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ABSTRACT 

Exploring Fit for Nonlinear Structural Equation Models 
 

Phillip Isaac Pfleger 
Department of Instructional Psychology and Technology, BYU 

Master of Science 
 

Fit indices and fit measures commonly used to determine the accuracy and desirability of 
structural equation models are expected to be insensitive to nonlinearity in the data. This includes 
measures as ubiquitous as the CFI, TLI, RMSEA, SRMR, AIC, and BIC. Despite this, some 
software will report these measures when certain models are used. Consequently, some 
researchers may be led to use these fit measures without realizing the impropriety of the act. 
Alternative fit measures have been proposed, but these measures require further testing.  

 
As part of this thesis, a large simulation study was carried out to investigate alternative fit 

measures and to confirm whether the traditional measures are practically blind to nonlinearity in 
the data. The results of the simulation provide conclusive evidence that fit statistics and fit 
indices based on the chi-square (𝜒𝜒2) distribution or the residual covariance matrix are entirely 
insensitive to nonlinearity. The posterior predictive p-value was also insensitive to nonlinearity. 
Only fit measures based on the structural residuals (i.e., HFI and R2) showed any sensitivity to 
nonlinearity. Of these, the R2 was the only reliable measure of nonlinear model misspecification.  

 
This thesis shows that an effective strategy for determining whether a nonlinear model is 

preferable to a linear one involves using the R2 to compare models that have been fit to the same 
data. An R2 that is much larger for the nonlinear model than the linear model suggests that the 
linear model may be less desirable than the nonlinear model.  

 
The proposed method is intended to be supplementary to substantive theory. It is argued 

that any dependence on fit indices or fit statistics that places these measures on a higher pedestal 
than substantive theory will invariably lead to blindness on the part of the researcher. In other 
words, unwavering adherence to goodness-of-fit measures limits the researcher’s vision to what 
the measures themselves can detect.  

 
 
 
 
 

 
 
 
 

 
 
 
Keywords:  structural equation modeling, goodness-of-fit, nonlinear statistical models, Bayesian 
analysis 
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DESCRIPTION OF THESIS STRUCTURE 

Exploring Fit for Nonlinear Structural Equation Models is written in a journal-ready 

format with a structured annotated bibliography. The heart of the thesis is represented in a 

journal-ready article, while an annotated bibliography ensures the additional requirements of the 

traditional thesis are met. The complete article will be submitted to journals that deal primarily 

with measurement in the social sciences, such as Structural Equation Modeling and 

Psychometrika. 

The formal outline of this document is intended to meet the requirements of the 

university. Prior to this description is the cover page, abstract, acknowledgments, the tables of 

contents, and the lists of tables and figures. The article is presented immediately following this 

section. After the article, the reader will find two appendices. Appendix A is the structured 

annotated bibliography, and Appendix B is the replication code. Appendix B represents several 

different files that are required to run the simulation. 
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Introduction 

Fit indices and fit statistics are often used in research to determine if a mathematical 

model adequately represents the data. A fit index differs from a fit statistic in that a fit statistic 

has a known distribution and can be used to make probability statements (Maydeu-Olivares, 

2013). Both fit indices and fit statistics will be referred to generically as fit measures throughout 

this article.  

Researchers use fit measures to identify the best model for understanding their data and 

testing their hypotheses. For example, a researcher who would like to make the case that 

regression model 1 fits or predicts the data well, might examine a p-value-based on an 𝐹𝐹 test. 

Regression model 1 is a simple case of two continuous independent variables (𝑋𝑋1𝑖𝑖, 𝑋𝑋2𝑖𝑖) regressed 

on one continuous dependent variable (𝑌𝑌𝑖𝑖), 

𝑌𝑌𝑖𝑖 = 𝑏𝑏0 + 𝑏𝑏1𝑋𝑋1𝑖𝑖 + 𝑏𝑏2𝑋𝑋2𝑖𝑖 + 𝑒𝑒𝑖𝑖, (1) 

where 𝑏𝑏0 is the intercept, 𝑏𝑏1 and 𝑏𝑏2 are the slopes for 𝑋𝑋1 and 𝑋𝑋2 respectively, and e is the error 

term for the ith subject. Our knowledge of the 𝐹𝐹 distribution allows us to obtain a p-value for the 

given 𝐹𝐹 statistic. Larger values of the 𝐹𝐹 statistic result in lower p-values (Kutner, Nachtsheim, & 

Neter, 2004). Often a cutoff criterion of p < 0.05 is used to determine good fit. In other words, if 

the model had a p-value less than 0.05 the researcher might conclude that the model fits the data 

well. This kind of fit is called absolute fit. Researchers, however, may also be interested in 

relative fit.  

One example of a relative fit index, which many readers will be familiar with, is the 

Bayesian Information Criterion (BIC). The BIC is one of several fit measures that can be used to 

determine whether one model is a better fit of the data than another. A researcher interested in 

determining if model 1 fits the data better than a model including a nonlinear term, such as 
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model 2, could compare the models using the BIC. Model 2 differs from model 1 by the 

inclusion of an interaction term (𝑋𝑋1𝑋𝑋2),  

𝑌𝑌𝑖𝑖 = 𝑏𝑏0 + 𝑏𝑏1𝑋𝑋1 + 𝑏𝑏2𝑋𝑋2 + 𝑏𝑏3𝑋𝑋1𝑋𝑋2 + 𝑒𝑒𝑖𝑖. (2) 

The interaction term is created by multiplying 𝑋𝑋1 and 𝑋𝑋2, which is why it is written as 𝑋𝑋1𝑋𝑋2; it 

also has its own regression coefficient, 𝑏𝑏3. To determine which model is better fitting, the 

researcher may examine the BIC values, declaring the model with the smallest BIC the best 

fitting model.  

The process is similar in structural equation modeling (SEM). In SEM there are many fit 

measures used to test both model fit (absolute fit) and to help with model selection (relative fit). 

Some relative measures include the chi-square (𝜒𝜒2), comparative fit index (CFI), Tucker-Lewis 

Index (TLI), root mean square error of approximation (RMSEA), and standardized root mean 

square residual (SRMR). BIC and Akaike’s Information Criterion (AIC) (Wang & Wang, 2012) 

are relative measures. Even the maximum likelihood can be compared between models in the 

form of a likelihood ratio test (LRT), or for non-nested models a Vuong test (Merkle, You, 

Schneider, Bae & Merkle, 2018; Vuong, 1989), thus it can be considered a relative measure. 

Each of these fit measures has different strengths, uses, and limitations. It is common to see a 

number of these absolute fit measures reported together, along with predetermined cutoffs, such 

as the ones set by Hu and Bentler (1999). 

Fit Measures 

In structural equation modeling (SEM) most fit measures are based off the 𝜒𝜒2 

distribution, 

𝜒𝜒2 = 𝐹𝐹𝑀𝑀𝑀𝑀(𝑁𝑁 − 1), (3) 
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where 𝑁𝑁 is the sample size and 𝐹𝐹𝑀𝑀𝑀𝑀 is the maximum likelihood discrepancy function used to 

generate the model. 

The formula for 𝐹𝐹𝑀𝑀𝑀𝑀 is 

𝐹𝐹𝑀𝑀𝑀𝑀 = 𝑙𝑙𝑙𝑙�𝛴𝛴�� + 𝑡𝑡𝑡𝑡�𝑆𝑆𝛴𝛴�−1� − 𝑙𝑙𝑙𝑙|𝑆𝑆| − (𝑝𝑝 + 𝑞𝑞), (4)

where 𝐹𝐹𝑀𝑀𝑀𝑀 is equal to the natural log of the determinant of the model implied covariance matrix 

(𝛴𝛴�) plus the trace of the observed covariance matrix (𝑆𝑆) times the inverse of 𝛴𝛴� minus the natural 

log of the determinant of 𝑆𝑆 minus the total number of independent and dependent indicators (𝑝𝑝 

and 𝑞𝑞 respectively). If the model fit the data perfectly than all the terms would cancel out and the 

likelihood would equal zero (Wang & Wang, 2012).  

In practice the 𝜒𝜒2 is used to calculate a p-value for model fit, a model is often considered 

good fitting when p > 0.05. The 𝜒𝜒2 statistic has several known limitations; for example, the 𝜒𝜒2 

statistic is less reliable in situations with very large sample sizes, very small sample sizes, or with 

skewed distributions (Wang & Wang, 2012). These limitations gave rise to a plethora of fit 

measures that attempt to make up for the weaknesses of the 𝜒𝜒2. Among these is the comparative 

fit index (CFI), 

𝐶𝐶𝐹𝐹𝐶𝐶 =
𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠

𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
, (5) 

where d = 𝜒𝜒2 – df, specified refers to the specified model, and null refers to the worst possible 

model, and df is the degrees of freedom for appropriate model (Bentler, 1990; Wang & Wang, 

2012). The CFI is used to test absolute fit or goodness of fit. The CFI ranges from 0 to 1, with a 

value of 1 representing perfect fit. Hu and Bentler (1999) proposed the models with a CFI value 

above 0.95 could be considered good fitting models. One major weakness of the CFI is that it 

will have a low value if the correlations between items is low.  
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Another index is the Tucker-Lewis Index (TLI), 

𝑇𝑇𝑇𝑇𝐶𝐶 =
𝜒𝜒𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 𝑑𝑑𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝜒𝜒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠2 𝑑𝑑𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠

𝜒𝜒𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 𝑑𝑑𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 1
, (6) 

which is often reported in tandem with the CFI. The TLI shares a cutoff value of 0.95 with the 

CFI (Hu & Bentler, 1999). The TLI is also sensitive to the correlations among the items. The TLI 

may have values above 1, but if this occurs the TLI is set to 1.  

The root mean square error of approximation (RMSEA), 

𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅𝑅𝑅 = ��
𝜒𝜒𝑠𝑠2
𝑑𝑑𝑓𝑓𝑠𝑠

� − 1

𝑁𝑁
, (7)

 

has, a known distribution and therefore allows for the calculation of a p-value and a confidence 

interval. The RMSEA ranges between 0 and 1, but unlike the CFI and TLI a 0 is considered 

perfect fit. Hu and Bentler (1999) declare a model with RMSEA < 0.06 as a good fit of the data. 

Often, 90% confidence intervals are reported for the RMSEA and a p-value is included.  

While the standardized root mean square residual (SRMR) is not calculated based on the 

𝜒𝜒2 distribution, it is calculated based on the sample and model implied covariance matrices, 

𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅 = ��∑ ∑ 𝑡𝑡𝑗𝑗𝑗𝑗2𝑗𝑗𝑗𝑗 �
𝑒𝑒

, (8) 

where 

𝑡𝑡𝑗𝑗𝑗𝑗 =
𝑆𝑆𝑗𝑗𝑗𝑗

𝑆𝑆𝑗𝑗𝑗𝑗2 𝑆𝑆𝑗𝑗𝑗𝑗2
−

𝛴𝛴𝑗𝑗𝑗𝑗
𝛴𝛴𝑗𝑗𝑗𝑗2 𝛴𝛴𝑗𝑗𝑗𝑗2

, (9) 

𝑆𝑆𝑗𝑗𝑗𝑗 is the element in the 𝑗𝑗𝑡𝑡ℎ row and 𝑘𝑘𝑡𝑡ℎ column of the sample covariance matrix, and 𝛴𝛴𝑗𝑗𝑗𝑗 is the 

element in the 𝑗𝑗𝑡𝑡ℎ row and 𝑘𝑘𝑡𝑡ℎ column of the model implied covariance matrix (Wang & Wang, 

2012). The elements 𝑆𝑆𝑗𝑗𝑗𝑗2 ,  𝑆𝑆𝑗𝑗𝑗𝑗2 , Σ𝑗𝑗𝑗𝑗2 , and Σ𝑗𝑗𝑗𝑗2  represent the variances along the diagonal of the 
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respective covariance matrices. The SRMR is similar in interpretation to the RMSEA. With 

values ranging from 0 to 1, a SRMR < 0.08 is considered good fit. 

 Table 1 displays the criteria commonly used to determine the quality of a model based on 

these measures. It is rare to see research employing SEM that does not include a threshold to aid 

in the analysis of goodness of fit. While Hu and Bentler’s (1999) values are commonly used, 

there are others to be used in the same and different situations (Chen, 2007; Wang & Wang, 

2012). Usually, a researcher will decide beforehand which fit measures and cutoffs to base their 

decisions on. 

 

Other fit measures common in SEM include AIC and the BIC, 

𝐵𝐵𝐶𝐶𝐶𝐶 =  −2 ln(𝑇𝑇) + ln(𝑁𝑁)𝑚𝑚, (10) 

𝑅𝑅𝐶𝐶𝐶𝐶 =  −2 ln(𝑇𝑇) + 2𝑚𝑚, (11) 

where, L is the maximum likelihood, N is the sample size, and m is the number of free 

parameters in the model (Kutner, et al., 2004). The AIC and BIC are both relative fit measures 

and usually obtain very similar results, though the BIC gives a bigger penalty for complexity and 

thus favors more parsimonious models (Wang & Wang, 2012). 

Each of the commonly used fit measures is based on either the 𝜒𝜒2 distribution or the 

residual covariance matrix. Those that are based on the 𝜒𝜒2 distribution are mathematically blind 

Table 1 

Hu and Bentler (1999) Cutoffs for Fit Measures 

Measure Cutoff 
CFI > 0.95 
TLI > 0.95 

RMSEA < 0.06 
SRMR < 0.08 
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to nonlinear terms when only the covariances are used to estimate the model (Mooijaart & 

Satorra, 2009). Considering that the covariance is a measure of the linear relationship between 

two variables, it seems doubtful that those that are based off the observed and model implied 

covariance matrices will be any less blind than the 𝜒𝜒2-based indices. 

The homoscedastic fit index (HFI) was created to account for the limitations of all the 𝜒𝜒2 

and covariance-based measures. The HFI is a refinement of the ℎℎ𝑠𝑠𝑡𝑡 index (Klein, Gerhard, 

Buchner, Diestel, & Schermelleh-Engel, 2016), 

ℎℎ𝑠𝑠𝑡𝑡 = �
𝑙𝑙

24
�
𝑙𝑙−1∑𝑒𝑒𝑖𝑖4

(𝑙𝑙−1∑𝑒𝑒𝑖𝑖2)2
− 3� (12) 

where, 𝑙𝑙 is the sample size and ∑𝑒𝑒𝑖𝑖 is the sum of all the residuals from the structural part of the 

model. The HFI puts the ℎℎ𝑠𝑠𝑡𝑡 on a more interpretable scale (Gerhard, Buchner, Klein, & 

Schermelleh-Engel, 2017). 

𝐻𝐻𝐹𝐹𝐶𝐶 = �
1 if ℎℎ𝑠𝑠𝑡𝑡 ≤ 0
1

0.032ℎℎ𝑠𝑠𝑡𝑡 + 1
if ℎℎ𝑠𝑠𝑡𝑡 > 0 (13) 

The HFI tries to identify omitted nonlinear terms by investigating the residuals for 

heteroscedasticity. Values of the HFI range from 0 to 1 and a value of HFI > .95 suggests that a 

model has not omitted any nonlinear terms. The cutoff for HFI should be decreased by .01 for 

every additional nonlinear term in the model beyond the first. Klein et al. (2016) found that when 

the model is estimated using the latent moderated structural equation modeling (LMS) approach 

in the software Mplus (Muthén, & Muthén,  2011) that the HFI performed reasonably well 

(Gerhard et al., 2017).  



EXPLORING FIT FOR NONLINEAR SEM  8 

Another measure, more well known than the HFI, is the coefficient of determination (𝑅𝑅2). 

The 𝑅𝑅2 in SEM is like the HFI in the way it is calculated from the structural part of the model. 

𝑅𝑅2 is a measure of the variance explained by a regression model, 

𝑅𝑅2 =
∑ (𝑛𝑛
𝑖𝑖=1 𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖)2

∑ (𝑛𝑛
𝑖𝑖=1 𝑌𝑌𝑖𝑖 − 𝑌𝑌𝑖𝑖)2

. (14) 

A model with a higher 𝑅𝑅2 is often considered a better fitting model. However, 𝑅𝑅2 is a greedy 

index, it will always increase when another predictor is added to the model. Consequently, the 

change in 𝑅𝑅2 between models is considered. If the change is large, then the more complex model 

is often chosen.  

Another alternative is to test model fit for the linear model in a two-step LRTprocedure 

outlined in Maslowsky, Jager, and Hemken (2015). In the first step a linear model is fit to the 

data. If the chosen fit measures meet the thresholds for good fit, then a model including the 

nonlinear term is selected. The two models are then compared using a LRT (Klein & 

Moosbrugger, 2000). This approach is dependent upon the accuracy of the fit decision in the first 

step (Gerhard et al., 2017).  

Finally, Bayesian methods provide several alternative fit measures (Spiegelhalter, Best, 

Carlin, Van Der Linde, 2002). Most of these are difficult to calculate and require integrating out 

latent variables, which is not done by most software (Merkle, Furr, & Rabe-Hesketh, 2018). The 

posterior predictive checks are one option that is simple to implement. Posterior predictive 

checks are performed by simulating data based on the model. If the model fits the data, then the 

new data will be similar to the observed data (Kruschke, 2014). Any systematic differences 

between the data are evidence that the model doesn’t fit the observed data. While this is often 

done informally, the process can be formalized in the creation of a posterior predictive p-value 

(PPP) (Gelman, Stern, Carlin, Dunson, Vehtari, & Rubin, 2013). A PPP is the probability that 
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data simulated from the posterior distribution will have a value on some discrepancy function 

less than the observed data, 

𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃 �𝑓𝑓(𝑌𝑌,𝜃𝜃) < 𝑓𝑓�𝑌𝑌� , 𝜃𝜃�� , (15) 

where 𝑌𝑌�  is data that are simulated according to the posterior distribution of the 𝑌𝑌 

(Asparouhov & Muthén, 2017). The PPP most commonly used (e.g., in Mplus) is based on the 

𝜒𝜒2 discrepancy function (Asparouhov & Muthén, 2017). This function is 𝜒𝜒2 distributed, and as 

such may not be able to detect omitted nonlinear terms. The 𝑃𝑃𝑃𝑃𝑃𝑃 does not have to be based on 

the 𝜒𝜒2 discrepancy function and can be based on any discrepancy function (e.g., the mean square 

error used in ordinary least squares regression) (Asparouhov & Muthén, 2017). 

Estimation Approaches 

Research on estimating nonlinear models has far outpaced research on determining fit for 

those models (Gerhard et al., 2017), but no best method has been agreed upon. An ideal fit 

measure will perform well regardless of the estimation method used. Estimation approaches can 

be categorized as product indicator (PI) approaches, distributional approaches, method of 

moments approaches, or Bayesian approaches. 

The PI approaches were the first type of nonlinear SEM approaches (Jöreskog & Yang, 

1996; Kelava & Nagengast, 2012; Kenny & Judd, 1984; Little, Bovaird, & Widman, 2006; 

Marsh, Wen, & Hau, 2004; Moulder & Algina, 2002; Ping, 1995). PI approaches model the latent 

nonlinear variables by multiplying various combinations of the indicators and using these 

indicators as the observed variables for the nonlinear terms. 𝜒𝜒2-based fit statistics are included in 

the output of most statistical software when any PI approach model is estimated (Mooijaart & 

Satorra, 2009).  
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Some authors are quick to point out that none of the PI approaches consider the inherent 

non-normality that occurs even when two normally distributed variables are multiplied 

(Dimitruk, Schermelleh-Engel, Kelava, & Moosbrugger, 2007; Moosbrugger, Schermelleh-

Engel, & Klein, 1997). These authors support distributional approaches such as the quasi-

maximum likelihood (QML) approach (Klein & Muthén, 2007) and the latent moderated 

structural equations models (LMS) approach (Klein & Moosbrugger, 2000; Moosbrugger, et al., 

2009). These models utilize an EM algorithm to directly model the distribution of the latent 

interaction from the data and do not have to rely on product indicants for the interaction (Klein & 

Moosbrugger, 2000; Klein & Muthén, 2007; Moosbrugger, et al., 1997). The QML and LMS are 

very similar, though the QML is more efficient and can handle multiple nonlinear terms at once 

(Klein & Muthén, 2007). One downside of the QML is that it is sensitive to starting values and 

has convergence problems (Umbach, Naumann, Brandt, & Kelava, 2017).  

Method of moment approaches incorporate higher order moments in addition to the 

covariance matrix (Wall & Amemiya, 2003). They come with their own unique set of fit 

measures to test goodness of fit and generally perform well (Mooijaart & Bentler, 2010). While 

these methods show great promise in terms of accurately estimating parameters (Wall & 

Amemiya, 2003), they proved difficult to incorporate into the present simulation study.  

Bayesian approaches have some advantages over the other (frequentist) approaches. For 

example, Bayesian methods do not require normality or large sample sizes, and they provide 

more information due to their focus on distributions instead of point estimates (Lee, Song, & 

Tang, 2007). For a summary of the advantages of Bayesian approaches over other frequentist 

methods read Muthén and Asparouhov (2012) and Bayarri and Berger (2004). Bayesian analysis 

is based on Bayes’ Theorem, 
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𝑃𝑃(𝐵𝐵|𝑅𝑅) = 𝑃𝑃(𝑅𝑅|𝐵𝐵)𝑃𝑃(𝐵𝐵)𝑃𝑃(𝑅𝑅), (16) 

where A is the data and B is the parameter values. This is applied in analysis in the form of 

𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑒𝑒𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡 ∝ 𝑙𝑙𝑝𝑝𝑘𝑘𝑒𝑒𝑙𝑙𝑝𝑝ℎ𝑝𝑝𝑝𝑝𝑑𝑑 ∗ 𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡 (17) 

(Muthén & Asparouhov, 2012). The idea is to include information that is already known into the 

analysis in the form of a prior distribution. The Bayesian approach also does not rely on product 

indicants (Lee, et al, 2007). The Bayesian method performs well compared to the popular LMS 

and unconstrained approaches (Harring, Weiss, & Hsu, 2012; Kelava & Nagengast, 2012). 

When PI approaches are used, the traditional fit measures are often automatically 

contained in the output. When LMS or QML are used, there are no fit measures contained in the 

output. When Bayesian models are used, if fit measures are contained in the output, they are 

often incorrect due to not integrating out the latent variables. This suggests four important 

questions for study: 

1. How often will decisions based on traditional cutoffs be incorrect for PI models? 

2. Are 𝜒𝜒2-based statistics blind to the extent that they are not useful at all, or is there some 

recognizable pattern among them that could be helpful? 

3. How well do alternative approaches, such as the HFI, PPP, LRT, and 𝑅𝑅2, perform in the 

PI approach? 

4. Will the performance of these measures generalize to estimation methods other than the 

PI approach? 

Method 

Software 

This study was performed using the statistical software R (R Core Team, 2013) in the 

IDE RStudio (RStudio Team, 2015), with graphs created using ggplot2 (Wickham, 2016). Data 
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were simulated using the nlsem (Umbach, et al., 2017) package, which was also used to estimate 

the QML models. The package lavaan (Rosseel, 2012) was used to estimate the PI approaches. 

Analysis of the nonlinear Bayesian models was done using runjags (Denwood, 2016) to interface 

with the software JAGS (Plummer, 2003). The package blavaan (Merkle & Rosseel, 2015) was 

used to estimate the linear Bayesian model, which also does its calculations in JAGS. The 

package blavaan integrates out the latent variables in the fit indices for this model as required. 

However, blavaan is not currently able to estimate the nonlinear models, though it is on the radar 

of the developer (E. Merkle, personal communication, May 29, 2018). 

Simulation Design 

All variables, latent and observed, were simulated as continuous variables with means of 

0 and variances of 1. As shown in Table 2, this study is a 4 x 3 x 3 x 3 x 3 x 3 design. Data were 

simulated with varying conditions of strength of the nonlinear term (ω = 0.02, 0.13, 0.26, 0.4); 

sample size (n = 100, 500, 1000); and reliability of indicators (𝑡𝑡𝑥𝑥𝑥𝑥 = 0.45, 0.65, 0.85). Three 

conditions of nonlinearity were used to simulate the data. In one condition there were no 

nonlinear terms, in another there was one interaction, and in the final there were three nonlinear 

terms. A linear, interaction, and full model were specified for each of the three estimation 

conditions (PI, QML, and Bayesian). Bandalos (2006) suggests that 500 iterations is sufficiently 

large when doing complex SEM simulations. 

Data were simulated under three conditions of linearity, a linear model, or a model with 

zero nonlinear terms (Figure 1); an interaction model, or a model with one nonlinear term 

(Figure 2); and a full model, with three nonlinear terms (Figure 3). The linear model is  

𝜂𝜂 = 𝛼𝛼 + 𝛤𝛤1𝜉𝜉1 + 𝛤𝛤2𝜉𝜉2 + 𝜁𝜁, (18)

where there are three latent variables, two of which (𝜉𝜉1, 𝜉𝜉2) are regressed onto the third (𝜂𝜂). 𝛼𝛼 is 
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the intercept, 𝛤𝛤1 and 𝛤𝛤2 are regression coefficients, and 𝜁𝜁 represents the residuals from the 

structural part of the model. All the latent variables have three observed indicators. The 

interaction model is identical to the linear model, except that the independent latent variables 

were multiplied to create an interaction term; 𝜔𝜔12 is the coefficient for the interction term 𝜉𝜉1𝜉𝜉2.  

𝜂𝜂 = 𝛼𝛼 + 𝛤𝛤1𝜉𝜉1 + 𝛤𝛤2𝜉𝜉2 + 𝜔𝜔12𝜉𝜉1𝜉𝜉2 + 𝜁𝜁 (19) 

As seen in Figures 2 and 3, grey lines are used here to suggest terms that have been 

multiplied to form nonlinear latent terms.  

The full model was the same as the interaction except for the inclusion of a quadratic 

term for each of the latent linear independent variables, 

𝜂𝜂 = 𝛼𝛼 + 𝛤𝛤1𝜉𝜉1 + 𝛤𝛤2𝜉𝜉2 + 𝜔𝜔11𝜉𝜉1𝜉𝜉1 + 𝜔𝜔12𝜉𝜉1𝜉𝜉2 + 𝜔𝜔22𝜉𝜉2𝜉𝜉2 + 𝜁𝜁, (20) 

𝜔𝜔11 and 𝜔𝜔22 are the coefficients for the quadratic terms 𝜉𝜉1𝜉𝜉1 and 𝜉𝜉2𝜉𝜉2 respectively. 

 

 

Table 2  

Levels of Variables in Simulation 

Variable Values 
Nonlinear Coefficient ω = 0.02, 0.13, 0.26, 0.4 

Sample Size n = 100, 500, 1000 
Reliability of Indicators r = .45, .65, .85 

Number of Nonlinear Terms 0 (linear), 1 (interaction), 3 (full) 
Estimation Model Linear, Interaction, Full 
Estimation Method PI, QML, Bayesian 
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Figure 2. The interaction model. The model used in simulating the data when one nonlinear term 

was present (interaction data), and the model used to estimate the interaction model for the QML 

and Bayesian approaches. 

Figure 1. The linear model. The model used to simulate the linear data as well as estimate the 

linear models. 
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The omega weights for the nonlinear terms were chosen based on the effect sizes for 

interactions found in Cohen (1988), and Aguinis, Beaty, Boik, and Pierce (2005), as well as one 

larger omega, .4, to see how the indices performed when the nonlinear terms were very large. 

The range of sample sizes was chosen to represent large (1000), medium (500), and small (100) 

sample sizes. The number of nonlinear terms was chosen according to the recommendations of 

Gerhard et al. (2017) and Fan, Thompson, and Wang (1999), who suggest testing fit statistics 

according to varying levels of misspecification. The reliability of the indicators were the 

conditions used by Harring, Weiss, and Hsu (2012) to compare estimation procedures. The 

values of 0.65 and 0.85 had previously been used by Moulder and Algina (2001) and Jaccard and 

Wan (1995).  

Q1: Testing the traditional cutoffs. The first research question might be reworded to 

address the situation from the point of view of the practitioner. “If I use traditional fit statistics 

Figure 3. The full model. The model used to simulate the data with three nonlinear terms. Used 

to estimate the QML and Bayesian full models. The gray lines reflect multiplied terms. 
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and fit indices (𝜒𝜒2 p-value, CFI, TLI, RMSEA, and SRMR) according to their usual cutoffs, will 

I consistently and accurately detect any omitted nonlinear terms? Will I consistently and 

accurately detect any nonlinear over specifications (i.e., including nonlinear terms in the model 

when the underlying data were linear)?” To address these questions three maximum likelihood 

models were fit to the data.  

The first was a linear model (Figure 1), the second was an interaction model estimated 

with the unconstrained approach (Figure 4), and the third was a full model estimated under the 

extended unconstrained approach (Figure 5). Table 2 shows all conditions and the levels of those 

conditions for this study.  

  Under the nonlinear PI models (unconstrained and extended unconstrained models), the 

indicators for the nonlinear variables are created by multiplying combinations of other indicators. 

To create a quadratic variable, each indicator was squared and then loaded onto a new quadratic 

latent variable. To create an interaction variable each indicator was used exactly once in 

combination with an indicator from the other factor participating in the interaction. The goal in 

using the PI approach is to replicate the conditions in which a practitioner might accidentally use 

the blind measures without being aware of their deficiencies, and these are the models that are in 

use when the software automatically reports the 𝜒𝜒2-based fit measures.  

Mooijaart and Satorra (2009) demonstrated mathematically that the 𝜒𝜒2-based fit 

measures will be blind to nonlinearity. The consequential hypothesis is that I will not be able to 

detect nonlinear misspecification using traditional, 𝜒𝜒2-based fit measures. To test this, I will 

calculate the power and type 1 error rates for each fit measure used for each cutoff (Table 1) 

across all conditions (Table 2) using the PI models. 
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Figure 4. The unconstrained model. The interaction model for the PI approach. Observed 

indicators are multiplied to create indicators for the nonlinear term. 

Figure 5. The extended unconstrained model. The full model for the PI approach. Observed 

indicators are multiplied to create indicators for the nonlinear terms. 
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Q2: Testing the fit measures for sensitivity. If these indices are blind in combination 

with their cutoffs, the next question is whether they are sensitive to nonlinearity at all. A fit 

measure is sensitive if the value of the fit measure is consistently more desirable for the model 

that matches the data then for other models. When the data are simulated with no nonlinear 

terms, the fit measures should favor the linear model; when the data are simulated with an 

interaction term, the fit measure should favor the interaction models, and so on for the full 

model. In this study, I measured this in two ways. First, type 1 error rate and power were 

calculated for the 𝜒𝜒2 p-value, CFI, TLI, RMSEA, and SRMR-based on the following set of 

hypotheses: 

𝐻𝐻0:𝜔𝜔𝑖𝑖𝑛𝑛𝑡𝑡𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑡𝑡𝑖𝑖𝑖𝑖𝑛𝑛 = 0 (21) 
 

𝐻𝐻𝑖𝑖:𝜔𝜔𝑖𝑖𝑛𝑛𝑡𝑡𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑡𝑡𝑖𝑖𝑖𝑖𝑛𝑛 ≠ 0 (22) 
 
where if 

𝐹𝐹𝑅𝑅𝑛𝑛𝑖𝑖𝑛𝑛𝑠𝑠𝑖𝑖𝑖𝑖 ≥ 𝐹𝐹𝑅𝑅𝑖𝑖𝑛𝑛𝑡𝑡𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑡𝑡𝑖𝑖𝑖𝑖𝑛𝑛: fail to reject the null (23) 
 

𝐹𝐹𝑅𝑅𝑛𝑛𝑖𝑖𝑛𝑛𝑠𝑠𝑖𝑖𝑖𝑖 < 𝐹𝐹𝑅𝑅𝑖𝑖𝑛𝑛𝑡𝑡𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑡𝑡𝑖𝑖𝑖𝑖𝑛𝑛: reject the null (24) 
 

where 𝐹𝐹𝑅𝑅 represents a fit measure and < represents favorability instead of numerical direction 

(i.e., 𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅𝑅𝑅1 = 0.01 is more favorable than 𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅𝑅𝑅2 = 0.2, therefore 𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅𝑅𝑅1 > 𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅𝑅𝑅2).  

The direction of the greater than sign will be changed to reflect increasing fit on the part 

of the index. Said more plainly, the null hypothesis will be rejected if the value of the fit index 

for the interaction model is more desirable than the same value for the linear model. For 

example, if the value of the CFI in a linear model is 0.94, and the value of the CFI for the 

interaction model is 0.95, then the CFI prefers the interaction model. If the underlying data are 

linear, then the CFI has committed a type 1 error. A type 2 error would be committed if the data 

were simulated with an interaction, but the linear model was favored. Power is calculated as 1 
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minus the type 2 error rate. This hypothesis test will be referred to throughout the remainder of 

the text as the comparison hypothesis. 

The second way to test whether the traditional measures have any ability to identify 

nonlinear misspecifications will be to compare the average values of the fit indices across data 

types (simulated with no nonlinear terms, one nonlinear term, three nonlinear terms) and model 

specification (linear, interaction, full). If the values of the fit measures display systematic change 

across conditions of linearity, then the fit measure is, in some degree, sensitive to nonlinearity. 

Q3: Exploring alternative fit measures. The third question is, “How do alternative fit 

measures perform?” The HFI, two-step LRT, R2, and the PPP are the focus of this section of the 

article. Testing for these measures followed the pattern used to explore the χ2-based and 

covariance-based fit measures under the second question. Specifically, a linear and an interaction 

model were fit to the data under the PI approach and these fit measures were calculated. Each 

model was also used as a discrepancy function for the PPP.  

The HFI, R2, and each of the PPPs were then tested according to the comparison 

hypothesis test (Equations 21-24). Type 1 error was calculated as the proportion of times the fit 

measure favored the nonlinear model when the data were linear, and the power was calculated as 

1 minus the proportion of times the data were nonlinear and the fit measure favored the linear 

model. The residuals from the structural part of the model needed to calculate the HFI were 

obtained by treating the factor scores as observed and putting them into a regression. 𝑅𝑅2 was 

included as part of the output from this function. The LRT for the PI models was a Vuong LRT 

for non-nested models.  

Means and standard deviations were then compared between model specifications and 

number of nonlinear terms in the data. A fit measure is sensitive to nonlinearity if there is 
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consistent variation in the means across condition of nonlinearity. For example, if the HFI for the 

linear model is .99 when the data are linear, but is .92 when the data are nonlinear, then we might 

say that the HFI is sensitive to nonlinearity. However, if the HFI does not change, then it is not 

sensitive to nonlinearity.  

Q4: Generalizing to other estimation approaches. The final question looks to see if 

any of the alternative fit measures were sensitive under other approaches to estimation, 

specifically the Bayesian and QML approaches. The QML and Bayesian interaction models and 

full models are reflected in equation 19 and 20 respectively, where ξ1ξ2, ξ1ξ1, and ξ2ξ2 are 

estimated directly. This contrasts with the PI models, which multiply observed variables and treat 

them as indicators for the nonlinear latent variables. The linear model for the Bayesian condition 

has the same equation as the PI linear model, though it is estimated with Bayes. The QML 

approach had no linear model of its own, borrowing the PI linear model instead; this decision 

was made under the assumption that a practitioner would likely not estimate a linear model with 

the QML estimator, and would be more likely to use an ML approach. Thus, this slightly 

confounds the original question in order to investigate a potentially convenient comparison.  

Though the LMS is more frequently used than the QML, the QML gives similar results 

and is more computationally efficient. Furthermore, it can handle more nonlinear terms than just 

one. For these reasons, the QML was used to estimate the interaction model (Figure 2) and full 

model (Figure 3) instead of the LMS. One notable downside of the QML approach is that it is 

sensitive to the specification of starting values, often failing to converge due to the selected 

starting values. To help with this, the starting values were taken from the PI approaches when 

those models converged. When those models did not converge, the starting values were 

randomly selected according to a normal distribution N(0,1). A diffuse prior was used in all 
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Bayesian conditions with starting values taken from the PI approaches (Kelava & Nagengast, 

2012).  

Results 

None of the 𝜒𝜒2-based, covariance-based, or PPP-style fit measures showed any signs of 

nonlinear sensitivity in any condition. The HFI and 𝑅𝑅2 were the only measures to show signs of 

nonlinear sensitivity, and that sensitivity varied depending on sample size, strength of the 

nonlinear terms, and reliability of the indicators. Since most of the measures did not vary across 

these three variables, and the evaluation of the HFI and 𝑅𝑅2 is generally consistent across 

conditions, the results are aggregated across levels of sample size, strength of nonlinear terms, 

and reliability of indicators. 

Q1: How Often Are Decisions Based on Common Cutoffs Incorrect? 

Question 1 asks how often decisions based on frequently used cutoffs for absolute fit 

measures will be correct. The CFI, TLI, RMSEA, SRMR, and 𝜒𝜒2 were used to determine 

goodness of fit for models estimated under a PI approach. The thresholds proposed by Hu and 

Bentler (1999) were used for the CFI, TLI, RMSEA, and SRMR, while a cutoff of 0.05 was used 

for the 𝜒𝜒2 p-value. As Mooijaart and Satorra (2009) predicted, these measures were entirely 

blind to any changes to the underlying linearity of the data. In almost every instance the fit 

measures declared good fit, even when the data did not match the specified model. This led to 

high type 1 error rates (Table 3) in addition to high power (Table 4). 

Table 3 shows the type 1 error rate for the fit measures CFI, TLI, RMSEA, SRMR, and of 

the 𝜒𝜒2 p-value when using traditional cutoffs. When no nonlinear terms were used to simulate 

the data, the CFI declared the interaction models and full models as having good fit 60% of the 

time. When there was only one nonlinear term, the CFI declared the linear models and full 
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models as having good fit 75% of the time. In general, as the number of nonlinear terms 

increased the type 1 error rose; at the same time, power tended to decrease (Table 4).  

 

Table 4 shows the power for CFI, TLI, RMSEA, SRMR and the 𝜒𝜒2 p-value. When the 

data were simulated without any nonlinear terms the linear model was declared as a good fitting 

model 96% of the time according to the CFI. When the data were simulated with an interaction 

term the interaction model was shown to be a good fitting model 85% of the time according to 

the CFI.  

 

The combined results of Table 3 and Table 4 seem to suggest that these measures are 

sensitive to nonlinearity (i.e., the change in type 1 error rates and power as the simulated data 

includes more nonlinear terms). This interpretation is a mistake. In both of these tables, the only 

correct model was the model specified to match the simulated data exactly (i.e., a linear model 

was the correct model when the data were simulated with no nolinear terms, an interaction model 

Table 3 

Type 1 Error Rates for CFI, TLI, RMSEA, SRMR, and 𝜒𝜒2 p-value 

Number of nonlinear terms CFI TLI RMSEA SRMR CHISQP 
No Terms .60 .58 .63 .64 .54 
One Term .65 .65 .66 .66 .64 

Three Terms .75 .77 .71 .71 .83 

Table 4 

Power for CFI, TLI, RMSEA, SRMR, and 𝜒𝜒2 p-value 

Number of nonlinear terms CFI TLI RMSEA SRMR CHISQP 
No Terms .96 .92 .92 1.00 .93 
One Term .85 .79 .87 .99 .74 

Three Terms .68 .59 .83 .93 .39 
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was correct when the data were simulated with one nonlinear term, and the full model was 

correct when simulated with three nonlinear terms).  

Table 5 shows the proportion of times that a model was identified as fitting well 

according to each fit measure. This shows that, according to the CFI, the linear model fit around 

96% of the time regardless of the underlying structure of the data. Likewise, the interaction and 

full models fit the data exactly as often when the model matched the data as when it didn’t. 

The TLI, RMSEA, SRMR, and 𝜒𝜒2 p-value likewise did not vary across conditions of 

nonlinearity in the data. In all cases the changes in type 1 error and power are due to a change in 

the specified model. This variation is entirely independent of the number of nonlinear terms. In 

this way Table 3 and Table 4 are misleading when taken without the information provided by 

Table 5. Additionally, it appears that the commonly used cutoff values are insufficient for 

diagnosing nonlinear misspecifications in nonlinear models.  
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Table 5  

Proportion of Replications When the Fit Measure Met the Threshold. 

 Estimated Model 
Simulating Model Linear Interaction Full 

CFI    
0 Nonlinear Terms .96 .86 .70 
1 Nonlinear Term  .95 .85 .68 

3 Nonlinear Terms .96 .86 .68 
TLI    

0 Nonlinear Terms .92 .80 .61 
1 Nonlinear Term  .92 .79 .59 

3 Nonlinear Terms .92 .79 .59 
RMSEA    

0 Nonlinear Terms .92 .87 .84 
1 Nonlinear Term  .92 .87 .83 

3 Nonlinear Terms .92 .87 .83 
SRMR    

0 Nonlinear Terms 1.00 .99 .95 
1 Nonlinear Term  1.00 .99 .94 

3 Nonlinear Terms 1.00 .99 .93 
CHISQP    

0 Nonlinear Terms .93 .76 .42 
1 Nonlinear Term  .93 .74 .40 

3 Nonlinear Terms .93 .74 .39 
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Q2: How Blind Are the Traditional Fit Measures? 

Question 2 asks “Are 𝜒𝜒2-based and covariance-based fit measures (CFI, TLI, SRMR, 

RMSEA, 𝜒𝜒2, AIC, and BIC) blind to the extent that they are not useful at all? Or, is there some 

recognizable pattern among them that could be helpful?” This was explored in two ways; the 

first, comparing the means and standard deviations for the fit measures in each condition, and the 

second, comparing the power and type 1 error rate according the the comparison hypothesis test 

(equations 21-24). Table 6 displays the mean values of the indices for each estimation model and 

each simulation model. The standard deviations were very small for the absolute measures 

(~0.01). The relative fit measures had proportionately small standard deviations, and a more 

complex model never had a more desirable value than that of a simpler model (e.g., AIC for an 

interaction model was never less than the AIC for a linear model.) Table 6 shows that any 

variation in the means of the CFI, TLI, RMSEA, SRMR, 𝜒𝜒2, AIC, and BIC indices the product 

of model specification. Linearity or nonlinearity of the data had no effect on the average value of 

any of these fit measures. In other words, even extreme nonlinearity did not affect the average 

values of these fit measures. 

 Table 7 shows the type 1 error rates and power for the CFI, TLI, RMSEA, and SRMR 

according to the comparison hypothesis test. The null hypothesis for this test is that the 

coefficient for the nonlinear term is equal to zero. An interaction model is then compared to a 

linear model on a fit measure. If the fit measure favors the interaction model, then the null 

hypothesis is rejected. While according to this definition there is a low type 1 error rate, there is 

also very low power (essentially identical to the type 1 error). This further ratifies that these 

measures are not useful when comparing them between models. 
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Table 6  

Means for Fit Measures by Linearity of Data and Estimating Model 

Model CFI TLI RMSEA SRMR CHISQP AIC BIC 

0 Nonlinear Terms        
Linear .99 1.00 .02 .03 .47 7393 7495 

Interaction .98 .98 .03 .04 .29 10529 10674 

Full .96 .95 .03 .05 .12 18864 19129 

1 Nonlinear Term        

Linear .99 1.00 .02 .03 .47 7391 7493 

Interaction .98 .97 .03 .04 .28 10476 10620 

Full .96 .94 .04 .05 .11 18628 18893 

3 Nonlinear Terms        

Linear .99 1.00 .02 .03 .46 7389 7491 

Interaction .98 .97 .03 .04 .27 10509 10654 

Full .96 .94 .03 .05 .11 18631 18895 

 

Table 7 

Type 1 Error Rate and Power for Fit Measures According to the Comparison Hypothesis Test 

Measure Type 1 Power 

CFI .12 .12 

TLI .22 .22 

RMSEA .23 .22 

SRMR .04 .04 

Note: The type 1 error rates and power are essentially identical; this is not a computation error.  
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Q3: Are There Any Useful Alternative Fit Measures? 

Question 3 asks if there are any viable alternatives to the absolute and relative fit 

measures commonly used for PI models. This included using LRT, HFI, 𝑅𝑅2, and PPP. When 

Vuong LRTs for non-nested models were conducted between linear and interaction models, 

linear and full models, and interaction and full models, the simpler model was always chosen 

regardless of whether the data were linear or nonlinear, even in the conditions of extreme 

nonlinearity (terms = 3, 𝜔𝜔 = 0.4, 𝑡𝑡𝑥𝑥𝑥𝑥 = 0.85). 

Table 8 shows the means and standard deviations of the HFI, PPP, and 𝑅𝑅2 for the PI 

models. The PPP displayed in this table specifically represents the PPP based on the likelihood 

function; however, the performance of this version of the PPP was identical to the others. The 

PPP was entirely insensitive to nonlinearity in any condition. The PPP made no change across PI 

models.  

The HFI did not do much better than any of the other measures on average. The mean 

value of the HFI does change when there are multiple nonlinear terms in the data, but this is a 

small change. In conditions of extreme nonlinearity and with a sample size of 1000, the 

performance of the HFI improved. This improvement was not enough to be useful, especially 

since the conditions of nonlinearity were so extreme (𝜔𝜔 = 0.4, 𝑡𝑡𝑥𝑥𝑥𝑥 = 0.85). However, it was clear 

that the HFI was at least sensitive to nonlinearity.  

By far, the measure that was the most sensitive to nonlinearity was the 𝑅𝑅2. When there 

are no nonlinear terms in the data, 𝑅𝑅2 does, in fact, increase as expected. This increase is small 

(~.015). As the number of nonlinear terms increases, this difference between models becomes 

much larger. The average change in 𝑅𝑅2 between the linear model and the interaction model 
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grows to .08 when there is none nonlinear term present and .1 when there are three present. This 

is a very large difference.  

Figure 6 displays boxplots for the change in 𝑅𝑅2 between the PI interaction model and the 

PI linear model. The x-axis represents the four levels for the nonlinear coefficient, and the groups 

represent the conditions of linearity for the data. As the strength of the nonlinear term grew, so 

did the difference between the 𝑅𝑅2 for the linear and interaction models. There are a handful of 

outliers in the boxplot; all of these outliers occurred when the sample size was small (100). 

Table 8 

Mean and Standard Deviation of the HFI, 𝑅𝑅2, and PPP for the PI Models 

Estimated Model HFI 𝑹𝑹𝟐𝟐 PPP 

0 Nonlinear Terms    

Linear Model .99 (.02) .24 (.09) .06 (.12) 

Interaction Model .99 (.02) .25 (.05) .06 (.1) 

Full Model .99 (.02) .27 (.05) .06 (0) 

1 Nonlinear Term    

Linear Model .99 (.02) .25 (.09) .06 (.11) 

Interaction Model .99 (.02) .33 (.06) .06 (.16) 

Full Model .99 (.02) .35 (.07) .06 (0) 

3 Nonlinear Terms    

Linear Model .97 (.05) .25 (.09) .06 (.11) 

Interaction Model .98 (.03) .33 (.08) .06 (.15) 

Full Model .98 (.03) .4 (.08) .06 (0) 
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Q4: Do the Fit Measures Work When Other Estimation Approaches Are Used? 

Question 4 asks if the alternative fit measures work when other estimation approaches are 

used. This is a very desirable trait, one that would undoubtedly make for a useful fit measure. 

The two estimation approaches investigated in this condition were the QML and Bayesian 

methods. 

QML models. When the QML method was used, the traditional fit measures (referring in 

this instance to the likelihood, AIC, BIC, 𝜒𝜒2, 𝜒𝜒2 p-value, RMSEA, and SRMR) continued to 

demonstrate nonlinear insensitivity. LRTs in this condition always chose the simplest model. The 

last remaining fit measures were the HFI, the 𝑅𝑅2, and the PPP. Analysis of these measures was 

approached in the same way as the traditional measures in question 2. Table 9 shows the means 

and standard deviations for these measures across all conditions for the QML models.  

Figure 6. Boxplot of the differences in R-squared between the linear and interaction PI models. 
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Table 9 

Mean and Standard Deviation for the HFI, 𝑹𝑹𝟐𝟐, and PPP for the QML Models 

Estimated Model HFI R2 PPP 

Linear Data    

Linear Model .99 (.02) .24 (.09) .06 (.12) 

Interaction Model .99 (.02) .14 (.05) .06 (.11) 

Full Model .99 (.02) .15 (.05) .06 (.17) 

Interaction Data    

Linear Model .99 (.02) .25 (.09) .06 (.11) 

Interaction Model .99 (.02) .16 (.06) .06 (.11) 

Full Model .99 (.02) .17 (.07) .06 (.17) 

Full Data    

Linear Model .97 (.05) .25 (.09) .06 (.11) 

Interaction Model .99 (.02) .18 (.08) .06 (.11) 

Full Model .99 (.02) .19 (.08) .06 (.13) 

 

 

  



EXPLORING FIT FOR NONLINEAR SEM  31 

The linear model shown in Table 9 is the same linear model from the PI estimation 

approach. The nonlinear QML models were compared against the PI linear model in the hopes 

that a successful comparison here might be more convenient for researchers later. Unfortunately, 

the 𝑅𝑅2 for the QML models was generally much lower than the 𝑅𝑅2 for the linear PI models, 

perhaps due to a more lenient convergence criterion in the QML condition than in the PI 

condition. This makes it difficult to tell if the𝑅𝑅2  is sensitive to nonlinearity in the QML 

condition. These results also suggest that 𝑅𝑅2 should not be compared between models estimated 

under different approaches.  

The PPP based off the 𝜒𝜒2 discrepancy function was not sensitive to nonlinearity either. 

None of the tested PPPs were sensitive. While the PPP in Table 6 refers explicitly to the 𝜒𝜒2 

discrepancy function-based PPP, the pattern of insensitivity was consistent across different PPPs 

using other discrepancy functions. The HFI did not appear to be practically sensitive to 

nonlinearity. However, HFI for linear models tended to decrease when multiple nonlinear terms 

were present, but this was a very small, practically insignificant change. 

When viewed under conditions with strong nonlinear terms and a large sample size, the 

HFI did better (Table 10). When the data were linear, all models had the same means for the HFI. 

When the data were simulated with an interaction model, the average HFI for the linear model 

was smaller than the average HFI for the interaction model and the full model. When the data 

were simulated with the full model, the linear model had the smallest HFI and the full model had 

the largest average HFI. The PPP did not improve in this case of extreme nonlinearity. The 𝑅𝑅2 

likewise showed improved sensitivity in this case of strong linearity while the PPP showed no 

change. Table 10 shows the same information as Table 8 but represents only a subset of the data 

when the nonlinear terms were strongest.  
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This table shows that if the 𝑅𝑅2 for a QML interaction model is larger than or close to a 

maximum likelihood linear model fit to the same data, then there is an unmistakably large 

nonlinear term or terms in the data. The HFI in this condition was much more sensitive to 

nonlinearity, though only when there were multiple nonlinear terms.  

Table 10 

Mean and Standard Deviation of the HFI, 𝑅𝑅2, and PPP for the QML Model with Very Strong 

Nonlinear Terms 

Estimated Model HFI R2 PPP 

Linear Data    

Linear Model .99 (.02) .24 (.09) .06 (.07) 

Interaction Model .99 (.02) .12 (.05) .06 (.08) 

Full Model .99 (.02) .12 (.05) .06 (.08) 

Interaction Data    

Linear Model .97 (.03) .24 (.09) .06 (.08) 

Interaction Model .98 (.03) .18 (.06) .06 (.08) 

Full Model .98 (.02) .18 (.07) .06 (.08) 

Full Data    

Linear Model .83 (.08) .24 (.09) .06 (.07) 

Interaction Model .97 (.03) .29 (.08) .06 (.09) 

Full Model .98 (.03) .3 (.08) .06 (.08) 
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 Bayesian models. It should be noted that most of the Bayesian models did not converge, 

particularly the nonlinear ones. Convergence was defined as all parameters having a PRSF less 

than 1.05. There were 14 parameters that had not converged in the nonlinear models, though the 

omegas had very strong correlations with the omegas from the PI and QML methods (r > .9).   

The results for the Bayesian estimation approach were consistent with the PI and QML 

conditions. The 𝜒𝜒2-based indices were not sensitive to nonlinearity. Neither were the likelihood-

based indices. Table 11 shows the mean values and standard deviations of the HFI, 𝑅𝑅2, and PPP. 

The PPP showed no change across conditions of nonlinearity. Neither did the HFI. Once again, 

the only fit measure to show any sign of nonlinear sensitivity was the 𝑅𝑅2. As the data became 

increasingly nonlinear the difference between the 𝑅𝑅2 for the linear and nonlinear models 

increases. This difference, unfortunately, is not very large (~.07). These results are probably 

affected by the convergence problems. 

Table 11 

Mean and Standard Deviation of the HFI, 𝑅𝑅2 and PPP for the Bayesian Models 

Estimated Model HFI 𝑹𝑹𝟐𝟐 PPP 
Linear Data    

Linear Model .99 (.02) .13 (.09) .06 (.11) 
Interaction Model .99 (.02) .15 (.05) .06 (.03) 

Full Model .99 (.02) .16 (.05) .06 (.08) 
Interaction Data    

Linear Model .99 (.02) .13 (.09) .06 (.11) 
Interaction Model .99 (.02) .17 (.06) .06 (.02) 

Full Model .99 (.02) .18 (.07) .06 (.07) 
Full Data    

Linear Model .97 (.05) .13 (.09) .06 (.1) 
Interaction Model .99 (.02) .2 (.08) .06 (.03) 

Full Model .99 (.02) .21 (.08) .06 (.08) 
 



EXPLORING FIT FOR NONLINEAR SEM  34 

Discussion 

This article attempts to provide a guideline for practitioners to use when making 

nonlinear modeling decisions. Four questions have been addressed in this pursuit. First, how 

frequently are nonlinear modeling decisions based on 𝜒𝜒2-based indices incorrect? Second, do the 

traditional 𝜒𝜒2-based and covariance-based measures provide any nonlinear information? Third, 

are there any viable alternatives to traditional fit measures? Fourth and finally, do any of the 

alternative measures work in the QML and Bayesian context?  

This study demonstrated that the absolute fit measures CFI, TLI, RMSEA, SRMR, and 

𝜒𝜒2 p-value provide no useful nonlinear information at their cutoffs. Not only were these absolute 

fit measures insensitive to nonlinearity at their cutoffs, but they were also insensitive when a 

general test of sensitivity was used. Namely, an interaction model and a linear model were fit to 

the data, and the proportion of times that each fit measure favored each model in each condition 

was calculated. These measures showed no indication of discrimination between models. 

  Researchers using these absolute fit measures are essentially making uninformed 

decisions in regards to nonlinear terms. The relative fit measures did no better. The AIC, BIC, 

and two-step procedure using the Vuong test and LRT always favored the simpler model. Thus, 

practitioners relying on these relative measures will be no more successful than when relying on 

the traditional absolute fit measures.  

Of the alternative fit measures explored—𝑅𝑅𝟐𝟐, HFI, and the different versions of the 

PPP—only the 𝑅𝑅𝟐𝟐 showed any useful degree of sensitivity to nonlinearity. Across all conditions, 

no version of the PPP showed any level of nonlinear sensitivity, while the HFI was sensitive only 

when the data were significantly nonlinear. 𝑅𝑅𝟐𝟐 was most consistently accurate and grew more 

accurate as the data became more nonlinear. While 𝑅𝑅𝟐𝟐 did not perform as well in the Bayesian 
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and QML conditions, the same pattern was apparent. As the data became more nonlinear, the 

change in 𝑅𝑅𝟐𝟐 grew.  

Since 𝑅𝑅𝟐𝟐 is a greedy algorithm it is not entirely clear when a difference in 𝑅𝑅2 should be 

considered evidence of nonlinearity. A “large” 𝑅𝑅𝟐𝟐 difference in this study was almost entirely 

exclusive to conditions of nonlinearity. Furthermore, 𝑅𝑅2 is much more useful in the PI approach 

than when the other approaches were used. The suggested guideline for practitioners is therefore 

as follows: 

• Fit a linear and a nonlinear PI model and calculate 𝑅𝑅2 

• Ignore any 𝜒𝜒2 or covariance-based fit measures 

• Compare the two models by the 𝑅𝑅2 

If the change in 𝑅𝑅2 between the linear and nonlinear model is large, then use the nonlinear 

model. If the change is not very large, then the researcher may be justified in using the linear 

model. After deciding on the appropriate model, the researcher might then estimate their model 

using the estimation approach of their choice. Obviously, when using the 𝑅𝑅2 as a fit measure 

there must be a dependent variable involved. 

This procedure should not be used in the place of substantive theory. Experience shows 

that many practitioners tend to blindly trust the software with many decisions. The software is a 

black box; the model goes in, and when it comes out practitioners check to see if it converged, 

has standard errors, etc. This may not be enough to ensure that estimations are appropriate. For 

example, practitioners who were unaware of the literature on fit measures in the context of 

nonlinearity might assume because their model converged and has the desired output suggesting 

the estimation went well, that they can rely on the fit measures to decide whether to include an 

interaction.  
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Part of the allure of fit measures is that they provide greater certainty than simple theory. 

However, while fit measures can summarize otherwise unobservable patterns in data, they are 

also subject to greater limitations than researchers are. Allowing fit measures to have the loudest 

voice in modeling decisions is, in a way, throwing out any other experience, expertise, and 

literature on a given topic. If fit measures were the only thing required to understand the 

complexity of the human organism, then research could one day become entirely automated.  

Another potential reason that fit measures are so tempting to use as the primary decision-

making tool, is the hope of finding the best model. This puts pressure on researchers to be 

perfect, while in all acutality there may not be a best model. Maybe what researchers really need 

to find are better, or good-enough models. With this mindset, fit measures become less important 

as a dominating factor; substantive theory will lead the conversation. While fit measures are 

healthy, contributing members to the conversation, it is important that other evidences, such as 

experience and previous literature, are not excluded.  

The importance of researchers and practitioners deepening their understanding of 

statistical principles has obvious application to fite measures. Research on fit measures for 

nonlinear SEM and statistical models are constantly under development. While it is nearly 

impossible to know everything related to statistical modeling in the social sciences, keeping as 

up to date as possible can serve to protect against issues, such as the inappropriate use of 

common fit measures. This serves as another reason why relying on theory is important. The 

future may find that current statistics are inadequate; models that were deemed inaccurate now 

due to an overreliance on current statistics, might be found to be good models with future 

statistics.  
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Finally, researchers should become familiar with the defaults of their software. This is an 

essential, and sometimes over looked practice. This is important to consider because defaults 

were chosen according to assumptions and theories that may not be appropriate for the research 

at hand, such as the inclusion of traditional fit measures when PI approaches are used. The 

software is unaware that a PI model has been used, and usually the default is to include those 

measures. Hence, an unsuspecting researcher may be unintentionally misled by defaults. In 

summation, to reduce the occurrence of these kind of errors, researchers and practicioners might 

(a) rely upon substantive theory, (b) be aware of the limitations of fit measures, and (c) make 

sure they understand each of the defaults in their chosen estimating software.  

As was mentioned previously, 𝑅𝑅2 was less useful when the QML and Bayesian 

approaches were used to estimate models. For the Bayesian approach, this may be because most 

of the models did not converge. Future research may test different priors, more thinning, or more 

time allotted for the models to converge; perhaps the 𝑅𝑅2 might be more useful in identifying 

nonlinear misspecifications under those conditions. Additionally, this suggested future research 

might also investigate the performance of the Bayesian specific fit measures if the software 

becomes available to appropriately integrate out the latent terms in nonlinear models.  

The 𝑅𝑅2 did not perform as well when QML models were used. One likely reason for this 

is that the QML approach borrowed its linear condition from the PI approach. The original intent 

for this design decision was that, if it worked, it would be more convenient for the practitioner to 

compare models in this way. However, the models do not seem to be comparable. It should also 

be noted that 𝑅𝑅2 for the QML models are much lower than for the PI models. Perhaps making the 

convergence criterion stricter would make the QML and PI approaches more comparable. 
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 Future research might also explore the method of moments approach in association with 

these fit measures and the fit measures related to it. This approach was excluded from this study 

due to the difficulty in incorporating this approach into the simulation, but previous research 

suggests that it might be a productive avenue to explore. 

This study showed conclusively that the residuals from the structural part of the model 

are more beneficial for exploring nonlinear misspecification than the residual covariance matrix. 

The HFI and 𝑅𝑅2 were the only measures that were connected to the structural part of the model, 

and they were the only measures sensitive to nonlinearity. Future research should further explore 

the structural part of the model. Perhaps a variation on the HFI or one of its parent measures 

would prove to be more sensitive than the HFI. Perhaps future research might derive a 

standardized fit measure from 𝑅𝑅2. It seems that the future of nonlinear fit measures, at least for 

PI approaches, should be built on the structural part of the model.  

Conclusion 

Mooijaart and Satorra (2009) asserted the mathematical blindness of traditional 𝜒𝜒2-based 

fit measures. This article demonstrated the practical blindness of not only absolute fit measures 

like the CFI, TLI, RMSEA, SRMR, and 𝜒𝜒2 p-value, but also relative fit measures such as the 

AIC, BIC, and the two-step comparison using the Vuong test and the traditional LRT. The HFI 

was shown to be practically insensitive to nonlinearity except in cases of extreme nonlinearity. 

𝑅𝑅2 was consistently sensitive to nonlinearity across conditions, though this sensitivity was most 

pronounced with PI models.  

Beyond the fit measures themselves, the topic of blind fit measures raises the concern of 

“the blind leading the blind.” If researchers become too dependent upon fit measures that are 

only reliable in certain situations, they will inevitably, at some point, be blindly led to false 
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conclusions. Rather, researchers and practitioners should allow substantive theory to guide 

modeling decisions and let the fit measures take a more supportive role. This emphasis on 

theory-centered modeling will reduce the blindness on the part of the researcher. 
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APPENDIX A 

Annotated Bibliography 

Statistical models are often developed with the help of goodness-of-fit measures. These 

are statistics that measure how well a model predicts the data. In the special case of nonlinear 

structural equation modeling, no fit indices are widely accepted as appropriate. While a lot of 

work has explored different estimation methods, little work has been done to develop fit indices 

in this case, and what work has been done requires further testing. This annotated bibliography 

sets the literary foundation for the accompanying thesis, briefly introducing the important topics 

and articles. 

Fit Measures, Their Blindness, and Alternatives 

This section covers references related to model selection and goodness of fit, the 

blindness of traditional measures, and alternative fit measures.  

Fit measures. The traditional fit measures that are regularly referred to in the article are 

the chi-square (𝜒𝜒2) or covariance-based fit measures. Specifically, the 𝜒𝜒2 p-value, CFI, TLI, 

RMSEA, SRMR, AIC, and BIC. These measures are blind to nonlinearity.  

Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 

107(2), 238-246. 

This is the introduction of the CFI as a fit index. The CFI was created with a number of 

other indices, though the author concludes that the CFI is the best. The author concludes 

that a new way of thinking about model fit may be in order, and suggests exploring new 

distributions outside of the 𝜒𝜒2. The NNFI (TLI) was compared to these measures and 

differences were discussed. The author favored the CFI because the TLI had a wider 
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range of values, so that in some circumstances it led to overfitting and in others 

underfitting. The author did not consider nonlinearity in their test of fit measures.  

Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of 

covariance structures. Psychological Bulletin, 88(3), 588-606. 

The 𝜒𝜒2 is very sensitive to sample size. Bentler and Bonett demonstrate that results 

drawn from the 𝜒𝜒2 p-value are heavily influenced by sample size to the point that a good 

fitting model may be less desirable than another model, it is simply that the sample size 

was small enough that many models would have been accepted. Conversely, poor fitting 

models may be close to the true model and have poor fit because the statistic is too 

sensitive. It is this weakness specifically that will lead to the development of many other 

fit measures. Most notably, from one of the authors, Bentler, is the creation of the CFI.  

Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. 

Structural Equation Modeling: A Multidisciplinary Journal, 14(3), 464-504. 

This article shows one example of how 𝜒𝜒2-based fit statistics can be used for testing 

model invariance. This is also an example of establishing cutoff values, something that I 

hope to do if the 𝜒𝜒2-based fit statistics perform reasonably well.  

Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: 

Conventional criteria versus new alternatives. Structural Equation Modeling: A 

Multidisciplinary Journal, 6(1), 1-55. 

The authors describe a number of common fit measures, including those discussed as part 

of this thesis. Following this, a simulation study was conducted and different cutoffs were 

suggested. Considering that these fit statistics are included in the output when a product 

indicator approach is used despite being mathematically blind to nonlinearity, it is 
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needful to test these cutoffs in a simulation study to see if there is any merit to them in 

terms of detecting nonlinear related misspecifications. The authors suggest not only 

cutoffs for single fit measures, but also for specific combinations of fit measures. This 

latter usage seems to be less commonly used and was not focused on as part of this thesis. 

Kutner, M. H., Nachtsheim, C., & Neter, J. (2004). Applied linear regression models. Boston, 

MA: McGraw-Hill/Irwin. 

This text is an excellent introductory work on applied linear regression. The authors 

present particularly useful discussions of some of the statistics discussed in this thesis, 

including the F test and the AIC and BIC.  

Mooijaart, A., & Satorra, A. (2009). On insensitivity of the chi-square model test to nonlinear 

misspecification in structural equation models. Psychometrika, 74(3), 443-455. 

https://doi.org/10.1007/s11336-009-9112-5 

This is one of the most important articles relating to my thesis. Here Mooijaart and 

Satorra explain why fit statistics are essentially useless when applied to nonlinear latent 

variable modeling. They are all extensions of the 𝜒𝜒2 statistic, which is blind to the sort of 

nonnormality that results in nonlinear situations. This article shows mathematically that 

the 𝜒𝜒2 statistic is blind to nonlinearity, which makes me think that there will be no helpful 

pattern in the fit statistics. 

Wang, J., & Wang, X. (2012). Structural Equation Modeling: Applications Using Mplus. 

Hoboken, NJ: Wiley. 

This text covers many related topics in SEM and how to do them in Mplus. This text also 

served as an introduction to the traditional meausres described in the article portion of 

this thesis. The general procedure for how to use these measures was also taken from this 
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book, though the cutoffs were Hu and Bentler’s contribution. In terms of nonlinear 

estimation, this text only mentions that Mplus is capable of estimating these models. It 

does not delve into a discussion of estimation approaches or any related topic. No 

mention is made of the traditional measures’ blindness to nonlinearity.  

Alternative fit measures. Little research has been conducted to see what other options 

there are for fit statistics to aid in model building. Many researchers simply decide which model 

to accept based on substantive theory, or they try the two-step comparison approach. The 

homoscedastic fit index (HFI) was developed specifically to detect omitted nonlinear terms. 

Bayesian fit measures also exist which are not built on the same assumptions as the frequentist fit 

statistics, though they too have troubles that arise when estimating nonlinear models. Posterior 

predictive p-values (PPP) are Bayesian fit statistics that are easy to implement and adapt.  

Asparouhov, T., & Muthén, B. (2017). Prior-posterior predictive p-values. Retrieved from 

https://www.statmodel.com/download/PPPP.pdf. 

 This article helped me understand more about posterior predictive p-values. The most 

interesting thing to come out of this article was the fact that you could use any 

discrepancy function to calculate a PPP. This concept was combined with the other fit 

measures to create new kinds of PPPs. 

Gerhard, C., Büchner, R. D., Klein, A. G., & Schermelleh-Engel, K. (2017). A fit index to assess 

model fit and detect omitted terms in nonlinear SEM. Structural Equation Modeling: A 

Multidisciplinary Journal, 24(3), 414-427. 

This article develops the homoscedastic fit index, an index applicable in either regression 

or structural equation modeling, and specifically recommended cutoffs. The HFI is just a 

transformation of the hhet statistic (Klein et al., 2016). It also covers simulations testing 

https://www.statmodel.com/download/PPPP.pdf
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the HFI. It is included in the article for testing outside of the LMS method, which was 

used in this article. The size of the interaction terms they tried in this article seem large 

compared to the effect sizes that were given in Cohen (1988) and Aguinis, Beaty, Boik, 

and Pierce (2005). An unofficial, yet preliminary analysis adds doubt as to the 

effectiveness of the statistic with smaller effect sizes. Another important concept from 

this article is the fact that, as a 2017 article, they point out that there is very little research 

on proposing fit in this context.  

Kruschke, J. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. New 

York, NY: Academic Press. 

This book explains posterior predictive checks and how to do them. It is a good 

introduction into Bayes used in a non-SEM context and helps to more fully comprehend 

Bayes. It also provides examples of many Bayesian analyses in R.    

Maslowsky, J., Jager, J., & Hemken, D. (2015). Estimating and interpreting latent variable 

interactions: A tutorial for applying the latent moderated structural equations method. 

International Journal of Behavioral Development, 39(1), 87-96. 

This article outlines what I have termed the two-step comparison approach to model 

fitting as the authors gave it no name. In the first step, a linear model is fit to the data. If 

good fit is proposeed using 𝜒𝜒2 based fit statistics, then a model including the nonlinear 

term is fit. In the second step, the two are then compared using a LRT. 

Merkle, E., Furr, D., & Rabe-Hesketh, S. (2018). Bayesian model assessment: Use of conditional 

vs marginal likelihoods. Retrieved from https://arxiv.org/abs/1802.04452. 

When estimating Bayesian fit measures, it is necessary to integrate out latent terms. 

Unfortunately, most software does not do this, and the software that does do it will not 
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run nonlinear Bayesian models. For this reason, most Bayesian fit measures were not 

used in this study, though future research should explore them.  

Mooijaart, A., & Bentler, P. M. (2010). An alternative approach for nonlinear latent variable 

models. Structural Equation Modeling: A Multidisciplinary Journal, 17(3), 357-373. 

In this article Mooijaart and Bentler build on the work of Mooijaart & Satorra (2009). In 

the previous article the authors pointed out that when only the covariances were used to 

estimate the model, then tests based on the 𝜒𝜒2 will be blind to non-linearity. In this article 

the authors try a method of moments approach that compares well to a maximum 

likelihood approach. They also explain that the LRT  the 𝜒𝜒2test is built on is not well 

understood when comparing a linear model with a nonlinear model. 

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Van Der Linde, A. (2002). Bayesian measures of 

model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical 

Methodology), 64(4), 583-639. 

This article introduces the deviance information criterion (DIC). The conceptual 

definition is especially useful, since the DIC does not have the same distributional 

assumptions as the 𝜒𝜒2-based tests, I think it might be able to detect misspecification in 

regard to nonlinear terms. The DIC was not used in this article because there is currently 

no software available that both integrates out the latent variables as appropriate and 

estimates nonlinear models. 

Vuong, Q. (1989). Likelihood ratio tests for model selection and non-nested hypotheses. 

Econometrica: Journal of the Econometric Society 57(2), 307-333. 

The Vuong LRT can be used for nested and non-nested models. It was used here to 

compare the PI models. 
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Estimation Approaches 

Many methods exist to estimate nonlinear models. The numerous methods generally fit 

into categories of product indicator approaches, distributional approaches, method of moment 

approaches, and a Bayesian approach. Many comparisons have been done to demonstrate that 

each of these types of approaches excels in one area or another. No one approach has been shown 

to be the best, though the most frequently used appear to be the Extended Unconstrained 

approach, the Latent Moderated Structural Equation Modeling approach, and the Bayesian 

approach.  

Bayarri, M. J., & Berger, J. O. (2004). The interplay of Bayesian and frequentist analysis. 

Statistical Science, 19(1), 58-80. 

This article is a resource summarizing the Bayesian versus frequentist debate. Essentially, 

Bayesian statistics are more flexible because they are not built on previous assumptions, 

they are more accurate with large and small sample sizes, and they allow the 

incorporation of previous knowledge. At the same time, the incorporation of a prior 

distribution is a double-edged sword, as it has the potential to bias the results. 

Dimitruk, P., Schermelleh-Engel, K., Kelava, A., & Moosbrugger, H. (2007). Challenges in 

nonlinear structural equation modeling. Methodology: European Journal of Research 

Methods for the Behavioral and Social Sciences, 3(3), 100-114. 

This article builds off of the Moosbrugger, Schermelleh-Engel, and Klein (1997) article 

by reiterating some of their points and running a simulation study demonstrating the 

advantages of the LMS and QML methods.  

Gelman, A., Stern, H. S., Carlin, J. B., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). 

Bayesian data analysis. New York, NY: Chapman and Hall/CRC. 
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This book covers many Bayesian data analyses, though it does not include SEM. I used it 

in my paper primarily to explain how PPP and posterior predictive checks are done. 

Notably, one difference between Kruschke’s work and this book is the exclusion of p-

value in Kruschke’s work. While this is outside the scope of the research in this thesis, I 

think it is important to explain that Kruschke rejects the idea of doing something to 

resemble NHST while this work does not hesitate to go that direction.  

Harring, J. R., Weiss, B. A., & Hsu, J. C. (2012). A comparison of methods for estimating 

quadratic effects in nonlinear structural equation models. Psychological Methods, 17(2), 

193-214.  

This was one of the more recent comparisons between estimation methods, and it focused 

on estimating latent quadratic terms rather than the latent interactions of the other 

comparison studies I looked at. The authors compared the two-stage moderated 

regression approach (latent variable scores), the unconstrained approach, the LMS 

approach, the Bayesian approach, and the marginal maximum likelihood approach, they 

found that the models were comparable in most aspects. The determination of which 

estimation procedure to use may ultimately be decided by the complexity of the model as 

opposed to any other criteria, with the Bayesian approach and latent variables scores 

approach handling the most general models, and the LMS the least. It should be noted 

that this inflexibility is in part what led to the creation of the QML. The latent variable 

scores approach performed less well than the other methods.  

Jöreskog, K. G., & Yang, F. (1996). Nonlinear structural equation models: The Kenny-Judd 

model with interaction effects. In G. Marcoulides & R. Schumacker (Eds.), Advanced 
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structural equation modeling: Issues and techniques, (pp. 57-88). Mahwah, NJ: 

Lawrence Erlbaum Associates, Inc.  

In this chapter, Joreskog and Yang propose some problems with the Kenny and Judd 

model. Particularly, that the intercepts cannot be thought of as zero. They also provide a 

simpler model than Kenny and Judd and demonstrate that the estimates are unbiased and 

recoverable.  

Kelava, A., & Nagengast, B. (2012). A Bayesian model for the estimation of latent interaction 

and quadratic effects when latent variables are non-normally distributed. Multivariate 

Behavioral Research, 47(5), 717-742. 

This article covers how to do the Bayesian procedure in the case of multiple nonlinear 

terms. They also suggest getting the priors from the estimates generated from the 

extended unconstrained approach, which they also develop in this article. This is a useful 

article that will help me implement the approaches I will be using.  

Kenny, D. A., & Judd, C. M. (1984). Estimating the nonlinear and interactive effects of latent 

variables. Psychological Bulletin, 96(1), 201-210. 

Kenny and Judd are the first to propose a solution to the problem of how to deal with 

nonlinear estimation in latent variable modeling. Interactions and quadratic terms in this 

situation lead to severe non-normality. They propose a model for estimation that results in 

unbiased estimators. This model, though not perfect, set the stage for dozens of other 

models and decades of discussion. This model is the first of the product indicator 

approaches.  

Klein, A. G., & Moosbrugger, H. (2000). Maximum likelihood estimation of latent interaction 

effects with the LMS method. Psychometrika, 65(4), 457-474. 
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The authors develop a more general interaction model that allows multiple nonlinear 

terms to be estimated by the LMS method. Not incredibly important in regards to my 

thesis, though it shows more on the development of the LMS approach.  

Klein, A. G., & Muthén, B. O. (2007). Quasi-maximum likelihood estimation of structural 

equation models with multiple interaction and quadratic effects. Multivariate Behavioral 

Research, 42(4), 647-673. 

This article describes the development of a Quasi-Maximum Likelihood (QML) approach 

for estimating multiple nonlinear terms in SEM. The authors attempt to replicate Marsh et 

al.’s (2004) study comparing the QML to other methods. They were able to replicate the 

positive results, but not the strong biases that Marsh et al reported.  

Lee, S. Y., Song, X. Y., & Tang, N. S. (2007). Bayesian methods for analyzing structural equation 

models with covariates, interaction, and quadratic latent variables. Structural Equation 

Modeling: A Multidisciplinary Journal, 14(3), 404-434. 

This article explains the Bayesian approach. Harring et al. (2012) found this model to be 

preferable to other models in terms of estimation. The quick references to the Bayes 

Factor and the deviance information criterion give me hope that these two fit statistics 

will perform well under all conditions.  

Little, T. D., Bovaird, J. A., & Widaman, K. F. (2006). On the merits of orthogonalizing powered 

and product terms: Implications for modeling interactions among latent variables. 

Structural Equation Modeling: A Multidisciplinary Journal, 13(4), 497-519. 

http://dx.doi.org/10.1207/s15328007sem1304_1 

This article talks about another method for estimation. It is only referenced as an 

alternative estimation strategy in this paper. 
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Marsh, H. W., Wen, Z., & Hau, K. T. (2004). Structural equation models of latent interactions: 

Evaluation of alternative estimation strategies and indicator construction. Psychological 

Methods, 9(3), 275-300. 

This article is one of the more prominent comparisons between methods. It compares the 

constrained approach, the two-stage least squares, the generalized appended product 

indicator approach, the QML, and the unconstrained approaches. They develop the 

unconstrained approach in this article, and found it to be easier to implement than the 

others. It is also in this article where it is claimed that the central limit theorem does not 

help with the normality issue of the latent interactions. The unconstrained approach is 

robust to this problem though, because no constraints are placed based on the assumption 

of normality. 

Moosbrugger, H., Schermelleh-Engel, K., Kelava, A., & Klein, A. G. (2009). Testing multiple 

nonlinear effects in structural equation modeling: A comparison of alternative estimation 

approaches. In T. Teo & M. Khine (Eds.), Structural equation modelling in educational 

research: Concepts and applications (pp. 103-136). Rotterdam, NL: Sense Publishers.  

This is another article in support of the QML and LMS approaches. The idea here though 

is that the QML, while very similar to the LMS method, is less computationally intensive 

and more flexible. They compared the LMS, QML, extended constrained, and extended 

unconstrained approaches and found the LMS and QML to be much more efficient and to 

have more accurate standard errors than the other approaches.  

Moosbrugger, H., Schermelleh-Engel, K., & Klein, A. (1997). Methodological problems of 

estimating latent interaction effects. Methods of Psychological Research Online, 2(2), 95-

111. 
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These authors outline what they claim are the five issues that impede estimation of latent 

nonlinear models:  

1. Measurement error of indicator variables 

2. Nonlinearity of parameters 

3. Mean structures 

4. Variable transformation problems 

5. Non-normality of variables 

The authors also make the case that the latent moderated structural equations (LMS) 

approach is the best estimation method, as it takes the non-normality of the interaction 

term explicitly into account. It compares the LMS to other models on a theoretical basis.  

Moulder, B. C., & Algina, J. (2002). Comparison of methods for estimating and testing latent 

variable interactions. Structural Equation Modeling, 9(1), 1-19. 

This article compares a number of product indicator approaches, including the authors’ 

variation of Joreskog and Yang’s procedure. This is later developed further into the 

unconstrained approach. More importantly, this article compares these methods using the 

𝜒𝜒2-based fit statistics since they were all product indicator approaches. This is an 

inappropriate activity according to Mooijaart and Satorra (2009). I wonder if we wouldn’t 

see more inappropriate use of 𝜒𝜒2 based fit indices if the other approaches also gave us 

these fit statistics. More importantly, is this portion of the evidence Algina and Moulder 

cite to support their findings valid? The authors provide other evidence to support their 

conclusions, so if their method is not mathematically valid, why were their results 

consistent? 
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Muthén, B. O., & Asparouhov, T. (2012). Bayesian structural equation modeling: A more flexible 

representation of substantive theory. Psychological Methods, 17(3), 313-335. 

This article has a succinct explanation of the advantages of Bayesian analysis. Bayesian 

analyses do not rely on normality or large sample sizes, have more information available, 

can be less computationally demanding, and enable new questions to be explored. The 

advantages of the Bayesian methodologies suggest that this approach might be the most 

accurate for estimation of latent nonlinear terms. Harring, Weiss, and Hsu (2012) found 

the Bayesian approach to achieve more accurate estimates and to handle more general 

models than other approaches. 

Ping, R. A., Jr. (1995). A parsimonious estimating technique for interaction and quadratic latent 

variables. Journal of Marketing Research 32(3), 336-347. 

Ping establishes a two-stage least squares. Later research found that this method was 

plagued with many of the problems of the other product indicator approaches; 

particularly, unreliable standard error estimates.  

Wall, M. M., & Amemiya, Y. (2003). A method of moments technique for fitting interaction 

effects in structural equation models. British Journal of Mathematical and Statistical 

Psychology, 56(1), 47-63 

In this article the authors give a summary of method of moment approaches and 

demonstrate the advantages of the two-stage method of moments approach. 

Simulation and Coding Details 

This thesis stands on the shoulders of giants. While the vast majority of the coding was 

done personally, many aspects were borrowed or adapted from other articles. The design details 

were in large part taken from other sources as well. A number of softwares were used in this 
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simulation study including a significant number of R packages and the program JAGS. The data 

were simulated on BYU’s Mary Lou Fulton Supercomputer. Other options for the analysis were 

considered and are included here as a reference. Additionally, some software was under 

development at the time this thesis was completed that might make future efforts simpler.  

Bandalos, D. L., & Leite, W. L. (2006). The use of Monte Carlo studies in structural equation 

modeling research. In G. Hancock & R. Mueller (Eds.), Structural equation modeling: A 

second course (p. 385- 426). Greenwich, CT: Information Age. 

This research suggests that 500 replications are sufficient for large simulations when it 

comes to SEM simulation studies. This chapter helped me decide to do 500 iterations 

instead of the 1000 iterations I had been considering previously. When certain conditions 

failed to reach the appropriate number of estimated conditions, this standard encouraged 

me to run more. 

Denwood, M. J. (2016). runjags: An R package providing interface utilities, model templates, 

parallel computing methods and additional distributions for MCMC models in JAGS. 

Journal of Statistical Software, 71(9), 1-25. 

This package was used to interface with JAGS for the nonlinear Bayesian models. This 

package does not output the corrected fit measures for Bayesian analysis, but blavaan 

does. However, blavaan cannot yet implement nonlinear models. 

Fan, X., Thompson, B., & Wang, L. (1999). Effects of sample size, estimation methods, and 

model specification on structural equation modeling fit indexes. Structural Equation 

Modeling: A Multidisciplinary Journal, 6(1), 56-83. 
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This article is an example of a simulation study testing the effects of varying conditions 

on 𝜒𝜒2-based fit statistics. They suggest investigating various levels of model 

misspecification in future research on fit indexes.  

Merkle, E., You, D., Schneider, L., Bae, S., & Merkle, M. E. (2018). Package ‘nonnest2’. 

Retrieved from https://cran.r-project.org/web/packages/nonnest2/nonnest2.pdf. 

This package was used to calculate the Vuong LRT for nonnested models. This was done 

between all possible combinations of linear, interaction, and full models in the product 

indicator condition. 

Plummer, M. (2003). Jags: A program for analysis of Bayesian graphical models using Gibbs 

sampling. Retreived from http://citeseer.ist.psu.edu/plummer03jags.html. 

JAGS is software used for estimating Bayesian models. It uses the same syntax as BUGS 

and can be confusing to use. Some packages in R allow for an easier model specification 

into JAGS. 

R Core Team (2013). R: A language and environment for statistical computing. Retrieved from 

http://www.R-project.org/. 

R is a free, open-source software for statistical computing. A number of R packages were 

used in the simulation and analysis. The entire study was done in R except for the 

estimation of the Bayesian models, which were estimated in JAGS. 

Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical 

Software, 48(2), 1-36. Retrieved from http://www.jstatsoft.org/v48/i02/. 

The product indicator approaches were estimated using lavaan, which is an excellent 

package in R for structural equation modeling. 

http://www.jstatsoft.org/v48/i02/
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RStudio Team (2015). RStudio: Integrated Development for R. Retrieved from 

http://www.rstudio.com/. 

Rstudio is an integrated development environment (IDE) that is convenient for data 

analysis. It was used when writing the simulation code, testing it, and analyzing the data. 

Umbach, N., Naumann, K., Brandt, H., & Kelava, A. (2017). Fitting nonlinear structural 

equation models in R with package nlsem. Journal of Statistical Software, 77(1), 1-20.  

This article introduces the package nlsem. This package was used in my thesis to simulate 

the data, then to analyze it using the QML approach. This package is capable of QML, 

LMS, and NSEMM approaches.  

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. New York, NY: Springer-

Verlag New York, Inc. 

 The ggplot package was used to create the boxplot that is contained in the thesis as well 

as all other plots that were used in analysis but not contained in the text. This package 

creates nice images easily.  

  

http://www.rstudio.com/
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APPENDIX B 

Replication Code 

Data Collection Code 

Start = Sys.time() 

library(runjags) 

library(nlsem) 

library(lavaan) 

library(blavaan) 

library(Matrix) 

library(psych) 

runjags.options(jagspath = "/fslhome/pip89/opt/jags/4.3.0/bin/jags") 

condition <-as.integer(Sys.getenv("SLURM_ARRAY_TASK_ID")) 

model <- as.integer(Sys.getenv("SLURM_PROCID")) 

filename <- paste(condition,model, "csv", sep = ".") 

directory <- file.path(Sys.getenv("SLURM_ARRAY_JOB_ID")) 

dir.create(directory, showWarnings=FALSE, recursive=TRUE) 

fullpath <- file.path(directory, filename) 

source("/fslhome/pip89/compute/ZZZ/all_Functions_ML.r") 

if(is.na(condition)){ 

condition=0 

model=0 

directory = 'test' 

dir.create(directory, showWarnings=FALSE, recursive=TRUE) 
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fullpath <- file.path(directory, filename) 

} 

 

condition = condition + 1 

# Variables manipulated 

es = c(.02, .13, .26, .4) 

rxy = c(.45, .65, .85) 

terms = c(0,1,3) 

ss = c(100, 500, 1000) 

conditionMarker = expand.grid(es,rxy,terms,ss) 

colnames(conditionMarker) = c("es", "rxy", "terms", "ss") 

conditionMarker$condie = 1:nrow(conditionMarker) 

paste0("The condition is: ", condition) 

paste0("The model is: ", model) 

ct = condition %% 36 

# ct = ifelse(condition > nrow(conditionMarker) & condition <= nrow(conditionMarker)*2, 

#             condition -nrow(conditionMarker), 

#             ifelse(condition > nrow(conditionMarker)*2 & condition <= nrow(conditionMarker)*3, 

#                    condition -nrow(conditionMarker)*2, 

#                    ifelse(condition > nrow(conditionMarker)*3 & condition <= 

nrow(conditionMarker)*4, 

#                           condition -nrow(conditionMarker)*3, 
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#                           ifelse(condition > nrow(conditionMarker)*4 & condition <= 

nrow(conditionMarker)*5, 

#                                  condition -nrow(conditionMarker)*4, 

#                                  condition 

#                           )))) 

# How many iterations? 

iters = 3 * 3 

 

# Create a place for the results 

summaryTable = data.frame(method= rep(NA, iters*8), converged= NA, 

                          terms= NA, seed= NA, 

                          time= NA, likl= NA, 

                          aic= NA, bic= NA, 

                          chisq= NA, chisqp= NA, 

                          rmsea= NA, srmr= NA, 

                          hfi= NA, hfir= NA, 

                          R2= NA, R2r= NA,  

                          hfi0= NA, hfi1= NA, 

                          hfi3= NA, PPP_likl= NA, 

                          PPP_aic= NA, PPP_bic= NA, 

                          PPP_chisq= NA, PPP_chisqp= NA, 

                          PPP_rmsea= NA, PPP_srmr= NA, 

                          PPP_hfi= NA, PPP_hfir= NA, 
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                          PPP_R2= NA, PPP_R2r= NA, PPP_cfi = NA, PPP_tli = NA, PPP_rmseap=NA, 

PPP_logl = NA, 

                          es= NA, ss= NA, rxy= NA,lambda.x2= NA, 

                          lambda.x3= NA, lambda.x5= NA, 

                          lambda.x6= NA, lambda.y2= NA, 

                          lambda.y3= NA, nu.x1= NA, 

                          nu.x2= NA, nu.x3= NA, 

                          nu.x4= NA, nu.x5= NA, 

                          nu.x6= NA, nu.y1= NA, nu.y2= NA, 

                          nu.y3= NA, phi1= NA, 

                          phi2= NA, phi4= NA,  

                          psi= NA, gamma1= NA, gamma2= NA, 

                          omegai= NA, omega1= NA,  

                          omega2= NA, theta.y1= NA, theta.y2= NA, 

                          theta.y3= NA, theta.x1= NA, 

                          theta.x2= NA, theta.x3= NA, 

                          theta.x4= NA, theta.x5= NA, 

                          theta.x6= NA) 

 

# Set up the clock checker 

v = 1 

# Set up the iteration loop 

for(t in 1:iters){ 
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  print(t) 

ct = ifelse(t %% 3 == 0, condition %% 36 + 72, ifelse(t %% 3 == 2, condition %% 36 + 

36,  condition %% 36)) 

print(ct) 

  # Simulate the data 

  offset =as.numeric(paste0(condition,model,t, 999)) 

  set.seed = offset 

   

   

  # Set the parameters 

   

  es =conditionMarker$es[conditionMarker$condie==ct] 

  ss = conditionMarker$ss[conditionMarker$condie==ct] 

  rxy = conditionMarker$rxy[conditionMarker$condie==ct] 

  terms = conditionMarker$terms[conditionMarker$condie==ct] 

  intsim = ifelse(terms == 3, "eta1~xi1:xi2,eta1~xi1:xi1,eta1~xi2:xi2", "eta1~xi1:xi2") 

   

  if(terms == 3){ 

    #es/2 because of relationship between correlation and omega. This is only true when there is 

only one omega.  

    meg = matrix(c(es/2,0,es,es/2),nrow=2) 

    gamma = c(.3,.3) 

  }else if(terms==1){ 
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    meg = matrix(c(0,0,es,0),nrow=2) 

    gamma = c(.3,.3) 

     

  }else{ 

    meg = matrix(c(0,0,0.000000000000000000000000001,0),nrow=2) 

    gamma = c(.3,.3) 

  } 

  theta = matrix(0, ncol = 9, nrow = 9) 

  diag(theta) = NA 

   

   

  data = simulate_nlsem(N = ss, m = 1, interaction_simulation = intsim, gamma = gamma, 

Omega = meg,  

                        covariance = 0, rel_x = rep(rxy,6), rel_y = rep(rxy,3), num.x_sim = 6,  

                        num.y_sim = 3, num.xi_sim = 2, xi_sim = "x1-x3,x4-x6", eta_sim = "y1-y3") 

  dat = data.frame(data[,,1]) 

   

  colnames(dat) = c(paste0("X", 1:6), paste0("Y",1:3)) 

  db = list("X1" = dat$X1, "X2" = dat$X1,"X3" = dat$X1, 

            "X4" = dat$X1, "X5" = dat$X1, "X6" = dat$X1 

            ,"Y1" = dat$X1, "Y2" = dat$X1, "Y3" = dat$X1,  

            N = ss,  

            alpha = matrix(NA, nrow=3, ncol=1), 
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            omega = matrix(c(0,0,NA, 0,0,NA), ncol=2),  

            lambda = matrix(c(rep(NA, 3), rep(0,9), rep(NA,3), rep(0,9),rep(NA,3)), ncol=3), 

            nu = matrix(rep(NA, 9), ncol=1), 

            psi = matrix(c(NA, 0,0, NA, NA, 0, 0, 0, NA), ncol=3), 

            theta = theta, 

            omega = matrix(c(0, NA, 0, 0), nrow=2)) 

   

  monitors = c("lambda[1,1]", "lambda[2,1]", "lambda[3,1]", "lambda[4,2]", "lambda[5,2]", 

"lambda[6,2]", "lambda[7,3]", 

               "lambda[8,3]", "lambda[9,3]", "omega[3,1]",   "omega[3,2]",   "theta[1,1]",  

"theta[2,2]",  "theta[3,3]",  

               "theta[4,4]",  "theta[5,5]" , "theta[6,6]",  "theta[7,7]",  "theta[8,8]" , "theta[9,9]",  

"psi[1,1]" ,   

               "psi[2,2]",    "psi[3,3]" ,   "psi[1,2]" ,   "nu[1,1]" ,    "nu[2,1]",     "nu[3,1]" ,    

"nu[4,1]" ,    

               "nu[5,1]",     "nu[6,1]",     "nu[7,1]" ,    "nu[8,1]" ,    "nu[9,1]",     "alpha[1,1]",  

"alpha[2,1]",  

               "alpha[3,1]", "omega[2,1]", "omega[1,1]", "omega[2,2]")  

  # Estimate the variable  

   

    # mlin, blin 

    # mlin 

    mod <- ' 
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    KSI1 =~ 1*X1 + X2 + X3 

    KSI2 =~ 1*X4 + X5 + X6 

    ETA =~ 1*Y1 + Y2 + Y3 

    Y1 ~ 1 

    Y2 ~ 1 

    Y3 ~ 1 

    Y1 ~~ Y1 

    Y2 ~~ Y2 

    Y3 ~~ Y3 

    X1 ~~ X1 

    X2 ~~ X2 

    X3 ~~ X3 

    X4 ~~ X4 

    X5 ~~ X5 

    X6 ~~ X6 

    ETA ~ KSI1 

    ETA ~ KSI2 

    KSI1 ~~ KSI1 

    KSI1 ~~ KSI2 

    KSI2 ~~ KSI2 

    ETA ~~ ETA 

    ' 
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    a = Sys.time() 

    mlin <- lavaan::sem(mod, data=dat, control = list(iter.max=3000)) 

    b = Sys.time() 

     

    summaryTable$method[v] = c("ML") 

    summaryTable$converged[v] = mlin@optim$converged*1 

    summaryTable$es[v] = c(es) 

    summaryTable$ss[v] = c(ss) 

    summaryTable$rxy[v] = c(rxy) 

    summaryTable$terms[v] = c(terms) 

    summaryTable$seed[v] = offset 

    summaryTable$time[v] = as.numeric(difftime(b, a, units = "secs")) 

 

      summaryTable$lambda.x2[v] = coef(mlin)[grep("KSI1=~X2", names(coef(mlin)))] 

      summaryTable$lambda.x3[v] = coef(mlin)[grep("KSI1=~X3", names(coef(mlin)))] 

      summaryTable$lambda.x5[v] = coef(mlin)[grep("KSI2=~X5", names(coef(mlin)))] 

      summaryTable$lambda.x6[v] = coef(mlin)[grep("KSI2=~X6", names(coef(mlin)))] 

      summaryTable$lambda.y2[v] = coef(mlin)[grep("ETA=~Y2", names(coef(mlin)))] 

      summaryTable$lambda.y3[v] = coef(mlin)[grep("ETA=~Y3", names(coef(mlin)))] 

       

      summaryTable$nu.x1[v] = coef(mlin)[grep("X1~1", names(coef(mlin)))] 

      summaryTable$nu.x2[v] = coef(mlin)[grep("X2~1", names(coef(mlin)))] 

      summaryTable$nu.x3[v] = coef(mlin)[grep("X3~1", names(coef(mlin)))] 



 71 

      summaryTable$nu.x4[v] = coef(mlin)[grep("X4~1", names(coef(mlin)))] 

      summaryTable$nu.x5[v] = coef(mlin)[grep("X5~1", names(coef(mlin)))] 

      summaryTable$nu.x6[v] = coef(mlin)[grep("X6~1", names(coef(mlin)))] 

      summaryTable$nu.y1[v] = coef(mlin)[grep("Y1~1", names(coef(mlin)))] 

      summaryTable$nu.y2[v] = coef(mlin)[grep("Y2~1", names(coef(mlin)))] 

      summaryTable$nu.y3[v] = coef(mlin)[grep("Y3~1", names(coef(mlin)))] 

       

      summaryTable$theta.x1[v] = coef(mlin)[grep("X1~~X1", names(coef(mlin)))] 

      summaryTable$theta.x2[v] = coef(mlin)[grep("X2~~X2", names(coef(mlin)))] 

      summaryTable$theta.x3[v] = coef(mlin)[grep("X3~~X3", names(coef(mlin)))] 

      summaryTable$theta.x4[v] = coef(mlin)[grep("X4~~X4", names(coef(mlin)))] 

      summaryTable$theta.x5[v] = coef(mlin)[grep("X5~~X5", names(coef(mlin)))] 

      summaryTable$theta.x6[v] = coef(mlin)[grep("X6~~X6", names(coef(mlin)))] 

      summaryTable$theta.y1[v] = coef(mlin)[grep("Y1~~Y1", names(coef(mlin)))] 

      summaryTable$theta.y2[v] = coef(mlin)[grep("Y2~~Y2", names(coef(mlin)))] 

      summaryTable$theta.y3[v] = coef(mlin)[grep("Y3~~Y3", names(coef(mlin)))] 

       

      summaryTable$gamma1[v] = coef(mlin)[grep("ETA~KSI1", names(coef(mlin)))] 

      summaryTable$gamma2[v] = coef(mlin)[grep("ETA~KSI2", names(coef(mlin)))] 

       

      summaryTable$phi1[v] = coef(mlin)[grep("KSI1~~KSI1", names(coef(mlin)))] 

      #phi2 is the covariance 

      summaryTable$phi2[v] = coef(mlin)[grep("KSI1~~KSI2", names(coef(mlin)))] 
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      #phi4 is the var of 2 

      summaryTable$phi4[v] = coef(mlin)[grep("KSI2~~KSI2", names(coef(mlin)))] 

      summaryTable$psi[v] = coef(mlin)[grep("ETA~~ETA", names(coef(mlin)))] 

      summaryTable$omegai[v] = 0 

      summaryTable$omega1[v] = 0 

      summaryTable$omega2[v] = 0 

       

      fit = establishFit(obs.data = dat[1:9], model.obj = mlin, m = 300, nfac = 0, model = mod, df = 

fitMeasures(mlin)[4]) 

      summaryTable$likl[v] = fit[1] 

      summaryTable$aic[v] = fit[2] 

      summaryTable$bic[v] = fit[3] 

      summaryTable$chisq[v] = fit[4] 

      summaryTable$chisqp[v] = fit[5] 

      summaryTable$rmsea[v] = fit[6] 

      summaryTable$srmr[v] = fit[7] 

      summaryTable$hfi[v] = fit[8] 

      summaryTable$hfir[v] = fit[9] 

      summaryTable$R2[v] = fit[10] 

      summaryTable$R2r[v] = fit[11] 

      summaryTable$hfi0[v] = fit[12] 

      summaryTable$hfi1[v] = fit[13] 

      summaryTable$hfi3[v] = fit[14] 
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      summaryTable$PPP_likl[v] = fit[15] 

      summaryTable$PPP_aic[v] = fit[16] 

      summaryTable$PPP_bic[v] = fit[17] 

      summaryTable$PPP_chisq[v] = fit[18] 

      summaryTable$PPP_chisqp[v] = fit[19] 

      summaryTable$PPP_rmsea[v] = fit[20] 

      summaryTable$PPP_srmr[v] = fit[21] 

      summaryTable$PPP_hfi[v] = fit[22] 

      summaryTable$PPP_hfir[v] = fit[23] 

      summaryTable$PPP_R2r[v] = fit[24] 

      summaryTable$PPP_R2[v] = fit[25] 

      summaryTable$PPP_logl[v] = fit[26] 

      summaryTable$PPP_cfi[v] = fit[27] 

      summaryTable$PPP_tli[v] = fit[28] 

      summaryTable$PPP_rmseap[v] = fit[29] 

 

    v = v+1 

    write.csv(summaryTable, file = fullpath, row.names=F) 

     

  

      # blin  

      a = Sys.time() 

      blin <- bsem(mod, data=dat, n.chains = 3, inits = parameterEstimates(mlin)) 
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      #load("~/Desktop/OmegaFolder/semjags.rda") 

      #blin <- run.jags("sem.jag", monitor = jagtrans$monitors, data = jagtrans$data, inits = 

parameterEstimates(mlin)) 

      b = Sys.time() 

     

      summaryTable$method[v] = "blin" 

      summaryTable$converged[v] = mean(na.omit(blin@ParTable$psrf<1.005)*1) 

      summaryTable$es[v] = c(es) 

      summaryTable$ss[v] = c(ss) 

      summaryTable$rxy[v] = c(rxy) 

      summaryTable$terms[v] = c(terms) 

      summaryTable$seed[v] = offset 

      summaryTable$time[v] = as.numeric(difftime(b, a, units = "secs")) 

         

        summaryTable$lambda.x2[v] = coef(blin)[grep("KSI1=~X2", names(coef(blin)))] 

        summaryTable$lambda.x3[v] = coef(blin)[grep("KSI1=~X3", names(coef(blin)))] 

        summaryTable$lambda.x5[v] = coef(blin)[grep("KSI2=~X5", names(coef(blin)))] 

        summaryTable$lambda.x6[v] = coef(blin)[grep("KSI2=~X6", names(coef(blin)))] 

        summaryTable$lambda.y2[v] = coef(blin)[grep("ETA=~Y2", names(coef(blin)))] 

        summaryTable$lambda.y3[v] = coef(blin)[grep("ETA=~Y3", names(coef(blin)))] 

         

        summaryTable$nu.x1[v] = coef(blin)[grep("X1~1", names(coef(blin)))] 

        summaryTable$nu.x2[v] = coef(blin)[grep("X2~1", names(coef(blin)))] 
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        summaryTable$nu.x3[v] = coef(blin)[grep("X3~1", names(coef(blin)))] 

        summaryTable$nu.x4[v] = coef(blin)[grep("X4~1", names(coef(blin)))] 

        summaryTable$nu.x5[v] = coef(blin)[grep("X5~1", names(coef(blin)))] 

        summaryTable$nu.x6[v] = coef(blin)[grep("X6~1", names(coef(blin)))] 

        summaryTable$nu.y1[v] = coef(blin)[grep("Y1~1", names(coef(blin)))] 

        summaryTable$nu.y2[v] = coef(blin)[grep("Y2~1", names(coef(blin)))] 

        summaryTable$nu.y3[v] = coef(blin)[grep("Y3~1", names(coef(blin)))] 

         

        summaryTable$theta.x1[v] = coef(blin)[grep("X1~~X1", names(coef(blin)))] 

        summaryTable$theta.x2[v] = coef(blin)[grep("X2~~X2", names(coef(blin)))] 

        summaryTable$theta.x3[v] = coef(blin)[grep("X3~~X3", names(coef(blin)))] 

        summaryTable$theta.x4[v] = coef(blin)[grep("X4~~X4", names(coef(blin)))] 

        summaryTable$theta.x5[v] = coef(blin)[grep("X5~~X5", names(coef(blin)))] 

        summaryTable$theta.x6[v] = coef(blin)[grep("X6~~X6", names(coef(blin)))] 

        summaryTable$theta.y1[v] = coef(blin)[grep("Y1~~Y1", names(coef(blin)))] 

        summaryTable$theta.y2[v] = coef(blin)[grep("Y2~~Y2", names(coef(blin)))] 

        summaryTable$theta.y3[v] = coef(blin)[grep("Y3~~Y3", names(coef(blin)))] 

         

        summaryTable$gamma1[v] = coef(blin)[grep("ETA~KSI1", names(coef(blin)))] 

        summaryTable$gamma2[v] = coef(blin)[grep("ETA~KSI2", names(coef(blin)))] 

         

        summaryTable$phi1[v] = coef(blin)[grep("KSI1~~KSI1", names(coef(blin)))] 

        #phi2 is the covariance 
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        summaryTable$phi2[v] = coef(blin)[grep("KSI1~~KSI2", names(coef(blin)))] 

        #phi4 is the var of 2 

        summaryTable$phi4[v] = coef(blin)[grep("KSI2~~KSI2", names(coef(blin)))] 

        summaryTable$psi[v] = coef(blin)[grep("ETA~~ETA", names(coef(blin)))] 

        summaryTable$omegai[v] = 0 

        summaryTable$omega1[v] = 0 

        summaryTable$omega2[v] = 0 

         

        fit = establishFit(obs.data = dat[1:9], model.obj = blin, m = 300, nfac = 0, model = mod) 

        summaryTable$likl[v] = fit[1] 

        summaryTable$aic[v] = fit[2] 

        summaryTable$bic[v] = fit[3] 

        summaryTable$chisq[v] = fit[4] 

        summaryTable$chisqp[v] = fit[5] 

        summaryTable$rmsea[v] = fit[6] 

        summaryTable$srmr[v] = fit[7] 

        summaryTable$hfi[v] = fit[8] 

        summaryTable$hfir[v] = fit[9] 

        summaryTable$R2[v] = fit[10] 

        summaryTable$R2r[v] = fit[11] 

        summaryTable$hfi0[v] = fit[12] 

        summaryTable$hfi1[v] = fit[13] 

        summaryTable$hfi3[v] = fit[14] 
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        summaryTable$PPP_likl[v] = fit[15] 

        summaryTable$PPP_aic[v] = fit[16] 

        summaryTable$PPP_bic[v] = fit[17] 

        summaryTable$PPP_chisq[v] = fit[18] 

        summaryTable$PPP_chisqp[v] = fit[19] 

        summaryTable$PPP_rmsea[v] = fit[20] 

        summaryTable$PPP_srmr[v] = fit[21] 

        summaryTable$PPP_hfi[v] = fit[22] 

        summaryTable$PPP_hfir[v] = fit[23] 

        summaryTable$PPP_R2r[v] = fit[24] 

        summaryTable$PPP_R2[v] = fit[25] 

 

      v = v+1 

       

      write.csv(summaryTable, file = fullpath, row.names=F)  

  

 

    # qml3, ExUC, bnl3 

    # Extended Unconstrained approach 

    dat$X1X4 <- dat$X1 * dat$X4 

    dat$X2X5 <- dat$X2 * dat$X5 

    dat$X3X6 <- dat$X3 * dat$X6 

    dat$X1X1 <- dat$X1 * dat$X1 
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    dat$X2X2 <- dat$X2 * dat$X2 

    dat$X3X3 <- dat$X3 * dat$X3 

    dat$X4X4 <- dat$X4 * dat$X4 

    dat$X5X5 <- dat$X5 * dat$X5 

    dat$X6X6 <- dat$X6 * dat$X6 

     

    mod.unc <- ' 

    KSI1 =~ 1*X1 + X2 + X3 

    KSI2 =~ 1*X4 + X5 + X6 

    ETA =~ 1*Y1 + Y2 + Y3 

    KSI1KSI2 =~ 1*X1X4 + X2X5 + X3X6 

    KSI1KSI1 =~ 1*X1X1 + X2X2 + X3X3 

    KSI2KSI2 =~ 1*X4X4 + X5X5 + X6X6 

    Y1 ~ 1 

    Y2 ~ 1 

    Y3 ~ 1 

    X1X4 ~ 1 

    X2X5 ~ 1 

    X3X6 ~ 1 

    X1X1 ~ 1 

    X2X2 ~ 1 

    X3X3 ~ 1 

    X4X4 ~ 1 
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    X5X5 ~ 1 

    X6X6 ~ 1 

    Y1 ~~ Y1 

    Y2 ~~ Y2 

    Y3 ~~ Y3 

    X1 ~~ X1 

    X2 ~~ X2 

    X3 ~~ X3 

    X4 ~~ X4 

    X5 ~~ X5 

    X6 ~~ X6 

    X1X4 ~~ X1X4 

    X2X5 ~~ X2X5 

    X3X6 ~~ X3X6 

    X1X1 ~~ X1X1 

    X2X2 ~~ X2X2 

    X3X3 ~~ X3X3 

    X4X4 ~~ X4X4 

    X5X5 ~~ X5X5 

    X6X6 ~~ X6X6 

    X1X1 ~~ X1X4 

    X2X2 ~~ X2X5 

    X3X3 ~~ X3X6 
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    X4X4 ~~ X1X4 

    X5X5 ~~ X2X5 

    X6X6 ~~ X3X6 

    ETA ~ KSI1 

    ETA ~ KSI2 

    ETA ~ KSI1KSI2 

    ETA ~ KSI1KSI1 

    ETA ~ KSI2KSI2 

    KSI1 ~~ KSI1 

    KSI1 ~~ KSI2 

    KSI2 ~~ KSI2 

    KSI1KSI2 ~~ KSI1KSI2 

    KSI1KSI1 ~~ KSI1KSI2 

    KSI1KSI1 ~~ KSI1KSI1 

    KSI2KSI2 ~~ KSI2KSI2 

    KSI2KSI2 ~~ KSI1KSI1 

    KSI2KSI2 ~~ KSI1KSI2 

    ETA ~~ ETA 

    ' 

    a = Sys.time() 

    ExUn <- lavaan::sem(mod.unc, data=dat, control = list(iter.max=30000)) 

    b = Sys.time() 
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    summaryTable$method[v] = c("ExUC") 

    summaryTable$converged[v] = ExUn@optim$converged*1 

    summaryTable$es[v] = c(es) 

    summaryTable$ss[v] = c(ss) 

    summaryTable$rxy[v] = c(rxy) 

    summaryTable$terms[v] = c(terms) 

    summaryTable$seed[v] = offset 

    summaryTable$time[v] = as.numeric(difftime(b, a, units = "secs")) 

    if(ExUn@optim$converged){ 

      summaryTable$lambda.x2[v] = coef(ExUn)[grep("KSI1=~X2", names(coef(ExUn)))][1] 

      summaryTable$lambda.x3[v] = coef(ExUn)[grep("KSI1=~X3", names(coef(ExUn)))][1] 

      summaryTable$lambda.x5[v] = coef(ExUn)[grep("KSI2=~X5", names(coef(ExUn)))][1] 

      summaryTable$lambda.x6[v] = coef(ExUn)[grep("KSI2=~X6", names(coef(ExUn)))][1] 

      summaryTable$lambda.y2[v] = coef(ExUn)[grep("ETA=~Y2", names(coef(ExUn)))][1] 

      summaryTable$lambda.y3[v] = coef(ExUn)[grep("ETA=~Y3", names(coef(ExUn)))][1] 

       

      summaryTable$nu.x1[v] = coef(ExUn)[grep("X1~1", names(coef(ExUn)))][1] 

      summaryTable$nu.x2[v] = coef(ExUn)[grep("X2~1", names(coef(ExUn)))][1] 

      summaryTable$nu.x3[v] = coef(ExUn)[grep("X3~1", names(coef(ExUn)))][1] 

      summaryTable$nu.x4[v] = coef(ExUn)[grep("X4~1", names(coef(ExUn)))][1] 

      summaryTable$nu.x5[v] = coef(ExUn)[grep("X5~1", names(coef(ExUn)))][1] 

      summaryTable$nu.x6[v] = coef(ExUn)[grep("X6~1", names(coef(ExUn)))][1] 

      summaryTable$nu.y1[v] = coef(ExUn)[grep("Y1~1", names(coef(ExUn)))][1] 
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      summaryTable$nu.y2[v] = coef(ExUn)[grep("Y2~1", names(coef(ExUn)))][1] 

      summaryTable$nu.y3[v] = coef(ExUn)[grep("Y3~1", names(coef(ExUn)))][1] 

       

      summaryTable$theta.x1[v] = coef(ExUn)[grep("X1~~X1", names(coef(ExUn)))][1] 

      summaryTable$theta.x2[v] = coef(ExUn)[grep("X2~~X2", names(coef(ExUn)))][1] 

      summaryTable$theta.x3[v] = coef(ExUn)[grep("X3~~X3", names(coef(ExUn)))][1] 

      summaryTable$theta.x4[v] = coef(ExUn)[grep("X4~~X4", names(coef(ExUn)))][1] 

      summaryTable$theta.x5[v] = coef(ExUn)[grep("X5~~X5", names(coef(ExUn)))][1] 

      summaryTable$theta.x6[v] = coef(ExUn)[grep("X6~~X6", names(coef(ExUn)))][1] 

      summaryTable$theta.y1[v] = coef(ExUn)[grep("Y1~~Y1", names(coef(ExUn)))][1] 

      summaryTable$theta.y2[v] = coef(ExUn)[grep("Y2~~Y2", names(coef(ExUn)))][1] 

      summaryTable$theta.y3[v] = coef(ExUn)[grep("Y3~~Y3", names(coef(ExUn)))][1] 

       

      summaryTable$gamma1[v] = coef(ExUn)[grep("ETA~KSI1", names(coef(ExUn)))][1] 

      summaryTable$gamma2[v] = coef(ExUn)[grep("ETA~KSI2", names(coef(ExUn)))][1] 

       

      summaryTable$phi1[v] = coef(ExUn)[grep("KSI1~~KSI1", names(coef(ExUn)))][1] 

      #phi2 is the covariance 

      summaryTable$phi2[v] = coef(ExUn)[grep("KSI1~~KSI2", names(coef(ExUn)))][1] 

      #phi4 is the var of 2 

      summaryTable$phi4[v] = coef(ExUn)[grep("KSI2~~KSI2", names(coef(ExUn)))][1] 

      summaryTable$psi[v] = coef(ExUn)[grep("ETA~~ETA", names(coef(ExUn)))][1] 

      summaryTable$omegai[v] = coef(ExUn)[grep("ETA~KSI1KSI2", names(coef(ExUn)))][1] 
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      summaryTable$omega1[v] = coef(ExUn)[grep("ETA~KSI1KSI1", names(coef(ExUn)))][1] 

      summaryTable$omega2[v] = coef(ExUn)[grep("ETA~KSI2KSI2", names(coef(ExUn)))][1] 

       

      fit = establishFit(obs.data = dat, model.obj = ExUn,m = 300, nfac = 3, model = mod.unc, df = 

fitMeasures(ExUn)[4]) 

      summaryTable$likl[v] = fit[1] 

      summaryTable$aic[v] = fit[2] 

      summaryTable$bic[v] = fit[3] 

      summaryTable$chisq[v] = fit[4] 

      summaryTable$chisqp[v] = fit[5] 

      summaryTable$rmsea[v] = fit[6] 

      summaryTable$srmr[v] = fit[7] 

      summaryTable$hfi[v] = fit[8] 

      summaryTable$hfir[v] = fit[9] 

      summaryTable$R2[v] = fit[10] 

      summaryTable$R2r[v] = fit[11] 

      summaryTable$hfi0[v] = fit[12] 

      summaryTable$hfi1[v] = fit[13] 

      summaryTable$hfi3[v] = fit[14] 

      summaryTable$PPP_likl[v] = fit[15] 

      summaryTable$PPP_aic[v] = fit[16] 

      summaryTable$PPP_bic[v] = fit[17] 

      summaryTable$PPP_chisq[v] = fit[18] 
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      summaryTable$PPP_chisqp[v] = fit[19] 

      summaryTable$PPP_rmsea[v] = fit[20] 

      summaryTable$PPP_srmr[v] = fit[21] 

      summaryTable$PPP_hfi[v] = fit[22] 

      summaryTable$PPP_hfir[v] = fit[23] 

      summaryTable$PPP_R2r[v] = fit[24] 

      summaryTable$PPP_R2[v] = fit[25] 

      summaryTable$PPP_logl[v] = fit[26] 

      summaryTable$PPP_cfi[v] = fit[27] 

      summaryTable$PPP_tli[v] = fit[28] 

      summaryTable$PPP_rmseap[v] = fit[29] 

    } 

    v = v+1 

    write.csv(summaryTable, file = fullpath, row.names=F) 

     

      mod = 

        'xi1 =~ x1 + x2 + x3 

      xi2 =~ x4 + x5 + x6 

      eta =~ y1 + y2 + y3 

      eta ~ xi1 + xi2 + xi1:xi2 + xi1:xi1 + xi2:xi2' 

       

      m2=lav2nlsem(mod) 
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      a = Sys.time() 

          if(1 / summaryTable$gamma1[(v-1)] < 1 | summaryTable$converged[(v-1)] < 1){ 

        start = abs(rnorm(33, .3, .1)) 

        start = start * 

sign(ExUn@ParTable$est[c(2,3,5,6,8,9,55,56,31:39,69,60,61,62,77,78,80,81,19,20,84,82,83,58,

57,59)]) 

      }else{ 

        start = 

ExUn@ParTable$est[c(2,3,5,6,8,9,55,56,31:39,69,60,61,62,77,78,80,81,19,20,84,82,83,58,57,59

)] 

      } 

       

      QML3 <- tryCatch({em(m2, data.frame(data[,,1]), start, qml=TRUE, verbose= TRUE, 

convergence = .1, neg.hessian = FALSE) 

      }, 

error = function(e){ 

"Failed to Converge" 

}) 

 

      b = Sys.time() 

       

      summaryTable$method[v] = c("QML3") 

      summaryTable$es[v] = c(es) 
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      summaryTable$ss[v] = c(ss) 

      summaryTable$rxy[v] = c(rxy) 

      summaryTable$terms[v] = c(terms) 

      summaryTable$seed[v] = offset 

      summaryTable$time[v] = as.numeric(difftime(b, a, units = "secs")) 

if("Failed to Converge" != QML3){ 

      summaryTable$converged[v] = (QML3$em.convergence=="yes")*1 

 

        summaryTable$lambda.x2[v] = coef(QML3)[grep("Lambda.x2", names(coef(QML3)))] 

        summaryTable$lambda.x3[v] = coef(QML3)[grep("Lambda.x3", names(coef(QML3)))] 

        summaryTable$lambda.x5[v] = coef(QML3)[grep("Lambda.x11", names(coef(QML3)))] 

        summaryTable$lambda.x6[v] = coef(QML3)[grep("Lambda.x12", names(coef(QML3)))] 

        summaryTable$lambda.y2[v] = coef(QML3)[grep("Lambda.y2", names(coef(QML3)))] 

        summaryTable$lambda.y3[v] = coef(QML3)[grep("Lambda.y3", names(coef(QML3)))] 

         

        summaryTable$nu.x2[v] = coef(QML3)[grep("nu.x2", names(coef(QML3)))] 

        summaryTable$nu.x3[v] = coef(QML3)[grep("nu.x3", names(coef(QML3)))] 

        summaryTable$nu.x5[v] = coef(QML3)[grep("nu.x5", names(coef(QML3)))] 

        summaryTable$nu.x6[v] = coef(QML3)[grep("nu.x6", names(coef(QML3)))] 

        summaryTable$nu.y2[v] = coef(QML3)[grep("nu.y2", names(coef(QML3)))] 

        summaryTable$nu.y3[v] = coef(QML3)[grep("nu.y3", names(coef(QML3)))] 

         

        summaryTable$theta.x1[v] = coef(QML3)[grep("Theta.d", names(coef(QML3)))][1] 
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        summaryTable$theta.x2[v] = coef(QML3)[grep("Theta.d", names(coef(QML3)))][2] 

        summaryTable$theta.x3[v] = coef(QML3)[grep("Theta.d", names(coef(QML3)))][3] 

        summaryTable$theta.x4[v] = coef(QML3)[grep("Theta.d", names(coef(QML3)))][4] 

        summaryTable$theta.x5[v] = coef(QML3)[grep("Theta.d", names(coef(QML3)))][5] 

        summaryTable$theta.x6[v] = coef(QML3)[grep("Theta.d", names(coef(QML3)))][6] 

        summaryTable$theta.y1[v] = coef(QML3)[grep("Theta.e", names(coef(QML3)))][1] 

        summaryTable$theta.y2[v] = coef(QML3)[grep("Theta.e", names(coef(QML3)))][2] 

        summaryTable$theta.y3[v] = coef(QML3)[grep("Theta.e", names(coef(QML3)))][3] 

         

        summaryTable$gamma1[v] = coef(QML3)[grep("Gamma1", names(coef(QML3)))] 

        summaryTable$gamma2[v] = coef(QML3)[grep("Gamma2", names(coef(QML3)))] 

         

        summaryTable$phi1[v] = coef(QML3)[grep("Phi1", names(coef(QML3)))] 

        #phi2 is the covariance 

        summaryTable$phi2[v] = coef(QML3)[grep("Phi2", names(coef(QML3)))] 

        #phi4 is the var of 2 

        summaryTable$phi4[v] = coef(QML3)[grep("Phi4", names(coef(QML3)))] 

        summaryTable$psi[v] = coef(QML3)[grep("Psi", names(coef(QML3)))] 

        summaryTable$omegai[v] = coef(QML3)[grep("Omega3", names(coef(QML3)))] 

        summaryTable$omega1[v] = coef(QML3)[grep("Omega1", names(coef(QML3)))] 

        summaryTable$omega2[v] = coef(QML3)[grep("Omega4", names(coef(QML3)))] 

         

        fit = establishFit(obs.data = dat[1:9], model.obj = QML3, m = 300, nfac = 3, model = mod) 
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        summaryTable$likl[v] = fit[1] 

        summaryTable$aic[v] = fit[2] 

        summaryTable$bic[v] = fit[3] 

        summaryTable$chisq[v] = fit[4] 

        summaryTable$chisqp[v] = fit[5] 

        summaryTable$rmsea[v] = fit[6] 

        summaryTable$srmr[v] = fit[7] 

        summaryTable$hfi[v] = fit[8] 

        summaryTable$hfir[v] = fit[9] 

        summaryTable$R2[v] = fit[10] 

        summaryTable$R2r[v] = fit[11] 

        summaryTable$hfi0[v] = fit[12] 

        summaryTable$hfi1[v] = fit[13] 

        summaryTable$hfi3[v] = fit[14] 

        summaryTable$PPP_likl[v] = fit[15] 

        summaryTable$PPP_aic[v] = fit[16] 

        summaryTable$PPP_bic[v] = fit[17] 

        summaryTable$PPP_chisq[v] = fit[18] 

        summaryTable$PPP_chisqp[v] = fit[19] 

        summaryTable$PPP_rmsea[v] = fit[20] 

        summaryTable$PPP_srmr[v] = fit[21] 

        summaryTable$PPP_hfi[v] = fit[22] 

        summaryTable$PPP_hfir[v] = fit[23] 
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        summaryTable$PPP_R2r[v] = fit[24] 

        summaryTable$PPP_R2[v] = fit[25] 

} 

      v = v+1 

      write.csv(summaryTable, file = fullpath, row.names=F) 

       

      # bnl3 

      rasp = coef(ExUn)[c(1:6,49, 

                          50,28:33,25:27, 

                          63,70,71,72,73,74,75,13, 

                          14,15, 54,56,55,51,52,53)] 

      rasp[grep("\\d~~", names(rasp))[which(rasp[grep("\\d~~", names(rasp))]<0)]] = NA 

       

       

       

       

       

      db$omega = matrix(c(NA, NA, 0, NA), nrow=2) 

      inits = list(c1 = list(parvec= c(rasp)),  

                   c2 = list(parvec= c(rasp)), 

                   c3 = list(parvec= c(rasp))) 

       

      a = Sys.time() 
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      bnl3 <-tryCatch({run.jags("/fslhome/pip89/compute/Omega/full.jag", monitor = monitors, 

data = db, n.chains = 3, thin = 1, inits = inits) 

      }, 

error = function(e){ 

"Failed to Converge" 

}) 

 

      b = Sys.time() 

       

      summaryTable$method[v] = "bnl3" 

      summaryTable$es[v] = c(es) 

      summaryTable$ss[v] = c(ss) 

      summaryTable$rxy[v] = c(rxy) 

      summaryTable$terms[v] = c(terms) 

      summaryTable$seed[v] = offset 

      summaryTable$time[v] = as.numeric(difftime(b, a, units = "secs")) 

if("Failed to Converge" != bnl3){ 

        summaryTable$converged[v] = 

mean(na.omit(data.frame(summary(bnl3))$psrf[1:39]<1.005)) 

        summaryTable$lambda.x2[v] = data.frame(summary(bnl3))[grep("lambda", 

rownames(data.frame(summary(bnl3)))),][2,2] 

        summaryTable$lambda.x3[v] = data.frame(summary(bnl3))[grep("lambda", 

rownames(data.frame(summary(bnl3)))),][3,2] 
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        summaryTable$lambda.x5[v] = data.frame(summary(bnl3))[grep("lambda", 

rownames(data.frame(summary(bnl3)))),][5,2] 

        summaryTable$lambda.x6[v] = data.frame(summary(bnl3))[grep("lambda", 

rownames(data.frame(summary(bnl3)))),][6,2] 

        summaryTable$lambda.y2[v] = data.frame(summary(bnl3))[grep("lambda", 

rownames(data.frame(summary(bnl3)))),][8,2] 

        summaryTable$lambda.y3[v] = data.frame(summary(bnl3))[grep("lambda", 

rownames(data.frame(summary(bnl3)))),][9,2] 

         

        summaryTable$nu.x1[v] = data.frame(summary(bnl3))[grep("nu", 

rownames(data.frame(summary(bnl3)))),][1,2] 

        summaryTable$nu.x2[v] = data.frame(summary(bnl3))[grep("nu", 

rownames(data.frame(summary(bnl3)))),][2,2] 

        summaryTable$nu.x3[v] = data.frame(summary(bnl3))[grep("nu", 

rownames(data.frame(summary(bnl3)))),][3,2] 

        summaryTable$nu.x4[v] = data.frame(summary(bnl3))[grep("nu", 

rownames(data.frame(summary(bnl3)))),][4,2] 

        summaryTable$nu.x5[v] = data.frame(summary(bnl3))[grep("nu", 

rownames(data.frame(summary(bnl3)))),][5,2] 

        summaryTable$nu.x6[v] = data.frame(summary(bnl3))[grep("nu", 

rownames(data.frame(summary(bnl3)))),][6,2] 

        summaryTable$nu.y1[v] = data.frame(summary(bnl3))[grep("nu", 

rownames(data.frame(summary(bnl3)))),][7,2] 
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        summaryTable$nu.y2[v] = data.frame(summary(bnl3))[grep("nu", 

rownames(data.frame(summary(bnl3)))),][8,2] 

        summaryTable$nu.y3[v] = data.frame(summary(bnl3))[grep("nu", 

rownames(data.frame(summary(bnl3)))),][9,2] 

         

         

        summaryTable$theta.x1[v] = data.frame(summary(bnl3))[grep("theta", 

rownames(data.frame(summary(bnl3)))),][1,2] 

        summaryTable$theta.x2[v] = data.frame(summary(bnl3))[grep("theta", 

rownames(data.frame(summary(bnl3)))),][2,2] 

        summaryTable$theta.x3[v] = data.frame(summary(bnl3))[grep("theta", 

rownames(data.frame(summary(bnl3)))),][3,2] 

        summaryTable$theta.x4[v] = data.frame(summary(bnl3))[grep("theta", 

rownames(data.frame(summary(bnl3)))),][4,2] 

        summaryTable$theta.x5[v] = data.frame(summary(bnl3))[grep("theta", 

rownames(data.frame(summary(bnl3)))),][5,2] 

        summaryTable$theta.x6[v] = data.frame(summary(bnl3))[grep("theta", 

rownames(data.frame(summary(bnl3)))),][6,2] 

        summaryTable$theta.y1[v] = data.frame(summary(bnl3))[grep("theta", 

rownames(data.frame(summary(bnl3)))),][1,2] 

        summaryTable$theta.y2[v] = data.frame(summary(bnl3))[grep("theta", 

rownames(data.frame(summary(bnl3)))),][2,2] 
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        summaryTable$theta.y3[v] = data.frame(summary(bnl3))[grep("theta", 

rownames(data.frame(summary(bnl3)))),][3,2] 

         

        summaryTable$gamma1[v] = data.frame(summary(bnl3))[grep("omega", 

rownames(data.frame(summary(bnl3)))),][1,2] 

        summaryTable$gamma2[v] = data.frame(summary(bnl3))[grep("omega", 

rownames(data.frame(summary(bnl3)))),][2,2] 

         

        summaryTable$phi1[v] = data.frame(summary(bnl3))[grep("psi", 

rownames(data.frame(summary(bnl3)))),][1,2] 

        #phi2 is the covariance 

        summaryTable$phi2[v] = data.frame(summary(bnl3))[grep("psi", 

rownames(data.frame(summary(bnl3)))),][4,2] 

        #phi4 is the var of 2 

        summaryTable$phi4[v] = data.frame(summary(bnl3))[grep("psi", 

rownames(data.frame(summary(bnl3)))),][2,2] 

        summaryTable$psi[v] = data.frame(summary(bnl3))[grep("psi", 

rownames(data.frame(summary(bnl3)))),][3,2] 

        summaryTable$omegai[v] = data.frame(summary(bnl3))[grep("omega", 

rownames(data.frame(summary(bnl3)))),][1,1] 

        summaryTable$omega1[v] = data.frame(summary(bnl3))[grep("omega", 

rownames(data.frame(summary(bnl3)))),][2,1] 
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        summaryTable$omega2[v] = data.frame(summary(bnl3))[grep("omega", 

rownames(data.frame(summary(bnl3)))),][3,1] 

         

        fit = establishFit(obs.data = dat[1:9], model.obj = bnl3, m = 300, nfac = 3) 

        summaryTable$likl[v] = fit[1] 

        summaryTable$aic[v] = fit[2] 

        summaryTable$bic[v] = fit[3] 

        summaryTable$chisq[v] = fit[4] 

        summaryTable$chisqp[v] = fit[5] 

        summaryTable$rmsea[v] = fit[6] 

        summaryTable$srmr[v] = fit[7] 

        summaryTable$hfi[v] = fit[8] 

        summaryTable$hfir[v] = fit[9] 

        summaryTable$R2[v] = fit[10] 

        summaryTable$R2r[v] = fit[11] 

        summaryTable$hfi0[v] = fit[12] 

        summaryTable$hfi1[v] = fit[13] 

        summaryTable$hfi3[v] = fit[14] 

        summaryTable$PPP_likl[v] = fit[15] 

        summaryTable$PPP_aic[v] = fit[16] 

        summaryTable$PPP_bic[v] = fit[17] 

        summaryTable$PPP_chisq[v] = fit[18] 

        summaryTable$PPP_chisqp[v] = fit[19] 
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        summaryTable$PPP_rmsea[v] = fit[20] 

        summaryTable$PPP_srmr[v] = fit[21] 

        summaryTable$PPP_hfi[v] = fit[22] 

        summaryTable$PPP_hfir[v] = fit[23] 

        summaryTable$PPP_R2r[v] = fit[24] 

        summaryTable$PPP_R2[v] = fit[25] 

} 

      v = v+1 

      write.csv(summaryTable, file = fullpath, row.names=F) 

 

    # Un, bnl1, qml1 

    # Un 

    dat = dat[1:9] 

    dat$X1X4 <- dat$X1 * dat$X4 

    dat$X2X5 <- dat$X2 * dat$X5 

    dat$X3X6 <- dat$X3 * dat$X6 

    mod.unc <- ' 

    ETA =~ 1*Y1 

    ETA =~ Y2 

    ETA =~ Y3 

    KSI1 =~ 1*X1 

    KSI1 =~ X2 

    KSI1 =~ X3 
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    KSI2 =~ 1*X4 

    KSI2 =~ X5 

    KSI2 =~ X6 

    KSI1KSI2 =~ 1*X1X4 

    KSI1KSI2 =~ X2X5 

    KSI1KSI2 =~ X3X6 

    Y1 ~ 1 

    Y2 ~ 1 

    Y3 ~ 1 

    X1X4 ~ 1 

    X2X5 ~ 1 

    X3X6 ~ 1 

    Y1 ~~ Y1 

    Y2 ~~ Y2 

    Y3 ~~ Y3 

    X1 ~~ X1 

    X2 ~~ X2 

    X3 ~~ X3 

    X4 ~~ X4 

    X5 ~~ X5 

    X6 ~~ X6 

    X1X4 ~~ X1X4 

    X2X5 ~~ X2X5 
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    X3X6 ~~ X3X6 

    ETA ~ KSI1 

    ETA ~ KSI2 

    ETA ~ KSI1KSI2 

    KSI1 ~~ KSI1 

    KSI1 ~~ KSI2 

    KSI2 ~~ KSI2 

    KSI1KSI2 ~~ KSI1KSI2 

    ETA ~~ ETA 

    ' 

    a = Sys.time() 

    Un <- lavaan::sem(mod.unc, dat, control = list(iter.max=3000)) 

    b = Sys.time() 

    summaryTable$method[v] = c("UC") 

    summaryTable$converged[v] = Un@optim$converged*1 

    summaryTable$es[v] = c(es) 

    summaryTable$ss[v] = c(ss) 

    summaryTable$rxy[v] = c(rxy) 

    summaryTable$terms[v] = c(terms) 

    summaryTable$seed[v] = offset 

    summaryTable$time[v] = as.numeric(difftime(b, a, units = "secs")) 

if(Un@optim$converged){ 

      summaryTable$lambda.x2[v] = coef(Un)[grep("KSI1=~X2", names(coef(Un)))][1] 
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      summaryTable$lambda.x3[v] = coef(Un)[grep("KSI1=~X3", names(coef(Un)))][1] 

      summaryTable$lambda.x5[v] = coef(Un)[grep("KSI2=~X5", names(coef(Un)))][1] 

      summaryTable$lambda.x6[v] = coef(Un)[grep("KSI2=~X6", names(coef(Un)))][1] 

      summaryTable$lambda.y2[v] = coef(Un)[grep("ETA=~Y2", names(coef(Un)))][1] 

      summaryTable$lambda.y3[v] = coef(Un)[grep("ETA=~Y3", names(coef(Un)))][1] 

       

      summaryTable$nu.x1[v] = coef(Un)[grep("X1~1", names(coef(Un)))][1] 

      summaryTable$nu.x2[v] = coef(Un)[grep("X2~1", names(coef(Un)))][1] 

      summaryTable$nu.x3[v] = coef(Un)[grep("X3~1", names(coef(Un)))][1] 

      summaryTable$nu.x4[v] = coef(Un)[grep("X4~1", names(coef(Un)))][1] 

      summaryTable$nu.x5[v] = coef(Un)[grep("X5~1", names(coef(Un)))][1] 

      summaryTable$nu.x6[v] = coef(Un)[grep("X6~1", names(coef(Un)))][1] 

      summaryTable$nu.y1[v] = coef(Un)[grep("Y1~1", names(coef(Un)))][1] 

      summaryTable$nu.y2[v] = coef(Un)[grep("Y2~1", names(coef(Un)))][1] 

      summaryTable$nu.y3[v] = coef(Un)[grep("Y3~1", names(coef(Un)))][1] 

       

      summaryTable$theta.x1[v] = coef(Un)[grep("X1~~X1", names(coef(Un)))][1] 

      summaryTable$theta.x2[v] = coef(Un)[grep("X2~~X2", names(coef(Un)))][1] 

      summaryTable$theta.x3[v] = coef(Un)[grep("X3~~X3", names(coef(Un)))][1] 

      summaryTable$theta.x4[v] = coef(Un)[grep("X4~~X4", names(coef(Un)))][1] 

      summaryTable$theta.x5[v] = coef(Un)[grep("X5~~X5", names(coef(Un)))][1] 

      summaryTable$theta.x6[v] = coef(Un)[grep("X6~~X6", names(coef(Un)))][1] 

      summaryTable$theta.y1[v] = coef(Un)[grep("Y1~~Y1", names(coef(Un)))][1] 
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      summaryTable$theta.y2[v] = coef(Un)[grep("Y2~~Y2", names(coef(Un)))][1] 

      summaryTable$theta.y3[v] = coef(Un)[grep("Y3~~Y3", names(coef(Un)))][1] 

       

      summaryTable$gamma1[v] = coef(Un)[grep("ETA~KSI1", names(coef(Un)))][1] 

      summaryTable$gamma2[v] = coef(Un)[grep("ETA~KSI2", names(coef(Un)))][1] 

       

      summaryTable$phi1[v] = coef(Un)[grep("KSI1~~KSI1", names(coef(Un)))][1] 

      #phi2 is the covariance 

      summaryTable$phi2[v] = coef(Un)[grep("KSI1~~KSI2", names(coef(Un)))][1] 

      #phi4 is the var of 2 

      summaryTable$phi4[v] = coef(Un)[grep("KSI2~~KSI2", names(coef(Un)))][1] 

      summaryTable$psi[v] = coef(Un)[grep("ETA~~ETA", names(coef(Un)))][1] 

      summaryTable$omegai[v] = coef(Un)[grep("ETA~KSI1KSI2", names(coef(Un)))][1] 

      summaryTable$omega1[v] = 0 

      summaryTable$omega2[v] = 0 

       

      fit = establishFit(obs.data = dat, model.obj = Un, m = 300, nfac = 1, model = mod.unc, df = 

fitMeasures(Un)[4]) 

      summaryTable$likl[v] = fit[1] 

      summaryTable$aic[v] = fit[2] 

      summaryTable$bic[v] = fit[3] 

      summaryTable$chisq[v] = fit[4] 

      summaryTable$chisqp[v] = fit[5] 
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      summaryTable$rmsea[v] = fit[6] 

      summaryTable$srmr[v] = fit[7] 

      summaryTable$hfi[v] = fit[8] 

      summaryTable$hfir[v] = fit[9] 

      summaryTable$R2[v] = fit[10] 

      summaryTable$R2r[v] = fit[11] 

      summaryTable$hfi0[v] = fit[12] 

      summaryTable$hfi1[v] = fit[13] 

      summaryTable$hfi3[v] = fit[14] 

      summaryTable$PPP_likl[v] = fit[15] 

      summaryTable$PPP_aic[v] = fit[16] 

      summaryTable$PPP_bic[v] = fit[17] 

      summaryTable$PPP_chisq[v] = fit[18] 

      summaryTable$PPP_chisqp[v] = fit[19] 

      summaryTable$PPP_rmsea[v] = fit[20] 

      summaryTable$PPP_srmr[v] = fit[21] 

      summaryTable$PPP_hfi[v] = fit[22] 

      summaryTable$PPP_hfir[v] = fit[23] 

      summaryTable$PPP_R2r[v] = fit[24] 

      summaryTable$PPP_R2[v] = fit[25] 

      summaryTable$PPP_logl[v] = fit[26] 

      summaryTable$PPP_cfi[v] = fit[27] 

      summaryTable$PPP_tli[v] = fit[28] 
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      summaryTable$PPP_rmseap[v] = fit[29] 

} 

    v = v+1 

    write.csv(summaryTable, file = fullpath, row.names=F) 

     

      # QML1 

       

    if(1 / summaryTable$gamma1[6] < 1){ 

      start = abs(rnorm(31, .3, .1)) 

      start = start * 

sign(Un@ParTable$est[c(2,3,5,6,8,9,31,32,19:27,38,34,36,35,41:44,49,13,14,47,48,33)]) 

    }else{ 

      start = Un@ParTable$est[c(2,3,5,6,8,9,31,32,19:27,38,34,36,35,41:44,49,13,14,47,48,33)] 

    } 

       

      qml1 <- specify_sem(num.x = 6, num.y = 3, num.xi = 2, num.eta = 1, xi = "x1-x3,x4-x6", 

                          eta = "y1-y3", interaction = "xi1:xi2") 

       

      a = Sys.time() 

      QML1 =tryCatch({ 

em(qml1, data.frame(data[,,1]), start = start, qml =T, verbose = TRUE, convergence=.1, 

neg.hessian=FALSE) 

}, 
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error = function(e){ 

"Failed to Converge" 

}) 

      b = Sys.time() 

      summaryTable$method[v] = "QML1" 

      summaryTable$es[v] = es 

      summaryTable$ss[v] = ss 

      summaryTable$rxy[v] = rxy 

      summaryTable$terms[v] = terms 

      summaryTable$seed[v] = offset 

      summaryTable$time[v] = as.numeric(difftime(b, a, units = "secs")) 

if("Failed to Converge" != QML1){  

     summaryTable$converged[v] = (QML1$em.convergence=="yes")*1 

        summaryTable$lambda.x2[v] = coef(QML1)[grep("Lambda.x2", names(coef(QML1)))] 

        summaryTable$lambda.x3[v] = coef(QML1)[grep("Lambda.x3", names(coef(QML1)))] 

        summaryTable$lambda.x5[v] = coef(QML1)[grep("Lambda.x11", names(coef(QML1)))] 

        summaryTable$lambda.x6[v] = coef(QML1)[grep("Lambda.x12", names(coef(QML1)))] 

        summaryTable$lambda.y2[v] = coef(QML1)[grep("Lambda.y2", names(coef(QML1)))] 

        summaryTable$lambda.y3[v] = coef(QML1)[grep("Lambda.y3", names(coef(QML1)))] 

         

        summaryTable$nu.x2[v] = coef(QML1)[grep("nu.x2", names(coef(QML1)))] 

        summaryTable$nu.x3[v] = coef(QML1)[grep("nu.x3", names(coef(QML1)))] 

        summaryTable$nu.x5[v] = coef(QML1)[grep("nu.x5", names(coef(QML1)))] 



 103 

        summaryTable$nu.x6[v] = coef(QML1)[grep("nu.x6", names(coef(QML1)))] 

        summaryTable$nu.y2[v] = coef(QML1)[grep("nu.y2", names(coef(QML1)))] 

        summaryTable$nu.y3[v] = coef(QML1)[grep("nu.y3", names(coef(QML1)))] 

         

        summaryTable$theta.x1[v] = coef(QML1)[grep("Theta.d", names(coef(QML1)))][1] 

        summaryTable$theta.x2[v] = coef(QML1)[grep("Theta.d", names(coef(QML1)))][2] 

        summaryTable$theta.x3[v] = coef(QML1)[grep("Theta.d", names(coef(QML1)))][3] 

        summaryTable$theta.x4[v] = coef(QML1)[grep("Theta.d", names(coef(QML1)))][4] 

        summaryTable$theta.x5[v] = coef(QML1)[grep("Theta.d", names(coef(QML1)))][5] 

        summaryTable$theta.x6[v] = coef(QML1)[grep("Theta.d", names(coef(QML1)))][6] 

        summaryTable$theta.y1[v] = coef(QML1)[grep("Theta.e", names(coef(QML1)))][1] 

        summaryTable$theta.y2[v] = coef(QML1)[grep("Theta.e", names(coef(QML1)))][2] 

        summaryTable$theta.y3[v] = coef(QML1)[grep("Theta.e", names(coef(QML1)))][3] 

         

        summaryTable$gamma1[v] = coef(QML1)[grep("Gamma1", names(coef(QML1)))] 

        summaryTable$gamma2[v] = coef(QML1)[grep("Gamma2", names(coef(QML1)))] 

         

        summaryTable$phi1[v] = coef(QML1)[grep("Phi1", names(coef(QML1)))] 

        #phi2 is the covariance 

        summaryTable$phi2[v] = coef(QML1)[grep("Phi2", names(coef(QML1)))] 

        #phi4 is the var of 2 

        summaryTable$phi4[v] = coef(QML1)[grep("Phi4", names(coef(QML1)))] 

        summaryTable$psi[v] = coef(QML1)[grep("Psi", names(coef(QML1)))] 
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        summaryTable$omegai[v] = coef(QML1)[grep("Omega3", names(coef(QML1)))] 

        summaryTable$omega1[v] = 0 

        summaryTable$omega2[v] = 0 

         

        fit = establishFit(obs.data = dat[1:9], model.obj = QML1, m = 300, nfac = 1) 

        summaryTable$likl[v] = fit[1] 

        summaryTable$aic[v] = fit[2] 

        summaryTable$bic[v] = fit[3] 

        summaryTable$chisq[v] = fit[4] 

        summaryTable$chisqp[v] = fit[5] 

        summaryTable$rmsea[v] = fit[6] 

        summaryTable$srmr[v] = fit[7] 

        summaryTable$hfi[v] = fit[8] 

        summaryTable$hfir[v] = fit[9] 

        summaryTable$R2[v] = fit[10] 

        summaryTable$R2r[v] = fit[11] 

        summaryTable$hfi0[v] = fit[12] 

        summaryTable$hfi1[v] = fit[13] 

        summaryTable$hfi3[v] = fit[14] 

        summaryTable$PPP_likl[v] = fit[15] 

        summaryTable$PPP_aic[v] = fit[16] 

        summaryTable$PPP_bic[v] = fit[17] 

        summaryTable$PPP_chisq[v] = fit[18] 
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        summaryTable$PPP_chisqp[v] = fit[19] 

        summaryTable$PPP_rmsea[v] = fit[20] 

        summaryTable$PPP_srmr[v] = fit[21] 

        summaryTable$PPP_hfi[v] = fit[22] 

        summaryTable$PPP_hfir[v] = fit[23] 

        summaryTable$PPP_R2r[v] = fit[24] 

        summaryTable$PPP_R2[v] = fit[25] 

} 

      v = v+1 

      write.csv(summaryTable, file = fullpath, row.names=F) 

     

      rasp = c(coef(Un)[3:4],coef(Un)[5:6],coef(Un)[c(1,2,27,28,18:23, 15:17, 34,37:42, 

9,10,11)],coef(Un)[c(30,32,31,29)]) 

      rasp[grep("\\d~~", names(rasp))[which(rasp[grep("\\d~~", names(rasp))]<0)]] = NA 

       

      # Bnl1 

      db$omega = matrix(c(0, NA, 0, 0), nrow=2) 

      inits = list(c1 = list(parvec= c(rasp)),  

                   c2 = list(parvec= c(rasp)), 

                   c3 = list(parvec= c(rasp))) 

       

      a = Sys.time() 

      bnl1 <- tryCatch({ 
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run.jags("/fslhome/pip89/compute/Omega/int.jag", monitor = monitors, data = db, n.chains = 3, 

thin = 1, inits = inits) 

}, 

error = function(e){ 

"Failed to Converge" 

}) 

      b = Sys.time() 

       

      summaryTable$method[v] = "bnl1" 

      summaryTable$es[v] = c(es) 

      summaryTable$ss[v] = c(ss) 

      summaryTable$rxy[v] = c(rxy) 

      summaryTable$terms[v] = c(terms) 

      summaryTable$seed[v] = offset 

      summaryTable$time[v] = as.numeric(difftime(b, a, units = "secs")) 

if("Failed to Converge" != bnl1){ 

summaryTable$converged[v] = mean(data.frame(summary(bnl1))$psrf[1:39]<1.005, na.rm=T) 

        summaryTable$lambda.x2[v] = data.frame(summary(bnl1))[grep("lambda", 

rownames(data.frame(summary(bnl1)))),][2,2] 

        summaryTable$lambda.x3[v] = data.frame(summary(bnl1))[grep("lambda", 

rownames(data.frame(summary(bnl1)))),][3,2] 

        summaryTable$lambda.x5[v] = data.frame(summary(bnl1))[grep("lambda", 

rownames(data.frame(summary(bnl1)))),][5,2] 



 107 

        summaryTable$lambda.x6[v] = data.frame(summary(bnl1))[grep("lambda", 

rownames(data.frame(summary(bnl1)))),][6,2] 

        summaryTable$lambda.y2[v] = data.frame(summary(bnl1))[grep("lambda", 

rownames(data.frame(summary(bnl1)))),][8,2] 

        summaryTable$lambda.y3[v] = data.frame(summary(bnl1))[grep("lambda", 

rownames(data.frame(summary(bnl1)))),][9,2] 

         

        summaryTable$nu.x1[v] = data.frame(summary(bnl1))[grep("nu", 

rownames(data.frame(summary(bnl1)))),][1,2] 

        summaryTable$nu.x2[v] = data.frame(summary(bnl1))[grep("nu", 

rownames(data.frame(summary(bnl1)))),][2,2] 

        summaryTable$nu.x3[v] = data.frame(summary(bnl1))[grep("nu", 

rownames(data.frame(summary(bnl1)))),][3,2] 

        summaryTable$nu.x4[v] = data.frame(summary(bnl1))[grep("nu", 

rownames(data.frame(summary(bnl1)))),][4,2] 

        summaryTable$nu.x5[v] = data.frame(summary(bnl1))[grep("nu", 

rownames(data.frame(summary(bnl1)))),][5,2] 

        summaryTable$nu.x6[v] = data.frame(summary(bnl1))[grep("nu", 

rownames(data.frame(summary(bnl1)))),][6,2] 

        summaryTable$nu.y1[v] = data.frame(summary(bnl1))[grep("nu", 

rownames(data.frame(summary(bnl1)))),][7,2] 

        summaryTable$nu.y2[v] = data.frame(summary(bnl1))[grep("nu", 

rownames(data.frame(summary(bnl1)))),][8,2] 
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        summaryTable$nu.y3[v] = data.frame(summary(bnl1))[grep("nu", 

rownames(data.frame(summary(bnl1)))),][9,2] 

         

         

        summaryTable$theta.x1[v] = data.frame(summary(bnl1))[grep("theta", 

rownames(data.frame(summary(bnl1)))),][1,2] 

        summaryTable$theta.x2[v] = data.frame(summary(bnl1))[grep("theta", 

rownames(data.frame(summary(bnl1)))),][2,2] 

        summaryTable$theta.x3[v] = data.frame(summary(bnl1))[grep("theta", 

rownames(data.frame(summary(bnl1)))),][3,2] 

        summaryTable$theta.x4[v] = data.frame(summary(bnl1))[grep("theta", 

rownames(data.frame(summary(bnl1)))),][4,2] 

        summaryTable$theta.x5[v] = data.frame(summary(bnl1))[grep("theta", 

rownames(data.frame(summary(bnl1)))),][5,2] 

        summaryTable$theta.x6[v] = data.frame(summary(bnl1))[grep("theta", 

rownames(data.frame(summary(bnl1)))),][6,2] 

        summaryTable$theta.y1[v] = data.frame(summary(bnl1))[grep("theta", 

rownames(data.frame(summary(bnl1)))),][1,2] 

        summaryTable$theta.y2[v] = data.frame(summary(bnl1))[grep("theta", 

rownames(data.frame(summary(bnl1)))),][2,2] 

        summaryTable$theta.y3[v] = data.frame(summary(bnl1))[grep("theta", 

rownames(data.frame(summary(bnl1)))),][3,2] 
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        summaryTable$gamma1[v] = data.frame(summary(bnl1))[grep("omega", 

rownames(data.frame(summary(bnl1)))),][1,2] 

        summaryTable$gamma2[v] = data.frame(summary(bnl1))[grep("omega", 

rownames(data.frame(summary(bnl1)))),][2,2] 

         

        summaryTable$phi1[v] = data.frame(summary(bnl1))[grep("psi", 

rownames(data.frame(summary(bnl1)))),][1,2] 

        #phi2 is the covariance 

        summaryTable$phi2[v] = data.frame(summary(bnl1))[grep("psi", 

rownames(data.frame(summary(bnl1)))),][4,2] 

        #phi4 is the var of 2 

        summaryTable$phi4[v] = data.frame(summary(bnl1))[grep("psi", 

rownames(data.frame(summary(bnl1)))),][2,2] 

        summaryTable$psi[v] = data.frame(summary(bnl1))[grep("psi", 

rownames(data.frame(summary(bnl1)))),][3,2] 

        summaryTable$omegai[v] = data.frame(summary(bnl1))[grep("omega", 

rownames(data.frame(summary(bnl1)))),][1,2] 

        summaryTable$omega1[v] = data.frame(summary(bnl1))[grep("omega", 

rownames(data.frame(summary(bnl1)))),][2,2] 

        summaryTable$omega2[v] = data.frame(summary(bnl1))[grep("omega", 

rownames(data.frame(summary(bnl1)))),][3,2] 

         

        fit = establishFit(obs.data = dat[1:9], model.obj = bnl1, m = 300, nfac = 1) 
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        summaryTable$likl[v] = fit[1] 

        summaryTable$aic[v] = fit[2] 

        summaryTable$bic[v] = fit[3] 

        summaryTable$chisq[v] = fit[4] 

        summaryTable$chisqp[v] = fit[5] 

        summaryTable$rmsea[v] = fit[6] 

        summaryTable$srmr[v] = fit[7] 

        summaryTable$hfi[v] = fit[8] 

        summaryTable$hfir[v] = fit[9] 

        summaryTable$R2[v] = fit[10] 

        summaryTable$R2r[v] = fit[11] 

        summaryTable$hfi0[v] = fit[12] 

        summaryTable$hfi1[v] = fit[13] 

        summaryTable$hfi3[v] = fit[14] 

        summaryTable$PPP_likl[v] = fit[15] 

        summaryTable$PPP_aic[v] = fit[16] 

        summaryTable$PPP_bic[v] = fit[17] 

        summaryTable$PPP_chisq[v] = fit[18] 

        summaryTable$PPP_chisqp[v] = fit[19] 

        summaryTable$PPP_rmsea[v] = fit[20] 

        summaryTable$PPP_srmr[v] = fit[21] 

        summaryTable$PPP_hfi[v] = fit[22] 

        summaryTable$PPP_hfir[v] = fit[23] 
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        summaryTable$PPP_R2r[v] = fit[24] 

        summaryTable$PPP_R2[v] = fit[25] 

} 

      v = v+1 

      write.csv(summaryTable, file = fullpath, row.names=F) 

} 

write.csv(summaryTable, file = fullpath, row.names=F) 

print(summaryTable) 

print(Sys.time()-Start) 

 

C1.1: Jags code for the interaction model 

model{ 

for(i in 1:N) { 

 

    X1[i] ~ dnorm(mu[i,1], 1/theta[1,1]) 

    X2[i] ~ dnorm(mu[i,2], 1/theta[2,2]) 

    X3[i] ~ dnorm(mu[i,3], 1/theta[3,3]) 

     

    X4[i] ~ dnorm(mu[i,4], 1/theta[4,4]) 

    X5[i] ~ dnorm(mu[i,5], 1/theta[5,5]) 

    X6[i] ~ dnorm(mu[i,6], 1/theta[6,6]) 

 

    Y1[i] ~ dnorm(mu[i,7], 1/theta[7,7]) 
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    Y2[i] ~ dnorm(mu[i,8], 1/theta[8,8]) 

    Y3[i] ~ dnorm(mu[i,9], 1/theta[9,9]) 

 

    eta[i,1] ~ dnorm(mu_eta[i,1], 1/psi[1,1]) 

    eta[i,2] ~ dnorm(mu_eta[i,2], 1/psi[2,2]) 

    eta[i,3] ~ dnorm(mu_eta[i,3], 1/psi[3,3]) 

} 

 

for(i in 1:N) { 

    mu[i,1] <- nu[1,1] + lambda[1,1]*eta[i,1] 

    mu[i,2] <- nu[2,1] + lambda[2,1]*eta[i,1] 

    mu[i,3] <- nu[3,1] + lambda[3,1]*eta[i,1] 

    mu[i,4] <- nu[4,1] + lambda[4,2]*eta[i,2] 

    mu[i,5] <- nu[5,1] + lambda[5,2]*eta[i,2] 

    mu[i,6] <- nu[6,1] + lambda[6,2]*eta[i,2] 

    mu[i,7] <- nu[7,1] + lambda[7,3]*eta[i,3] 

    mu[i,8] <- nu[8,1] + lambda[8,3]*eta[i,3] 

    mu[i,9] <- nu[9,1] + lambda[9,3]*eta[i,3] 

 

    mu_eta[i,1] <- alpha[1,1] 

    mu_eta[i,2] <- alpha[2,1] 

    mu_eta[i,3] <- alpha[3,1] + omega[3,1]*eta[i,1] + omega[3,2]*eta[i,2] + 

omega[2,1]*eta[i,1]*eta[i,2]} 
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  lambda[1,1] <- 1 

  lambda[2,1] <- parvec[1] 

  lambda[3,1] <- parvec[2] 

  lambda[4,2] <- 1 

  lambda[5,2] <- parvec[3] 

  lambda[6,2] <- parvec[4] 

  lambda[7,3] <- 1 

  lambda[8,3] <- parvec[5] 

  lambda[9,3] <- parvec[6] 

  omega[3,1] <- parvec[7] 

  omega[3,2] <- parvec[8] 

  theta[1,1] <- pow(parvec[9],-1) 

  theta[2,2] <- pow(parvec[10],-1) 

  theta[3,3] <- pow(parvec[11],-1) 

  theta[4,4] <- pow(parvec[12],-1) 

  theta[5,5] <- pow(parvec[13],-1) 

  theta[6,6] <- pow(parvec[14],-1) 

  theta[7,7] <- pow(parvec[15],-1) 

  theta[8,8] <- pow(parvec[16],-1) 

  theta[9,9] <- pow(parvec[17],-1) 

  psi[3,3] <- pow(parvec[18],-1) 

  nu[1,1] <- parvec[19] 

  nu[2,1] <- parvec[20] 
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  nu[3,1] <- parvec[21] 

  nu[4,1] <- parvec[22] 

  nu[5,1] <- parvec[23] 

  nu[6,1] <- parvec[24] 

  nu[7,1] <- parvec[25] 

  nu[8,1] <- parvec[26] 

  nu[9,1] <- parvec[27] 

  alpha[1,1] <- 0 

  alpha[2,1] <- 0 

  alpha[3,1] <- 0 

  psi[1,1] <- pow(parvec[28],-1) 

  psi[2,2] <- pow(parvec[29],-1) 

  psi[1,2] <- pow(parvec[30],-1) 

  omega[2,1] <- parvec[31] 

  parvec[1] ~ dnorm(0,1e-2) 

  parvec[2] ~ dnorm(0,1e-2) 

  parvec[3] ~ dnorm(0,1e-2) 

  parvec[4] ~ dnorm(0,1e-2) 

  parvec[5] ~ dnorm(0,1e-2) 

  parvec[6] ~ dnorm(0,1e-2) 

  parvec[7] ~ dnorm(0,1e-2) 

  parvec[8] ~ dnorm(0,1e-2) 

  parvec[9] ~ dgamma(1,.5) 
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  parvec[10] ~ dgamma(1,.5) 

  parvec[11] ~ dgamma(1,.5) 

  parvec[12] ~ dgamma(1,.5) 

  parvec[13] ~ dgamma(1,.5) 

  parvec[14] ~ dgamma(1,.5) 

  parvec[15] ~ dgamma(1,.5) 

  parvec[16] ~ dgamma(1,.5) 

  parvec[17] ~ dgamma(1,.5) 

  parvec[18] ~ dgamma(1,.5) 

  parvec[19] ~ dnorm(0,1e-3) 

  parvec[20] ~ dnorm(0,1e-3) 

  parvec[21] ~ dnorm(0,1e-3) 

  parvec[22] ~ dnorm(0,1e-3) 

  parvec[23] ~ dnorm(0,1e-3) 

  parvec[24] ~ dnorm(0,1e-3) 

  parvec[25] ~ dnorm(0,1e-3) 

  parvec[26] ~ dnorm(0,1e-3) 

  parvec[27] ~ dnorm(0,1e-3) 

  parvec[28] ~ dgamma(1,.5) 

  parvec[29] ~ dgamma(1,.5) 

  parvec[30] ~ dgamma(1,.5) 

  parvec[31] ~ dnorm(0,1e-2) 

} 
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C1.2: Jags code for the full model 

model {  

  for(i in 1:N){ 

 

    X1[i] ~ dnorm(mu[i,1], 1/theta[1,1]) 

    X2[i] ~ dnorm(mu[i,2], 1/theta[2,2]) 

    X3[i] ~ dnorm(mu[i,3], 1/theta[3,3]) 

 

    X4[i] ~ dnorm(mu[i,4], 1/theta[4,4]) 

    X5[i] ~ dnorm(mu[i,5], 1/theta[5,5]) 

    X6[i] ~ dnorm(mu[i,6], 1/theta[6,6]) 

 

    Y1[i] ~ dnorm(mu[i,7], 1/theta[7,7]) 

    Y2[i] ~ dnorm(mu[i,8], 1/theta[8,8]) 

    Y3[i] ~ dnorm(mu[i,9], 1/theta[9,9]) 

 

    eta[i,1] ~ dnorm(mu_eta[i,1], 1/psi[1,1]) 

 

    eta[i,2] ~ dnorm(mu_eta[i,2], 1/psi[2,2]) 

 

    eta[i,3] ~ dnorm(mu_eta[i,3], 1/psi[3,3])} 

for(i in 1:N) { 

    mu[i,1] <- nu[1,1] + lambda[1,1]*eta[i,1] 
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    mu[i,2] <- nu[2,1] + lambda[2,1]*eta[i,1] 

    mu[i,3] <- nu[3,1] + lambda[3,1]*eta[i,1] 

    mu[i,4] <- nu[4,1] + lambda[4,2]*eta[i,2] 

    mu[i,5] <- nu[5,1] + lambda[5,2]*eta[i,2] 

    mu[i,6] <- nu[6,1] + lambda[6,2]*eta[i,2] 

    mu[i,7] <- nu[7,1] + lambda[7,3]*eta[i,3] 

    mu[i,8] <- nu[8,1] + lambda[8,3]*eta[i,3] 

    mu[i,9] <- nu[9,1] + lambda[9,3]*eta[i,3] 

 

    mu_eta[i,1] <- alpha[1,1] 

    mu_eta[i,2] <- alpha[2,1] 

    mu_eta[i,3] <- alpha[3,1] + omega[3,1]*eta[i,1] + omega[3,2]*eta[i,2] + 

omega[2,1]*eta[i,1]*eta[i,2] + omega[1,1]*eta[i,1]*eta[i,1] + omega[2,2]*eta[i,2]*eta[i,2] 

} 

 

  lambda[1,1] <- 1 

  lambda[2,1] <- parvec[1] 

  lambda[3,1] <- parvec[2] 

  lambda[4,2] <- 1 

  lambda[5,2] <- parvec[3] 

  lambda[6,2] <- parvec[4] 

  lambda[7,3] <- 1 

  lambda[8,3] <- parvec[5] 
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  lambda[9,3] <- parvec[6] 

  omega[3,1] <- parvec[7] 

  omega[3,2] <- parvec[8] 

  theta[1,1] <- pow(parvec[9],-1) 

  theta[2,2] <- pow(parvec[10],-1) 

  theta[3,3] <- pow(parvec[11],-1) 

  theta[4,4] <- pow(parvec[12],-1) 

  theta[5,5] <- pow(parvec[13],-1) 

  theta[6,6] <- pow(parvec[14],-1) 

  theta[7,7] <- pow(parvec[15],-1) 

  theta[8,8] <- pow(parvec[16],-1) 

  theta[9,9] <- pow(parvec[17],-1) 

  psi[3,3] <- pow(parvec[18],-1) 

  nu[1,1] <- parvec[19] 

  nu[2,1] <- parvec[20] 

  nu[3,1] <- parvec[21] 

  nu[4,1] <- parvec[22] 

  nu[5,1] <- parvec[23] 

  nu[6,1] <- parvec[24] 

  nu[7,1] <- parvec[25] 

  nu[8,1] <- parvec[26] 

  nu[9,1] <- parvec[27] 

  alpha[1,1] <- 0 



 119 

  alpha[2,1] <- 0 

  alpha[3,1] <- 0 

  psi[1,1] <- pow(parvec[28],-1) 

  psi[2,2] <- pow(parvec[29],-1) 

  psi[1,2] <- pow(parvec[30],-1) 

  omega[2,1] <- parvec[31] 

  omega[1,1] <- parvec[32] 

  omega[2,2] <- parvec[33] 

 

  parvec[1] ~ dnorm(0,1e-2) 

  parvec[2] ~ dnorm(0,1e-2) 

  parvec[3] ~ dnorm(0,1e-2) 

  parvec[4] ~ dnorm(0,1e-2) 

  parvec[5] ~ dnorm(0,1e-2) 

  parvec[6] ~ dnorm(0,1e-2) 

  parvec[7] ~ dnorm(0,1e-2) 

  parvec[8] ~ dnorm(0,1e-2) 

  parvec[9] ~ dgamma(1,.5) 

  parvec[10] ~ dgamma(1,.5) 

  parvec[11] ~ dgamma(1,.5) 

  parvec[12] ~ dgamma(1,.5) 

  parvec[13] ~ dgamma(1,.5) 

  parvec[14] ~ dgamma(1,.5) 
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  parvec[15] ~ dgamma(1,.5) 

  parvec[16] ~ dgamma(1,.5) 

  parvec[17] ~ dgamma(1,.5) 

  parvec[18] ~ dgamma(1,.5) 

  parvec[19] ~ dnorm(0,1e-3) 

  parvec[20] ~ dnorm(0,1e-3) 

  parvec[21] ~ dnorm(0,1e-3) 

  parvec[22] ~ dnorm(0,1e-3) 

  parvec[23] ~ dnorm(0,1e-3) 

  parvec[24] ~ dnorm(0,1e-3) 

  parvec[25] ~ dnorm(0,1e-3) 

  parvec[26] ~ dnorm(0,1e-3) 

  parvec[27] ~ dnorm(0,1e-3) 

  parvec[28] ~ dgamma(1,.5) 

  parvec[29] ~ dgamma(1,.5) 

  parvec[30] ~ dgamma(1,.5) 

  parvec[31] ~ dnorm(0,1e-2) 

  parvec[32] ~ dnorm(0,1e-2) 

  parvec[33] ~ dnorm(0,1e-2)} 

Functions Used in Data Generation and Collection 

Some of the code in this section is a direct contribution by Rebecca Buchner, specifically the 

function used to simulate the data. This code was reproduced in the function “establish fit” to aid 
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in the creation of PPP statistics. The function “get_factor_scores” was taken from an appendix by 

Nora Umbach, simply given a name to serve as a function. 

establishFit <- function(obs.data, model.obj,nfac, N = ss, m = 3, num.x_sim = 6,  
                         num.y_sim = 3, num.xi_sim = 2, xi_sim = "x1-x3,x4-x6", 
                         eta_sim = "y1-y3", model = NULL, df = NULL){ 
   
  bvec = preprocess(model.obj, nfac) 
   
  gamma = bvec[grep("Gamma", names(bvec))] 
  omega = matrix( c(bvec[grep("Omega", names(bvec))][1],0, 
                    bvec[grep("Omega", names(bvec))][2], 
                    bvec[grep("Omega", names(bvec))][3]), nrow=2) 
  nu = bvec[grep("nu", names(bvec))] 
  alphatau = c(bvec[grep("alpha", names(bvec))], bvec[grep("tau", names(bvec))]) 
  PsiPhi = c(bvec[grep("Psi", names(bvec))],  bvec[grep("Phi", names(bvec))]) 
  lamda =  bvec[grep("Lambda", names(bvec))] 
  theta =  bvec[grep("Theta", names(bvec))] 
  if(!class(model.obj)=="lavaan" ){ 
    predval = data.frame(get_factor_scores(bvec, data.frame(obs.data), type = 3)) 
    predval$ETA = as.vector(factor.scores(x=obs.data[grep("Y", colnames(obs.data))], 
f=cbind(c(1,bvec[grep("Lambda.y", names(bvec))])), Phi=1, method = "regression")$scores) 
    }else if(class(model.obj)=="lavaan" ){ 
    predval = data.frame(predict(model.obj)) 
  } 
  if(nfac<3){ 
    predval$KSI1KSI1 = predval$KSI1*predval$KSI1 
    predval$KSI2KSI2 = predval$KSI2*predval$KSI2 
  } 
    if(nfac<1){ 
      predval$KSI1KSI2 = predval$KSI1*predval$KSI2 
    } 
  interaction_simulation = 
ifelse(nfac==3,"eta1~xi1:xi2,eta1~xi1:xi1,eta1~xi2:xi2","eta1~xi1:xi2") 
   
  model_simulation <- specify_sem(num.x=num.x_sim, num.y=num.y_sim, num.xi=num.xi_sim, 
num.eta=1, xi=xi_sim, 
                                  eta=eta_sim,interaction = interaction_simulation) 
 
  pars <- c(lamda,#[!lamda==1], 
            gamma, 
            theta, 
            PsiPhi, 
            nu, 
            alphatau, 
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            t(omega)[t(omega) != 0] 
  ) 
  if(nfac==0){ 
    pars=c(pars,0) 
  } 
   
  if(is.null(df)){ 
    df = 9*10/2 - ifelse(nfac == 0, 30,ifelse(nfac==1, 31, 33)) 
  } 
  if(class(model.obj)=="lavaan"){ 
    df = ifelse(nfac==0, 24, ifelse(nfac==1, 48, 114)) 
  } 
  # Find the true values 
  print("Done preparing. Starting 'true' calculations.") 
  if(nfac ==3){ 
    reg = lm(predval$ETA~predval$KSI1 + predval$KSI2 + 
               predval$KSI1KSI2 + predval$KSI1KSI1+ predval$KSI2KSI2) 
  }else if(nfac==1){ 
    reg = lm(predval$ETA~predval$KSI1 + predval$KSI2 + 
               predval$KSI1KSI2) 
  }else{ 
    reg = lm(predval$ETA~predval$KSI1 + predval$KSI2) 
  } 
   
   
  reg0 = lm(predval$ETA~predval$KSI1 + predval$KSI2) 
  reg1 = lm(predval$ETA~predval$KSI1 + predval$KSI2 + 
              predval$KSI1KSI2) 
  reg3 = lm(predval$ETA~predval$KSI1 + predval$KSI2 + 
              predval$KSI1KSI2 + predval$KSI1KSI1+ predval$KSI2KSI2) 
  e0 = reg0$residuals 
  e1 = reg1$residuals 
  e3 = reg3$residuals 
   
  if(nfac == 3){ 
    e = predval$ETA - (predval$KSI1*gamma[1] + predval$KSI2*gamma[2] + 
predval$KSI1KSI2*bvec[length(bvec)-1] + bvec[length(bvec)-2]*predval$KSI1KSI1+ 
bvec[length(bvec)]*predval$KSI2KSI2 ) 
  }else if (nfac==1){ 
    e = predval$ETA - (predval$KSI1*gamma[1] + predval$KSI2*gamma[2] + 
predval$KSI1KSI2*bvec[length(bvec)-1]) 
  }else{ 
    e = predval$ETA - (predval$KSI1*gamma[1] + predval$KSI2*gamma[2]) 
  } 
   
  re = reg$residuals 
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  obs = cov(obs.data) 
  print("Errors: Done") 
   
  implied = implicate(bvec, model.obj = model.obj, nfac, obs.data) 
   
  likl =  log(det(implied)) + sum(diag(obs%*%solve(implied))) - log(det(obs)) - 9 
  if(is.nan(likl)){ 
    obs = cor(obs.data) 
    implied = cor.smooth(implied) 
    likl =  log(det(implied)) + sum(diag(obs%*%solve(implied))) - log(det(obs)) - 9 
  } 
  print("Likelihood: Done") 
   
  bic = -2*log(likl) + log(N)*((count_free_parameters(model_simulation) - ifelse(nfac == 0, 1, 
0))) 
  aic = -2*log(likl) + 2*((count_free_parameters(model_simulation) - ifelse(nfac == 0, 1, 0))) 
  chisq =  likl*(N-1) 
  print("Chisq: Done") 
  chisqp = ifelse(chisq < 0, 0, pchisq(chisq,df)) 
  rmsea = ifelse((chisq/(df)-1)/nrow(obs.data)<0, NA, sqrt((chisq/(df)-1)/nrow(obs.data))) 
  srmr = ifelse(is.nan(SRMR(obs,implied)), 100+SRMR(abs(obs), abs(implied)), SRMR(obs, 
implied)) 
   
  if(class(model.obj)=="lavaan"){ 
  aic = fitMeasures(model.obj)[19] 
  bic = fitMeasures(model.obj)[20] 
  cfi = fitMeasures(model.obj)[9] 
  tli = fitMeasures(model.obj)[10] 
  rmsea = fitMeasures(model.obj)[23] 
  rmsea.p = fitMeasures(model.obj)[26] 
  srmr = fitMeasures(model.obj)[29] 
  logl = fitMeasures(model.obj)[17] 
  chisq = fitMeasures(model.obj)[3] 
  chisqp = fitMeasures(model.obj)[5] 
  } 
  hfi = 1/(.032*(sqrt(ss/24) * (var(e^2)/(var(e)^2) + 1 - 3))+1) 
  hfir = 1/(.032*(sqrt(ss/24) * (var(re^2)/(var(re)^2) + 1 - 3))+1) 
  R2r = summary(reg)$r.squared 
  R2 = 1- sum(e^2)/(sum(predval$ETA^2)-(sum(predval$ETA)^2)/N) 
  hfi0 = 1/(.032*(sqrt(ss/24) * (var(e0^2)/(var(e0)^2) + 1 - 3))+1) 
  hfi1 = 1/(.032*(sqrt(ss/24) * (var(e1^2)/(var(e1)^2) + 1 - 3))+1) 
  hfi3 = 1/(.032*(sqrt(ss/24) * (var(e3^2)/(var(e3)^2) + 1 - 3))+1) 
  print(paste("True values calculated. Begining", m, "simulations.")) 
  #  
   
  sim.data <- replicate(m, simulate(model_simulation, parameters=pars, n=N)) 
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  parameters = list(PPP_likl = NA, PPP_aic = NA, PPP_bic = NA, PPP_chisq = NA, PPP_chisqp 
= NA, PPP_rmsea = NA, PPP_srmr = NA, PPP_hfi = rep(NA, m), PPP_hfir = NA,  PPP_R2r = 
NA) 
  for(i in 1:m){ 
    print(paste("Simulation", i)) 
    sobs = cov(sim.data[,,i])  
    if(is.nan(likl)){ 
      sobs = cor(sim.data[,,i])  
    } 
    if(class(model.obj)=="lavaan"){ 
      dat = data.frame(sim.data[,,i]) 
      colnames(dat) = c(paste0("X", 1:6), paste0("Y",1:3)) 
 
      if(nfac==1){ 
        dat$X1X4 <- dat$X1 * dat$X4 
        dat$X2X5 <- dat$X2 * dat$X5 
        dat$X3X6 <- dat$X3 * dat$X6  
      }else if(nfac==3){ 
        dat$X1X1 <- dat$X1 * dat$X1 
        dat$X2X2 <- dat$X2 * dat$X2 
        dat$X3X3 <- dat$X3 * dat$X3 
        dat$X4X4 <- dat$X4 * dat$X4 
        dat$X5X5 <- dat$X5 * dat$X5 
        dat$X6X6 <- dat$X6 * dat$X6 
        dat$X1X4 <- dat$X1 * dat$X4 
        dat$X2X5 <- dat$X2 * dat$X5 
        dat$X3X6 <- dat$X3 * dat$X6 
      } 
 
      model.obj1 = sem(model, data=dat, control = list(iter.max=3000)) 
      bvec = preprocess(model.obj1, nfac) 
      sobs = cov(dat) 
      predval1 = data.frame(predict(model.obj1)) 
      if(!model.obj1@optim$converged){ 
       
next 
predval1 = data.frame(ETA = NA, KSI1 = NA, KSI2 = NA, KSI1KSI2 = NA, KSI1KSI1 = NA, 
KSI2KSI2 = NA)   
      }}  
    if(class(model.obj)!="lavaan"){ 
      model.obj1 = "notlavaan" 
      predval1 = data.frame(get_factor_scores(bvec, data.frame(obs.data), type = 3)) 
      predval1$ETA = as.vector(factor.scores(x=obs.data[grep("Y", colnames(obs.data))], 
f=cbind(c(1,bvec[grep("Lambda.y", names(bvec))])), Phi=1, method = "regression")$scores) 
    } 
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    if(nfac<3){ 
      predval1$KSI1KSI1 = predval1$KSI1*predval1$KSI1 
      predval1$KSI2KSI2 = predval1$KSI2*predval1$KSI2 
    } 
      if(nfac<1){ 
        predval1$KSI1KSI2 = predval1$KSI1*predval1$KSI2 
      } 
 
     
    if(nfac==3 & !is.na(predval1$KSI1)){ 
      sreg = lm(predval1$ETA~predval1$KSI1 + predval1$KSI2 + 
                  predval1$KSI1KSI2 + predval1$KSI1KSI1+ predval1$KSI2KSI2) 
    }else if(nfac==1&!is.na(predval1$KSI1)){ 
      sreg = lm(predval1$ETA~predval1$KSI1 + predval1$KSI2 + 
                  predval1$KSI1KSI2) 
    }else if(!is.na(predval1$KSI1)){ 
      sreg = lm(predval1$ETA~predval1$KSI1 + predval1$KSI2) 
    } 
     
     
     
    likl1 = log(det(implied)) + sum(diag(sobs%*%solve(implied))) - log(det(sobs)) - 9 
     
    chisq1 =  likl1*(N-1) 
    chisqp1 =  1-pchisq(chisq1,df) 
     
    if(nfac == 3 & !is.na(predval1$KSI1)){ 
      se = predval1$ETA - (predval1$KSI1*gamma[1] + predval1$KSI2*gamma[2] + 
predval1$KSI1KSI2*bvec[length(bvec)-1] + bvec[length(bvec)-2]*predval1$KSI1KSI1+ 
bvec[length(bvec)]*predval1$KSI2KSI2 ) 
    }else if (nfac==1 & !is.na(predval1$KSI1)){ 
      se = predval1$ETA - (predval1$KSI1*gamma[1] + predval1$KSI2*gamma[2] + 
predval1$KSI1KSI2*bvec[length(bvec)-1]) 
    }else if(!is.na(predval1$KSI1)){ 
      se = predval1$ETA - (predval1$KSI1*gamma[1] + predval1$KSI2*gamma[2]) 
    } 
     
    if(is.na(predval1$ETA)){ 
      se = NA 
      sreg = data.frame(residuals = NA) 
    } 
    sre = sreg$residuals 
     
    if(class(model.obj1)=="lavaan"){ 
      if(model.obj1@optim$converged){ 
      aic1 = fitMeasures(model.obj1)[19] 
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      bic1 = fitMeasures(model.obj1)[20] 
      cfi1 = fitMeasures(model.obj1)[9] 
      tli1 = fitMeasures(model.obj1)[10] 
      rmsea1 = fitMeasures(model.obj1)[23] 
      rmsea.p1 = fitMeasures(model.obj1)[26] 
      srmr1 = fitMeasures(model.obj1)[29] 
      logl1 = fitMeasures(model.obj1)[17] 
      chisq1 = fitMeasures(model.obj1)[3] 
      chisqp1 = fitMeasures(model.obj1)[5] 
      }else{ 
        aic1 = NA 
        bic1 = NA 
        cfi1 = NA 
        tli1 = NA 
        rmsea1 = NA 
        rmsea.p1 = NA 
        srmr1 = NA 
        logl1 = NA 
        chisq1 = NA 
        chisqp1 = NA 
      } 
      parameters$PPP_srmr[i] = srmr1 < srmr 
      parameters$PPP_logl[i] = logl1 < logl 
      parameters$PPP_aic[i] = aic1 < aic 
      parameters$PPP_bic[i] = bic1 < bic 
      parameters$PPP_cfi[i] = cfi1 < cfi 
      parameters$PPP_tli[i] = tli1 < tli 
      parameters$PPP_chisq[i] = chisq1 < chisq 
      parameters$PPP_chisqp[i] = chisqp1 < chisqp 
      parameters$PPP_rmsea[i] = rmsea1 < rmsea 
      parameters$PPP_rmseap[i] = rmsea.p1 < rmsea.p 
       
    } 
    parameters$PPP_R2r[i] = summary(sreg)$r.squared < R2r 
    parameters$PPP_R2[i] = 1- sum(se^2)/(sum(predval1$ETA^2)-(sum(predval1$ETA)^2)/N) < 
R2 
    parameters$PPP_hfi[i] = 1/(.032*(sqrt(ss/24) * (var(se^2)/(var(se)^2) + 1 - 3))+1) < hfi 
    parameters$PPP_hfir[i] = 1/(.032*(sqrt(ss/24) * (var(sre^2)/(var(sre)^2) + 1 - 3))+1) < hfir 
    parameters$PPP_srmr[i] = ifelse(is.nan(SRMR(sobs,implied)), 100+SRMR(abs(sobs), 
abs(implied)), SRMR(sobs, implied)) < srmr 
     
    parameters$PPP_likl[i] = likl1 < likl 
    parameters$PPP_aic[i] = -2*log(likl1) + 2*((count_free_parameters(model_simulation) - 
ifelse(nfac == 0, 1, 0))) < aic 
    parameters$PPP_bic[i] = -2*log(likl1) + log(N)*((count_free_parameters(model_simulation) - 
ifelse(nfac == 0, 1, 0))) < bic 
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    parameters$PPP_chisq[i] = chisq1 < chisq 
    parameters$PPP_chisqp[i] = chisqp1 < chisqp 
    parameters$PPP_rmsea[i] = sqrt((chisq1/(df)-1)/nrow(sim.data[,,i])) < rmsea 
    parameters$PPP_likl[i] = likl1 < likl 
  } 
 
  return(c(likl = likl,aic = aic, bic = bic, chisq = chisq, chisqp = chisqp, rmsea = rmsea,srmr = 
srmr, hfi = hfi, hfir=hfir, R2 = R2, R2r = R2r , hfi0 = hfi0, hfi1=hfi1, hfi3=hfi3, 
colMeans(data.frame(parameters), na.rm=TRUE))) 
     
} 
 
##############################################################################
############################## 
 
preprocess <- function(model.obj, nfac){ 
  if(class(model.obj) =='runjags'){ 
    bvec = data.frame(summary(model.obj))[c(2,3,5,6,8,9:20,23,21,24,22,26, 27, 
29,30,32,33,36,34,35, 38,37,39),]$Median 
    #predval = get_factor_scores(bvec, data.frame(obs.data), type = 3) 
  }else if(class(model.obj) =='lavaan'){ 
    # predval = lavPredict(model.obj, method = 'regression')  
    # Should I simulate the data with the data that modeled it? 
    if(nfac==0){ 
      bvec = 
c(coef(model.obj)[c(1,2,3,4,5,6,19,20,13,14,15,16,17,18,10,11,12,24,21,22,23,26,27,29,30,8,9)], 
0,0,0,0,0,0) 
    }else if(nfac==1){ 
      bvec = 
c(coef(model.obj)[c(3,4,5,6,1,2,27,28,18,19,20,21,22,23,15,16,17,34,30,31,32,38,39,41,42,10,11
)], 0,0,0,0,coef(model.obj)[29],0) 
    }else{ 
      bvec = 
c(coef(model.obj)[c(1,2,3,4,5,6,49,50,28,29,30,31,32,33,25,26,27,63,54,55,56,71,72,74,75,14,15
)], 0,0,0, coef(model.obj)[c(52, 51, 53)]) 
    } 
    #predval = lavPredict(model.obj, method = 'regression') 
  }else if(class(model.obj) =='blavaan'){ 
    bvec = 
c(coef(model.obj)[c(1,2,3,4,5,6,19,20,13,14,15,16,17,18,10,11,12,24,21,22,23,26,27,29,30,8,9)], 
0,0,0,0,0,0) 
    #predval = lavPredict(model.obj, method = 'regression')  
  }else if(class(model.obj) =='emEst'){ 
    if(nfac==1){ 
    bvec = c(coef(model.obj)[1:(length(coef(model.obj))-1)], 0, 
coef(model.obj)[length(coef(model.obj))],0) 
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    }else{ 
      bvec = coef(model.obj) 
    } 
    #predval = get_factor_scores(bvec, data.frame(obs.data), type = 3) 
  }else{ 
    stop("Unrecognized class for model.obj") 
  } 
   
  names(bvec)=c('Lambda.x2' , 'Lambda.x3' , 'Lambda.x11' , 'Lambda.x12' , 
                'Lambda.y2' , 'Lambda.y3' , 'Gamma1' , 'Gamma2' , 'Theta.d1' , 
                'Theta.d8' , 'Theta.d15' , 'Theta.d22' , 'Theta.d29' , 
                'Theta.d36' , 'Theta.e1' , 'Theta.e5' , 'Theta.e9' , 'Psi' , 
                'Phi1' , 'Phi2' , 'Phi4' , 'nu.x2' , 'nu.x3' , 'nu.x5' , 'nu.x6' , 
                'nu.y2' , 'nu.y3' , 'alpha' , 'tau1' , 'tau2' , 'Omega1' , 
                'Omega3' , 'Omega4')  
  return(bvec) 
} 
 
implicate <- function(bvec, model.obj=NULL, nfac, obs.data){ 
  gamma = bvec[grep("Gamma", names(bvec))] 
  omega = matrix( c(bvec[grep("Omega", names(bvec))][1],0, 
                    bvec[grep("Omega", names(bvec))][2], 
                    bvec[grep("Omega", names(bvec))][3]), nrow=2) 
  PsiPhi = c(bvec[grep("Psi", names(bvec))],  bvec[grep("Phi", names(bvec))]) 
  lamda =  bvec[grep("Lambda", names(bvec))] 
  theta =  bvec[grep("Theta", names(bvec))] 
  if(nfac==0){ 
    if(class(model.obj)=="lavaan"){ 
      implied=model.obj@implied$cov[[1]]  
    }else{ 
      colnames(obs.data) = c(paste0("X", 1:6), paste0("Y",1:3)) 
    lambda = matrix(c(1,lamda[1:2], rep(0,9), 1,lamda[3:4], rep(0,9),1,lamda[5:6]), ncol=3) 
    lambda.y = matrix(lambda[7:9,3]) 
    lambda.x = lambda[1:6,1:2] 
    gamma = matrix(gamma, ncol = 2) 
    phi = matrix(c(PsiPhi[2],PsiPhi[3],PsiPhi[3], PsiPhi[4]), nrow = 2) 
    psi = PsiPhi[1] 
    theta.e = diag(theta[7:9]) 
    theta.d = diag(theta[1:6]) 
     
    tl = lambda.y%*%(gamma%*%phi%*%t(gamma) + psi)%*%t(lambda.y) + theta.e 
    tr = lambda.y%*%gamma%*%phi%*%t(lambda.x) 
    bl = lambda.x%*%phi%*%t(gamma)%*%t(lambda.y) 
    br = lambda.x%*%phi%*%t(lambda.x) + theta.d 
     
    dimnames(tl) = list(paste0("Y", 1:3), paste0("Y", 1:3)) 
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    dimnames(tr) = list(paste0("Y", 1:3), paste0("X", 1:6)) 
    dimnames(bl) = list(paste0("X", 1:6), paste0("Y", 1:3)) 
    dimnames(br) = list(paste0("X", 1:6), paste0("X", 1:6)) 
     
    implied = diag(rep(0,9)) 
    dimnames(implied) = list(c(paste0("X", 1:6), paste0("Y", 1:3)), c(paste0("X", 1:6), 
paste0("Y", 1:3))) 
    implied[match(rownames(br), rownames(implied)) , match(colnames(br), colnames(implied))] 
= br  
    implied[match(rownames(tr), rownames(implied)) , match(colnames(tr), colnames(implied))] 
= tr  
    implied[match(rownames(bl), rownames(implied)) , match(colnames(bl), colnames(implied))] 
= bl  
    implied[match(rownames(tl), rownames(implied)) , match(colnames(tl), colnames(implied))] 
= tl 
    } 
  }else if(nfac==1){ 
    if(class(model.obj)=="lavaan"){ 
      implied=model.obj@implied$cov[[1]]  
    }else{ 
      lambda = matrix(c(1,lamda[1:2], rep(0,9), 1,lamda[3:4],rep(0,9), rep(0,9),1,lamda[5:6]), 
ncol=4) 
      lambda.y = lambda[7:9,4] 
      lambda.x = lambda[1:6,1:3] 
      Igamma = matrix(c(gamma, omega[1,2]), ncol = 3) 
      Iphi = cov(get_factor_scores(bvec, responses = obs.data[,grep("X", colnames(obs.data))], 
type = 1)[-1]) 
      phi = matrix(c(PsiPhi[2],PsiPhi[3],PsiPhi[3], PsiPhi[4]), nrow = 2) 
      Iphi[1:2, 1:2] = phi 
      psi = PsiPhi[1] 
      theta.e = diag(theta[7:9]) 
      theta.d = diag(theta[1:6]) 
      tl = lambda.y%*%(Igamma%*%Iphi%*%t(Igamma) + psi)%*%t(lambda.y) + theta.e 
      tr = lambda.y%*%Igamma%*%Iphi%*%t(lambda.x) 
      bl = lambda.x%*%Iphi%*%t(Igamma)%*%t(lambda.y) 
      br = lambda.x%*%Iphi%*%t(lambda.x) + theta.d 
       
      dimnames(tl) = list(paste0("Y", 1:3), paste0("Y", 1:3)) 
      dimnames(tr) = list(paste0("Y", 1:3), paste0("X", 1:6)) 
      dimnames(bl) = list(paste0("X", 1:6), paste0("Y", 1:3)) 
      dimnames(br) = list(paste0("X", 1:6), paste0("X", 1:6)) 
       
      implied = diag(rep(0,9)) 
      dimnames(implied) = list(c(paste0("X", 1:6), paste0("Y", 1:3)), c(paste0("X", 1:6), 
paste0("Y", 1:3))) 
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      implied[match(rownames(br), rownames(implied)) , match(colnames(br), 
colnames(implied))] = br  
      implied[match(rownames(tr), rownames(implied)) , match(colnames(tr), colnames(implied))] 
= tr  
      implied[match(rownames(bl), rownames(implied)) , match(colnames(bl), 
colnames(implied))] = bl  
      implied[match(rownames(tl), rownames(implied)) , match(colnames(tl), colnames(implied))] 
= tl  
    } 
     
  }else if(nfac==3){ 
    if(class(model.obj)=="lavaan"){ 
      implied=model.obj@implied$cov[[1]]  
    }else{ 
      lambda = matrix(c(1,lamda[1:2], rep(0,9), 1,lamda[3:4],rep(0,9),rep(0,9),rep(0,9), 
rep(0,9),1,lamda[5:6]), ncol=6) 
      lambda.y = matrix(lambda[7:9,6]) 
      lambda.x = lambda[1:6,1:5] 
      Fgamma = matrix(c(gamma, omega[1,1], omega[1,2], omega[2,2]), ncol = 5) 
      Fphi = cov(get_factor_scores(bvec, responses = obs.data[,grep("X", colnames(obs.data))], 
type = 3)[-1])  
      phi = matrix(c(PsiPhi[2],PsiPhi[3],PsiPhi[3], PsiPhi[4]), nrow = 2) 
      Fphi[1:2, 1:2] = phi 
      psi = PsiPhi[1] 
      theta.e = diag(theta[7:9]) 
      theta.d = diag(theta[1:6]) 
       
      tl = lambda.y%*%(Fgamma%*%Fphi%*%t(Fgamma) + psi)%*%t(lambda.y) + theta.e 
      tr = lambda.y%*%Fgamma%*%Fphi%*%t(lambda.x) 
      bl = lambda.x%*%Fphi%*%t(Fgamma)%*%t(lambda.y) 
      br = lambda.x%*%Fphi%*%t(lambda.x) + theta.d 
       
      dimnames(tl) = list(paste0("Y", 1:3), paste0("Y", 1:3)) 
      dimnames(tr) = list(paste0("Y", 1:3), paste0("X", 1:6)) 
      dimnames(bl) = list(paste0("X", 1:6), paste0("Y", 1:3)) 
      dimnames(br) = list(paste0("X", 1:6), paste0("X", 1:6)) 
       
      implied = diag(rep(0,9)) 
      dimnames(implied) = list(c(paste0("X", 1:6), paste0("Y", 1:3)), c(paste0("X", 1:6), 
paste0("Y", 1:3))) 
      implied[match(rownames(br), rownames(implied)) , match(colnames(br), 
colnames(implied))] = br  
      implied[match(rownames(tr), rownames(implied)) , match(colnames(tr), colnames(implied))] 
= tr  
      implied[match(rownames(bl), rownames(implied)) , match(colnames(bl), 
colnames(implied))] = bl  
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      implied[match(rownames(tl), rownames(implied)) , match(colnames(tl), colnames(implied))] 
= tl  
       
    } 
  } 
  return(implied) 
   
} 
 
 
SRMR <- function(x=obs, y=imp){ 
  s = matrix(nrow=nrow(x), ncol=ncol(x)) 
  for(j in 1:nrow(x)){ 
    for(k in 1:nrow(x)){ 
      s[j,k] = x[j,k]/(sqrt(x[j,j])*sqrt(x[k,k])) 
    } 
  } 
   
  sig = matrix(nrow=nrow(y), ncol=ncol(y)) 
  for(j in 1:nrow(y)){ 
    for(k in 1:nrow(y)){ 
      sig[j,k] = y[j,k]/(sqrt(y[j,j])*sqrt(y[k,k])) 
    } 
  } 
   
  r = (s-sig)^2 
  sums = apply(r, 2, sum) 
  sumsums = sum(sums) 
  p = nrow(s) 
  e = p*(p+1)/2 
  SRMR = sqrt(sumsums/e) 
  return(SRMR) 
} 
get_factor_scores <-  function(res_qml, responses, type = 3, method = "regression"){ 
   
  psi <- res_qml[grep("Theta.d", names(res_qml))] 
  psihat <- diag(psi[c(2:3,5:6,1,4)]) 
   
  omega1 <- res_qml[grep("Lambda.x", names(res_qml))] 
  omega1hat <- matrix(0, nrow = 4, ncol = 2) 
   
  omega1hat[1:2,1] <- omega1[1:2] 
  omega1hat[3:4,2] <- omega1[3:4] 
   
  omega0 <- res_qml[grep("nu.x", names(res_qml))] 
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  omega0hat <- matrix(0, nrow = 4, ncol = 1) 
  omega0hat[1:2] <- omega0[1:2] 
  omega0hat[3:4] <- omega0[3:4] 
   
  b1.mod1 <- cbind(matrix(0, 2, 4), diag(2)) 
  b1.mod2 <- rbind(diag(4), -t(omega1hat)) 
   
  Gamma <- b1.mod1 %*% psihat %*% b1.mod2 %*% solve(t(b1.mod2) %*% psihat %*% 
                                                      (b1.mod2)) 
   
  n <- nrow(responses) 
   
  fs <- matrix(0, n, 2) 
   
  for(i in 1:n){ 
    fs[i,] <- tryCatch(cbind(-Gamma, (diag(2) + Gamma %*% omega1hat)) %*% 
                         (t(t(as.matrix(responses[i, 1:6]))) - rbind(omega0hat, matrix(0, 2, 1))), error = 
function(e) cbind(-Gamma, (diag(2) + Gamma %*% omega1hat)) %*% 
                         (t(as.matrix(responses[i, 1:6])) - rbind(omega0hat, matrix(0, 2, 1)))) 
  } 
   
  pars <- res_qml 
  if(type == 3){ 
    read <- function(fs1, fs2) pars["alpha"] + pars["Gamma1"] * fs1 + pars["Gamma2"] * fs2 + 
      pars["Omega1"] * fs1^2 + pars["Omega3"] * fs1 * fs2 + 
      pars["Omega4"] * fs2^2 
  }else if (type==1){ 
    read <- function(fs1, fs2) pars["alpha"] + pars["Gamma1"] * fs1 + pars["Gamma2"] * fs2 + 
pars["Omega3"] * fs1 * fs2 
  }else{ 
    read <- function(fs1, fs2) pars["alpha"] + pars["Gamma1"] * fs1 + pars["Gamma2"] * fs2 
  } 
  if(type == 3){ 
    scores = data.frame(ETA = read(fs[,1],fs[,2]), KSI1 = fs[,1], KSI2 = fs[,2], KSI1KSI2 = 
fs[,1]*fs[,2], KSI1KSI1 = fs[,1]*fs[,1], KSI2KSI2 = fs[,2]*fs[,2]) 
  }else{ 
    scores = data.frame(ETA = read(fs[,1],fs[,2]), KSI1 = fs[,1], KSI2 = fs[,2], KSI1KSI2 = 
fs[,1]*fs[,2])} 
  if(!method=="regression"){ 
    if(nfac==0){ 
      lambda = matrix(c(1,lamda[1:2], rep(0,9), 1,lamda[3:4], rep(0,9),1,lamda[5:6]), ncol=3) 
      scores$ETA = (data[,,1]%*%solve(cor(data[,,1]))%*%lambda)[,3] 
      }else if(nfac==1){ 
        lambda = matrix(c(1,lamda[1:2], rep(0,9), 1,lamda[3:4],rep(0,9), rep(0,9),1,lamda[5:6]), 
ncol=4) 
        scores$ETA = (data[,,1]%*%solve(cor(data[,,1]))%*%lambda)[,4] 
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      }else{ 
        lambda = matrix(c(1,lamda[1:2], rep(0,9), 1,lamda[3:4],rep(0,9),rep(0,9),rep(0,9), 
rep(0,9),1,lamda[5:6]), ncol=6) 
        scores$ETA = (data[,,1]%*%solve(cor(data[,,1]))%*%lambda)[,6] 
      } 
    } 
  return(scores) 
} 
 
simulate_nlsem <- function(N = 200, m = 1000, interaction_simulation = "eta1~xi1:xi2", gamma 
= c(.50, .40), Omega = matrix(c(0,0,0.2,0), nrow=2), 
                           covariance = .4, rel_x = c(0.64,0.64,0.49,0.64,0.64,0.49), rel_y = 
c(0.64,0.49,0.49),  
                           num.x_sim = 6, num.y_sim = 3, num.xi_sim = 2, xi_sim = "x1-x3,x4-x6", 
eta_sim = "y1-y3"){ 
   
  # specify_sem is a function that comes in nlsem that generates the model syntax for an nlsem 
function. 
  model_simulation <- specify_sem(num.x=num.x_sim, num.y=num.y_sim, num.xi=num.xi_sim, 
num.eta=1, xi=xi_sim, 
                                  eta=eta_sim,interaction = interaction_simulation) 
   
  ### Parameters of the model 
   
  # Lambda_x comes from the model simulation we have already specified. It has values of 1, 0, 
and NA.  
  #I am guessing that the NA values are the ones that are going to be estimated. 
  Lambda_x <- model_simulation$matrices$class1$Lambda.x 
  # This gives the row only for the Lambda_x values that are 1.  
  fixed_x <- which(Lambda_x[Lambda_x == 1] == 1) 
  #The NA values have been specified to be the square root of the rel_x values. The values that 
were fixed at 1 were removed from  
  # rel_x. I am not sure why yet.  
  # Ms. Buchner said that this was  
  Lambda_x[is.na(Lambda_x)] <- sqrt(rel_x[-c(fixed_x)]) 
   
  Lambda_y <- model_simulation$matrices$class1$Lambda.y 
  fixed_y <- which(Lambda_y[Lambda_y == 1] == 1) 
  Lambda_y[is.na(Lambda_y)] <- sqrt(rel_y[-c(fixed_y)]) 
   
  # Covariances of xis as vector for parameter vector 
  Phi <- model_simulation$matrices$class1$Phi 
  diag(Phi) <- 1 
  Phi[is.na(Phi)] <- covariance 
   
  Phi_vek <- c(1) 
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  if (num.xi_sim > 1){ 
    seq <- c(0, cumsum((num.xi_sim-1):1)) 
    for (i in 1:(num.xi_sim-1)){ 
      Phi_vek <- c(Phi_vek, covariance[(seq[i]+1):(seq[i+1])], 1) 
    } 
  } 
   
  Theta_x <- c((Lambda_x^2 %*% diag(Phi) * (1-rel_x))/rel_x)  
  Theta_y <- c((Lambda_y^2 * (1-rel_y))/rel_y)  
   
  alpha    <- -sum(diag(Omega %*% (Phi + t(as.matrix(tril(Phi,-1)))))) 
   
   
  # Calculation of Psi 
  Psi <- determine_Psi(Phi = Phi, gamma = gamma, Omega = Omega, var_eta = 1) 
  if (Psi < 0) stop("Psi < 0") 
   
  pars <- c(sqrt(rel_x[-c(fixed_x)]), 
            sqrt(rel_y[-c(fixed_y)]), 
            gamma, 
            Theta_x, 
            Theta_y, 
            Psi, 
            Phi_vek, 
            rep(0,num.x_sim-num.xi_sim), # nu.x EW 
            rep(0,num.y_sim-1), # nu.y2 EW 
            alpha, 
            rep(0,num.xi_sim), # tau, EW xi 
            t(Omega)[t(Omega) != 0] 
  ) 
   
   
  if(count_free_parameters(model_simulation) != length(pars)) warning("Length of pars not 
correct.") 
   
  ### generate data sets 
   
  #model <- as.data.frame(fill_model(model_simulation,pars)) 
   
  data <- replicate(m, simulate(model_simulation, parameters=pars, n=N))  # array 
   
  return(data) 
   
} 
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determine_Psi <- function(Phi, gamma, Omega, var_eta){ 
  cov_i_q <- cov_int_quad(Phi = Phi)   ## Covariance matrix of all  
  ## linear and nonlinear terms in the model 
  coef <- gamma  # Omega is assumed to be upper triangular matrix 
  if(dim(Phi)[1] > 1){ 
    for (i in 1:(dim(Phi)[1]-1)){ 
      coef <- c(coef, Omega[i,(i+1):dim(Phi)[1]]) 
    } 
  } 
  coef <- c(coef, diag(Omega)) 
   
  Psi <- var_eta - sum((coef %*% t(coef)) * cov_i_q)    
  return(Psi) 
} 
 
cov_int_quad <- function(Phi){ 
   
  Phi <- as.matrix(tril(Phi,0))  # lower triangular matrix 
  Phi_sym <- as.matrix(tril(Phi,0)) + t(as.matrix(tril(Phi,-1))) # as symmetric matrix 
   
  # empty matrix  
  num.xi <- dim(Phi)[1] 
  num.int <- num.xi*(num.xi-1)/2 
  Cov <- matrix(NA, nrow = 2*num.xi + num.int, ncol = 2*num.xi + num.int)   
   
  if (num.xi == 1) { 
    Cov[1,2] <- 0 
    Cov[2,1] <- 0 
    Cov[1,1] <- Phi 
    Cov[2,2] <- 2*Phi^2 
  } else { 
    comb <- combn(num.xi, 2)  # Interactionens 
    names_Cov <- c() 
    for (i in 1:num.xi){ 
      names_Cov <- c(names_Cov, paste("xi", i, sep = "")) 
    } 
    for (i in 1:dim(comb)[2]){ 
      names_Cov <- c(names_Cov, paste("xi", comb[1,i], "*xi", comb[2,i],  sep = "")) 
    } 
    for (i in 1:num.xi){ 
      names_Cov <- c(names_Cov, paste("xi", i, "^2",  sep = "")) 
    } 
     
    rownames(Cov) <- names_Cov 
    colnames(Cov) <- names_Cov 
     



 136 

    # F?llen der unteren Dreiecksmatrix 
    Cov[1:num.xi, 1:num.xi] <- Phi #+ t(tril(Phi, -1))             # Variances + Covariances 
    Cov[(num.xi + 1): (2*num.xi + num.int), (1:num.xi)] <- 0   # linearer term * quadratic term or 
linearer term * interaction term 
    Cov[(num.xi + num.int+1):(2*num.xi + num.int), (num.xi + num.int+1):(2*num.xi + num.int)] 
<- 2*Phi^2  # quadratic term * quadratic term 
     
     
    # quadratic term * interaction term 
    # all combinations in C1 
     
    C1   <- matrix(NA, nrow = num.xi, ncol = num.int) 
    for (k in 1:num.xi){ 
      for (l in 1:num.int){ 
        C1[k,l] <- 2*Phi_sym[k,comb[1,l]]*Phi_sym[k,comb[2,l]] 
      } 
    } 
     
    Cov[(num.xi + num.int + 1):(2*num.xi + num.int), (num.xi + 1):(num.xi + num.int)] <- C1   
     
     
    # interaction term * interaction term 
    # all combinations ind C2 
     
    C2   <- matrix(NA, nrow = num.int, ncol = num.int) 
    for (k in 1:num.int){ 
      for (l in 1:num.int){ 
        C2[k,l] <- Phi_sym[comb[1,k],comb[1,l]]*Phi_sym[comb[2,k],comb[2,l]] + 
Phi_sym[comb[1,k],comb[2,l]]*Phi_sym[comb[2,k],comb[1,l]] 
      } 
    } 
        Cov[(num.xi + 1):(num.xi + num.int), (num.xi + 1):(num.xi + num.int)] <- 
as.matrix(tril(C2,0)) 
     } 
    return(as.matrix(tril(Cov,0)) + t(as.matrix(tril(Cov,-1)))) 
   
} 


