Understanding Community and Ecophysiology of Plant Species on the Colorado Plateau

Hannah Elizabeth Yokum
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

BYU ScholarsArchive Citation
Yokum, Hannah Elizabeth, "Understanding Community and Ecophysiology of Plant Species on the Colorado Plateau" (2017). All Theses and Dissertations. 7211.
https://scholarsarchive.byu.edu/etd/7211

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Understanding Community and Ecophysiology of Plant Species on the Colorado Plateau

Hannah Elizabeth Yokum

A thesis submitted to the faculty of
Brigham Young University
in partial fulfillment of the requirements for the degree of

Master of Science

Richard A. Gill, Chair
Samuel B. St. Clair
Ryan R. Jensen
David L. Hoover

Department of Biology
Brigham Young University

Copyright © 2017 Hannah Elizabeth Yokum
All Rights Reserved
ABSTRACT

Understanding Community and Ecophysiology of Plant Species on the Colorado Plateau

Hannah Elizabeth Yokum
Department of Biology, BYU
Master of Science

The intensification of aridity due to anthropogenic climate change is likely to have a large impact on the growth and survival of plant species in the southwestern U.S. where species are already vulnerable to high temperatures and limited precipitation. Global climate change impacts plants through a rising temperature effect, CO$_2$ effect, and land management. In order to forecast the impacts of global climate change, it is necessary to know the current conditions and create a baseline for future comparisons and to understand the factors and players that will affect what happens in the future. The objective of Chapter 1 is to create the very first high resolution, accurate, park-wide map that shows the distribution of dominant plants on the Colorado Plateau and serves as a baseline for future comparisons of species distribution. If we are going to forecast what species have already been impacted by global change or will likely be impacted in the future, we need to know their physiology. Chapter 2 surveys the physiology of the twelve most abundant non-tree species on the Colorado Plateau to help us forecast what climate change might do and to understand what has likely already occurred.

Chapter 1. Our objective was to create an accurate species-level classification map using a combination of multispectral data from the World View-3 satellite and hyperspectral data from a handheld radiometer to compare pixel-based and object-based classification. We found that overall, both methods were successful in creating an accurate landscape map. Different functional types could be classified with fairly good accuracy in a pixel-based classification but to get more accurate species-level classification, object-based methods were more effective (0.915, kappa coefficient=0.905) than pixel-based classification (0.79, kappa coefficient=0.766). Although spectral reflectance values were important in classification, the addition of other features such as brightness, texture, number of pixels, size, shape, compactness, and asymmetry improved classification accuracy.

Chapter 2. We sought to understand if patterns of gas exchange to changes in temperature and CO$_2$ can explain why C$_3$ shrubs are increasing, and C$_3$ and C$_4$ grasses are decreasing in the southwestern U.S. We conducted seasonal, leaf-level gas exchange surveys, and measured temperature response curves and A-C$_i$ response curves of common shrub, forb, and grass species in perennial grassland ecosystems over the year. We found that the functional trait of being evergreen is increasingly more successful in climate changing conditions with warmer winter months. Grass species in our study did not differentiate by photosynthetic pathway; they were physiologically the same in all of our measurements. Increasing shrub species, *Ephedra viridis* and *Coleogyne ramosissima* displayed functional similarities in response to increasing temperature and CO$_2$.

Keywords: climate change, drylands, ecophysiology, photosynthesis, plant sensitivity, World View-3, l, object-based classification, pixel-based classification
ACKNOWLEDGEMENTS

I would like to thank the U.S. Geological Survey for their generous support, both financially and scientifically for the project. On the USGS team is Dr. David Hoover who assisted me personally as a member on my committee, reading drafts and advising me on methodology, species identification, and site-specific information. He created the R program, R Goldy, for determining stability with the Li-COR machines as well as width to surface area conversions for major species so I wouldn’t have to clip and measure leaf surface area for all of the species. The USGS also provided the satellite imagery for the second chapter along with help from Dr. Miguel Villarreal. I would like to recognize a few of the many professors at BYU who offered personal support and mentoring to me along the journey: Dr. Roger Koide, Dr. Jerry Johnson, Dr. Steve Schill, Dr. Steve Peterson, and Dr. Randy Larsen. I would like to thank Dr. Ryan Jensen for his remote sensing and GIS expertise that was necessary for the mapping and classification of the imagery. A big thanks to Dr. Samuel St. Clair for his ecophysiology experience and editing mastery. And finally, so much recognition goes to Dr. Richard Gill, my adviser, for the funding, project ideas, support, mentoring and the hundreds of edits he patiently endured. This experience has brought both personal and scientific growth and I am grateful for all of the mentoring and friendship shown to me along the way.
TABLE OF CONTENTS

TITLE PAGE .. i
ABSTRACT ... ii
ACKNOWLEDGEMENTS .. iii
TABLE OF CONTENTS .. vii
LIST OF TABLES .. vi
LIST OF FIGURES ... vii

**Chapter 1: ... 1
 Abstract .. 1
 Introduction ... 2
 Methods ... 6
 Site Description ... 6
 Study Design .. 8
 Climate Data .. 9
 Photosynthetic Gas Exchange Measurements ... 10
 Leaf-level Photosynthesis Point Measurements ... 10
 A-\(\text{C}_1 \) Response Curves ... 11
 Temperature Response Curves .. 11
 Statistical analyses .. 12
 Results .. 13
 Precipitation and Temperature Measurements .. 14
 Seasonal Gas Exchange Measurements .. 15
 Temperature Response Curves and Optima ... 17
 A-\(\text{C}_1 \) Response Curves ... 20
 Grouping Species by General Strategies for Success ... 22
 Discussion .. 25
 Seasonal Gas Exchange Measurements .. 26
 Temperature and \(\text{CO}_2 \) Response Curves ... 28
 Grouping of General Strategies for Success .. 30
 Conclusions .. 30
 References ... 32

**Chapter 2: ... 38
 Using Very High Resolution (VHR) satellite Imagery to Create an Accurate, Species-
 level Baseline Map in Canyon Terrain .. 38
 Abstract .. 38
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>39</td>
</tr>
<tr>
<td>Remote Sensing</td>
<td>40</td>
</tr>
<tr>
<td>Image Classification</td>
<td>42</td>
</tr>
<tr>
<td>Methods</td>
<td>46</td>
</tr>
<tr>
<td>Site Description</td>
<td>46</td>
</tr>
<tr>
<td>Image Pre-processing</td>
<td>46</td>
</tr>
<tr>
<td>Reflectance curves and pixel-based classification</td>
<td>48</td>
</tr>
<tr>
<td>Ground Reference Data</td>
<td>49</td>
</tr>
<tr>
<td>Comparison of Approaches</td>
<td>50</td>
</tr>
<tr>
<td>Spectral Differentiation</td>
<td>50</td>
</tr>
<tr>
<td>Object oriented classification</td>
<td>52</td>
</tr>
<tr>
<td>Important Features in Object-based classification</td>
<td>53</td>
</tr>
<tr>
<td>Accuracy Assessment</td>
<td>54</td>
</tr>
<tr>
<td>Results</td>
<td>55</td>
</tr>
<tr>
<td>Reflectance Curves and Pixel-based Classification</td>
<td>55</td>
</tr>
<tr>
<td>Compare pixel-level classification to object-level classification</td>
<td>55</td>
</tr>
<tr>
<td>Important Features in Object-based Classification</td>
<td>56</td>
</tr>
<tr>
<td>Discussion</td>
<td>63</td>
</tr>
<tr>
<td>Classification Accuracy</td>
<td>63</td>
</tr>
<tr>
<td>Limitations of the method</td>
<td>65</td>
</tr>
<tr>
<td>Implications</td>
<td>66</td>
</tr>
<tr>
<td>References</td>
<td>67</td>
</tr>
<tr>
<td>Supplementary Information</td>
<td>76</td>
</tr>
<tr>
<td>Chapter 1</td>
<td>76</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>77</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Chapter 1:... 1
 Table 1 Species measured in the study .. 9
 Table 2 Species Spring maximum photosynthetic rate and optimum temperatures 19
 Table 3 ANOVA results ... 23

Chapter 2:... 38
 Table 1 Species measured .. 48
 Table 2 Pixel-based confusion matrix .. 59
 Table 3 Object-based confusion matrix ... 59
 Table 4 Class separation distance matrix ... 61
 Table 5 Object overlap values .. 62
 Table 6 Other features that can be used to increase separation distance 62

Supplementary Information ... 76
 Chapter 1 .. 76
 Table S1 Point measurements for photosynthetic rate ... 76
 Chapter 2 .. 77
 Table S1 Classification Sample Editor ... 83
LIST OF FIGURES

Chapter 1: .. 1
 Figure 1 .. 7
 Figure 2 15-year average precipitation and monthly precipitation values graphed 15
 Figure 3 Point photosynthetic measurements ... 17
 Figure 4 Temperature Response Curves ... 18
 Figure 5 Temperature optima days over the past 15 years .. 20
 Figure 6 A-Ci curves .. 22
 Figure 7 Clustering of species by similar traits ... 24
 Figure 8 Important variables in clustering ... 25

Chapter 2: .. 38
 Figure 1 Study site ... 47
 Figure 2 Spectral signatures ... 49
 Figure 3 Spectral signature decision tree ... 50
 Figure 4 Image processing methods ... 51
 Figure 5 Classification map ... 58

Supplementary Information .. 76
 Chapter 2 .. 77
 Figure S1 Original image and classification ... 77
 Figure S2 Chelser Park Classification .. 78
 Figure S3 Zoomed in Chesler Park Classification ... 79
 Figure S4 Shrub to grass interface in Chesler Park .. 80
 Figure S5 Virginia Park classification .. 81
 Figure S6 Visitor Center classification .. 82
Chapter 1:

Plant sensitivities to temperature and CO₂ contribute to competitive advantages on the Colorado Plateau

Abstract

Plant species responses to changing climate in dryland ecosystems are shaped by their ability to fix carbon dioxide while avoiding water loss. This tradeoff is influenced by global climate change, including increases in atmospheric CO₂ and temperature and more variable precipitation patterns. We sought to understand if patterns of gas exchange to changes in temperature and CO₂ can identify possible competitive advantages for C₃ shrubs over C₃ and C₄ grasses in the changing climate of the southwestern U.S. To test this, we conducted seasonal, leaf-level gas exchange surveys, and measured temperature response curves and A-Cᵢ response curves of dominant shrub, forb, and grass species in perennial grassland ecosystems on the Colorado Plateau. We found that both C₃ and C₄ grass species were physiologically identical to each other and were more sensitive to changes in CO₂ concentrations compared to shrubs and forbs. Evergreen C₃ shrubs were functionally similar and were able to maintain photosynthetic activity throughout winter when minimum temperature requirements were met. Over the last fifteen years, there has been a steady increase in the number of winter days when temperatures are warm enough for net positive photosynthetic activity in C₃ shrub species. During these winter months, C₃ and C₄ competitor grass species are senesced so shrubs have limited competition for resources. Grass species had higher photosynthetic rates and temperature optima, but increasing, evergreen C₃ shrub species were consistent with wider optimum conditions.

Key-words: A-Cᵢ curves, climate change, cold desert, dryland, ecophysiology, photosynthesis, temperature response curves
Introduction

Plant species responses to changing climate in dryland ecosystems is shaped by their ability to fix carbon dioxide while avoiding water loss (Amthor 1995; Blumenthal et al. 2016). This tradeoff is influenced by climate change, including increases in atmospheric CO\textsubscript{2} and temperature and more variable precipitation patterns in the southwestern United States (Easterling et al. 2000; Sun et al. 2007; Diffenbaugh et al. 2005; Christensen et al. 2007). These abiotic changes affect the ability of plants to capture carbon efficiently, (Shaw et al. 1998; Sheffield and Wood 2008b, a; Christensen et al. 2007) especially in regions where species are already vulnerable to high temperatures and limited precipitation (Karl et al. 2009).

Understanding species sensitivities to climate change will allow more accurate comparisons of plant species vulnerabilities and projections of shifts in community density, distribution, and diversity (Shaw et al. 1998; Adler 2008; Algar et al. 2009; Sheppard & Stanley 2014; Fay et al. 2015).

Photosynthesis is the primary physiological process that drives plant growth and influences many other plant processes. It is also strongly affected by changing abiotic conditions, such as rising temperature and atmospheric CO\textsubscript{2} concentration, making it an ideal indicator of the effect of climate on plant species (Yin & Struik 2009). Plant photosynthetic capacity has been shown to strongly correlate with growth rates and contribute to competitive advantages making it a useful proxy for plant success under future climate scenarios (Lusk & Del Pozo 2002; Lusk et al. 2003). Photosynthetic responses to CO\textsubscript{2} concentration and temperature indicate biochemical function (limitations in the availability of the enzyme Rubisco or substrate RUBP) and stomatal regulation, and are therefore important for understanding biological changes in the plant (Davies 1998; Sharkey et al. 2007; Momen 2015; Sigut et al. 2015; Song et al. 2016).
Elevated atmospheric CO$_2$ concentration can stimulate plant photosynthesis, increase light efficiency, improve plant-water use efficiency, reduce stomatal conductance and transpiration, increase the transfer of C from plants to soil, and inhibit plant respiration (Idso et al. 1993; Callaway et al. 1994; Gunderson and Wullschleger 1994; Jackson et al. 1994; Amthor 1995; Polley et al. 2013). Elevated CO$_2$ concentrations might also bring about no changes in plant photosynthesis if individuals assimilate to the changes. Both CO$_2$ concentration and photosynthetic rate are highly dependent on leaf temperature. Researchers have found that climate warming can either stimulate (Apple et al. 2000; Huxman et al. 1998; Liang et al. 2013; Niu et al. 2008a), constrain (Jochum et al. 2007; Xu & Zhou 2005), or bring about no noticeable change (Newingham et al. 2014) in plant photosynthetic rates. Tolerance to high temperatures and a higher temperature optima indicate species better equipped for ecosystem warming (Ghouil et al. 2003; Heskel et al. 2016). Tolerance for a wide range of temperature optima allows the plant to perform at peak, or near peak, photosynthesis rates over a larger range of temperatures. Increases in temperature have been shown to reduce the rate of photosynthesis and density in the landscape in one shrub species while benefiting another shrub species (Shaw et al. 1998).

Plant seasonal gas exchange measurements and response curves for changing CO$_2$ and temperature are effective ways to use photosynthetic rates to characterize species-specific sensitivities to climate change (Ainsworth et al. 2003; Wullschleger et al. 2002; Dawson et al. 2004; Sheppard & Stanley, 2014; Song et al. 2016). Comparisons between instantaneous measures of leaf gas exchange across different CO$_2$ concentrations and temperature indicate how short term responses of leaf-level performance relate to more integrated responses to climate change (Shaw et al. 1998; Romero & Botia 2005; Wullschleger et al. 2002; Song et al. 2016).
Analysis of A-Ci curves, the response of net photosynthesis (A) to varying intercellular CO₂ concentrations (Ci), has been used to distinguish between diffusional and biochemical limitations to photosynthesis (Ainsworth et al. 2003; Hu et al. 2010). Maximum velocity of carboxylation of Rubisco (V_{cmax}) and maximum electron transport rate (J_{max}) have been shown to increase with warmer temperatures and indicate differences in nitrogen and phosphorus availability making them an important measure of sensitivity (Walker et al. 2014). Temperature response curves indicate short-term changes in photosynthetic rate with increasing temperature. They can be used to determine ideal temperature ranges for growth and photosynthesis of species as well as functional groups (Ziska 2001; Ghouil et al. 2003). Increases in photosynthetic rate in elevated CO₂ and temperature conditions is well documented for both C_3 and C_4 species (Bowes 1993; Gunderson and Wullschleger 1994; Amthor 1995; Drake et al. 1997; Herrick and Thomas 1998; Pataki et al. 1998; Wand et al. 1999; Wullschleger et al. 2002; Ainsworth et al. 2003; Sholtis et al. 2004; Warren et al. 2015; Duffy & Chown 2016). Based on the carboxylation kinetics of the C_3 pathway, C_3 species have been shown to have an increase in assimilation rates in high CO₂ conditions relative to C_4 species (Valerio et al. 2013; Cuniff et al. 2016; Sage and Khoshravesh 2016). C_4 species have been shown to respond more favorably to increased temperatures, still respond to increasing CO₂ and be more resilient to environmental stress compared to C_3 species (Pearcy & Ehleringer 1984; Wand et al. 1999; Wang et al. 2012; Tooth and Leishman 2013; Valerio et al. 2013; Cuniff et al. 2016; Duffy & Chown 2016; Hao et al. 2017). Seasonal gas exchange measurements identify important seasons for growth, the number of days over winter when plants are photosynthetically active, seasons that are most influenced by climate change in the region, and the species that benefit from the changing conditions. We expect warmer winter months, predicted in climate change projections, to benefit shrubs only if they are
photosynthetically active during winter months. Monitoring species sensitivities to changing abiotic conditions can identify instances of plant stress and acclimation. We use these parameters to determine how abiotic factors associated with climate change are influencing photosynthesis rates in plants and if there are traits in common between different groups of species.

The Colorado Plateau is an ideal place to evaluate plant sensitivity to environmental seasonality because there are large seasonal changes in temperature, a clear directional change in climate, and several key species that have been shown to vary in their responsiveness to climate change. Previous studies from the region have found that species with a C₄ photosynthetic pathway benefit in changing climate conditions (Munson et al. 2011a; Duffy & Chown 2016). In the case of shrubs however, C₃ shrubs, not C₄ shrubs, were more are resistant to drought (Hoover et al. 2015). Another study found that, when faced with a 35% drought press, C₄ grasses were sensitive to drought across all measured variables, and the C₃ shrubs had little to no response to drought conditions (Hoover et al. 2017). Over a twenty-year period, a common C₃ shrub species found in perennial grasslands, Ephedra viridis, showed some increase in its canopy cover with increasing mean annual temperature, while C₃ grasses showed sharp declines. This suggests that plant sensitivity to temperature is potentially a predictor of decline for perennial grasses and increase of some C₃ shrubs, however with only two of the eight sites showing that relationship, there is a need for more data (Munson et al. 2011a). Either indirectly through competitor decline or through actual benefits from lack of sensitivity to temperature, E. viridis, and possibly other C₃ shrubs, may be positively influenced by rising temperatures. While studies have looked at the increase or decrease of species densities due to changing climate variables, fewer studies have considered leaf-level sensitivities as indicators of those changes.
We sought to test if patterns of gas exchange and the sensitivity of photosynthesis to temperature and CO₂ may be related to patterns of C₃ shrub expansion and reductions in C₃ and C₄ grasses in the southwestern U.S. To test this, we investigated leaf-level ecophysiological variation and response curves among common shrub, forb, and grass species in perennial grassland ecosystems on the Colorado Plateau. By investigating biophysical and biochemical trait variations in species, we are attempting to understand the mechanisms underlying why some species respond positively to climate change and other do not. The three objectives of this research are to: 1) Use seasonal gas exchange measurements of photosynthetic CO₂ uptake and climate analyses to identify varying photosynthetic rates throughout the year and seasonal maxima; 2) Use temperature and CO₂ response curves to identify differences in biochemical and biophysical limitations among plant species; and 3) Use these biochemical and biophysical traits to group species based on similarities and compare whether increasing and decreasing species respond similarly to changing abiotic conditions.

Methods

Site Description

This study took place on the Colorado Plateau, just outside the Needles District of Canyonlands National Park (Figure 1). Measurements were taken at the USGS Extreme Drought in Grassland Experiment (EDGE) site in the vicinity of other related research (Munson et al. 2011a; Hoover et al. 2017). The site was chosen to maintain consistency across several studies investigating changes in plant species composition in the landscape. The site is categorized as a low elevation, deep, sandy soil perennial grassland dominated by *Coleogyne ramosissima* (Schwinning et al. 2008). Common species sampled at the site include both native and non-
native grass, forb, and shrub species in four plant functional types (C₃ grasses, C₄ grasses, C₃ forbs and C₃ shrubs) (see Table 1). The species we measured included seven forbs, four shrubs, and four grasses. We had 12 C₃ species and three C₄ species. Among our species, there were six annual and nine perennial species. 15-year monthly averages in temperature at our site showed yearly variation ranging between 4° and 36° C over the course of the year with July as the warmest month and January as the coolest. 2016 temperatures over the year followed the trends from the 15-year monthly averages except for warmer early summer temperatures in June and warmer early winter temperatures in October and November. In June, the driest month, precipitation averages 8 mm and in August to October averages are 30 to 33 mm (Figure 2). The trend for precipitation in 2016 varied from the trends of the 15-year monthly averages. Instead, June 2016 had 0.7 mm precipitation and 39 mm in July and August (see Figure 2) indicating warmer summer months, drier early summer months, and later precipitation in the year as climate models have predicted.

Figure 1
Map of the Canyonlands National Park area with our study site located just outside the Needles District. Measurements were taken at the USGS Extreme Drought in Grassland Experiment (EDGE) site (pictured as the yellow triangle) where other USGS studies (Munson et al. 2011 and Hoover et al. 2017) have taken place.
Study Design

To assess species-level differential sensitivities to rising temperature and CO₂ concentrations, we measured leaf-level gas exchange rates for 15 common species over the course of the year. Temperature response curves and A-C_i curves allow us to track changes in photosynthetic rates, biochemical parameters such as V_{c,max}, J_{max}, biophysical parameters such as stomatal regulation, and temperature optima as abiotic conditions change. Because plant sensitivity to changing abiotic conditions depends on seasonality, all measurements were taken six times over the course of a water year (December 2015, February, April, May, June, and September 2016). Sampling campaigns were chosen to represent different seasons with an extra two during the spring and summer months when plants are most active. Leaf-gas exchange measurements were taken using a LI-6400XT (LI-COR Inc., Lincoln, NE, USA) portable photosynthesis system with a standard leaf chamber and a fluorometer head for a consistent light source. Plants were sampled during the hours of 1000 and 1500 MDT over two days for each sampling campaign. Sampled individuals from the landscape were randomly chosen each time by setting up a transect, randomly generating a number, walking that transect, and sampling the closest individual. Individuals were sampled with a southern exposure to ensure full sunlight and plant activity before taking our measurements. We selected the youngest full expanded leaves to allow for a consistent leaf choice across our samples and branches, leaves or stems were chosen that were representative of the whole plant status. We sampled during days that had no precipitation and minimal variability in meteorological conditions across sampling time.
Table 1 Species measured in the study

Common Colorado Plateau species in our study area and their accompanying life form, photosynthetic pathway, and duration. Photosynthetic rates, temperature response curves, and A-Ci response curves were measured for each of these species throughout the year when they were photosynthetically active.

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Lifeform</th>
<th>Pathway</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indian Rice Grass</td>
<td>Achnatherum hymenoides</td>
<td>Grass</td>
<td>C3</td>
<td>Perennial</td>
</tr>
<tr>
<td>Mat Amaranth</td>
<td>Amaranthus blitoides</td>
<td>Forb</td>
<td>C3</td>
<td>Annual</td>
</tr>
<tr>
<td>Crescent Milkvetch</td>
<td>Astragalus amphioxys</td>
<td>Forb</td>
<td>C3</td>
<td>Annual</td>
</tr>
<tr>
<td>Blue Grama</td>
<td>Bouteloua gracilis</td>
<td>Grass</td>
<td>C4</td>
<td>Perennial</td>
</tr>
<tr>
<td>Lambsquarters</td>
<td>Chenopodium album</td>
<td>Forb</td>
<td>C3</td>
<td>Annual</td>
</tr>
<tr>
<td>Rabbitbrush</td>
<td>Chrysothamnus viscidiflorus</td>
<td>Shrub</td>
<td>C3</td>
<td>Perennial</td>
</tr>
<tr>
<td>Blackbrush</td>
<td>Coleogyne ramosissima</td>
<td>Shrub</td>
<td>C3</td>
<td>Perennial</td>
</tr>
<tr>
<td>Mormon Tea</td>
<td>Ephedra viridis</td>
<td>Shrub</td>
<td>C3</td>
<td>Perennial</td>
</tr>
<tr>
<td>Bottlebrush</td>
<td>Eriogonum inflatum</td>
<td>Forb</td>
<td>C3</td>
<td>Perennial</td>
</tr>
<tr>
<td>Needle and Thread</td>
<td>Hesperostipa comata</td>
<td>Grass</td>
<td>C3</td>
<td>Perennial</td>
</tr>
<tr>
<td>Flatspine Stickseed</td>
<td>Lappula occidentalis</td>
<td>Forb</td>
<td>C3</td>
<td>Annual</td>
</tr>
<tr>
<td>Common Pepperweed</td>
<td>Lepidium densiflorum var. ramosum</td>
<td>Forb</td>
<td>C3</td>
<td>Annual</td>
</tr>
<tr>
<td>James' Galleta</td>
<td>Pleuraphis jamesii</td>
<td>Grass</td>
<td>C4</td>
<td>Perennial</td>
</tr>
<tr>
<td>Scarlet Globemallow</td>
<td>Sphaeralcea coccinea</td>
<td>Forb</td>
<td>C3</td>
<td>Perennial</td>
</tr>
<tr>
<td>Streptanthella Mustard</td>
<td>Streptanthella longirostris</td>
<td>Forb</td>
<td>C3</td>
<td>Annual</td>
</tr>
</tbody>
</table>

Climate Data

Climate data were collected from two sources to combine short- and long-term climate data. Short-term, site-specific data were measured from an on-site, USGS-managed weather station (EDGE_MET) located near the entrance to the Needles District of Canyonlands National Park on the Colorado Plateau (38.19130°, -109.746206°). Relative humidity and temperature measurements were recorded using Campbell Scientific CS215 probe. Precipitation was recorded using the Texas Electronic TE525MM rain gage. Soil moisture was measured using 30 cm water content reflectometer probes (CS650, Campbell Scientific, Logan, UT, USA) inserted horizontally at three depths: shallow (10 cm), intermediate (20 cm), and deep (40 cm). Long-term temperature and precipitation data were taken from the Climate Analyzer site using
National Weather Service data (COOP data, climateanalyzer.org) for the Needles District Visitor’s Center weather station (Station ID: 421168) located across from the Visitor’s Center just within park boundaries (38.167°, -109.759°). These data were used because they contained daily measurements for precipitation, maximum temperature, and minimum temperature for different sites in Canyonlands since 1965. Weather stations are 1.62 km (1 mile) apart.

Photosynthetic Gas Exchange Measurements

Leaf-level Photosynthesis Point Measurements

Leaf-level photosynthesis measurements were taken using the AutoProgram feature of the LI-6400XT machine set to sample at 5-s intervals for 2-6 minutes (depending on stability) with the following settings: light intensity was maintained at 2000 µmol m⁻² s⁻¹, CO₂ concentration was at 400 µmol m⁻² s⁻¹, and temperature and relative humidity were at ambient levels. Photosynthesis was calculated for each leaf by using an AutoGoldy script objective selection algorithm to choose a 30-second period where variability and slope were minimized. This reduced the likelihood of human error when choosing a stable time to stop the measurement. We measured species that were present and photosynthetically active at our site. Each measurement campaign, we took 15-20 point measurements for each species.

Given the unique plant structure of each species, we standardized the measurement location for placing the gas exchange between the fourth and fifth node on branches of *E. viridis*, 15 cm from the top of a straight branch of *C. ramosissima*, and on the middle of the leaf of the youngest fully emerged leaf for the grasses. For samples that did not cover the area of the LI-6400XT cuvette head, we clipped samples and measured surface area using ImageJ (IMAGEJ 1.48v, National Institutes of Health, Bethesda, MD, USA) and recalculated leaf area values on
the LI-6400XT machine.

A-C\textsubscript{i} Response Curves

The A-C\textsubscript{i} response curves were measured using the AutoProgram feature of the LI-6400XT machine. The same light intensity, humidity, and temperature settings used in the point measurements were used for the A-C\textsubscript{i} curves. CO\textsubscript{2} levels were set to change from 400, 300, 200, 100, 50, 400, 600, and 800 ppm. The time spent at each step depended on the machine’s internal stability. For each sampling campaign, we measured five individual plant’s A-C\textsubscript{i} response curves per species. A-C\textsubscript{i} response curves were graphed and the carboxylation efficiency of the ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco) enzyme (\(J_{\text{max}}\)), the rate of electrons supplied by the electron transport chain (\(V_{\text{cmax}}\)), mesophyll conductance (\(g_{m}\)), and the ratio between the two (\(J/V_{\text{cmax}}\)) were calculated using protocol from Ethier and Livingston (2004). A-C\textsubscript{i} curves that were included had \(R^2\) values above 0.90. There were 1-3 curves per measurement campaign that we excluded from the analysis because of low \(R^2\) values. Low \(R^2\) values were due to sampling errors in the field such as batteries dying mid-measurement and insufficient time for stabilization before moving to the next step in the AutoProgram.

Temperature Response Curves

Temperature response curves settings were manually created using the AutoProgram feature of the LI-6400XT machine. Measurements were taken during the same time of day (1000 and 1500 MDT) but the starting temperature of the response curve varied according to the ambient temperature at the time the measurements was taken. This is due to cooling and heating abilities of the Li-COR. The machine can only hypothetically change the internal temperature
around +/- 6°C degrees (https://www.licor.com/env/products/photosynthesis/LI-6400XT/specs.html), but in practice, cooling the machine had a much smaller range (about 2°C).

So the starting temperature for the temperature response curves was 2°C less than ambient temperature when measurements were taken. For winter months, temperature response curves began at around 12°C to 17°C for leaf temperatures. During the summer months, temperatures varied from 24°C to 30°C. Each step in the AutoProgram increased the temperature by 2°C and the time at each stage was controlled by internal stability measurements.

Statistical analyses

To determine whether measured gas exchange parameters (A, V_{cmax}, J_{max}, J/V_{cmax}, g_m, WUE) varied over the course of the year and across different species, we ran an ANOVA (aov) to examine responses of A, V_{cmax}, J_{max}, and J/V_{cmax}, g_m, and WUE against our fixed effects (season, species, photosynthetic pathway (C_3, C_4), duration (annual, perennial), and lifeform (shrub, grass, forb)). We did not do a repeated measures ANOVA because for each sampling campaign, we selected new individuals to measure. We used season as an interaction term so we could compare the ecophysiological parameters as a factor of species and season (A ~ Species * Season). Data met the assumptions of normality so they were not transformed. When we checked for multicollinearity, we found that season and precipitation were strongly correlated. Season carried more weight in the analyses, so we opted to include season instead of precipitation. Pairwise comparisons were performed using t-tests with pooled standard deviations and a Bonferroni correction. For temperature response, we ran a linear regression model between temperature and photosynthesis for all the species taken together and for species individually over the sampled months. The models were graphed in R and curves were fitted using locally
weighted scatterplot smoothing (LOESS smoothing). To determine if all species had the same shape of temperature response, we used the Regression Wizard tool in Dynamic Curve Fitting model in Sigma Plot (Sigma Plot 10) to model temperature response over different curves. The final analyses we ran was a Discriminant Analysis of Principle Components (DAPC) weighted our measured variables (V_{cmax}, J_{max}, and J/V_{cmax}, g_m, WUE, volumetric water content, season, functional type, duration, and lifeform) according to their importance and clustered species together according to the similarity of their responses. These variables were used to construct linear combinations of the original variables which have the largest between-group variance and the smallest-within group variance. We created six dimensions based on ten measured parameters. We retained eleven principal components, six clusters, and six discriminant functions. Based on the similarity of parameters, species were oriented on two axes for the DAPC to show clusters. The final step was to run model selection to determine the most influential parameters behind photosynthesis measurements and what combination best fit our data. We used the same parameters listed above for the DAPC with photosynthetic rate as the dependent variable. We used the Akaike’s Information Criterion (AICc) to measure the relative quality of our model. The best model, or the best competing models, were selected based on the smallest AIC value and the total weight of the model (AICcWt). All statistical analyses were carried out using the statistical computing package R (R Core Team, 2013) with $P = 0.05$ as the critical level of significance.

Results

We sought to understand if patterns of gas exchange and the sensitivity of photosynthetic rate to temperature and CO$_2$ can identify physiological characteristics of species that are
increasing or decreasing in the southwestern U.S. To test this, we used leaf-level gas exchange measurements taken throughout the year in addition to temperature response curves and A-C_i response curves to show how sensitivity to changing abiotic conditions varied across species.

Our research finds three potential reasons for the increase of C_3 shrubs on the Colorado Plateau: 1) Evergreen C_3 shrubs (E. viridis and C. ramosissima) were functionally the same and were able to be photosynthetically active over the winter months when temperature and available moisture requirements were met (Figure 3), 2) Both C_3 and C_4 grass species were physiologically the same and did not separate out by photosynthetic pathway with different temperature and CO_2 conditions and 3) Shrubs have cooler temperature optima and a wider range and temperature optima than grass species giving them an advantage in cooler spring months and with more temperature variation (Table 3).

Precipitation and Temperature Measurements

Recorded precipitation and temperature measurements over the 2016 months resembled what we expected to see under climate change projections. The 2016 differences, while not extreme, showed an overall increase in summer and winter temperatures, more late summer precipitation and less winter precipitation than decadal averages (Figure 2). Compared to the fifteen-year averages, 2016 had warmer June temperatures (+3.2° C) with a 91% decrease in precipitation from 8 mm to 0.7 mm (Figure 2). From October to December, temperatures were 2.17° C, 1.99° C, and 1.04° C higher in 2016 respectively. January and February were cooler in 2016 than the 15-year averages by 1.51° C and 0.53° C. February, April, May, July had 20-92% more precipitation than the 15-year averages. September to January had reduced precipitation 32-80% of previous decadal averages.
Seasonal Gas Exchange Measurements

The three C_3 shrubs in our experiment were able to maintain photosynthetic activity over the winter months, a trait that is likely to confer a benefit over non-evergreen species (Figure 3 and Supplemental Table 1). Between our three common C_3 shrub species, $E.\ viridis$, $C.\ ramosissima$, and $C.\ viscidiflorus$, there were significant differences in winter photosynthetic rates when we ran the ANOVA (photosynthesis ~ species, $p=0.0256$, F value=3.725). In both December and February, $E.\ viridis$ had the highest photosynthetic rates (Figure 3). The results of the pairwise comparison between species over winter months showed that $E.\ viridis$ and $C.\ ramosissima$ did not vary significantly in photosynthetic rates over winter ($p=0.145$) but
comparisons between *E. viridis* and *C. viscidiflorus* and *C. ramossisima* and *C. viscidiflorus* were significantly different (p =0.004 and p >0.001).

Overall, seasonality had the largest influence over peak photosynthetic rates (ANOVA, p <0.001, F value=11.86). The only months that were not significantly different from each other in terms of species peak photosynthetic rates were fall and winter (pairwise comparison, p=0.19). The ANOVA interaction between season and species showed that within seasons, species photosynthetic rates significantly differed from each other (p =0.003, F value=2.95). Over the course of the year, *C*3 shrubs did not reach peak photosynthetic rates as high as forbs and grass species but they were able to maintain more consistent peak photosynthetic rates over the course of the year (Figure 3). This is especially pronounced for the *C*3 species, *E. viridis*, which has an average photosynthetic rate of 11.43 µmol m$^{-2}$ s$^{-1}$ in April, 18.42 µmol m$^{-2}$ s$^{-1}$ in May and 16.62 µmol m$^{-2}$ s$^{-1}$ in June. The *C*4 grass species, *Pleuraphis jamesii*, has a photosynthetic rate of 24.16 µmol m$^{-2}$ s$^{-1}$ in April, 29.57 µmol m$^{-2}$ s$^{-1}$ in May, and then drops off dramatically to 11.04 µmol m$^{-2}$ s$^{-1}$ in June (see Supplemental Table 1). Two shrub species, *E. viridis* and *C. viscidiflorus*, had among the highest measured photosynthetic rates in June (along with *C*3 forb,
C. album), and E. virdis has the highest measured photosynthetic rate in September, December, and February.

Temperature Response Curves and Optima

We found that, as expected, temperature influenced peak photosynthesis rates (linear regression, p=0.021, t value=−2.34) as well as identified differences among species over temperature response curves (linear regression with photosynthetic rate ~ temperature + species, p <0.001, t value=−8.89). The results from the linear regression for photosynthesis regressed by temperature and its interaction with species found that E. viridis is especially sensitive to increasing temperature (p=0.008, t-value=2.662). One C3 grass, Achnatherum hymenoides, and the C4 grass, B. gracilis, were also statistically sensitive to rising temperatures (p=0.044, t-
value= 2.017 and p=0.014, t-value=2.45). For all three species, increasing temperature led to an overall increase in photosynthetic rate (regression coefficients for *E. viridis* = 4.79, *A. hymenoides* = 5.54, *B. gracilis* = 4.80). This is consistent with the overall increase of species photosynthetic rate to rising temperature (p>0.001). Grass species have a slight decline (slope = -0.294), and shrubs and forbs have a slight increase (slopes = 0.471 and 0.117 respectively).

For all species, the temperature response curves were sigmoidal with an increase in photosynthetic rate with warmer temperatures until a peak was reached, and then a decline after the peak (Figure 5). For *E. viridis* and *C. viscidiflorus*, the sigmoidal response curves had two peaks instead of one. In both cases, the first peak was lower, there was a period of acclimation, then a small drop, followed by an increase in photosynthetic rate until the second peak. The *C₃* and *C₄* grass species had higher peaks in photosynthetic rate and warmer temperature optima.
(temperature at the highest photosynthetic rate) showing increased activity over warm conditions. C₃ shrub species reached a peak photosynthetic rate at 19-23°C. C₃ forb species reached a peak photosynthetic rate at 23°C. C₃ grass species reached a peak photosynthetic rate at 28°C. C₄ grass species reached 25-29°C (Table 2). While grass species had higher rates of photosynthesis, they also had a steeper incline to the peak and decline after the peak and a narrower curve, showing less generalized temperature optima (See Table 3). Although the peaks for shrubs are lower than for grasses, there is a wider range of temperatures where shrubs are photosynthesizing at, or near, their temperature optima.

Table 2: Species Spring maximum photosynthetic rate and optimum temperatures

<table>
<thead>
<tr>
<th>Species</th>
<th>Form</th>
<th>Pathway</th>
<th>Max Photosynthesis (µmol m⁻² s⁻¹)</th>
<th>Optimal °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ephedra viridis</td>
<td>Shrub</td>
<td>C₃</td>
<td>18.3</td>
<td>21</td>
</tr>
<tr>
<td>Coleogyne ramosissima</td>
<td>Shrub</td>
<td>C₃</td>
<td>21.81</td>
<td>19</td>
</tr>
<tr>
<td>Chrysothamnus viscidiflorus</td>
<td>Shrub</td>
<td>C₃</td>
<td>24.61</td>
<td>23</td>
</tr>
<tr>
<td>Lappula occidentalis</td>
<td>Forb</td>
<td>C₃</td>
<td>31.71</td>
<td>23</td>
</tr>
<tr>
<td>Sphaeralcea coccinea</td>
<td>Forb</td>
<td>C₃</td>
<td>36.71</td>
<td>23.5</td>
</tr>
<tr>
<td>Hesperostipa comata</td>
<td>Grass</td>
<td>C₃</td>
<td>31.99</td>
<td>28</td>
</tr>
<tr>
<td>Bouteloua gracilis</td>
<td>Grass</td>
<td>C₄</td>
<td>30.91</td>
<td>25</td>
</tr>
<tr>
<td>Pleuraphis jamesii</td>
<td>Grass</td>
<td>C₄</td>
<td>34.22</td>
<td>29</td>
</tr>
</tbody>
</table>

Over the winter months (February and December), C₃ shrubs had a net positive photosynthesis rate starting at 16°C to 19°C. In 2016, we experienced a total of 18 winter days when peak daily temperatures were high enough for net positive photosynthetic activity in shrubs (Figure 4). We found that the number of days with shrub temperature optima over the winter months statistically and linearly increased over the past fifteen years (p=0.003, t value =3.069)
even though overall winter temperatures slightly cooled. We compared spring and winter precipitation and temperatures values because these are two important seasons for growth in the species we measured. Spring is when all of our species were most photosynthetically active. Winter represents the time when shrubs are active while grasses have senesced.

Figure 5 Temperature optima days over the past 15 years
Number of days with optimal temperatures for shrubs, grasses, and forbs over winter and spring months. The largest observed change occurred over winter months as the number of photosynthetically active days for shrubs increased (p=0.01, slope =0.68). In the spring, there was a slight increase in number of optimum days for shrubs and forbs and a decrease for grasses but not statistically significant.

A-C \textsubscript{i} Response Curves
The graphed A-C \textsubscript{i} response curves show two groups that respond to increasing CO\textsubscript{2} differently: CO\textsubscript{2} responsive species with very steep A-C \textsubscript{i} curves showing fast response in A to increasing CO\textsubscript{2}, and CO\textsubscript{2} conservative species, with slower responses and more conservative slopes (Figure 5). The C\textsubscript{3} grass and forb species are grouped together as CO\textsubscript{2} responsive, and the C\textsubscript{3} shrub species are grouped together as CO\textsubscript{2} conservative. The shrubs here show a marked
difference in slope, characterized by the biochemical parameter, V_{cmax}, and a lower elevation, characterized by the parameter J_{max}. From the ANOVA results, we can see that with all our measured biotic and abiotic factors included, species ($p<0.001$), season ($p<0.001$), and temperature ($p=0.004$) are the most influential in determining peak photosynthesis. In our study, V_{cmax} and J/V_{cmax} were influenced the most by photosynthetic pathway ($p=0.00826$, F-value=7.816, $p=0.00426$, F-value=9.31). J_{max} was influenced more by the abiotic conditions season ($p=0.0036$, F-value=5.453) and differences between species ($p=0.0279$, F-value=2.48). The model selection confirms that photosynthetic pathway describes almost all of the variation for V_{cmax} (AICcWt: 0.97) and precipitation and photosynthetic pathway can best describe J_{max} (AICcWt =0.96). In addition, species varied in their V_{cmax} values ($p<0.001$, F value=4.04) and the main differences between C$_3$ plants was with the shrub species, C. viscidiflorous and C. ramosissima ($p=0.00884$) and E. viridis ($p=0.0032$), the CO$_2$ conservative species.
Figure 6 A-Ci curves
A-Ci response curves for C₃ grass, shrub, and forb species. A-Ci curves model photosynthetic CO₂ uptake rate (A) over changes in intercellular CO₂ (c). Species with steep slopes (high Vₘₐₓ) and high elevations (high Jₘₐₓ) represent CO₂ responsive forb and grass species that are highly active with increases in CO₂. Species with gradual slopes and elevations we call CO₂ conservative species that do not respond as quickly to increases in CO₂.

Grouping Species by General Strategies for Success

Photosynthetic pathway differences lead to the most discernable differences in photosynthetic rate between species (p < 0.001, F value = 14.08) followed by lifeform (grass vs. shrub vs. forb) (p < 0.001, F value = 4.212) (See Table 4). Overall grasses had the highest mean photosynthetic rate (regression coefficient = 12.57), followed closely by forbs (regression coefficient = 12.40), with shrubs further behind (regression coefficient = 8.20). In the pairwise comparison using t-tests, grasses and forbs did not significantly vary but forbs and shrubs (p = 0.043) and grasses and shrubs did (p < 0.001). C₄ photosynthetic pathway had higher rates of photosynthesis (regression coefficient = 15.33) compared to C₃ species (regression coefficient = 10.05).
Table 3 ANOVA results

ANOVA results for photosynthetic rate regressed by species, lifeform, photosynthetic pathway, month and interactions between independent variables (panel 1). HSD test for photosynthesis by month. Mean square error=29.43. The letters represent grouping. The same letters represent months that are not statistically different from each other.

<table>
<thead>
<tr>
<th>Test</th>
<th>R Code</th>
<th>Df</th>
<th>F value</th>
<th>Pr (>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>aov</td>
<td>Photo ~ Species</td>
<td>14</td>
<td>1.769</td>
<td>0.0495</td>
</tr>
<tr>
<td>aov</td>
<td>Photo ~ Lifeform</td>
<td>2</td>
<td>4.212</td>
<td>0.0166</td>
</tr>
<tr>
<td>aov</td>
<td>Photo ~ Pathway</td>
<td>1</td>
<td>14.08</td>
<td><0.001</td>
</tr>
<tr>
<td>aov</td>
<td>Photo ~ Month</td>
<td>5</td>
<td>19.51</td>
<td><0.001</td>
</tr>
<tr>
<td>aov</td>
<td>Photo ~ Species * Season</td>
<td>15</td>
<td>4.465</td>
<td><0.001</td>
</tr>
<tr>
<td>aov</td>
<td>Photo ~ Species * Month</td>
<td>22</td>
<td>9.96</td>
<td><0.001</td>
</tr>
<tr>
<td>aov</td>
<td>WinterPhoto ~ Species</td>
<td>2</td>
<td>3.725</td>
<td>0.025</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Groups</th>
<th>Treatments</th>
<th>Means</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>May</td>
<td>14.52</td>
</tr>
<tr>
<td>a</td>
<td>April</td>
<td>14.32</td>
</tr>
<tr>
<td>b</td>
<td>June</td>
<td>9.78</td>
</tr>
<tr>
<td>c</td>
<td>September</td>
<td>4.47</td>
</tr>
<tr>
<td>c</td>
<td>December</td>
<td>1.78</td>
</tr>
<tr>
<td>c</td>
<td>February</td>
<td>1.19</td>
</tr>
</tbody>
</table>

In the Discriminant Analysis of Principal Components (DAPC), our species divided into six clusters. For the first axis, which accounts for 58% of the variation in photosynthetic rate, the key loading is based on photosynthetic pathway and mesophyll conductance \((g_m) \), and the second axis loads primarily by light respiration \((R_d) \), lifeform, \(J/V_{cmax} \), and photosynthetic pathway (Figure 7 and 8). The six clusters largely separate into lifeform groupings: 1) *Sphaeralcea coccinea* and *Gutierrezia microcephala* (C₃ forb and shrub); 2) *Chrysothamnus viscidiflorus* (C₃ shrub); 3) *E. viridis* and *C. ramosissima* (C₃ shrubs); 4) *Bouteloua gracilis* (C₄ grass); 5) *Lappula occidentalis* and *Streptanthella longirostris* (C₃ forbs); and 6) *Pleuraphis jamesii* and *Hesperostipa comata* (C₄ and C₃ grass). While most of the grouping represented functional groups, evergreen, increasing woody shrubs, *C. ramosissima* and *E. viridis* grouped more closely to the C₃ and C₄ grass species and further from the other shrub and forb species.
Figure 7 Clustering of species by similar traits

Discriminant Analysis of Principle Components (DAPC) showing the clustering of groups of species. Clusters represent combinations of the ecophysiological variables which have the largest between-group variance and the smallest-within group variance. Cluster 3 includes increasing species (E. viridis and C. ramosissima), clusters 4 and 6 are decreasing grass species (B. gracilis, P. jamesii, and H. comata) and the other groups have no known changes.

From the PCA loadings of these variables, the strongest parameters defining the axes are biophysical (mesophyll conductance and light respiration), biochemical (photosynthetic pathway and J/V_{cmax}), and structural (photosynthetic pathway and lifeform) (Figure 8). In the clusters defined by the DAPC, increasing species, E. viridis and C. ramosissima are found grouped together and decreasing species, B. gracilis, P. jamesii, H. comata) comprise two groups. The forbs are clustered toward the bottom of the chart together showing similar values of the
ecophysiological parameters. Interestingly, both the increasing species cluster and the decreasing species clusters spatially arrange near each other in the upper half of the figure.

Figure 8 Important variables in clustering
Loading plots for both DAPC axes showing important variables in clustering species. For axis one, photosynthetic pathway is the most important variable (V2), followed by mesophyll conductance (V10). For axis two, species were grouped into clustered based on light respiration (V7), J/V_{cmax} (V8), lifeform (V1), and photosynthetic pathway (V2).

Discussion

Anthropogenic climate change, driven by increases in atmospheric CO₂ is projected to cause rising temperature and shifts in plant community composition (Shaw et al. 1998; Sheffield and Wood 2008b, a; Christensen et al. 2007). Given that these abiotic changes will alter plant photosynthetic rates, we focused on leaf-level plant ecophysiology measurements to identify plant sensitivities to rising CO₂. In order to determine whether increasing species (C₃ shrubs) display similar sensitivities and patterns of gas exchange to temperature and CO₂, we took seasonal, leaf-level gas exchange measurements and measured temperature and CO₂ response curves. Overall we found that C₃ shrubs are able to maintain higher photosynthetic rates over spring and summer, are more physiologically active over the increasingly warmer winter months, and have wider range of temperature optima than grass species. Increasing atmospheric CO₂
concentrations, on the other hand, benefit responsive C$_3$ and C$_4$ grass species through an increase in photosynthetic activity.

Seasonal Gas Exchange Measurements

Our objective was to determine whether plants increasing on the Colorado Plateau displayed commonalities that might lead to their success in climate changing conditions. The biggest indication of their success, from the data we collected, is the increased activity over winter months. Not only we were able to find that shrubs are active over the winter months, but that their activity was not statistically different from fall months. This, combined with the fact that grasses are senesced during those months means that there is limited competition for shrubs during the winter.

While C$_3$ shrub species show a reduction in peak photosynthesis values over winter months, they consistently have positive net photosynthetic activity when temperature minimums are met (Figure 3). Our site experienced an overall cooler average temperature in 2016 compared to the 15-year averages but with twice as many warm days. These conditions are likely to benefit shrubs that are hardy enough to survive the cooler temperatures and also able to be photosynthetically active on days when minimum photosynthetic requirements are met.

D’Odorico et al. (2010) found that woody plant encroachment is largely due to the warming of nighttime air in winter months in the Chihuahuan Desert. They predict that small warming can yield meaningful changes in shrub species. The authors suggest that the effect of changing air temperature on vegetation depends on whether plants experience drought during the winter months. Because of different annual distribution of precipitation and potential evapotranspiration between the Colorado Plateau and the Chihuahuan desert where the abovementioned study was
conducted, the warming of winter months could be more significant in more arid desert communities (D’Odorico et al. 2010).

Warmer winter temperatures were not spread out equally throughout the winter months. Daily temperature measurements show that there are increasing number of warm winter days at the end of October and carrying into the beginning of November. Warming during these months paired with late season precipitation, is likely to lead to increasing growth over these months. *E. viridis* could disproportionality benefit from these climatic changes because the species had the highest photosynthetic rate from June to February among the species we measured. Not only will evergreen shrubs be increasing during these months when they conditions are right and competition reduced, but *E. viridis* and *C. ramosissima*, both woody shrubs, are expected to perform better than other shrub species because of its slightly elevated photosynthetic rate.

E. viridis (*Gymnospermae; Gnetales; Ephedraceae*) has several traits that could explain its success. As an evergreen, woody shrub with dense clusters of erect green twigs, *E. viridis* is photosynthetically active year-round. As a shrub, it has deep, woody roots that may extend deep into the well, drained, sandy soils (Anderson 2001). It is found exclusively in the western United States around the arid Great Basin Region, Colorado, San Juan and Rio Grande drainages. While grazing has been shown to explain increases in shrub expansion in other studies (DeMalach et al. 2014), the 2011 Munson *et al.* study took place in long-term plots inside the boundaries of national parks and BLM lands, suggesting that grazing alone is unlikely to explain the increase in canopy cover of *E. viridis*. Legacy effects of grazing from prior to the 1960s and 70s could potentially play a role in community dynamics but further examination of that is needed.

The Munson *et al.* (2011) data showed increases in *E. viridis* corresponded to high summer temperatures in the previous year. While our results do not directly suggest that high
summer temperatures benefit *E. viridis* and other shrubs, it is possible that previous year hot summer temperatures also lead to warmer winters. Yoder and Nowak (1999) hypothesize that the growth of *E. viridis* may be affected by high temperatures because it receives much of its water from winter precipitation when temperatures are low. With increasing winter temperatures over the winter months, soil water availability could decline as shrub species tap into those resources for photosynthesis.

Temperature and CO$_2$ Response Curves

Temperature and CO$_2$ response curves did not consistently benefit one species or functional group. In the spring temperature response curves, C$_3$ shrub species had the lowest peak photosynthetic rate and the lowest temperature optima. In 2016, our site experienced lower spring temperatures that, if continued, could lead to increased activity for shrub and forb species.

This is likely due to the cooler spring temperatures which reach peak temperature ranges for shrubs and forbs which are slightly lower than grass temperature optima (Figure 4). This confers a competitive advantage for the species during this period because over the cooler winter months, they are still able to be active at similar rates to fall while their competitor species are senesced. Grasses have the advantage with increasingly warmer temperatures. Their temperature optima were consistently much higher than shrubs and forbs, with C$_4$ grasses at the highest. This is consistent with findings that the contrasting physiological responses of C$_3$ and C$_4$ plants to warming, is the main driver of observed patterns of plant assemblage structure (Duffy & Chown, 2016).

Grass species, through their responsiveness to increasing concentrations of atmospheric CO$_2$, are likely to benefit from rising atmospheric concentrations in our region. While grasses
and forbs benefited from the short term addition of CO$_2$, it does not necessarily mean they will maintain elevated photosynthetic rates with higher CO$_2$ concentrations over a longer period of time. Ainsworth et al. (2003) found a 43% higher rate of light-saturated leaf photosynthesis in grasses over 10 years in elevated CO$_2$ conditions. Other studies have found no difference in densities of plants grown in higher CO$_2$ conditions (Blumenthal et al. 2016). Entire research methodologies like the Free-Air Concentration Enrichment (FACE) exist to test whether the photosynthetic responses of species to increasing CO$_2$ in closed chamber experiments is what will actually happen in the field.

In terms of the biochemical and biophysical reactions of plants to increased CO$_2$, photosynthetic pathway was the most important indicator of $V_{c_{\text{max}}}$ and $J/V_{c_{\text{max}}}$, while J_{max} was influenced by precipitation and differences between species. This is consistent with findings that $J/V_{c_{\text{max}}}$, the ratio between the maximum rate of electron transport driving RuBP regeneration (J_{max}) and the in vivo maximum rate of RuBP carboxylation ($V_{c_{\text{max}}}$), has been shown to change from species to species depending on abiotic conditions (Onoda et al. 2004). The variation in $J/V_{c_{\text{max}}}$ across seasons did not vary as much as it did between species (Onoda et al. 2004). This is demonstrated in the graphed A-C$_i$ curves which show the CO$_2$ conservative species with a reduced slope and elevation of the curve. Curves like these that are less steep indicate a broad range of stomatal limitations. These limitations shape plants ability to capture carbon while avoiding water loss, a key requirement for survival in dryland ecosystems (Amthor 1995; Blumenthal et al. 2016). Elevated atmospheric CO$_2$ concentration stimulates forbs and grass species photosynthetic rates more than shrubs, reduces stomatal and mesophyll conductance, and inhibits plant respiration, as several studies have also found (Idso et al. 1993; Callaway et al. 1994; Gunderson and Wullschleger 1994; Jackson et al. 1994; Amthor 1995; Polley et al. 2013).
Grouping of General Strategies for Success

In the groupings from the Discriminant Analysis of Principal Components (DAPC), we found that functional trait differences contributed to increased or decreased sensitivity in the species we measured. Among those species, lifeform and photosynthetic pathway were the most important traits in determining peak photosynthetic rate. Other than that, there were several ecophysiological parameters that are able to separate species from each other: mesophyll conductance (g_m), light respiration (R_d), J/V_{cmax}. While the scope of our research does not attempt to explain why different species and functional groups respond variably to changing abiotic conditions, other research has come out on the issue. In high light conditions like ours, researchers have found that chloroplast CO$_2$ concentration (C_c) in C$_4$ leaves are 8-10 times higher than C$_3$ leaves, explaining why there is virtually no photorespiration in C$_4$ leaves (Yin & Struik 2009). Differences in J/V_{cmax} has been shown to indicate leaf nitrogen, phosphorus, and specific leaf area values (Walker et al. 2014). Walker et al. (2014) found that increasing leaf P substantially increased the sensitivity of V_{cmax} to leaf N (Walker et al. 2014). While dryland ecosystems are primarily limited by water availability, they are also known for the restrictions on plant growth and nutrient uptake that limiting available N and P creates (James et al. 2005; He et al. 2014). With climate changing precipitation regimes, availability of N and P could become more important during seasons with increasing rainfall.

Conclusions

It is unlikely that one factor alone can explain the increase in some species and the decreases in others in arid ecosystems. Our objective was to determine whether plants increasing on the Colorado Plateau displayed commonalities that might lead to their success in climate...
changing conditions. The most significant indication of shrub success in our site was the increasing photosynthetic activity over the winter months. While photosynthesis rates over winter were not comparable to those in the spring, that time still represents limited competition between shrubs and senesced grass species, available resources from late season precipitation, and increasing warmer winter months. In climate changing conditions, warmer winter months in arid ecosystems might continue to benefit shrub species and have a disproportionately larger effect than increasing summer temperatures and atmospheric CO₂ concentrations.
References

Chapter 2:

Using Very High Resolution (VHR) satellite Imagery to Create an Accurate, Species-level Baseline Map in Canyon Terrain

Abstract

Accurate species distribution mapping is crucial for assessing ecological benefits and risks to species as well as effective management strategies. Further, fine-scale species-level and functional type mapping is important to monitor plant expansion, invasions, biodiversity, and ecosystem function. The objective of this study was to create an accurate species-level classification map using a combination of very high resolution (VRH) World View-3 multispectral and hand-held hyperspectral data acquired from a handheld radiometer and to assess the differences in accuracy assessment between pixel-based and object-based classification techniques. In order to identify how species classification in the landscape has changes and will continue to change, we need accurate, large-scale, baseline maps of species distribution to compare to future images. We compared pixel-based classification and object-based classification approaches using hyperspectral data and VHR multispectral data to determine what factors were most important for creating accurate species-level classifications. Overall, object-based classification had higher classification accuracy (0.915, kappa coefficient=0.905) than pixel-based classification (0.79, kappa coefficient=0.766). The most noticeable improvement with the object-based classifications was more effective differentiation between species within the same life form (shrubs, grasses, trees, etc.). Although the common vegetation indices, NDVI and GNDI, were effective for much of the species identification, other area metrics like number of pixels, density, shape, texture, length, and brightness, were necessary to distinguish between similar life forms. Results from this study demonstrate that while the pixel-based classification approach created fairly accurate species-level maps, classification was
improved upon by using training sites and an object oriented classification. The improvement in
accuracy was due to other metrics besides reflectance used to differentiate species. If the
mapping objective is to identify life forms, pixel based approaches would be sufficient. But to
classify species within life forms, object based approaches were necessary.

Keywords: Colorado Plateau, World View-3, hyperspectral, multispectral, object-based
classification, pixel-based classification

Introduction

Accurate species distribution mapping is crucial for assessing ecological changes in
communities leading to effective management strategies (Ahrens et al. 2010). Ecosystem
mapping has been important in monitoring biological invasions, global climate change,
biodiversity, and fundamental ecosystem processes such as fire and nutrient cycling (National
Research Council 1994; Mack 2005; Panetta & Lawes 2005; Herrick et al. 2010; Shouse et al.
2013; Calviño-Cancela et al. 2014; Gillian et al. 2014). Detection and mapping of species and
communities is often based on field surveys. Although field surveys provide precise information
about species relative cover, density, and composition (Stock et al. 2004; Adjorlolo et al. 2012),
you are often time consuming and labor intensive (Jorgensen & Kollmann 2009; Ahrens et al.
2011; Calviño-Cancela et al. 2014) and can provide limited information, usually confined to
small sampling areas (Panetta & Lawes 2005). Remote sensing techniques are popular for
ecosystem assessments because of their lower total cost, greater coverage, and more regular data
collection cycle while still being able to distinguish between similar categories, such as plant
species (Calviño-Cancela et al. 2014). Using remote sensing technology to discriminate between
different plant species and functional types has been effective in better understanding local vegetation and ecosystem dynamics (Ehleringer & Monson 1993; Bredenkamp et al. 2002; Hamada et al. 2011; Adjorlolo et al. 2012; Ferreira et al. 2016).

Remote Sensing

While remote sensing technologies are useful in ecosystem assessments, they require researchers to determine the optimal spatial and spectral resolution for mapping vegetation properties which can often be challenging (Atkinson & Curran 1995; Curran & Atkinson 1999; Woodcock & Strahler 1987). The scale at which observations are made (i.e. the instantaneous field of view or pixel size) may or may not align well with the scale of biophysical processes, and target size (i.e. individual species, patches of a given species, etc.) will vary across ecosystems and with ecological questions and concerns (Feld et al. 2009; Fisher 1997, Turner et al. 1989). Satellite open access data such as Landsat or MODIS, while beneficial for large-scale ecotype classification, is hampered by high spatial resolution (30 km) that is too broad for species-level classification. Recent advances in remote sensing systems, such as World View-3 (launched on August 13, 2014, 31cm panchromatic resolution, 1.24m multispectral resolution, 3.7m short wave infrared resolution) now provide very high resolution (VHR-multispectral resolution 2 x 2 m or lower (Nagendra and Rocchini (2008)) data for land cover mapping. The use of these finer scale, VHR data for remote detection of invasive species has been shown to be useful in detection of plant species which occupy contiguous patches and occur in clumps (Wan et al. 2014; Niphadkar et al. 2017). It is less certain whether these platforms are sufficient for the remote sensing of more heterogeneous landscapes and dispersed clustering (Hamada et al. 2010). However, VHR multispectral data paired with in situ hyperspectral data acquired from a hand-
held radiometer, can improve spectral signatures used to differentiate between plant species (Ferreira et al. 2016).

Remote sensing of vegetation is based on the physical properties of leaves and their interactions with electromagnetic energy. Leaf structures of most plants interact with solar energy in essential the same biophysical process: high absorption in visible (optimally red and blue) bands by leaf pigments (e.g. chlorophyll a, b and ß-carotene), high reflectance in near-infrared band from the spongy mesophyll, and relatively high absorption in middle infrared bands by leaf water content. Hence, there is little selection for differences in spectral reflectance patterns during speciation, making the classification of different species by reflectance challenging (Sims & Gamon 2002; Shouse et al. 2013; Calviño-Cancela et al. 2014). Distinguishing between plant species often demands a large number of spectral bands to detect subtle differences in reflectance patterns. Hyperspectral sensors (also known as imaging spectrometers) measure reflectance in many narrow, adjacent spectral bands (often >100 bands) so they can pick up subtle differences in reflectance patterns necessary to distinguish between plant species (Ustin et al. 2004; Underwood et al. 2006; Kokaly et al. 2009; Schaepman et al. 2009; He et al. 2011; Calviño-Cancela et al. 2014). Studies using multispectral satellite data, in conjunction with in situ hyperspectral data, have been able to derive valuable ecosystem information such as the characterization of dominant plant species, functional types, or successional stages (Ustin & Gamon 2010; Asner 2013; Laurin et al. 2016). Several researchers have found that for their applications, the most promising sensors for improving classified map accuracy, and even discriminating dominant plant species, are imaging spectrometers (DeFries 2008; Schmittlein et al. 2012; Ustin & Gamon 2010; Ustin et al. 2004; Roth et al. 2015). In arid grassland ecosystems, remote sensing techniques have been effective in quantifying shrub
expansion, invasive species, grazing extents, and anthropogenic threats (Hamada et al. 2011; Berg et al. 2016; Stevens et al. 2016). These techniques are less commonly used to identify individual species than functional types or life forms (Hamada et al. 2011). This is likely due to the difficulty in classifying grass species that are senesced and their small size and spectral similarities (Marsett et al. 2006). The ability map individual species as well as functional types and life forms is necessary for precise determination of distribution as well as effective management strategies (Calviño-Cancela et al. 2014).

Image Classification

In an ecosystem with a mosaic of different species, ages, sizes, and degree of spatial heterogeneity, remote sensing image classification is largely determined by specific site information and variation (Zhang & Qiu 2011; Shouse et al. 2013; Laurin et al. 2016). In a typical image classification, individual pixels are assigned to real world classes based solely on their spectral characteristics (Newman et al. 2011). The most commonly used classification methods operate on individual pixels as the units of classification. These methods assign each pixel into classes according to classification algorithms or decision rules. Each individual pixel is analyzed according to its spectral characteristics, but this method does not consider the spatial characteristics of the surrounding pixels and their relationships to each other (Laliberte et al. 2004). A more recent approach to classification, developed around the year 2000 (Blaschke 2010), uses clusters of pixels, or ‘image objects’, as representations of objects on the ground. In object-based classification, image objects are categorized into classes based on multiple defined criteria. Segmentation of the entire image to create image objects is based on the size and type of the real-world objects to be identified. The remote sensing software, eCognition, allows the user
to define criteria in an image segmentation such as scale parameter, composition of homogeneity criterion for color and shape, and the shape criterion for smoothness and compactness to classify objects in an image. The size of each image is defined by the scale factor that is related to the image resolution. The color parameter controls the extent of spectral heterogeneity within the object. The shape parameter is derived from textural characteristics of compactness and smoothness of the pixels. Thus, segmentation mimics human interpretation and groups images into homogenous areas (Laliberte et al. 2004; Newman et al. 2011). Once segmented, images are classified according to the ‘features’ of each object. These features are the spectral shape and contextual characteristics of the image objects. In addition to reflectance values and mean brightness for each band, area, length, texture, width, shape, compactness and dozens of other features can be used to differentiate between pixel classes. Object-based classification permits the incorporation of contextual and spatial information, whereas pixel-based classification methods are based on spectral/layer pixel values. Due to the addition of these parameters in classification, an object based classification would be expected to provide superior results to spectral differentiation (Laliberte et al. 2004; Karl 2010; Laliberte et al. 2010; Duniway et al. 2011).

Combining several features of spectral, geometric, and textural information to classify images often outperform spectral vectors alone (Proctor at al. 2013; Fernandes et al. 2014). Some of the most fundamental indicators relevant to ecosystem services in grasslands and shrublands are ground cover (vegetation, rock, and litter cover) and vegetation community composition (Duniway et al. 2011). The development of the Normalized Difference Vegetation Index (NDVI), which measures live green plant materials using the red and near-infrared bands, quickly became the most dominant satellite observable metric for plant biomass and
photosynthetic activity. It has led to an increase in the number of studies looking at plant canopy reflectance (Houborg et al. 2015). However, in arid ecosystems, using a green index like NDVI, or other vegetation metrics like the greenness index, GNDVI, it is possible to misclassify grass species after their peak greenest (Marsett et al. 2006). Recent studies have suggested that object-based classification produces more accurate habitat maps than those classified using pixel-based methods (Clark et al. 2005; Hamada et al. 2011; Newman et al. 2011; Ferreira et al. 2016; Niphadkar et al. 2017). However, if the spectral signatures used to create the rule set for the pixel-based classification were created using hyperspectral data, the classification accuracy for the habitat map could potentially improve. Many of the studies that find improvement in object-based classification are mapping larger landscapes, ecotypes, functional classes, or growth forms. Species-level classification techniques are less common and the small-scale nature of the question might benefit from a more heavily weighted spectral classification.

Steep canyon walls, rocky terrain, and high species diversity make Canyonlands National Park on the Colorado Plateau an ideal place to conduct this research. Canyonlands is host to a diverse community of plant species with a clear, directional climate signal affecting key plant functional groups. Over time, researchers have seen shifts in community composition (Munson et al. 2011a; 2011b; Hoover et al. 2017), due to differential responses to climate change. Plant functional types, specifically photosynthetic pathway, duration (annual or perennial), and life form (tree, shrub, forb, or grass) have been shown to confer benefits in climate changing conditions, (Munson et al. 2011a; Hoover et al. 2017; Duffy & Chown 2016). Canyonlands is host to conservation issues with invasive species, legacy effects from historic grazing, and declines in critical species, including desert grasses. Some locations within the national park are difficult to reach on foot and others are completely enclosed by canyon walls making field
sampling across a large area not feasible. Within United States national park boundaries, drones are not generally permitted making fine spatial imagery more difficult to acquire. However, there is a need for accurate species-level mapping of the ecosystem that can be generated over a large area. Important species can be tracked over time and changes in density and distribution can be monitored. Another feature of the location that adds complexity to our study is the heterogeneous size of the plant species. Species found in the site include trees with canopies much larger than WV-3 pixel sizes, shrub sizes around pixel sizes, and grasses that are much smaller than pixel size. Capturing the diversity of size, shape, and distribution of species in a map is a challenge with multispectral, satellite imagery.

Our goal in this project was to produce a high-resolution map of species distributions in a topographically and botanically diverse landscape. To achieve this goal, we pursued three specific aims: 1) Utilize reflectance curves created from species-specific hyperspectral data to improve pixel-level classification, 2) Compare pixel-level classification to object-level classification, and 3) Evaluate the importance of non-spectral related features used in object-based classification in improving overall accuracy. To achieve these aims, we assessed the feasibility and reliability of multiple remote sensing techniques to create a species-level classification map. We combined hyperspectral data from handheld spectral radiometers with multispectral data from the World View-3 satellite to build spectral signature curves and identify regions on the electromagnetic spectrum where each species could be separated from others. We used these values to create a rule set that we implemented in a spectral differentiation classification. We compared the accuracy assessment from the spectral differentiation to our object oriented classification using training sites. We also compared object attributes to determine whether reflectance values alone are sufficient for classifying species, and how other
features such as size, density, shape, and texture change the classification accuracy. While the question about classification accuracy has been addressed in other systems, the homogeneity of our study area combined with the size of the species we classified make this approach novel. Knowing what features and what techniques can be most successful to create accurate large-scale species-level classification maps will allow researchers to collect large-scale species distribution data in regions where in-situ sampling is not feasible.

Methods

Site Description

The study was conducted in the Needles District, the southeast corner of Canyonlands National Park, on the Colorado Plateau in Utah, U.S.A (Fig 1). Across the study area, there is high variation in topography from the tall spires of Cedar Mesa Sandstone forming canyon walls, coarse Aeolian deposits and flat to gently sloping alluvial silty soils. Vegetation in our site represent common desert plant species found in the arid southwest (Table 1).

Image Pre-processing

Images were acquired on June 29, 2015 and May 30, 2016 using the World View-3 satellite. The images were georeferenced by the USGS prior to our study. To begin the atmospheric correction using Fast Lane-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH), we had to radiometrically calibrate the image from BSQ format to BIL output interleave with the calibration type set to “Radiance”, output data type set to “Float”, and the scale factor 0.1, according to FLAASH settings in ENVI. After the image was calibrated, we ran
the FLAASH atmospheric correlator. FLAASH accurately compensates for atmospheric effects by correcting wavelengths in the visible, near-infrared, and short-wave infrared regions.

Figure 1 Study site
Map of study site in the Needles District of Canyonlands National Park on the Colorado Plateau. Images overlaid on the map are the World View-3 images. Across the study area, there is high variation in topography from the tall spires of Cedar Mesa Sandstone forming canyon walls, coarse Aeolian deposits and flat to gently sloping alluvial silty soils.
Table 1 Species measured

Common species found on the Colorado Plateau and sampled in the study. We used these species to measure spectral reflectance and also to take ground truth data with a GPS.

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Lifeform</th>
<th>Pathway</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambrosia</td>
<td>Ambrosia dumosa</td>
<td>Shrub</td>
<td>C3</td>
<td>Perennial</td>
</tr>
<tr>
<td>Big sagebrush</td>
<td>Artemisia tridentata</td>
<td>Shrub</td>
<td>C3</td>
<td>Perennial</td>
</tr>
<tr>
<td>Four Wing Saltbrush</td>
<td>Atriplex canescens</td>
<td>Shrub</td>
<td>C4</td>
<td>Perennial</td>
</tr>
<tr>
<td>Blue Grama</td>
<td>Bouteloua gracilis</td>
<td>Grass</td>
<td>C4</td>
<td>Perennial</td>
</tr>
<tr>
<td>Mountain Mahogany</td>
<td>Cerocarpus betuloides</td>
<td>Small tree</td>
<td>C3</td>
<td>Perennial</td>
</tr>
<tr>
<td>Rabbitbrush</td>
<td>Chrysothamnus viscidiflorus</td>
<td>Shrub</td>
<td>C3</td>
<td>Perennial</td>
</tr>
<tr>
<td>Blackbrush</td>
<td>Coleogyne ramosissima</td>
<td>Shrub</td>
<td>C3</td>
<td>Perennial</td>
</tr>
<tr>
<td>Mormon Tea</td>
<td>Ephedra viridis</td>
<td>Shrub</td>
<td>C3</td>
<td>Perennial</td>
</tr>
<tr>
<td>Torrey's Jointfi</td>
<td>Ephedra torreyana</td>
<td>Shrub</td>
<td>C3</td>
<td>Perennial</td>
</tr>
<tr>
<td>Needle and Thread</td>
<td>Hesperostipa comata</td>
<td>Grass</td>
<td>C3</td>
<td>Perennial</td>
</tr>
<tr>
<td>Juniper</td>
<td>Juniperus osteoperma</td>
<td>Tree</td>
<td>C3</td>
<td>Perennial</td>
</tr>
<tr>
<td>Common Pepperweed</td>
<td>Lepidium densiflorum var. ramosum</td>
<td>Forb</td>
<td>C3</td>
<td>Annual</td>
</tr>
<tr>
<td>Indian Rice Grass</td>
<td>Oryzopsis hymenoides</td>
<td>Grass</td>
<td>C3</td>
<td>Perennial</td>
</tr>
<tr>
<td>James' Galleta</td>
<td>Pleuraphis jamesii</td>
<td>Grass</td>
<td>C4</td>
<td>Perennial</td>
</tr>
<tr>
<td>Pinyon Pine</td>
<td>Pinus monophylla</td>
<td>Tree</td>
<td>C3</td>
<td>Perennial</td>
</tr>
</tbody>
</table>

Reflectance curves and pixel-based classification

We used the HandHeld2 Pro hand-held spectrometer (ASD Inc.) to measure 170 reflectance curves for seven common grass and shrub species from wavelength measurements of 325 nm to 1075 nm; each band had a bandwidth of less than 3.0 nm. The values were averaged for each species to account for variation across individuals. The hyperspectral sensor allowed for greater discrimination of species in areas along the electromagnetic spectrum where they grouped together (Figure 2). Then using sensor information from the WV-3 satellite, we identified the bandwidth where each color was picked up by the sensor (see vertical lines on Figure 2). These are the bands where each color on our image was picked up by the WV-3 satellite and which bands are useful in separating species from each other.
Figure 2 Spectral signatures
Measured wavelengths of light on the electromagnetic scale and the corresponding total reflectance for species. Vertical Bands represent where World View-3 sensors pick up reflectance for each color gun.

Ground Reference Data

Global Positioning System (GPS) points were measured for 281 large shrubs and patches of grass as well as bare ground and rocks using a Trimble GeoX GPS unit. We labeled the different elements of the terrain in areas where the invasive target species was abundant (with patches of different sizes and characteristics) and other representative elements (red rock, white rock, bare ground). Because of lack of accessibility to many areas blocked by canyon walls and far from roads or trails, not all areas within the images could be evenly sampled for ground reference data. We selected training pixels from these ground points to train the classifier. The dataset was randomly partitioned into 60% for training and 40% for testing. We repeated the
splitting ten times, randomly choosing reference points and testing the classifiers at each location to better assess the robustness of the classification and its ability to predict unknown samples.

Comparison of Approaches

Spectral Differentiation

Using the decision tree we created to separate species from each other based on specific wavelengths with the most separation distance, we created a spectral differentiation rule set in eCognition Developer™ 9.0 Software. The rule set used only reflectance values and created a range that each species fit within according to the hyperspectral data taken from the hand-held reflectometer. We ran a classification on the images and determined the accuracy of the assessment using the ground points.

![Spectral signature decision tree](image)

Figure 3 Spectral signature decision tree

Decision tree based on spectral signatures graphed in Figure 2. The decision tree works for creating a rule set in eCognition when running a spectral differentiation classification. As an example, if you wanted to map *E. viridis*, the WV-3 color guns you should use are NIR 1, then Red, and Green. *E. viridis* can be most easily separated from *G. microcephala* on the image at the wavelength 547.1 nm.
Figure 4 Image processing methods
Original World View-3 image (panel 1), segmented image (panel 2), image with object classes identified for one area of the region (panel 3), and classification (panel 4).
Object oriented classification

The second approach to creating a species-level classification was using the object-based classification approach in eCognition (Definiens 2010). Classification of remotely sensed imagery is the process of assigning pixels to discrete categories of terrain elements, i.e. one of the target plant species, red and white rock, and bare ground categories using training sites. Before running the classification, we ran a segmentation to subdivide the image into image objects or primitives (approximating ground targets, e.g. shrub patch) by clustering pixels into contiguous regions of minimum heterogeneity at a given scale (Benz et al. 2004). A multiresolution segmentation was used to optimize the mapping of ground features characterized by a wide range of sizes and shapes, from small clumps of shrubs to large patches of forest or pasture. Multiresolution segmentation is a bottom up region-growing technique starting with one-pixel objects and then in subsequent steps, merging smaller image objects into bigger ones. Throughout this pairwise clustering process, the underlying optimization procedure minimizes the weighted heterogeneity of resulting image objects. In each step, the pair of adjacent image objects is merged which stands for the smallest growth of the defined heterogeneity. If the smallest growth exceeds the threshold defined the scale parameter, the process stops. Doing so, multiresolution segmentation is a local optimization procedure. The segmentation used a low scale parameter (scale = 3) to delimit the smallest ground features. Segmentation at these scales tends to over-split medium-to-large ground features (e.g. large grass patches) into a large number of objects. Hence, we used a spectral difference segmentation to merge contiguous objects having similar mean reflectance values.
Important Features in Object-based classification

When classifying objects, eCognition uses object descriptors or ‘features’ to assign an object to a class using crisp or fuzzy transition functions, or by the application of nearest-neighbor membership functions trained by representative class samples (Benz et al. 2004). We applied both crisp rules and nearest-neighbor membership functions to assign objects to classes. For the latter, we selected between 10 and 30 object samples per class (depending on the abundance in the study area) as training references for the classification. The appropriate class for each training reference was determined from either field surveys or directly from the image.

Four methods were considered for discriminating the land-cover classes in eCognition, namely (1) statistical (e.g. mean, standard deviation, ratios, and minimum and maximum of pixel values within an object); (2) textural (e.g. mean difference to neighbors); (3) contextual descriptors (e.g. mean difference of an object between inner and outer border or scene); (4) spectral indices for vegetation and bare ground characterization, such as NDVI and GNDVI (greenness index).

We assessed class separability and selected the best discriminating features using the feature space optimization tool in eCognition. This tool uses the training references to measure the statistical distance between classes for a set of features and displays a class separation distance matrix (Definiens 2010). A high separation distance between two classes suggests that the selected features can discriminate the two classes. A distance of $J = 0$ means complete correlation or low separability and $J = 2$ means complete non-correlation and high separability.

With the features selected for the classification, we next assigned training classes and points. We randomly selected training sites from within the ground truthing points to use in the classification. Fifteen non-vegetation and vegetation classes were mapped considering their likely discrimination in the scenes. Non-vegetation classes included white rock, red rock, road,
and bare ground. Vegetation classes included common species in the site: *Ambrosia dumosa*, *Atriplex canescens* (Four winged saltbrush), *Cerocarpus betuloides* (Mahogany), *Coleogyne ramosissima* (Blackbrush), *Ephedra torreyana* (Torrey’s jointfir), *Ephedra viridis* (Mormon tea), *Chrysothamnus viscidiflorus* (Rabbitbrush), *Hesperostipa comata* (Needle and Thread grass), *Juniperus osteosperma* (Juniper), *Achnatherum hymenoides* (Indian Rice Grass), and *Pinus monophylla* (Pinyon Pine).

Accuracy Assessment

To assess the accuracy of image classification we compared the classified image with ground validation data and created an error matrix. We randomly selected 250 reference points taken from the field and compared their identification in the field with the image classification we created. We first measured overall accuracy. Overall accuracy is the proportion of all reference pixels, which are classified correctly (in the sense that the class assignment of the classification and of the reference classification agree). It is computed by dividing the total number of correctly classified pixels (the sum of the elements along the main diagonal) by the total number of reference pixels. Overall accuracy is a very coarse measurement. It gives no information about what classes are classified with good accuracy.

We determined the rates of omission errors (or false negatives, when pixels with presence of a target species on the ground were not properly classified) and commission errors (or false positives, when pixels were classified as with presence of a target species that was absent on the ground) which define the producer’s and user’s accuracy, respectively. We also estimated the kappa coefficient, which provides a measure of the difference in agreement between the classified map and ground validated data against an agreement occurring by chance (Landis &
Koch 1977). Further, Kappa analysis is a discrete multivariate technique used in accuracy assessment for statistically determining if one error matrix is significantly different from another. The measure of agreement is based on the difference between the actual agreement in the error matrix (i.e. the agreement between the remote sensed classification and the reference data as indicated by the major diagonal) and the chance agreement, which is indicated by the row and column totals (i.e. marginals).

There is always a detection threshold related to the spatial resolution of the system and, for all species, there will always be individuals, e.g. seedlings or small plantings, that cannot be detected. Therefore, we were not able to sample small forb species and seedlings that covered less than 50% of our pixel size, i.e. 0.5 m2 for images of 1m2 spatial resolution.

Results

Reflectance Curves and Pixel-based Classification

The reflectance curves created from hyperspectral data improved the pixel-based classification by providing more detailed rule sets for each species. Their accuracy is confirmed by the improvement in accuracy between the pixel-based (only reflectance data) and the object-based classification.

Compare pixel-level classification to object-level classification

Both spectral differentiation and object oriented classifications produced overall classification accuracies above 75%. The spectral differentiation had an overall accuracy of 79% (kappa coefficient=0.76) and the object oriented classification had an overall accuracy of 91% (kappa coefficient=0.90). For the producer’s accuracy, there were improvements in the object
oriented classification compared to the spectral differentiation for eight species, no change for three species, and decline in two species. Species that improved in producer’s accuracy with the object oriented classification were *P. monophylla* (from 0.6 to 0.85), *J. osteosperma* (from 0.58 to 0.84), *C. ramosissima* (from 0.57 to 0.95), *E. viridis* (from 0.8 to 0.94), *A. canescens* (0.76 to 0.88), *C. viscidiflorus* (0.87 to 0.88), *H. comata* (0.79 to 0.89), and *A. hymenoides* (0.84 to 0.93). Two species had slightly worse producer’s accuracies with the object oriented classification than the spectral differentiation, *E. torreyana* (0.86 to 0.85), *A. dumosa* (0.76 to 0.72) (Figure 5 and Figure 6).

For the user’s accuracy, there were improvements in the object oriented classification compared to the spectral differentiation for eight species, no change for three species, and decline in two species. Species that improved in user’s accuracy with the object oriented classification were *P. monophylla* (from 0.75 to 0.85), *C. ramosissima* (from 0.84 to 0.96), *A. canescens* (0.82 to 0.95), and *C. viscidiflorus* (0.93 to 1), and a decline for *E. torreyana* (1 to 0.93), *A. dumosa* (0.9 to 0.8), *H. comata* (1 to 0.97), and *A. hymenoides* (0.88 to 0.87). Producer’s and user’s accuracies were in general very similar for species, with higher user’s accuracy in both instances (0.88 for spectral differentiation and 0.92 for object oriented classification) compared to producer’s accuracy (0.80 and 0.90).

Important Features in Object-based Classification

Overall, reflectance values for NDVI and GNDVI indices were fairly effective in classifying species (Figure 5), but the use of other features improved the classification (Figure 6). The differences can be seen in the class separation distance matrix (Table 2) and the sample editor table (Figure 3 for just NDVI values and Suppl. Fig S1 for complete table). In Table 3, we
can see that there are four instances where species completely overlap in the range of reflectance values when NDVI only was used in the classification. All four instances of complete overlap occurred between three grass species, and two lighter-colored shrubs (H. comata, A. hymenoides, C. ramosissima, B. gracilis, and C. viscidiflorous). Figure 4 shows alternative bands and metrics that can be used to differentiate plant species when there is overlap in a feature like NDVI. To differentiate between B. gracilis and H. comata (both grasses), C. viscidiflorus and H. comata (shrub and grass) and C. ramosissima and A. hymenoides (shrub and grass), mean brightness only overlaps by 0.19, 0.55, and 0 respectively. Brightness was not effective for C. ramosissima and H. comata, but mean NIR only had 0.28 overlap. Geometric metrics like size, width, length, and shape were effective in differentiating between different shrub species and also contrasting them with other lifeforms.
Figure 5 Classification map
Complete classification maps for both the front country and canyon regions of Canyonlands National Park.
Table 2 Pixel-based confusion matrix
Confusion matrix for the pixel-based, rule set and spectral differentiation analysis in eCognition.

<table>
<thead>
<tr>
<th>Class/Class</th>
<th>P. monophylla</th>
<th>C. betuloides</th>
<th>J. osteosperma</th>
<th>Q. gambelli</th>
<th>C. ramosissima</th>
<th>E. viridis</th>
<th>E. torreyana</th>
<th>A. dumosa</th>
<th>A. canescens</th>
<th>C. viscidiflorus</th>
<th>H. comata</th>
<th>O. hymenosides</th>
<th>Bare Ground</th>
<th>Unclassified</th>
<th>Row Total</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. monophylla</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>C. betuloides</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>J. osteosperma</td>
<td>1</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>0.5833333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q. gambelli</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>C. ramosissima</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>19.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. viridis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>38</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>47.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. torreyana</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>15.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. dumosa</td>
<td>0</td>
<td>3</td>
<td>13.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. canescens</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>25.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. viscidiflorus</td>
<td>0</td>
<td>2</td>
<td>16.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. comata</td>
<td>0</td>
<td>5</td>
<td>34.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O. hymenosides</td>
<td>0</td>
<td>5</td>
<td>5.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bare Ground</td>
<td>0</td>
<td>3</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unclassified</td>
<td>0</td>
<td>2</td>
<td>12.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Column Total</td>
<td>4</td>
<td>2</td>
<td>7</td>
<td>5</td>
<td>13</td>
<td>41</td>
<td>13</td>
<td>11</td>
<td>23</td>
<td>36</td>
<td>3</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reliability</td>
<td>0.75</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.846153846</td>
<td>0.9268293</td>
<td>1</td>
<td>0.90090909</td>
<td>0.826086957</td>
<td>0.93333333</td>
<td>1</td>
<td>0.888888889</td>
<td>1</td>
<td>0.25</td>
<td></td>
</tr>
</tbody>
</table>

Overall Accuracy 0.79032
Kappa Coefficient 0.76867
Producer's Accuracy 0.80965
User's Accuracy 0.88074

Table 3 Object-based confusion matrix
Confusion matrix for the object-based classification using training sites in eCognition.

<table>
<thead>
<tr>
<th>Class/Class</th>
<th>P. monophylla</th>
<th>C. betuloides</th>
<th>J. osteosperma</th>
<th>Q. gambelli</th>
<th>C. ramosissima</th>
<th>E. viridis</th>
<th>E. torreyana</th>
<th>A. dumosa</th>
<th>A. canescens</th>
<th>C. viscidiflorus</th>
<th>H. comata</th>
<th>O. hymenosides</th>
<th>Bare Ground</th>
<th>Unclassified</th>
<th>Row Total</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. monophylla</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.85714286</td>
<td></td>
</tr>
<tr>
<td>C. betuloides</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0.84615385</td>
<td></td>
</tr>
<tr>
<td>J. osteosperma</td>
<td>1</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>0.76923077</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q. gambelli</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>C. ramosissima</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>23</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>0.95833333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. viridis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>37</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>39.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. torreyana</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>0.78571429</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. dumosa</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>0.72222222</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. canescens</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25</td>
<td>0.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. viscidiflorus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. comata</td>
<td>0</td>
<td>2</td>
<td>38.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O. hymenosides</td>
<td>0</td>
<td>1</td>
<td>29.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bare Ground</td>
<td>0</td>
<td>5</td>
<td>5.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unclassified</td>
<td>0</td>
<td>1</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Column Total</td>
<td>7</td>
<td>2</td>
<td>11</td>
<td>5</td>
<td>24</td>
<td>40</td>
<td>16</td>
<td>10</td>
<td>23</td>
<td>8</td>
<td>35</td>
<td>31</td>
<td>13</td>
<td>238</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reliability</td>
<td>0.857142857</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.95833333</td>
<td>0.925</td>
<td>0.9375</td>
<td>0.8</td>
<td>0.96521739</td>
<td>0.971428571</td>
<td>0.870967742</td>
<td>1</td>
<td>0.652173913</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Overall Accuracy 0.91596
Kappa Coefficient 0.90676
Producer's Accuracy 0.90002487
User's Accuracy 0.92350487
The values within the class separation distance matrix inform us how much separation there is between species pixel values for all of the combined factors in the classification. 0 indicates no separation and higher numbers indicate higher separation. The values below 2, the benchmark set for sufficient separability are *C. viscidiflourus* and *E. torreyana* (1.87), *C. viscidiflourus* and *A. hymenoides* (1.15), *J. osteosperma* and *P. monophylla* (1.26), and *E. viridis* and *E. torreyana* (1.29) (see Table 2).

In the Average Nearest Neighbor analysis, we see that the distribution of species in the landscape is not due to chance. The expected mean difference between species was 0.577m and the observed mean distance was 1.03 m. With a z-score of 2320.47 and a p-value of <0.001, there is less than a 1% chance that the dispersal pattern witnessed in the site is due to chance.
Table 4 Class separation distance matrix

Class Separation Distance Matrix for object-based classification. The values represent the amount of separation between two species in the image using all of the image object related features in the object-based classification. A value of 2 is generally accepted as the benchmark for separating between species. More than 2 units of separation between species is deemed sufficient for accurately separating them. From 0-2 is not the most ideal separation. Species can still be differentiated but it is more difficult.

<table>
<thead>
<tr>
<th>Class/Class</th>
<th>A. tridentata</th>
<th>A. canescens</th>
<th>Bare Ground</th>
<th>B. gracilis</th>
<th>C. viscidiflorus</th>
<th>C. ramosissima</th>
<th>E. torreyana</th>
<th>E. viridis</th>
<th>H. comata</th>
<th>J. osteosperma</th>
<th>A. hymenoides</th>
<th>P. monophylla</th>
<th>Red Rock</th>
<th>Road</th>
<th>White Rock</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. tridentata</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A. canescens</td>
<td>3.597957</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Bare Ground</td>
<td>18.798298</td>
<td>9.504423</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B. gracilis</td>
<td>11.148174</td>
<td>5.656309</td>
<td>15.635604</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>C. viscidiflorus</td>
<td>5.602458</td>
<td>2.42932</td>
<td>16.648042</td>
<td>2.787529</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>C. ramosissima</td>
<td>17.688781</td>
<td>15.787685</td>
<td>20.437673</td>
<td>17.248157</td>
<td>17.125904</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. torreyana</td>
<td>6.012781</td>
<td>3.16641</td>
<td>13.529162</td>
<td>2.222371</td>
<td>1.874773</td>
<td>12.372592</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. hymenoides</td>
<td>5.136762</td>
<td>2.138177</td>
<td>9.108365</td>
<td>2.215567</td>
<td>1.15342</td>
<td>17.935609</td>
<td>2.01818</td>
<td>2.791877</td>
<td>2.014733</td>
<td>9.458255</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5 Object overlap values
Object Oriented Classification object overlap values taken from the Sample Editor for NDVI values from a 0 to 1 scale with 0 being no overlap between NDVI ranges and 1 being complete overlap. There is strong overlap with NDVI levels between the grass species *H. comata* and the grass species *B. gracilis*, the shrub species, *C. ramosissima*, and *C. viscidiflorus*. This likely means there is a large NDVI range for *H. comata* and an inability by the NDVI matrix alone to differentiate between these species.

<table>
<thead>
<tr>
<th>Class</th>
<th>A. tridentata</th>
<th>A. canescens</th>
<th>B. gracilis</th>
<th>C. viscidiflorus</th>
<th>C. ramosissima</th>
<th>E. viridis</th>
<th>H. comata</th>
<th>J. osteosperma</th>
<th>O. hymenoides</th>
<th>P. monophylla</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. tridentata</td>
<td>0</td>
<td>0.52</td>
<td>0.1</td>
<td>0.27</td>
<td>0.04</td>
<td>0.63</td>
<td>0.34</td>
<td>0.39</td>
<td>0.29</td>
<td>0.36</td>
</tr>
<tr>
<td>A. canescens</td>
<td>0</td>
<td>0.03</td>
<td>0.15</td>
<td>0.01</td>
<td>0.28</td>
<td>0.37</td>
<td>0.39</td>
<td>0.23</td>
<td>0.18</td>
<td>0.2</td>
</tr>
<tr>
<td>B. gracilis</td>
<td>0</td>
<td>0.55</td>
<td>0</td>
<td>0.47</td>
<td>0</td>
<td>0.47</td>
<td>1</td>
<td>0</td>
<td>0.82</td>
<td>0.2</td>
</tr>
<tr>
<td>C. viscidiflorus</td>
<td>0</td>
<td>0.07</td>
<td>0.53</td>
<td>1</td>
<td>0.21</td>
<td>0.5</td>
<td>0.05</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C. ramosissima</td>
<td>0</td>
<td>0.02</td>
<td>0.02</td>
<td>0.24</td>
<td>0.45</td>
<td>0.13</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E. viridis</td>
<td>0</td>
<td>0.1</td>
<td>0</td>
<td>0.1</td>
<td>0.46</td>
<td>0.07</td>
<td>0.3</td>
<td>0</td>
<td>0.34</td>
<td>0</td>
</tr>
<tr>
<td>H. comata</td>
<td>0</td>
<td>0</td>
<td>0.09</td>
<td>0.63</td>
<td>0.86</td>
<td>0.28</td>
<td>0.07</td>
<td>0.28</td>
<td>0.07</td>
<td>0</td>
</tr>
<tr>
<td>J. osteosperma</td>
<td>0</td>
<td>0</td>
<td>0.09</td>
<td>0.63</td>
<td>0.86</td>
<td>0.28</td>
<td>0.07</td>
<td>0.28</td>
<td>0.07</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 6 Other features that can be used to increase separation distance
This table displays other factors that can be used to differentiate between species with similar greenness (NDVI and GNDVI). The species shown here are the species with 100% overlap in NDVI range. There are other factors where they are quite different from each other, shown by lower overlap values. Weighing that color band more heavily or a feature like brightness, can emphasize these differences and allow for better discrimination. This is an advantage of object-based classification over pixel-based classification.

<table>
<thead>
<tr>
<th>Species</th>
<th>Brightness</th>
<th>Mean Red</th>
<th>Mean NIR 1</th>
<th>Mean Green</th>
<th>Mean Blue</th>
<th>Mean NIR 2</th>
<th>Mean Coastal</th>
<th>Mean Yellow</th>
<th>Max Difference</th>
<th>NDVI</th>
<th>GNDVI</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. gracilis-H. comata</td>
<td>0.19</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.88</td>
<td>1</td>
<td>0.88</td>
<td>1</td>
</tr>
<tr>
<td>C. viscidiflorus-H. comata</td>
<td>0.55</td>
<td>0.42</td>
<td>0.75</td>
<td>1</td>
<td>1</td>
<td>0.88</td>
<td>0.85</td>
<td>0.85</td>
<td>0.5</td>
<td>0.88</td>
<td>1</td>
</tr>
<tr>
<td>C. ramosissima-H. comata</td>
<td>1</td>
<td>1</td>
<td>0.28</td>
<td>1</td>
<td>1</td>
<td>0.88</td>
<td>0.85</td>
<td>0.89</td>
<td>0.73</td>
<td>0.73</td>
<td>1</td>
</tr>
<tr>
<td>C. ramosissima-O. hymenoides</td>
<td>0</td>
<td>0.09</td>
<td>0</td>
<td>0.63</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.86</td>
<td>0.28</td>
<td>0.28</td>
<td>0.07</td>
</tr>
</tbody>
</table>
Discussion

We were able to successfully use VHR imagery to create the first accurate, park-wide map that shows the species-level distribution of dominant plants on the Colorado Plateau (Figure 5). These maps will serve as a baseline for future comparisons of species-level distributions over time and changes brought about by shifts in global climate. From the maps we can see that there is structure to where species exist. Chesler Park is pictured because it is geologically interesting and representative of regions on the Colorado Plateau. It is also a critical area for tourism with popular hikes and jeep trails. From the classification map, we can see that the rock fins surrounding the park are host to the larger tree species, *P. monophylla* and *J. ostesosperma* with an occasional deep-rooted shrub such as *E. viridis*, *E. torreyana*, and *C. ramosissima*. Sand ramps along the edge of the rock fins have fewer tree species and are replaced predominantly by shrub species. In the deep, silty soils of the inner canyon, grasses are the domain functional group.

Classification Accuracy

Overall, both classification methods were successful for large bunchgrasses and shrubs which is helpful for tracking the increase in shrub densities and the decrease in grasses. With the inclusion of roads, rock, and vegetation in the segmentation and classification, the object-based classification produced more accurate land-cover maps that better represented the plant class than the pixel-based classification methods did. For an object-based classification, the results of an accuracy assessment reflect not only the accuracy in the classification technique (e.g. the selection of features used to differentiate between the classes), but also the results of the initial segmentation of the image (Liu et al. 2008; Newman et al. 2011). Due to the spatial resolution of the imagery and the heterogeneity of the species distribution, the best segmentation used pixel
sizes of three. Slightly larger and the classification was largely successful but missed much of the
detail found in the landscape and thus compromised the accuracy of the classification.

We obtained a good discrimination between classes (even for those with very similar
reflectance patterns) in uniform areas where one particular class occupied entire pixels. The
greatest overall improvements from the pixel-based classification to the object-based
classification were found in classifying P. monophylla vs. J. osteosperma. Both highly
photosynthetic species were difficult to differentiate in the pixel-based classification but were
much better in the object-based classification. C. ramosissima also benefited from the object-
based classification. In the pixel-based classification, several C. ramosissima were classified as
A. dumosa and A. canescens, species with similar NDVI and peak reflectance values. In these
cases, size metrics are important in differentiating between the species. Size, area, thickness,
volume, and length all had almost negligible overlap values (0.05) which likely explains the
improvement in accuracy assessment for the object-based classification. Another way to consider
the correct classification of species is to notice the reduction of species incorrectly classified as
‘unclassified’. In the pixel-based classification, there was a low user’s accuracy for the
unclassified pixels. This means that we incorrectly classified species as unclassified frequently.

For the grass species, there was improvement in correctly classifying species. In the
pixel-based classification, there was an overestimation of A. hymenoides. Grass species were
generally classified as grasses but not necessarily the correct species. The improvement in the
object based classification occurred because of differences in brightness and max difference in
pixel values, which had little overlap.
Limitations of the method

While the WV-3 satellite imagery was able to discriminate between major species of grasses, trees, and shrubs, the spatial resolution was still not fine enough to classify forbs and seedlings in the landscape. For a complete, inclusive species-level map, more fine resolution imagery would be required. Detection errors occurred when small individuals were located within or nearby large patches of another species. In these cases, the individual was often classified with the larger group. In practice, this shortcoming could influence the ability of remote sensing classifications to correctly identify species that benefit from close spatial distribution with shrubs. This ‘island effect’ finds hotspots of biological activity around shrubs that are able to pull moisture from deep within the soil profile that can then be used by species with shorter root systems. While our classification often identified these occurrences, more fine spatial resolution would aid in classifying species in these instances.

Considering the small size of a newly-emerged seedling, there are always individuals that will pass undetected regardless of the spatial resolution of the detection technique used. Because our site is classified as a perennial grassland with shrubs, most of the species are well-established bunch grasses or large shrubs, so missing seedlings is not too worrisome for a general classification mapping. Periodic image acquisition combined with in situ sampling in accessible regions would do well to improve upon the classification and track changes over time for species in the landscape. In addition, seedlings missed by earlier classifications can be detected in subsequent campaigns, once they exceed the size threshold for detection.
Implications

Arid ecosystems present different challenges in remote sensing of the landscape. There is less variation in heights of species and rarely are species stacked on top of each other as you would see in forest ecosystems. However, the size of the individual, their proximity to each other, and the interspaces prove to be challenges in classifying species in arid ecosystems. Duniway et al. (2011) said that remote sensing techniques have shown promise for measuring plant community composition and ground cover efficiently, but to applied to more large-scale surveys, it is necessary that they are feasible, cost-effective, and repeatable. That is the criteria we attempted to maintain in this project. While there are platforms with more fine spatial and spectral resolution, such as very-high-resolution imagery (~1mm ground sampling distance (GSD)), the equipment necessary for the analysis is not commonly available or affordable (Duniway et al. 2011). This research sheds light on the trade-off between imagery sufficient enough to discern major plant species but broad enough to fit the time and cost criteria stated above. We can see limitations of the data collected but also informative results that can lead to better landscape management and understanding of ecological phenomena. Berg et al. (2016) found that woody shrub encroachment underwent a major redistribution across the landscape. Shrub expansion did not occur equally or randomly across the landscape but was concentrated in formerly open, grassy areas. In previously wooded areas, there was no change or a reduction in shrub cover. With more findings like this, and a consistent mapping of open areas and woody areas, we can predict where shrub expansion will occur and other important ecological questions.
References

Marsett, R.C., Qi, J.G., Heilman, P., Biedenbender, S.H., Watson, M.C., Amer, S., Weltz, M.,

Robinson, T.P., Wardell-Johnson, G.W., Pracilio, G., Brown, C., Corner, R., & van Klinken,

Supplementary Information

Chapter 1

Table S1 Point measurements for photosynthetic rate
Leaf-level seasonal gas exchange measurements (µmol m$^{-2}$ s$^{-1}$) for 15 common species on the Colorado Plateau with the standard error values. Missing values indicate no tissue samples to measure.

<table>
<thead>
<tr>
<th>Functional Type</th>
<th>Species</th>
<th>February</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>September</th>
<th>December</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grass</td>
<td>Achnatherum hymenoides</td>
<td>10.9 (+/- 0.32 SE)</td>
<td>11.52 (+/- 0.37 SE)</td>
<td>1.36 (+/- 0.16 SE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bouteloua gracilis</td>
<td>26.09 (+/- 0.52 SE)</td>
<td>17.4 (+/- 1.16 SE)</td>
<td>3.89 (+/- 0.80 SE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hesperostipa comata</td>
<td>28.69 (+/- 0.49 SE)</td>
<td>14.11 (+/- 0.91 SE)</td>
<td>10.211 (+/- 0.55 SE)</td>
<td>4.31 (+/- 0.01 SE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pleuraphis jamesii</td>
<td>24.16 (+/- 0.55 SE)</td>
<td>29.75 (+/- 0.86 SE)</td>
<td>11.04 (+/- 0.55 SE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Chrysothamnus visciflorus</td>
<td>0.84 (+/- 0.5 SE)</td>
<td>19.86 (+/- 1.87 SE)</td>
<td>14.04 (+/- 6.21 SE)</td>
<td>16.75 (+/- 2.04 SE)</td>
<td>5.31 (+/- 0.49 SE)</td>
<td>1.89 (+/- 0.61 SE)</td>
</tr>
<tr>
<td></td>
<td>Coleogyne ramosissima</td>
<td>2.02 (+/- 0.37 SE)</td>
<td>10.01 (+/- 1.22 SE)</td>
<td>21.55 (+/- 2.69 SE)</td>
<td>9.71 (+/- 0.91 SE)</td>
<td>6.89 (+/- 0.01 SE)</td>
<td>1.58 (+/- 0.24 SE)</td>
</tr>
<tr>
<td></td>
<td>Ephedra viridis</td>
<td>2.73 (+/- 0.32 SE)</td>
<td>11.43 (+/- 0.39 SE)</td>
<td>18.42 (+/- 3.11 SE)</td>
<td>16.62 (+/- 1.19 SE)</td>
<td>7.77 (+/- 0.80 SE)</td>
<td>2.91 (+/- 0.04 SE)</td>
</tr>
<tr>
<td>Forb</td>
<td>Amaranthus blitoides</td>
<td>10.87 (+/- 1.57 SE)</td>
<td>15.2 (+/- 2.24 SE)</td>
<td>2.4 SE)</td>
<td>0.01 SE)</td>
<td>13.97 (+/- 2.14 SE)</td>
<td>0.55 SE)</td>
</tr>
<tr>
<td></td>
<td>Astragalus amphioxys</td>
<td>9.33 (+/- 2.14 SE)</td>
<td>17.04 (+/- 3.17 SE)</td>
<td>17.04 (+/- 3.17 SE)</td>
<td>0.80 SE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chenopodium album</td>
<td>9.34 (+/- 3.1 SE)</td>
<td>17.04 (+/- 3.17 SE)</td>
<td>0.80 SE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eriogonum inflatum</td>
<td>3.97 (+/- 0.57 SE)</td>
<td>1.57 SE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lappula occidentalis</td>
<td>11.63 (+/- 0.60 SE)</td>
<td>18.19 (+/- 3.43 SE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lepidium densiflorum</td>
<td>18.68 (+/- 0.89 SE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sphaeralcea coccinea</td>
<td>10.14 (+/- 0.86 SE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Streptanthella longirostris</td>
<td>14.73 (+/- 1.33 SE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 2

Figure S1 Original image and classification
Original image and classification using object oriented classification. The region pictured is of Chesler Park and Virginia Park, two canyon regions within Canyonlands National Park.
Close up image of Chesler Park classification. Visually, you can see the difference where the shrubs at the canyon walls meet the grasses within the basin.
Figure S3 Zoomed in Chesler Park Classification
Smaller, more in-depth view of the classification of Chesler Park.
Figure S4 Shrub to grass interface in Chesler Park
Chesler Park detailed with the tree to shrub and shrub to grass interface with canyon geography.
Figure S5 Virginia Park classification
Close up of Virginia Park, another canyon located near Chesler Park. Virginia Park differs from Chesler Park and other surrounding regions because it has never been grazed. The canyon is completely closed off to tourists and grazing animals so the plant community will likely vary from what is seen outside the canyon.
Figure S6 Visitor Center classification
Close-up of the front country area of the Needles District of Canyonlands National Park near the Visitor's Center.
Species Overlap	Area	Thickness	Length/Thickness	Volume	Length/Width	Number of Pixels	Mean Red	Mean NIR 1	Mean Green	Mean Blue	Mean NIR 2	Mean Central	Mean Red Edge	Mean Yellow	Max Difference	PRED	SPAD	
Artemisia-Bronzica	0.88	1.00	1.00	0.86	0.71	0.71	0.86	0.83	0.80	0.83	0.71	0.71	0.86	0.83	0.86	0.86	0.86	0.86
Artemisia-Bronzica	0.36	0.36	1.00	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36
Artemisia-Bronzica	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28
Artemisia-Bronzica	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14
Artemisia-Brachyphyte	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71
Artemisia-Jupitrus	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Artemisia-Jupitrus	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35
Artemisia-Jupitrus	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40
Artemisia-Jupitrus	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35
Artemisia-Jupitrus	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36
Artemisia-Jupitrus	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35
Artemisia-Jupitrus	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35
Artemisia-Jupitrus	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36
Artemisia-Jupitrus	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35
Artemisia-Jupitrus	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36
Artemisia-Jupitrus	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35
Artemisia-Jupitrus	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36

Table S1 Classification Sample Editor
Table of Object Oriented Classification Sample Ediors showing the overlap between parameters when comparing species.