this flexibility naturally comes with the capacity to overfit the

training data. Regularization methods are simple and popular ways of trying to reduce

19

overfitting. Parameter regularization adds a penalty to the loss function to keep the weights

of a network from growing too large, as large weights have been observed to be a sign of

overfitting in some cases.

L =
1

n

n∑
i=1

`
(
ŷ(i), y(i)

)
+ c
∑
w

w2.

Here, the second sum runs over all the weights in the network individually. Biases are

typically not penalized. This specific example shows L2 regularization, so called because it

penalizes the L2 norm of the weights. Another common choice is L1 regularization, which

uses the absolute value |w| instead of w2.

Activity regularization does essentially the same thing, but it penalizes the layer outputs

xi by adding an x2i or |xi| to the loss function. In both cases, it is difficult to choose an

appropriate regularization constant c. If c is too small, it won’t impact training. If too large,

the network may keep too many weights at zero because it prioritizes regularization over the

original learning task. As is often the case in this field, appropriate regularization constants

are generally found empirically.

Dropout. Dropout is another anti-overfitting tool, more interesting and more powerful

than regularization. With dropout, some neurons are randomly ‘dropped’ from the network

at each training iteration. Sepcifically, dropout requires a probability p. Then each hidden

neuron is ignored with probability p in the sense that their outputs are replaced with zero

and the associated parameters are not updated. Thus each training iteration looks at a

random sub-network, asking it to perform the network’s task despite the missing units.

This method compels the network to learn redundancy. When neurons can be dropped,

the network must ensure that critical information is learned by sets of neurons. At test

time, the whole network is used. Due to the training process, the complete network behaves

somewhat like an ensemble of smaller models. This tends to result in better generalization.

20

Here are two examples of sub-models that dropout might produce at different training

iterations. Output neurons are not dropped because in general it doesn’t make sense for ŷ

to have fewer dimensions than y.

Figure 2.11: Example subnetworks active during a given training step with dropout.

Batching. Because the loss function for a network is defined as an average over the training

set, so are its derivatives. For large data sets, this can make gradient descent very expensive.

In practice, neural networks are almost always trained with stochastic gradient descent.

Instead of computing derivatives for every data point at every iteration, only a small subset

(called a ‘mini-batch’ or just a ‘batch’) is used each time. The resulting updates aren’t

exactly the same, but even for small batches they tend to be close to the true ones. While

it may take a few more iterations to get down to a given loss, the individual iterations are

so much faster that training is significantly more efficient overall.

A common approach is to randomly divide a data set into batches of equal size and then

use each batch for a step of gradient descent. The number of steps needed to iterate through

21

each batch is called an epoch. Networks are usually trained for multiple epochs, with the

data set randomly divided into new batches each time.

Further, recent research indicates that the noisy nature of stochastic gradient descent

may partially explain why neural networks generalize well to test data in practice despite

having tremendous potential to overfit.

Momentum. Gradient descent is often described with the metaphor of a man descending

a mountain by repeatedly taking steps downhill — specifically, in the direction of steepest

descent. Momentum is then explained by replacing the man with a boulder that picks up

speed as it goes.

It’s an instructive metaphor, even though the momentum method used in neural network

training doesn’t work exactly like real-world inertia. In pseudocode, standard gradient de-

scent looks like the following. Here we use p for a network parameter, dp for ∂L/∂p (or its

mini-batch approximation), and r for the learning rate. To add momentum, we also need a

decay rate m and a velocity vp.

while training:

for p in parameters:

dp = get_gradient(batch,p)

p -= r*dp

Figure 2.12: Vanilla gradient descent.

for p in parameters:

vp = 0

while training:

for p in parameters:

dp = get_gradient(batch,p)

vp = m*vp + dp

p -= r*vp

Figure 2.13: Gradient descent with momentum.

The velocity term vp is a decaying sum of the past gradients with respect to the parameter

p. The decay rate of this sum, 0 ≤ m < 1, determines how quickly momentum will diminish.

If m = 0, the result is the same as regular gradient descent.

22

Choosing the right m is, of course, usually an empirical process. Momentum tends

to speed up learning significantly, but too much can slow it down again by introducing

oscillations. However, it is not uncommon to see rates as high as m = .99 in practice.

Learning Rates. Choosing a good learning rate is difficult. If it’s too large, gradient

descent can become unstable and even diverge. If it’s too small, not only can training take

forever, but the network is more likely to overfit. To complicate matters further, the standard

practice is to change the learning rate during training. Many authors decrease the learning

rate periodically according to a fixed schedule, resulting in loss graphs that look like this:

epoch

loss

train

test

Figure 2.14: Example neural network loss curves with a decreasing learning rate schedule.

Decreasing the learning rate allows gradient descent to get closer to a minimum of the

loss function by taking smaller steps. However, smaller steps tend to result in improvements

that don’t translate as well to test data. Usually, there comes a point after which the training

loss will continue to decrease while the test loss stops or even increases a bit.

Hyperparameter Validation. In addition to the parameters that are optimized by gra-

dient descent — the weights and biases — a neural network has many hyperparameters that

are found experimentally. These include depth (number of layers), layer width (number

of neurons in a given layer), regularization constants, dropout probability, learning rates,

momentum decay rates, batch sizes, and many more that we haven’t discussed here. For

this reason, it is prudent to have three data sets — training, validation, and testing. Gra-

23

dient descent only ever looks at the training set. The person (or machine) choosing the

hyperparameters can see how they affect performance on the validation set and adjust them

accordingly. This means that the validation data has been used for optimization and so can’t

be used for testing. The three-way split is necessary to ensure scientifically valid results. If

all of the available data is used for training and validation, then there is no way of knowing

whether the results will generalize to new data.

2.4 Convolutions

The neural networks discussed so far are often called fully connected neural networks because

every neuron in a given layer depends on every neuron in the previous layer. Here we discuss

convolutional neural networks, which restrict the pattern of connections between layers in

order to take advantage of structured data.

Filters. Neural networks as described so far do poorly on common types of real-world

data because they don’t account for relationships between features. For example, it’s easy

to represent an image as a vector by allocating one entry for each pixel value, but the

resulting representation fails to capture the relationships between pixels that result from

their arrangement in the image plane. For this reason, we introduce the convolution — an

operation from image processing that we will use to build a new type of neural network layer

suited to processing images.

For simplicity, imagine a black and white image. This lets us represent each pixel with a

single real value. We can then convolve this image with a filter, another grid of real values

which is usually much smaller (in height and width) than the image. In this example, we

have a 6×6 image and a 3×3 filter. The convolution computes a filtered image by matching

up the filter with each possible patch of the image, taking the dot product of the filter and

the patch (by multiplying the matched-up pairs of pixel values and then adding up all of

24

∗ =

Figure 2.15: A convolution on a single-channel image.

the products), then placing the resulting value in the corresponding location in the filtered

image.

There are two principle reasons for using filters in this fashion. The first is that they

are designed to take advangate of locality — they ‘look’ for recognizable patterns in small,

contiguous subregions of the image, as humans do. Second, they offer translation invariance

— a feature will activate the filter in the same manner no matter where it appears in the

image. Fully connected layers do not have either of these properties.

In the above example, the filtered image is smaller than the original image. In general,

an h × w image and a k × k filter will produce an h − k + 1 × w − k + 1 filtered image.

(Non-square filters are possible, but rarely used in practice.) This size-reducing effect is

often undesirable and will be addressed later in this section.

First, we turn to the issue of channels. If an image has c channels (real-world color

images usually have three or four), then the filter must have c channels as well. Channels of

the filter get matched up with the corresponding image channels for the product step and

everything is then summed, so the filtered image has a single channel.

In convolutional networks, we’ll almost always want to convolve an image with many

filters. In this case, our output will have one channel per filter. This is demonstrated in

the following diagram. The input image has four channels, so each filter has five channels.

25

∗ =

Figure 2.16: A convolution on a multi-channel image.

There are three filters, so the output image has three channels. In practice, it’s common to

see tens or hundreds of channels, but that would make for busy diagrams.

This is what a convolutional layer does.. It takes an input image with cin channels and

outputs an image with cout channels. To do this, it uses cout filters, each of which is k × k

(k is usually 3 or 5) and has cin channels so it can match up with the input images. Each

filter has a bias which is added to each pixel of the corresponding output channel. Then

every value of the output image is run separately through the activation function (which

is usually relu). The values in the filters are usually called weights so that we can discuss

convolutional layers with the same language as standard ones. The weights and biases are

trained with gradient descent just as in a standard layer.

Filters can be made arbitrarily large or small, and strictly speaking they do not need

to be square. In practice, networks with many layers of small, square filters have been the

most effective for image processing tasks. However, convolutions can be used for other types

of data with array-like structures. In these cases, different filter sizes and shapes may be

appropriate.

26

∗ =

Figure 2.17: A multi-channel convolution on a multi-channel image.

Padding. Before we can build a network out of convolutional layers, we need to address

the problem of images shrinking when convolved. This is done by padding the input image,

putting a border around it so that the filter has as many places to go as there are pixels.

Usually, the values in this border are all set to zero. This is called, intuitively enough,

zero padding. More sophisticated padding schemes have been proposed, including some that

attempt to extrapolate appropriate values from the image, but these are almost never seen

in practice because zero padding, the simplest possible solution, has proven sufficient for

even the most sophisticated processing models.

When filters have odd sizes, the padding can be done in a symmetric fashion. A 3×3 filter

needs one pixel of padding, a 5 × 5 filter needs two. Even-sized filters require asymmetric

padding, and this is surely one of the reasons why they are rarely used in practice.

27

∗ =

Figure 2.18: A padding scheme that preserves image size.

Pooling. Convolutional networks usually include a second type of layer called a pooling

layer. These layers have no parameters. They simply serve to shrink images in a simple

way. The image is divided into k × k pools (k is usually 2) which are then collapsed down

to one pixel. The two most common forms are average pooling and max pooling, which take

the average and maximum value of the pixels in the pool respectively. Pooling is applied to

each channel separately. When an image dimension isn’t divisible by k, padding is used to

compensate.

Pooling is done in part for computational convenience. Convolutions are expensive. If

an image can be downsized without losing too much information, it can speed things up

considerably. Usually, pooling layers are used after several convolutional layers have been

used to extract information about local image features. Each convolutional layer tends to

have more filters than the previous. So nothing is really lost in pooling. The network takes

a large grid with a few channels and turns it into a smaller grid with many channels.

Whereas the original few channels contained low-level information (usually the presence

of a color in a pixel), the new channels contain higher level information about the presence

of shapes and patterns. Most convolutional networks contain many convolutional layers,

28

Figure 2.19: A 2× 2 pooling operation.

interspersed with a few pooling layers. In fact, many convolutional networks end with a

global pooling layer, which shrinks the image down to a single pixel (with many channels).

Receptive Fields. It may seem counterintuitive that convolutional networks can get away

with using only small filters. In fact, state-of-the-art image recognition networks often use

3 × 3 filters exclusively, yet are able to detect arbitrarily large objects in images. This is

because each filter with k > 1 increases the receptive field - the size of the area in the original

image that affects any one pixel of a given convolutional layer’s output.

Consider the following example, in which an original image is convolved with two 3 × 3

filters consecutively. A pixel in the second image is affected by a 3 × 3 region of the first,

and likewise a pixel in the third image is affected by a 3× 3 region of the second. So a pixel

in the third image is affected by a 5× 5 region of the first image.

29

Figure 2.20: After two 3× 3 convolutions, a single pixel has a 5× 5 receptive field.

Depthwise Convolutions. Convolutions as described above have been used for many

years and continue to be the standard tool for image processing tasks. Recently, a different

type of convolution has gained popularity, particularly in applications where models with

fewer parameters are desirable. Unlike traditional convolutions, these ‘depthwise’ convolu-

tions have one single-channel filter for each input channel. Each input channel is convolved

with its filter to produce an output channel. Thus cout = cin.

∗ =

Figure 2.21: A deptwise convolution.

Depthwise convolutions are usually used in conjunction with 1 × 1 convolutions, which

simply produce output channels that are linear combinations of their input channels and are

convolutions only in a trivial sense.

1D Convolutions. Many forms of data have a natural sequence structure. They can be

expressed as an ordered list of elements. All forms of time series data fit this description, as

30

do text, audio, video, and others. Two main tools exist for exploiting this sequence structure

— 1D convolutions and recurrent units.

Convolutions in one dimension work just as they do in two. If anything, they’re simpler.

A filter of length k is convolved with a sequence of length n to produce a filtered sequence

of length n− k + 1.

∗ =

Figure 2.22: A 1D Convolution

If a data point is a sequence of vectors, then each dimension of those vectors can be

thought of as a channel. Then filters must match the channel depth of the sequence with

which they are convolved, and multiple filters can be used to produce a multi-channel output

sequence. This approach, which is analogous to the one described above for images, is useful

for many types of sequence data.

∗ =

Figure 2.23: A 1D Convolution on Multi-Channeled Input

Other convolutional network techniques, such as pooling and padding, also translate

easily to the one-dimensional case.

31

Chapter 3. Crelu Networks

In this chapter, we motivate the use of fully-connected neural networks, define and motivate

the crelu activation scheme, do away with the bias parameter, define the most common loss

functions, and work out the formulas for gradient descent in both recursive (for backpropa-

gation) and explicit forms.

3.1 Depth and Universality

The goal of training a feedforward neural network is to find a set of parameters which cause

the network to map its training inputs as near as possible (as quantified by the loss function)

to their corresponding outputs. This raises an obvious and critical question: Does such a

set of parameters exist?

It has been known for decades that neural networks with as few as one hidden layer are

universal approximators — under a few easily-satisfied conditions, they can approximate

any well-behaved function from one vector space to another with arbitrary precision [1, 2,

3, 4, 5, 6, 7, 8]. Several universal approximation theorems were proven in the late twentieth

century, each placing different constraints on the space of functions to be approximated and

the activation function used by the neural network.

Definition 3.1. In the case of a single variable x ∈ R, relu(x) = max(0, x). We will also

refer to relu as acting on vectors in Rd. In this case, the function is applied to each element

of the vector individually. That is,

relu



x1
...

xd


 =


relu(x1)

...

relu(xd)

 .

32

Definition 3.2. A fully connected relu layer has a weight matrix W ∈ Rdout×din and a bias

vector b ∈ Rdout . The layer takes an input x ∈ Rdin and returns an output relu(Wx + b) ∈

Rdout . The entries of W and b are treated as parameters which can be adjusted in order to

change the layer’s output. We will refer to dout as the layer’s ‘width.’

Definition 3.3. A fully connected relu network consists of a number of fully-connected relu

layers, each with its own weight matrix and bias vector, and an output layer. The first relu

layer acts on the network input. Each subsequent relu layer acts on the previous layer’s

output. The output layer also has a weight matrix and a bias vector, but does not have an

activation function. It acts on the output of the last relu layer, and the value it returns is

the output of the network.

Theorem 3.4. (Hornik) Let a : R → R be continuous and nonpolynomial. Let X ⊂ Rd be

compact, and let C(X) be the set of continuous functions from X to R. Let F be the set of

functions of the form
n∑
i=1

cia (wi · x+ bi) ,

where wi ∈ Rd and bi, ci ∈ R. The closure of F with respect to the uniform topology contains

C(X).

Proof. See [6].

Corollary 3.5. Let X ⊂ Rdin be compact. Let f be a continuous function from X to Rdout

and let ε > 0. There exists a fully-connected relu network N with a single hidden layer such

that

sup
x∈X
‖f(x)− fN(x)‖ ≤ ε.

Proof. Relu is continuous and nonpolynomial, so it meets the conditions on the activation

function. The function f can be broken into dout component functions fk : X → R. By the

theorem, there exists a network Nk for each k such that

sup
x∈X
‖fk(x)− fNk

(x)‖ ≤ ε/dout.

33

These can be combined into a single network N by concatenating the weight matrices and

bias vectors of the first layers vertically and by assembling the weight matrices of the output

layer into a diagonal block matrix. Thus, by subadditivity of suprema, N is a satisfactory

approximator.

These theorems generally rely on the width of the network to give it expressive power.

That is, they guarantee that a network with a single hidden layer can be made to approximate

a given function arbitrarily well if that layer is given a sufficiently large number of neurons.

However, the wide and shallow networks suggested by these theorems are rarely used in

practice. Deep networks, on the other hand, have been the key to breakthroughs in many

fields of study and have accordingly become some of the most celebrated tools in machine

learning [9].

Many explanations have been given for the tremendous success of deep networks, and this

continues to be an area of very active research as many in the field seek to understand why

these models work so well [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. In recent years, several

authors have proven that neural networks can be given arbitrary approximation capability

through increasing depth rather than increasing width [22, 23, 24, 25, 26, 27]. In particular,

each of these results establishes a minimum width. So long as each hidden layer has at least

this number of neurons, universal approximation can be achieved solely by adding sufficiently

many layers.

Theorem 3.6. (Hanin et. al.) Define wmin(din, dout) to be the minimal value of w such that

for every continuous function f : [0, 1]din → Rdout and every ε > 0 there is a network N with

relu activations, input dimension din, hidden layer widths at most w, and output dimension

dout that ε-approximates f in the sense that

sup
x∈[0,1]din

‖f(x)− fN(x)‖ ≤ ε.

34

For all din, dout,

din + 1 ≤ wmin(din, dout) ≤ din + dout.

Proof. See [27].

Corollary 3.7. Let X ⊂ Rdin be compact. Let f be a continuous function from X to Rdout

and let ε > 0. There exists a fully-connected relu network N with hidden layers of width not

greater than din + dout such that

sup
x∈X
‖f(x)− fN(x)‖ ≤ ε.

Proof. Because X is compact, there exist a c > 0 and s ∈ Rdin such that X ′ = cX + s ⊆

[0, 1]din . Let f ′(x) = f((x− s)/c) on X ′. By the theorem, there exists a satisfactory network

N ′. Let N be a copy of N ′ in which the weight matrix W ′ and bias vector b′ of the first layer

have been replaced with W = W ′/c and b = b′ −Ws. The new network N ε-approximates

f as desired.

Both the older universality-by-width and the newer universality-by-depth results have

been shown to apply to networks with relu activation functions, which is critical because

this is by far the most common choice of activation function in practice. It will follow

immediately that these results also apply to the class of crelu networks because they contain

relu networks as subnetworks and thus inherit their expressivity.

3.2 Concatenated Relu

In 2016, several different authors separately proposed the same new way of using the relu

activation function [28, 29, 30]. By applying relu to both a vector and its negative, they

gave their models desirable new properties and saw improvements in performance. Following

Shang et. al., we will use the term crelu (short for concatenated relu) to refer to the following

operation on a vector.

35

Definition 3.8. The crelu activation function acts on a vector in Rd by

crelu(x) =

 relu(x)

relu(−x)

 .
The output of the crelu activation is a vector in R2d.

Each group of authors gave a different motivation for this proposal. Shang et. al.

had noticed a tendency of convolutional networks to learn filters in positive-negative pairs.

For them, crelu was a tool that eliminated unnecessary parameters and the corresponding

computation [28]. Blot et. al. used crelu to avoid the information loss caused when relu maps

all negative inputs to zero [29]. Kim et. al. used crelu in order to more closely imitate the

way human retinas process light [30]. In each case, the authors saw improved performance

on image recognition tasks.

Here, we use crelu as the activation function in general-purpose fully-connected neural

networks, not image-processing convolutional networks. So motivations specific to the do-

main of computer vision are not relevant in this case. Instead, we choose crelu because it has

all of the characteristics that have made relu so successful while also having mathematical

properties that make it possible to analyze the network with probabilistic tools and choose

hyperparameters according to this analysis.

Lemma 3.9. Crelu networks are also universal approximators in the sense of both Corollary

3.5 and Corollary 3.7.

Proof. Let C be an operator that acts on fully-connected relu networks by replacing relus

with crelus and weight matrices W following relus with

[
W 0

]
, where 0 represents a zero

matrix with the same dimensions as W . The crelu matrix C(N) is equivalent to N in the

sense that it returns the same output for any input.

All of the aforementioned authors noted that crelu preserves information when processing

network inputs. Without an explicit definition, this could be taken to mean simply that crelu

36

is an invertible function, but the same can be said of sigmoid activation functions that don’t

double the number of dimensions of their inputs. Relu variants such as leaky relu and

parametric relu also have this property. What makes crelu special is that it also preserves

the relative scale of its inputs. In order for a traditional activation function (one that does

not change the number of dimensions) to do this, it would have to have a constant slope.

But then it would be an affine function and unsuitable as an activation per the universality

theorems referenced in Section 3.1.

Lemma 3.10. If a : R→ R be continuous, injective, and norm-preserving in the sense that

|a(x)| = |x|, then a(x) is linear and therefore unsuitable as an activation function.

Proof. There are only four continuous functions from R to R with |a(x)| = |x|: x, −x, |x|,

and −|x|. Of these, only x and −x are injective. A layer using x or −x as its activation

function performs an affine transformation, and the composition of affine transformations is

itself affine. Such layers are therefore completely redundant.

Lemma 3.11. Crelu is continuous, injective, and norm-preserving (for any p-norm) while

also enabling universal approximation when used as an activation function.

Proof. The first three properties follow immediately from the definition of crelu. The last is

established by Lemma 3.9.

Maintaining scale is important in practice. Sigmoid networks are an excellent example,

as they have long been known to struggle with ‘saturation’ — the problem that occurs when

the input to a sigmoid function is very high or very low and the corresponding slope is

close to zero. In such cases, the neuron can ‘die’ and cease to receive meaningful parameter

updates.

We will also take advantage of the fact that crelu is norm-preserving during both phases

of backpropagation. During the forward pass, it maintains the magnitudes of the data being

processed. During the backward pass, it does the same thing for the gradient information

being sent back. This will make it possible to say how changes in initialization will affect the

37

sizes of parameter updates, which will in turn allow us to avoid a common pitfall of gradient

descent.

In addition, when we consider the weights of the network as random variables (an ap-

propriate perspective due to random initialization), it will be clear that the choice of crelu

activations results in well-behaved distributions for which we can compute the moments we

need in order to determine the curvature of the loss surface and thus the appropriate choice

of learning rate.

Finally, we will show that crelu activations make it possible to initialize the network such

that the loss surface is smooth in a way that is not possible with traditional relu architectures,

resulting in better-behaved gradients and both faster and more predictable learning. This

advantage greatly increases our ability to train very deep networks in practice.

In short, crelu improves upon traditional relu by enabling us to analyze our networks

and make correct hyperparameter choices rather than follow heuristics or play guess-and-

check. It also enables faster, more consistent learning and greater network depths. We will

show that these improvements come at a negligible cost in terms of real-world computation,

suggesting that crelu would be a superior choice to relu in general.

3.3 Eliminating Biases

The traditional formulation of neural networks uses two types of parameters — weights and

biases. With a little rearranging, we can arrive at an equivalent formulation that uses only

weights. It’s a small simplification, but one that makes the math significantly cleaner. It

does require that the data have an extra dimension added in preprocessing, as we will note

in that section.

Theorem 3.12. Define p : Rd → Rd+1 by

p(x) =

x
1

 .
38

For every relu network N , there is another relu network N ′ that has no bias vectors but

achieves N ′(p(x)) = p(N(x)). So relu (and therefore crelu) networks do not need bias vectors

to be universal approximators.

Proof. Define q : Rm×n × Rm by

q(W, b) =

W b

0 1

 .
Observe that relu(q(W, b)p(x)) = p(relu(Wx + b)). This shows that, once the input space

has been transformed by p, all of the relu layers in a network can be replaced by relu layers

without bias vectors. These new layers are one unit wider than the layers with bias they

replace.

Now we develop an equivalent formulation for crelu networks which will be more conve-

nient for our purposes.

Definition 3.13. Let the Heaviside step function h : R→ R be defined by

h(z) =


0 z < 0,

1/2 z = 0,

1 z > 0.

.

Definition 3.14. Let A : Rd → Rd×d be the diagonal matrix

A(x) =



h(x1)

h(x2)

. . .

h(xd)


.

39

Note that A(x)x = relu(x) and A(−x)x = − relu(−x). We will refer to the matrices produced

by A as activation matrices.

Definition 3.15. A split crelu layer takes an input from Rdin and returns an output in Rdout .

The layer has two weight matrices P,N ∈ Rdout×din . The output of the layer for an input x

is given by

PA(x)x+NA(−x)x.

Note that this is equal to [
P −N

]
crelu(x).

Definition 3.16. A split crelu network consists only of split crelu layers. The inputs to the

network come from X ⊆ Rdin . Let d0 = din + 1. Let d1, . . . , dn be the output dimensions for

the n layers of the network respectively, with dn being equal to the dimension of the desired

output space.

Let xk0 = p(xk), where xk ∈ X and p(x) = [x1]. For 1 ≤ i ≤ n,

xki = PiA(xki−1)x
k
i−1 +NiA(−xki−1)xki−1,

where Pi, Ni ∈ Rdi×di−1 are the weight matrices of the ith layer.

In a computer implementation, using diagonal matrices to compute the activations would

be wasteful. It might also be more efficient to concatenate Pi and Ni into one large weight

matrix for reduced overhead. The point of the split formulation is to facilitate mathematical

analysis, and the insights from this analysis apply regardless of the details of an implemen-

tation.

40

3.4 Loss Functions

We define the two most common and important loss functions and give the gradients and

Hessians we’ll need to do quadratic approximations down the road. We also establish the

framework which one would use to apply the techniques and results in this paper to other

loss functions and give the conditions under which this would be valid.

Definition 3.17. The squared error loss function takes a network output xn and its corre-

sponding target y and returns the loss value

L(xn, y) = (xn − y)2.

The gradient of this loss with respect to xn is

∇xn = 2(xn − y).

The Hessian with respect to xn is

H(xn) = 2I.

Definition 3.18. Define logsumexp : Rd → R by

logsumexp(x) = ln (ex1 + ex2 + · · ·+ exd)

and softmax : Rd → Rd by

softmax(x) =
1

ex1 + ex2 + · · ·+ exd



ex1

ex2

...

exd


.

41

Note that logsumexp is a smooth approximation to the max function and softmax is a smooth

approximation to the argmax function.

The categorical cross-entropy loss function takes a network output xn and its correspond-

ing target y and returns the loss value

L(xn, y) = logsumexp(xn)− yTxn.

The gradient of this loss with respect to xn is

∇xn = softmax(xn)− y.

The Hessian with respect to xn is

H(xn) = diag(softmax(xn))− softmax(xn) softmax(xn)T .

Note that y must be a one-hot vector (one entry is 1 and the rest are 0) in order for this loss

function to work as intended.

3.5 Backpropagation

We derive the formulas for calculating the weight matrix updates recursively, then expand

these to give the explicit formula for a given weight matrix update.

Definition 3.19. For convenience, define

Rk
i = A(xki−1)

Lki = A(−xki−1)

W k
i = PiR

k
i +NiL

k
i

42

Definition 3.20. Let ∇k denote partial derivatives of L(xkn, y
k). For example,

∇kPi = ∂L(xkn, y
k)/∂Pi.

Lemma 3.21. For a given input xk0,

∇kxki = (W k
i+1)

T∇kxki+1 = (Pi+1A(xki) +Ni+1A(−xki))T∇kxki+1,

∇kPi = ∇kxki (x
k
i−1)

TRk
i = ∇kxki (x

k
i−1)

TA(xki−1),

∇kNi = ∇kxki (x
k
i−1)

TLki = ∇kxki (x
k
i−1)

TA(−xki−1).

Proof. These are obtained by differentiating

xki = PiA(xki−1)x
k
i−1 +NiA(−xki−1)xki−1,

with respect to xki−1 (and then shifting the indices), Pi, and Ni respectively.

Definition 3.22. For further convenience, define

W k
a,b = W k

aW
k
a−1 · · ·W k

b+1W
k
b

for a ≥ b. If a < b, let W k
a,b = 1.

Lemma 3.23. The gradients with respect to Pi and Ni for a given data point xk0 are

∇kPi = (W k
n,i+1)

T∇kxkn(xk0)T (W k
i−1,1)

TRk
i ,

∇kNi = (W k
n,i+1)

T∇kxkn(xk0)T (W k
i−1,1)

TLki .

Proof. By applying the definition of a split crelu layer recursively, we obtain

xki = W k
i,1x

k
0.

43

Similarly, repeated application of the first backpropagation rule from Lemma 3.21 yields

∇kxki = (W k
n,i+1)

T∇kxkn.

Combining these two gives us

∇kxki (x
k
i−1)

T = (W k
n,i+1)

T∇kxkn(xk0)T (W k
i−1,1)

T .

Multiplying by Lki and Rk
i completes the proof.

Definition 3.24. Given a set of data points x10, x
2
0, . . . , x

s
0 ∈ Rd0 and corresponding targets

y1, y2, . . . , ys ∈ Rdn , the total network loss for a network N is

LN =
1

s

s∑
k=1

L(xkn, y
k).

Definition 3.25. Given a learning rate λ > 0, the update matrices ∆Pi and ∆Ni are defined

as

∆Pi =
1

s

s∑
k=1

∇kPi

∆Ni =
1

s

s∑
k=1

∇kNi,

for 1 ≤ i ≤ n. A single step of gradient descent consists of performing the parameter updates

Pi ← Pi − λ∆Pi

Ni ← Ni − λ∆Ni,

for 1 ≤ i ≤ n. The network is trained by repeatedly updating its weight matrices in this

manner, until some stopping condition is reached.

44

Chapter 4. Optimal Hyperparameters

In this chapter, we answer the questions that naturally arise when a chosen architecture is

to be trained: How should inputs and outputs be preprocessed so as to better condition the

optimization problem? How should parameters be initialized? What should be the initial

learning rate? How should the learning rate change over the course of training? In each

case, we choose a straightforward metric for success and optimize accordingly.

4.1 Initialization Scale

We show that initializing with centered Gaussians and scaling according to the size (number

of entries) of each weight matrix leads to proportional updates. We will refer to independent

and identically distributed random variables as being i.i.d. for brevity.

Lemma 4.1. Let x ∈ Rd consist of independent standard normal variables. That is, xi ∼

N (0, 1) and the xi are all independent. Let f : Rd → R be the probability density function

for x. Then f is spherically symmetric in the sense that f(Mx) = f(x) for any orthogonal

matrix M ∈ Rd×d.

Proof. Because the entries of x are independent, f is simply the product of the pdf for each.

Hence

f(x) =
d∏
i=1

1√
2π
e−
−x2i
2 = (2π)−

d
2 e−

x21+x22+···+x2d
2 = (2π)−

d
2 e−

‖x‖2
2 .

If M is orthogonal, then MTM = I. So ‖Mx‖2 = xTMTMx = xTx = ‖x‖2. Because f(x)

can be written as a function of ‖x‖2 as above, f(Mx) = f(x).

The converse is also true and was proven by J.C. Maxwell.

Lemma 4.2. (Maxwell) Let x ∈ Rd consist of i.i.d. random variables and let x have a

spherically symmetric distribution. The elements of x are normally distributed with mean

zero.

45

Proof. See [31].

Lemma 4.3. If M ∈ Rc×d is a matrix consisting of i.i.d. standard normal variables, then

E(MTM) = cI. In this sense, M is expected to be an orthogonal matrix, up to a scaling

factor of
√
c.

Proof. Let Mi be the ith column of M . The product MT
i Mi is the sum of the squares of c

independent standard normal variables, so MT
i Mi ∼ χ2(c). This tells us that E[MT

i Mi] = c.

Let j 6= i. SoMT
i Mj = m1imij+m2im2j+· · ·+mdimdi. Becausemki andmkj are independent,

E[mkimkj] = E[mki] E[mkj] = 0.

Lemma 4.4. Let x1 and x2 be independent normal variables with means µ1 and µ2 and

variances σ2
1 and σ2

2 respectively. The sum x1 + x2 is a normal variable with mean µ1 + µ2

and variance σ2
1 + σ2

2.

Proof. This can be verified by convolving the probability density functions of x1 and x2.

Alternately, see [33].

Lemma 4.5. Let M ∈ Rc×d be a matrix consisting of i.i.d. standard normal variables.

Let x ∈ Rd be a fixed unit vector. The entries of y = Mx are i.i.d. standard normal

variables. In particular, this implies that y is spherically symmetric, that ‖y‖2 ∼ χ2(c), and

that E[‖y‖2] = c.

Proof. The ith element of y is yi = mi1x1 + mi2x2 + · · · + midxd. By Lemma 4.4, yi ∼

N (0, x21 + x22 + · · · + x2d) = N (0, 1). The elements of y are independent from one another

because they depend on disjoint subsets of the elements of M , all of which are independent

from one another.

Theorem 4.6. Let all of the entries of all of the Pi and Ni be normal random variables with

mean zero. Denote by Pijk the entry in the jth row and kth column of Pi, and by Nijk the

corresponding entry in Ni. Let all of the parameters in a given layer have the same variance

σ2
i > 0. That is, Pijk, Nijk ∼ N (0, σ2

i). Let Pijk be independent from Pqrs and Nqrs if i 6= q,

46

j 6= r, or k 6= s. That is to say that Pijk is independent from every other network parameter

except perhaps Nijk. Likewise let Nijk be independent from every other network parameter

except perhaps Pijk. Then

E[‖∆Pi‖2]
E[‖∆Pj‖2]

=
E[‖Pi‖2]
E[‖Pj‖2]

and
E[‖∆Ni‖2]
E[‖∆Nj‖2]

=
E[‖Ni‖2]
E[‖Nj‖2]

if and only if

σ2
i

σ2
j

=

√
djdj−1√
didi−1

,

where d0 is the input dimension and di is the dimension of the output of the ith layer.

Proof. Because Pi is a di× di−1 matrix of independent normal variables with mean zero and

variance σ2
i , σ

−2
i ‖Pi‖2 ∼ χ2(didi−1) and E[‖Pi‖2] = σ2

i didi−1. This tells us that

E[‖Pi‖2]
E[‖Pj‖2]

=
σ2
i didi−1

σ2
jdjdj−1

.

Recall that

∇kPi = (W k
n,i+1)

T∇kxkn(xk0)T (W k
i−1,1)

TRk
i .

By applying Lemma 4.5 repeatedly, we obtain

E[‖(W k
n,i+1)

T∇kxkn‖2] = E[‖(W k
i+1)

T (W k
i+2)

T · · · (W k
n)T∇kxkn‖2]

= σ2
i+1di E[‖(W k

i+2)
T (W k

i+3)
T · · · (W k

n)T∇kxkn‖2]
...

= (σ2
i+1σ

2
i+2 · · · σ2

n)(didi+1 · · · dn−1)‖∇kxkn‖2.

47

By the same method, we obtain

E[(xk0)T (W k
i−1,1)

T] = E[W k
i−1,1x

k
0]

= E[W k
i−1W

k
i−2 · · ·W k

1 x
k
0]

= σ2
i−1di−1 E[W k

i−2W
k
i−3 · · ·W k

1 x
k
0]

...

= (σ2
1σ

2
2 · · ·σ2

i−1)(d1d2 · · · di−1)‖xk0‖2.

Because (W k
n,i+1)

T∇kxkn and (xk0)T (W k
i−1,1)

T are independent and ‖uvT‖2 = ‖u‖2‖v‖2 for

column vectors u and v, we can simply multiply to obtain

E[‖(W k
n,i+1)

T∇kxkn(xk0)T (W k
i−1,1)

T‖2] =
1

σ2
i

(σ2
1σ

2
2 · · · σ2

n)(d1d2 · · · dn−1)‖xk0‖2‖∇kxkn‖2.

Because ∇kPi = (W k
n,i+1)

T∇kxkn(xk0)T (W k
i−1,1)

TRk
i ,

E[‖∇kPi‖2] =
1

2σ2
i

(σ2
1σ

2
2 · · · σ2

n)(d1d2 · · · dn−1)‖xk0‖2‖∇kxkn‖2,

as long as the elements of xi−1 have median zero. This is certainly the case for i > 1 because

these elements are normal and centered per Lemma 4.5. In the case of the raw inputs x0,

this can be guaranteed with preprocessing.

Because

∆Pi =
1

s

s∑
k=1

∇kPi,

it follows that

E[‖∆Pi‖2]
E[‖∆Pj‖2]

=
σ2
j

σ2
i

.

48

By setting this ratio equal to the ratio of the expected squared magnitudes of the weight

matrices themselves, we get
σ2
j

σ2
i

=
σ2
i didi−1

σ2
jdjdj−1

.

This simplifies to

σ2
i

σ2
j

=

√
djdj−1√
didi−1

as desired. All of the same logic applies to the Ni and ∆Ni as well, completing the proof.

Corollary 4.7. If there is a constant c > 0 such that

σi =
c

(didi−1)1/4
,

for all 1 ≤ i ≤ n, then

E[‖xkn‖2] = c2n
√
dn
d0
‖xk0‖2.

Hence c = 1 is the only choice that doesn’t cause the network output’s magnitude to scale

exponentially with network depth.

Proof. Again by applying Lemma 4.5,

E[‖xkn‖2] = (σ2
1σ

2
2 · · ·σ2

n)(d1d2 · · · dn)‖xk0‖2

E[‖xkn‖2] =

(
c2√
d1d0

c2√
d2d1

· · · c2√
dndn−1

)
(d1d2 · · · dn)‖xk0‖2

E[‖xkn‖2] =

(
c2n√

d0d1d2 · · · dn−1
√
dn

)
(d1d2 · · · dn)‖xk0‖2

E[‖xkn‖2] = c2n
√
dn
d0
‖xk0‖2.

The c2n term vanishes when c = 1.

Definition 4.8. In a proportional independent initialization for a crelu network, the entries

of each Pi and Ni are sampled independently from a normal distribution with mean zero and

variance σ2
i = (didi−1)

−1/2.

49

In a proportional symmetric initialization for a crelu network, the entries of each Pi

are sampled independently from a normal distribution with mean zero and variance σ2
i =

(didi−1)
−1/2 and then each Ni is set equal to the corresponding Pi.

In the rest of the paper, we will prefer the symmetric initialization. Note that this method

causes the network to be linear upon initialization, in the sense that the outputs are linear

functions of the inputs. When Pi 6= Ni, this is no longer the case. Balzduzzi et. al. have

shown that this property makes gradient descent more effective [32]. In addition, having all

of the W k
i to be equal upon initialization is very helpful for analysis.

Remark. Looking at unsquared magnitudes instead of squared magnitudes yields almost

exactly the same result. The only difference stems from the fact that the chi distribution

appears instead of the chi-squared distribution. The mean of χ(d) is

√
2

Γ
(
d+1
2

)
Γ
(
d
2

) ,

which is very well approximated by
√
d [33].

4.2 Preprocessing

After adding the extra dimension required to eliminate biases, we use a simple form of

normalization to ensure that features contribute equally. We show how the scale to which

data is normalized affects the scale of the outputs.

Lemma 4.9. Let N be an n-layer crelu network and let c > 0. Let x0 be a network input and

xn the corresponding network output N(x0). Then N(cx0) = cN(x0) = cxn. Crelu networks

preserve positive scalar multiplication.

Proof. It is sufficient to prove that a single crelu layer preserves scalar multiplication. Let

xi = Li(xi−1) denote output of the ith layer for an input xi−1. First, note that the step

50

function h(x) obeys h(cx) = h(x) for c > 0. Thus A(cx) = x and A(−cx) = A(−x). Finally,

L(cxi−1) = PiA(cxi−1)cxi−1 +NiA(−cxi−1)cxi−1

= c(PiA(xi−1)xi−1 +NiA(−xi−1)xi−1)

= cxi.

Thus the entire crelu network preserves scaling in this fashion.

Definition 4.10. We say that a dataset {xk0}sk=1 ⊂ Rd0 has been standardized when it meets

the following conditions:

(i) There exists a constant c 6= 0 such that xk0,d0 , the d0th entry of xk0, is equal to c for all

1 ≤ k ≤ s.

(ii) The sum
∑s

k=1 x
k
0,i = 0 for all 1 ≤ i < d0.

(iii) The sum
∑s

k=1(x
k
0,i)

2 = sc2 for all 1 ≤ i < d0.

In the terminology of machine learning, the coordinates of the data points are called features.

Standardization may be equivalently defined as follows:

(i) The last feature has the same nonzero value for all data points.

(ii) All of the features except the last have mean zero across the dataset.

(iii) All of the features have the same variance across the dataset.

Remark. In a standardized dataset, no two data points can be scalar multiples of each other

unless they are identical. Thus Lemma 4.9 does not contradict Theorem 3.12, which asserts

that crelu networks without bias are universal approximators under the constant-feature

condition.

Lemma 4.11. For an n-layer crelu network N with proportional initialization and a stan-

dardized dataset {xk0}sk=1,

E
[
‖xkn‖2

]
=

√
dn
d0
‖xk0‖2.

51

Specifically, the coordinates of the xkn are normally distributed with mean zero and expected

variance

E

[
1

s

s∑
k=1

(xkn,j)
2

]
=

c2√
d0dn

,

for 1 ≤ j ≤ dn, where c is the constant from Definition 4.10.

Proof. The first equation follows immediately from Corollary 4.7 and Definition 4.8. The

second follows from the first and Lemma 4.5.

Remark. The choice of the constant c in Definition 4.10 determines the scale of the network

outputs, so the correct choice of c depends on both the loss function and the targets yk.

4.3 Quadratic Approximation

We compute the second-order Taylor polynomial of the loss function as a function of the

learning rate, then compute the expected values of the coefficients with respect to the random

initialization scheme described previously. This will facilitate a discussion of the optimal

learning rate and how it changes with network width and depth.

Definition 4.12. Let N be an n-layer crelu network to be trained on a dataset {xk0}sk=1 with

targets {yk}sk=1 and loss function L. Let the update matrices ∆Pi and ∆Ni be calculated as

in Definition 3.25. Define Nλ to be the updated network produced when the weight matrices

Pi and Ni are replaced with P λ
i = Pi + λ∆Pi and Nλ

i = Ni + λ∆Ni respectively. Define

xkn(λ) = Nλ(xk0) and define LN(λ), the total network loss as a function of the learning rate,

as

LN(λ) =
1

s

s∑
k=1

L(xkn(λ), yk).

In other words, LN(0) is the current total loss and LN(λ) is what the new total loss would be

after a single step of gradient descent with learning rate λ. These allow us to approximate

52

LN(λ) with a parabola by computing the second-degree Taylor polynomial

LN(λ) ≈ LN(0) + λ
d

dλ
LN(0) +

1

2
λ2

d2

dλ2
LN(0).

Definition 4.13. The following shorthands will be useful when discussing the derivatives of

LN(λ). Note that all of these are scalar quantities.

αi,k,l = (xl0)
T (W l

i−1,1)
T
(
Rl
iR

k
i + LliL

k
i

)
W k
i−1,1x

k
0,

ωi,k,l = (∇xkn)TW k
n,i+1(W

l
n,i+1)

T∇xln,

γi,j,k,l,m = (xl0)
T (W l

i−1,1)
T
(
Rl
iR

k
i + LliL

k
i

)
W k
i−1,j+1(W

m
n,j+1)

T∇xmn ,

χi,j,k,l,m = (∇xmn)TWm
n,j+1(W

k
n,j+1)

T H(xkn)W k
n,i+1(W

l
n,i+1)

T∇xln.

Lemma 4.14. In the notation of Definition 4.13, the first derivative of the total loss with

respect to the learning rate is

d

dλ
LN(0) = − 1

s2

n∑
i=1

s∑
k=1

s∑
l=1

αi,k,lωi,k,l.

Proof. Differentiating the formula in Definition 4.12 gives

d

dλ
LN(0) =

1

s

s∑
k=1

(∇xkn)T
(
d

dλ
xkn(0)

)
.

53

Expanding this formula gives

d

dλ
LN(0)

= −1

s

s∑
k=1

(∇xkn)T
n∑
i=1

W k
n,i+1∆W

k
i W

k
i−1,1x

k
0

= −1

s

s∑
k=1

(∇xkn)T
n∑
i=1

W k
n,i+1

(
∆PiR

k
i + ∆NiL

k
i

)
W k
i−1,1x

k
0

= − 1

s2

s∑
k=1

(∇xkn)T
n∑
i=1

W k
n,i+1

s∑
l=1

(
∇P l

iR
k
i +∇N l

iL
k
i

)
W k
i−1,1x

k
0

= − 1

s2

s∑
k=1

(∇xkn)T
n∑
i=1

W k
n,i+1

s∑
l=1

(W l
n,i+1)

T∇xln(xl0)
T (W l

i−1,1)
T
(
Rl
iR

k
i + LliL

k
i

)
W k
i−1,1x

k
0

= − 1

s2

n∑
i=1

s∑
k=1

s∑
l=1

(∇xkn)TW k
n,i+1(W

l
n,i+1)

T∇xln(xl0)
T (W l

i−1,1)
T
(
Rl
iR

k
i + LliL

k
i

)
W k
i−1,1x

k
0.

In terms of the shorthand from Definition 4.13, this becomes

d

dλ
LN(0) = − 1

s2

n∑
i=1

s∑
k=1

s∑
l=1

αi,k,lωi,k,l.

Note that this value is necessarily nonpositive.

Theorem 4.15. When a crelu network is initialized with the proportional symmetric ini-

tialization, the expected first derivative of the loss function with respect to the learning rate

is

E

[
d

dλ
LN(0)

]
=−

n∑
i=1

√
di−1di√
d0dn

· 1

s2

s∑
k=1

s∑
l=1

(xl0)
T (xk0)(∇xln)T (∇xkn).

Proof. Corollary A.10 allows us to calculate E[αi,k,lωi,k,l], while most of the work of derivation

is done in Theorem A.9 and the lemmata it cites.

54

Lemma 4.16. In the notation of Definition 4.13, the second derivative of the total loss with

respect to the learning rate is

d2

dλ2
LN(0) =

2

s3

n∑
i=1

i−1∑
j=1

s∑
k=1

s∑
l=1

s∑
m=1

αj,k,mγi,j,k,l,mωi,k,l

+
1

s3

n∑
i=1

n∑
j=1

s∑
l=1

s∑
k=1

s∑
m=1

αj,k,mχi,j,k,l,mαi,k,l.

Proof. Differentiating the formula in Definition 4.12 twice gives

d2

dλ2
LN(0) =

1

s

s∑
k=1

(∇xkn)T
(
d2

dλ2
xkn(0)

)
+

(
d

dλ
xkn(0)

)T
H(xkn)

(
d

dλ
xkn(0)

)
=

1

s

s∑
k=1

(∇xkn)T
(
d2

dλ2
xkn(0)

)
+

1

s

s∑
k=1

(
d

dλ
xkn(0)

)T
H(xkn)

(
d

dλ
xkn(0)

)
.

We expand these two sums separately for convenience. The first becomes

1

s

s∑
k=1

(∇xkn)T
(
d2

dλ2
xkn(0)

)

=
2

s

n∑
i=1

i−1∑
j=1

s∑
k=1

(∇xkn)TW k
n,i+1∆W

k
i W

k
i−1,j+1∆W

k
j W

k
j−1,1x

k
0

=
2

s2

n∑
i=1

i−1∑
j=1

s∑
k=1

s∑
l=1

ωi,k,l(x
l
0)
T (W l

i−1,1)
T
(
Rl
iR

k
i + LliL

k
i

)
W k
i−1,j+1∆C

k
jW

k
j−1,1x

k
0

=
2

s3

n∑
i=1

i−1∑
j=1

s∑
k=1

s∑
l=1

s∑
m=1

ωi,k,l(x
l
0)
T (W l

i−1,1)
T
(
Rl
iR

k
i + LliL

k
i

)
W k
i−1,j+1(W

m
n,j+1)

T∇xmn αj,k,m.

So we can write

1

s

s∑
k=1

(∇xkn)T
(
d2

dλ2
xkn(0)

)
=

2

s3

n∑
i=1

i−1∑
j=1

s∑
k=1

s∑
l=1

s∑
m=1

αj,k,mγi,j,k,l,mωi,k,l.

55

The second sum expands to become

1

s

s∑
k=1

(
d

dλ
xkn(0)

)T
H(xkn)

(
d

dλ
xkn(0)

)
= − 1

s2

n∑
i=1

s∑
l=1

s∑
k=1

((xkn)′)T H(xkn)W k
n,i+1(W

l
n,i+1)

T∇xlnαi,k,l

=
1

s3

n∑
i=1

n∑
j=1

s∑
l=1

s∑
k=1

s∑
m=1

αj,k,m(∇xmn)TWm
n,j+1(W

k
n,j+1)

T H(xkn)W k
n,i+1(W

l
n,i+1)

T∇xlnαi,k,l.

So we can write

1

s

s∑
k=1

(
d

dλ
xkn(0)

)T
H(xkn)

(
d

dλ
xkn(0)

)
=

1

s3

n∑
i=1

n∑
j=1

s∑
l=1

s∑
k=1

s∑
m=1

αj,k,mχi,j,k,l,mαi,k,l.

Note that the indexing is different for the two sums, with j running from 1 to i − 1 in the

former but from 1 to n in the latter.

Lemma 4.17. When a crelu network is initialized with the proportional initialization, the

expected value of the first sum from Lemma 4.16 is zero. That is,

E

[
1

s

s∑
k=1

(∇xkn)T
(
d2

dλ2
xkn(0)

)]
= 0.

Proof. This sum was shown in Lemma 4.16 to be equal to

2

s3

n∑
i=1

i−1∑
j=1

s∑
k=1

s∑
l=1

s∑
m=1

αj,k,mγi,j,k,l,mωi,k,l,

with αj,k,m, γi,j,k,l,m, and ωi,k,l defined as in Definition 4.13. It suffices to prove that

E [αj,k,mγi,j,k,l,mωi,k,l] = 0,

56

for all indices. This is done by defining

u = αj,k,m(xl0)
T (W l

i−1,1)
T
(
Rl
iR

k
i + LliL

k
i

)
W k
i−1,j+1(W

m
i−1,j+1)

T ,

v = (Wm
n,i)

T∇xmn ωi,k,l.

Note that uv = αj,k,mγi,j,k,l,mωi,k,l. We can rewrite v = (Wm
i)T (Wm

n,i+1)
T∇xmn ωi,k,l. Because

(Wm
i)T and (Wm

n,i+1)
T∇xmn ωi,k,l are independent and Wi is a matrix of Gaussians, v is easily

seen to have a spherically symmetric distribution. Because u and v are independent, we have

E[uv] = 0.

Definition 4.18. Let N be an n-layer crelu network with input dimension d0 and layer

widths d1, d2, . . . , dn. Let 1 ≤ i, j ≤ n.

ϕcd =
2

3

d−1∏
q=c

(
1 +

2

dq

)
+

1

3

d−1∏
q=c

(
1− 1

dq

)
,

ψcd =
1

3

d−1∏
q=c

(
1 +

2

dq

)
− 1

3

d−1∏
q=c

(
1− 1

dq

)
.

Let a = min(i, j) and b = max(i, j). Further define

Aijklm = ϕ1a(x
k
0)Txl0(x

k
0)Txm0 + ψ1a(x

k
0)Txk0(xl0)

Txm0 ,

Bijklm = ϕab − ψab,

Cijklm = ϕbn(∇xln)T H(xkn)(∇xmn) + ψbn Tr(H(xkn))(∇xln)T (∇xmn).

Theorem 4.19. When a crelu network is initialized with the proportional symmetric initial-

ization, the expected second derivative of the loss function with respect to the learning rate

is

E

[
d2

dλ2
LN(0)

]
=

n∑
i=1

n∑
j=1

√
di−1didj−1dj

d0dn
· 1

s3

s∑
l=1

s∑
k=1

s∑
m=1

AijklmBijklmCijklm.

57

Proof. Because of Lemma 4.17, we can ignore the first sum from Lemma 4.16 and focus on

the second. We do this by finding the expected value of αj,k,mχi,j,k,l,mαi,k,l. This requires

an entire appendix, which ends with Theorem A.14 and Corollary A.15. The latter applies

directly to this calculation in a crelu network with proportional symmetric initialization.

4.4 The Learning Rate Schedule

The loss surface of a crelu network is neither convex nor smooth in general. Nearly all of the

mathematical results on gradient descent require that the function to be minimized meet one

or both of these criteria. A particularly well-known result due to Nesterov establishes the

convergence of gradient descent for Lipschitz-smooth functions without requiring convexity.

Theorem 4.20. (Nesterov 98) Let F : Rd → R be the function to be minimized and let ∇F

be the gradient of F . Suppose that there exists a finite L > 0 such that ‖∇F (x)−∇F (y)‖ ≤

L‖x− y‖. Gradient descent with fixed step size λ < 1/L is guaranteed to converge to a point

where ∇F = 0.

Proof. Given in source [34].

Although this result does not technically apply to non-smooth functions, for which such a

Lipschitz constant does not exist, it gives a useful intuition. Consider a loss function F with

such a Lipschitz constant L. Given a starting point x0, the loss after a step of gradient descent

is F (x1) where x1 = x0 − λ∇F (x0). We know that ‖∇F (x1) − ∇F (x0)‖ ≤ L‖x1 − x0‖ =

λL‖∇F (x0)‖. If λ < 1/L, this becomes simply ‖∇F (x1) − ∇F (x0)‖ < ‖∇F (x0)‖. By the

triangle inequality, this implies ‖∇F (x1)‖ < ‖∇F (x0)‖. So the gradient is guaranteed to

decrease with each step.

In the non-smooth case, gradient descent with a constant learning rate is not guaranteed

to converge. This can be seen even in the trivial case of minimizing F (x) = ‖x‖, where any

fixed learning rate will ultimately result in an oscillating loss. To guarantee convergence, a

58

decreasing learning rate is required. Say that the learning rate used at step i is λi. We have

the following classical result.

Theorem 4.21. (Monro and Robbins 51) Let F : Rd → R be the function to be minimized.

If the learning rate λi satisfies

∞∑
i=1

λi =∞ and
∞∑
i=1

λ2i <∞,

then descent is guaranteed to converge as i→∞.

Proof. Given in source [35].

A simple learning rate schedule such as λi = λ1/(1+ai), with a > 0, therefore guarantees

convergence. However, the convergence may be too slow to matter in practice. Further, it

is possible that the loss will actually increase at the outset if λ1 is too large, only coming

down when λi has gotten sufficiently small. Not only is this behavior undesirable in theory,

but it can cause computer implementations to fail in practice. So it is important to choose

both an appropriate initial learning rate and an appropriate schedule.

Here, we concern ourselves with the initial learning rate. In Section 4.3, we look at the

loss as a function of the learning rate, approximate this function with a parabola, and then

calculate the expected values of the coefficients of this parabola. A simple, greedy choice

is to choose our initial learning rate so as to minimize the value of the loss after the first

step of gradient descent. In terms of our approximation, this means choosing the value of λ

which puts us at the vertex of this parabola. This motivates the following definition.

Definition 4.22. Let F : Rd → R be a function to be minimized with gradient descent. For

x ∈ Rd, let Fx(λ) = F (x+ λ∇F (x)). If F ′′x (0) > 0, the greedy learning rate at x is

λx = − F ′x(0)

2F ′′x (0)
.

59

This is a greedy choice in that it maximizes the single-step decrease in the second-order

Taylor appoximation of Fx. Note that this is equivalent to using a single iteration of Newton’s

method to solve F ′x(λ) = 0.

In practice, an initial learning rate is always chosen before neural network training begins.

So when selecting a learning rate for a crelu network with random initialization, a sensible

approach is to consider the average case produced by that initialization. Of particular prac-

tical interest is the way the greedy learning rate changes depending on network architecture.

Looking at the expressions in Theorem 4.15 and Theorem 4.19, we see that the expected

first derivative is proportional to
n∑
i=1

√
di−1di

and the expected second derivative is approximately proportional to

n∑
i=1

n∑
j=1

√
di−1didj−1dj

n−1∏
k=1

(
1 +

2

dk

)
=

(
n∑
i=1

√
di−1di

)2 n−1∏
k=1

(
1 +

2

dk

)
.

This leads us to the following definition.

Definition 4.23. The scaling factor for a network N with dimensions d0, d1, . . . , dn is

SN =
n∑
i=1

√
di−1di

n−1∏
k=1

(
1 +

2

dk

)
.

If we have two networks N1 and N2 to be trained on the same dataset, we get the following

approximate relationship between their greedy learning rates λN1 and λN2 :

λN1SN1 ≈ λN2SN2 .

The scaling factor is useful when training multiple architectures on the same dataset.

Rather than find an effective learning rate for each architecture, one can find a good learning

60

rate for a single architecture and use it to predict which learning rates will be similarly

effective for others.

Once an initial learning rate has been established, it remains to be determined how the

learning rate will change over time. Rather than choosing a schedule before training, it is

common in practice to change the learning rate adaptively. For example, a simple approach

is to use a fixed learning rate until the loss fails to decrease for some set number of steps,

then begin a decreasing schedule that guarantees convergence. However, more sophisticated

methods exist and have recently been the subject of rigorous analysis by Ward et. al. and

others [36, 37].

4.5 Experiments

To show how the choice of learning rate affects training in practice, we consider two simple

problems to be solved by full-connected networks.

The first is to approximate the cosine function. Specifically, we sample the xk uniformly

from [0, 2π) and compute yk = cos(xk). Then we standardize the inputs by computing

xk0 =


√
3
π

(xk − π)

1

 .
For this regression application, we use squared error loss.

The second is to classify points according to a checkerboard pattern. In this case, the

xk are distributed uniformly on [−2, 2]2 and assigned labels yk ∈ {0, 1} based on which 1x1

square they fall in. The xk are normalized and given an extra dimension as before. For this

classification task, we use binary cross-entropy loss.

We train crelu networks of several sizes (given in Table 4.1) on both data sets, using the

proportional symmetric initialization. First, we try a wide range of candidate learning rates

and train the networks for a single step of gradient descent. To get an accurate picture, we

average the results across 20,000 initializations for each architecture. As expected, the loss

61

Name d0, d1, . . . , dn
3x10 2, 10, 10, 10, 1
3x20 2, 20, 20, 20, 1
5x10 2, 10, 10, 10, 10, 10, 1
5x20 2, 20, 20, 20, 20, 20, 1

Table 4.1: We use networks with the following dimensions to show how the optimal learning
rate changes with architecture.

initially decreases with the learning rate but soon begins to increase with growing speed.

The results are shown in Figure 4.1.

Figure 4.1: The average loss across 20,000 trials after a single step of gradient descent. Note
that these values are on a log scale because they grow so quickly.

In order to get a more informative visual, we restrict ourselves to the range of learning

rates that caused the loss to decrease or stay the same. Figure 4.2 shows that the loss, as a

function of of the learning rate, strongly resembles a parabola over this interval for all four

architectures. The parabolas have their vertices at different learning rates, indicating that

the optimal value is indeed different for each architecture.

However, the fact that a learning rate yields a largest improvement on the first step does

not necessarily imply that it will yield the largest improvement in the loss over many steps.

For this reason, we train each model for 50 steps from 1,000 different initializations. The

averages across these trials are shown in Figure 4.3. Interestingly, the results are nearly flat

in ranges around the values that produced the largest drops on the first step, suggesting some

62

Figure 4.2: Trimming the higher values from the previous plot and using a linear axis, we
see that the loss does indeed resemble a quadratic function of the learning rate.

robustness to the choice of learning rate. The loss continues to decrease slowly through this

range until the models suddenly cease to learn. For all four architectures, there is a point

somewhere between the one-step optimum and its double at which gradient descent starts

to diverge. This suggests that the optimal learning rate for long-term training is somewhere

near the one-step optimum because such a value will cause a faster decrease in loss than

smaller ones while avoiding the risk of divergence that comes with larger ones.

Figure 4.3: When we let the models train for fifty steps and average across 1,000 trials, we
see that there is a range around the optimal learning rates in which performance is good.
Above this range, gradient descent diverges.

To see whether the learning rates scale as predicted, we scale these plots by multiplying

the learning rate by the scaling factor for each architecture. Sure enough, in Figure 4.4, we

63

see that the single-step loss curves nearly line up under this scaling. The slight mismatching

likely stems from the fact that the scaling factor is an approximation of the true ratio and

ignores some of the smaller terms from the expressions for the expected derivatives.

Figure 4.4: When we scale each model’s curve horizontally by the scaling factor for its
archtecture, they line up almost perfectly. This shows that the curvature does vary as
predicted.

When the fifty-step plots are rescaled in the same manner in Figure 4.5, they too line

up very well. It becomes particularly easy to see that divergence becomes a problem some-

where between the one-step optimum and its double. Recall that, on a parabola, divergence

happens at precisely double the optimal learning rate.

Figure 4.5: As before, the plots line up when multiplied by the scaling factor, suggesting
that the optimal learning rate and the ideal range both scale in the same way.

64

These experiments show that it is not necessary to start the learning rate search from

scratch when trying a new network architecture on a known dataset. Because the optimal

learning rates scale predictably, the computational cost of this process can be avoided.

65

Chapter 5. Looking Forward

There are many ways in which this work can be expanded upon in the future, both for the

sake of greater practical applicability and in the interest of pure mathematical understanding.

We highlight just a few natural areas for exploration.

5.1 Neural Network Tools

As discussed in Chapter 2, many tools are used to aid in the training of neural networks. It

would be particularly interesting to see how these theorems generalize to address:

• Stochastic Gradient Descent - While we focused here on full-batch gradient descent,

neural networks are almost always trained with mini-batches in practice. Depending

on how the data is distributed, the resulting noise can affect the optimal learning rate.

• Momentum - Adding momentum to gradient descent sometimes leads to significantly

faster convergence that cannot be achieved by increasing the learning rate. It would

be fascinating to work out a theory of optimal learning rate - momentum constant

combinations, especially one that also took into account methods for adapting the

learning rate.

• Dropout - While here we only worry about training performance, most practical ap-

plications are also concerned with how that performance will generalize to test data.

Techniques for inserting noise into the training process to promote generalization likely

have an effect on training speed and stability.

• Batch Normalization - This would pose a particular challenge, as batch normaliza-

tion effectively changes parameters in between steps of gradient descent. Given its

popularity and effectiveness in some cases, it certainly merits analysis.

66

5.2 Special Layers

Highly versatile tools are rarely the best for a specific task. As universal approximators,

fully-connected networks are as versatile as tools come, so it is unsurprising that they are

easily outperformed by custom layers such as convolutions for image data and recurrent units

for natural language processing. Extending these results to models with such layers would

be extremely useful.

5.3 Optimal Architectures

Being able to predict a learning rate given an architecture is quite helpful, but it doesn’t

inform the choice of architecture itself. Nor are universality theorems particularly helpful in

that regard. Theorems relating the number of layers in a network, and their widths, to per-

formance on a given data set would pair spectacularly with optimization-focused works like

this one, potentially leading to an automated process of creating and training networks tai-

lored to their data. This would decrease the need for so-called ‘graduate student descent’ —

the process of coming up with and testing many combinations of hyperparameters manually.

5.4 Conclusion

Ali Rahimi famously compared machine learning to alchemy, encouraging machine learning

researchers to bring more mathematical analysis and scientific rigor to their work. By con-

structing a network to have useful mathematical properties and pinning down some basic

properties of its loss surface, we have made the process of training a fully-connected neural

network a little less alchemical.

67

Appendix A. Expectations

Throughout this appendix, we use E[x] to denote the expected value of x, where x is a

function of one or more random variables.

Lemma A.1. Let A be an l×m matrix of independent and identically distributed elements

with E[aij] = 0, E[a2ij] = 1, and E[a4ij] = ρa.

Let B be an m × n matrix, independent from A, of identically distributed elements with

E[b4ij] = ρb. Suppose that there exist constants γb, νb, τb, and ηb such that

γb = E[b2ijb
2
kj],

νb = E[b2ijb
2
il],

τb = E[b2ijb
2
kl],

ηb = E[bijbilbkjbkl],

for all 1 ≤ i < k ≤ m and 1 ≤ j < l ≤ n.

Let C = AB. Then C is an l×n matrix of identically distributed elements with E[cij] = 0

and E[c2ij] = mE[b2ij]. There exist constants νc, γc, τc, and ηc for C analogous to those for

B. These constants and ρc = E[c4ij] can be computed as follows:

ρc = mρaρb + 3m(m− 1)γb,

γc = mρb +m(m− 1)γb,

νc = mρaνb +m(m− 1)τb + 2m(m− 1)ηb,

τc = mνb +m(m− 1)τb,

ηc = mνb +m(m− 1)ηb.

68

Proof. The elements of C are defined as

cij =
m∑
q=1

aiqbqj.

Because the elements of A and B are identically distributed (within their respective matrices

— elements of A do not necessarily have the same distribution as elements of B), the elements

of C are as well. Because aiq and bqj are independent, E[aiqbqj] = E[aiq] E[bqj] = 0. So

E[cij] = 0m = 0.

We compute E[c2ij] explicitly.

c2ij =

(
m∑
q=1

aiqbqj

)2

=
m∑
q=1

aiqbqj

m∑
r=1

airbrj

=
m∑
q=1

m∑
r=1

aiqairbqjbrj

E[c2ij] =
m∑
q=1

m∑
r=1

E[aiqair] E[bqjbrj].

In order to compute E[aiqair], we need to know if q = r. We break the sum up accordingly.

E[c2ij] =
m∑
q=1

E[a2iq] E[b2qj] +
m∑
q=1

∑
r 6=q

E[aiq] E[air] E[bqjbrj]

=
m∑
q=1

E[b2qj]

=mE[b2qj].

69

Now we derive ρc.

c4ij =

(
m∑
q=1

aiqbqj

)4

=
m∑
q=1

aiqbqj

m∑
r=1

airbrj

m∑
s=1

aisbsj

m∑
t=1

aitbtj

=
m∑
q=1

m∑
r=1

m∑
s=1

m∑
t=1

aiqairaisaitbqjbrjbsjbtj

ρc =
m∑
q=1

m∑
r=1

m∑
s=1

m∑
t=1

E[aiqairaisait] E[bqjbrjbsjbtj].

Most of the terms of the sum vanish because E[aiqairaisait] = 0 unless one of the following

is true: q = r = s = t, q = r 6= s = t, q = s 6= r = t, or q = t 6= r = s. Because the indices

are interchangeable, the last three cases produce the same sum.

ρc =
m∑
q=1

E[a4iq] E[b4qj] + 3
m∑
q=1

∑
r 6=q

E[a2iq] E[a2ir] E[b2qjb
2
rj]

=mρaρb + 3m(m− 1)γb.

Next, we derive γc. Assume i 6= k.

c2ijc
2
kj =

(
m∑
q=1

aiqbqj

)2(m∑
s=1

aksbsj

)2

=
m∑
q=1

aiqbqj

m∑
r=1

airbrj

m∑
s=1

aksbsj

m∑
t=1

aktbtj

=
m∑
q=1

m∑
r=1

m∑
s=1

m∑
t=1

aiqairaksaktbqjbrjbsjbtj

γc =
m∑
q=1

m∑
r=1

m∑
s=1

m∑
t=1

E[aiqairaksakt] E[bqjbrjbsjbtj].

70

In this case, E[aiqairaksakt] is only nonzero if q = r = s = t or q = r 6= s = t.

γc =
m∑
q=1

E[a2iq] E[a2kq] E[b4qj] +
m∑
q=1

∑
s 6=q

E[a2iq] E[a2ks] E[b2qjb
2
sj]

=mρb +m(m− 1)γb.

The derivation for νc is similar. Assume j 6= l.

c2ijc
2
il =

(
m∑
q=1

aiqbqj

)2(m∑
s=1

aisbsl

)2

=
m∑
q=1

aiqbqj

m∑
r=1

airbrj

m∑
s=1

aisbsl

m∑
t=1

aitbtl

=
m∑
q=1

m∑
r=1

m∑
s=1

m∑
t=1

aiqairaisaitbqjbrjbslbtl

νc =
m∑
q=1

m∑
r=1

m∑
s=1

m∑
t=1

E[aiqairaisait] E[bqjbrjbslbtl].

Now E[aiqairaisait] is only nonzero if q = r = s = t, q = r 6= s = t, q = s 6= r = t, or

q = t 6= r = s. Only the last two of those cases are equivalent.

νc =
m∑
q=1

E[a4iq] E[b2qjb
2
ql] +

m∑
q=1

∑
s 6=q

E[a2iq] E[a2is] E[b2qjb
2
sl] + 2

m∑
q=1

∑
r 6=q

E[a2iq] E[a2ir] E[bqjbrjbqlbrl]

=mρaνb +m(m− 1)τb + 2m(m− 1)ηb.

71

Next, we derive τc.

c2ijc
2
kl =

(
m∑
q=1

aiqbqj

)2(m∑
s=1

aksbsl

)2

=
m∑
q=1

aiqbqj

m∑
r=1

airbrj

m∑
s=1

aksbsl

m∑
t=1

aktbtl

=
m∑
q=1

m∑
r=1

m∑
s=1

m∑
t=1

aiqairaksaktbqjbrjbslbtl

τc =
m∑
q=1

m∑
r=1

m∑
s=1

m∑
t=1

E[aiqairaksakt] E[bqjbrjbslbtl].

As with γc, E[aiqairaksakt] is only nonzero if q = r = s = t or q = r 6= s = t.

τc =
m∑
q=1

E[a2iq] E[a2kq] E[b2qjb
2
ql] +

m∑
q=1

∑
s 6=q

E[a2iq] E[a2ks] E[b2qjb
2
sl]

=mνb +m(m− 1)τb.

Finally, we derive ηc.

cijcilckjckl =

(
m∑
q=1

aiqbqj

)(
m∑
r=1

airbrl

)(
m∑
s=1

aksbsj

)(
m∑
t=1

aktbtl

)

=
m∑
q=1

m∑
r=1

m∑
s=1

m∑
t=1

aiqairaksaktbqjbrlbsjbtl

ηc =
m∑
q=1

m∑
r=1

m∑
s=1

m∑
t=1

E[aiqairaksakt] E[bqjbrlbsjbtl].

Once again, E[aiqairaksakt] is only nonzero if q = r = s = t or q = r 6= s = t.

ηc =
m∑
q=1

E[a2iq] E[a2kq] E[b2qjb
2
ql] +

m∑
q=1

∑
s 6=q

E[a2iq] E[a2ks] E[bqjbqlbsjbsl]

=mνb +m(m− 1)ηb.

Thus all five equations are proven.

72

Corollary A.2. Let A, B, and C be as in Lemma A.1. If g 6= i, then E[cdecdfcghcij] = 0.

Proof. Suppose g 6= i.

cdecdfcghcij =

(
m∑
q=1

adqbqe

)(
m∑
r=1

adrbrf

)(
m∑
s=1

agsbsh

)(
m∑
t=1

aitbtj

)

=
m∑
q=1

m∑
r=1

m∑
s=1

m∑
t=1

adqadragsaitbqebrfbshbtj

E[cdecdfcghcij] =
m∑
q=1

m∑
r=1

m∑
s=1

m∑
t=1

E[adqadragsait] E[bqebrfbshbtj].

Because g 6= i, g and i cannot both be equal to d. Without loss of generality, say i 6= d.

This gives E[adqadragsait] = E[adqadrags] E[ait] = 0.

Corollary A.3. Let A, B, and C be as in Lemma A.1. Suppose that E[bdebifbghbkj] = 0 if

one of e, f , h, and j is distinct from the other three. Then C has this property as well.

Proof. Suppose that one of e, f , h, and j is distinct from the other three.

cdecifcghckj =

(
m∑
q=1

adqbqe

)(
m∑
r=1

airbrf

)(
m∑
s=1

agsbsh

)(
m∑
t=1

aktbtj

)

=
m∑
q=1

m∑
r=1

m∑
s=1

m∑
t=1

adqairagsaktbqebrfbshbtj

E[cdecdfcghcgj] =
m∑
q=1

m∑
r=1

m∑
s=1

m∑
t=1

E[adqairagsakt] E[bqebrfbshbtj].

By the assumption, E[bqebrfbshbtj] = 0. So we see that E[cdecdfcghcgj] = 0.

Corollary A.4. Let A, B, and C be as in Lemma A.1. Suppose that if i 6= j, then

E[bejbgfbhfbki] = 0. Then C has this property.

73

Proof. Suppose that i 6= j.

cejcgfchfcki =

(
m∑
q=1

aeqbqj

)(
m∑
r=1

agrbrf

)(
m∑
s=1

ahsbsf

)(
m∑
t=1

aktbti

)

=
m∑
q=1

m∑
r=1

m∑
s=1

m∑
t=1

aeqagrahsaktbqjbrfbsfbti

E[cejcgfchfcki] =
m∑
q=1

m∑
r=1

m∑
s=1

m∑
t=1

E[aeqagrahsakt] E[bqjbrfbsfbti].

By the assumption, E[bqjbrfbsfbti] = 0.

Corollary A.5. Let A, B, and C be as in Lemma A.1. Then E[ceicgfchfcki] = 0 if one of

e, g, h, and k is distinct from the other three.

Proof. Suppose that one of e, g, h, and k is distinct from the other three.

ceicgfchfcki =

(
m∑
q=1

aeqbqi

)(
m∑
r=1

agrbrf

)(
m∑
s=1

ahsbsf

)(
m∑
t=1

aktbti

)

=
m∑
q=1

m∑
r=1

m∑
s=1

m∑
t=1

aeqagrahsaktbqibrfbsfbti

E[ceicgfchfcki] =
m∑
q=1

m∑
r=1

m∑
s=1

m∑
t=1

E[aeqagrahsakt] E[bqibrfbsfbti].

Without loss of generality, say e is not equal to any of g, h, and k. This gives E[aeqagrahsakt] =

E[aeq] E[agrahsakt] = 0.

Lemma A.6. Let m0, . . . ,mn ∈ N. For 1 ≤ q ≤ n, let Aq be an mq × mq−1 matrix. Let

all of the elements of all of the Aq be independent and identically distributed. Denote by aqij

the element in the ith row and jth column of Aq. Let E[aqij] = 0 and E[a2qij] = 1. Define

ρ1 = E[a4qij].

Let Bq = Aq · · ·A1. Then Bq is an mq × m0 matrix of identically distributed elements

with E[bqij] = 0 and E[b2qij] = m1 · · ·mq−1. For all 1 ≤ q ≤ n, there exist constants ρq, γq,

74

νq, τq, and ηq such that

ρq = E[b4qij],

γq = E[b2qijb
2
qkj],

νq = E[b2qijb
2
qil],

τq = E[b2qijb
2
qkl],

ηq = E[bqijbqilbqkjbqkl],

for all 1 ≤ i < k ≤ mq and 1 ≤ j < l ≤ m0. These constants obey the relations

ρq+1 = mqρ1ρq + 3mq(mq − 1)γq,

γq+1 = mqρq +mq(mq − 1)γq,

νq+1 = mqρ1νq +mq(mq − 1)τq + 2mq(mq − 1)ηq,

τq+1 = mqνq +mq(mq − 1)τq,

ηq+1 = mqνq +mq(mq − 1)ηq,

with γ1 = ν1 = τ1 = 1 and η1 = 0.

Proof. Everything here follows by repeatedly applying Lemma A.1 to Bq+1 = Aq+1Bq.

Corollary A.7. Let Bq be as in Lemma A.6. Then Bq has all of the properties ascribed to

C in Corollary A.2, Corollary A.3, Corollary A.4, and Corollary A.5.

Proof. In each case, the corollary is applied by induction to Aq and Bq−1 to show that Bq

has the desired property.

75

Lemma A.8. If ρ1 = 3 in Lemma A.6, then the constants in question can be calculated

directly as follows:

ρq = 3

q−1∏
r=1

mr(mr + 2),

γq =

q−1∏
r=1

mr(mr + 2),

νq =

q−1∏
r=1

mr(mr + 2),

τq =
1

3

q−1∏
r=1

mr(mr + 2) +
2

3

q−1∏
r=1

mr(mr − 1),

ηq =
1

3

q−1∏
r=1

mr(mr + 2)− 1

3

q−1∏
r=1

mr(mr − 1).

In particular, these formulas hold when the aqij are Gaussian.

Proof. If ρ1 = 1, then the recurrence relations for ρq+1 and γq+1 become

ρq+1 = 3mqρq + 3mq(mq − 1)γq,

γq+1 = mqρq +mq(mq − 1)γq.

Since we have γ1 = 1, this means that ρq = 3γq for all 1 ≤ q ≤ n. This allows us to simplify

the expression for ρq+1 to

ρq+1 = 3mqρq +mq(mq − 1)ρq,

= mq(mq + 2)ρq.

76

By applying this simple rule repeatedly, we get

ρq = 3

q−1∏
r=1

mq(mq + 2),

γq =

q−1∏
r=1

mq(mq + 2).

Similarly, if ρ1 = 3, the recurrence relations for νq+1, τq+1, and ηq+1 become

νq+1 = 3mqνq +mq(mq − 1)τq + 2mq(mq − 1)ηq,

τq+1 = mqνq +mq(mq − 1)τq,

ηq+1 = mqνq +mq(mq − 1)ηq.

Since we have ν1 = τ1 = 1 and η1 = 0, this means that νq = τq + 2ηq for all 1 ≤ q ≤ n. This

allows us to simplify the expression for νq+1 to

νq+1 = 3mqνq +mq(mq − 1)τq + 2mq(mq − 1)ηq

= 3mqνq +mq(mq − 1)(τq + 2ηq)

= 3mqνq +mq(mq − 1)νq

= mq(mq + 2)νq.

By applying this rule repeatedly, we get

νq =

q−1∏
r=1

mr(mr + 2).

Interestingly, this means that νq = γq for all 1 ≤ q ≤ n.

Finally, taking the difference of τq+1 and ηq+1 gives a useful relation:

τq+1 − ηq+1 = mq(mq − 1)(τq − ηq).

77

It follows that

τq − ηq =

q−1∏
r=1

mr(mr − 1).

This allows us to obtain the following formulas for τq+1 and ηq+1:

τq =
1

3
(τq + 2ηq) +

2

3
(τq − ηq)

=
1

3

q−1∏
r=1

mr(mr + 2) +
2

3

q−1∏
r=1

mr(mr − 1),

ηq =
1

3
(τq + 2ηq)−

1

3
(τq − ηq)

=
1

3

q−1∏
r=1

mr(mr + 2)− 1

3

q−1∏
r=1

mr(mr − 1).

This completes the proof.

Lemma A.9. Let m0, . . . ,mn ∈ N. For 1 ≤ q ≤ n, let Aq be an mq ×mq−1 matrix. Let all

of the elements of all of the Aq be independent and identically distributed. Denote by aqij the

element in the ith row and jth column of Aq. Let E[aqij] = 0, E[a2qij] = 1, and E[a4qij] = 3.

Let Bq,r = Aq · · ·Ar for q ≥ r. Let 1 ≤ i ≤ n. Let x, y ∈ Rm0. Let w, v ∈ Rmn. Thus

E
[
xT (Bi−1,1)

TBi−1,1yw
TBn,i+1(Bn,i+1)

Tv
]

= m1m2 · · ·mn−1x
TywTv.

Proof. First, note that xT (Bi−1,1)
TBi−1,1y and wTBn,i+1(Bn,i+1)

Tv are independent. This

allows us to factor the expectation as

E
[
xT (Bi−1,1)

TBi−1,1yw
TBn,i+1(Bn,i+1)

Tv
]

= E
[
xT (Bi−1,1)

TBi−1,1y
]

E
[
wTBn,i+1(Bn,i+1)

Tv
]
,

and work out the two simpler expectations separately. Further, because the two have fun-

damentally the same structure, we only have to work out the details for the first.

78

To keep the subscripts manageable, define the shorthands B = Bi−1,1, n = m0, and

m = mi−1. Note that x and y, are n× 1 while B is m× n.

First, we derive an explicit formula for xTBTBy.

xTBTBy =
m∑
d=1

(Bx)d(By)d

=
m∑
d=1

n∑
e=1

bdexe

n∑
f=1

bdfyf

=
m∑
d=1

n∑
e=1

n∑
f=1

bdebdfxeyf .

Then we take the expected value.

E[xTBTBy] =
m∑
d=1

n∑
e=1

n∑
f=1

E[bdebdf]xeyf .

Because E[bdebdf] = 0 when e 6= f , this simplifies readily.

=
m∑
d=1

n∑
e=1

E[b2de]xeye.

By Lemma A.6, E[b2de] = m1m2 · · ·mi−2. Recall that m = mi−1.

=m1m2 · · ·mi−1x
Ty.

In the language of the lemma statement, this tells us that

E
[
xT (Bi−1,1)

TBi−1,1y
]

= m1m2 · · ·mi−1x
Ty.

Applying the same logic to the other expectation in question gives

E
[
wTBn,i+1(Bn,i+1)

Tv
]

= mimi+2 · · ·mn−1w
Tv.

79

The desired result is obtained by multiplying the two.

E
[
xT (Bi−1,1)

TBi−1,1yw
TBn,i+1(Bn,i+1)

Tv
]

= m1m2 · · ·mn−1x
TywTv.

It is noteworthy that this expression does not depend on i.

Corollary A.10. Let all be as in Theorem A.9 except with each Aq scaled by a factor of

σq > 0, causing E[a2qij] = σ2
q . Then

E
[
xT (Bi−1,1)

TBi−1,1yw
TBn,i+1(Bn,i+1)

Tv
]

=
σ2
1σ

2
2 · · ·σ2

n

σ2
i

m1m2 · · ·mn−1x
TywTv.

If σi = (mi−1mi)
−1/4, then this simplifies to

√
mi−1mi√
m0mn

xTywTv.

Proof. Each of the Aq occurs twice in the product except for Ai, which does not occur. Hence

the scaling by

σ2
1σ

2
2 · · ·σ2

n

σ2
i

.

When σi = (mi−1mi)
−1/4, this becomes

√
mi−1mi√

m0m1m2 · · ·mn−1
√
mn

m1m2 · · ·mn−1x
TywTv.

Cancellation gives the simple form above.

Lemma A.11. Let m0, . . . ,mn ∈ N. For 1 ≤ q ≤ n, let Aq be an mq ×mq−1 matrix. Let all

of the elements of all of the Aq be independent and identically distributed. Denote by aqij the

element in the ith row and jth column of Aq. Let E[aqij] = 0, E[a2qij] = 1, and E[a4qij] = 3.

80

Let Bq,r = Aq · · ·Ar for q ≥ r. Let 1 ≤ i ≤ j ≤ n. Let x, y, z ∈ Rm0. Then

E
[(
xTBT

i−1,1Bi−1,1y
) (
xTBT

j−1,1Bj−1,1z
)
| Ai, . . . , Aj−1

]
=
‖Bj−1,i‖2F
mi−1

(
2xTyxT z + xTxyT z

3

i−1∏
r=1

mr(mr + 2) +
xTyxT z − xTxyT z

3

i−1∏
r=1

mr(mr − 1)

)
.

Here ‖ · ‖F denotes the Frobenius norm.

Proof. To keep the notation manageable, let B = Bi−1,1, C = BT
j−1,iBj−1,i, n = m0, and

m = mi−1. With this new notation, we derive

E
[(
xTBTBy

) (
xTBTCBz

)
| C
]
.

Note that x, y, and z are n× 1, B is m× n, and C is m×m.

First, we derive an explicit formula for xTBTBy.

xTBTBy =
m∑
d=1

(Bx)d(By)d

=
m∑
d=1

n∑
e=1

bdexe

n∑
f=1

bdfyf

=
m∑
d=1

n∑
e=1

n∑
f=1

bdebdfxeyf .

81

We do the same for xTBTCBz.

xTBTCBz =
m∑
g=1

(Bx)g(CBz)g

=
m∑
g=1

n∑
h=1

bghxh

m∑
i=1

cgi(Bz)i

=
m∑
g=1

n∑
h=1

bghxh

m∑
i=1

cgi

n∑
j=1

bijzj

=
m∑
g=1

n∑
h=1

m∑
i=1

n∑
j=1

bghbijcgixhzj.

We combine the two to obtain a formula for xTBTByxTBTCBz.

xTBTByxTBTCBz =
m∑
d=1

n∑
e=1

n∑
f=1

bdebdfxeyf

m∑
g=1

n∑
h=1

m∑
i=1

n∑
j=1

bghbijcgixhzj

=
m∑
d=1

n∑
e=1

n∑
f=1

m∑
g=1

n∑
h=1

m∑
i=1

n∑
j=1

bdebdfbghbijcgixexhyfzj.

By Corollary A.7, E[bdebdfbghbij] = 0 if g 6= i. This lets us simplify a little bit.

E[xTBTByxTBTCBz | C] =
m∑
d=1

n∑
e=1

n∑
f=1

m∑
g=1

n∑
h=1

m∑
i=1

n∑
j=1

E[bdebdfbghbij]cgixexhyfzj

=
m∑
d=1

n∑
e=1

n∑
f=1

m∑
g=1

n∑
h=1

n∑
j=1

E[bdebdfbghbgj]cggxexhyfzj.

By Corollary A.7, E[bdebdfbghbgj] is nonzero in four cases: e = h 6= f = j, e = j 6= f = h,

e = f 6= h = j, and e = f = h = j. We break the sum up accordingly.

E[xTBTByxTBTCBz | C]

=
m∑
d=1

n∑
e=1

∑
f 6=e

m∑
g=1

E[bdebdfbgebgf]cggxexeyfzf +
m∑
d=1

n∑
e=1

∑
f 6=e

m∑
g=1

E[bdebdfbgfbge]cggxexfyfze

+
m∑
d=1

n∑
e=1

m∑
g=1

∑
h6=e

E[bdebdebghbgh]cggxexhyezh +
m∑
d=1

n∑
e=1

m∑
g=1

E[b2deb
2
ge]cggxexeyeze.

82

We break the sum apart again to handle the cases d = g and d 6= g.

E[xTBTByxTBTCBz | C]

=
m∑
d=1

n∑
e=1

∑
f 6=e

E[b2deb
2
df]cddxexeyfzf +

m∑
d=1

n∑
e=1

∑
f 6=e

E[b2deb
2
df]cddxexfyfze

+
m∑
d=1

n∑
e=1

∑
h6=e

E[b2deb
2
dh]cddxexhyezh +

m∑
d=1

n∑
e=1

E[b4de]cddxexeyeze

+
m∑
d=1

n∑
e=1

∑
f 6=e

∑
g 6=d

E[bdebdfbgebgf]cggxexeyfzf +
m∑
d=1

n∑
e=1

∑
f 6=e

∑
g 6=d

E[bdebdfbgfbge]cggxexfyfze

+
m∑
d=1

n∑
e=1

∑
g 6=d

∑
h6=e

E[b2deb
2
gh]cggxexhyezh +

m∑
d=1

n∑
e=1

∑
g 6=d

E[b2deb
2
ge]cggxexeyeze.

We substitute in the constants from Lemma A.1 and sum over d and g to separate Tr(C)

from each sum.

E[xTBTByxTBTCBz | C]

=νb Tr(C)
n∑
e=1

xexe
∑
f 6=e

yfzf + νb Tr(C)
n∑
e=1

xeze
∑
f 6=e

xfyf

+ νb Tr(C)
n∑
e=1

xeye
∑
h6=e

xhzh + ρb Tr(C)
n∑
e=1

xexeyeze

+ ηb(m− 1) Tr(C)
n∑
e=1

xexe
∑
f 6=e

yfzf + ηb(m− 1) Tr(C)
n∑
e=1

xeze
∑
f 6=e

xfyf

+ τb(m− 1) Tr(C)
n∑
e=1

xeye
∑
h6=e

xhzh + γb(m− 1) Tr(C)
n∑
e=1

xexeyeze.

83

Defining w =
∑n

e=1 x
2
eyeze allows us to simplify further.

E[xTBTByxTBTCBz | C]

=νb Tr(C)
(
xTxyT z − w

)
+ νb Tr(C)

(
xT zxTy − w

)
+ νb Tr(C)

(
xTyxT z − w

)
+ ρb Tr(C) (w)

+ ηb(m− 1) Tr(C)
(
xTxyT z − w

)
+ ηb(m− 1) Tr(C)

(
xT zxTy − w

)
+ τb(m− 1) Tr(C)

(
xTyxT z − w

)
+ γb(m− 1) Tr(C) (w) .

Recall from the proof of Corollary 2 that ρb = 3νb and γb = τb + 2ηb. This allows us to

combine terms and arrive at a much simpler expression.

E[xTBTByxTBTCBz | C]

= Tr(C)
(
νb
(
xTxyT z + 2xTyxT z

)
+ ηb(m− 1)

(
xTxyT z + xTyxT z

)
+ τb(m− 1)

(
xTyxT z

))
.

Substitute in the explicit expressions for νb, ηb, and τb from Corollary 2.

E[xTBTByxTBTCBz | C]

= Tr(C)
(
xTxyT z + 2xTyxT z

)(i−2∏
r=1

mr(mr + 2)

)

+ Tr(C)
(
xTxyT z + xTyxT z

)
(mi−1 − 1)

(
1

3

i−2∏
r=1

mr(mr + 2)− 1

3

i−2∏
r=1

mr(mr − 1)

)

+ Tr(C)
(
xTyxT z

)
(mi−1 − 1)

(
1

3

i−2∏
r=1

mr(mr + 2) +
2

3

i−2∏
r=1

mr(mr − 1)

)
.

With some rearranging, we find an even nicer form.

E[xTBTByxTBTCBz | C]

=
Tr(C)

mi−1

(
2xTyxT z + xTxyT z

3

i−1∏
r=1

mr(mr + 2) +
xTyxT z − xTxyT z

3

i−1∏
r=1

mr(mr − 1)

)
.

84

Finally, note that Tr(C) = ‖Bj−1,i‖2F .

E[xTBTByxTBTCBz | C]

=
‖Bj−1,i‖2F
mi−1

(
2xTyxT z + xTxyT z

3

i−1∏
r=1

mr(mr + 2) +
xTyxT z − xTxyT z

3

i−1∏
r=1

mr(mr − 1)

)
.

This completes the proof.

Lemma A.12. Let m0, . . . ,mn ∈ N. For 1 ≤ q ≤ n, let Aq be an mq ×mq−1 matrix. Let all

of the elements of all of the Aq be independent and identically distributed. Denote by aqij the

element in the ith row and jth column of Aq. Let E[aqij] = 0, E[a2qij] = 1, and E[a4qij] = 3.

Let Bq,r = Aq · · ·Ar for q ≥ r. Let 1 ≤ i ≤ j ≤ n. Then

E

[‖Bj−1,i‖2F
mi−1

‖Bj,i+1‖2F
mj

]
=

1

3

j−1∏
r=i

mr(mr + 2) +
2

3

j−1∏
r=i

mr(mr − 1).

Here ‖ · ‖F denotes the Frobenius norm.

Proof. To keep the notation manageable, let B = Bj−1,i+1, C = Ai, D = Aj, q = mi−1,

r = mi, s = mj−1, and t = mj. With this new notation, we derive

E
[
‖BC‖2F‖DB‖2F

]
.

Note that B is s× r, C is r × q, and D is t× s.

First, we derive ‖BC‖2F as a sum.

‖BC‖2F =
s∑
e=1

q∑
f=1

(BC)2ef

=
s∑
e=1

q∑
f=1

(
r∑

g=1

begcgf

)2

=
s∑
e=1

q∑
f=1

r∑
g=1

r∑
h=1

begbehcgfchf .

85

We take the expectation given B to eliminate the c terms.

E
[
‖BC‖2F | B

]
=

s∑
e=1

q∑
f=1

r∑
g=1

r∑
h=1

begbeh E[cgfchf]

=
s∑
e=1

q∑
f=1

r∑
g=1

b2eg E[c2gf]

=q
s∑
e=1

r∑
g=1

b2eg.

We do the same for ‖DB‖2F

‖DB‖2F =
t∑
i=1

r∑
j=1

(DB)2ij

=
t∑
i=1

r∑
j=1

(
s∑

k=1

dikbkj

)2

=
t∑
i=1

r∑
j=1

s∑
k=1

s∑
l=1

bkjbljdikdil.

As with the c terms, the independence of the d terms causes most of them to vanish.

E
[
‖DB‖2F | B

]
=

t∑
i=1

r∑
j=1

s∑
k=1

s∑
l=1

bkjblj E[dikdil]

=
t∑
i=1

r∑
j=1

s∑
k=1

b2kj E[dikdik]

=t
r∑
j=1

s∑
k=1

b2kj.

We combine the previous two expressions to obtain the object in question.

1

qt
E
[
‖BC‖2F‖DB‖2F

]
=

s∑
e=1

r∑
g=1

r∑
j=1

s∑
k=1

E[b2egb
2
kj].

86

As always, it is essential to break up the sum based on which indices might be equal.

E
[
‖DB‖2F | B

]
=

s∑
e=1

r∑
g=1

E[b4eg]

+
s∑
e=1

r∑
g=1

∑
j 6=g

E[b2egb
2
ej]

+
s∑
e=1

r∑
g=1

∑
k 6=e

E[b2egb
2
kg]

+
s∑
e=1

r∑
g=1

∑
j 6=g

∑
k 6=e

E[b2egb
2
kj].

Substitute in the constants from Lemma A.1.

E
[
‖DB‖2F | B

]
=srρb + sr(r − 1)νb + sr(s− 1)γb + sr(s− 1)(r − 1)τb.

Now we can return to our original notation and use the expressions from Corollary 2.

E

[‖Bj−1,i‖2F
mi−1

‖Bj,i+1‖2F
mj

]
= 3mimj−1

j−2∏
r=i+1

mr(mr + 2)

+mj−1mi(mi − 1)

j−2∏
r=i+1

mr(mr + 2)

+mj−1mi(mj−1 − 1)

j−2∏
r=i+1

mr(mr + 2)

+
1

3
mj−1mi(mj−1 − 1)(mi − 1)

j−2∏
r=i+1

mr(mr + 2)

+
2

3
mj−1mi(mj−1 − 1)(mi − 1)

j−2∏
r=i+1

mr(mr − 1).

All of this simplifies in a straightforward way to a nicer expression.

E

[‖Bj−1,i‖2F
mi−1

‖Bj,i+1‖2F
mj

]
=

1

3

j−1∏
r=i

mr(mr + 2) +
2

3

j−1∏
r=i

mr(mr − 1).

87

This completes the proof.

Lemma A.13. Let m0, . . . ,mn ∈ N. For 1 ≤ q ≤ n, let Aq be an mq ×mq−1 matrix. Let all

of the elements of all of the Aq be independent and identically distributed. Denote by aqij the

element in the ith row and jth column of Aq. Let E[aqij] = 0, E[a2qij] = 1, and E[a4qij] = 3.

Let Bq,r = Aq · · ·Ar for q ≥ r. Let 1 ≤ i ≤ j ≤ n. Let w, v ∈ Rmn and let P be mn ×mn

and symmetric. Then

E
[
wTBn,j+1B

T
n,j+1PBn,i+1B

T
n,i+1v | Ai+i, . . . , Aj

]
=
‖Bj,i+1‖2F

mj

(
2wTPv + Tr(P)wTv

3

n−1∏
r=j

mr(mr + 2) +
wTPv − Tr(P)wTv

3

n−1∏
r=j

mr(mr − 1)

)
.

Here ‖ · ‖F denotes the Frobenius norm.

Proof. To keep the notation manageable, let B = Bj+1,n, D = BT
j,i+1Bj,i+1, n = mn, and

m = mj. With this new notation, we derive

E
[
wTBBTPBDBTv | D

]
.

Note that x, y, and z are n× 1, B is n×m, P is n× n, and D is m×m.

First, we derive an explicit formula for the elements of P TBBTw.

(P TBBTw)e =
m∑
f=1

(P TB)ef (B
Tw)f

=
m∑
f=1

n∑
g=1

pgebgf

n∑
h=1

bhfwh

=
m∑
f=1

n∑
g=1

n∑
h=1

bgfbhfpgewh.

88

We do the same for BDBTv.

(BDBTv)e =
m∑
i=1

(BD)ei(B
Tv)i

=
m∑
i=1

m∑
j=1

bejdji

n∑
k=1

bkivk

=
m∑
i=1

m∑
j=1

n∑
k=1

bejbkidjivk.

These formulas let us compute wTBBTPBDBTv = (P TBBTw)T (BDBTv).

wTBBTPBDBTv =
n∑
e=1

m∑
f=1

n∑
g=1

n∑
h=1

m∑
i=1

m∑
j=1

n∑
k=1

bejbgfbhfbkidjipgewhvk.

By Corollary A.7, E[bejbgfbhfbki] = 0 if i 6= j. We get to remove one index.

E
[
wTBBTPBDBTv | D

]
=

n∑
e=1

m∑
f=1

n∑
g=1

n∑
h=1

m∑
i=1

n∑
k=1

E[beibgfbhfbki]diipgewhvk.

By Corollary A.7, E[beibgfbhfbki] is nonzero in four cases: e = k 6= g = h, e = g 6= h = k,

e = h 6= g = k, and e = g = h = k. We break the sum up accordingly.

E[wTBBTPBDBTv | D]

=
n∑
e=1

m∑
f=1

∑
g 6=e

m∑
i=1

E[b2eibY o
2
gf]diipgewgve +

n∑
e=1

m∑
f=1

∑
h6=e

m∑
i=1

E[beibefbhfbhi]diipeewhvh

+
n∑
e=1

m∑
f=1

∑
g 6=e

m∑
i=1

E[beibgfbefbgi]diipgewevg +
n∑
e=1

m∑
f=1

m∑
i=1

E[b2eib
2
ef]diipeeweve.

89

We break the sum apart again to handle the cases i = f and i 6= f .

E[wTBBTPBDBTv | D]

=
n∑
e=1

m∑
f=1

∑
g 6=e

E[b2efb
2
gf]dffpgewgve +

n∑
e=1

m∑
f=1

∑
h6=e

E[b2efb
2
hf]dffpeewhvh

+
n∑
e=1

m∑
f=1

∑
g 6=e

E[b2efb
2
gf]dffpgewevg +

n∑
e=1

m∑
f=1

E[b4ef]dffpeeweve

+
n∑
e=1

m∑
f=1

∑
g 6=e

∑
i 6=f

E[b2eib
2
gf]diipgewgve +

n∑
e=1

m∑
f=1

∑
h6=e

∑
i 6=f

E[beibefbhfbhi]diipeewhvh

+
n∑
e=1

m∑
f=1

∑
g 6=e

∑
i 6=f

E[beibgfbefbgi]diipgewevg +
n∑
e=1

m∑
f=1

∑
i 6=f

E[b2eib
2
ef]diipeeweve.

We can now identify the constants from Lemma A.1 and separate out Tr(D).

E[wTBBTPBDBTv | D]

=γb Tr(D)
n∑
e=1

∑
g 6=e

pgewgve + γb Tr(D)
n∑
e=1

∑
h6=e

peewhvh

+ γb Tr(D)
n∑
e=1

∑
g 6=e

pgewevg + ρb Tr(D)
n∑
e=1

peeweve

+ τb(m− 1) Tr(D)
n∑
e=1

∑
g 6=e

pgewgve + ηb(m− 1) Tr(D)
n∑
e=1

∑
h6=e

peewhvh

+ ηb(m− 1) Tr(D)
n∑
e=1

∑
g 6=e

pgewevg + νb(m− 1) Tr(D)
n∑
e=1

peeweve.

Use the relations from the proof of Corollary 2 to simplify. Replace h with g so that terms

match.

E[wTBBTPBDBTv | D]

= Tr(D)

(
γb

n∑
e=1

n∑
g=1

pgewgve + γb

n∑
e=1

n∑
g=1

peewgvg + γb

n∑
e=1

n∑
g=1

pgewevg

)
.

+ (m− 1) Tr(D)

(
τb

n∑
e=1

n∑
g=1

pgewgve + ηb

n∑
e=1

n∑
g=1

peewgvg + ηb

n∑
e=1

n∑
g=1

pgewevg

)

90

These sums can now be expressed conveniently in the language of linear algebra.

E[wTBBTPBDBTv | D]

= Tr(D)
(
wTPvγb + Tr(P)wTvγb + vTPwγb

)
+ (m− 1) Tr(D)

(
wTPvτb + Tr(P)wTvηb + vTPwηb

)
.

Substitute in the expressions from Lemma A.8.

E[wTBBTPBDBTv | D]

=
Tr(D)

m

(
wTPv + Tr(P)wTv + vTPw

)
mj

(
n−1∏
r=j+1

mr(mr + 2)

)

+
Tr(D)

m

(
wTPv

)
mj(mj − 1)

(
1

3

n−1∏
r=j+1

mr(mr + 2) +
2

3

n−1∏
r=j+1

mr(mr − 1)

)

+
Tr(D)

m

(
Tr(P)wTv + vTPw

)
mj(mj − 1)

(
1

3

n−1∏
r=j+1

mr(mr + 2)− 1

3

n−1∏
r=j+1

mr(mr − 1)

)
.

Rearrange.

E[wTBBTPBDBTv | D]

=
Tr(D)

mj

(
wTPv + Tr(P)wTv + vTPw

3

n−1∏
r=j

mr(mr + 2)

)

+
Tr(D)

mj

(
2wTPv − Tr(P)wTv − vTPw

3

n−1∏
r=j

mr(mr − 1)

)
.

Use the symmetry of P to simplify.

E[wTBBTPBDBTv | D]

=
Tr(D)

mj

(
2wTPv + Tr(P)wTv

3

n−1∏
r=j

mr(mr + 2) +
wTPv − Tr(P)wTv

3

n−1∏
r=j

mr(mr − 1)

)
.

91

Recall that D = BT
j,i+1Bj,i+1 and so Tr(D) = ‖Bj,i+1‖2F .

E[wTBBTPBDBTv | D]

=
‖Bj,i+1‖2F

mj

(
2wTPv + Tr(P)wTv

3

n−1∏
r=j

mr(mr + 2) +
wTPv − Tr(P)wTv

3

n−1∏
r=j

mr(mr − 1)

)
.

This completes the proof.

Theorem A.14. Let m0, . . . ,mn ∈ N. For 1 ≤ q ≤ n, let Aq be an mq ×mq−1 matrix. Let

all of the elements of all of the Aq be independent and identically distributed. Denote by aqij

the element in the ith row and jth column of Aq. Let E[aqij] = 0, E[a2qij] = 1, and E[a4qij] = 3.

Let Bq,r = Aq · · ·Ar for q ≥ r. Let 1 ≤ i ≤ j ≤ n. Let x, y, z ∈ Rm0. Let w, v ∈ Rmn and let

P be mn ×mn and symmetric. Define

fij =
2xTyxT z + xTxyT z

3

i−1∏
r=1

mr(mr + 2) +
xTyxT z − xTxyT z

3

i−1∏
r=1

mr(mr − 1),

gij =
1

3

j−1∏
r=i

mr(mr + 2) +
2

3

j−1∏
r=i

mr(mr − 1),

hij =
2wTPv + Tr(P)wTv

3

n−1∏
r=j

mr(mr + 2) +
wTPv − Tr(P)wTv

3

n−1∏
r=j

mr(mr − 1).

Then

E
[(
xTBT

i−1,1Bi−1,1y
) (
xTBT

j−1,1Bj−1,1z
) (
wTBn,j+1B

T
n,j+1PBn,i+1B

T
n,i+1v

)]
= fijgijhij.

Proof. Let

c =
(
xTBT

i−1,1Bi−1,1y
) (
xTBT

j−1,1Bj−1,1z
) (
wTBn,j+1B

T
n,j+1PBn,i+1B

T
n,i+1v

)
.

Because each Aq is independent of all the others, we can factor the expectation as

E[c] = E[c | Ai, Ai+1, . . . , An] E[c | A1, A2, . . . Ai−1, Aj, Aj+1, . . . , An] E[c | A1, A2, . . . , Aj−1].

92

Lemma A.11, Lemma A.12, and Lemma A.13 establish that

E[c | Ai, Ai+1, . . . , An] = fij,

E[c | A1, A2, . . . Ai−1, Aj, Aj+1, . . . , An] = gij,

E[c | A1, A2, . . . , Aj−1] = hij,

respectively.

Corollary A.15. Let all be as in Theorem A.14 except with each Aq scaled by a factor of

σq > 0, causing E[a2qij] = σ2
q , and E[a4qij] = 3σ4

q . Then

E
[(
xTBT

i−1,1Bi−1,1y
) (
xTBT

j−1,1Bj−1,1z
) (
wTBn,j+1B

T
n,j+1PBn,i+1B

T
n,i+1v

)]
=
σ4
1σ

4
2 · · ·σ4

n

σ2
i σ

2
j

fijgijhij.

In particular, if σq = (mqmq−1)
−1/4, then the expectation becomes

(mi−1mimj−1mj)
1/2

m0m2
1m

2
2 · · ·m2

n−1mn

fijgijhij.

Proof. If i < j, then each of the Aq appear four times in the above product except for Ai

and Aj, which each appear twice. If i = j, then each of the Aq appear four times except for

Ai, which does not appear at all.

93

Bibliography

[1] Ken-Ichi Funahashi. On the approximate realization of continuous mappings by neural
networks. Neural Networks, 2(3):183 – 192, 1989.

[2] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
Control, Signals and Systems, 2(4):303–314, Dec 1989.

[3] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward net-
works are universal approximators. Neural Networks, 2(5):359 – 366, 1989.

[4] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural
Networks, 4(2):251 – 257, 1991.

[5] Moshe Leshno, Vladimir Ya. Lin, Allan Pinkus, and Shimon Schocken. Multilayer
feedforward networks with a nonpolynomial activation function can approximate any
function. Neural Networks, 6(6):861 – 867, 1993.

[6] K. Hornik. Some new results on neural network approximation. Neural Networks,
6(8):1069 – 1072, 1993.

[7] Andrew R. Barron. Approximation and estimation bounds for artificial neural networks.
Machine Learning, 14(1):115–133, Jan 1994.

[8] Franco Scarselli and Ah Chung Tsoi. Universal approximation using feedforward neural
networks: A survey of some existing methods, and some new results. Neural Networks,
11(1):15 – 37, 1998.

[9] Henry W. Lin, Max Tegmark, and David Rolnick. Why does deep and cheap learning
work so well? Journal of Statistical Physics, 168(6):1223–1247, Sep 2017.

[10] Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the num-
ber of linear regions of deep neural networks. In Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Pro-
cessing Systems 27, pages 2924–2932. Curran Associates, Inc., 2014.

[11] Matus Telgarsky. Representation benefits of deep feedforward networks. CoRR,
abs/1509.08101, 2015.

[12] Hrushikesh Mhaskar, Qianli Liao, and Tomaso A. Poggio. Learning real and boolean
functions: When is deep better than shallow. CoRR, abs/1603.00988, 2016.

[13] Shiyu Liang and R. Srikant. Why deep neural networks? CoRR, abs/1610.04161, 2016.

[14] H. N. Mhaskar and T. Poggio. Deep vs. shallow networks: An approximation theory
perspective. Analysis and Applications, 14(06):829–848, 2016.

[15] Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Understanding
deep neural networks with rectified linear units. CoRR, abs/1611.01491, 2016.

94

[16] Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl Dickstein.
On the expressive power of deep neural networks. In Proceedings of the 34th Inter-
national Conference on Machine Learning - Volume 70, ICML’17, pages 2847–2854.
JMLR.org, 2017.

[17] David Rolnick and Max Tegmark. The power of deeper networks for expressing natural
functions. CoRR, abs/1705.05502, 2017.

[18] Ronen Eldan and Ohad Shamir. The power of depth for feedforward neural networks. In
Vitaly Feldman, Alexander Rakhlin, and Ohad Shamir, editors, 29th Annual Conference
on Learning Theory, volume 49 of Proceedings of Machine Learning Research, pages
907–940, Columbia University, New York, New York, USA, 23–26 Jun 2016. PMLR.

[19] Nadav Cohen, Or Sharir, and Amnon Shashua. On the expressive power of deep learning:
A tensor analysis. In Vitaly Feldman, Alexander Rakhlin, and Ohad Shamir, editors,
29th Annual Conference on Learning Theory, volume 49 of Proceedings of Machine
Learning Research, pages 698–728, Columbia University, New York, New York, USA,
23–26 Jun 2016. PMLR.

[20] Matus Telgarsky. Benefits of depth in neural networks. In Vitaly Feldman, Alexan-
der Rakhlin, and Ohad Shamir, editors, 29th Annual Conference on Learning Theory,
volume 49 of Proceedings of Machine Learning Research, pages 1517–1539, Columbia
University, New York, New York, USA, 23–26 Jun 2016. PMLR.

[21] Dmytro Perekrestenko, Philipp Grohs, Dennis Elbrächter, and Helmut Bölcskei.
The universal approximation power of finite-width deep relu networks. CoRR,
abs/1806.01528, 2018.

[22] Sho Sonoda and Noboru Murata. Neural network with unbounded activations is uni-
versal approximator. CoRR, abs/1505.03654, 2015.

[23] Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The expressive
power of neural networks: A view from the width. CoRR, abs/1709.02540, 2017.

[24] Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight vc-dimension
bounds for piecewise linear neural networks. In Satyen Kale and Ohad Shamir, edi-
tors, Proceedings of the 2017 Conference on Learning Theory, volume 65 of Proceedings
of Machine Learning Research, pages 1064–1068, Amsterdam, Netherlands, 07–10 Jul
2017. PMLR.

[25] Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural
Networks, 94:103 – 114, 2017.

[26] Boris Hanin. Universal function approximation by deep neural nets with bounded width
and relu activations. arXiv preprint arXiv:1708.02691, 2017.

[27] Boris Hanin and Mark Sellke. Approximating continuous functions by relu nets of
minimal width. arXiv preprint arXiv:1710.11278, 2017.

95

[28] Wenling Shang, Kihyuk Sohn, Diogo Almeida, and Honglak Lee. Understanding and
improving convolutional neural networks via concatenated rectified linear units. CoRR,
abs/1603.05201, 2016.

[29] Michael Blot, Matthieu Cord, and Nicolas Thome. Maxmin convolutional neural net-
works for image classification. CoRR, abs/1610.07882, 2016.

[30] Jonghong Kim, O. Sangjun, Yoonnyun Kim, and Minho Lee. Convolutional neural
network with biologically inspired retinal structure. Procedia Computer Science, 88:145
– 154, 2016. 7th Annual International Conference on Biologically Inspired Cognitive
Architectures, BICA 2016, held July 16 to July 19, 2016 in New York City, NY, USA.

[31] James Clerk Maxwell. V. illustrations of the dynamical theory of gases.part i. on the
motions and collisions of perfectly elastic spheres. The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science, 19(124):19–32, 1860.

[32] David Balduzzi, Marcus Frean, Lennox Leary, J. P. Lewis, Kurt Wan-Duo Ma, and
Brian McWilliams. The shattered gradients problem: If resnets are the answer, then
what is the question? CoRR, abs/1702.08591, 2017.

[33] M. Evans, N. Hastings, and B. Peacock. Statistical Distributions. Wiley Series in
Probability and Statistics. Wiley, 2000.

[34] Yurii Nesterov. Introductory lectures on convex programming volume i: Basic course.
Lecture notes, 3(4):5, 1998.

[35] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals
of mathematical statistics, pages 400–407, 1951.

[36] Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence
over nonconvex landscapes, from any initialization. arXiv preprint arXiv:1806.01811,
2018.

[37] Xiaoxia Wu, Simon S Du, and Rachel Ward. Global convergence of adaptive gradient
methods for an over-parameterized neural network. arXiv preprint arXiv:1902.07111,
2019.

96

	Hyperparameters for Dense Neural Networks
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Contributions

	2 Background
	2.1 Neurons
	2.2 Neural Networks
	2.3 Hyperparameters
	2.4 Convolutions

	3 Crelu Networks
	3.1 Depth and Universality
	3.2 Concatenated Relu
	3.3 Eliminating Biases
	3.4 Loss Functions
	3.5 Backpropagation

	4 Optimal Hyperparameters
	4.1 Initialization Scale
	4.2 Preprocessing
	4.3 Quadratic Approximation
	4.4 The Learning Rate Schedule
	4.5 Experiments

	5 Looking Forward
	5.1 Neural Network Tools
	5.2 Special Layers
	5.3 Optimal Architectures
	5.4 Conclusion

	A Expectations
	Bibliography

