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ABSTRACT 

Constraining Kura and South Caspian Basin Maikop Source Rock Stratigraphy, Deposition, 
and Timing Using Chemostratigraphy of Redox-Sensitive Trace Metals 

and Re-Os Geochronology 

Alex M. Washburn 
Department of Geological Sciences, BYU 

Master of Science 

The Oligocene-Miocene Maikop Series in the South Caspian and Kura Basins is the key 
petroleum source rock for both offshore and onshore petroleum development in Azerbaijan. 
The Maikop is a thick (up to 3 km) succession of silty mudstones containing up to 15% total 
organic carbon (TOC), but is greatly lacking diagnostic microfaunal assemblages useful for 
dating and stratigraphically constraining the deposition of the mudstone. Current stratigraphic 
constraints relying on microfaunal assemblages, radiostratigraphy, and chemostratigraphy are 
robust, but key information is still missing. This study adds numerical age data to Maikop 
stratigraphy through Re-Os geochronology. Of five sample suites analyzed from the Kura 
Basin of eastern Azerbaijan, one Re-Os data set produced significant range in 187Re/188Os vs 
187Os/188Os space to yield an isochron of 17.2 ± 3.2 Ma. Other sample suites yield imprecise 
Re-Os age constraints as a result of variable initial 187Os/188Os values and limited range in 
187Re/188Os vs 187Os/188Os space. The initial 187Os/188Os values of these data sets were 
compared with the known 
187Os/188Os of seawater values for the past 70 million years to provide the best qualitative age 
constraints. Pre-Maikopian strata studied at Perikeshkul was found to coincide in 187Os/188Os 
values with the Eocene-Oligocene Transition (EOT) Os excursion, indicating deposition 
initiation of Maikopian strata following the EOT. Preservation of organic matter in intervals 
with initial 187Os/188Os values that deviate significantly from global 187Os/188Os values indicate 
basin restriction and the development of anoxia. High Os abundances, enrichment in detrital 
elements Al, Ti, Ga, Sc, and La, and changing basin circulation during the deposition of 
Maikop strata at 17.2 Ma may indicate the initial episodic uplift of the Greater Caucasus 
Mountains, changes in sediment provenance, or changing proximity to sediment source. 

Keywords: Paratethys, source rock, chemostratigraphy, geochronology, Maikop 
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Introduction 
 
 Understanding the evolution of the ancient Paratethys Sea is critical in resolving the 

formation of petroleum system elements in its sedimentary basins, including the South Caspian 

and Kura Basins of eastern Azerbaijan. Important events in the evolution of the Paratethys Sea 

include the restriction of the Paratethys from open-marine circulation and the emergence of the 

Greater Caucasus Mountains as a result of collisional tectonics. A key to understanding these 

events in the Paratethys Sea lies within the deposits of the Maikop Series in eastern Azerbaijan. 

The Maikop Series is thought to have been deposited from the latest Eocene throughout the 

Oligocene and into the Late Miocene (Hudson et al., 2008; Popov et al., 2008; Egan et al., 2009; 

Van der Boon et al., 2015). Several methods have previously been used to stratigraphically and 

geochronologically constrain the Maikop Series to unlock clues pertaining to the isolation of the 

Paratethys Sea, including biostratigraphy, radiostratigraphy, and chemostratigraphy. These 

methods have thus far greatly added to the resolution of paleogeographic evolutionary events, 

but key information is still missing. The purpose of this study is to constrain the depositional 

ages of key intervals of the Maikop in eastern Azerbaijan through the application of Re-Os 

isotope geochronology. Furthermore, this study will discuss elemental analysis on redox-

sensitive metals, total organic carbon (TOC), kerogen types, and detrital input in an effort to 

further develop the subaqueous depositional conditions, changing sediment provenance, and the 

emergence of the Greater Caucasus Mountains. 

 

Geologic Background 
 

The Maikop Series was deposited in the Paratethys Sea, an epicontinental sea that 

evolved from the unrestricted Tethys Ocean. The Maikop Series was deposited throughout the 
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ancient Paratethys, making deposits of the Maikop identifiable across an extensive region, from 

as far west as the Eastern Black Sea and as far north as the northern portion of the central 

Caspian region (, Green et al., 2009). Due to its association with the Paratethys Sea, the Maikop 

is often studied to unlock clues pertaining to the evolution of the Paratethys and the factors that 

affect it, including climate, tectonics, eustacy, etc. (Rogl, 1999;  Popov et al., 2008; Hudson et 

al., 2008; Johnson et al., 2009). A prime area in which to study the Maikop Series is in eastern 

Azerbaijan, where deposits of the Maikop are abundant in outcrop. Additionally, the South 

Caspian and Kura Basins of eastern Azerbaijan produce large volumes of hydrocarbons sourced 

from the Maikop Series (Isaksen et al., 2007; Bechtel et al., 2014), making the study of the 

Maikop in this area key to understanding organic matter preservation, maturation, and 

hydrocarbon migration associated with these accumulations.  

The Paratethys Sea is thought to have formed either during the Paleocene and Eocene 

epochs (Gaetani & Garzanti, 1991; Golonka, 2004; Kaz’min & Tikhonova, 2005), or later near 

the Eocene/Oligocene boundary (Popov et al., 1993; Rogl, 1999). Upon initial formation of the 

Paratethys, open seaways existed to the west and possibly to the east (Figure 1). These open 

seaways affected the chemistry of Paratethys waters by allowing communication and circulation 

of oxidized water with the open ocean. Throughout the Oligocene and Miocene epochs, it is 

thought that these open seaways underwent periodic closure due to either global eustacy or 

collisional tectonics before becoming completely closed off later during the Late Miocene 

(Popov et al, 2008; Hudson et al., 2008; Johnson et al., 2009).  

A primary basin of interest in the Paratethys Sea is the South Caspian Basin (SCB), 

known for its unique structural characteristics and prolific hydrocarbon production (Figure 2). 
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The SCB opened as part of a back-arc basin that formed sometime during the Mid-Jurassic to 

Cretaceous Period as a result of long-lived northward subduction of the Neo-Tethys (Dercourt et 

al. 1986; Zonenshain & Le Pichon 1986; Granath & Baganz 1996; Otto 1997; Nikishin et al. 

1998; Granath et al. 2000; Stampfli et al. 2001; Ziegler et al. 2001; Brunet et al. 2003). The SCB 

basement is thought to be oceanic crust, which lies at a depth of 20-25 kilometers (Dewey et al. 

1973; Berberian 1983; Zonenshain & Le Pichon 1986; Priestley et al. 1994; Brunet et al. 2003). 

Figure 1 - (A) Modern geographical map displaying the location of the field area, with the three sample 
sites marked with red dots. Map modified from Hudson et al., 2008. (B) Paleogeographic representation 
of the Paratethys Sea region during the Eocene-Oligocene, with the study area outlined in red. Map 
modified from Blakey, https://www2.nau.edu/rcb7/. 
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Due to the great depth of the basin, no borehole penetrations to the basement exist, and 

continuous seismic correlation is lacking (Brunet et al., 2003). Early sedimentation in the SCB is 

highly debated, but the bulk of the sedimentary infill of the SCB is attributed to deposits that are 

Oligocene and younger (Figure 2, Brunet et al., 2003). Sediment influx to the basin is attributed 

mainly to three major rivers, the paleo-Volga, Kura, and Amu Darya rivers that carried sediment 

from as far east as the Himalayas and as far north as Moscow (Figure 1; Allen et al., 2002; 

Brunet et al., 2003). Rapid sedimentation during the Pliocene to Quaternary deposited more than 

10 km of sediment in less than 5 Myr over the Maikop Series, thereby preventing the normal 

expulsion of fluids. As a result, the Maikop and much of the overlying Productive Series is 

overpressured and undercompacted (Narimanov, 1993; Brunet et al., 2003).  

The Kura Basin (KB) is a sub-basin of the SCB to the west that formed as a flexural basin 

between the Greater Caucasus to the north and the Lesser Caucasus and Talysh Mountains to the 

south (Brunet et al., 2002; Kaz’min & Tikhonova, 2006). Studies on the Maikop are generally 

performed in the Kura Basin where the Maikop is shallower, appearing in outcrop along eastern 

Azerbaijan (Figure 2; Popov et al., 2008; Hudson et al., 2008; Johnson et al., 2009). The Maikop 

in the KB is thought to be time correlative to the Maikop in the deep SCB (Johnson et al., 2009).  

Though poorly constrained, the onset of Maikop deposition is thought to have occurred 

during the Late Eocene and continued through the Miocene. Therefore, the Maikop likely 

recorded events pertaining to SCB and KB tectonics and circulation restriction in its geochemical 

signature. Restriction of these basins in the Paratethys Sea resulted in the development of 

suboxic to anoxic conditions at the sediment/water interface, though there are other factors 

regarding basin dynamics that must be taken into consideration. Furthermore, the Maikop may 

record the emergence of the Caucasus Mountains, the timing of which is also poorly constrained. 
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Current constraints place the first major uplift of the Greater Caucasus in the Middle Miocene 

(Ershov et al., 2003; Saintot et al., 2006; Vincent et al., 2007), with widespread compressional 

deformation in the Greater Caucasus occurring from the Pliocene up into the present (Allen et 

al., 2003; Green et al., 2009). The emergence of the Greater Caucasus Mountains may be 

reflected in preserved Maikop strata by an increase of geochemical indicators of detrital influx 

and restriction (Vincent et al., 2007; Johnson et al., 2009). 

The Maikop Series is composed primarily of mudstones largely devoid of diagnostic 

microfaunal assemblages, making the Maikop notoriously difficult to constrain stratigraphically 

Figure 2 - Modern structural representation of the South Caspian and Kura Basin areas. Collisional 
tectonics result in a structurally complex area. Cross section A-A’ is divided for comparison into two 
parts: the South Caspian and Kura Basins. Note the depth of relatively young sediment in the SCB, 
indicating rapid sedimentation that resulted in overpressurized units that make deep drilling hazardous. 
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and geochronologically. Recent studies have attempted to add stratigraphic resolution by the 

application of chemostratigraphy, biostratigraphy of nanofossils, and radiostratigraphy (Hudson 

et al., 2008; Popov et al., 2008; Efendiyeva et al., 2012). It is noted from pyrolysis data that the 

primary concentration of preserved organic matter exists in the Maikop in thin, discreet intervals 

of black shale (Hudson et al., 2008). The preservation of the bulk of organic matter in these thin, 

discreet intervals may correlate to periods of restricted circulation in the Paratethys Sea (Hudson 

et al., 2008). Preservation of organic matter in sedimentary basins results from deposition of 

organic matter in suboxic to anoxic reducing environments, followed by sufficiently rapid burial. 

Restricted circulation resulting from the isolation of the Paratethys would allow for the 

development of a stagnant, stratified water column that would lead to the development of 

suboxic to anoxic, reducing conditions. 

Deposits of the Maikop vary in thickness regionally. Maikop deposits in the SCB are 

thickest, ranging up to 3 km thick (Figure 2, cross-section), but are also very deep and are known 

to be overpressured. Studies on the Maikop in the SCB have been limited to mud volcano ejecta 

(Isaksen et al., 2007). Maikop deposits thin westward from the SCB into the KB, where onshore 

deposits of the Maikop may be found in outcrop. Many researchers have studied the outcrops of 

the Maikop in the KB and related it to the SCB (Popov et al., 1998; Hudson et al., 2008; Johnson 

et al., 2009; Efendiyeva et al., 2012). Although the Maikop deposits in the KB may serve as an 

analogue for those in the SCB, there are some differences of note between the deposits. Maikop 

deposits in the SCB are thought to represent classic black shale deposits (in which there is a large 

amount of unoxidized carbon deposited under deep-basin anoxic, reducing conditions), whereas 

the Maikop in the Kura Basin does not, being deposited in primarily oxic conditions with 

occasional suboxic/dysoxic development in discreet intervals (Johnson et al., 2009). Deposits in 
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the KB are also more proximal to the Caucasus Mountains, which may have been emergent 

during Maikop deposition, and the depositional environment was likely much shallower. Despite 

these differences, the primary stratigraphic correlations are thought to be consistent throughout 

the two basins (Johnson et al., 2009). 

 

Chemostratigraphy 
 
Redox-Sensitive Trace Metals 

 

 The elements V, U, Cr, P, Ba, Co, Mo, Ni, Cu, and Re are useful in identifying oxic to 

anoxic or euxinic paleodepositional environments. Anoxia develops in the absence of dissolved 

oxygen in the bottom waters of marine or lacustrine sedimentary basins. Anoxia develops as the 

rate of consumption of oxygen by organic matter (OM) consuming bacteria overtakes the influx 

of oxygen into the system. This can happen either as a result of intense OM degradation 

(consumption outpaces oxygen delivery to the system), or from limited input of oxygen to the 

system, commonly due to restriction of bottom-water circulation in restricted or isolated 

sedimentary basins (Tribovillard et al., 2006). Euxinic conditions, where hydrogen sulfide is 

resident in the water column, may or may not develop in anoxic conditions.  

In anoxic waters, reducing conditions prevail that allow for the authigenic enrichment of 

trace metals. In order to use trace metals as paleo-anoxic indicators, it is important to distinguish 

authigenic input of elements versus detrital input. The fraction of authigenic element (X) may be 

calculated using the equation “detrital X = (X/Al)average shale x Alsample,” or by using statistical 

multivariate analyses (Jacot des Combes et al., 1999; Wijsman et al., 2001; Kryc et al., 2003; 

Tribovillard et al., 2006).  
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Authigenic enrichment of redox-sensitive trace metals is due in large part to the redox 

cycle of Mn and Fe (Tribovillard et al., 2006). Manganese occurs dominantly in seawater as 

Mn(II) and MnCl+. In oxygenated waters, Mn(II) oxidizes to insoluble Mn(III) and Mn(IV) 

oxides (Calvert & Pedersen, 1993, 1996; Tribovillard et al., 2006). The Mn(IV) solid phases are 

referred to as Mn-oxyhydroxides. As the Mn-oxyhydroxides settle from the oxic zone to the 

sediment-water interface, trace metals adsorb onto the surface. In anoxic conditions (whether at 

the sediment-water interface or below), the oxyhydroxides are reductively dissolved and the 

trace metals are released, becoming available to be used in reactions involving the formation of 

new minerals like, for example, pyrite. Iron has a very similar redox cycle, and similarly 

transports redox-sensitive trace metals to anoxic zones for reductive capture into authigenic 

minerals (Tribovillard et al., 2006). Of the elements of interest mentioned earlier, V, Cr, Co, and 

Mo are primarily delivered to the sediment-water interface by this method. 

 Another driver of trace element enrichment in authigenic minerals under anoxic 

conditions involves the deposition of organic matter. The process of uranium enrichment is a 

good example. In oxygenated waters, uranium is stable as U(VI), which is complexed with 

carbonate ions in seawater to form [UO2(CO3)3]4- (Languimer, 1978), which diffuses from the 

water column to the sediments through reduction and adsorption or precipitation as uranite into 

authigenic minerals (Barnes & Cochran, 1991; Klinkhammer and Palmer, 1991; Crusius et al., 

1996; Morford & Emerson, 1999). Under anoxic, reducing conditions, removal of U into the 

sediment is accelerated by the formation of organometallic ligands in humic acids (Klinkhammer 

and Palmer, 1991; Zheng et al., 2002a; Zheng et al., 2002b; McManus et al., 2005; Tribovillard 

et al., 2006). Other elements that form organometallic ligands under reducing conditions are V, 
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Ni, and Cu, though the primary delivery of V to the sediment-water interface is through the 

redox-cycling of Mn.  

Ni and Cu are primarily delivered to the sediments through the formation of 

organometallic complexes. Ni and Cu are released into pore waters as OM decomposes and is 

trapped in pyrite if sulfate-reducing conditions prevail (Huerta-Diaz and Morse, 1992; Fernex et 

al., 1992; Nameroff et al., 2002, 2004; Piper and Perkins, 2004; Algeo and Maynard, 2004; 

Tribovillard et al., 2006). Without the settling of organic sediments, even in reducing conditions 

Ni and Cu will not be enriched in the sediments. Enrichment in Ni and Cu therefore indicate high 

flux of organic matter and that reducing conditions were met, though good positive correlations 

between Ni-Cu enrichment and TOC have been shown regardless of the redox status 

(Tribovillard et al., 2006).  

 

Organic Matter Type 

 

 Interpretation of the type and abundance of organic matter preserved in the sedimentary 

record is helpful in determining basin evolution via sedimentary source, factors that lead to 

organic matter preservation via anoxia or rapid sedimentation, and paleoclimate conditions. 

Pyrolysis was used as the primary method to determine the type of organic matter deposited in 

the samples of this study. 

 Organic matter is delivered to sediments as either dissolved organic carbon or particulate 

organic carbon (Hedges et al., 1997). In normal-marine environments, only about 10% of total 

OM produced leaves the euphotic zone (Tribovillard et al., 2006). Generally, the organic matter 

produced from terrestrial versus marine life may be characterized by differences in chemical 
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reactivity. This is evidenced primarily by increased degradability of most algal organic matter 

compared to terrestrial organic matter, or in the preservation of some algal groups over others in 

the fossil record (Goth et al., 1988; Arndt et al., 2013). Terrestrial organic matter is composed 

primarily of moderately to highly resistant biopolymers, such as cellulose, lignin, cutin, or cutan; 

this is a potential reason for higher resistance to degradation of terrestrial OM over marine OM. 

However, it is necessary to also consider that terrestrial OM will have undergone more extensive 

aging through soil burial, transport, and eventual delivery into marine environments. It has been 

suggested, therefore, that the lower degradability of terrestrial OM is due to protection by 

association with minerals or other organic matter (e.g. encapsulation; Huguet et al., 2008; Arndt 

et al., 2013).   

 Based on the differences in preservation potential between marine and terrestrial organic 

matter, abundances of either or both may be useful in resolving some of the interactions between 

paleo-productivity, sedimentation rate, and detrital input. For example, samples that are low in 

TOC (<1 wt%) that is dominant in type III (terrestrial) kerogens (as shown by pyrolysis), may 

represent an oxic depositional environment where either the production of marine organic matter 

is not sufficient to outpace the consumption of bottom-water oxygen, or the sedimentation rate is 

too low to bury the marine organic matter before degradation. Pairing organic matter type and 

abundance with geochemical indices of anoxia and detrital input provides greater resolution on 

the paleo-depositional conditions of the basin. 
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Re-Os Geochronology 

 

 Due to the unique aqueous chemistry of Re and Os, they were originally used as 

geochronometers for ore bodies in igneous and metamorphic rocks. In the past 20 years, Re-Os 

geochronology has been applied to organic-rich mudstones (ORM) using a method pioneered by 

Ravizza and Turekian (1989) and further developed by Ravizza et al. (1991), Cohen et al. (1999) 

and Creaser et al. (2002). The Re-Os geochronometer has been shown to be very reliable because 

of its geochemical stability and resistance to low-grade metamorphism, hydrocarbon maturation, 

and diagenetic alteration (Creaser et al., 2002; Rooney et al., 2010). 

 Most of the Re and Os found in ORMs have been found to be hydrogenous in origin 

(Cohen et al., 1999). Rhenium and Os in seawater is primarily sourced from continental runoff, 

with some areas receiving Re and Os through hydrothermal vents and extraterrestrial input. 

Rhenium and Os have a long residence time (750 Kyr and 20-50 Kyr, respectively) and both 

behave conservatively in the water column, so open ocean concentrations of Re and Os are 

thought to be generally homogenous (Colodner et al., 1993). However, inputs of Re and Os may 

vary from basin to basin depending on proximity to sources, variable source input, and restriction 

of circulation with open waters (McArthur et al., 2008; Cumming et al., 2012). 

 In addition to being used as a geochronometer, Re and Os abundances may be used as 

chemostratigraphic constraints. Rhenium may be used as an authigenic indicator because its 

detrital concentration is very low (Crusius et al., 1996). Rhenium and Os also tend to be more 

strongly fractionated in organic sediments of mixed terrigenous and marine origin with some O2 

remaining in the system, making the apparent fractionation of Re and Os a supporting indicator 

of organic matter type and oxic water conditions (Cumming et al., 2012; Harris et al., 2013). Due 
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to the homogenous nature of Os abundance in openly circulated marine water, 187Os/188Os may 

be used as a global chemostratigraphic marker, such as the 187Os/188Os excursion at the Eocene-

Oligocene Transition (EOT; Dalai et al., 2006). However, caution must be applied in the use of 

such chemostratigraphic markers, as the composition of 187Os/188Os may be influenced by 

proximity to continental runoff, hydrothermal activity, or restriction of basin waters from open 

marine circulation. If the indications exist of close continental proximity, hydrothermal activity, 

or basin restriction, then the 187Os/188Os ratio is also useful as a paleoenvironmental indicator 

related to continental erosion and mid-ocean ridge magmatic activity (Sharma et al., 1999; Singh 

et al., 1999). 

  

Methods 
 
Sample Collection 

 

Samples were collected from three primary sample sites: Perikeshkul, Mount Islamdag, 

and Shikhzahirli (Figure 1). Selection of sample sites was based on previous work where 

stratigraphic constraints drawn from microfaunal assemblages and chemostratigraphic data have 

already been developed (e.g. Popov et al., 2008; Hudson et al., 2008; Johnson et al., 2009). At 

each sample site, dark intervals of mudstone potentially rich in organic matter were identified 

and sampled (Figure 3).  

Sampling was based primarily on meeting the needs of Re-Os geochronology. Rhenium 

and Os are captured into organic-rich mudstones during deposition at the sediment/water 

interface under limited oxygen conditions (Cohen et al., 1999; Colodner et al., 1993; Crusius et 

al., 1996; Ravizza and Turekian, 1992; Ravizza et al., 1991). The two primary mechanisms for 
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capture of Re and Os are reductive capture into sediments and adsorption onto organic matter, 

with the majority of the Re and Os becoming bound to organic matter (Cohen et al., 1999; Selby 

and Creaser, 2003; Yamashita et al., 2007; Georgiev et al., 2011; Rooney et al., 2012; Cumming 

et al., 2012). It has also been shown that some pre-existing Re and Os may be found in organic 

matter due to biogenic uptake during the lifespan of the organism (Rooney et al., 2016; 

Figure 3 - Stratigraphic relationships shown between measured sections, spanning about 40 km laterally 
(See Figure 1). Designated sample locations within the stratigraphy (P-1, I-1, S-1, etc.) represent intervals 
where at least eight samples were taken for Re-Os analysis. Perikeshkul and Mount Islamdag measured 
sections are from Popov, (2008). Figure modified from Popov, (2008). 



14 
 

Racionero-Gomez et al., 2017). Post-depositionally, the Re-Os system is robust and remains 

stable through hydrocarbon maturation, and is even stable through contact metamorphism up to 

~650˚ C (Creaser et al., 2002; Rooney et al., 2010). However, Re and Os are both chalcophilic 

and siderophilic, and due to the organic matter binding of Re and Os, they are very susceptible to 

alteration through oxidative weathering and hydrothermal activity (Rooney et al., 2012; Kendall 

et al., 2009; Georgiev et al., 2012). Therefore, great care was taken to avoid collecting samples 

with any evidence of these processes. 

After identification of a potentially high organic horizon, a suite of samples was taken 

from that horizon. At least six samples are required to produce enough isotopic heterogeneity to 

produce an isochron, but in order to account for the potentially low sedimentation rates in the 

KB, eight samples were typically taken to ensure sufficient heterogeneity. Due to the relatively 

short residence time of Re and Os, isotope heterogeneity was achieved by sampling along a 

single lamina set, limiting vertical variation between samples to 5 cm or less. Samples with any 

signs of post-depositional alteration such as fractures, rust stains, calcite veins, and sulfur runoff 

were not collected for analysis. As it has been demonstrated that intense Re and Os weathering 

may occur up to 5 m in an outcrop due likely to oxidation of organic matter (Pierson-Wickmann 

et al., 2000; Georgeiv et al., 2012), samples were dug out of the outcrop sufficient to unearth 

fresh samples. In order to minimize individual sample heterogeneity, selected samples were 

typically about 50 to 100 g in size (Rooney et al., 2011). Two stratigraphic sections, one at 

Perikeshkul and the other at Shikhzahirli, were measured at sample locations where no previous 

section measurements had been published. 
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Sample Preparation 

 

All sample powdering for bulk elemental, trace element, and pyrolysis analysis was 

conducted using rock crushing facilities at Brigham Young University. In order to ensure 

accurate analysis, rocks from each sample bag were selected based on size, with typical samples 

being 20-40 g in size (leaving larger sample sizes for Re-Os sample preparation). Selected 

samples were crushed into small chips using a steel hammer, then powdered in a tungsten-ball 

mill. In order to ensure maximum surface area exposure for pyrolysis, samples were sieved 

through a US No. 40 Standard Test Sieve (425 µm).  

 

Pyrolysis 

 

Pyrolysis analysis was completed at Brigham Young University using the Wildcat 

Technologies Hydrocarbon Analyzer with Kinetics (HAWK) pyrolysis and total organic carbon 

(TOC) instrument. Samples were expected to have less than 10% TOC, so 50-70 mg of 

powdered sample was placed into a crucible for analysis as recommended by the manufacturer. 

In order to obtain total organic and carbonate carbon, as well as source type and relative 

maturity, these samples were analyzed by whole-rock pyrolysis and total organic 

carbon/carbonate carbon (TOC+CC) techniques. A standard pyrolysis+TOC method was used, 

where the sample was heated from 300⁰ C to 850⁰ C at a rate of 25⁰ C/minute during the 

pyrolysis stage, and from 300⁰ C to 850⁰ C at a rate of 25 ⁰C/minute during the oxidation stage 

(Espitalie and others, 1977; Peters and Cassa, 1994). Measurements include the amount of free 

hydrocarbons in the sample in mg HC/g rock (S1 Peak); kerogen yield, accomplished via the 
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amount of hydrocarbons generated through thermal cracking of non-volatile organic matter (S2 

Peak);  organic carbon dioxide yield, which is the amount of CO2 in mg CO2/g rock produced 

during pyrolysis of kerogen (S3 Peak); mg carbon/g rock produced from organic residue 

remaining after pyrolysis of kerogen is completed (S4 Peak); Tmax, which is the temperature at 

which the maximum generation of hydrocarbons from cracking of kerogen occurred during 

pyrolysis (measured at the top of the S2 peak); total organic carbon (TOC) in weight %; and 

carbonate carbon (CC) in weight %. From these measurements, interpretative calculations are 

made including the adsorption index, oil saturation index, hydrogen index, oxygen index, 

production index, generative organic carbon (weight %), and non-generative organic carbon 

(weight %). It is important to note that due to the mineral matrix effect, which refers to the 

interference of clay minerals with the release of hydrocarbons, pyrolysis results for samples of 

low (<0.5 wt %) may be considered more qualitative than quantitatively accurate (Peters, 1986). 

 

X-Ray Fluorescence (XRF) 

 

XRF analysis was performed using the Rigaku ZSX Primus II at Brigham Young 

University. For trace element analysis, samples were pressed into discs by combining 8.3 g of 

sample with 1.132 g of SpectroBlend 44 µm powder (composed of 81% C, 13.5% H, 2.9% O, 

and 2.6% N, with 0-10 ppm impurities of Ag, As, B, Cd, Hg, Pb, and Sn). The sample mixtures 

were pressed to 50,000 lbs of pressure using tungsten pressing discs in a pressing assembly. For 

bulk element analysis, fused disc samples were prepared by combining 1.23 g of sample with 

8.61 g of lithium borate flux, then fused using a platinum crucible in a Katanax K1 fused disc 

preparation machine. In order to ensure proper machine operation, samples were analyzed along 
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with standards JA-1 (andesite from Japan), JA-2 (andesite from Japan), SGR-1 (mudstone from 

the Green River Formation), JB-1A (basalt from Japan), JR-1 (rhyolite from Japan), and RGM-1 

(rhyolite from Glass Mountain). Major and minor elements analyzed via XRF include Si, Ti, Al, 

Fe, Mn, Mg, Ca, Na, K, P, Ba, Ce, Cr, Cu, Ga, La, Nb, Nd, Ni, Pb, Rb, Sc, Sm, Sr, Th, U, V, Y, 

Zn, and Zr. 

 

Leco Sulfur Analysis 

 

 Sulfur analysis was conducted using a Leco Furnace Sulfur Analyzer at the ALS Canada 

geochemistry lab in British Columbia. 0.01 to 0.1 g of each sample was heated in the Leco 

furnace to approximately 1350˚ C in an induction furnace while passing a stream of oxygen 

through the sample. Sulfur dioxide released from the sample was measured by an infrared (IR) 

detection system to measure the total sulfur released from the sample. 

 

Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) 

 

In order for samples to be accurately analyzed in the ICP-OES, they first had to be 

homogeneously dissolved into solution. Fusion of samples into glass discs with lithium borate 

flux breaks down mineral structures to form a mechanically strong glass that may either be 

dissolved in acid without the use of HF, whole or powdered, so samples were prepared for acid 

digestion by powdering the fused discs used in XRF analysis (see Igamells, 1970). As aluminum 

had been analyzed in the XRF, the discs were powdered in an alumina-ceramic shatterbox in 

order to avoid contamination with elements not yet analyzed (specifically Co, which tungsten 
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shatterboxes are contaminated with). Powdered discs were dissolved in an acid solution 

containing 0.7 g of sample, 20 g of 10% HCl solution, 10 drops of 10M HNO3, and 

approximately 30 g of milli-Q water to a total volume of 50 mL (~50g). Samples were then 

analyzed using a ThermoScientific iCAP 7400 ICP-OES in the labs of Brigham Young 

University. Standards run along with samples were JA-2 and SGR-1, which were prepared for 

ICP-OES using the same process. Crossover data between the XRF and ICP-OES was compared 

and determined to be within a few percent error. Elements analyzed via ICP-OES include Mo, 

Co, and As. Other elements resulting from ICP-OES analysis were used to verify the 

measurements performed via XRF, including for Ba, Cr, Cu, Ni, Sr, V, and Zn. 

 

Re-Os Analysis 

 

As Re and Os are associated with the deposition of organic matter and a relationship is 

often shown between Re and Mo, samples to be analyzed for Re-Os geochronology were 

selected based on TOC values, the abundance of molybdenum and current stratigraphic 

constraints. In order to minimize sample contamination, selected samples were polished using 

silica carbide grit pads to remove surfaces potentially exposed to surface weathering and that 

may have contaminated by metal tools. Samples were then broken into pieces in a ceramic 

mortar and pestle and powdered in an alumina-ceramic shatterbox to yield 30-80 g of powdered 

sample.  

The detrital component of Os in organic-rich mudstones causes an increase in geologic 

scatter around the isochron. In order to minimize this scatter and increase the accuracy of the Re-

Os geochronometer, a digestion method that limits the removal of any detrital Re and Os 
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component must be employed. The acid digestion method used in this study are detailed in Selby 

and Creaser (2003). In this method, whole-rock powders are reacted with a Re-Os purified 

digestion medium of CrO3 in 4 N H2SO4 (0.2 g CrO3 per ml of 4 N H2SO4). Approximately 1 g 

of each sample with less than or greater than 5% TOC was digested in 8 mL or 16 mL of CrO3-

H2SO4 solution, respectively, together with a mixed tracer solution of 185Re and 190Os in a sealed 

Carius tube at 240˚ C for 48 hours. Following acid digestion, Os isolated from the solution using 

CHCl3 solvent extraction and micro-distillation. Following the Os extraction from the Cr-H2SO4 

solution Re is isolated and purified using NaOH-Acetone solution extraction and anion 

chromatography. 

Due to the high ionization potential of Re and Os (~9eV, Dickin, 2008), samples were 

analyzed using negative thermal ionization mass spectrometry (NTIMS) in a Thermo Scientific 

Triton TIMS instrument. Analysis via N-TIMS allows measurement of Re and Os at the 

nanogram to subnanogram concentration, respectively, with accuracy up to ±0.5% 2σ 

(Volkening et al., 1991; Creaser et al., 1991). The purified fractions of Re and Os were loaded on 

to Ni and Pt wire filaments, with the Re isotope compositions determined via static Faraday 

collection, and the Os isotope compositions obtained via peak hoping using a secondary electron 

multiplier. For the CrVIO3–H2SO4 solution total procedural blanks during this study were 18.0 ± 

3.0 pg and 0.20 ± 0.05 pg (1 S.D., n = 4) for Re and Os, respectively, with an average 187Os/188Os 

value of 0.17 ± 0.05 (n = 4). 
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Statistical Analysis  

 

Bulk geochemical data were analyzed statistically to produce clustering of samples and 

geochemical element abundances using JMP Pro 13 software. In JMP, statistical hierarchal 

clustering was achieved through the calculation of Cubic Clustering Criterion (CCC). 

Calculating CCC involves plotting sample results on a hypercube containing a uniform 

distribution of reference points, then using a heuristic formula to estimate the error of a distance 

(between reference points and actual points) based clustering algorithm in the reference 

distribution. For this study, Ward’s method was used, where distance is calculated as: 

Where CK is the Kth cluster, xK is the mean vector for cluster CK, and NK is the number of 

observations in CK. A high value of CCC corresponds to smaller error (as calculated by R2); 

therefore, the higher the CCC the more reliable the clusters. Using the CCC, a number of clusters 

are chosen that are statistically and geologically reasonable. Samples are divided into seven 

clusters with a CCC of 18.47, which was the highest value of CCC calculated between varying 

numbers of clusters.  

Clusters were then plotted on a dendrogram to display their relative relationships to each 

other. Line distances in the dendrogram correspond to distances between clusters, and therefore 

display the mathematical similarity between geochemical signatures. The dendrogram was also 

plotted with two-way clustering so as to show element relationships, and a heat map was plotted 

to visually represent the element clustering between samples. Using the dendrogram, improved 
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correlations between geologic units in measured sections of the Maikop in Eastern Azerbaijan 

were drawn. 

 

Results 
 
 In this section, results from pyrolysis, elemental analysis, and Re-Os geochronology from 

each sample suite are compared. Nine sample suites were taken that consist of eight samples 

each from the same lithologic unit. Three sample suites were taken from Perikeshkul, three from 

Mount Islamdag, and three from Shikhzahirli. Sample suites were taken from older, non-

Maikopian rocks at Perikeshkul (Figure 3) in order to establish geochemical continuity 

throughout the stratigraphic section and to analyze for possible Os excursion during the Late 

Eocene (Dalai et al., 2006; Peuker-Ehrenbrink & Ravizza, 2012). Moving from east to west, 

samples were taken from Perikeshkul (suites designated P-1 through P-3, stratigraphically oldest 

to youngest), Mount Islamdag (I-1 through I-3, oldest to youngest), and Shikhzahirli (S-1 

through S-3, oldest to youngest), covering a lateral distance of about ~40 km, with the 

Peikeshkul and Islamdag sample sites only 10 km apart (Figure 3). 

 

Organic Matter Preservation and Type 

 

 TOC in Maikop samples of the Kura Basin is generally low (~1% TOC average), with the 

exception of samples taken from Islamdag (~3% TOC average). Hydrogen Index (HI) values are 

lowest in samples from the youngest Islamdag (S-3) sample suite (~30 mgHC/gTOC) and 

Perikeshkul P-1 and P-2 (~10 mgHC/gTOC; see Figure 4). Hydrogen indices from Shikhzahirli 

are higher (150-200 mgHC/gTOC), with the Islamdag I-1 and I-2 sample suites show the highest 
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HI values (~400 mgHC/gTOC). Oxygen Index (OI) values are consistently inversely 

proportional to HI values for all sample suites. S2 peaks (kerogen yield, or the remaining 

hydrocarbon potential in the samples) were highest in the lower two Islamdag sample suites (I-1 

and I-2), with average values of 8 and 15.5, respectively. All other sample suites had a kerogen 

yield of 0.2 to 3. Comparisons utilizing TOC, HI, and S2 reveal much of the preserved TOC is 

terrigenous in nature, with kerogen types being dominantly type III and type IV, although low 

Tmax values suggest that some kerogens may have undergone minor thermal cracking into the 

oil window. Deviations from this general behavior are seen in the lower two suites from 

Islamdag (I-1 and I-3) and the P-3 sample suite from the western Perikeshkul site, which display 

mixing of type II/III kerogen and, in the case of the middle Islamdag sample suite, a 

predominantly marine source (type II) kerogen.  

Figure 4 - (Left) Total organic carbon (TOC) and remaining hydrocarbon potential based on results from 
HAWK pyrolysis. Sample suites (8 samples each) are marked near their clusters (see Figure 3). (Right) 
Maturity of hydrocarbons in samples based on Hydrogen Index vs. Tmax from HAWK pyrolysis. 
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 Utilization of organic paleo-proxy elements Cu and Ni compared with TOC reveals a 

good correlation, indicating that significant post-depositional organic matter degradation did not 

take place below the sediment-water interface (Figure 5). Thus, the correlation supports the low 

Tmax values that indicate immature organic material. Hydrocarbon maturation and migration has 

not likely taken place in these samples; therefore, TOC measurements probably reflect the 

original depositional organic matter content of the samples, as no hydrocarbon maturation and 

migration is indicated. However, these indicators do not provide clues as to the paleo-

productivity of the area, as organic matter may have degraded in the water column or at the 

sediment-water interface, thereby preventing the authigenic enrichment of Cu and Ni captured in 

organic matter in the water column. 

 

Detrital Input 

 

 Primary detrital indicators in these samples include Ti, Al, Ga, La, and Sc, as these 

elements are typically bound in continental minerals that are resistant to degradation (Kryc et al., 

Figure 5 - Copper and Ni may be used as indicators for the preservation or degradation of organic matter 
in a sample because they are primarily enriched in authigenic minerals through the formation of 
organometallic complexes (see text for explanation). A strong trend in Cu and Ni to TOC may indicate 
that significant organic matter degredation has not taken place below the sediment-water interface. 
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2003; Tribovillard et al., 2006; Wood and Samson, 2006). Good correlations are observed 

between each of these elements, indicating a small fraction of authigenic enrichment of these 

elements (). Overall, the samples collected as part of this study are depleted in detrital elements, 

with a few exceptions. Enrichment factors calculated from average black shale composition 

(Wedepohl, 1971, 1991) reveal that the P-1, I-2, S-1, S-2, and S-3 sample suites are depleted in 

Ti, with Al enrichment ranging from 0.60 to 1.20. Enrichment of both Ti and Al appears most 

significantly in the P-3, I-1, and I-3 sample suites, which displayed average enrichment factors of 

Ti and Al of ranging from 1.00 – 1.20 and 1.20 – 1.60. Ga, La, and Sc are typically bound in 

minerals with low solubility (e.g. bauxite) and correlate well with Ti and Al in these samples, so 

they are used to support the interpretations of detrital influx (Wood & Samson, 2006). Similar 

values of enrichment are observed in sample suites, with enrichment of La, Ga and Sc in the I-3 

and P-3 sample suites at 1.0, 1.40 and 1.60, respectively. The only significant deviation from 

enrichment behavior between Ti, Al, and Sc exists in the Perikeshkul sample suite P-2, which 

previous studies suggest is pre-Maikopian in age (Hudson et al., 2008), which is anomalously 

enriched in Sc (EF of 1.5). 

 

Anoxic Indicators 

 

 Elemental indicators for anoxia include U, Th, Mo, V, Cr, Ni, and Cu. Abundances of 

these elements were plotted on bivariate diagrams using elements and element ratios (Figure 7). 

All sample suites except one showed enrichment factors of Mo below 20, U/Th ratios below 

0.75, V/Cr ratios below 2.00, and had generally low values of TOC (~1 wt % average TOC). The 

values of these ratios and the enrichment factor of Mo suggest that all of these samples were 
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deposited in oxic conditions (Jones & Manning, 1994). When comparing values of TOC with Al-

normalized enrichment factors of Cu, Ni, U, Va, and Mo, no correlation is observed, indicating 

deposition of sediment in oxic conditions (Tribovillard et al., 2006). The only sample suite to 

deviate from this behavior is the Islamdag S-1 sample suite, which has average EFMo above 50, 

U/Th values above 1.25, V/Cr values between 2.00 and 4.25, and average TOC of 4 wt %. These 

values indicate that this sample suite was deposited in suboxic to anoxic conditions (Jones & 

Manning, 1994). Comparisons of TOC with enrichment factors of Al-normalized Cu, U, and Mo 

show a weak overall correlation, but a significantly higher relative enrichment. These results 

similarly indicate that the S-1 sample suite was deposited in suboxic to anoxic conditions. The 

Figure 6 - Enrichment factors of elements typically bound in insoluble, resistant detrital minerals that 
may be used as a proxy for relative detrital input. Comparison of plots reveals a consistent detrital 
indication, bolstering the reliability of these proxies by ruling out post-depositional authigenic 
enrichment. Variation of enrichment between elements indicates deviance of abundances of typical 
detrital minerals from average deposits of black shale. 
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results of organic preservation throughout the sample suites presented in this study are similar to 

those found by previous studies (Hudson et al., 2008; Johnson et al., 2009). 

Figure 7 - Oxic and anoxic geochemical indicators. (A) and (B) are quantitative anoxia indicators 
from Jones & Manning (1994). (C), (D) and (E) are qualititative geochemical indicators of anoxia 
from Tribovillard et al. (2006). With small variations, most geochemical indicators agree that all of 
the Maikop samples collected from the Kura Basin were deposited in oxic bottom water conditions 
save for the I-1 sample suite from Islamdag, which consistently plots in anoxic to dysoxic bottom 
water conditions. 
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Re-Os Geochronology 

 

 Of the five sample suites analyzed for Re-Os geochronology, only one Re-Os data set 

successfully produced a meaningful age and uncertainty: the Islamdag I-3 sample suite. 

Collectively the Re-Os data for the Islamdag I-3 possess 187Re/188Os and 187Os/188Os values of 

~2000-6000 and ~1.0 and 2.3, respectively that are positively correlated. The entire sample set 

yield a Re-Os date of 17.2 ± 3.2 Ma, with an initial 187Os/188Os of 0.71 ± 0.23. However, 

significant scatter is exhibited by the data set about the best-fit line as described by the 

exceptionally high mean square of weighted deviates (MSWD) value of 660. The scatter could 

be the result of post-depositional disturbance to the Re-Os systematic, and/or variability in the 

initial 187Os/188Os composition of the sample set.  Calculated at 17.2 Myrs the sample set 

describe two subsets that yield initial 187Os/188Os values of ~0.80 and ~0.60, which coincide with 

the same samples that fall above and below the best-fit line of the complete data set (Figure 8). 

The two subsets yield Re-Os dates of 16.9 ± 2.2 Ma (initial 187Os/188Os = 0.80 ± 0.14, MSWD = 

33) and 18.3 ± 1.7 Ma (initial 187Os/188Os = 0.56 ± 0.13, MSWD = 21). Both date determinations 

are identical within uncertainty. Samples that fall above and below the best-fit line of the 

complete data set do not group into separate conformable ages of strata, respectively. The lack of 

stratigraphic grouping of variable initial Os indicates that the variation in initial Os cannot be due 

to a single change in depositional conditions, nor does the variation between samples have cyclic 

variation going up the stratigraphic column.  
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Figure 8 - 187Re/188Os vs 187Os/188Os plots. The Re-Os data from the I-3 sample suite yielded the 
only meaningful age determinations (A)(B)(C). (A) displays the solution using the full sample suite from 
I-3. Using the full suite the best-fit of the data shows considerable scatter (see text for discussion). 
However, the distribution above and below the isochron led to the splitting the I-3 sample suite in to two 
sub groups (B)(C). The two sub groups yield a Re-Os date within uncertainty (B, C). 
(D)(E)(F)(G)187Re/188Os vs 187Os/188Os plots for the sample suites studied for Re-Os geochronology. 
These four sample suites failed to produce statistically meaningful Re-Os isochrons. 

 

Stratigraphic Correlations 

 

 Hierarchal clustering statistics confirmed that samples in a suite represented one 

lithologic unit, as all samples in each respective suite was found to be nearly geochemically 
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identical. Furthermore, relationships between the geochemistry of sample suites was quantified 

by hierarchal clustering analysis and represented on a hierarchal diagram on which the geometric 

appearance of the diagram is mathematically determined (Figure 9). Previous work (Hudson et 

al., 2008; Johnson et al., 2009) suggests that the three sample localities are time correlative, and 

geochemical comparison of sample suites from this study reinforce this. Bulk geochemical 

analysis indicates a strong relationship between the upper Islamdag (I-3) and upper Perikeshkul 

(P-3) sample suites (Figure 9). A similarly strong relationship exists between the S-1 and S-2 

sample suites of Shikhzahirli, which in turn are shown to have a moderately strong relationship 

to the I-3 and P-3 sample suites. The P-2 and S-3 sample suites show a moderate relationship that 

is likely related to similarities in mineralogy and depositional conditions, as they are very 

unlikely to be related stratigraphically. The other sample suites, including the P-1 and I-2 suites, 

are weakly related to the other sample suites, indicating very different depositional conditions 

and sediment supply. 

 

Discussion 
 
 The results of this study indicate that, despite its ability to generate large volumes of oil 

and gas, the majority of the Miocene Maikop found in outcrop in the KB of eastern Azerbaijan 

may not be considered to have been deposited in a marine anoxic setting, in agreement with the 

conclusions of Hudson et al. (2008) and Jonson et al. (2009). The majority of the Miocene 

Maikop preserved in the KB is generally low in TOC (~1%) that is primarily sourced from 

terrigenous input. Only the Islamdag lower and middle sample suites had significant TOC values 

(up to 5%), which samples were from the lower and middle Islamdag sample suites. 

Geochemical analysis indicated that the lower Islamdag sample suite was of mixed terrigenous 
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and marine organic matter, the preservation of which was likely due largely to suboxic to anoxic 

conditions in the bottom waters of the basin. Although the middle Islamdag suite had similar 

values for TOC, geochemical analysis indicated dominant marine organic matter preservation in 

oxic conditions, indicating that preservation of organic matter was likely due either to high 

productivity rates of organic matter outpacing organic matter degradation at the sediment-water 

interface, a high sedimentation rate, or a combination of both. 

Re-Os geochronology, though only successful for one of the five sample suites, provides 

important new data in the South Caspian and Kura Basins. An age date of ~17.2 Ma for the 

lower Islamdag sample suite provides a datum of reference for the extensive bio-, chemo-, 

chrono-, and lithostratigraphic data that has been collected throughout the Kura Basin and 

possibly the SCB. However, there are two puzzling aspects of the lower Islamdag isochron. The 

first is the production of two isochrons of identical date, but differing initial 187Os/188Os 

compositions. The reason for the split is unknown, as there are apparently no other elements 

analyzed in this study that show the same separation pattern between samples. It may be possible 

that the differences are the result of rapid, dynamic changes within the hydrodynamics of the 

basin at the time of deposition. These rapid changes may be the result of increases and decreases 

in restriction in the SCB caused by tectonics, relative sea level change, or a combination of the 

two. Additionally, the lower value for initial 187Os/188Os of 0.56 suggests that sediment being 

sourced to the basin is less radiogenic, indicating significant volcanic sediment source. 

Therefore, a significant sediment source at this time was likely coming from the mafic volcanic 

Talysh Mountains to the south, as volcanic sediments tend to contain less radiogenic 187Os/188Os 

compositions. The second puzzling feature of the Re-Os data from the lower Islamdag suite is 

the high enrichment in common Os and Re, as represented by 192Os (sample suite I-1; Table 2). 
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This could be due to more efficient uptake of Os into organic matter, a higher preservation of 

organic matter past the sediment-water interface that allowed for more authigenic enrichment of 

Os, an increased supply in Os due to oxidative weathering of Os-rich minerals on the continent, 

or a combination of any of these factors (Ravizza and Esser, 1993; Selby and Creaser, 2003; 

Baioumy et al., 2011; Cumming et al., 2012).   

The failure of the other sample suites to produce an isochron is due to the lack of 

heterogeneity in the 187Re/188Os vs 187Os/188Os compositions between collected samples. The 

exact methods of obtaining heterogeneity of Re ad Os between samples are not yet fully 

understood (Ravizza and Turekian, 1989; Creaser et al., 2002; Georgiev et al., 2012; Cumming 

et al., 2012; Harris et al., 2013). Lack of heterogeneity may have come about through disturbance 

of the Re-Os system through oxidative weathering, through differences in Re and Os uptake 

between sample sites due to variations in water-column chemistry or organic matter type, 

sedimentation dynamics or due to insufficient spacing of sampling, vertically or horizontally. As 

the potential for oxidative weathering in outcrop samples cannot be completely ruled out, future 

studies should seek to obtain Re-Os isochrons from core samples. 

Despite the lack of successfully produced isochrons, it is still possible to derive some 

depositional control from the initial 187Os/188Os ratios. Osmium isotope ratios for sample suites 

provide qualitative control on either basin dynamics or deposition age based on correlation (or 

lack thereof) with the global seawater 187Os/188Os curve and verified by comparison to the 

isochron age date obtained from the I-1 sample suite (; Peuker-Ehrenbrink and Ravizza, 2012). 

For example, the I-1 suite (dated at ~17.2 Ma) has an initial 187Os/188Os ratio of 0.71.  On the 

global sea level curve, the time period that corresponds to 187Os/188Os values that range from 0.7 

to 0.8 is from the late Middle Oligocene through the Middle Miocene, a qualitative age 
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constraint that coincides with the age produced via isochron. Furthermore, the correlation of 

initial 187Os/188Os values with the global sea level curve indicates that, despite the indications of 

bottom water dysoxia/anoxia, the Kura Basin was likely still circulating with the open ocean 

enough to produce a similar 187Os/188Os value. This reinforces geochemical data from this study 

and others that suggest limited circulation, but not complete basin isolation during the 

Oligocene-Miocene (Hudson et al., 2008). 

The initial 187Os/188Os values for the P-3, S-1, and I-3 sample suites are 0.74 ± 0.004, 

0.80 ± 0.05, and 0.69 ± 0.003, respectively, with initial values calculated between 12 and 22 Ma. 

These values correspond with the global 187Os/188Os curve from the late Middle Oligocene 

through the late Middle Miocene (Figures 9 and 10). Sample suite P-3 is interpreted to be of 

similar age to sample suite I-1, which is reinforced by their nearly identical 187Os/188Os ratios. 

Suite S-1 overlies sample suite I-2 and I-1, and is interpreted to be Middle Miocene in age. The 

stratigraphically uppermost sample suite tested for Re and Os is suite I-3, which is interpreted to 

be late Middle Miocene in age. All of these sample suites correlate well with the global 

187Os/188Os curve, indicating limited basin restriction during these times to allow for enough 

circulation with the open ocean to homogenize Re and Os concentrations. 

Samples from the P-1 sample suite are considered to be the oldest, and are interpreted to 

be pre-Maikopian rocks that were deposited near the Eocene-Oligocene transition (Hudson et al., 

2008). The P-1 sample suite has an average initial 187Os/188Os ratio of 0.34 ± 0.15, which initial 

value was calculated assuming an age of 39 to 29 Ma. This low 187Os/188Os value correlates to 

the osmium isotope excursion at Eocene-Oligocene Transition (EOT), as discussed by Dalai et al 

(2006) and reflected in the global 187Os/188Os sea level curve (Figure 10). The presence of the 
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excursion in these samples also indicates that the basin was connected to open marine waters 

during deposition of this interval. 

 The new constraints on deposition timing from Re-Os geochronology provides greater 

resolution on the rate of sedimentation in the Kura Basin. Sample suite I-1 was deposited at 

~17.2 Ma, while suite I-3 is interpreted to have been deposited around the late Middle Miocene 

(~14 Ma; supported by conclusions from Popov et al., 2008). With less than 100 m between 

sample suites I-1 and I-3, sedimentation rates between these samples is about 2.5 cm/kyr. Low 

sedimentation rates may be due to a lack of sediment supply due to generally flat topography 

surrounding the Kura Basin during the time of Maikop deposition. 

Figure 10 - Marine 187Os/188Os record of the past 70 million years, compiled by Peuker-Ehrenbrink 
& Ravizza (2012). 187Os/188Os values are used in this study to match the deposition of intervals of 
Maikop rock to the geologic record of seawater osmium to produce qualititative age dates and 
establish connectivity or restriction of basin waters to circulation to open marine waters. Dashed lines 
represent sample suite 187Os/188Os values for sample suites analyzes (Figure 2). Boxes represent 
interpreted qualitative ages of deposition. 
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Low enrichment factors for detrital indicators also seem to suggest that sedimentation 

was low, as most of the samples showed relative depletion in detrital indicators. Two sample 

suites showed significant enrichment in detrital indicators: the Islamdag I-3 and Perikeshkul P-3 

sites (enrichment average of 1.0-1.20 and 1.20-1.60 for Ti and Al, respectively), neither of which 

are reasonably stratigraphically correlatable. Their lack of stratigraphic correlation indicates that 

an allogenic event may have taken place to increase the detrital fraction of the rocks at these 

intervals. Possible allogenic events include volcanic events in the Talysh Mountains near the 

EOT during deposition of P-3, the initial uplift of the Greater Caucasus Mountains as a result of 

collisional tectonics in the mid-Miocene during deposition of sample suite I-1, and varying 

sediment source from or proximity to the paleo-Volga river to the north. 

Current time constraints placing initial uplift of the Caucasus Mountains in the Middle 

Miocene are coincident with the deposition of the Islamdag I-1 sample suite, as indicated by 

isochron data. Initial uplift of the mountains from collisional tectonics paired with relative sea 

level change may have resulted in periods of increased restriction in the Kura Basin during 

deposition of the I-1 sample suite, resulting in the variable initial 187Os/188Os seawater value 

(from 0.8 ± 0.14 to 0.56 ± 0.13; Figure 8). Furthermore, exposure of earlier deposits of black 

shale may have resulted from the collisional tectonics or as a result of basin restriction and 

relative sea level fall, thereby allowing for the erosion and release of previously bound Os back 

into the basin. This may explain the anomalously high concentration of common Os in the 

Islamdag I-1 sample suite. Detrital input present in all of the Islamdag samples seems 

inconsistent with the emergence of the Greater Caucasus Mountains, as detrital indicators 

relatively increase at the I-1 suite, decrease in the I-2 suite, and then significantly increase in the 

I-3 suite. This variation may be the result of intermittent uplift of the Caucasus Mountains that 
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exposed fresh surfaces to erode and contribute higher amounts of nutrients, Os, and detrital silt. 

Restriction of the Kura and South Caspian Basins accompanied the initial emergence of the 

Caucasus Mountains, as indicated by the development of suboxic-anoxic bottom water 

conditions in the I-1 suite. Higher TOC values resulted from basin restriction in the I-1 sample 

suite. High TOC values in the S-2 suite may be the result of an increased amount of fresh 

nutrients being brought into the system as pelagic and solute load sourced from the newly 

uplifted and exposed soluble sedimentary minerals that were covering the now-emergent Greater 

Caucasus Mountains. After significant degradation and incision of young sedimentary units 

accompanied with further uplift of the Caucasus Mountains, harder, less nutrient-rich, less 

soluble minerals may have begun to erode that resulted in the increased fraction of detrital silt 

and lower TOC preserved in the I-3 suite. 

 

Conclusions 
 
 

 The results from the studies performed by Hudson et al. (2008) and Johnson et al. (2009) 

indicate that the bulk of Maikop strata in the Kura Basin is not traditional deep-marine anoxic 

black shales with high TOC, but is rather primarily composed of gray shale with low, terrestrial-

dominant organic matter. New data from this study confirm their conclusions and build upon the 

understanding of the important, but infrequent development of anoxia and the preservation of 

organic matter. The only intervals of high TOC with marine organic matter were from the middle 

and lower outcrops of Maikop taken from Mount Islamdag. The lower Islamdag sample suite 

was determined by Re-Os geochronology to have been deposited well into the Miocene (~17.2 

Ma), thereby providing a datum of reference for future stratigraphy. As of yet, this is the 
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youngest age date produced from Re-Os geochronology. Variable Osi and the production of two 

geochronologically identical (within uncertainty) isochrons in the lower Islamdag suite is likely 

the result of rapid, dynamic basin shifts not recorded in any other observed geochemical 

indicators. High values of common Os in the Islamdag I-1 suite suggest an efficient mechanism 

of Os delivery caused by the emergence of the Greater Caucausus Moutains and the subsequent 

exposure and weathering of Os-rich minerals, a more efficient uptake of Os into organic matter 

due to the higher fraction of marine organic material found in the samples or the development of 

suboxic to anoxic bottom-water conditions, or a combination of these factors. 

 Where Re-Os geochronology is not definitive, qualitiative age control of Maikopian 

strata was obtained by comparing 187Os/188Os values with the global 187Os/188Os sea level curve 

(Peucker-Ehrenbrink & Ravizza, 2012). The stratigraphically oldest strata studied, from just 

below what is commonly picked as the base of the Maikop Series, was found to be deposited 

near the Eocene-Oligocene Transition, as reflected by the 187Os/188Os excursion. This confirms 

the age proposed for the base of the Maikop Series in the Kura Basin to be after the Eocene-

Oligocene Transition (Popov et al., 2008; Hudson et al., 2008). Time constraints on sample 

suites from Mount Islamdag revealed an average sedimentation rate of 2.5 cm/kyr. The low 

sedimentation rate of Maikop in these sections is likely due either to a lack of a highly emergent 

sediment source, changing provenance, or a combination of factors. 

 Comparisons of organic matter type and preservation, detrital input, indicators of anoxia, 

and correlation of 187Os/188Os ratios with the global sea record revealed that the basin was likely 

connected to open water circulation throughout the deposition of the Maikop units analyzed in 

this study (from the Eocene-Oligocene Transition through the late Middle Miocene). The causes 

of dysoxia/anoxia during the deposition of the Islamdag I-1 sample suite was probably related to 
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increased restriction of the Kura Basin due to collisional tectonics resulting in the emergence of 

the Greater Caucasus Mountains paired with asymmetric relative sea level rise and fall. Increased 

detrital input may be due to variations in sediment source cause by the emergence of the Greater 

Caucasus Mountains or due to changing proximity of sediment sources such as the Paleo-Volga 

River. Variation in sediment source may also have influenced the influx and radiogenic nature of 

Re and Os brought into the system.  
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