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abstract

Extensions of the Power Group Enumeration Theorem

Shawn Jeffrey Green
Department of Mathematics, BYU

Master of Science

The goal of this paper is to develop extensions of Pólya enumeration methods which count
orbits of functions. De Bruijn, Harary, and Palmer all worked on this problem and created
generalizations which involve permuting the codomain and domain of functions simultane-
ously. We cover their results and specifically extend them to the case where the group of
permutations need not be a direct product of groups. In this situation, we develop a way
of breaking the orbits into subclasses based on a characteristic of the functions involved.
Additionally, we develop a formula for the number of orbits made up of bijective functions.
As a final extension, we also expand the set we are acting on to be the set of all relations
between finite sets. Then we show how to count the orbits of relations.

Keywords: Pólya enumeration, De Bruijn, power group, cycle index
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Chapter 1. Introductory Material

A interesting combinatorial question to ask is how many different ways can one color the

sides of a shape with a fixed number of colors available? For example, how many ways can

we color the sides of a square having three colors to use, but not needing to use all three

of them. This would be easily answered if we did not consider the symmetry of the shape

in question. A square can be rotated multiple ways, each rotation transforming colorings

into other equivalent colorings. This leads us to ask how many ways there are to color the

shape that do not differ from each other by a mere symmetry. In our example, how many

symmetrically distinct ways can one color the sides of a square when three (or more) colors

are available? These are the sorts of problems solved by Pólya’s Theorem.

In terms of mathematical concepts, we can think of colorings as functions. We are

mapping the set of vertices, sides, or faces to a set of colors. We also have symmetries which

permute the domain of these functions. The symmetries form a group acting on the set of all

such functions. Pólya’s Theorem answers the question of how many symmetrically distinct

functions there will be. In this chapter we will cover several formulations of Pólya’s Theorem

to lay the groundwork for generalizing it in Chapter 2. Additionally, we will discuss some

extensions of Pólya’s Theorem already discovered by De Bruijn, Harary, and Palmer. Finally,

we will discuss some limitations of these generalizations to prepare for further extension in

Chapters 2 and 3.

1.1 Burnside’s Lemma and Basic Pólya Enumeration

We will begin with the foundational result that leads to Pólya’s Theorem and most of the

results in this paper, Burnside’s lemma [1]. While the result is actually attributed to Cauchy

and Frobenius [3], we will still use the name Burnside’s lemma to fit in with the literature.

It is an elementary fact from abstract algebra that a group G acting on a set S via a group

action ∗ partitions S into equivalence classes. Here s1 ∼ s2 if and only if g ∗ s1 = s2 for some
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g ∈ G. The equivalence classes of this equivalence relation are usually called orbits. We will

denote the collection of orbits by S/G and the number of orbits by |S/G|. Burnside’s lemma

provides an effective way of counting the orbits when a finite group is acting on a finite set.

To state the result, we will define Sg = {s ∈ S : g ∗ s = s}. Thus Sg is the set of elements

from S invariant under the action by group element g.

Lemma 1.1. (Burnside’s)

Let G be a finite group with a group action defined on a finite set S. Then

|S/G| = 1

|G|
∑
g∈G

|Sg|.

This lemma essentially says the number of orbits is the average number of elements of

S fixed under the action by elements of G. Thus to find the number of orbits induced by a

group action we only need to find out how many fixed elements there are for a given group

element. While we will not prove Burnside’s lemma in this paper, it is not difficult to show

and can be found in many books about combinatorics or algebra. Specifically of the cited

sources in this paper, [4],[7], and [10] all have proofs of Burnside’s lemma.

We now turn our attention to the work of Pólya [8]. Technically, these results were first

discovered by Redfield [9], but again the literature generally refers to it as Pólya’s Theorem.

This result follows from Burnside’s lemma in a specific situation of permutations acting on

functions. From here on we will take X (the domain of our functions) and Y (the codomain

of our functions) to be finite sets with |X| = n and |Y | = m. Pólya’s Theorem addresses the

situation where we take a subgroup G of the group of permutations on X denoted by SX .

We define a group action on the set Y X of all functions from X to Y . For σ ∈ G we can

define the action of σ on f ∈ Y X by

f 7→ fσ−1. (1.1)

Some others would define it as f 7→ fσ, but either definition creates the same orbits. We
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will use the former for reasons that will become clear in Chapter 2. Pólya’s Theorem then

tells us how many orbits of functions there are under this group action.

To express Pólya’s Theorem we will need a tool called the cycle index polynomial desig-

nated by ZG. Using somewhat standard notation we first define jk(σ) for each k ∈ N to be

the number of k-cycles in the disjoint cycle decomposition of σ. Then for a specific σ ∈ Sn

we define the cycle index monomial by

Zσ(x1, ..., xn) =
n∏
i=1

x
ji(σ)
i .

This cycle index monomial encodes the entire cycle structure of σ in a multivariate monomial.

Then we can define the cycle index polynomial for an entire group to be

ZG(x1, ..., xn) =
1

|G|
∑
σ∈G

Zσ(x1, ..., xn).

Pólya’s Theorem relates the number of orbits to the cycle index polynomial in the fol-

lowing way.

Theorem 1.2. (Pólya’s) Let G be a subgroup of SX acting on Y X as defined in (1.1).

Then ∣∣Y X/G
∣∣ = ZG(m, . . . ,m).

Pólya’s Theorem is obtained by applying Burnside’s lemma to the situation of G acting

on Y X and by counting the number of functions fixed by a σ ∈ SX . The idea behind why

the above formula works is that σ fixes a function from X to Y if and only if the function

is constant on each collection of elements of X that make up the disjoint cycles of σ. With

that idea it then becomes easy to count the number of functions fixed by a group element

making Burnside’s lemma yield precisely Pólya’s Theorem.

A more detailed version of this result can be obtained when we consider that the functions

could have weights associated with them. Weights are chosen from S, a commutative ring

3



with identity that contains the rationals. We say a weight function is a map W : Y X → S

such that W is constant on each orbit in Y X/G. Then a weighted version of Burnside’s

lemma [4] can be obtained saying that the sum of the weights of the orbits is actually the

average of the weights of the fixed functions.

This weighted version of Burnside’s lemma can be used to obtain a weighted version of

Pólya Theorem. There are several common ways of defining these sorts of weight functions

and we will briefly discuss one of them leading to a weighted version of Pólya’s Theorem.

Say we have weights associated with the elements of Y . More formally suppose we have

a map w : Y → S. Then we can construct a weight function on Y X by defining for each

f ∈ Y X ,

W (f) =
∏
x∈X

w(f(x)). (1.2)

Action by σ on f in (1.2) only changes the order of product and thus W is constant within

orbits. So W is a weight function. Using W in the weighted form of Burnside’s lemma yields

the following the weighted version of Polya’s Theorem [10].

Theorem 1.3. (Pólya’s Weighted) Let G be a subgroup of SX acting on Y X as defined

by (1.1). Then ∑
[f ]∈(Y X/G)

W (f) = ZG(x1, ...xn)

where we set xi =
∑

y∈Y w(y)i.

As an immediate consequence of Polya’s Weighted Theorem, one can obtain descriptions

of the types of orbits created by the group action. To do this set Y = {y′1, ..., y′m}. Then we

can take the ring of weights S to be Q[y1, ..., yn] with w (y′i) = yi for each i. Thus the weight

W of a function using (1.2) encodes the number of times each element of Y is mapped to by

an element of X in a polynomial form. The term yki appearing in such a weight means that

the element of y′i has k pre-images in X. Thus given ε1 + · · · + εm = n, we can obtain how
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many orbits of functions there are where each y′i has εi pre-images. The combination of all

this information is sometimes called pattern inventory as in [7].

Theorem 1.4. (Pólya’s Inventory) For each i let yi be an indeterminate corresponding

to the y′i (the ith element of Y ). Let ε1 + · · · + εm = n. The coefficient of yε11 · · · yεmm in the

expanded polynomial

ZG

(
m∑
i=1

yi,

m∑
i=1

y2i , ...,
m∑
i=1

yni

)

is the number of distinct orbits of functions where any element of the orbit, f ∈ Y X , has the

stoichiometry defined by |f−1(y′i)| = εi for i = 1, ...,m.

Theorem 1.4 makes it not only possible to count how many symmetrically distinct ways

one can color a cube for instance, but also allows one to count how many symmetrically

distinct ways one could color a cube with two faces red, two blue, and two green. One just

needs to substitute xi = ri+bi+gi for each i between 1 and n into the cycle index polynomial

for the group of symmetries on the faces of the cube. Then expand and collect like terms.

The coefficient of r2b2g2 in the result will be the answer. By performing these computations,

we obtain there are actually six symmetrically distinct ways of coloring the faces of the cube

with two of each color. Thus Theorem 1.4 gives us more detail on what types of orbits there

are.

Together Pólya’s results give a method for counting both the number and types of orbits

induced by a group acting on the set of functions in the described way. We can apply these

results to situations of coloring parts of objects where symmetry is involved. For instance,

these results have been applied to counting the number of ways you can color vertices in a

graph and how many ways the points in a lattice can be colored. Another application from

chemistry is counting how many isomers can be formed from a given collection of atoms in

a fixed geometric configuration [6].

There are other equivalent but slightly different looking versions of Pólya’s Theorem.

One common formulation involves plugging generating functions for the elements of Y by
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weight into the cycle index polynomial. While we will not cover this in detail, more infor-

mation can be obtained from Harary and Palmer [4]. In conclusion, there are many ways

of expressing Pólya’s Theorem but they all have to do with counting orbits of functions

(with or without weights) where a group of symmetries acts on the domain. There are two

prominent extensions of Pólya’s Theorem which we will look at in the next sections. One is

offered by De Bruijn and the other was introduced by Harary and Palmer. Both have to do

with adding in a group of permutations to act the codomain of the functions simultaneously

as we act on the domain.

1.2 De Bruijn’s Theorem

The first significant extension of Pólya’s Theorem was provided by De Bruijn [2]. In Pólya’s

original work there are only permutations acting on the domain of the functions. De Bruijn

added another group of permutations to simultaneously act on the codomain. He took H and

K to be subgroups of SX and SY respectively and defined an action of the group G = H×K

on Y X . For f ∈ Y X and (σ, τ) ∈ G, De Bruijn defined a group action by

f 7→ τfσ. (1.3)

Again one can ask how many orbits of functions there are. However De Bruijn went straight

for a weighted generalization so we will have to define weights in this situation.

We will actually use the version of De Bruijn’s results that are in Harary and Palmer’s

paper [5]. So we introduce weights coming from the natural numbers like they did. Suppose

that Y can be partitioned into Y1, ..., Ys (some of which may be empty) and suppose K is a

direct product of groups K1 × · · · × Ks where each Ki is a subgroup of SYi . Set w(y) = i

whenever y is in Yi, and for f ∈ Y X set

W (f) =
∑
x∈X

w (f(x)) . (1.4)
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This will be a weight function since it will be constant on the orbits. Then the following

result allows us to count orbits according to weight.

Theorem 1.5. (De Bruijn’s) Let H and K be subgroups of SX and SY respectively and use

the group action from (1.3). The coefficient of xi after simplification in the below expression

is the number of orbits whose functions have weight i as defined by (1.4).

[
ZH

(
∂

∂z1
, ...,

∂

∂zn

) s∏
t=0

ZKt(pt,1, pt,2, ...)

]
zi=0

where pt,s = exp
(
s
∑[n/s]

k=1 zsk(x
t)sk
)
.

The above theorem looks quite unpleasant, but it is correct. It is an application of

the weighted version of Burnside’s lemma. Thus the expression must count the number of

functions fixed by a (σ, τ). The idea behind this is that we can decompose σ and τ into a

product of disjoint cycles (including one-cycles). Every element of X appears in a cycle of σ

and every element of Y appears in a cycle of τ . In order for f ∈ Y X to be fixed by (σ, τ), the

elements of X that appear in each cycle of σ must be sent to the elements of Y that appear

in a cycle of τ where the length of the cycle of τ divides the length of the corresponding

cycle of σ. Informally, we will say that functions fixed by a (σ, τ) must send the cycles of

σ to cycles of τ where the length of the cycles of τ divide the lengths of the corresponding

cycles of σ. We will see why this is the case later in Chapter 2 so if it is not clear now, it

will be cleared up later. However, this is the main idea of why De Bruijn’s Theorem works.

One big question when attempting to understand De Bruijn’s Theorem is why are there

partial derivatives and exponential functions? Harary and Palmer made a key observation

in describing it [5]. The key observation is:

bj =

[(
∂

∂z

)j
exp(bz)

]
z=0

.

In other words, the combination of exponential functions and partial derivatives amounts to

plugging a quantity (b) into a polynomial. Thus De Bruijn’s notation is a creative way of
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incorporating both cycle index polynomials into the solution. However, the same result can

be expressed slightly more intuitively as was done by Harary and Palmer in what is called

the Power Group Enumeration Theorem.

1.3 The Power Group Enumeration Theorem

Harary and Palmer also developed a result to count the number of orbits of functions in the

same situation as that posed by De Bruijn [5]. They showed their results are just algebraic

manipulations of what De Bruijn did. However, their result only makes use of the cycle index

polynomial of H and thus does not have to introduce contrivances like partial derivatives

and exponential functions to get both cycle index polynomials involved. Again we are taking

H and K subgroups of SX and SY respectively with the same group action as De Bruijn

(1.3). Then the number of orbits is determined by the following theorem.

Theorem 1.6. (Power Group Enumeration Theorem-Constant Form) Let G =

H×K where H and K are subgroups of SX and SY respectively. Let G act on Y X as defined

by (1.3) then ∣∣Y X/G
∣∣ =

1

|K|
∑
τ∈K

ZH
(
p1(τ), ..., pn(τ)

)
where pk(τ) =

∑
s|k sjs(τ).

As before, the reason why this works is that in order for a function to be fixed by this

group action, the function must send the elements of each cycle of σ to a given cycle of τ

whose length divides the length of the cycle of σ. This idea is encapsulated in the formula

below that Harary and Palmer used to prove their result. They establish that

∣∣(Y X)(σ,τ)
∣∣ =

n∏
k=1

∑
s|k

sjs(τ)

jk(σ)

. (1.5)

The Power Group Enumeration Theorem is obtained by applying Burnside’s lemma and

then substituting in (1.5).
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Harary and Palmer also created a weighted version of their result. We will not state it here

since we will not be using it in this paper. They showed this result is equivalent to the result

from De Bruijn. While De Bruijn’s Theorem appears more similar to Polya’s Theorem since

the cycle index polynomials of both groups are involved, it also seems much less accessible

than the Power Group Enumeration Theorem. Harary and Palmer also applied the Power

Group Enumeration Theorem to counting colorings of lines in graphs, finite automata, and

self-converse digraphs [4]. While it works in those situations, the Power Group Enumeration

Theorem and the work of De Bruijn have a limitation that we will explain in the next section

and address in Chapter 2.

1.4 Pathway to Further Generalization

De Bruijn, Harary, and Palmer were all working in the situation where the group was a

direct product of subgroups of SX and SY . This is not ideal since many actual situations

would not have this property. A group structure of this kind, means there is no connection

between the the symmetries on X and the ones on Y . All possible combinations of pairs of

symmetries on X and Y must be included for it to be a direct product. However, if there is

a connection between the symmetries this situation is no longer achieved.

Consider mapping the vertices of a square to the sides of the same square. When we

perform a symmetry on the square it permutes both the vertices and sides in a specific

way. The permutations are clearly connected and every possible pairing of them will not be

present in the group. Thus the group in this case will not be a direct product. We wonder

if we can expand the Power Group Enumeration Theorem to deal with this situation. In

Chapter 2 we will address this question and adapt previous results. Furthermore, we will

try to get something akin to the pattern inventories which we had for Pólya’s Theorem.

Another way we can expand the situation of the Power Group Enumeration Theorem is

to change the set of objects we are acting on. A natural set containing Y X is the set of all

relations between X and Y . This larger collection allows the elements of X to be associated

9



with none or multiple elements of Y . In Chapter 3 we will see that we can define a similar

group action on the larger set of all relations between finite sets and count the induced orbits.

10



Chapter 2. Orbits of Functions

In this chapter we will look at a similar situation to the one introduced by De Bruijn except

we will no longer require that the group of symmetries be a direct product of groups. To

make this work we will have to slightly alter the the group action definition. At the same

time we would like our new group action to yield the same orbits as in the case when the

group is a direct product and De Bruijn’s action is used. Once we have a group action, we

will generalize the Power Group Enumeration Theorem to deal with this situation and see if

there is anything akin to a pattern inventory (as in Pólya’s Theorem) that we can compute.

2.1 Group Action Definition

To replace the direct product structure of the group of symmetries, we are going to take G

a subgroup of SX × SY . Thus we still are getting a collection of permutations on X and

associated permutations on Y , but now G need not contain every possible combination of

pairs of symmetries on X and on Y . However, if we use the same proposed action as De

Bruijn, Harary, and Palmer, the operation is no longer a group action since it will not be

associative. We can modify the action by defining for each (σ, τ) ∈ G and f ∈ Y X

f 7→ τfσ−1. (2.1)

We will denote this action by ∗. It will be a group action since

11



[(σ, τ)(σ′, τ ′)] ∗ f = (σσ′, ττ ′) ∗ f

= ττ ′f(σσ′)−1

= ττ ′f(σ′)−1(σ)−1

= (σ, τ) ∗
[
τ ′f(σ′)−1

]
= (σ, τ) ∗ [(σ′, τ ′) ∗ f ] .

Thus we have a group action in the case where G is not a direct product of subgroups.

It is clear in our argument that we need to take the inverse of σ since otherwise the order

of σ and σ′ would be switched. The idea to take the inverse of σ in the action definition is

not a new one. For Pólya’s Theorem some mathematicians define the group action as right

composition by σ−1 which is why we defined it this way in Chapter 1. In that situation we

are working with a group so the orbits would be the same as acting by direct composition

of σ instead of σ−1. But in our more general situation when we remove the direct product

structure in G, we must go back to what will make the proposed action fit the definition.

It actually does not matter that De Bruijn, Harary, and Palmer used a different group

action when the group is a direct product. We will see that when G is a direct product of

subgroups our action induces exactly the same orbits as the action presented by De Bruijn,

Harary, and Palmer. This is because our definition of acting by (σ, τ) is the same as acting

by (σ−1, τ) in their definition. When G is a direct product it will most certainly contain

(σ−1, τ). Thus this new definition of the group action will create the same orbits as the ones

from both De Bruijn’s Theorem and the Power Group Enumeration Theorem in the case

G is a direct product of subgroups. Now that we have an action defined, we can find the

number of orbits.
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2.2 Counting Fixed Functions

The problem of counting orbits in this generalized setting is similar to the situations consid-

ered by De Bruijn, Harray, and Palmer. They developed a method of describing the number

of functions fixed by a group element (σ, τ) to prove their results. The ideas they developed

still work in this more general situation since they did not assume anything about the group

structure to prove it. And even though the two actions are slightly different, both actions

have the same number of functions fixed after action by (σ, τ) since taking inverses does not

change the cycle structure of the permutations. However, since this formula is so essential to

the arguments that lie ahead we will provide a brief justification in this section of why those

formulas work. We will describe how to count the number of functions fixed by a particular

(σ, τ) ∈ G and from there the results we will prove are not too surprising.

To state the result we will introduce some notation for permutations that we will use in

the statement as well as in the rest of the paper. For σ ∈ SX we will say σi is the ith cycle

in a fixed disjoint cycle decomposition of the permutation. As a note, we will always include

one-cycles when taking our disjoint cycle decompositions. Additionally, there are situations

in which we will need to consider cycles as sets instead of permutations. So for σ ∈ SX we

will say σ̂i is the set of elements of X in the cycle σi. Lastly, we will set `(σi) to be the

length of the cycle σi or equivalently the cardinality of σ̂i.

Lemma 2.1. For σ ∈ SX and τ ∈ SY let σ = σ1 · · ·σu and τ = τ1 · · · τv be the respective

disjoint cycle decompositions. Fix x1, ..., xu with each xi ∈ σ̂i. Given j1, ..., ju from {1, ..., v}

such that `(τji)|`(σi), and yi ∈ τ̂ji for each i, there exists a unique function f : X → Y such

that both the following hold.

i) f(xi) = yi for each i.

ii) (σ, τ) ∗ f = f .

Proof. We will show the result is true when restricting to a single cycle σi. When that is

true we can form a union of the functions produced for each cycle and obtain a function

described in the statement of the lemma.
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Note since xi ∈ σ̂i we can write σi = (a1, a2, ..., as) with xi = a1 and similarly because

yi ∈ τ̂ji we can write τji = (b1, b2, ..., bt) with b1 = yi. We know additionally from assumption

that t|s.

The result is obvious for t = 1 since in that case then we can take the constant function

g(x) = b1 which is clearly fixed by (σi, τj).

When t > 1 define g : σ̂i → τ̂j as follows.

g(atq+r) = br+1 where 0 ≤ r < t.

Note that

τjg(atq+r) =


br+2 if r ≤ t− 2

b1 if r = t− 1

and

gσi(atq+r) =


g(atq+r+1) if tq + r 6= s

g(a1) if tq + r = s

=


br+2 if tq + r 6= s and r ≤ t− 2

g(at(q+1)) if tq + r 6= s and r = t− 1

b2 if tq + r = s

=


br+2 if r ≤ t− 2

b1 if r = t− 1.

Thus we get that

τjg = gσi =⇒ τjgσ
−1
i = g.

Thus g is an example of a function with the desired properties. We now show that is unique.
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Suppose that h : σ̂i → τ̂ji is another example of such a function. We have that

g(a1) = b1 = h(a1).

Now to proceed inductively assume g(ak) = h(ak). Then we have that

g(ak+1) = g(σi(ak)) = τjg(ak) = τjh(ak) = h(σi(ak)) = h(ak+1).

Thus h = g and we have uniqueness of the functions for each cycle.

It is not too difficult to see that the fixed functions described in Lemma 2.1 are actually

all the functions fixed by (σ, τ). The functions fixed by (σ, τ) must send cycles of σ to entire

cycles of τ where the lengths of cycles from τ divide the corresponding cycle lengths of σ. For

those wanting more justification, we will see a formal argument for this in Chapter 3 when

we generalize some of these results to relations. Regardless, we have been able to classify

the functions fixed by a (σ, τ). We must send each cycle of σ to a cycle of τ where the length

of the cycle of τ divides that of σ. Once one point of the function is fixed for each cycle of

σ the entire function is determined. Thus for a cycle of τj whose length divides the length

of σi there are `(τj) functions fixed by (σi, τj) going between σ̂i and τ̂j. The following result

immediately follows.

Lemma 2.2. Let (σ, τ) ∈ SX × SY with the group action being defined by (2.1). Then

∣∣∣(Y X
)(σ,τ)∣∣∣ =

∏
i

∑
`(τj)|`(σi)

`(τj).

(Here we let i and j range over how many disjoint cycles there are in σ and τ respectively.)

Proof. By the arguments in the preceding paragraph
∑

`(τj)|`(σi) `(τj) is the number of func-

tions that will be fixed from σ̂i into Y . This can be done on each cycle of σ giving us how

many ways we can make functions that will be fixed from each cycle of σ into Y . To get

15



arbitrary fixed functions we can form a union of the fixed functions on each cycle of σ. Thus

there are ∏
i

∑
`(τj)|`(σi)

`(τj)

ways of doing this. So the result holds.

Collecting repetitive terms, it is not difficult to see Lemma 2.2 gives the exact same formula

as Harary and Palmer (1.5). Now that we have a formula to count the fixed functions, the

next step of counting orbits involves applying Burnside’s lemma.

2.3 Generalizing the Power Group Enumeration Theorem

We are ready to count the orbits that come from the action of a possibly non-direct product

group G acting on Y X . The next result is how we extend the Power Group Enumeration

Theorem to deal with this different group structure. Essentially the main change we need to

make is to no longer use the cycle index polynomial of H and instead use only cycle index

monomials as needed.

Theorem 2.3. Let G be a subgroup of SX × SY that acts on Y X via ∗. Then

∣∣Y X/G
∣∣ =

1

|G|
∑

(σ,τ)∈G

Zσ
(
p1(τ), ..., pn(τ)

)

where we set pk(τ) =
∑

`(τj)|k `(τj).

Proof. Using Burnside’s lemma and (1.5) we get the following chain of logic.
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∣∣Y X/G
∣∣ =

1

|G|
∑

(σ,τ)∈G

∣∣(Y X)(σ,τ)
∣∣

=
1

|G|
∑

(σ,τ)∈G

n∏
k=1

∑
s|k

sjs(τ)

jk(σ)

=
1

|G|
∑

(σ,τ)∈G

Zσ

∑
s|1

sjs(τ), ...,
∑
s|n

sjs(τ)

 .

The result as stated follows because for each k

pk(τ) =
∑
`(τj)|k

`(τj) =
∑
s|k

sjs(τ).

While Theorem 2.3 certainly does count the number of orbits in our more general sit-

uation, it is not as beautiful as the Power Group Enumeration Theorem since it is not as

directly correlated with the cycle index polynomial of the whole group. However, in the case

that G = H ×K as in the Power Group Enumeration Theorem we get

∣∣Y X/G
∣∣ =

1

|G|
∑

(σ,τ)∈G

Zσ
(
p1(τ), ..., pn(τ)

)
=

1

|H||K|
∑
τ∈K

∑
σ∈H

Zσ
(
p1(τ), ..., pn(τ)

)
=

1

|K|
∑
τ∈K

ZH
(
p1(τ), ..., pn(τ)

)
.

Thus Theorem 2.1 is in fact the Power Group Enumeration Theorem in the situation of the

group being a direct product.

We will now see some examples of how these results can be applied in situations where

the Power Group Enumeration Theorem will not suffice. The original motivation of this

result was to count the number of symmetrically distinct ways to put atoms into a crystal

structure where each atom has an associated spin which is permuted by the symmetries of

the lattice. This certainly can be achieved with Theorem 2.3, however we will make our

17



Figure 2.1: Labeled Tetrahedron with Vertices and Faces

V1 V2

V4

V3
F3 F2

F1

F4

Table 2.1: Fixed Functions from Vertices to Faces of a Tetrahedron

σ τ Zσ Zσ (p1(τ), ..., p4(τ))
(V1)(V2)(V3)(V4) (F1)(F2)(F3)(F4) x41 44

(V1 V2 V3)(V4) (F1)(F2 F3 F4) x1x3 1 · 4
(V1 V4 V3)(V2) (F1 F4 F2)(F3) x1x3 1 · 4
(V1 V2 V4)(V3) (F1 F2 F3)(F4) x1x3 1 · 4
(V1 V3 V2)(V4) (F1)(F2 F4 F3) x1x3 1 · 4
(V1 V2)(V3 V4) (F1 F4)(F2 F3) x22 42

(V1 V4)(V2 V3) (F1 F2)(F3 F4) x22 42

(V1 V3 V4)(V2) (F1 F2 F4)(F3) x1x3 1 · 4
(V1)(V2 V4 V3) (F1 F4 F3)(F2) x22 42

(V1 V3)(V2 V4) (F1 F3)(F2 F4) x22 42

(V1 V4 V2)(V3) (F1 F3 F2)(F4) x1x3 1 · 4
(V1)(V2 V3 V4) (F1 F3 F4)(F2) x1x3 1 · 4

examples more mathematical in nature.

Example 2.4. We will find how many symmetrically distinct functions there are from the

vertices of a regular tetrahedron to its faces. When we perform a symmetry on the tetra-

hedron it permutes both vertices and faces and thus fits our situation. In this example we

will take the orientation preserving symmetries only. In Table 2.1 we compute the number

of functions fixed by each (σ, τ) in the group. Adding up the last column and dividing by

the order of the group we get 336/12 = 28. So we get 28 symmetrically distinct functions

from the vertices of the tetrahedron to the faces. By constructing the actual orbits with a

computer, we verified this is the correct number.
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Figure 2.2: Labeled Square

2

1 4

3
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Table 2.2: Fixed Functions from Vertices to Sides of a Square

σ τ Zσ Zσ (p1(τ), ..., p4(τ))
(1)(2)(3)(4) (L)(R)(U)(D) x41 44

(1)(2 4)(3) (L U)(D R) x21x2 024
(1 3)(2)(4) (L D)(U R) x21x2 024
(1 4)(2 3) (L R)(U)(D) x22 42

(1 3)(2 4) (U D)(L R) x22 42

(1 2)(3 4) (U D)(L)(R) x22 42

(1 2 3 4) (U L D R) x4 4
(1 4 3 2) (U R D L) x4 4

Example 2.5. Suppose we take X to be the set of vertices of a square and Y to be the set

of sides of the same square. We will count the number of symmetrically distinct functions

from the vertices to the sides of a square. In this example we will consider reflections as

symmetries. So the permutations on X alone would be D4, but each permutation on the

vertices has a corresponding permutation on the sides. In the Table 2.2 we compute the

number of functions fixed for each (σ, τ) in the group. Here we get the number of orbits to

be 312/8 = 39. Again we verified this count by computer calculation.

Examples 2.4 and 2.5 would not be solvable by the Power Group Enumeration Theorem

alone since in both cases the group is not a direct product. In the case of Example 2.5, if

we had assumed the group was a direct product and applied the Power Group Enumeration

Theorem, we would find that the computed number of orbits is too small. The group of

permutations on domain and codomain is D4 in each case. We know

ZD4(x1, ..., x4) =
1

8

(
x41 + 2x2x

2
1 + 3x22 + 2x4

)
.
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So applying the Power Group Enumeration Theorem we get a total of 13 orbits. This is

too few orbits because by making our group a direct product, it added more symmetries

and thus reduced the number of symmetrically distinct functions. Assuming the group was

a direct product would correspond to the physical situation of mapping the vertices of a

square to the sides of a square that is totally separate from the first. When you are trying to

map between objects in the same square, the Power Group Enumeration Theorem no longer

holds.

Thus Theorem 2.3 is an improvement on the Power Group Enumeration Theorem to

allow the group to no longer be a direct product. We could do similar computations to the

ones we did with the square and tetrahedron for the cube. However, with the larger number

of vertices, faces, sides, and symmetries it makes the computation of the orbits more lengthy

so we will not show the details here. Trying to count these orbits for a cube by brute force

would be difficult and require a large amount of computational power. Theorem 2.3 provides

a much more computationally efficient method of counting such orbits.

2.4 Breaking the Orbits Into Sub-classes

Now that we have a way of counting orbits, we recall that one variation on Pólya’s Theorem

allowed us to find the pattern inventory. This idea is interesting since it tells us not only

how many orbits there are, but also what kinds of orbits there are. In terms of coloring,

we would find exactly how many symmetrically distinct colorings there are with a specific

number of each color. In the more general group action we defined in Section 2.1, we are

simultaneously switching the colors as well as the sites. Thus orbits may not have constant

configurations of colorings. We wonder if there is anything similar to the pattern inventory

that we can do when orbits are no longer identifiable by which elements of the codomain are

mapped to and how many times. Afterwards, we will look specifically at orbits of bijective

functions and develop a formula for counting them.
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To break the orbits into sub-classes we need an attribute of the functions that is preserved

by the action ∗. We will consider how many times each element of Y gets mapped to, but no

longer care about which elements in particular are mapped to. To mathematically capture

this idea for each f ∈ Y X we consider

∑
y∈Y

∣∣f−1(y)
∣∣ = n.

Ignoring zeros in the above equation, we have a partition of n. This partition of n shows

how many pre-images each element of Y has without specifying which particular elements

of Y have those specific sizes of pre-images. Additionally, the partition of n is preserved by

the group action. This is because in the below equation the equalities at both (1) and (3)

have equal summands and in the equality at (2) the order with which the sum is taken is all

that is changing.

∑
y∈Y

∣∣(τfσ−1)−1(y)
∣∣ (1)=

∑
y∈Y

∣∣σf−1τ−1(y)
∣∣ (2)=

∑
y∈Y

∣∣σf−1(y)
∣∣ (3)=

∑
y∈Y

∣∣f−1(y)
∣∣ .

We can then get something akin to the pattern inventories that we got when using Pólya’s

Theorem. However, it is not quite as elegant since now functions cannot be distinguished by

exactly which elements of codomain are mapped to. We can instead ask how many orbits

correspond to a given partition of n. As is customary at this point, we will want to plug

polynomials into something like the cycle index polynomial to get the answer.

Theorem 2.6. Let G be a subgroup of SX × SY and let ∗ be the action of G on Y X . Define

P (y1, ..., ym) =
1

|G|
∑

(σ,τ)∈G

Zσ
(
p1(τ), ..., pn(τ)

)

where pk(τ)(y1, ..., ym) =
∑

`(τj)|k `(τj)
(∏

y′t∈τ̂j
y
k/`(τj)
t

)
. When P (y1, ..., ym) is expanded, all

the monomials in the polynomial are of degree n. Thus the powers on the yt’s for each mono-

mial are a partition of n. The number of orbits of functions corresponding to a particular
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partition of n is the sum of all coefficients of the monomials of P (y1, ..., ym) with the same

partition of n in the powers of the yt’s.

Proof. We can restrict Burnside’s lemma to the set of functions corresponding to a specific

partition of n. Thus to count the number of orbits corresponding to a particular partition

of n we merely need to count how many functions corresponding to that partition are fixed

by each element of G.

To be fixed by an element (σ, τ) of G, the function must send each cycle of σ to a cycle

of τ whose length divides the length of the cycle of σ as in Lemma 2.1. For a given cycle σi

of length k we can choose any τj with `(τj)|k and map σ̂i into τ̂j in a way preserved by the

group action. Once a cycle τj is chosen, there are `(τj) ways of making a fixed function from

σ̂i to τ̂j. Furthermore by our argument in Lemma 2.1 each such function has the property

that each element in τ̂j has `(σi)/`(τj) = k/`(τj) pre-images from σ̂i. Thus the monomial

∏
y′t∈τ̂j

y
k/`(τj)
t

represents the configuration of outputs for a particular fixed function from σ̂i to τ̂j. As we

mentioned, there are `(τj) such fixed functions by Lemma 2.1. So the mononmial

`(τj)
∏
y′t∈τ̂j

y
k/`(τj)
t

represents all of the configurations of the fixed functions from σ̂i to τ̂j. Adding up all possible

results for different possible τ ′js where the length divisibility condition is met, gives pk(τ) as

in the statement of the theorem. Thus pk(τ) is essentially a sum of the different possible

configurations for fixed functions from σ̂i to Y .

Now that we have the possible fixed configurations for each σi, we multiply them together

which is the same as plugging the pk(τ)’s into the cycle index mononmial. Distribution of

this product involves picking one term from each sum to multiply so this is the same as

constructing the fixed functions cycle by cycle from σ. Thus we get that the configurations
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Table 2.3: Inventory of Fixed Functions from Vertices to Sides of a Square

σ τ Zσ Zσ(p1(τ), ..., p4(τ))
(1)(2)(3)(4) (L)(R)(U)(D) x41 (L+R + U +D)4

(1)(2 4)(3) (L U)(D R) x21x2 02(2LU + 2DR)
(1 3)(2)(4) (L D)(U R) x21x2 02(2LD + 2UR)
(1 4)(2 3) (L R)(U)(D) x22 (2LR + U2 +D2)2

(1 3)(2 4) (U D)(L R) x22 (2UD + 2LR)2

(1 2)(3 4) (U D)(L)(R) x22 (2UD + L2 +R2)2

(1 2 3 4) (U L D R) x4 4ULDR
(1 4 3 2) (U R D L) x4 4URDL

of all functions fixed by (σ, τ) are in that distributed sum. Thus when P (y1, ..., ym) is

expanded, it is the sum of configurations of functions fixed for each (σ, τ) divided by |G|.

Finally, we just need to know how many fixed functions there are corresponding to a

specific partition of n and then divide it by |G|. So we can look at the sum of all configurations

of fixed functions divided by |G|, which we have established is P (y1, ..., ym). The ones we

desire are the ones whose powers on the yt are the same partition of n as our target partition.

So applying Burnside’s lemma, we get the desired result.

While the computation of P (y1, ..., ym) can be quite tedious and messy, computers can

be used to obtain the desired results. As an example, we will use Theorem 2.6 in the same

situation as Example 2.5.

Example 2.7. Again we are counting symmetrically distinct functions from the vertices

of a square to its sides. Before we had calculated there are 39 distinct orbits, but now we

can obtain much more detail on what types of orbits there are. In Table 2.3 we show the

computation of P (U,D,L,R). Distributing and adding up the polynomials in the far right

column, we obtain the rather impressive polynomial shown on the next page. It is organized

according to the partition of 4 in the exponents of the variables.
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Table 2.4: Partition Inventory for Functions from Vertices to Sides of a Square

Partition of 4 Number of Orbits
4 1

3+1 6
2+2 7

2+1+1 20
1+1+1+1 5

1

8

(
2D4 + 2L4 + 2R4 + 2U4+

4D3L+4D3R+4D3U+4DL3+4DR3+4DU3+4L3R+4L3U+4LR3+4LU3+4R3U+4RU3+

6D2L2 + 6D2R2 + 16D2U2 + 16L2R2 + 6L2U2 + 6R2U2+

16D2LR + 12D2LU + 12D2RU + 12DL2R + 16DL2U + 12DLR2 + 12DLU2 + 16DR2U+

12DRU2 + 12L2RU + 12LR2U + 16LRU2 + 40DLRU
)

Table 2.4 shows the number of orbits corresponding to each partition of 4. The 2 + 1 + 1

partition orbits correspond to functions that send two vertices to the same side and the other

vertices to different sides. Note that the number of orbits for each partition add up to 39

which is a relief because of our previous calculations. Additionally, we verified by computer

calculation that the counts in Table 2.4 are correct. One partition of note is 1 + 1 + 1 + 1

which corresponds to the bijective functions between the vertices and sides of the square. In

Figure 2.3 we show the representatives of the five bijective orbits that we concluded there

would be.

Counting the number of bijective orbits is a question of interest and we consider whether

it could be computed more easily without that large polynomial. Additionally, we will verify

our calculations about the bijective orbits in Example 2.7 in an alternative way. In the case

that n = m we have that bijective functions exist. First note that the set of bijective functions
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Figure 2.3: Representatives of Bijective Orbits of Functions from Vertices to Sides of a
Square

is preserved by the group action since we are just composing bijective functions. Thus some

orbits will be made up purely of bijective functions and we can count how many there are.

De Bruijn actually dealt with this situation in his paper [2], but he did so assuming the

group was a direct product of subgroups. We will do it in the case of an arbitrary subgroup

G of SX × SY .

Proposition 2.8. Let G be a subgroup of SX × SY with the action ∗ on Y X . The number

of orbits composed of bijective functions is given by

1

|G|
∑

(σ,τ)∈G

δ(σ, τ)j1(σ)! · · · jn(σ)!Zσ(1, 2, ..., n).

Here we are taking the delta function to be defined by the rule

δ(σ, τ) =


1 if js(σ) = js(τ) ∀ s ∈ N

0 otherwise.

Proof. We can restrict Burnside’s lemma to the collection of bijective functions B in Y X .

Thus to solve the problem of how many bijective orbits there are we merely need to count

the number of bijective functions fixed by a given (σ, τ) ∈ G. We will show that

∣∣B(σ,τ)
∣∣ = δ(σ, τ)j1(σ)! · · · jn(σ)!Zσ(1, 2, ..., n) (2.2)

which will give us the desired result.
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We know for a function to be fixed it must send the cycles of σ to the cycles of τ with

the divisibility condition holding. In the case of bijective functions we must bijectively map

the cycles of σ to distinct cycles of τ . In other words, in order for it to be possible to make

a bijective function fixed by (σ, τ) we must have that σ and τ have exactly the same cycle

type. This explains δ in (2.2) because when σ and τ have different cycle types we will get

no bijective functions fixed by (σ, τ).

In the case σ and τ have exactly the same cycle structure, fixed bijective functions exist.

Each k-cycle of σ needs to be bijectively mapped to a unique k-cycle of τ . When a k-cycle

τj is chosen in τ there are `(τj) = k ways of creating a fixed bijective function into it from

a k-cycle of σ. Additionally, there are jk(τ)! = jk(σ)! ways of matching the k-cycles of σ

with the k-cycles of τ . Thus we get there are jk(σ)!kjk(σ) ways of bijectively assigning the

elements of the k-cycles to each other in a way that is preserved under the action by (σ, τ).

Multiplying these for each k we get that

∣∣B(σ,τ)
∣∣ = j1(σ)! · · · jn(σ)!1j1(σ)2j2(σ) · · ·njn(σ)

= j1(σ)! · · · jn(σ)!Zσ(1, 2, ..., n).

Thus (2.2) holds. The proposition follows by using (2.2) and Burnside’s lemma together.

We can now apply Proposition 2.8 to Example 2.7 as an alternative and less messy way of

getting the number of bijective orbits. The group structure yields the following computation

4! + 2! · 22 + 4 + 4

8
= 5.

This is good because it lines up with our previous computations. So Theorem 2.8 allows us

to compute the number of symmetrically distinct bijective functions without doing excessive

polynomial multiplication.

Thus we have been able to improve on the Power Group Enumeration Theorem allowing

us to compute something akin to a pattern inventory of orbits in this more general situation.
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We were also able to develop a formula to count the bijective orbits of functions. In the next

chapter we will be shifting our focus from orbits of functions to orbits of relations.

27



Chapter 3. Orbits of Relations

One way we can further extend our results about the Power Group Enumeration Theorem

is to make the set of objects we are acting on larger. Previously, our group action had been

defined on the set of functions Y X . In this chapter we will discuss how similar group actions

can be defined on the set of all relations between X and Y , P(X × Y ). Clearly Y X is

contained in P(X ×Y ) so this is similar problem, but we will have to modify our thinking a

little. We will start by defining a group action. Then we will describe a method for counting

the induced orbits on the set of all relations. Additionally, we will apply this thinking to

provide another justification for our results that count orbits of functions.

3.1 Group Action Definition

First we describe a similar action to what has been done before for functions, now on the

set of all relations. Let G be a subgroup of SX × SY . We extend the action of G under ∗ to

P(X × Y ) as follows. For (σ, τ) ∈ G and R a subset of X × Y , define

(σ, τ) ∗R =
{(
σ(x), τ(y)

)
: (x, y) ∈ R

}
.

That this is a group action is not hard to verify. We will check those details for the sake

of completeness. If (σ, τ), (σ′, τ ′) ∈ G we have the following

(σ, τ) ∗
[
(σ′, τ ′) ∗R

]
= (σ, τ) ∗

{(
σ′(x), τ ′(y)

)
: (x, y) ∈ R

}
=
{(
σ ◦ σ′(x), τ ◦ τ ′(y)

)
: (x, y) ∈ R

}
= (σ ◦ σ′, τ ◦ τ ′) ∗R

=
[
(σ, τ)(σ′, τ ′)

]
∗R.
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That the identity, (idX , idY ), fixes R is clear so ∗ defines a group action on P(X ×Y ). Note

that in the case where we restrict this action to Y X we get exactly the same action as was

used in Chapter 2. Thus we are justified in using the same symbol ∗. Since we have a group

action, the equivalence classes partition the relations between X and Y into orbits. Our

goal will be to count how many orbits there are. A similar definition of the group action

can be defined on the relations between a finite collection of sets. We will explore this more

in Section 3.5. For the time being we will develop some results and machinery to count the

number of orbits of relations between two sets.

3.2 Cyclic Fixed Relations Between Two Sets

To count the number of orbits of relations we know from Burnside’s lemma that we just

need to count the number of relations fixed by a given (σ, τ) ∈ G. To help do that we will

establish an object called the cyclic fixed relation. We will find that cyclic fixed relations

are the building blocks of every relation fixed by (σ, τ) and will provide a natural way count

the total number of fixed relations. Once the fixed relations are counted, we can apply

Burnside’s lemma to obtain a theorem counting the number of orbits in the next section.

The motivation for defining the cyclic fixed relation is that it should be the smallest

relation fixed by (σ, τ) containing a particular point (x, y) ∈ X × Y . We define the cyclic

fixed relation as

R(σ,τ)(x, y) =
{(
σn(x), τn(y)

)
: n ∈ Z

}
. (3.1)

From this definition it follows that R(σ,τ)(x, y) is a relation invariant under action by (σ, τ).

It is also the smallest relation fixed by (σ, τ) that contains the point (x, y). We will now

prove a foundational result about the cyclic fixed relations.

Proposition 3.1.

i) Two cyclic fixed relations of (σ, τ) are either disjoint or equal.
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ii) If x1, x2 ∈ X are in different cycles of σ or y1, y2 ∈ Y are in different cycles of τ then

R(σ,τ)(x1, y1) 6= R(σ,τ)(x2, y2).

Proof.

i) Suppose that (x′, y′) is in both R(σ,τ)(x1, y1) and R(σ,τ)(x2, y2). Then we have for some

k, j ∈ Z, (
σk(x1), τ

k(y1)
)

= (x′, y′) =
(
σj(x2), τ

j(y2)
)
.

Thus we obtain
(
σk−j(x1), τ

k−j(y1)
)

= (x2, y2) and
(
σj−k(x2), τ

j−k(y2)
)

= (x1, y1). Therefore

we have that (x1, y1) ∈ R(σ,τ)(x2, y2). However, R(σ,τ)(x1, y1) is the smallest relation fixed by

(σ, τ) containing (x1, y1). Thus

R(σ,τ)(x1, y1) ⊂ R(σ,τ)(x2, y2).

The other inclusion follows similarly.

ii) Assume x1 and x2 are in different cycles of σ. It is clear that σk(x1) 6= x2 for all k. So

it follows that (x2, y2) 6∈ R(σ,τ)(x1, y1). A similar argument holds when looking at the case

where y1 and y2 are in different cycles of τ .

We now get to establish why the cyclic fixed relation is so foundational to the collection

of all fixed relations. For any relation R fixed by (σ, τ) the following is true:

R = ∪(x,y)∈R
[
R(σ,τ)(x, y)

]
. (3.2)

We can eliminate repetition in the union of (3.2), because cyclic fixed relations are either

disjoint or equal. Thus we get that every relation fixed by (σ, τ) is a unique union of cyclic

fixed relations. So cyclic fixed relations are the building blocks of every fixed relation.

We will consider whether every union of cyclic fixed relations is also fixed by (σ, τ). If

so, we will have a convenient way of constructing all relations fixed by (σ, τ). It is not too
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difficult to see that every union of cyclic fixed relations is also fixed by (σ, τ), but we will

show a slightly stronger result to justify it.

Proposition 3.2. The finite union of relations fixed by (σ, τ) is also fixed by (σ, τ).

Proof. Let R1 and R2 be relations between X and Y that are fixed by (σ, τ). Then observe

that

(σ, τ) ∗ (R1 ∪R2) =
{(
σ(x), τ(y)

)
: (x, y) ∈ R1 ∪R2

}
= [(σ, τ) ∗R1] ∪ [(σ, τ) ∗R2]

= R1 ∪R2.

The general result then follows by induction.

Now with that minor detail out of the way, we know that any union of a collection of

cyclic fixed relations is also fixed by (σ, τ). Thus to find the total number of relations fixed

by (σ, τ) we now only need to find how many different cyclic fixed relations there are. Once

we obtain that quantity, we can count how many ways there are to form a union out of

different combinations of them. Specifically we obtain the number of fixed relations is two

raised to the number of different cyclic fixed relations. Thus for a given (σ, τ) ∈ G, our goal

will be to count the number of different cyclic fixed relations as we vary the point (x, y). As

a step in this direction, we will find the size of the cyclic fixed relations themselves.

Proposition 3.3. Let σ ∈ SX , τ ∈ SY , x ∈ σ̂i, and y ∈ τ̂j. Then we have that

∣∣R(σ,τ)(x, y)
∣∣ = lcm

(
`(σi), `(τj)

)
.

Proof. Let a = lcm
(
`(σi), `(τj)

)
. It is clear from the definition in equation (3.1) that

R(σ,τ)(x, y) is the same as R(σi,τj)(x, y). We claim that

R(σi,τj)(x, y) =
{(
x, y
)
,
(
σi(x), τj(y)

)
, ...,

(
σa−1i (x), τa−1j (y)

)}
. (3.3)
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First we must show that all of the elements in the set on the right hand side of (3.3) are

distinct. Suppose that

σbi (x) = σci (x) and τ bj (y) = τ cj (y).

where b and c are nonnegative and less than a. Then without loss of generality we may

assume b ≥ c. Then we obtain

σi
b−c(x) = x and τj

b−c(y) = y.

Thus σb−ci and τ b−cj must both be the identity. So b− c is a common multiple of both cycle

lengths since the respective cycle lengths are the order of the cycles. Since a is the least

common multiple of the cycle lengths, b− c cannot be smaller than a or else it must be zero.

But b − c must be smaller than a because of the size of b and c thus we must have that

b− c = 0. So all elements in the right hand side of (3.3) are distinct.

Now we show equality of the sets in (3.3). One inclusion is immediate from definition

(3.1). For the other, let k be a nonzero integer. Then using the division algorithm we can

write k = aq + r for some 0 ≤ r ≤ a− 1. Observe that

(
σki (x), τ kj (y)

)
=
(
σaq+ri (x), τaq+rj (y)

)
=
(
σri (x), τ rj (y)

)
.

Thus (3.3) holds, immediately giving us the desired result.

Proposition 3.3 is not too surprising since the order of the group element σiτj in SX∪Y is

also the least common multiple of the lengths of σi and τj. One consequence of Proposition

3.3 is that if x1, x2 ∈ σ̂i and y1, y2 ∈ τ̂j, then
∣∣R(σ,τ)(x1, y1)

∣∣ =
∣∣R(σ,τ)(x2, y2)

∣∣. This fact will

be very useful moving forward. We now have everything we need to answer the question of

how many different cyclic fixed relations there are.
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Proposition 3.4. Let σi and τj be cycles of σ and τ , respectively. The number of different

cyclic fixed relations R(σ,τ)(x, y) with x in σ̂i and y in τ̂j is gcd
(
`(σi), `(τj)

)
.

Proof. From Proposition 3.1 i) we know the cyclic fixed relations from points in σ̂i × τ̂j

partition σ̂i × τ̂j. By Proposition 3.3 we also know each cyclic fixed relation is the same size

namely lcm
(
`(σi), `(τj)

)
. Thus it follows that the number of cyclic fixed relations with the

property described above is

|σ̂i × τ̂j|
lcm
(
`(σi), `(τj)

) =
`(σi)`(τj)

lcm
(
`(σi), `(τj)

) = gcd
(
`(σi), `(τj)

)
.

With these tools in hand we finally obtain an equation for the number of relations fixed

by a (σ, τ) ∈ G which was our goal.

Lemma 3.5. Let (σ, τ) ∈ SX × SY and let ∗ be the group action on P(X × Y ). Then the

following holds:

∣∣P(X × Y )(σ,τ)
∣∣ = exp

(
ln(2)

∑
i,j

gcd
(
`(σi), `(τj)

))
.

Proof. We know from Proposition 3.1 ii) that cyclic fixed relations generated from points in

different cycles of domain or codomain create distinct cyclic fixed relations. By Proposition

3.4 we know the number of cyclic fixed relations when points are chosen from the direct

product of the elements in a cycle in the domain and a cycle in the codomain is the greatest

common divisor of their lengths. Thus adding up all possible greatest common divisors

of pairs of lengths of cycles from the domain and codomain, yeilds the total number of

distinct cyclic fixed relations. We know all fixed relations by (σ, τ) are unions of these∑
i,j gcd

(
`(σi), `(τj)

)
cyclic fixed relations. The number of unions that can be formed is two

raised to the number of cyclic fixed relations. Thus

∣∣P(X × Y )(σ,τ)
∣∣ = exp

(
ln(2)

∑
i,j

gcd
(
`(σi), `(τj)

))
.
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Having a count of the number of relations fixed by a group element and recalling Burnside’s

lemma, we are ready to count the orbits of relations.

3.3 Counting the Orbits of Relations on Two Sets

We know from Burnside’s lemma that we only need to count the number of relations fixed

by a particular (σ, τ) in order to get the number of orbits. In the last section we counted

the number relations fixed by a particular (σ, τ). Our method for getting this was to notice

every fixed relation can be written as a union of cyclic fixed relations. Since these are disjoint

or equal we just needed to count the number of different cyclic fixed relations as we varied

the point (x, y). Then it was easy to count how many different unions we could form. This

thinking leads to the following result.

Theorem 3.6. Let G be a subgroup of SX × SY . Then

|P(X × Y )/G| = 1

|G|
∑

(σ,τ)∈G

Zσ
(
p1(τ), ..., pn(τ)

)

where pk(τ) = Zτ
(
2gcd(k,1), ..., 2gcd(k,m)

)
.

Proof. This result is obtained applying Burnside’s lemma and Lemma 3.5 with some algebraic

manipulations as shown on the next page.
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|P(X × Y )/G| = 1

|G|
∑

(σ,τ)∈G

∣∣P(X × Y )(σ,τ)
∣∣

=
1

|G|
∑

(σ,τ)∈G

exp

(
ln(2)

∑
i,j

gcd
(
`(σi), `(τj)

))

=
1

|G|
∑

(σ,τ)∈G

exp

(
n∑
k=1

ln(2)
∑
j

jk(σ) gcd
(
k, `(τj)

))

=
1

|G|
∑

(σ,τ)∈G

n∏
k=1

exp

(
ln(2)

∑
j

jk(σ) gcd
(
k, `(τj)

))

=
1

|G|
∑

(σ,τ)∈G

n∏
k=1

(
exp

(
ln(2)

∑
j

gcd
(
k, `(τj)

)))jk(σ)

=
1

|G|
∑

(σ,τ)∈G

Zσ

(
2
∑

j gcd(1,`(τj)), ..., 2
∑

j gcd(n,`(τj))

)
.

To get the result as stated we just need to note that for each k,

2
∑

j gcd
(
k,`(τj)

)
= exp

(
ln(2)

∑
j

gcd
(
k, `(τj)

))

= exp

(
ln(2)

m∑
t=1

jt(τ) gcd(k, t)

)

=
m∏
t=1

exp
(

ln(2)jt(τ) gcd(k, t)
)

=
m∏
t=1

(
exp

(
ln(2) gcd(k, t)

))jt(τ)
= Zτ

(
2gcd(k,1), ..., 2gcd(k,m)

)
.

Thus we have a result that counts the number of orbits of relations. The helpfulness of

this result can be seen in the following example. Many of the other examples we have seen

in this paper have been easily verifiable by computer programming. However, the set of all

relations gets large quickly as X and Y do. This is the first example where we can really

appreciate how much more powerful these results are than performing a brute force method.
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Table 3.1: Fixed Relations from Vertices to Sides of a Square

σ τ Zσ Zτ Zσ (p1(τ), ..., p4(τ))
(1)(2)(3)(4) (L)(R)(U)(D) x41 x41 (24)4

(1)(2 4)(3) (L U)(D R) x21x2 x22 [(21)2]2 · (22)2

(1 3)(2)(4) (L D)(U R) x21x2 x22 [(21)2]2 · (22)2

(1 4)(2 3) (L R)(U)(D) x22 x21x2 [(21)2 · 22]2

(1 3)(2 4) (U D)(L R) x22 x22 [(22)2]2

(1 2)(3 4) (U D)(L)(R) x22 x21x2 [(21)2 · 22]2

(1 2 3 4) (U L D R) x4 x4 24

(1 4 3 2) (U R D L) x4 x4 24

Example 3.7. We will consider the familiar example of X being the set of vertices of a

square and Y being the set of sides of that same square. Previously we had counted the

number of symmetrically distinct functions from the vertices to the sides. This meant each

vertex was sent to exactly one side. Relations for this example correspond to sending a

vertex to possibly multiple sides or no sides at all. Before starting, we note that we have

four vertices and four sides. Thus we have a cardinality of sixteen for X × Y . This leads

to a total of 216 = 65, 536 possible relations that can be formed. This certainly would not

be trivial to check computationally. However, with the aid of Theorem 3.6 the procedure

becomes much simpler. In Table 3.1 we compute the number of fixed relations for each group

element. This gives us the number of orbits to be 66848/8 = 8356. Thus there are 8,356

symmetrically distinct ways to relate the vertices of a square with the sides. This is quite a

bit smaller than the 65,536 relations we had to start with.

We have now solved the question of how many orbits of relations between two sets there

are. In Chapter 2 we focused exclusively on orbits of functions. Since functions are also

relations we wonder if we can apply our thinking about counting orbits of relations to count

orbits of functions. This will be covered in the next section, and then we will go on to

generalizing these ideas for relations among a finite collection of sets.
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3.4 Alternate Proof for Function Enumeration Theorems Us-

ing Relations

We know Y X is contained in P(X × Y ) so we ask ourselves if we can see our results about

orbits of functions inside of our results about orbits of relations. This line of thinking will

lead to a alternative proof of the results we covered in Chapter 2, which were adapted from

Harary and Palmer’s work. We recall our method of counting orbits of relations was to

look at the cyclic fixed relations. This leads us to ask about classifying when a cyclic fixed

relation will be a function.

Proposition 3.8. Let σ ∈ SX and τ ∈ SY with x ∈ σ̂i and y ∈ τ̂j. Then R(σ,τ)(x, y) is a

function defined from σ̂i to Y if and only if `(τj)|`(σi).

Proof.

( =⇒ ) : If the cyclic fixed relation R(σ,τ)(x, y) is a function defined on σ̂i, then

∣∣R(σ,τ)(x, y)
∣∣ = `(σi).

But we know by Proposition 3.3 that |R(σ,τ)(x, y)| is actually the least common multiple of

`(σi) and `(τj). Thus `(σi) must be a multiple of `(τj). So `(τj)|`(σi).

( ⇐= ) : If `(τj)|`(σi) we get again that |R(σ,τ)(x, y)| = `(σi). It is clear that the first

coordinate in the cyclic fixed relation ranges between all elements in σ̂i. So each x in σ̂i must

be used exactly once as the first coordinate in a point in R(σ,τ)(x, y). Thus R(σ,τ)(x, y) is a

function defined on the elements in the cycle σi.

This is the connection we need between relations and functions that make it possible

to prove Lemma 2.2 in an alternate way. That result was essential to our extension of the

Power Group Enumeration Theorem from Chapter 2. We do know a function fixed by (σ, τ)

is also a relation and is thus a union of cyclic fixed relations (which will have to also be

functions). Thus we need to count the number of fixed functions from each cycle of σ to the
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elements of Y . Let σi be a cycle of σ. Using Proposition 3.4 we know the number of fixed

functions from σ̂i to Y is

∑
`(τj)|`(σi)

gcd
(
`(σi), `(τj)

)
=

∑
`(τj)|`(σi)

`(τj).

Then the fixed functions for each of the cycles of σ can be glued together to make a function

from all of X to Y that is fixed by (σ, τ). All fixed functions can be constructed this way.

So it follows that in total the number of fixed functions will be

∣∣(Y X)(σ,τ)
∣∣ =

∏
i

∑
`(τj)|`(σi)

`(τj).

Note the above formula is the same we obtained in Lemma 2.1. Thus we can connect cyclic

fixed relations back to solving the problem of finding orbits of functions as well.

3.5 Counting the Orbits of Relations on More Sets

As one final extension of what we have been doing, we apply the concepts previously discussed

to a collection of more than two sets. Let X1, ..., Xq all be finite sets and G a subgroup of

SX1 × · · · × SXq . Here we similarly define the group action ∗. With
(
σ(1), ..., σ(q)

)
∈ G, we

define the action on a relation R ∈ P (X1 × · · · ×Xq) by

(
σ(1), ..., σ(q)

)
∗R =

{(
σ(1)(x1), ..., σ

(q)(xq)
)

: (x1, ..., xq) ∈ R
}
. (3.4)

Note that we are using parentheses in exponents to denote components in the direct product

since subscripts have already been used in cycle decompositions. A similar argument to the

case when q = 2, which we showed in Section 3.1, can be made showing that this is indeed

a group action. We can again ask how many orbits of relations there are. Similar results to

ones in Section 3.2 work by the same arguments just applied to longer tuples. We again can

define the cyclic fixed relations the same way as before and they will be either disjoint or
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equal. We again have that

∣∣∣R(σ(1),...,σ(q))(x1, ...xq)
∣∣∣ = lcm

(
`
(
σ
(1)
k1

)
, ..., `

(
σ
(q)
kq

))
,

where each xi is in the cycle σ
(i)
ki

of σ(i).

An analog of Proposition 3.4 can be obtained in this more general circumstance. The

number of cyclic fixed relations by
(
σ(1), ..., σ(q)

)
coming from points in σ̂

(1)
k1
× · · · × σ̂(q)

kq
is

`
(
σ
(1)
k1

)
· · · `

(
σ
(q)
kq

)
lcm

(
`
(
σ
(1)
k1

)
, ..., `

(
σ
(q)
kq

)) . (3.5)

Unfortunately, we cannot transform this to a greatest common divisor as we did before.

This is because for more than two numbers that result does not hold. For instance, consider

the set of numbers {2, 2, 4}. Taking the least common multiple we get four. However, the

greatest common factor (two) is not the product of the numbers divided by the least common

multiple. Thus we can tell our notation is going to get messier than in the case where we

only had two sets.

Theorem 3.9. Let G be a subgroup of SX1×· · ·×SXq acting on P (X1 × · · · ×Xq) as defined

in (3.4). Then

|P (X1 × · · · ×Xq) /G| =
1

|G|
∑

(σ(1),...,σ(q))∈G

Zσ(1) (2p1 , ..., 2pn) .

Where

pk = pk
(
σ(2), ..., σ(q)

)
=
∑

k2,...,kq

k · `
(
σ
(2)
k2

)
· · · `

(
σ
(q)
kq

)
lcm

(
k, `
(
σ
(2)
k2

)
, ..., `

(
σ
(q)
kq

)) .
Proof. For less messy notation we set P = P(X1 × · · · × Xq). We know (3.5) expresses

the number of cyclic fixed relations using points from σ̂
(1)
k1
× · · · × σ̂

(q)
kq

. Thus adding the

possibilities over all possible combinations of cycles yields the total number of cyclic fixed

relations. The number of ways to form a union from these cyclic fixed relations will be two
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raised to that power. This yields the equation

∣∣∣P (σ(1),...,σ(q))
∣∣∣ = exp

ln(2)
∑

k1,...,kq

`
(
σ
(1)
k1

)
· · · `

(
σ
(q)
kq

)
lcm

(
`
(
σ
(1)
k1

)
, ..., `

(
σ
(q)
kq

))


= exp

ln(2)
n∑
k=1

jk (σ(1)
) ∑
k2,...,kq

k · `
(
σ
(2)
k2

)
· · · `

(
σ
(q)
kq

)
lcm

(
k, `
(
σ
(2)
k2

)
, ..., `

(
σ
(q)
kq

))


=
n∏
k=1

exp

ln(2)jk
(
σ(1)
) ∑
k2,...,kq

k · `
(
σ
(2)
k2

)
· · · `

(
σ
(q)
kq

)
lcm

(
k, `
(
σ
(2)
k2

)
, ..., `

(
σ
(q)
kq

))


=
n∏
k=1

exp

ln(2)
∑

k2,...,kq

k · `
(
σ
(2)
k2

)
· · · `

(
σ
(q)
kq

)
lcm

(
k, `
(
σ
(2)
k2

)
, ..., `

(
σ
(q)
kq

))
jk(σ(1))

= Zσ(1) (2p1 , ..., 2pn) .

Then the desired result follows by applying Burnside’s lemma.

This formula that we developed is rather lengthy but it does accomplish its goal effectively.

As a demonstration, we will look back at our example of the regular tetrahedron and apply

Theorem 3.9. As it was in the case with only two sets, using this theorem is much more

efficient than a brute force method.

Example 3.10. Observe the regular tetrahedron has vertices, faces, and sides which are all

simultaneously permuted when performing symmetries on the structure. We can now ask

and answer the question of how many symmetrically distinct relations are there between the

vertices, faces, and sides. This is a massive problem computationally since the total number

of relations will be 296 which is approximately 7.9228163× 1028. Unphazed, in Table 3.2 we

compute the number of relations fixed by each symmetry. Applying Theorem 3.9 we get the

number of orbits to be about 6.6023468× 1027.

Thus Theorem 3.9 makes something that would be impossible by brute force actually

quite routine. The solution to counting orbits of relations between two sets is clearly more
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Figure 3.1: Labeled Tetrahedron with Vertices, Faces, and Sides

V1 V2

V4

V3
F3 F2

F1

F4

E3 E2

E4

E1

E5E6

Table 3.2: Fixed Relations between Vertices, Faces, and Sides of a Tetrahedron

σ(1) σ(2) σ(3) Zσ(1) Zσ(1) (a1, ..., a4)
where ak = 2pk

(V1)(V2)(V3)(V4) (F1)(F2)(F3)(F4) (E1)(E2)(E3)(E4)(E5)(E6) x41 (224)4

(V1 V2 V3)(V4) (F1)(F2 F3 F4) (E1 E2 E3)(E4 E6 E5) x1x3 28 · 224

(V1 V4 V3)(V2) (F1 F4 F2)(F3) (E1 E5 E2)(E3 E6 E4) x1x3 28 · 224

(V1 V2 V4)(V3) (F1 F2 F3)(F4) (E1 E5 E6)(E2 E4 E3) x1x3 28 · 224

(V1 V3 V2)(V4) (F1)(F2 F4 F3) (E1 E3 E2)(E4 E5 E6) x1x3 28 · 224

(V1 V2)(V3 V4) (F1 F4)(F2 F3) (E1)(E2 E6)(E3 E5)(E4) x22 (224)2

(V1 V4)(V2 V3) (F1 F2)(F3 F4) (E1 E4)(E2)(E3 E5)(E6) x22 (224)2

(V1 V3 V4)(V2) (F1 F2 F4)(F3) (E1 E2 E5)(E3 E4 E6) x1x3 28 · 224

(V1)(V2 V4 V3) (F1 F4 F3)(F2) (E1 E6 E3)(E2 E5 E4) x1x3 28 · 224

(V1 V3)(V2 V4) (F1 F3)(F2 F4) (E1 E4)(E2 E6)(E3)(E5) x22 (224)2

(V1 V4 V2)(V3) (F1 F3 F2)(F4) (E1 E6 E5)(E2 E3 E4) x1x3 28 · 224

(V1)(V2 V3 V4) (F1 F3 F4)(F2) (E1 E3 E6)(E2 E4 E5) x1x3 28 · 224

elegant than this expanded situation of more sets. Either way, we can now count the number

of orbits of relations as well as functions.
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Chapter 4. Conclusion

Overall Pólya’s Theorem allows one to determine how many symmetrically distinct ways of

coloring something there are. In mathematical language, it allows us to count the orbits of a

group action defined on the set of functions. De Bruijn, Harary, and Palmer generalized those

results to allow simultaneous permutations of the domain and codomain of the functions.

However, their results are somewhat limited in their applicability because they assumed the

structure of the group must be a direct product of subgroups. We used the ideas in their

publications to extend their results to the situation of the group not being a direct product.

We also created a way of breaking the orbits down further by creating a correspondence

between them and the partitions of n. Additionally we extended the ideas further and

applied them to the set of all relations and not just functions. The results we provided

can be used in several situations. However, there are a few more questions that we can ask

beyond what we have answered in this paper.

In regard to orbits of functions there are several avenues we could explore further, but

did not because of time.

Q1: We did not create weighted versions of the results, but this could be done.

Q2: We found a particular way of breaking the orbits into subclasses related to partitions of

n. We could ask if there are other properties of the functions that would be preserved

by the group action and attempt to count orbits with respect to those properties.

Q3: In the actual computations of the number of orbits there was a decent amount of

repetition coming from group elements where the cycle structure is identical to other

group elements. Is there a better way of expressing the formula to eliminate this

redundancy?

Q4: Additionally, in our results we assumed nothing about the group structure itself besides

it being a subgroup of SX × SY . If the set of permutations on the codomain had
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properties where it did not switch certain elements, could we use that to further break

the orbits into subclasses more similar to standard Pólya inventories. More formally,

if Y could be partitioned into sets Yi such that the permutations on the codomain

preserve the Y ′i s, could we find the number of orbits of functions mapping εi elements

from the domain into each Yi? De Bruijn did this in the case of the groups being a

direct product so we just wonder how to express the solution when the group is not

necessarily a direct product.

Q5: The group action preserves both injective and surjective functions. In Chapter 2 we

found a formula for the number of bijective orbits, but are there nice formula’s for the

injective and surjective orbits individually?

The situation of relations is slightly different than that of functions so we could consider

several more things about counting orbits of relations.

Q6: The number of points in a relation is preserved by the group action. We wonder if

there is a nice way of expressing how many orbits of relations there are with a given

number of points in it? This problem seems like it may not have a nice solution based

on our approach of using cyclic fixed relations, but perhaps there is a way of solving

this problem in elegant manner that would yield a nice formula.

Q7: Again we wonder if our formulas can be improved to reduce repetition of calculations.

It is clear that we could improve the statement of Theorem 3.9, but what we have

works and changes to it may complicate notation.

Thus there are more avenues to explore in many of the things we have covered in this paper.
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[6] McDaniel, D. Restatement of Pólya’s Theorem. Inorganic Chemistry 11 (11): 2678-2682

(1972) DOI: 10.1021/ic50117a021.

[7] Merris, R. Combinatorics. Wiley-Interscience Series in Discrete Mathematics and Opti-

mization. 175-249 (2003).
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