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abstract

Mirror Symmetry for Algebraic K3 Surfaces with Non-Symplectic Automorphism

Christopher James Bott
Department of Mathematics, BYU

Master of Science

Mirror symmetry is the phenomenon, originally discovered by physicists, that Calabi-
Yau manifolds come in dual pairs, with each member of the pair producing the same
physics. Mathematicians studying enumerative geometry became interested in mirror sym-
metry around 1990, and since then, mirror symmetry has become a major research topic in
pure mathematics. One important problem in mirror symmetry is that there may be several
ways to construct a mirror dual for a Calabi-Yau manifold. Hence it is a natural question
to ask: when two different mirror symmetry constructions apply, do they agree?

We specifically consider two mirror symmetry constructions for K3 surfaces known as
BHK and LPK3 mirror symmetry. BHK mirror symmetry was inspired by the Landau-
Ginzburg/Calabi-Yau correspondence, while LPK3 mirror symmetry is more classical. In
particular, for algebraic K3 surfaces with a purely non-symplectic automorphism of order
n, we ask if these two constructions agree. Results of Artebani-Boissière-Sarti [1] originally
showed that they agree when n = 2, and more recently Comparin-Lyon-Priddis-Suggs [8]
showed that they agree when n is prime. However, the n being composite case required more
sophisticated methods. Whenever n is not divisible by four (or n = 16), this problem was
solved by Comparin and Priddis by studying the associated lattice theory more carefully [9].
In this thesis, we complete the remaining case of the problem when n is divisible by four
by finding new isomorphisms and deformations of the K3 surfaces in question, develop new
computational methods, and use these results to complete the investigation, thereby showing
that the BHK and LPK3 mirror symmetry constructions also agree when n is composite.

Keywords: Mirror Symmetry, Algebraic Geometry, Mathematical Physics, String Theory



Acknowledgments

To be completely honest, this thesis and learning how to research has been one of the

most difficult tasks I’ve ever undertaken, and I simply could not have come to this point

without some incredible people in my life. First of all, I would like to thank my wife, Noelle

Bott, for her endless support and countless encouragement. I know that my research often

takes time away from her, but she understands my passion for mathematics and has done

nothing but help me succeed. I love you Noelle. I would also like to thank my parents who

have always encouraged me to further my education and to pursue what I enjoy learning.

Next I would like to thank my advisor, Nathan Priddis, who has worked tirelessly with

me on this project for almost two years now. He has been an amazing mentor and a great

example, allowing me to struggle with each step of the research while at the same time

always letting me ask him endless questions when I get stuck until I see my way forward.

He taught me everything I know about lattices and K3 surfaces, and has guided me through

the algebraic geometry literature to prepare for my future PhD studies. I can honestly say

that I hope to be as good a researcher as Nathan.

I had the opportunity to present a talk on some of the preliminary results of this thesis

at the Summer School for Enumerative Geometry at SISSA in Trieste Italy. I would like to

thank the organizing committee for allowing a graduate student to give a talk, and I would

like to thank BYU for funding the trip so the opportunity could be realized. Meeting and

discussing my work with researchers close to my area was simply inspiring, and I was able

to get some very valuable feedback. In particular, I would like to thank Barbara Fantechi

and Melissa Liu for their encouragement and advice in completing this thesis.

Additionally, I would like to thank Mark Shoemaker and Tyler Kelly for personal com-

munication that helped me understand their result, which was critical to the success of this

research. I was able to ask both of them tons of questions about mirror symmetry and their

research careers in general, all of which helped me develop as a researcher.



As an undergraduate, I was introduced to mirror symmetry by joining Tyler Jarvis’ re-

search group, and I would especially like to thank all of them. I am still amazed that Tyler

allowed me to start research in algebraic geometry without any prior abstract algebra knowl-

edge, but he took a chance on me and I will be forever grateful for that. In particular, many

of his graduate students took valuable time to teach me the basics of FJRW theory: Rachel

Webb, Nathan Cordner, Matt Brown, Lisa Bendall, and Ryan Sandberg. Additionally, Matt

Brown was willing to help edit this thesis, for which I cannot thank him enough. Being a

part of Tyler’s research group was a fantastic experience, and it was during this time that

Benjamin Pachev and I discovered and proved results about C-Singularities, which results

are in the appendix. I would like to thank Benjamin for his enthusiasm and approval in

allowing me to share our joint efforts in this thesis.

Of course, there are many more people in the BYU math department who have made

a significant impact in my life, and I would like to thank all of them. Specifically, I have

taken many algebraic geometry courses from Amanda Francis and many abstract algebra

courses from Darrin Doud, both of whom have continually encouraged me to be a professional

algebraist and have believed in my ability to make a difference. I cannot thank the BYU

math department enough for the great mentorship, teaching opportunities, and academic

preparation they have provided me in preparing for my future.



Contents

Contents v

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 String Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Mirror Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Big Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Algebraic K3 Surfaces with Purely Non-symplectic Automorphism 5

2.1 K3 Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Some Algebraic Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Our Main Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Mirror Symmetry Constructions 10
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Chapter 1. Introduction

1.1 String Theory

When it comes to describing the known universe, physicists heavily rely on two, seem-

ingly contradictory models: general relativity and quantum mechanics. In both cases, these

theories boil down to describing the fundamental forces of nature. While general relativity

quantifies gravitational force, quantum mechanics accounts for electromagnetic, as well as

the weak and strong nuclear forces. In other words, general relativity is really good at han-

dling the physics of “large” systems like planets and the universe as a whole, but quantum

mechanics excels in the “small” atomic physics realm. The problem is that these models are

formulated completely differently and while indispensable in their own spheres, no one has

been able to unify them under a single, experimentally validated framework. In fact, such a

“theory of everything” is sometimes referred to as “the holy grail of physics.”

Perhaps the most popular candidate for a grand, unifying theory of physics is string the-

ory, which models the point-like particles of particle physics with one-dimensional strings.

There are a few equivalent formulations of string theory, but in each case the strings are topo-

logically equivalent to either line segments or loops. Theoretically, these strings are Plank

length (around 10−35 meters), and so from any larger scale appear like ordinary particles,

with properties like mass and charge determined by the vibrational state of the string. Under

this model, one of the vibrational states corresponds to the graviton, a quantum mechanical

particle that carries gravitational force, allowing string theory to bring general relativity and

quantum mechanics together under a single mathematical framework.

Although physicists are currently unable to perform experiments at the level of Plank

length, string theory has had a remarkable impact on pure mathematics. In particular,

one interesting and important feature of string theory is that it requires adding six extra

dimensions of spacetime to the four dimensions (three spatial and one time) that we expe-
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rience every day. A common analogy is that from far away, a garden hose appears to be

one dimensional, but locally an ant on the surface of the hose can move in two directions,

revealing that the hose has more dimensions than meet the eye from a distance. Similarly, it

is theoretically possible that the known universe is more than four-dimensional. Now more

specifically, the six extra dimensions of string theory are required to be compactified spaces

called Calabi-Yau manifolds, which have been studied by mathematicians since at least the

1950s.

A Calabi-Yau manifold of (complex) dimension n is a compact, Kähler n-manifold with

trivial canonical bundle. Note that the Calabi-Yau manifolds in string theory are of dimen-

sion three and are called threefolds, modeling the extra six (real) dimensions of spacetime.

In the definition above, by Kähler we mean that Calabi-Yau manifolds have three mutu-

ally compatible, geometric structures: a complex structure, a Riemannian structure, and a

symplectic structure. Further, the correction term in the famous Riemann-Roch theorem

from algebraic geometry involves the dimension of the canonical bundle, so Riemann-Roch

for Calabi-Yau manifolds is extremely nice since that term vanishes. In other words, math-

ematicians and string theorists alike are interested in Calabi-Yau manifolds because of their

rich structure and the fact that they simplify important computations.

1.2 Mirror Symmetry

In the late 1980s, physicists Lance Dixon, Wolfgang Lerche, Cumrun Vafa, and Nick

Warner noticed that given a compactification in string theory, it was impossible to uniquely

construct a corresponding Calabi-Yau manifold [11], [19]. Instead, Calabi-Yau manifolds

came in pairs: two versions of string theory could be compactified, each on a completely

different Calabi-Yau manifold, and yet give rise to the same physics. This phenomenon of

Calabi-Yau manifolds coming in dual (or “mirror”) pairs was coined mirror symmetry.

In other words, mirror symmetry states that there are two mathematically distinct ways of

describing the same physical phenomenon.
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Although discovered by physicists, mirror symmetry surprisingly led to solutions of old,

unsolved problems in enumerative geometry, which studies combinatorial questions in alge-

braic geometry. For an example of a well known enumerative geometry result, nineteenth-

century mathematicians Arthur Cayley and George Salmon proved that given any cubic

surface, one can find precisely 27 straight lines on the surface [7], [21]. Generalizing this

problem in the nineteenth century, German mathematician Hermann Schubert showed that

every quintic Calabi-Yau threefold (degree five, three dimensional hypersurface in Pn(C))

has exactly 2,875 lines. Further, in 1986 Sheldon Katz proved that the number of (projec-

tive) curves of degree two on the quintic Calabi-Yau threefold is 609,250, but attempts to

further generalize this result to curves of higher degree became computationally infeasible

for mathematicians [26].

In 1991, physicists Philip Candelas, Xenia de la Ossa, Paul Green, and Linda Parks

showed that mirror symmetry could be used to translate difficult mathematical questions

about one Calabi–Yau manifold into easier questions about its mirror [6]. In particular, they

used mirror symmetry to find that the number of curves of degree three on the quintic Calabi-

Yau threefold is 317,206,375. Actually, some mathematicians had published a contradicting

number for degree three, but it turned out there was an error in their computer code and

the physicists were actually right. In fact, the mirror symmetry technique was quickly used

to find the number of curves of degree d on a quintic threefold for d ≤ 9. Ultimately

mathematicians caught on to the usefulness of physical intuition, and since then mirror

symmetry has grown to be an active research area in pure mathematics. In fact, progress in

mirror symmetry has led to the Fields medals of geometer Maxim Kontsevich and physicist

Edward Witten, the only physicist ever to win the award.

1.3 Big Questions

Since mirror symmetry is the phenomenon that Calabi-Yau manifolds come in dual pairs,

there are a couple of big questions that are natural to ask:

3



(i) Given a Calabi-Yau manifold, can we find or construct its dual?

(ii) If there are different mirror symmetry constructions for finding a dual, can we show

that the duality theories are equivalent?

As it turns out, the answer to (i) is yes, but (ii) is not so easy. Although we can always

find a mirror for a given Calabi-Yau manifold, in certain situations there are many mirror

symmetry constructions that have been developed by mathematicians, which is a fruitful

ground for research.

This thesis gives the answer to (ii) in the affirmative for two specific mirror symmetry

constructions on a class of Calabi-Yau manifolds.

In Chapter 2, we define this class of Calabi-Yau manifolds, called algebraic K3 surfaces

with purely non-symplectic automorphism, and discuss previous results. K3 surfaces have a

rich theory and are the closest Calabi-Yau manifolds (only 1 dimension less) to threefolds

(the main space of interest in string theory). Thus, understanding their mirror symmetry

will be a major stepping stone in understanding that of threefolds.

In Chapter 3, we define the two mirror symmetry constructions we use in this the-

sis. The first, Berglund-Hübsh-Krawitz (BHK) Mirror Symmetry, applies to any quasis-

mooth hypersurface in weighted projective space. BHK mirror symmetry was inspired by

the Landau-Ginzburg/Calabi-Yau correspondence and is more general, applying to a large

class of Calabi-Yau manifolds in every dimension. In contrast, Dolgachev’s lattice polarized

K3 (LPK3) Mirror Symmetry applies only to lattice polarized K3 surfaces.

In Chapter 4, we introduce new techniques for producing particular isomorphisms and

deformations for certain K3 surfaces. We prove that these techniques preserve the structure

we care about and outline our proof of our main conjecture.

In Chapter 5, we provide the details of our computations, completing the proof that

the BHK and LPK3 mirror symmetry constructions coincide for algebraic K3 surfaces with

purely non-symplectic automorphism.
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Chapter 2. Algebraic K3 Surfaces with

Purely Non-Symplectic Automorphism

2.1 K3 Surfaces

In Chapter 1, we defined general Calabi-Yau manifolds and discussed how in string the-

ory, three-dimensional Calabi-Yau manifolds (threefolds) play a prominent role in describing

the nature of the universe. However, mirror symmetry applies to Calabi-Yau manifolds of all

dimensions, each dimension bringing with it rich geometry and therefore interesting math-

ematical questions. In particular, every Calabi-Yau manifold of dimension two is either an

abelian surface or a K3 surface, the latter being the object of study in this thesis. To dis-

tinguish between the two cases, abelian surfaces are not simply connected while K3 surfaces

are, so that condition is often used to distinguish them (although there are several other

equivalent definitions). Putting everything together a K3 Surface is defined as a compact,

simply connected, Kähler surface with trivial canonical bundle.

Just like Calabi-Yau threefolds, K3 surfaces are ubiquitous in string theory, due to the

fact that string duality and compactification in these spaces is nontrivial, yet simple enough

to analyze properties in detail. At the same time; however, K3 surfaces have been stud-

ied extensively and classically by mathematicians due to their rich, complicated structure.

For example, Kunihiko Kodaira showed that all K3 surfaces are diffeomorphic, completing

their classification in the context of differential geometry [16]. Additionally, their second

cohomology groups are particularly nice invariants: given a K3 surface X, H2(X,Z) is

free of rank 22, the Hodge numbers of X are h2,0(X) = h0,2(X) = 1, h1,1(X) = 20, and

h1,0(X) = h0,1(X) = 0 (note that all interesting behavior occurs in the second cohomology

group). Further, the Euler characteristic of X is 24, the Picard group of X coincides with

the Néron-Severi group, and both are torsion-free.
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André Weil was the first to study K3 surfaces (in 1957), and named them “in honor of

Kähler, Kummer, Kodaira and the beautiful Mount K2 in Kashmir”, since they too are hard

to master [25].

2.2 Some Algebraic Geometry

We now define algebraic K3 surfaces, which will be our main object of study in this

thesis. In contrast to general K3 surfaces, which as complex manifolds are hard to describe

and understand, algebraic K3 surfaces are much easier to work with, due to the fact that

they are also algebro-geometric structures. Although most K3 surfaces are not algebraic, this

subclass is particularly important in string theory, and is required for our subsequent mirror

symmetry constructions. All of the K3 surfaces in this thesis will come from hypersurfaces

in weighted projective space. We review that construction now, starting with ordinary

projective space.

Complex projective n-space, denoted Pn, is the set of lines through the origin (one-

dimensional subspaces) in Cn+1. More specifically, Pn = (Cn+1\{0})/C∗, where (x0, . . . , xn) ∼

(λx0, . . . , λxn) for all λ ∈ C∗.

Projective n-space is easily given the structure of a compact, complex n-dimensional man-

ifold (in fact it is Kähler). We denote the homogeneous coordinates of Pn by [x0, . . . , xn]

(note that there are n+1 coordinates since we start indexing at 0, and that there is no origin

in projective space). Further, Pn is important in algebraic geometry as the ambient space

for projective varieties, which are the main objects of study in classical algebraic geometry.

Note that any nonconstant polynomial f ∈ C[x0, . . . , xn] does not give a function from Pn

to C via evaluation, since f(a0, . . . , an) 6= f(λa0, . . . , λan) for all λ ∈ C∗. However, if f is

homogeneous of degree d, meaning that each monomial has total degree d, the zero locus

of f is well-defined, since if f(a0, . . . , an) = 0, f(λa0, . . . , λan) = λdf(a0, . . . , an) = 0 as well.
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A homogeneous ideal is an ideal of C[x0, . . . , xn] that is generated by homogeneous

polynomials. For any homogeneous ideal I ⊆ C[x0, . . . , xn], define

V (I) = {[a0, . . . , an] ∈ Pn : f([a0, . . . , an]) = 0

for all f ∈ I}. We say that S ⊆ Pn is a projective variety if S = V (I) for some homo-

geneous ideal I ⊆ C[x0, . . . , xn]. Additionally, Hilbert’s Basis Theorem from commutative

algebra gives that C[x0, . . . , xn] is a Nötherian ring, one consequence being that each of its

ideals is finitely generated. Hence, every homogeneous ideal I ⊆ C[x0, . . . , xn] is of the form

I = (f1, . . . , fk) for some homogeneous f1, . . . , fk ∈ C[x0, . . . , xn]. In other words, every

projective variety is of the form V (f1, . . . , fk) for some homogeneous f1, . . . , fk, which gives

intuition behind why it is often stated that algebraic geometry is the study of solutions to

systems of polynomial equations.

In the case of K3 surfaces which are hypersurfaces in projective space (the zero locus

of a single homogeneous polynomial, i.e. of the form V (f)), it is natural to ask if their

dual Calabi-Yau manifold (which will always be a K3 surface) can also be embedded as a

hypersurface in projective space. Unfortunately, the answer to this question in general is

“no”. However, the dual will always be embedded in a slightly more general space, called a

(complex) weighted projective space. Let q0, . . . , qn ∈ Z≥1. Weighted projective n-space

with weights (q0, . . . , qn), denoted by WPn(q0, . . . , qn), is defined to be (Cn+1 \ {0})/C∗,

where (x0, . . . , xn) ∼ (λq0x0, . . . , λ
qnxn) for all λ ∈ C∗.

Note that weighted projective space is a generalization of projective space, since Pn =

WPn(1, . . . , 1). With this new group action of C∗ (via λ) on (Cn+1 \ {0}), to again get zero

loci of polynomials to be well-defined, we have to broaden our class of polynomials. This

time, instead of homogeneous polynomials, we need quasihomogeneous polynomials to get

projective varieties in weighted projective space.
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Definition 2.1. A polynomial f ∈ C[x0, . . . , xn] is quasihomogeneous with weight sys-

tem (q0, . . . , qn; d) if gcd(q0, . . . , qn) = 1, q0 + . . . + qn = d, and f(λq0x0, . . . , λ
qnxn) =

λdf(x0, . . . , xn) for all λ ∈ C∗.

Again, note that a homogeneous polynomial of degree d is a special case of quasihomo-

geneous polynomial, with weights (1, . . . , 1; d). We then get projective varieties of the form

V (f1, . . . , fk) in weighted projective space, this time where f1, . . . , fk ∈ C[x0, . . . , xn] are

quasihomogeneous with the same weights, but with possibly different degrees.

We now turn our attention to our algebraic K3 surfaces, which are are resolutions of

hypersurfaces of the form V (f). Since the zero locus of a single polynomial will have codi-

mension one, this means that our K3 surface will specifically be embedded in WP3(q0, . . . , q3)

for some weights (q0, . . . , q3), so in particular f will be a four variable polynomial. We have

already mentioned that f is required to be quasihomogeneous, but what other restrictions

are necessary for V (f) to be a K3 surface? As it turns out, Reid (in an unpublished work)

and Yonemura [27] each independently classified that there 95 distinct weight systems that

will give rise to algebraic K3 surfaces that are hypersurfaces. For each of these weight sys-

tems, one can then list all polynomials which are quasihomogeneous with respect to that

weight system.

2.3 Our Main Conjecture

Given a K3 surface X and an automorphism σ, we get an induced Hodge isometry σ∗

which preserves H2(X,Z), i.e. σ∗ωX = λσωX for some λσ ∈ C∗. We call σ symplectic if

λσ = 1 and non-symplectic otherwise. If σ is an automorphism with non-prime order n,

we say σ is purely non-symplectic if λσ = ζn, with ζn a primitive nth root of unity.

Among the K3 surfaces resulting from Reid and Yonemura’s classification of weight sys-

tems, certain hypersurfaces stood out as being of particular interest, due to the fact that they

have purely non-symplectic automorphism. Specifically, they are hypersurfaces defined by
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invertible polynomials f , which are of the form f = xn + g(y, z, w). For such hypersurfaces,

there is a group action of Z/nZ, viewed as the nth roots of unity under multiplication, on

V (f) by ζn · (x, y, z, w) = (ζnx, y, z, w). Note that f is invariant under this group action,

revealing a purely non-symplectic automorphism of the K3 surface V (f). K3 surfaces with

such automorphisms have even richer geometric structure.

In mirror symmetry specifically, algebraic K3 hypersurfaces of the form V (f) with

f(x, y, z, w) = xn + g(y, z, w) have two very different mirror constructions. We will go into

detail about these constructions (called BHK and LPK3 mirror symmetry, respectively) next

chapter, but for now it suffices to mention that BHK mirror symmetry applies to Calabi-Yau

hypersurfaces in general weighted projective spaces, while LPK3 mirror symmetry applies

to lattice polarized K3 surfaces (which our algebraic K3 hypersurfaces are). Hence in this

setting, we have the situation that both BHK and LPK3 mirror symmetry constructions can

be applied. We then come back to our “big questions” in Chapter 1. When do these two

mirror constructions agree? We have the following conjecture.

Conjecture 2.2. Let V (f) be an algebraic K3 hypersurface with f(x, y, z, w) = xn+g(y, z, w).

Then, the dual K3 surfaces given by the BHK and LPK3 mirror symmetry constructions

agree.

There has already been a lot of progress towards the solution of this conjecture. The first

paper in 2011 was by Artebani-Boissière-Sarti [1],and originally showed that the conjecture

is true for n = 2. Subsequently, Comparin-Lyon-Priddis-Suggs [8] showed that the conjec-

ture holds when n is prime. Finally, Comparin and Priddis have recently shown that the

constructions agree for all composite n, excluding the cases when n is 4, 8, or 12 [9]. While

these numbers may seem arbitrary, it should be noted that orders 8 and 12 heavily rely on

order 4, so n = 4 is where much of the difficulty lies.
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Chapter 3. Mirror Symmetry Constructions

3.1 Berglund-Hübsch-Krawitz Mirror Symmetry

We now define the BHK mirror symmetry construction. Specifically, this construction

applies to Calabi-Yau manifolds coming from hypersurfaces defined by a polynomial satis-

fying certain conditions (which we will later call an invertible polynomial), and a group of

symmetries which acts on the hypersurface. Recall from Chapter 2 that a hypersurface in

weighted projective space is of the form V (f) ⊆ WPn(q0, . . . , qn) where for the zero locus of

f to be well-defined, we require f to be quasihomogeneous with integer weights (q0, . . . , qn).

Further, we want these weights to be unique to avoid polynomials with terms like x0x1 . . . xn

which could have infinitely many weight systems.

Though given by the vanishing of quasihomogeneous polynomials, hypersurfaces are not

in general complex manifolds since projective varieties generally have singularities, i.e. points

where the dimension of the tangent space may have an inconsistent dimension. Intuitively,

we can visualize some of the possibilities for singularities as being cusps or self-intersection

points. In order for a hypersurface given by the vanishing set of a quasihomogeneous poly-

nomial to be a complex manifold, we must impose an additional constraint on f called

nondegeneracy, guaranteeing that the only possible singularities of V (f) are those in com-

mon with the singularities of its ambient space WPn(q0, . . . , qn), which in general are singular

spaces. Hence hypersurfaces will be called quasismooth, and not just “smooth.”

Definition 3.1. A polynomial f ∈ C[x0, . . . , xn] is nondegenerate if ∇f = 0 only has

(0, . . . , 0) as a solution.

Note that normally, ∇f = 0 at the origin would indicate that V (f) has a singularity

there. However, recall that weighted projective spaces do not contain an origin: we first

omit the origin from Cn+1 before making the quotient.
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Given a polynomial f =
∑m

i=0

∏n
j=0 x

aij
j ∈ C[x0, . . . , xn], we can construct an exponent

matrix A = (aij) that has the exponents for the monomials of f as rows, with each variable

representing a column.

Due to the fact that an exponent matrix encodes all the information we need to construct

a polynomial (we will soon describe how coefficients can be omitted for our purposes), for

notational convenience, instead of writing f , we may write FA for a generic polynomial with

exponent matrix A.

In order to get a nice mirror symmetry theory, we put further constraints on FA, re-

quiring the polynomial to have the same number of monomials as variables. This way, A

is a square matrix, which will allow us to form a dual Calabi-Yau manifold by finding a

“dual polynomial” for FA. Further, our earlier distinction that we want quasihomogeneous

polynomials to have unique weights makes A invertible if A is square (which can be proven

from the atomic type classification). With all of these constraints and their motivations in

mind, we are ready to define our final classes of multivariate polynomials.

Definition 3.2. A polynomial FA ∈ C[x0, . . . , xn] is admissible if it is quasihomogeneous

with unique weights, and nondegenerate. An admissible polynomial with square matrix A

is called invertible, and an admissible polynomial whose exponent matrix A is not square

is called non-invertible.

There is an extremely useful classification of invertible polynomials that we will also use.

Definition 3.3. The following types of quasihomogeneous polynomials are called atomic

types:

(i) Fermat: f = xn

(ii) Loop: f = x0x
a1
1 + x1x

a2
2 + . . .+ xn−1x

an
n + xnx

a0
0 where ai ≥ 2 for all i

(iii) Chain: f = xa00 + x0x
a1
1 + x1x

a2
2 + . . .+ xn−1x

an
n where ai ≥ 2 for all i

11



Proposition 3.4 (Kreuzer-Skarke [18]). A polynomial f ∈ C[x0, . . . , xn] is invertible if and

only if it can be written as a finite sum of atomic types in distinct variables.

For our current purposes, we will require that all of our polynomials FA are invertible. In

algebraic geometry, hypersurfaces are projectively equivalent if there is a linear change

of coordinates that takes the defining polynomial of one to the other. For hypersurfaces

defined by invertible polynomials, there is such a change of variables, allowing us to to scale

all coefficients to 1 (as may have been noticed in the atomic types above). We do not

distinguish between projectively equivalent hypersurfaces.

Given an invertible polynomial FA, we can define a “dual” polynomial FAT by transposing

the exponent matrix A to get a new exponent matrix AT . The dual polynomial is then

simply the corresponding polynomial for AT (monomials corresponding to rows, variables

to columns). With the conditions above satisfied, FAT will also be an invertible polynomial

(which again can be proven from the atomic type decomposition).

Finding this dual polynomial construction seems simple, but was a major breakthrough

in mirror symmetry from Burglund and Hübsch [4]. Greene and Plesser were the first

ones to find a dual Calabi-Yau manifold explicitly, and did so for the polynomial FA =

x50 + x51 + x52 + x53 + x54 (the “Fermat quintic”), which was of particular interest in string

theory [13]. However, their work could not be generalized because they used FA as its own

dual polynomial, which does not work for most cases.

For a more interesting example, let FA = x3w + y4 + z4 + w4, which is invertible

since it is the sum of the “chain” x3w + w4 and the two “Fermats” y4 and z4. Further-

more, FA has weights (1, 1, 1, 1) since FA(λx, λy, λz, λw) = λ4FA(x, y, z, w). In particular,

WP3(1, 1, 1, 1) = P3 (this is because FA is homogeneous, not just quasihomogeneous).

12



Now, the exponent matrix is given by A =



3 0 0 1

0 4 0 0

0 0 4 0

0 0 0 4


, so AT =



3 0 0 0

0 4 0 0

0 0 4 0

1 0 0 4


.

By the definition of an exponent matrix, we then can see from the rows and columns of

AT that FAT = x3 + y4 + z4 + xw4, which again is invertible since it is the sum of the chain

x3+xw4 = w4x+x3 and the two Fermats y4 and z4. However, FAT is not homogeneous, since

it has monomials of degree 3,4,4, and 5, respectively. However, it is quasihomogeneous with

weights (4, 3, 3, 2; 12) since FAT (λ4x, λ3y, λ3z, λ2w) = λ12FAT (x, y, z, w). In other words,

for BHK mirror symmetry we really do need quasihomogeneous polynomials and weighted

projective space, since even the dual of an invertible homogeneous polynomial is not in

general homogeneous, but always will be quasihomogeneous.

From now on we call invertible polynomials W instead of FA for notational convenience.

As far as complex manifolds are concerned, weighted projective space does have some prob-

lems. Recall that for an invertible polynomial W , the corresponding variety V (W ) is a

subspace of WPn(q0, . . . , qn), which is in general a singular space. Hence, V (W ) may be

quasismooth due to nondegeneracy, but not smooth in the sense of complex manifolds. To

remedy this situation, we use the “blow up” construction from algebraic geometry.

As a motivating example, the cone V (x2 + y2 − z2) ∈ C3 is a variety that is not smooth

if viewed in C3 (instead of P2), because it has a singularity at the origin (see Figure 3.1.

To get a smooth surface, we “blow up” the origin, which means replace it with a copy of

P1, which is homeomorphic to the Riemann sphere. After the blow up, the resulting surface

is then homeomorphic (topologically equivalent) to a cylinder, which is a smooth manifold.

Now of course the two surfaces are not homeomorphic, which is the first criteria for varieties

to be isomorphic (they also have algebraic structures that need to be preserved). However,

away from the origin, the two surfaces are isomorphic (they are even identical). In algebraic

geometry, isomorphism of varieties (which is already a finer equivalence than projective
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equivalence) is often too difficult a condition to check, but if two varieties are isomorphic

on dense open subsets (in the Zariski topology, these are complements of varieties), there

is another equivalence relation between them that is called birational equivalence that

algebraic geometers use for classification. Hence, after blowing up the origin on the cone,

we see that the cone is birationally equivalent to the resulting surface, which in this case is

a cylinder.

Figure 3.1: Blowing Up Singularities

For an invertible polynomial W satisfying the Calabi-Yau condition, the corresponding

variety V (W ) ⊆ WPn(q0, . . . , qn) has singularities to blow up (which it has in common

with its ambient weighted projective space). After this blow up procedure, we get a new

variety that is birationally equivalent to the original one. We denote this new surface by ZW .

However, unlike V (W ), ZW is a Calabi-Yau manifold embedded in projective space of some

large dimension, which is expected since every compact complex manifold can be embedded

in projective space.

Now that we have a Calabi-Yau manifold ZW associated to every invertible polynomial

W = FA, we need a dual manifold construction. Earlier we found a dual polynomial W T =

FAT which will be key in the BHK mirror symmetry construction, but it turns out that ZWT

is not the desired mirror for ZW (it doesn’t produce the same physics or duality on the level

of cohomology). Instead, it turns out that we need to act on ZWT
by a group of symmetries

and again blow up singularities to get the desired dual. To do so, there are several important

groups that we now define that are associated to every invertible polynomial W .
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Definition 3.5. Let W be an invertible polynomial with weights (q0, . . . , qn; d)

(i.e. W (λq0x0, . . . , λ
qnxn) = λdW (x0, . . . , xn).)

(i) The maximal symmetry group Gmax
W for W is defined by

Gmax
W = {(g0, . . . , gn) ∈ Cn+1 : W (g0x0, . . . , gnxn) = W (x0, . . . , xn)}.

(ii) Viewing the elements of Gmax
W as diagonal matrices, the special linear symmetry

group for W is SLW = Gmax
W ∩ SLn+1(C), where SLn+1(C) is the special linear group

(the (n+ 1)× (n+ 1) invertible matrices with complex entries and determinant 1).

(iii) The exponential grading operator group, is denoted JW = 〈(e2πiq0/d, . . . , e2πiqn/d)〉.

There is much to be said about these symmetry groups. First of all, each of these groups

can be represented by diagonal matrices and the usual matrix multiplication, and so are

abelian. Next, it can be shown that the entries of these matrices are all roots of unity, so

(g0, . . . , gn)=(e2πi·a0 , . . . , e2πi·an) for some a0, . . . , an ∈ Q/Z. Since multiplication of roots of

unity corresponds to addition of exponents, for convenience we often will write these groups

additively with elements (a0, . . . , an) ∈ (Q/Z)n+1. With this view in mind, and viewing these

groups as acting on Cn+1, Gmax
W represents the tuples that send points of ZW to ZW (i.e. the

action lifts to an action on ZW ), SLW is the subgroup with entries that add up to 1, and

JW = 〈q0/d, . . . , qn/d〉 (again viewed additively).

We now present some nice properties of Gmax
W that will be used hereafter.

Proposition 3.6 (Krawitz [17]). Let W be an invertible polynomial with exponent matrix

AW and Gmax
W its maximal symmetry group, viewed additively.

(i) |Gmax
W | = | det(AW )|. In particular, Gmax

W is a finite abelian group.

(ii) Gmax
W is generated by the columns of A−1W .
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Any subgroup of Gmax
W can act on ZW However, for the resulting quotient space to be a

Calabi-Yau manifold, the group must satisfy the “Calabi-Yau condition”, which concretely

means that the subgroup must also be a subgroup of SLW . Note also that the equivalence

relation defining points in weighted projective space is just the action of JW , so JW acts

trivially on ZW . Thus we require symmetry groups G̃ acting on ZW to be of the form

G̃= G/JW , JW ≤ G ≤ SLW . Elements of G̃ are the equivalence classes where (g0, . . . , gn) ∼

(h0, . . . , hn) if there exists some j ∈ JW such that j · (g0, . . . , gn) = (h0, . . . , hn). Note further

that if we take G = JW , G̃= {0}, so ZW/{0} = ZW . In the case where G 6= JW , the group

action may introduce new singularities. Thus, if we blow up singularities one more time, the

final variety, denoted ZW,G, is a Calabi-Yau manifold.

Recall that we mentioned how the dual to the Calabi-Yau manifold ZW = ZW,JW is not

ZWT , but instead a quotient of it. In other words, we will find a dual for ZW that is of

the form ZW ′,G′ for some polynomial W ′ and some group JW ′ ≤ G′ ≤ SLW ′ . As can be

expected from our above discussion, W ′ will be the dual polynomial W T of W , but we have

not yet determined how to compute a dual group. In fact, finding a dual group was a huge

breakthrough in mirror symmetry, given in the PhD dissertation of Mark Krawitz [17]. We

give the definition and some important properties below.

Definition 3.7. For an invertible polynomial W with exponent matrix AW and subgroup

G ≤ Gmax
W , we define the dual group to be GT = {g ∈ Gmax

WT : gAWh
T ∈ Z for all h ∈ G}.

While the definition of the dual group may be a bit confusing, it does in fact have some

very nice properties:

Proposition 3.8 (Artebani-Boissiére-Sarti [1]). Let W be an invertible polynomial and

G,G1, G2 ⊆ Gmax
W .

(i) (GT )T = G

(ii) If G1 ⊆ G2, G
T
2 ⊆ GT

1 , and G2/G1
∼= GT

1 /G
T
2
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(iii) (Gmax
W )T = {0} ⊆ Gmax

WT

(iv) {0}T = Gmax
WT

(v) (JW )T = SLWT

(vi) (SLW )T = JWT

In particular, if JW ≤ G ≤ SLW , we have that JWT ≤ GT ≤ SLWT . Hence for the

Calabi-Yau manifold of the form ZW,G with JW ≤ G ≤ SLW , we can define the BHK

mirror (dual manifold) to be ZWT ,GT . In particular, we have that the dual of ZW = ZW,JW

is ZWT ,SLW
, and even more importantly, we will later be able to construct algebraic K3

surfaces and their BHK duals in this fashion.

3.2 Non-invertible Polynomials and Non-abelian Groups in BHK

Mirror Symmetry

We now take a quick detour to discuss some current work in generalizing BHK mirror

symmetry, including our resolution of a conjecture in this area. Recall that in the last

section, Calabi-Yau manifolds were constructed from an invertible polynomial W and a

group of symmetries G. In our previous discussion, we only considered diagonal groups of

symmetries, which are abelian, but there was no physical or mathematical reason to do so,

except for simplifying the theory and computations. By using faithful representations of

non-abelian groups, it is conjectured that the BHK mirror symmetry constructions as given

above can be generalized to produce a dual group for certain non-abelian groups.

In addition to BHK mirror symmetry on ZW,G, there are two algebraic structures as-

sociated to these Calabi-Yau manifolds that are also important in string theory, called the

A-model and the B-model. The A-model and B-model are graded Frobenius algebras (over

C) and contain a lot of important geometric and physical information, via the categorical

equivalence between graded Frobenius algebras and certain topological quantum field theo-
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ries. The classical construction of the A-model is closely related to Gromov-Witten Theory,

while the B-model is well-known from singularity theory. However, due to the Landau-

Ginzburg/Calabi-Yau correspondence, there is another equivalent (and easier to compute)

A-model for each Calabi-Yau manifold ZW,G.

The construction of this new A-model was another breakthrough in mirror symmetry

given by Fan-Jarvis-Ruan, named FJRW theory (the W is for Edward Witten) [12]. With

this new A-model construction came another mirror symmetry theory for each ZW,G called

Landau-Ginzburg mirror symmetry, which states that the A-model associated to each ZW,G

should be isomorphic as graded Frobenius algebras to the B-model associated to ZWT ,GT ,

and there has been a lot of success in proving this, assuming as in the last section that G is

abelian.

Although we can construct ZW,G when G is a non-abelian group of symmetries acting on

W , the FJRW theory A-model is much more complicated in this case and deals with gauged

linear sigma models. There have also been attempts at defining a B-model in such cases [5],

[22], [10]. Ongoing work by Nathan Priddis and some of his other students is also promising

in this area.

In addition to generalizing BHK mirror symmetry to include non-abelian groups, ef-

forts have also been made to generalize the situation to allow polynomials W that are non-

invertible. Recall that a non-invertible polynomial does not need to have the same number of

monomials as variables. Unlike the case for non-abelian groups, there is no current candidate

for W T for non-invertible W (the transpose of the exponent matrix does not usually give an

admissible polynomial as in the case for invertible polynomials). However, one possible way

around this (until such a dual polynomial construction is discovered) is the breakthrough

by Julian Tay in his Master’s thesis that the FJRW theory A-model only depends on the

symmetry group and the weights of the polynomial, not the polynomial itself. The following

proposition is then called the Group-Weights Theorem.
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Proposition 3.9 (Tay [24]). Let W1 and W2 be admissible polynomials (invertible or non-

invertible) with some shared fixed group of symmetries G (up to isomorphism). Then, the

A-models associated to ZW1,G and ZW2,G are isomorphic as graded Frobenius algebras.

As a consequence of the Group-Weights Theorem, at least at the level of A-models, we

can replace a non-invertible polynomial with some group of symmetries with an invertible

polynomial, provided that the new polynomial also shares that group of symmetries. In

particular, since JW is a shared symmetry group among all admissible polynomials with the

same weights, the theory is especially nice. Hence if Gmax
W = JW for some non-invertible

polynomial W , the Group-Weights Theorem states that the invertible theory is enough to

classify all A-models (as long as there is an invertible polynomial in the same weight class,

which “usually” is the case), leading to our next definition.

Definition 3.10. Let W be a non-invertible polynomial. W is called a J-singularity if

Gmax
W = JW . On the other hand, if Gmax

W 6= JW , we call W a C-singularity.

Note that the definition applies only to non-invertible polynomials, not invertible ones.

While it is well understood that for three or more variables there are many C-singularities,

for the two variable case there were no known examples. In fact due to a large number

of computations showing that all computed two variable non-invertible polynomials were

J-Singularities, the following conjecture (also known as the C-singularity conjecture) was

given by Tyler Jarvis (personal communication):

Conjecture 3.11. In two variables, there are no C-Singularities, i.e. all non-invertible W

have Gmax
W = JW .

If the C-singularity conjecture were true, again in the two variable case A-models for two

variable non-invertible polynomials would be able to be computed with invertible represen-

tatives via the Group-Weights Theorem, completing Landau-Ginzburg mirror symmetry for

non-invertible polynomials. However, in an unexpected turn of events, the author was able

to show that the C-singularity conjecture was in fact false. While computing a list of all
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A-models with weights up to a small fractional size in an attempt to classify all two variable

A-model isomorphisms, we came across a few examples of non-invertible polynomials that

did not have JW as their maximal symmetry group. It turns out that these C-singularities

were particularly rare, which explains why they had remained undetected for so long.

For example, in the weight system (1, 1; 28), among all the non-invertible polynomials

with those weights, only 0.002% were C-singularities. Additionally for this weight system,

only three A-models (up to isomorphism) came from invertible polynomials, while eight more

came from C-singularities, revealing that C-singularities (though unexpected) provide the

majority of distinct A-models for two variable weight systems. Once C-singularities were

discovered in two variables, we were also able to find a pattern among the ones we found

and were able to classify all of them by finding necessary and sufficient conditions.

Definition 3.12. Let W (x, y) = xa1yb1 + xa2yb2 + . . . + xanybn . The difference GCD of

W , denoted dg(W ) = GCD(ai − aj) running over all i 6= j.

Note here that dg(W ) only depends on the exponents for one of the variables. In our

definition above we used the exponents of x, but just as well we could have used the exponents

of y. For consistency in this thesis we will only use dg(W ) in terms of the exponents of x, as

defined above. Now that we have dg(W ), we come to our main theorem for non-invertible

polynomials.

Theorem 3.13. Let W be a non-invertible polynomial in two variables. Then, W is a

C-singularity if and only if dg(W ) ≥ 1.

This theorem takes some time to justify and is an aside from the main topic of this thesis.

It is further original work done jointly with Benjamin Pachev that was never published, so

with his permission we have included a proof in full detail in the appendix.

With necessary and sufficient conditions for two variable C-singularities, there is hope for

a similar criterion in more variables. Additionally, it is conjectured that C-singularities with

the same weights and difference GCDs have isomorphic A-models (this has been verified
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in several cases), providing another potential source of A-model isomorphisms previously

unexpected. Perhaps more importantly, this reveals that there is still more interesting work

to be done in BHK mirror symmetry.

3.3 Lattice Polarized K3 Mirror Symmetry

We now depart from BHK mirror symmetry which concerns Calabi-Yau manifolds that

are algebraic hypersurfaces, and instead consider mirror symmetry specifically for K3 sur-

faces. We also impose the condition that our K3 surfaces be lattice polarized, since we will be

summarizing Dolgachev’s lattice polarized K3 (LPK3) mirror symmetry. In particular, this

implies that all the K3 surfaces we will be considering are algebraic. The lattices associated

to our K3 surfaces are key for our future discussion, so we take the time here to develop

some required lattice theory. We will follow the definitions given in [20].

A lattice is defined to be a tuple (L,B), where L is a free abelian group of finite rank

(i.e. isomorphic to Zn for some finite n), and where B is a non-degenerate symmetric bilinear

form B : L×L→ Z. Here non-degenerate means that if B(x, y) = 0 for all y, then x = 0,

symmetric means B(x, y) = B(y, x) for all x, y ∈ L, and bilinear means that B is Z-linear

(i.e. a group homomorphism) in both components, separately. In other words, after fixing a

basis for L (which is always possible since L is free), we can represent B as a non-degenerate,

symmetric, integer-valued matrix (also denoted B) in that basis with B(x, y) = xTBy for

all x, y ∈ L (viewed as column vectors). Since B is symmetric, from linear algebra we know

that there exists a change of basis over R where B is diagonal with eigenvalues along the

diagonal. The number of positive eigenvalues of B is denoted by l+ and the number of

negative eigenvalues l−. We call the tuple (l+, l−) the signature of the lattice (L,B). A

sublattice (L′, B′) ⊆ (L,B) is a free abelian subgroup L′ ⊆ L, where B restricted to L′ is

B′.

From now on, we denote a lattice (L,B) by L for convenience, making B explicit when

required. A sublattice L′ ⊆ L is primitive if L/L′ is free, and is called an overlattice
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if L/L′ is a finite abelian group. We denote L∗ = Hom(L,Z), and note that we can view

L ⊆ L∗ via x(y) = B(x, y) for all x, y ∈ L. Hence we can define the discriminant group

AL = L∗/L, which is always a finite abelian group. In fact if we write B as a matrix, then

|AL| = | det(B)|. If AL is trivial (i.e. L = L∗), we call the lattice L unimodular. A lattice

is called even if L(x, x) ∈ 2Z for all x ∈ L.

Given a finite abelian group A, a (finite) quadratic form is a map q : A → Q/2Z

satisfying

(i) For all n ∈ Z and a ∈ A, q(na) = n2q(a), and

(ii) There exists a symmetric, bilinear form b : A × A → Q/Z such that for all a, a′ ∈ A,

q(a+ a′) ≡ q(a) + q(a′) + 2b(a, a′) (mod 2Z).

In particular, we can extend the bilinear form B on L to L∗ (now taking values in Q),

so if L is even, we get an induced quadratic from qL : AL → Q/2Z (with b = B). Using this

quadratic form, we obtain a useful notion of orthogonality for lattices.

We already have the notion of an orthogonal complement from linear algebra: if L ⊆ S,

L⊥S = {s ∈ S : B(s, l) = 0 for all l ∈ L} (Here we consider B to be the form on S. Two lattices

L and K are said to be orthogonal if there exists an even, unimodular lattice S such that

L ⊆ S and L⊥S
∼= K, where isomorphism of lattices, called an isometry, is an isomorphism

of free abelian groups that preserves the bilinear form. Perhaps even more importantly,

we have the useful criterion that L and K are orthogonal if and only if qL ∼= −qK , where

isomorphism of quadratic forms is really an isomorphism of AL and AK that preserves the

maps to Q/2Z. While orthogonality may not at present seem important, it will be key in

our later definition of LPK3 mirror symmetry.

Some lattices of particular interest are the rank 2 hyberbolic lattice whose bilinear form is

given by the matrix U =

0 1

1 0

, the lattices Al,Dm,and En (l ≥ 1,m ≥ 4, 6 ≤ n ≤ 8) whose

matrix representations are the adjacency matrices for the Dynkin diagrams of the classic

ADE-singularities, and the Tp,q,r lattices which are the adjacency matrices for graphs in the
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form of a T with p, q, r the respective lengths of the legs (see Figure 3.2 for T4,4,4 below).

We also have the rank 1 lattices defined by 〈n〉 for some n ∈ Z that act by multiplication,

i.e. B(x, y) = xny. For notation purposes, U(2) means the lattice whose values are 2 times

those for U , etc.

Figure 3.2: T4,4,4

The set of all finite quadratic forms forms a semi-group under direct sum, where direct

sum of matrices is the corresponding block diagonal matrix. There are three classes of

quadratic forms which generate the semi-group of all finite quadratic forms under direct

sum, which we present now:

(i) For p 6= 2 prime, k ∈ Z≥1, and ε ∈ {−1, 1}, let a be the smallest even integer that has

ε as quadratic residue modulo p. Then we define

wεp,k : Z/pkZ→ Q/2Z by wεp,k(1) = a
pk

(ii) For p = 2, k ∈ Z≥1, and ε ∈ {−1, 1,−5, 5}, we define

wε2,k : Z/2kZ→ Q/2Z by wε2,k(1) = ε
2k

(iii) For k ∈ Z≥1, we define the quadratic forms uk and vk on Z/2kZ× Z/2kZ by

uk =

 0 1
2k

1
2k

0

 and vk = 1
2k

2 1

1 2


We list relevant lattices, their signatures, and their associated quadratic forms in Ta-

ble 3.1. These lattices are described in much greater detail in [3].

Note that the lattices (and hence quadratic forms) for the K3 surfaces we will be studying

may not just be entries in Table 3.1, but direct sums of them. For example, U ⊕ D4 has

discriminant form u, while U(2)⊕D4 has discriminant form u⊕ v.
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Lattice Signature Form
U (1,1) trivial
U(2) (1,1) u
A1 (0,1) w−12,1

A1(2) (0,1) w−12,2

A2 (0,2) w1
3,1

A3 (0,3) w5
2,2

D4 (0,4) v
D5 (0,5) w−52,2

D6 (0,6) (w1
2,1)

2

D9 (0,9) w−12,2

E6 (0,6) w−13,1

E7 (0,7) w1
2,1

E8 (0,8) trivial
T4,4,4 (1,9) v2
〈4〉 (1,0) w1

2,2

〈−4〉 (0,1) w−12,2

〈8〉 (1,0) w1
2,3

〈−8〉 (0,1) w−12,3

Table 3.1: Lattices and Quadratic Forms

One more relevant fact that we should mention is that in what follows we will be iden-

tifying lattices via their discriminant quadratic forms and signatures. The following result

ensures that we can do this.

Proposition 3.14 (Nikulin [20]). An even lattice with signature (l+, l−) and discriminant

quadratic form q exists and is unique if l+ ≥ 1,l− ≥ 1, and l+ + l− ≥ 2 + l(Aq), where l(Aq)

denotes the minimum number of generators of Aq.

With all this machinery, we are now ready to describe LPK3 mirror symmetry. Let X be

a K3 surface with purely non-symplectic automorphism σ. It is well known that H2(X,Z) is

an even, unimodular lattice of signature (3, 19), so isomorphic to the K3 lattice LK3 = U3⊕

(E8)
2. We can then look at some interesting sublattices. Pic(X) = H2(X,Z) ∩ H1,1(X,C)

be the picard lattice of X, and let S(σ) ⊆ H2(X,Z) be the invariant lattice of X given

by S(σ) = {x ∈ H2(X,Z) : σ∗(x) = x}. The signature of S(σ) is (1, t) for some t ≤ 19.
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of M j : M → Pic(X), we call X an M-polarized K3 surface. For an M -polarized K3

surface X, the lattice M naturally embeds into LK3, leading to our final definition.

Definition 3.15. Let M be a primitive sublattice of LK3 of signature (1, t) with t ≤ 18 such

that (MLK3
)⊥ ∼= U ⊕M∨. We define M∨ (up to isometry) to be the dual lattice to M .

Given an M -polarized K3 surface X and an M ′-polarized K3 surface X ′ with M ′ = M∨ (or

equivalently M = (M ′)∨), we call X and X ′ LPK3 dual K3 surfaces.

Note that the dual of X is a whole family of K3 surfaces, each of which is M∨-polarized.

As for duality, one can check that M∨ is also primitively embedded in LK3, has signature

(1, 18− t), qM ∼= −qM∨ , and that (M∨)⊥LK3

∼= U ⊕M , so (M∨)∨ = M . Hence our notion of

M -polarized X and M∨-polarized X ′ being mirror K3 surfaces makes sense.

Now that we have defined both the BHK and LPK3 mirror symmetry constructions, we

turn our attention specifically to K3 surfaces of the form ZW,G, where W = xn + g(y, z, w) is

invertible from one of the 95 previously mentioned weight systems, and which are polarized

by the invariant lattice S(σn), where σn(x, y, z, w) = (ζnx, y, z, w) is the non-symplectic

automorphism acting by a primitive nth root of unity ζn. Now via BHK mirror symmetry,

we get the dual K3 surface ZWT ,GT , which is polarized by the invariant lattice S(σTn ). If we

show that S(σn)∨ ∼= S(σTn ), we then have that ZWT ,GT is in the LPK3 mirror family of ZW,G

as well. This is what we mean for the BHK and LPK3 mirror symmetry constructions “to

agree.” Computationally, we verify this by checking the rank and quadratic form of a K3

surface and its mirror.

In the next two chapters, we describe methods and computations showing that the BHK

and LPK3 mirror symmetry constructions agree. Besides some listed exceptions, we then

prove our main theorem:

Theorem 3.16. Let W be an invertible polynomial of the form xn + g(y, z, w) from one of

Reid and Yonemura’s 95 weight systems, and JW ≤ G ≤ SLW . Then the K3 surface ZW,G

and its BHK mirror XWT ,GT are LPK3 mirror pairs.
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There has already been a lot of progress on this problem: n = 2 was proven by Artebani-

Boissière-Sarti [1], n prime by Comparin-Lyon-Priddis-Suggs [8], and n 6= 4, 8, 12 by Comparin-

Priddis [9]. Hence for the rest of our discussion, we look specifically at the cases n = 4, 8, 12

to complete the problem, where previous methods no longer apply.
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Chapter 4. Classification Project

4.1 Isomorphisms of K3 Surfaces

At the end of the last section, we discussed how the key to showing that BHK and

LPK3 mirror symmetry agree (when both apply) is to show that the invariant lattice S(σTn )

of ZWT ,GT is the same as the LPK3 dual lattice. Here the main problem is that invariant

lattices are in general very difficult to compute, and in particular this is the situation for

n = 4, 8, 12, being the precise reason why these cases have been saved for last. In this section,

we develop new tools that will aid in us resolving this situation. Our first technique is a new

way to show K3 surfaces are isomorphic, which is useful since isomorphic K3 surfaces have

the same invariant lattice. Here by isomorphism, we mean as algebraic varieties, which also

shows that they are isomorphic as complex manifolds. Hence, our method of attack for this

problem is to use a Theorem of Kelly and Shoemaker to find isomorphism classes within our

desired list K3 surfaces and to show that these isomorphisms preserve the non-symplectic

automorphism. In many of these classes, we then find a representative that has a computable

invariant lattice, and then use this representative to find the invariant lattice for all members

of its isomorphism class.

Theorem 4.1 (Kelly and Shoemaker [15] [23]). If W and W ′ are invertible polynomials and

JWT ≤ GT ≤ SLWT , J(W ′)T ≤ (G′)T ≤ SL(W ′)T with GT = (G′)T , then ZW,G and ZW ′,G′ are

birationally equivalent.

Kelly proved Theorem 4.1 using Shioda maps, and we go into more specifics about his

arguments in our proof of Lemma 4.3 below. The following theorem is a standard result in

the minimal model program in algebraic geometry and the classification of compact complex

surfaces in algebraic geometry. A proof can be found in [2], which follows quickly from the

fact that by definition, K3 surfaces have trivial canonical bundle.

Theorem 4.2. Every birational map between K3 surfaces is an isomorphism.
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Together, these two theorems give an original way to find isomorphisms of K3 surfaces,

aiding in showing the equivalence of BHK and LPK3 mirror symmetry for W = xn +

g(y, z, w) (up to change of variables) with n = 4, 8, 12. Since our K3 surfaces have the

additional structure of a purely non-symplectic automorphism, we just need to verify that

the isomorphism of Kelly preserves the automorphism σn. In other words, if X and X ′

are two of our K3 surfaces with automorphism of order n σn (which may act on them

differently), and φ : X → X ′ is Kelly’s birational equivalence, then for all x ∈ X, we need

φ(σn · x) = σn · φ(x). A map that preserves σn in this way is called σn-equivariant.

Lemma 4.3. The birational equivalence given in Theorem 4.1 is σn-equivariant.

Proof. The proof of Theorem 4.1 uses what are called Shioda maps, which are rational. We

introduce the following notation. Let W be an invertible polynomial with exponent matrix A,

and let B = dA−1, where d is any integer such that B has all integer entries. Further, let XdI

be the hypersurface in Pn cut out by the Fermat polynomial xd1 + ...+ xdn. Then, the Shioda

map φB : XdI → XA is given by φB(y0 : ... : yn) = (x0 : ... : xn), where xj =
∏n

k=0 y
bjk
k . We

denote by φBT the Shioda map for W T . Kelly proves that these Shioda maps push forward

any action by a symmetry group G via φB∗(g) = Bg, and similarly for W T .

Now, Kelly’s proof shows that if G = G′, then both ZWT ,GT and ZW ′T ,G′T are birational

to Xdd′I/H, for some group H. Now, in our specific case this is an isomorphism, and σn acts

on both ZWT ,GT and ZW ′T ,G′T . This is a purely non-symplectic automorphism σdd′ of Xdd′ ,

which descends to an action on Xdd′I/H. Notice that σdd′ has order n in Xdd′I/H, and so

this gives an equivalent action of σn on both ZW,G and ZWT ,GT .

Although lattice computations are difficult and there are at present no known methods

for carrying out many of them, we had success in using Theorem 4.1 and Theorem 4.2

together to find isomorphism classes of K3 surfaces. Since the invariant lattice is preserved

under isomorphism, many computations thus reduce to finding a method that works for just

a representative in each isomorphism class. Unfortunately, not every isomorphism class has
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such a nice representative, so we need another tool. This comes from deformations, and in

particular pencils.

4.2 Deformations and Embeddings of K3 Surfaces

In this section we will describe certain deformations which will further facilitate our

computations. A deformation is a continuous family X → S for some base S. We will

mostly be interested when each fiber is a K3 surface. When S = P1, we call such a family a

pencil. For our purposes, we take invertible polynomials W and W ′ with the same system

where G = G′ (they have the same group of symmetries acting on them). We then form

the pencil of hypersurfaces in WPn(q0, . . . , qn) sW + tW ′ for (s, t) ∈ P1 and then do a blow

up for this entire family since each fiber has the same singularities. It is a well known fact

that all K3 surfaces are deformations, but not all of these deformations will preserve the

invariant lattice if these K3 surfaces have a purely non-symplectic automorphism. However,

if we can show that the invariant lattice is also preserved under certain deformations, then

deformations combined with isomorphisms creating a larger pool in each class to draw from

for developing computational methods.

The following two theorems together show that if one member of the pencil of K3 surfaces

we just described is polarized by an invariant lattice, every member of the pencil is polarized

by the same invariant lattice. Let LB denote a lattice generated by a set of curves B ∈

Pic(X).

Theorem 4.4. LB is primitively embedded in H2(X,Z) if and only if LB is primitively

embedded in Pic(X).

Proof. Note that from previous discussion Pic(X) is primitively embedded in H2(X,Z). By

the Third Isomorphism Theorem, (H2(X,Z)/LB)/(Pic(X)/LB) ∼= H2(X,Z)/Pic(X), which

is free. Since we know that H2(X,Z)/LB is a finitely generated abelian group, Pic(X)/LB

cannot be free or else the quotient will have torsion, unless H2(X,Z)/LB has no torsion to
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begin with, i.e. is free itself. For the other direction, we just note that the subgroup of a

free group is always free.

Let LBt be the lattice generated by the curves over t ∈ P1.

Theorem 4.5. If LB0 is primitively embedded in H2(X0,Z), then LBt is primitively embedded

in H2(Xt,Z) for all t ∈ P1.

Proof. This proof actually follows from Proposition 2.10 in Huybrechts, since it is straight-

forward that the specialization map is a primitive embedding [14]. Using the same idea as

Theorem 4.4, we can show this gives the desired primitive embedding. Since his treatment

uses the modern language of sheaves and schemes from algebraic geometry, we omit the

technical details.

While techniques for computing invariant lattices are scarce, for our specific class of K3

surfaces, there is a lattice LB that is easy to compute defined as the adjacency matrix of the

graph that is the intersection (a set B) of copies of P1 which arise in the blow up process.

Since the Picard lattice Pic(X) consists of equivalence classes of (finite formal sums of) curves

on the K3 surface X, LB ⊆ Pic(X). In the case where this is a primitive embedding and the

group of symmetries acts trivially on X, Sarah-Marie Belcastro in her PhD dissertation [3]

computed Pic(Xt) for a general member of a family of K3 surfaces for each of the 95 weight

systems. Our goal is to find a representative in each class that has a trivial group action and

a primitive embedding, and to find deformations that preserve the invariant lattice. Then

we can find a primitive embedding using Theorem 4.3 and Belcastro’s work. We will rely on

the following result.

Theorem 4.6. If LB is primitively embedded in Pic(X), then LB = S(σn).

Proof. The key to this proof is that we can find LB and LB′ such that LB is primitively

embedded in LB′ . In the next chapter, we complete the proof of this lemma computationally

by showing via our MAGMA function “dicompare” (see appendix A) that LB′ ∼= Pic(Xt) for
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Belcastro’s Xt, which is always primitively embedded in H2(X,Z). Similarly, we always have

that S(σn) is primitively embedded in H2(X,Z). Further, LB ⊆ S(σn) with the same rank,

so S(σn)/LB is a finite abelian group contained in H2(X,Z)/LB, which is free. However, the

only finite subgroup of a free group is {0}, so it must be that LB = S(σn).

4.3 Outline of Proof

The proof of our main theorem that the BHK and LPK3 mirror symmetry constructions

agree when they overlap in the n = 4, 8, 12 (with some listed exceptions) is computational.

In the preceding sections we have described some original methods for finding isomorphism

classes, deformations, and embeddings of relevant K3 surfaces. Here, we summarize the

process of our computations, with more specific details in Chapter 5 and the appendix,

outlining our computational proof of the theorem. In the next section, we go through our

outline’s process for n = 4, rank 4 to illustrate these points so they are more clear. The

steps for the computations are as follows:

(i) Classify each K3 surface by order of automorphism (which in our case the possibilities

are 4, 8, 12). We list all pairs (W,G), where W = xn + g(y, z, w) is invertible and

JW ≤ G ≤ SLW . For some polynomials, there are several choices of G, each giving

rise to a different K3 surface.

(ii) Classify each K3 surface’s lattice by the rank of its invariant lattice. These ranks are

computed using a theorem of Comparin-Priddis [9].

(iii) Find isomorphism classes for our K3 surfaces

(a) Classify the W T ’s by weight system (this is the only way presently known to find

possible GT = G′T ).

(b) For each W T = xn + g(y, z, w) (up to change of variables) with n = 4, 8, 12, find

all possible GT such that JWT ≤ GT ≤ SLWT .
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(c) Collect the (W T , GT ), (W ′T , G′T ) in each weight system with GT = G′T .

(d) By Theorem 4.1 and Theorem 4.2, we then have ZW,G ∼= ZW ′,G′ , separating K3

surfaces into isomorphism classes.

(iv) In a given rank, look for K3 surfaces that have the same weights and group, and find de-

formations. If there is a deformation between representatives for different isomorphism

classes, we have enlarged our pool of candidates in that case.

(v) In each isomorphism/deformation class, find a representative that has a trivial group.

If invariant lattice matches Belcastro’s work, we’re done. If not, find an embedding of

LB into Pic(X) by showing LB is primitively embedded in some LB′ ∼= Pic(X), and

then we’re done. At this point we have shown that S(σn) is the same for each member

of a given class.

(vi) Check that S(σn)∨ = S(σTn ) for some ZW,G in each class and its BHK mirror ZWT ,GT

by comparing their ranks and discriminant quadratic forms. If they agree, the BHK

mirrors are LPK3 mirrors as well.

(vii) If there is no representative with trivial group in a given equivalence class, we call

that class exceptional. Additional (perhaps case specific) methods will have to be

developed in these cases, but our work has at least made it so these methods only need

to apply to a single member of each exceptional class.

4.4 Illustrative Example

We now go over our process for the n = 4, rank 4 case. Most of our proof is too

computational to show every step, but this example illustrates enough so that our short

descriptions in the next chapter are sufficient. In the n = 4, rank 4 case, there are three

invertible polynomials with symmetry groups that satisfy Reid and Yonemura’s conditions

(just a small excerpt from our table in Chapter 5):
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No Rk Dual Weights Polynomial G/JW Form
11 4 77 (4,2,1,1;8) x2 + y4 + z8 + w8 Z/2Z w1

2,2 + w5
2,2

12 4 78 (3,2,2,1;8) x2z + y4 + z4 + w8 trivial w1
2,2 + w5

2,2

13 4 79 (3,2,2,1;8) x2z + y4 + z4 + xw5 trivial w1
2,2 + w5

2,2

Table 4.1: Order 4, Rank 4 Example

Note that the dual polynomial for 11 above is itself, while the dual polynomial for 12

(using the transpose of its exponent matrix) is x2 + y4 + xz4 + w8. Both of these dual

polynomials have the same weight system (4,2,1,1;8).

From subgroup lattices (depicted below) where edges correspond to index, and using

duality of quotient groups, we see that the dual groups for 11 and 12 both have order 32,

and with some order considerations we can see that they are the same group (using the

classification of finite abelian groups). Hence by our results on isomorphisms, 11 and 12

are birationally equivalent, and in fact by Theorem 4.2 they are isomorphic, and so their

invariant lattices are the same.

Gmax
W

SLW

JW

{0}

{0}

JWT

SLWT

Gmax
WT

Figure 4.1: Subgroup Lattice for 12 and its Dual

Now that we know that we can relate 11 and 12 via isomorphism, we continue by observ-

ing how 12 and 13 have the same weight system with G/JW the trivial group acting on both

of them, which is an indicator that they are in a shared pencil of K3 surfaces. Blowing up

the pencil, we get the corresponding adjacency graphs for the intersections of special fibers

for 12 and 13.
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Figure 4.2: Blowup Graph for 12

Figure 4.3: Blowup Graph for 13

Figure 4.4: Belcastro’s Picard Lattice Computation

Looking at the adjacency graphs above for the blow ups corresponding to 12 and 13, we

observe that they are almost the same, with the exception that 12 has one additional note

missing from 13. Now, Belcastro’s computation (see Figure 4.4) for Pic(X) for this weight

system indicates that it should have rank 7, which doesn’t quite match either 12 or 13 (have

9 and 8 generators, respectively). Removing the node that 12 has, but 13 doesn’t, along with

one additional node, we get a sublattice LB′ which our magma code shows is (potentially

after a change of basis) isomorphic to Belcastro’s rank 7 Pic(X). Further, it is easy to find
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a rank 4 LB ⊆ LB′ as our invariant lattice (manipulating the defining equations), so by our

results above, 12 and 13 are deformations of one another that preserve the non-symplectic

automorphism (since the missing node in 13 wasn’t necessary, and that was what dropped

out during the deformation).

Hence, 11 and 12 are connected via isomorphism, and 12 and 13 are connected defor-

mation, so all three have the same invariant lattice. We then primitively embedded 13 into

the lattice computed by Belcastro (easy to check that it is a sublattice). Looking at the

table in Ch. 5, we can verify that the rank and quadratic form of 11, 12, and 13 correspond

dually with their duals 77,78, and 79, respectively having done the same computations there,

showing that the two mirror symmetry constructions agree for these K3 Surfaces.

Before we move on from this example, we note that 11 did not have {0} as its G/JW

like 12 and 13 did, so Belcastro’s results do not apply for 11. In other words, if it weren’t

for the isomorphism of 11 and 12 via our use of Tyler and Kelly’s Theorem, 11 would be an

exceptional K3 surface.
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Chapter 5. Computations

Recall that we construct our K3 surfaces from an invertible polynomial of the form

W = xn + g(y, z, w) and group G with JW ≤ G ≤ SLW . These K3 surfaces have a purely

non-symplectic automorphism σn, and our goal for n = 4, 8, 12 is to find S(σn) and show

that S(σn)∨ ∼= S(σTn ). This last step is verified by checking the below tables to compare the

rank and quadratic form of a K3 surface with that of its dual.

5.1 Order 4 Computations

We begin with our computations of an exhaustive list of invertible polynomials of the form

W = x4 + g(y, z, w) and their symmetry groups G that generate lattice polarized, algebraic

K3 surfaces ZW,G, along with their weights and the rank of their invariant lattice. Note here

that “x” may not be the order four Fermat term, but it is convenient and equivalent to say

the polynomials are of the form x4+g(y, z, w). Further, weights come from a list derived from

Reid and Yonemura’s work, and are of the form (q0, . . . , q3; d), where for the corresponding

polynomial W , we have W (λq0x, λq1y, λq2z, λq3w) = λdW (x, y, z, w) for all λ ∈ C∗. Since

rank is a lattice-invariant, if two lattices have different ranks they are not the same. Hence,

note that our list and following remarks are ordered by rank. We also number our list to

make referencing efficient.

Notice the table is also grouped (notationally by double lines) by isomorphism/defor-

mation classes, the details of which are summarized afterward, separated by rank. In this

discussion, we mention that some of the K3 surfaces are exceptional. In the table for those

K3 surfaces, we include the conjectured quadratic forms and duals, even though we have not

been able to show they are primitively embedded with our current methods. For all other

K3 surfaces, we verify Conjecture 2.2 by checking the rank and quadratic forms for each K3

surface and that of their mirror.
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No Rk Dual Weights Polynomial G/JW Form
1 1 85 (1,1,1,1;4) x4 + y3z + z3w + yw3 trivial w1

2,1

2 1 86 (1,1,1,1;4) x4 + y4 + z3w + zw3 trivial w1
2,1

3 1 87 (1,1,1,1;4) x4 + y4 + z4 + w4 trivial w1
2,1

4 1 89 (1,1,1,1;4) x3w + y4 + z4 + w4 trivial w1
2,1

5 1 88 (1,1,1,1;4) x3z + y4 + z3w + w4 trivial w1
2,1

6 2 80 (4,2,1,1;8) x2 + y4 + z7w + zw7 trivial u
7 2 83 (4,2,1,1;8) x2 + y4 + z8 + w8 trivial u
8 2 81 (4,2,1,1;8) x2 + y4 + xz4 + w8 trivial u
9 2 84 (4,2,1,1;8) x2 + y4 + z7w + w8 trivial u
10 2 82 (4,2,1,1;8) x2 + y4 + xz4 + zw7 trivial u

11 4 77 (4,2,1,1;8) x2 + y4 + z8 + w8 Z/2Z w1
2,2 + w5

2,2

12 4 78 (3,2,2,1;8) x2z + y4 + z4 + w8 trivial w1
2,2 + w5

2,2

13 4 79 (3,2,2,1;8) x2z + y4 + z4 + xw5 trivial w1
2,2 + w5

2,2

14 5 72 (6,3,2,1;12) x2 + y4 + xz3 + w12 trivial u+ w5
2,2

15 5 73 (6,3,2,1;12) x2 + y4 + z6 + w12 trivial u+ w5
2,2

16 5 74 (6,3,2,1;12) x2 + y4 + z6 + xw6 trivial u+ w5
2,2

17 5 75 (6,3,2,1;12) x2 + y4 + z6 + zw10 trivial u+ w5
2,2

18 5 76 (6,3,2,1;12) x2 + y4 + xz3 + zw10 trivial u+ w5
2,2

19 6 60 (1,1,1,1;4) x4 + y4 + z3w + zw3 Z/2Z v + v2
20 6 63 (1,1,1,1;4) x4 + y4 + z4 + w4 Z/4Z v + v2
21 6 64 (4,3,2,2;12) x3 + y4 + z4 + xw4 trivial v + v2
22 6 65 (4,3,2,2;12) x3 + y4 + z4 + w6 trivial v + v2
23 6 61 (1,1,1,1;4) x4 + y4 + z4 + w4 Z/2Z v + v2
24 6 62 (1,1,1,1;4) x3w + y4 + z4 + w4 Z/2Z v + v2

25 6 66 (10,5,4,1;20) x2 + y4 + z5 + w20 trivial u+ v
26 6 69 (8,4,3,1;16) x2 + y4 + z5w + w16 trivial u+ v
27 6 67 (10,5,4,1;20) x2 + y4 + z5 + xw10 trivial u+ v
28 6 71 (8,4,3,1;16) x2 + y4 + z5w + xw8 trivial u+ v
29 6 68 (10,5,4,1;20) x2 + y4 + z5 + zw16 trivial u+ v
30 6 70 (8,4,3,1;16) x2 + y4 + z5w + zw13 trivial u+ v

31 8 58 (4,2,1,1;8) x2 + y4 + z8 + w8 Z/2Z v + w1
2,2 + w5

2,2

32 8 59 (4,2,1,1;8) x2 + y4 + xz4 + w8 Z/2Z v + w1
2,2 + w5

2,2

33 9 54 (6,3,2,1;12) x2 + y4 + z6 + w12 Z/2Z u+ v + w5
2,2

34 9 57 (10,5,3,2;20) x2 + y4 + z6w + w10 trivial u+ v + w5
2,2

35 9 55 (6,3,2,1;12) x2 + y4 + z6 + xw6 Z/2Z u+ v + w5
2,2

36 9 56 (10,5,3,2;20) x2 + y4 + z6w + xw5 trivial u+ v + w5
2,2

37 10 self (1,1,1,1;4) x4 + y4 + z4 + w4 Z/2Z× Z/2Z u3

Table 5.1: Order 4 Computations pt.1
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No Rk Dual Weights Polynomial G/JW Form

38 10 41 (4,2,1,1;8) x2 + y4 + z7w + zw7 Z/3Z u3

39 10 42 (4,2,1,1;8) x2 + y4 + z8 + w8 Z/4Z u3

40 10 43 (14,7,4,3;28) x2 + y4 + z7 + zw8 trivial u3

41 10 38 (4,2,1,1;8) x2 + y4 + z7w + zw7 Z/2Z u3

42 10 39 (4,2,1,1;8) x2 + y4 + z8 + w8 Z/2Z u3

43 10 40 (4,2,1,1;8) x2 + y4 + z7w + w8 Z/2Z u3

44 10 52 (8,7,6,3;24) x3 + y3w + z4 + w8 trivial v2
45 10 49 (4,4,3,1;12) x3 + y3 + z4 + w12 trivial v2
46 10 self (4,4,3,1;12) x2y + xy2 + z4 + w12 trivial v2
47 10 50 (6,3,2,1;12) x2 + y4 + xz3 + w12 Z/2Z v2
48 10 53 (7,4,3,2;16) x2w + y4 + xz3 + w8 trivial v2

49 10 45 (4,4,3,1;12) x3 + y3 + z4 + w12 Z/3Z v2

50 10 47 (4,4,3,1;12) x2y + y3 + z4 + w12 trivial v2
51 10 self (6,3,2,1;12) x2 + y4 + z6 + w12 Z/2Z v2
52 10 44 (4,4,3,1;12) x3 + y3 + z4 + yw8 trivial v2

53 10 48 (4,4,3,1;12) x3 + xy2 + z4 + yw8 trivial v2

54 11 33 (6,3,2,1;12) x2 + y4 + z6 + w12 Z/2Z u+ v + w−52,2

55 11 35 (5,3,2,2;12) x2w + y4 + z6 + w6 trivial u+ v + w−52,2

56 11 36 (5,3,2,2;12) x2w + y4 + z6 + zw5 trivial u+ v + w−52,2

57 11 34 (6,3,2,1;12) x2 + y4 + z6 + zw10 Z/2Z u+ v + w−52,2

58 12 31 (4,2,1,1;8) x2 + y4 + z8 + w8 Z/2Z× Z/2Z v + w−12,2 + w−52,2

59 12 32 (3,2,1,1;8) x2z + y4 + z4 + w8 Z/2Z v + w−12,2 + w−52,2

60 14 19 (1,1,1,1;4) x4 + y4 + z3w + zw3 Z/4Z v + v2
61 14 23 (1,1,1,1;4) x4 + y4 + z4 + w4 Z/2Z× Z/4Z v + v2
62 14 24 (4,3,2,2;12) x3 + y4 + z4 + xw4 Z/2Z v + v2
63 14 20 (1,1,1,1;4) x4 + y4 + z4 + w4 Z/4Z v + v2
64 14 21 (1,1,1,1;4) x3w + y4 + z4 + w4 Z/4Z v + v2
65 14 22 (4,3,2,2;12) x3 + y4 + z4 + w6 Z/2Z v + v2

66 14 25 (10,5,4,1;20) x2 + y4 + z5 + w20 Z/2Z u+ v
67 14 27 (9,5,4,2;20) x2w + y4 + z5 + w10 trivial u+ v
68 14 29 (8,4,3,1;16) x2 + y4 + z5w + w16 Z/2Z u+ v

69 14 26 (10,5,4,1;20) x2 + y4 + z5 + zw16 Z/2Z u+ v
70 14 30 (8,4,3,1;16) x2 + y4 + z5w + zw13 Z/2Z u+ v
71 14 28 (9,5,4,2;20) x2w + y4 + z5 + zw8 trivial u+ v

72 15 14 (4,4,3,1;12) x2y + y3 + z4 + w12 Z/2Z u+ w−52,2

73 15 15 (6,3,2,1;12) x2 + y4 + z6 + w12 Z/2Z× Z/2Z u+ w−52,2

74 15 16 (5,3,2,2;12) x2w + y4 + z6 + w6 Z/2Z u+ w−52,2

Table 5.2: Order 4 Computations pt. 2
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No Rk Dual Weights Polynomial G/JW Form
75 15 17 (10,5,3,2;20) x2 + y4 + z6w + w10 Z/2Z u+ w−52,2

76 15 18 (7,6,5,2;20) x2y + y3w + z4 + w10 trivial u+ w−52,2

77 16 11 (4,2,1,1;8) x2 + y4 + z8 + w8 Z/4Z w−12,2 + w−52,2

78 16 12 (4,2,1,1;8) x2 + y4 + xz4 + w8 Z/4Z w−12,2 + w−52,2

79 16 13 (8,5,4,3;20) x2z + y4 + z5 + xw4 trivial w−12,2 + w−52,2

80 18 6 (4,2,1,1;8) x2 + y4 + z7w + zw7 Z/6Z u
81 18 8 (3,2,2,1;8) x2z + y4 + z4 + w8 Z/4Z u
82 18 10 (11,7,6,4;28) x2z + y4 + z4w + w7 trivial u
83 18 7 (4,2,1,1;8) x2 + y4 + z8 + w8 Z/2Z× Z/4Z u
84 18 9 (14,7,4,3;28) x2 + y4 + z7 + zw8 Z/2Z u

85 19 1 (1,1,1,1;4) x4 + y3z + z3w + yw3 Z/7Z w−12,2

86 19 2 (1,1,1,1;4) x4 + y4 + z3w + zw3 Z/8Z w−12,2

87 19 3 (1,1,1,1;4) x4 + y4 + z4 + w4 Z/4Z× Z/4Z w−12,2

88 19 5 (12,9,8,7;36) x3 + y4 + xz3 + zw4 trivial w−12,2

89 19 4 (4,3,3,2;12) x3 + y4 + z4 + xw4 Z/4Z w−12,2

Table 5.3: Order 4 Computations pt.3

Separated by rank, we now describe our computations using the methods described in

the previous chapter. These computations together constitute a proof of our main conjecture

that the BHK and LPK3 mirror symmetry constructions agree for algebraic K3 hypersurfaces

with non-symplectic automorphism of order four.

5.1.1 Rank 1 Computations. Actually for our rank 1 K3 surfaces, there were no over-

lattices, so there was nothing to show.

5.1.2 Rank 2 Computations. We showed 6-10 were deformations. Then, we embedded

6.

5.1.3 Rank 4 Computations. We showed that 11 and 12 were isomorphic, and then

that 12 and 13 were deformations. We then embedded 12.

5.1.4 Rank 5 Computations. We showed 14-18 were deformations. Then, we embed-

ded 16.
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5.1.5 Rank 6 Computations. First, we showed 19-21 were isomorphic. We then

showed 21 and 22 were deformations, and that 19, 23, and 24 were deformations, connecting

19-24. Then, we embedded 21.

Next, we showed that 25 and 26, 27 and 28, and 29 and 30 were pairwise isomorphic,

respectively. We also showed that 25, 27, and 29 were deformations, connecting 25-30, and

embedded 25.

5.1.6 Rank 8 Computations. We showed that 31 and 32 were deformations, both of

which are exceptional cases.

5.1.7 Rank 9 Computations. We showed that 33 and 34, and 35 and 36, were pairwise

isomorphic, respectively. We then showed that 34 and 36 were deformations, connecting 33-

36. Finally, we embedded 34.

5.1.8 Rank 10 Computations. For rank 10, there are 4 groups:

37 is by itself, and is an exceptional case.

We showed 38-40 were isomorphic, and embedded 35 .

We showed 41-43 were deformations, all of which are exceptional cases.

We showed that 44-48 were isomorphic, and that 50-52 were isomorphic. Then 44, 50,

and 53 matched Belcastro perfectly. 49 is an exceptional case.

5.1.9 Rank 11 Computations. We showed that 54 and 55, and 56 and 57 were pairwise

isomorphic, respectively. Then 55 and 56 each matched Belcastro perfectly.

5.1.10 Rank 12 Computations. We showed that 58 and 59 were isomorphic, both of

which are exceptional cases.

5.1.11 Rank 14 Computations. We showed that 60-62 are isomorphic, 60, 63, and 64

are deformations, and that 62 and 65 were deformations. This connects 60-65, each of which
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We then showed that 66-68 are isomorphic, and that 69-71 were isomorphic. Then, 67

and 71 matched Belcastro perfectly.

5.1.12 Rank 15 Computations. We showed that 72-76 were isomorphic, and 76

matched Belcastro perfectly.

5.1.13 Rank 16 Computations. We showed that 77 and 78 are deformations, and that

78 and 79 are isomorphic, connection 77-79. 79 then matched Belcastro perfectly.

5.1.14 Rank 18 Computations. We showed that 80-84 were isomorphic, and then 82

matched Belcastro perfectly.

5.1.15 Rank 19 Computations. We showed that 85-89 were isomorphic, and then 88

matched Belcastro perfectly.

5.2 Order 8 Computations

We now give the required computations by rank, finishing the proof of our main conjecture

for the order eight case.

5.2.1 Rank 3 Computations. We showed that 1, 2, 3, 4, and 6 were deformations, and

that 4 and 5 were isomorphic, connecting 1-6. 1 then matched Belcastro perfectly.

5.2.2 Rank 6 Computations. We showed that 7-8, 9-10, and 11-12 were pairwise iso-

morphic, and then showed that 8, 10, and 12 were deformations, connecting 7-12. We then

embedded 8 .

5.2.3 Rank 7 Computations. We showed that 13-14 and 15-16 were pairwise isomor-

phic, respectively. 14 and 16 then matched Belcastro perfectly.
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No Rk Dual Weights Polynomial G/JW Form
1 3 36 (4,2,1,1;8) x2 + y4 + xz4 + w8 trivial w−12,2

2 3 34 (4,2,1,1;8) x2 + y4 + yz6 + w8 trivial w−12,2

3 3 35 (4,2,1,1;8) x2 + xy2 + yz6 + w8 trivial w−12,2

4 3 32 (4,2,1,1;8) x2 + xy2 + z8 + w8 trivial w−12,2

5 3 37 (4,2,1,1;8) x2 + y4 + z8 + w8 Z/2Z w−12,2

6 3 33 (4,2,1,1;8) x2 + y4 + z8 + w8 trivial w−12,2

7 6 29 (12,8,3,1;24) x2 + y3 + z8 + xw12 trivial v
8 6 27 (8,5,2,1;16) x2 + y3w + z8 + xw8 trivial v
9 6 30 (12,8,3,1,24) x2 + y3 + z8 + yw16 trivial v
10 6 28 (8,5,2,1;16) x2 + y3w + z8 + yw11 trivial v
11 6 31 (12,8,3,1;24) x2 + y3 + z8 + w24 trivial v
12 6 26 (8,5,2,1;16) x2 + y3w + z8 + w16 trivial v

13 7 25 (4,2,1,1;8) x2 + y4 + yz6 + w8 Z/2Z v + w−12,3

14 7 23 (3,2,2,1;8) x2z + y4 + yz3 + w8 trivial v + w−12,3

15 7 24 (4,2,1,1;8) x2 + y4 + z8 + w8 Z/2Z v + w−12,3

16 7 22 (3,2,2,1;8) x2z + y4 + z4 + w8 trivial v + w−12,3

17 10 20 (4,2,1,1;8) x2 + y4 + xz4 + w8 Z/2Z w−12,2 + w1
2,3

18 10 18 (4,2,1,1;8) x2 + xy2 + z8 + w8 Z/2Z w−12,2 + w1
2,3

19 10 21 (4,2,1,1,;8) x2 + y4 + z8 + w8 Z/2Z× Z/2Z w−12,2 + w1
2,3

20 10 17 (3,2,2,1;8) x2z + y4 + z4 + w8 Z/2Z w−12,2 + w1
2,3

21 10 19 (4,2,1,1;8) x2 + y4 + z8 + w8 Z/2Z w−12,2 + w1
2,3

22 13 16 (4,2,1,1;8) x2 + y4 + xz4 + w8 Z/4Z v + w1
2,3

23 13 14 (12,5,4,3;24) x2 + y4z + xz3 + w8 trivial v + w1
2,3

24 13 15 (4,2,1,1;8) x2 + y4 + z8 + w8 Z/4Z v + w1
2,3

25 13 13 (12,5,4,3;24) x2 + y4z + z6 + w8 trivial v + w1
2,3

26 14 12 (12,8,3,1;24) x2 + y3 + z8 + yw16 Z/2Z v
27 14 8 (11,8,3,2;24) x2w + y3 + z8 + yw8 trivial v
28 14 10 (8,5,2,1;16) x2 + y3w + z8 + yw11 Z/2Z v

29 14 7 (11,8,3,2;24) x2w + y3 + z8 + w12 trivial v
30 14 9 (8,5,2,1;16) x2 + y3w + z8 + w16 Z/2Z v
31 14 11 (12,8,3,1;24) x2 + y3 + z8 + w24 Z/2Z v

32 17 4 (4,2,1,1;8) x2 + xy2 + z8 + w8 Z/4Z w1
2,2

33 17 6 (4,2,1,1;8) x2 + y4 + z8 + w8 Z/2Z× Z/4Z w1
2,2

34 17 2 (12,5,4,3;24) x2 + y4z + z6 + w8 Z/2Z w1
2,2

35 17 3 (10,7,4,3;24) x2z + xy2 + z6 + w8 trivial w1
2,2

36 17 1 (3,2,2,1;8) x2z + y4 + z4 + w8 Z/4Z w1
2,2

37 17 5 (4,2,1,1;8) x2 + y4 + z8 + w8 Z/4Z w1
2,2

Table 5.4: Order 8 Computations
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5.2.4 Rank 10 Computations. We showed that 17, 18, and 21 were deformations, and

that 18-20 were isomorphic, connecting 17-21. Each of these is an exceptional case.

5.2.5 Rank 13 Computations. We showed that 22-23 and 24-25 were pairwise isomor-

phic, respectively. We also showed that 23 and 25 were deformations, connecting 22-25, and

embedded 23.

5.2.6 Rank 14 Computations. We showed that 26-28 were isomorphic, and that 29-31

were isomorphic. 27 and 29 then matched Belcastro perfectly.

5.2.7 Rank 17 Computations. We showed that 32-36 were isomorphic, and that 32

and 37 were deformations, connecting 32-37. 35 then matched Belcastro perfectly.

5.3 Order 12 Computations

We now give a reference table for our calculations for those of order twelve, i.e. of the

form x12 + g(y, z, w).

We now give the required computations by rank, finishing the proof of our main conjecture

for the order twelve case.

5.3.1 Rank 2 Computations. No overlattices, so nothing to show.

5.3.2 Rank 7 Computations. No overlattices, so nothing to show.

5.3.3 Rank 8 Computations. No overlattices, so nothing to show.

5.3.4 Rank 10 Computations. S(σ12) = S(σ4) in this case, so all computations reduce

to those done above in order 4.

5.3.5 Rank 12 Computations. No overlattices, so nothing to show.
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No Rk Dual Weights Polynomial G/JW Form
1 2 26 (6,4,1,1;12) x2 + y3 + xz6 + w12 trivial trivial
2 2 27 (6,4,1,1;12) x2 + y3 + yz8 + w12 trivial trivial
3 2 28 (6,4,1,1;12) x2 + y3 + z12 + w12 trivial trivial

4 7 22 (6,3,2,1;12) x2 + y4 + xz3 + w12 trivial w1
2,2 + w−13,1

5 7 23 (6,3,2,1;12) x2 + xy2 + z6 + w12 trivial w1
2,2 + w−13,1

6 7 24 (6,3,2,1;12) x2 + y4 + z6 + w12 trivial w1
2,2 + w−13,1

7 7 25 (6,3,2,1;12) x2 + y4 + z6 + w12 Z/2Z w1
2,2 + w−13,1

8 8 20 (5,4,2,1;12) x2z + y3 + z6 + w12 trivial v + w1
3,1

9 8 19 (5,4,2,1;12) x2z + y3 + yz4 + w12 trivial v + w1
3,1

10 8 18 (6,4,1,1;12) x2 + y3 + yz8 + w12 Z/2Z v + w1
3,1

11 8 21 (6,4,1,1;12) x2 + y3 + z12 + w12 Z/2Z v + w1
3,1

12 10 16 (4,4,3,2;12) x2y + y3 + z4 + w12 trivial v2
13 10 14 (4,4,3,2;12) x3 + y3 + z4 + w12 trivial v2
14 10 13 (4,4,3,2;12) x3 + y3 + z4 + w12 Z/3Z v2
15 10 self (4,4,3,2;12) x2y + xy2 + z4 + w12 trivial v2
16 10 12 (6,3,2,1;12) x2 + y4 + xz3 + w12 Z/2Z v2
17 10 self (6,3,2,1;12) x2 + y4 + z6 + w12 Z/2Z v2

18 12 10 (12,7,3,2;24) x2 + y3z + z8 + w12 trivial v + w−13,1

19 12 9 (12,7,3,2;24) x2 + y3z + xz4 + w12 trivial v + w−13,1

20 12 8 (6,4,1,1;12) x2 + y3 + xz6 + w12 Z/3Z v + w−13,1

21 12 11 (6,4,1,1;12) x2 + y3 + z12 + w12 Z/3Z v + w−13,1

22 13 4 (4,4,3,1;12) x2y + y3 + z4 + w12 Z/2Z w−12,2 + w1
3,1

23 13 5 (6,3,2,1;12) x2 + xy2 + z6 + w12 Z/2Z w−12,2 + w1
3,1

24 13 6 (6,3,2,1;12) x2 + y4 + z6 + w12 Z/2Z× Z/2Z w−12,2 + w1
3,1

25 13 7 (6,3,2,1;12) x2 + y4 + z6 + w12 Z/2Z w−12,2 + w1
3,1

26 18 1 (5,4,2,1;12) x2z + y3 + z6 + w12 Z/3Z trivial
27 18 2 (12,7,3,2;24) x2 + y3z + z8 + w12 Z/2Z trivial
28 18 3 (6,4,1,1;12) x2 + y3 + z12 + w12 Z/6Z trivial

Table 5.5: Order 12 Computations

5.3.6 Rank 13 Computations. No overlattices, so nothing to show.

5.3.7 Rank 18 Computations. No overlattices, so nothing to show.
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Appendix A. C-Singularities

The following results consisted of joint work with a research partner, Benjamin Pachev.

Our first result is about the number of C-singularities in a given weight system. For

this appendix only, we do note that our weight system notation is different. Instead of

writing quasihomogeneous weights as (q0, . . . , qn; d), we write weight systems in the form

( q0
d
, . . . , qn

d
∈ (Q/Z)n+1. Both notations are common in the literature.

Definition A.1. Let T (k) =
∑
p|k

2
k
p
−1 -

∑
p1,p2|k

2
k

p1p2
−1

+ 2
∑

p1,p2,p3|k
2

k
p1p2p3

−1
+ · · · + (n −

1)(−1)n−1
∑

p1,··· ,pn|k
2

k
p1p2···pn

−1
where only prime divisors of k are counted in each sum, and n

is the number of distinct prime divisors of k.

Theorem A.2. T(k) counts the number of nonempty tuples of distinct natural numbers

(a1, a2, · · · , an) satisfying gcd(a1, a2, · · · , an) 〉 1 and k = max(a1, a2, · · · , an). We call such

tuples admissible.

Proof. Let d = gcd(a1, a2, · · · , an), for any admissible tuple. We must have that d|k, by

definition of the gcd. Now fix d, and suppose d| gcd(a1, a2, · · · , an), hence d|k. Any such

admissible tuple must contain k, and the remaining elements must be divisible by d and less

than k. Hence they form a subset of {d, 2d, · · · , (k
d
− 1)d}. Moreover, the union of any such

subset with k will yield an admissible tuple whose gcd is divisible by d. Hence the number

of admissible tuples whose gcd is divisible by d is the number of subsets of a set of k
d
− 1

elements, 2
k
d
−1.

Let m denote the number of distinct prime divisors of k, and pi the ith prime divisor.

Let A denote the set of all admissible tuples. Ai denote the set of all admissible tuples

(a1, a2, · · · , an) with pi | gcd(a1, a2, · · · , an). We have that A =
⋃i=n
i=1 Ai, since every gcd of

an admissible tuple must be divisible by some prime divisor of k.

Thus, the cardinality |A| =
i=m∑
i=1

|Ai| +
j=m∑
j=2

(j − 1)(−1)j−1
∑

i1,···ij∈1···m,distinct
|
⋂l=j
l=1Ail |
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Note that
⋂l=j
l=1Ail corresponds to the set of admissible tuples whose gcd is divisible by

each of the primes pil , and hence by their product. Thus the number of such tuples is

given by 2
k

pi1
···pij

−1
. Substituting into the formula for the cardinality of A gives the desired

result.

Remark. The necessary and sufficient conditions on C-singularities boil down to a correspon-

dence between tuples of the form prescribed in the previous theorem and polynomials that

are C-singularities. Hence, for a given weight system and invertible representative, the num-

ber of C-singularities can be found straightforwardly from the previous theorem. Formulas

for each individual case are given in the table below.

Weight System (1
d
, 1
d
) (a

d
, 1
d
) (1

d
, 1
ad

)

Chain T (d− 1) T (d−1
a

) T (d− 1)

Loop T (d− 2) T (d−1
a
− 1) X

Fermat T (d) X T (d)

Table A.1: Number of C-Singularities by Weight Type

Definition A.3. Let p be an admissible two-variable polynomial with weights (q1, q2). The

difference gcd dg(p) of p is defined as the greatest common divisor of the differences of the

exponents of the variable corresponding to the larger weight.

The general pattern noticed is that if dg(p) = r, and d is the denominator of the smaller

weight of p, then rd is the maximal denominator any symmetry of p can have. Also, all

polynomials with the same dg and the same invertible representative will have the same

symmetry group. Hence by the Group-Weights Theorem, the corresponding A-models are

isomorphic.

Theorem A.4. Let p be a C-singularity with a loop invertible representative, and weights

(1
d
, a
d
). Let dg(p) = r ≥ 1. Then Gmax

p = 〈( 1
rd
, (r−1)d+a

rd
)〉 = 〈(g1, g2)〉.
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Proof. By the proof of the necessary and sufficient conditions, (g1, g2) is a symmetry, hence

the group generated by it is contained within Gmax
p . By the same proof, all symmetries have

maximal denominator rd, or more precisely, all symmetries are of the form ( k
rd
, j
rd

).

Let g be any such symmetry. Utilizing the monomial xd−ay, we have (d−a)k+j
rd

an integer.

Hence j ≡ k ∗ (rd− (d− a)) (mod rd), and thus j ≡ k ∗ ((r− 1)d+ a) (mod rd), hence g ∈

〈(g1, g2)〉.

Theorem A.5. Let p have a chain invertible representative, with weights (1
d
, a
d
) and let dg(p)

= r ≥ 1. Gmax
p = 〈(d−

d−1
ra

d
, 1
rd

)〉 = 〈(g1, g2)〉.

Proof. Suppose g ∈ Gmax
p is of the form (k

d
, j
rd

). Because p contains the monomials of a chain,

it must contain the monomial xy
d−1
a . Since g is a symmetry, we have k

d
+

j(d−1)
ra

d
an integer.

Hence k + j(d−1)
ra
≡ 0 (mod d). Hence k = j(d− (d−1)

ra
), and g ∈ 〈(g1, g2)〉.

It remains to show that all symmetries are of the proposed form, and that all group

elements of the proposed form are actually symmetries. Note that r|d−1
a

because r = dg(p),

d−1
a

is an exponent of the proper variable, and 0 is also an exponent of the proper variable.

It suffices to show that the generating element (g1, g2) of the group is in Gmax
p . Let xaiybi

be any monomial of p. Using the identity ai = d − abi, and collecting terms, aig1 + big2 =

bi∗(ard+(d−1)+1)
rd

= bi(ar+1)
r

, which is an integer since r|bi, so (g1, g2) is a symmetry. That all

group elements are of the desired form follows from the proof of the necessary and sufficient

conditions.

Theorem A.6. Let p have a chain invertible representative, with weights (1
d
, 1
ad

) and let

dg(p) = r ≥ 1. Gmax
p = 〈(d−

d−1
r

d
, 1
rad

)〉 = 〈(g1, g2)〉.

Proof. Following the previous proof, assume g is a symmetry of the form (k
d
, j
rad

) Using the

monomial xya(d−1), we obtain k =
j(d− d−1

r
)

adr
∈ 〈(g1, g2)〉, as desired. Again, from the proof of

the necessary and sufficient conditions we have that all symmetries are of the desired form.

It now remains to show that the generating group element is a symmetry. Letting xaiybi be

any monomial of p, and using the identity aai = ad−bi, we have that aig1+big2 = 1+ bi(d−rd)
adr
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= 1 + bi(1−r)
ar

= 1 + (d−ai)(1−r)
r

, which is an integer since p contains the monomial xd, and

hence by definition r = dg(p) divides d− ai.

Theorem A.7. Let p have a Fermat invertible representative, with weights (1
d
, 1
ad

) and let

dg(p) = r ≥ 1. Gmax
p = 〈(1

r
, 0), (1

d
, 1
ad

)〉 = 〈(g1, g2)〉.

Proof. Let g = (k
d
, j
ad

). Because p contains the monomials xd and yad, all symmetries of p

must be of this form. For every monomial xaiybi of p, we have, after some algebra, kaai + jbi

≡ 0 (mod ad). Using the identity aai + bi = ad, we have a(k − j)ai ≡ 0 (mod ad), hence

(k − j)ai ≡ 0 (mod d), which holds for every i if and only if (k − j)r ≡ 0 (mod d). Thus,

k ≡ j (mod d
r
), and g ∈ 〈(g1, g2)〉.

The explicit forms for the groups are summarized below:

Weight System (1
d
, 1
d
) (a

d
, 1
d
) (1

d
, 1
ad

)

Chain 〈(d−
d−1
r

d
, 1
rd

)〉 〈(d−
d−1
ra

d
, 1
rd

)〉 〈(d−
d−1
r

d
, 1
rad

)〉
Loop 〈( 1

rd
, (r−1)d+1

rd
)〉 〈( 1

rd
, (r−1)d+a

rd
)〉 X

Fermat 〈(1
r
, 0), (1

d
, 1
d
)〉 X 〈(1

r
, 0), (1

d
, 1
ad

)〉

Table A.2: C-Singularity Groups by Weight Type

Theorem A.8. Given an admissible polynomial p(x, y) =
n∑
i=1

xaiybi with weights (1
d
, 1
ad

),

where d and a are nonzero integers, if gcd(a1, a2, · · · , an) ≥ 1 or gcd(b1, b2, · · · , bn) ≥ a,

then p is a C-singularity.

Proof. Case 1. gcd(a1, a2, · · · , an) = k ≥ 1. Then consider g1 = ( 1
k
, 0), in additive notation.

For all i, ai
k

is an integer, hence g1 ∈ Gmax
p . Then suppose by way of contradiction that g1

∈ 〈(1
d
, 1
ad

)〉. Thus for some j, g1 = ( j
d
, j
ad

). Then 0 = j
ad

in additive notation, so ad|j. But

then, d|j, hence j
d

= 0. Then 1
k

= 0. But this is a contradiction because k ≥ 1. Thus g1 is

not in 〈J〉. Thus, Gmax
p 6= 〈J〉.
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Case 2. gcd(b1, b2, · · · , bn) = k ≥ a. Then define gl = (0, l
k
), for 0 ≤ l ≤ k. For all i, lbi

k

is an integer, hence gl ∈ Gmax
p for all l. Then suppose by way of contradiction that for all l,

g1 ∈ 〈(1
d
, 1
ad

)〉 = 〈J〉. Now consider all (x, y) ∈ 〈J〉 with x = 0. We have that (x, y) = ( j
d
, j
ad

)

so d|j. So we have a distinct possibilities for y = j
ad

, hence there are at most a elements of

〈J〉 whose first entry is zero. However, the first element of each gl is zero, and each distinct,

and each is in 〈J〉 which implies there must be at least k elements of 〈J〉 whose first entry is

zero. However, k ≥ a, so we have a contradiction. Hence gl /∈ 〈J〉 for at least one 0 ≤ l ≤ k,

hence Gmax
p 6= 〈J〉.

Theorem A.9. Given an admissible polynomial p(x, y) =
n∑
i=1

xaiybi with weights (1
d
, a
d
),

where d and a are nonzero integers, if gcd(b1, b2, · · · , bn) ≥ 1 or gcd(a1, a2, · · · , an) ≥

gcd(a, d), then p is a C-singularity.

Proof. Case 1. gcd(b1, b2, · · · , bn) = k ≥ 1. This is similar to the first case of the previous

theorem. As before, if g1 = (0, 1
k
), we have g1 ∈ Gmax

p . Then assume by way of contradiction

that g1 ∈ 〈J〉. Hence for some j, 0 = j
d

and 1
k

= aj
d

. Thus d|j, hence d|aj and 0 = aj
d

= 1
k
, a

contradiction because k ≥ 1. Hence g1 /∈ 〈J〉 and thus Gmax
p 6= 〈J〉

Case 2. gcd(a1, a2, · · · , an) = k ≥ gcd(a, d). First consider all (x, y) = ( j
d
, aj
d

) ∈ 〈J〉 with

y = 0. But y = 0 implies d|aj, 0 ≤ j ≤ d. Thus d
gcd(a,d)

| aj
gcd(a,d)

. But d
gcd(a,d)

is coprime to

aj
gcd(a,d)

, so we have d
gcd(a,d)

|j. This holds for exactly d
d

gcd(a,d)

= gcd(a, d) different 0 ≤ j ≤ d.

Now note that (l/k, 0) ∈ Gmax
p for all 0 ≤ l ≤ k. Thus, the first entry of at least k elements

of Gmax
p is zero, but at most gcd(a, d) ≤ k elements of 〈J〉 have their first entry equal to zero.

Thus, Gmax
p 6= 〈J〉.

Theorem A.10. Given p(x, y) as in the hypotheses of Theorem 1, gcd(b1, b2, · · · , bn) ≥ a

if and only if gcd(d− a1, d− a2, · · · , d− an) ≥ 1. Thus, to check if Theorem 1 applies to a

given polynomial, one need only examine the exponents of the first variable.
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Proof. For all 1 ≤ i ≤ n, ai
d

+ bi
ad

= 1. Hence, bi = ad − aai. Thus, gcd(b1, b2, · · · , bn) =

gcd(ad−aa1, ad−aa2, · · · , ad−aan) = a gcd(d−a1, d−a2, · · · , d−an), and the result follows

immediately.

It turns out in some cases that the above sufficient conditions for a C-singularity are

necessary as well. We begin with a few lemmas.

Lemma A.11. Given the natural numbers a1, a2, · · · , an, d, j, and k, if j 6≡ k (mod d), and

for all i, aij ≡ aik (mod d), then gcd(a1, a2, · · · , an) ≥ 1.

Proof. Assume by way of contradiction that gcd(a1, a2, · · · , an) = 1. Then some linear

combination
n∑
i=1

ciai = 1. Because modular equivalence is linear, j =
n∑
i=1

ciaij ≡ (mod d)

n∑
i=1

ciaik = k. Thus j ≡ k (mod d), a contradiction.

Lemma A.12. If p is as in the hypotheses of Theorem 1, sans the condition on the exponents,

the following hold.

(i) a|bi for all i

(ii) ad = bi + aai

(iii) −ai ≡ bi
a

(mod d)

(iv) If g = (g1, g2) = ( j
d
, k
ad

), g ∈ 〈J〉 if and only if j ≡ k (mod d)

(v) If g = (g1, g2) = ( j
d
, k
ad

) ∈ Gmax
p , then either g ∈ 〈J〉 or gcd(a1, a2, · · · , an) ≥ 1

Proof. The verification of the first three properties is straightforward from the definition of

weights.

(iv) If g ∈ 〈J〉, the result holds trivially. If j ≡ k (mod d), then g = ( j
d
, k
ad

) = (k
d
, k
ad

) ∈ 〈J〉.

(v) Because (g1, g2) is a symmetry of p, we have that, for all 1 ≤ i ≤ n, aij
d

+ bik
ad

= z ∈ Z.

Hence, aaij + bik = adz. After dividing through by a and rearranging, we see that aij ≡
−bik
a

(mod d), so applying (iii), aij ≡ aik (mod d) for all k. Thus, by Lemma 4, either

gcd(a1, a2, · · · , an) ≥ 1 or j ≡ k (mod d), in which case by Lemma (iv) (g1, g2) ∈ 〈J〉.
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Theorem A.13. Given a non-invertible, admissible polynomial p(x, y) =
n∑
i=1

xaiybi that can

be written as the sum of a Fermat and other monomials, if p has the weights (1
d
, 1
ad

), and

is also a C-Singularity, then gcd(a1, a2, · · · , an) ≥ 1. This is one case of the converse to

Theorem 1.

Proof. Since, p is a C-singularity, there exists (g1, g2) ∈ Gmax
p but not in 〈J〉. Since p is the

sum of a Fermat and other monomials, it contains the monomials xd and yad. Hence dg1 and

adg2 must be integers, and (g1, g2) = ( j
d
, k
ad

) for some integers j and k. Then, by Lemma 5

(v), either gcd(a1, a2, · · · , an) ≥ 1 or g ∈ 〈J〉, a contradiction.

Theorem A.14. Let p be as in the previous theorem, except a sum of a chain and other

monomials as opposed to a Fermat. Either gcd(a1, a2, · · · , an) ≥ 1 or gcd(b1, b2, · · · , bn) ≥ a.

This is the second case of the converse to Theorem 1.

Proof. Since, p is a C-singularity, there exists (g1, g2) ∈ Gmax
p but not in 〈J〉. Since p is the

sum of a chain and other monomials, it contains the monomial xd. Hence g1 = j
d

for some

j. Let g2 = k
r

for some k and r, and assume without loss of generality that gcd(k, r) = 1.

Then for all 1 ≤ i ≤ n, aij
d

+ bik
r
∈ Z. Simplifying, we obtain dbik

r
∈ Z. Hence, r|dbik. But

k and r are coprime, so r|dbi. By Lemma 5 (i), gcd(b1, b2, · · · , bn) ≥ a. If the inequality is

strict, the result holds. If not, then gcd(b1, b2, · · · , bn) = a. Hence some linear combination
n∑
i=1

cibi = a. We have r|
n∑
i=1

cibid = ad. Thus, ad = qr for some q ∈ Z, and g2 = qk
ad

. The

result now follows from Lemma 5 (v).

To deal with the weight system (1
d
, a
d
) we need another lemma.

Lemma A.15. If p is admissible with weights (1
d
, a
d
), the following hold.

(i) ai = d - abi

(ii) If ( j
q
, k
l
) ∈ Gmax

p , and is a loop added to other monomials, then l = q.

(iii) If ( j
d
, k
d
) ∈ Gmax

p , then it is in 〈J〉.

Proof. (i) By the definition of weights, we have ai
d

+ abi
d

= 1. The result follows trivially.

(ii) Assume that both fractions are in reduced form. We have that jai
q

+ kbi
l
∈ Z for all i, and
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in particular when ai = 1, and when bi = 1. Since p contains the monomials of a loop, this

is guaranteed to occur. Respectively, these yield jl
q
,kq
l
∈ Z. Since gcd(j, q) = gcd(k, l) = 1,

we have q|l and l|q. Hence q = l.

(iii) We have jai
d

+ kbi
d
∈ Z for all i, and in particular for bi = 1, ai = d−a. Hence d|(k− ja),

and k ≡ ja (mod d). Hence ( j
d
, k
d
) = ( j

d
, ja
d

) ∈ 〈J〉.

Theorem A.16. Let p be an admissible polynomial with weights (1
d
, a
d
) that can be written

as the sum of a loop and other monomials. We have that p is a C-singularity if and only

if the greatest common divisor of the differences bi − bj of the exponents of the variable

corresponding to the weight a
d

is greater than one.

Proof. =⇒ Since p is a C-singularity, it has at least one symmetry, g1 not in 〈J〉. By

combining (ii) and (iii) of the previous lemma, we have g1 = ( j
q
, k
q
) where q 6= d and j and

k are coprime to q. Using the definition of a symmetry, we have q|(aij + bik) for all i. By

applying (i) of Lemma 8 in two different ways, we have, for all i, q|dj + bi1(k − aj) and

q|aai2j + abi2k = aai2j + dk − ai2k. Hence, we have q|d(j + k) + (ai2 − bi1)(aj − k) for all

i2 and i1. In particular, setting ai2 = bi1 = 1, we have q|d(j + k). Combining this with the

previous line, we have q|(ai2 − bi1)(aj − k) for all i2 and i1. If the gcd(ai2 − bi1) over all

i1 and i2 is 1, we have q|aj − k. Applying this result to the first line, we have q|dj. But

gcd(q, j) = 1, hence q|d. But this is a contradiction, because then g1 can be re-written so

that the denominators of both fractions equal d, and then by (iii) of Lemma 8 we have g1

∈ 〈J〉, a contradiction. Hence gcd(ai2 − bi1) ≥ 1. From this we easily obtain the weaker

condition gcd(bi1 − bi2) ≥ 1.

⇐= If gcd(bi1 − bi2) = r ≥ 1, let g = ( 1
rd
, (r−1)d+a

rd
) = (g1, g2). To show that g is a

symmetry, it suffices to show that aig1 + big2 is an integer for all i. We have aig1 + big2 =

ai+abi+(r−1)dbi
rd

= 1+(r−1)bi
r

= bi + 1−bi
r

. However, bj = 1 for some j because p contains the

monomials of a loop, hence, r|1 − bi, so 1−bi
r

is an integer, and g is a symmetry. However,

r ≥ 1, so rd ≥ d, and hence g1 = 1
rd

cannot be a multiple of 1
d
, so g /∈ 〈J〉, and p is a

C-singularity.
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Theorem A.17. If p is as in the previous theorem, but is the sum of a chain and other

monomials as opposed to a loop, then if P is a C-singularity, gcd(b1, b2, · · · , bn) ≥ 1.

Proof. Let g = (g1, g2) be a singularity of P not contained in 〈J〉. Because p contains the

monomial xd, g1 must have denominator d. Then, g = ( j
d
, k
r
), where j, r, and k are some

integers, with gcd(r, k) = 1. Because g is a symmetry, for all ai, bi we must have jai
d

+ kbi
r

∈ Z. Hence r|dkbi, and since r is coprime to k, r|dbi. If gcd(b1, b2, · · · , bn) = 1, we have

r|d, so g2 = k
r

can be written with denominator d, and then by Lemma 8 (iii) g ∈ 〈J〉, a

contradiction. Thus, gcd(b1, b2, · · · , bn) ≥ 1.
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Appendix B. Magma Code

In chapter 5, we remarked on our computations showing isomorphisms of invariant lattices.

In this appendix, we give our code for the corresponding deformations and embeddings.

Main Functions

disc:=function(M)

S,A,B:=SmithForm(M);

l:=[[S[i,i],i]: i in [1..NumberOfColumns(S)]| S[i,i] notin {0,1}];

sA:=Matrix(Rationals(),ColumnSubmatrixRange(B,l[1][2],l[#l][2]));

for i in [1..#l] do

MultiplyColumn(~sA,1/l[i][1],i);

end for;

Q:=Transpose(sA)*Matrix(Rationals(),M)*sA;

for i,j in [1..NumberOfColumns(Q)] do

if i ne j then

Q[i,j]:=Q[i,j]-Floor(Q[i,j]);

else

Q[i,j]:=Q[i,j]-Floor(Q[i,j])+ (Floor(Q[i,j]) mod 2);

end if;

end for;

return [l[i][1]: i in [1..#l]], Q;

end function;

mod2:=function(Q);

for i,j in [1..Nrows(Q)] do

if i ne j then Q[i,j]:=Q[i,j]-Floor(Q[i,j]);
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else Q[i,j]:=Q[i,j]-2*Floor(Q[i,j]/2);

end if;

end for;

return Q;

end function;

isot:=function(M,n)

v,U:=disc(M);

Q:=Rationals();

A:=AbelianGroup(v);

return [Eltseq(a) : a in A |

mod2(Matrix(Q,1,#v,Eltseq(a))*U*Matrix(Q,#v,1,Eltseq(a)))[1,1] eq n];

end function;

dicompare:=function(M,Q)

v,U:=disc(M);

w,D:=disc(Q);

if v ne w then return false; end if;

A:=AbelianGroup(v);

Aut:=AutomorphismGroup(A);

f,G:=PermutationRepresentation(Aut);

h:=Inverse(f);

ll:=[Matrix(Rationals(),[Eltseq(Image(h(g),A.i)) :

i in [1..Ngens(A)]]) : g in G];

dd:=[mod2(a*U*Transpose(a)) : a in ll];

return D in dd;

end function;
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Order 4

Rank 2

Belcastro Equivalence and Deformation

M2:=Matrix(Integers(), [[-2,0,1,1],

[0,-2,1,1],

[1,1,0,0],

[1,1,0,0]]);

n:=4;

pp:=[SetToSequence({1..n} diff {i}): i in [1..n]];

[IsConsistent(Matrix(M2[pp[i]]), Matrix(M2[i])): i in [1..n]];

(Got ‘‘true" for last row, last row omitted gives Belcastro’s exactly)

Rank 4

Belcastro Equivalence and Deformation

M4:=Matrix(Integers(),[[-2,1,0,4,1,1,1],

[1,-2,1,0,0,0,0],

[0,1,-2,0,0,0,0],

[4,0,0,-8,-2,-2,-2],

[1,0,0,-2,-2,0,0],
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[1,0,0,-2,0,-2,0],

[1,0,0,-2,0,0,-2]]);

MB4:=Matrix(Integers(),[[-2,1,1,1,1,1,0],

[1,-2,0,0,0,0,0],

[1,0,-2,0,0,0,0],

[1,0,0,-2,0,0,0],

[1,0,0,0,-2,0,0],

[1,0,0,0,0,-2,1],

[0,0,0,0,0,1,-2]]);

dicompare(M4,MB4); (Got ‘‘true")

Rank 5

Belcastro Equivalence and Deformation

M5:=Matrix(Integers(),[[-2,0,0,0,0,0,1],

[0,-2,0,0,0,0,1],

[0,0,-2,-2,1,1,0],

[0,0,-2,-4,1,2,0],

[0,0,1,1,-2,-2,1],

[0,0,1,2,-2,-4,2],

[1,1,0,0,1,2,-2]]);

MB5:=Matrix(Integers(),[[-2,1,1,1,0,1,0],

[1,-2,0,0,0,0,0],
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[1,0,-2,0,0,0,0],

[1,0,0,-2,1,0,0],

[0,0,0,1,-2,0,0],

[1,0,0,0,0,-2,1],

[0,0,0,0,0,1,-2]]);

dicompare(M5,MB5); (Got ‘‘true")

Rank 6

Deformation of Class 1a and 1b

M6:=DiagonalMatrix(Integers(),12,[-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0]);

M6[1,9]:=1; M6[9,1]:=1;

M6[1,10]:=1; M6[10,1]:=1;

M6[2,9]:=1; M6[9,2]:=1;

M6[2,10]:=1; M6[10,2]:=1;

M6[3,9]:=1; M6[9,3]:=1;

M6[3,10]:=1; M6[10,3]:=1;

M6[4,9]:=1; M6[9,4]:=1;

M6[4,10]:=1; M6[10,4]:=1;

M6[5,11]:=1; M6[11,5]:=1;

M6[5,12]:=1; M6[12,5]:=1;

M6[6,11]:=1; M6[11,6]:=1;

M6[6,12]:=1; M6[12,6]:=1;

M6[7,11]:=1; M6[11,7]:=1;

M6[7,12]:=1; M6[12,7]:=1;
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M6[8,11]:=1; M6[11,8]:=1;

M6[8,12]:=1; M6[12,8]:=1;

n:=12;

pp:=[SetToSequence({1..n} diff {i}): i in [1..n]];

[IsConsistent(Matrix(M6[pp[i]]), Matrix(M6[i])): i in [1..n]];

(Got ‘‘true" for last row, so deformations)

Belcastro Equivalence and Deformation for Class 1 (v+v_2) (Using 1c)

M6:=DiagonalMatrix(Integers(),15,[-2,-2,-2,-2,-2,

-2,-2,-2,-2,-2,-2,-2,0,0,0]);

M6[1,5]:=1; M6[5,1]:=1;

M6[1,13]:=1; M6[13,1]:=1;

M6[2,6]:=1; M6[6,2]:=1;

M6[2,13]:=1; M6[13,2]:=1;

M6[3,7]:=1; M6[7,3]:=1;

M6[3,13]:=1; M6[13,3]:=1;

M6[4,8]:=1; M6[8,4]:=1;

M6[4,13]:=1; M6[13,4]:=1;

M6[5,12]:=1; M6[12,5]:=1;

M6[6,12]:=1; M6[12,6]:=1;

M6[7,12]:=1; M6[12,7]:=1;

M6[8,12]:=1; M6[12,8]:=1;

M6[9,14]:=1; M6[14,9]:=1;

M6[9,15]:=1; M6[15,9]:=1;

M6[10,14]:=1; M6[14,10]:=1;

59



M6[10,15]:=1; M6[15,10]:=1;

M6[11,14]:=1; M6[14,11]:=1;

M6[11,15]:=1; M6[15,11]:=1;

M6[12,14]:=1; M6[14,12]:=1;

M6[12,15]:=1; M6[15,12]:=1;

M6[13,14]:=2; M6[14,13]:=2;

M6[13,15]:=2; M6[15,13]:=2;

n:=15;

pp:=[SetToSequence({1..n} diff {i}): i in [1..n]];

[IsConsistent(Matrix(M6[pp[i]]), Matrix(M6[i])): i in [1..n]];

M61:=Submatrix(M6,[1,2,3,4,5,6,7,8,9,10,11,12,13,15],

[1,2,3,4,5,6,7,8,9,10,11,12,13,15]);

n:=14;

pp:=[SetToSequence({1..n} diff {i}): i in [1..n]];

[IsConsistent(Matrix(M61[pp[i]]), Matrix(M61[i])): i in [1..n]];

M62:=Submatrix(M6,[1,2,3,4,5,6,7,8,9,10,11,12,15],

[1,2,3,4,5,6,7,8,9,10,11,12,15]);

n:=13;

pp:=[SetToSequence({1..n} diff {i}): i in [1..n]];

[IsConsistent(Matrix(M62[pp[i]]), Matrix(M62[i])): i in [1..n]];

M63:=Submatrix(M6,[2,3,4,5,6,7,8,9,10,11,12,15],

60



[2,3,4,5,6,7,8,9,10,11,12,15]);

n:=12;

pp:=[SetToSequence({1..n} diff {i}): i in [1..n]];

[IsConsistent(Matrix(M63[pp[i]]), Matrix(M63[i])): i in [1..n]];

E6:=Matrix(Integers(),[[-2,1,0,0,0,0],

[1,-2,1,0,0,0],

[0,1,-2,1,1,0],

[0,0,1,-2,0,0],

[0,0,1,0,-2,1],

[0,0,0,0,1,-2]]);

D4:=Matrix(Integers(),[[-2,1,0,0],

[1,-2,1,1],

[0,1,-2,0],

[0,1,0,-2]]);

U3:=Matrix(Integers(),[[0,3],[3,0]]);

M6B:=DiagonalJoin(<E6,D4,U3>);

dicompare(M63,M6B); (Got ‘‘true")

Belcastro Equivalence and Deformation for Class 2 (u+v)

M6:=DiagonalMatrix(Integers(),10,[-2,-2,-2,-2,-2,-2,-2,-2,-2,-2]);
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M6[1,3]:=1; M6[3,1]:=1;

M6[1,10]:=1; M6[10,1]:=1;

M6[2,4]:=1; M6[4,2]:=1;

M6[2,10]:=1; M6[10,2]:=1;

M6[3,5]:=1; M6[5,3]:=1;

M6[4,6]:=1; M6[6,4]:=1;

M6[5,7]:=1; M6[7,5]:=1;

M6[6,8]:=1; M6[8,6]:=1;

M6[9,10]:=1; M6[10,9]:=1;

T:=DiagonalMatrix(Integers(),10,[-2,-2,-2,-2,-2,-2,-2,-2,-2,-2]);

T[1,2]:=1; T[2,1]:=1;

T[1,3]:=1; T[3,1]:=1;

T[1,7]:=1; T[7,1]:=1;

T[3,4]:=1; T[4,3]:=1;

T[4,5]:=1; T[5,4]:=1;

T[5,6]:=1; T[6,5]:=1;

T[7,8]:=1; T[8,7]:=1;

T[8,9]:=1; T[9,8]:=1;

T[9,10]:=1; T[10,9]:=1;

dicompare(M6,T); (Got ‘‘true")

Rank 8

Deformation
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M8:=Matrix(Integers(), [[-2,0,1,0,0,0,0,0,0,0,1,0,0],

[0,-2,0,1,0,0,0,0,0,0,1,0,0],

[1,0,-2,0,1,0,0,0,0,0,0,0,0],

[0,1,0,-2,0,1,0,0,0,0,0,0,0],

[0,0,1,0,-2,0,0,0,0,0,0,1,0],

[0,0,0,1,0,-2,0,0,0,0,0,1,0],

[0,0,0,0,0,0,-2,0,0,0,1,0,1],

[0,0,0,0,0,0,0,-2,0,0,1,0,1],

[0,0,0,0,0,0,0,0,-2,0,0,1,1],

[0,0,0,0,0,0,0,0,0,-2,0,1,1],

[1,1,0,0,0,0,1,1,0,0,-2,0,0],

[0,0,0,0,1,1,0,0,1,1,0,-2,0],

[0,0,0,0,0,0,1,1,1,1,0,0,0]]);

print M8;

n:=13;

pp:=[SetToSequence({1..n} diff {i}): i in [1..n]];

[IsConsistent(Matrix(M8[pp[i]]), Matrix(M8[i])): i in [1..n]];

(Got ‘‘true" for last row, so can remove.

Hence, they are deformations.)

Rank 9

M9:=DiagonalMatrix(Integers(),14,[-2,-2,-2,-2,-2,

-2,-2,-2,-2,-2,-2,-2,0,-2]);
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M9[1,2]:=1; M9[2,1]:=1;

M9[1,13]:=1; M9[13,1]:=1;

M9[3,13]:=1; M9[13,3]:=1;

M9[3,14]:=1; M9[14,3]:=1;

M9[4,13]:=1; M9[13,4]:=1;

M9[4,14]:=1; M9[14,4]:=1;

M9[5,7]:=1; M9[7,5]:=1;

M9[5,14]:=1; M9[14,5]:=1;

M9[6,8]:=1; M9[8,6]:=1;

M9[6,14]:=1; M9[14,6]:=1;

M9[7,9]:=1; M9[9,7]:=1;

M9[8,10]:=1; M9[10,8]:=1;

M9[9,11]:=1; M9[11,9]:=1;

M9[10,12]:=1; M9[12,10]:=1;

n:=14;

pp:=[SetToSequence({1..n} diff {i}): i in [1..n]];

[IsConsistent(Matrix(M9[pp[i]]), Matrix(M9[i])): i in [1..n]];

M91:=Submatrix(M9,[1,2,4,5,6,7,8,9,10,11,12,13,14],

[1,2,4,5,6,7,8,9,10,11,12,13,14]);

n:=13;

pp:=[SetToSequence({1..n} diff {i}): i in [1..n]];

[IsConsistent(Matrix(M91[pp[i]]), Matrix(M91[i])): i in [1..n]];

T:=Matrix(Integers(), [[-2,1,1,0,0,0,1,0,0,0],
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[1,-2,0,0,0,0,0,0,0,0],

[1,0,-2,1,0,0,0,0,0,0],

[0,0,1,-2,1,0,0,0,0,0],

[0,0,0,1,-2,1,0,0,0,0],

[0,0,0,0,1,-2,0,0,0,0],

[1,0,0,0,0,0,-2,1,0,0],

[0,0,0,0,0,0,1,-2,1,0],

[0,0,0,0,0,0,0,1,-2,1],

[0,0,0,0,0,0,0,0,1,-2]]);

A3:=Matrix(Integers(), [[-2,1,0],

[1,-2,1],

[0,1,-2]]);

M9B:=DiagonalJoin(<T,A3>);

dicompare(M91,M9B); (Got ‘‘true")

Rank 10

Belcastro Equivalence for Class 2 (u^3)

M0:=DiagonalMatrix(Integers(),17,[-2,-2,-2,-2,-2,-2,

-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0]);

M0[1,16]:=1; M0[16,1]:=1;

M0[1,17]:=1; M0[17,1]:=1;

M0[2,3]:=1; M0[3,2]:=1;
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M0[2,17]:=1; M0[17,2]:=1;

M0[4,6]:=1; M0[6,4]:=1;

M0[4,16]:=1; M0[16,4]:=1;

M0[5,7]:=1; M0[7,5]:=1;

M0[5,16]:=1; M0[16,5]:=1;

M0[6,8]:=1; M0[8,6]:=1;

M0[7,9]:=1; M0[9,7]:=1;

M0[8,10]:=1; M0[10,8]:=1;

M0[9,11]:=1; M0[11,9]:=1;

M0[10,12]:=1; M0[12,10]:=1;

M0[11,13]:=1; M0[13,11]:=1;

M0[12,14]:=1; M0[14,12]:=1;

M0[13,15]:=1; M0[15,13]:=1;

n:=17;

pp:=[SetToSequence({1..n} diff {i}): i in [1..n]];

[IsConsistent(Matrix(M0[pp[i]]), Matrix(M0[i])): i in [1..n]];

M01:=Submatrix(M0,[1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17],

[1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17]);

n:=16;

pp:=[SetToSequence({1..n} diff {i}): i in [1..n]];

[IsConsistent(Matrix(M01[pp[i]]), Matrix(M01[i])): i in [1..n]];

E8:=Matrix(Integers(), [[-2,1,0,0,0,0,0,0],

[1,-2,1,0,0,0,0,0],
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[0,1,-2,1,1,0,0,0],

[0,0,1,-2,0,0,0,0],

[0,0,1,0,-2,1,0,0],

[0,0,0,0,1,-2,1,0],

[0,0,0,0,0,1,-2,1],

[0,0,0,0,0,0,1,-2]]);

A6:=Matrix(Integers(), [[-2,1,0,0,0,0],

[1,-2,1,0,0,0],

[0,1,-2,1,0,0],

[0,0,1,-2,1,0],

[0,0,0,1,-2,1],

[0,0,0,0,1,-2]]);

U:=Matrix(Integers(), [[0,1],

[1,0]]);

M0B:=DiagonalJoin(<E8,A6,U>);

dicompare(M01,M0B); (Got ‘‘true")

Deformation for Class 3 (u^3)

M0:=DiagonalMatrix(Integers(),13,[-2,-2,-2,-2,-2,-2,

-2,-2,-2,4,-2,0,0]);

M0[1,12]:=1; M0[12,1]:=1;

M0[1,13]:=1; M0[13,1]:=1;
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M0[2,10]:=1; M0[10,2]:=1;

M0[2,11]:=1; M0[11,2]:=1;

M0[3,10]:=1; M0[10,3]:=1;

M0[3,11]:=1; M0[11,3]:=1;

M0[4,10]:=1; M0[10,4]:=1;

M0[4,11]:=1; M0[11,4]:=1;

M0[5,10]:=1; M0[10,5]:=1;

M0[5,11]:=1; M0[11,5]:=1;

M0[6,10]:=1; M0[10,6]:=1;

M0[6,11]:=1; M0[11,6]:=1;

M0[7,10]:=1; M0[10,7]:=1;

M0[7,11]:=1; M0[11,7]:=1;

M0[8,10]:=1; M0[10,8]:=1;

M0[8,11]:=1; M0[11,8]:=1;

M0[9,10]:=1; M0[10,9]:=1;

M0[9,11]:=1; M0[11,9]:=1;

n:=13;

pp:=[SetToSequence({1..n} diff {i}): i in [1..n]];

[IsConsistent(Matrix(M0[pp[i]]), Matrix(M0[i])): i in [1..n]];

(last row got ‘‘true", so can remove. Hence, they are deformations)

Rank 14

Deformation for 1a (Order 16)
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M:=DiagonalMatrix(Integers(),18,[-2,-2,-2,-2,-2,-2,

-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0]);

M[1,5]:=1; M[5,1]:=1;

M[1,15]:=1; M[15,1]:=1;

M[2,6]:=1; M[6,2]:=1;

M[2,15]:=1; M[15,2]:=1;

M[3,7]:=1; M[7,3]:=1;

M[3,15]:=1; M[15,3]:=1;

M[4,8]:=1; M[8,4]:=1;

M[4,15]:=1; M[15,4]:=1;

M[5,9]:=1; M[9,5]:=1;

M[6,10]:=1; M[10,6]:=1;

M[7,11]:=1; M[11,7]:=1;

M[8,12]:=1; M[12,8]:=1;

M[9,16]:=1; M[16,9]:=1;

M[10,16]:=1; M[16,10]:=1;

M[11,16]:=1; M[16,11]:=1;

M[12,16]:=1; M[16,12]:=1;

M[13,17]:=1; M[17,13]:=1;

M[13,18]:=1; M[18,13]:=1;

M[14,17]:=1; M[17,14]:=1;

M[14,18]:=1; M[18,14]:=1;

n:=18;

pp:=[SetToSequence({1..n} diff {i}): i in [1..n]];

[IsConsistent(Matrix(M[pp[i]]), Matrix(M[i])): i in [1..n]];
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(Last row was ‘‘true", so can omit. Thus, they are deformations)

Deformation for 1b (Order 24)

M:=DiagonalMatrix(Integers(),19,[-2,-2,-2,-2,-2,

-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,-2,-2]);

M[1,4]:=1; M[4,1]:=1;

M[1,19]:=1; M[19,1]:=1;

M[2,5]:=1; M[5,2]:=1;

M[2,19]:=1; M[19,2]:=1;

M[3,6]:=1; M[6,3]:=1;

M[3,19]:=1; M[19,3]:=1;

M[4,7]:=1; M[7,4]:=1;

M[5,8]:=1; M[8,5]:=1;

M[6,9]:=1; M[9,6]:=1;

M[7,18]:=1; M[18,7]:=1;

M[8,18]:=1; M[18,8]:=1;

M[9,18]:=1; M[18,9]:=1;

M[10,16]:=1; M[16,10]:=1;

M[10,19]:=1; M[19,10]:=1;

M[11,16]:=1; M[16,11]:=1;

M[11,18]:=1; M[18,11]:=1;

M[12,16]:=1; M[16,12]:=1;

M[12,14]:=1; M[14,12]:=1;

M[13,15]:=1; M[15,13]:=1;

M[13,16]:=1; M[16,13]:=1;

M[14,17]:=1; M[17,14]:=1;
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M[15,17]:=1; M[17,15]:=1;

M[17,18]:=1; M[18,17]:=1;

M[17,19]:=1; M[19,17]:=1;

n:=19;

pp:=[SetToSequence({1..n} diff {i}): i in [1..n]];

[IsConsistent(Matrix(M[pp[i]]), Matrix(M[i])): i in [1..n]];

(Last row was ‘‘true", so can omit. Hence, they are deformations)

Rank 16

Deformation

(Were identical so nothing was removed in the transformation)

Order 8

Rank 6

Belcastro Equivalence

M6:=DiagonalMatrix(Integers(),8,[-2,-2,-2,-2,-2,-2,4,0]);

M6[1,2]:=1; M6[2,1]:=1;

M6[2,3]:=1; M6[3,2]:=1;

M6[3,4]:=1; M6[4,3]:=1;
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M6[4,8]:=1; M6[8,4]:=1;

M6[5,7]:=1; M6[7,5]:=1;

M6[6,7]:=1; M6[7,6]:=1;

M6[7,8]:=2; M6[8,7]:=2;

n:=8;

pp:=[SetToSequence({1..n} diff {i}): i in [1..n]];

[IsConsistent(Matrix(M6[pp[i]]), Matrix(M6[i])): i in [1..n]];

M61:=Submatrix(M6,[2..8],[2..8]);

n:=7;

pp:=[SetToSequence({1..n} diff {i}): i in [1..n]];

[IsConsistent(Matrix(M61[pp[i]]), Matrix(M61[i])): i in [1..n]];

D5:=Matrix(Integers(),[[-2,1,0,0,0],

[1,-2,1,0,0],

[0,1,-2,1,1],

[0,0,1,-2,0],

[0,0,1,0,-2]]);

U:=Matrix(Integers(),[[0,1],[1,0]]);

M6B:=DiagonalJoin(<D5,U>);

dicompare(M61,M6B); (Got ‘‘true")
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Rank 10

Deformation

Actually all identical, so nothing to show...

Rank 13

Belcastro Equivalence

M3:=DiagonalMatrix(Integers(),16,[-2,-2,-2,-2,-2,

-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2]);

M3[1,2]:=1; M3[2,1]:=1;

M3[1,16]:=1; M3[16,1]:=1;

M3[2,3]:=1; M3[3,2]:=1;

M3[3,4]:=1; M3[4,3]:=1;

M3[5,7]:=1; M3[7,5]:=1;

M3[5,16]:=1; M3[16,5]:=1;

M3[6,8]:=1; M3[8,6]:=1;

M3[6,16]:=1; M3[16,6]:=1;

M3[7,9]:=1; M3[9,7]:=1;

M3[8,10]:=1; M3[10,8]:=1;

M3[9,15]:=1; M3[15,9]:=1;

M3[10,15]:=1; M3[15,10]:=1;

M3[11,13]:=1; M3[13,11]:=1;

M3[11,15]:=1; M3[15,11]:=1;

M3[12,14]:=1; M3[14,12]:=1;
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M3[12,15]:=1; M3[15,12]:=1;

n:=16;

pp:=[SetToSequence({1..n} diff {i}): i in [1..n]];

[IsConsistent(Matrix(M3[pp[i]]), Matrix(M3[i])): i in [1..n]];

M31:=Submatrix(M3,[1,2,3,5,6,7,8,9,10,11,12,13,14,15,16],

[1,2,3,5,6,7,8,9,10,11,12,13,14,15,16]);

n:=15;

pp:=[SetToSequence({1..n} diff {i}): i in [1..n]];

[IsConsistent(Matrix(M31[pp[i]]), Matrix(M31[i])): i in [1..n]];

E6:=Matrix(Integers(),[[-2,1,0,0,0,0],

[1,-2,1,0,0,0],

[0,1,-2,1,1,0],

[0,0,1,-2,0,0],

[0,0,1,0,-2,1],

[0,0,0,0,1,-2]]);

A7:=Matrix(Integers(),[[-2,1,0,0,0,0,0],

[1,-2,1,0,0,0,0],

[0,1,-2,1,0,0,0],

[0,0,1,-2,1,0,0],

[0,0,0,1,-2,1,0],

[0,0,0,0,1,-2,1],

[0,0,0,0,0,1,-2]]);
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U:=Matrix(Integers(),[[0,1],[1,0]]);

M3B:=DiagonalJoin(<E6,A7,U>);

dicompare(M31,M3B); (Got ‘‘true")

Rank 17

Deformation

Identical, so nothing to show...
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