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ABSTRACT 

Analysis of Whole Exome Sequence Data in Affected Cousin Pairs 
from High-Risk Alzheimer’s Pedigrees 

Lyndsay Ann Staley 
Department of Biology, BYU 

Master of Science 

Genetic factors account for about half of Alzheimer’s Disease (AD) risk and only about a 
quarter of that heritability is accounted for by known variants. Family based approaches to 
understanding AD genetics may be an effective way to identify additional risk factors. Here we 
report the results of whole exome sequencing (WES) and analyses done on pairs of AD affected 
cousins from 19 families from the Utah Population Database (UPDB) with a statistical excess of 
AD risk.  

WES variants passing quality control were additionally filtered by population frequency 
(minor allele < 0.01) and concordance between cousin pairs, resulting in 564 variants shared by 
at least one pair of cousins. For each of these variants we conducted in depth annotations using 
Ingenuity Variant Analysis (IVA), Wellderly Data Allele Frequencies, and literature searches. To 
further aid in variant prioritization we analyzed each variant for association with Age at Onset of 
AD, AD Risk, CSF AB42, CSF Tau, CSF PTau and Rate of Disease Decline in data from the 
Alzheimer’s Disease Genetics Consortium (ADGC) and from the Knight Alzheimer’s disease 
research center. Statistical analyses were conducted using PLINK.  

Twelve variants (rs201665195, rs28933981, rs148294193, rs147599881, rs61729902, 
rs140129800, rs191804178, rs200290640, rs199752248, rs45541434, rs141402160 and 
rs140914494) in eight genes (ABCA7, TTR, PELI3, FCHO1, SNAP91, COX6A2, MUC16, 
PIDD1, SYT5 and NOTCH3) were prioritized using a clear pipeline of IVA filters and the 
additional analysis information. We propose that these genes and variants are the most 
interesting for follow-up based on current knowledge. 

This family-based approach to finding rare AD variants adds to a growing body of 
research suggesting a role for NOTCH3 in late-onset AD. This approach replicated two known 
AD risk variants and also implicated novel putative risk AD variants and genes. These results 
suggest that further application of this method of using pairs of cousins may result in additional 
insights into AD genetics and the ability to find novel rare, causal AD variants. 

Keywords: Alzheimer’s Disease, genetic analysis, whole exome sequence, variant analysis, late-
onset AD, NOTCH3
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INTRODUCTION 

Alzheimer’s Disease (AD) is a devastating neurodegenerative disease that is currently the sixth 

leading cause of death in the United States, and the only top ten cause of death to not have a 

disease-altering treatment to cure, prevent or even slow it down [1]. It affects 10% of people over 

the age of 65, and as our population gets older and people are able to live longer, it is expected 

that the rate of AD deaths will continue to increase [2]. Pathologically, AD is characterized by 

amyloid-beta aggregates and neurofibrillary tangles in the brain. Patients with AD slowly lose 

their memory and their ability to care for themselves until they are no longer the person their 

friends and family once knew. Caretakers and medical expenses puts a large financial burden on 

the families of AD patients, along with the emotional turmoil of watching their loved one 

decline. 

Currently, genetic factors account for about half of AD risk and only 31% of that heritability is 

accounted for by known variants [3]. There are more than 20 distinct loci that have been 

associated with AD risk from genome-wide association studies (GWAS) and linkage analyses 

[4], but the majority of AD genetics is still left unexplained. Familial-based studies are a 

beneficial and resourceful study design in finding rare variants that increase disease risk, as 

pedigree information and family history can help narrow the possibilities of risk alleles and 

provide more power to find rare alleles. We report our study done using AD cousin pairs, from 

19 separate families, looking for rare, putative causal AD risk variants. Using first and second 

cousin pairs makes this study unique and interesting because, assuming the phenotype is derived 

from a shared variant, this approach allows you to narrow the genetic material down to 

approximately 12.5% and 3.13%, respectively, and keeps the cost to a minimum by only looking 

at the exomes of two individuals per family. Finding more loci associated with AD risk will help 
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us solve the genetic puzzle and get us closer to finding a possible treatment for this terrible 

disease. Better understanding AD genetics would allow us to discern more of the biological 

processes that begin years before clinical symptoms appear and would give us a chance to treat 

early and prevent the damage from becoming irreversible. 

METHODS 

Data 

We collected whole exome sequence data from two individuals, either first or second cousins, in 

19 separate families from the Utah Population Database (UPDB) with a statistical excess of AD 

risk. We retained the variants that were shared between at least one cousin pair, and had a minor 

allele frequency (MAF) of less than 0.1%, to strictly filter for rare variants. This resulted in a list 

of 564 variants from 527 genes which we used in the rest of our analyses. 

Replication Analyses 

We completed additional analyses using other datasets, to look for replication of significance of 

these 564 variants and to find everything that is known about these variants thus far, in hopes of 

discovering which could be putative causal AD variants. 

When a variant or gene was found in more than 1 cousin pair, we labeled it a “Multiple Hit”. 

There were a total of 19 Multiple Hit genes, containing 36 variants. Ten of these variants were 

considered “Multiple Hit variants”, because the exact variants were seen in multiple cousin pairs, 

rather than just the gene being seen multiple times. No Multiple Hit genes or variants were seen 

in more than 2 cousin pairs. 

We used the Alzheimer’s Disease Genetics Consortium (ADGC) [5] data to do a number of 
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validation analyses. Briefly, ADGC is imputed SNP array data that includes 28,730 subjects, 

with 11967 males and 16760 females, and 10486 AD cases and 10168 healthy controls. Of the 

564 variants, 291 were sequenced in the ADGC data. We ran an AD Risk logistic regression and 

an Age at Onset of Disease linear regression using PLINK [6]. We included sex, APOE4, and the 

first ten EIGENSTRAT principal components (PCs) [4, 7] as covariates in both of these 

regressions. We used ADGC data to run Gene-Based Testing using SKAT [8] to analyze our 19 

Multiple Hits genes for AD Risk at the gene level, rather than just by variant. We also collected 

MAF information about these variants in ADGC AD cases and cognitively healthy controls. 

We tested known AD biomarkers to see if any of the variants were associated with changing the 

levels of either AB42, Tau or PTau. Of the 564 variants, only 12 variants were sequenced in the 

CSF data. Briefly, the CSF data we used for these analyses were from the Knight-Alzheimer’s 

Disease Research Center at Washington University School of Medicine (Knight ADRC). This 

included 3,963 subjects, with 1,895 males and 1,675 females, and 1,479 AD cases and 1,370 

healthy controls. All samples were genotyped using the Illumina 610 or the Omniexpress chip. 

We ran 3 linear regressions, one for each of the phenotype of interest, with age, APOE status, 

sex and 2 PCs [4, 7] as covariates. We used PLINK to run these 3 analyses. 

We were also interested to see how frequent our variants were in the Wellderly Dataset [9]. The 

Wellderly dataset includes elderly citizens who are cognitively healthy, without medical 

interventions, at the age of 80 and older. Briefly, Whole Genome Sequencing (WGS) was 

performed using Complete Genomics platform on 600 Wellderly individuals. We collected MAF 

information about our variants from this dataset. We also constructed a basic filter to look for the 

pattern of a risk allele. To pass the filter, the frequency of the variant in the Wellderly dataset 

needed to be less than or equal to the frequency of the variant in ADGC controls and less 
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frequent in controls than it was in ADGC AD cases (Wellderly <= ADGC Controls < ADGC AD 

Cases). If the variant passed this filter, it would seem to be following the pattern of being an AD 

risk allele. 

We ran a Rate of Decline analysis, investigating if any of the variants were associated with faster 

or slower disease decline, in the Rate of Decline dataset [10]. Briefly, this dataset used 

longitudinal clinical data from ADNI and Knight ADRC at Washington University to calculate 

polygenic risk scores (PRS). They used this to compare the genetic architecture of AD Risk and 

AD disease progression, which they calculated from change in clinical dementia rating (CDR) 

per year.  Lastly, we analyzed our variants using RegulomeDB [11] which is an online database 

that annotates variants with already known and predicted regulatory elements in the human 

genome. It gives information on regions of DNAase hypersensitivity, transcription factor binding 

sites, known eQTLs, DNA methylation, and promoter regions that have been biochemically 

characterized to regulate transcription. They use data from GEO, ENCODE, and published 

literature and return scores which represent how much supporting data exists for that variant 

[11]. 

Pipeline 

In order to sift through all the information clearly and concisely, we created a pipeline with 

specific cut offs and filters. Figure 1 shows an overview of this pipeline, from data collection to 

the results. Data were additionally analyzed through the use of Ingenuity® Variant Analysis™ 

software (https://www.qiagenbioinformatics.com/ products/ingenuity-variant-analysis) from 

QIAGEN, Inc. We gathered the results from all the additional annotation analyses performed, 
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and entered them as Custom Annotation columns into our samples on Ingenuity Variant Analysis 

(IVA).  

Figure 1. Pipeline Overview: Starting with concordant variants with MAF <0.1% from 19 cousin pairs, 
(564 variants in 527 genes), we ran a number of validation analyses and completed additional annotation 
on these variants. We then imputed this information into Ingenuity Variant Analysis (IVA). We filtered 
using Common Variants, Predicted Deleterious, Genetic Analysis, and Biological Context filters modified 
to fit our specific study design. Finally, we prioritized variants that passed either our Known AD Causal 
Variants, AD Risk, Wellderly, or Multiple Hit filters, leaving 12 prioritized variants. 

After entering all our information into IVA, we began with the Common Variants filter. We 

expect a variant found from this type of study to be rare, and not seen frequently in the 

population. We set the cut off to only include variants with MAF <1% in all the populations IVA 

offers (1000 Genomes [12], ExAC [13], gnomAD [13], and NHLBI GO Exome Sequencing 

Project (ESP), Seattle, WA (URL: http://evs.gs.washington.edu/EVS/) [March 2018]). Briefly, 

1000 Genomes has 2504 samples from 26 different populations, and their sequencing was 

generated using Illumina, SOLiD and 454. The Exome Aggregation Consortium (ExAC) seeks to 

harmonize sequencing data from a variety of large-scale sequencing projects, and 60,706 

unrelated individuals sequenced from various populations and disease interest groups are 

available in this dataset. The Genome Aggregation Database (gnomAD) is an extension of 
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ExAC, by including 15,496 whole genomes in addition to the 123,136 exome sequence data. 

Lastly, NHLBI Exome Sequencing Project’s (ESP) currently has 6503 samples and their goal is 

to pioneer the application of next-generation sequencing of the protein coding regions of the 

human genome across diverse, richly phenotyped populations and to share these datasets and 

findings with the scientific community. This filter brought the number of variants from 564 

down to 400.  

The next cut off we used was labeled the Predicted Deleterious filter. We chose for IVA to only 

keep variants that ACMG [14] considered “Pathogenic”, “Likely Pathogenic”, or “Unknown”, or 

variants that were associated with loss or gain of gene function. Basically, we wanted to exclude 

any variants that are already known to not cause a change or not be harmful. This brought the 

number of variants from 400 to 391. The next step was the Genetic Analysis filter. We chose to 

only keep variants that were Haploinsufficient, Hemizygous or Heterozygous. This only 

excluded 2 variants and brought the number of variants down to 389. Then we added the 

Biological Context filter, which only kept variants known or predicted to affect AD, AD with 

amyloid pathology, or AD associated with APOE4. This filter brought the variant count from 

389 down to 118.  

Of these 118 variants that passed all the filters, a variant was added to our final list if it 1) was 

already published in the literature as a known AD risk variant, 2) had a p value < 0.09 for the AD 

Risk regression and a positive direction, suggesting it is was following the trend of being a risk 

allele, 3) passed the Wellderly Filter described previously and had a Wellderly MAF = 0, 

suggesting that the variant is never seen in healthy elderly population and it could be a risk allele, 

or 4) was a Multiple Hit variant, where the exact variant was seen in multiple cousin pairs, or had 

a p-value < 0.05 for the Gene-Based AD Risk test. These 4 final filters, 1) Known AD Risk 
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Variant, 2) AD Risk, 3) Wellderly and 4) Multiple Hits, narrowed the variant count to 2, 2, 3 and 

5 respectively, resulting in 12 final variants. 

RESULTS 

We believe this pipeline allowed us to best use the information available to us to clearly narrow 

the list from 564 variants to 12 variants with the strongest cases for AD Risk alleles. Table 1 

shows the final list of the 12 prioritized variants. 

Table 1. Top 12 Prioritized Variants for AD Risk from the 19 Cousin Pairs 

SNP ID Gene CHR Position Ref Alt Final Filter Information 
rs201665195 ABCA7 19 1041971 T G Known AD Causal Variant 

rs28933981 TTR 18 29178610 C T Known AD Causal Variant 

rs148294193 PELI3 11 66235714 G C AD Risk p = 0.05 (+) 

rs147599881 FCHO1 19 17881668 G A AD Risk p = 0.06 (+) 

rs61729902 SNAP91 6 84291977 G A Wellderly Filter and MAF = 0 

rs140129800 COX6A2 16 31439613 A C Wellderly Filter and MAF = 0 

rs191804178 MUC16 19 9076546 G A Wellderly Filter and MAF = 0 

rs200290640 PIDD1 11 800449 G A Multiple Hit variant 

rs199752248 PIDD1 11 800453 T C Multiple Hit variant 

rs45541434 SYT5 19 55693469 C T Multiple Hit variant 

rs141402160 NOTCH3 19 15302615 C G Multiple Hit gene, Gene Based 
Test p = 0.0001 

rs140914494 NOTCH3 19 15302857 G A Multiple Hit gene, Gene Based 
Test p = 0.0001 

Known AD Risk Variant 

The first final filter we used was to check if any of the 118 variants that were already known to 

be associated with AD in IVA were published as known AD risk variants. Two variants of our 

variants were already seen in the literature as AD risk variants. 



 8 

The first variant, rs201665195, is found in the ABCA7 gene on chromosome 19, is a missense 

mutation, and SIFT [15] labels it “damaging”, but it was not sequenced in our validation 

datasets. Guennec et al 2016 observed this variant, along with other rare ABCA7 variants in AD 

cases and confirmed that ABCA7 rare, loss of function and predicted damaging missense 

variants are enriched in patients with AD [16]. Vardarajan et al 2015 also found this rare variant 

in 2 of their 3 late onset AD (LOAD) cohorts, and this variant was not seen in unaffected 

individuals [17].  

The second variant, rs28933981, is located in the TTR gene on chromosome 18, is a missense 

mutation, and SIFT labels it “damaging”. It was sequenced in our ADGC validation dataset, but 

it did not pass our significance thresholds. Sassi et al 2016 observed this variant in 6 AD cases, 

out of their 332 AD cases sample and this variant had a strong effect size (OR = 6.19, 95% CI = 

1.099-63.091) [18]. It was also observed in 2 of their 676 controls sample. TTR is a known to be 

involved in amyloid beta catabolism and has no homologous proteins, suggesting that subtle 

changes to this protein could be functionally relevant and manifest phenotypically [18].  

AD Risk 

The conditions for this final filter were 1) the AD Risk logistic regression p-value needed to be 

less than 0.09, as power was low we were interested in trends of significance for risk and 2) the 

direction of affect needed to be positive, implying the variant increased the likelihood of having 

AD. Two variants passed all the previous criteria in the IVA filters, and also met the conditions 

of the AD Risk final filter.  

The third variant, rs148294193, is found in the PELI3 gene, has a p-value of 0.05 AD Risk with 

a positive direction, causes a missense mutation, and has been shown in the literature to bind 
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UBC [19] and APP [20]. UBC has been shown to be significantly decreased in AD brains, 

regardless of the genotype, suggesting that decreased UBC function may be important in AD 

pathogenesis, specifically in regard to increased neuronal death and non-regulated APP 

production [21]. APP is a long-known AD risk gene, and many mutations in this gene are known 

to cause early-onset AD. APP is cleaved into amyloid beta peptides, which are a major 

component of the amyloid plaques found in AD patients’ brains [22]. PELI3 is a scaffold protein 

and an intermediate signaling protein in the innate immune response pathway, but no known 

disorders have been associated with it thus far. 

The fourth variant, rs147599881, is located in the FCHO1 gene, has an AD Risk p-value of 0.06 

with a positive direction, causes a missense mutation and also is shown to bind UBC [23] and 

APP [20]. FCHO1 is involved in vesicle-mediated transportation and clathrin-mediated 

endocytosis. There are no known disorders associated with this gene or protein yet. 

Wellderly 
To pass this final filter, variants needed to 1) pass our Wellderly Filter (Wellderly MAF <= 

ADGC Controls MAF < ADGC AD Cases MAF) and 2) have a MAF = 0 in the Wellderly 

population. Three variants met these conditions. 

The fifth variant, rs61729902, is located in the SNAP91 gene, causes a missense mutation, and 

binds UBC [24]. SNAP91 is involved in vesicle-mediated transportation and clathrin-mediated 

endocytosis. Interestingly, it is a paralog of PICALM, which is a known top 10 AD Risk gene 

[25], and they both have similarities between their functions of clathrin-mediated endocytosis. 

SNAP91 is known to be associated with the Cataract 8 disorder. 
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The sixth variant, rs140129800, is found in the COX6A2 gene, causes a missense mutation, and 

binds APP [20]. COX6A2 is a terminal enzyme in the Mitochondrial respiratory chain and there 

are no known associations with diseases or disorders at this point. 

The seventh variant, rs191804178, is located in the MUC16 gene, causes a missense mutation, 

and binds UBC [26]. MUC16 is shown to form a protective mucous barrier on the apical surfaces 

of the epithelia. It is associated with the following disorders: ovarian cancer, endometriosis, 

psuedo-meigs syndrome, serous cystadenocarcinoma and bronchogenic cyst.  

Multiple Hits 
To meet the conditions of this final filter, variants must either 1) be a Multiple Hit variant, 

meaning the same exact variant was found in more than one cousin pair or 2) have a significant 

Gene-Based AD Risk P-value of less than 0.05. Five variants in three different genes passed 

these criteria. 

The eighth variant and ninth variant, rs200290640 and rs199752248, respectively, are both 

Multiple Hit variants, lead to splice site loss, and are both found in the PIDD1 gene, which is 

shown to bind APOE4 [27]. Rs200290640 is also labeled by SIFT [15] as “damaging”. Neither 

of these variants were sequenced in our validation datasets. PIDD1 contains a death domain, 

interacts with other death domain proteins and it is a suggested to be an effector of p53-

dependent apoptosis. It is already associated with Poikiloderma with Neutropenia. 

The tenth variant, rs45541434, found in the SYT5 gene, is another Multiple Hit variant, causes a 

missense mutation, leads to mafb and myf promoter loss, and is shown to bind UBC [24]. This 

variant was not significant in our validation analyses. SYT5 is thought to act both as negative 

regulators of vesicle fusion, allowing fusion in the presence of calcium, and as calcium receptors 

or sensor molecules. No known disorders have been associated with this gene yet. 
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The eleventh and twelfth variants, rs141402160 and rs140914494, respectively, are both located 

in the NOTCH3 gene, cause missense mutations and SIFT labels them “Damaging”, but these 

variants were not sequenced in our validation datasets. NOTCH3 is known to bind PSEN1 [28, 

29] and PSEN2 [28]. NOTCH3 earned a p-value of 0.0001 from the gene-based testing of AD

Risk in the ADGC dataset, implying that although these exact variants might not be AD Risk 

variants, the gene itself is associated with AD Risk. NOTCH3 plays a key role in neural 

development and is already known to cause the neuronal disease cerebral autosomal dominant 

arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). In 2012, the same 

region of NOTCH3 we are reporting, was also linked to causing AD in a Turkish family [30]. 

DISCUSSION 

Sassi et al 2018 recently highlighted the difficulties we face in definitive and accurate diagnoses 

of AD and many Mendelian adult-onset leukodystrophies as many of these progressive 

neurodegenerative disorders all share similar clinical, neuroimaging and neuropathological 

features[31]. This study even implied that there is evidence that some of these neurodegenerative 

disorders, like CADASIL, HDLS and AD, are shades of the same disease spectrum. There have 

been numerous sources comparing the similarities of AD and CADASIL. Marchesi et al 2014 

discussed how both diseases involve damaged small blood vessels, which causes blocked blood 

flow or impedes the removal of toxic protein aggregates, and how NOTCH3 mutants cause 

damage to these vessels in the white matter of the brain [32]. This could be the connection 

between AD and CADASIL’s similar pathogenesis [32]. There have also been cases where 

patients exhibit the coexistence of CADASIL and AD, and it is unclear of whether NOTCH3 

mutations are accelerating a pre-existing AD case, or whether AD pathogenesis is accelerating 
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CADASIL progression [33]. Overall, we believe that NOTCH3 should be pursued as an 

interesting AD risk gene until the distinction between AD and CADASIL is elucidated.  

Overall, we gathered all the information we could find about each variant and gene at this time. 

Unfortunately, little is known about most variants, genes and proteins, especially the rare 

variants we are working with here. We are very aware that there could be variants in this list that 

are putative causal AD Risk variants, that we were not able to identify at this time because of the 

large amount of variants we are working with, and the relatively little information known about 

them. Rare variants are seen so infrequently in the population that it is necessary to either have 

genotype imputation, custom genotyping arrays, or use whole-exome or whole-genome 

sequencing to access these rare variants [34]. It is difficult to balance the price of deep 

sequencing and the unsurety of imputation with the number of samples necessary to generate 

enough power for statistical associations [34]. We fully acknowledge that we may have some 

false negative variants, based on under-powered analyses. We also acknowledge that because we 

are only searching the exomes, we could miss interesting hits throughout the genome that are not 

protein coding. We hope that others are able to use the lists of variants provided, and perform 

replication analyses to validate whether or not some of these variants are possibly causing AD in 

these families and other families in the population. 

This unique project structure of using first and second cousin pairs has allowed us to pull out rare 

variants from high risk AD pedigrees in the UPDB. First and second cousins share on average 

12.5% and 3.13% of their genetic material, respectively. Assuming the phenotype of interest is 

derived from a shared variant, the search window is significantly narrowed by using this 

approach, while still minimizing costs by only sequencing the exomes of two samples per family. 

We believe that additional projects of this type would be beneficial in finding rare, AD risk 
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variants in the future and help explain more of the genetic heritability that currently remains a 

mystery. 

FUTURE DIRECTIONS 

Of the original 19 cousin pairs from our study, only 8 cousin pairs carry one or more of our 12 

prioritized variants. Assuming there is indeed a shared variant or gene that is causing AD in all 

of these families, these 11 currently unexplained cousin pairs show there is much more to learn 

from their shared genetic material than we can currently prioritize with our current information. 

To do more complete variant prioritization, or find variants that are currently considered false 

negatives, we could go back to the pedigrees, and collect more unaffected and affected samples 

and look for segregation of variants. If a variant is showing segregation, it would be beneficial to 

complete functional validation in cell lines to learn more about the biological impact of the 

interesting variant(s) at the gene expression level, protein function level, and other possible 

contributions to AD. 

It would also be beneficial to analyze these variants in additional AD datasets, like the 

Alzheimer’s Disease Sequencing Project (ADSP) exome data. Briefly, ADSP’s fourth release 

has 15,664 whole exome sequencing data with revised race information available, genotyped 

using Illumina HiSeq 2000, for case control and family studies [35]. Replicating our Wellderly 

MAF Filter would be beneficial and interesting to check for patterns of risk alleles in this large 

dataset and any others AD datasets available. In conclusion, any additional information we can 

collect about these variants in different populations, datasets, and families, and any biological 

information we can gather from experimentation would help us make a more complete picture of 

how these variants are actually affecting their carriers.  
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