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CHAPTER I

INTRODUCTION

Although analytical techniques a re  generally  available fo r the s im u­

lation of dynamic system s, often these techniques requ ire  a g rea t deal of com ­

pu ter tim e and storage . This difficulty was vividly pointed out by a previous 

thesis  undertaken in th is Departm ent by R. L . W ebster (1). M r. W ebster 

undertook the determ ination of orthotropic m ateria l p ro p ertie s  using dynamic 

response te s t data from  p la te s . A m ajor difficulty which was encountered 

was the enorm ous amount of com puter tim e requ ired  fo r the sim ulation.

This thesis  is  an investigation of a method which when fully developed, may 

provide the ability  to sim ulate such system s much m ore e ffic ien tly .

The Finite Elem ent Method 

Perhaps the m ost popular method fo r sim ulation of d istributed  dyna­

mic system s is the finite elem ent technique. In th is method, the d istributed  

m ass , e lastic ity , and damping p ro p ertie s  a re  lumped, form ing a system  of 

m asse s , sp rings, and dash p o ts . The resu lting  equations which model the 

system  a re  often a la rge  system  of m atrix  d ifferential equations which d e ­

scribe  the motion of the lumped p a ra m e te rs . It is  an approxim ate model in 

the sense that a d istribu ted  system  cannot be exactly rep resen ted  by a lumped

1
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sy stem . The dim ensionality or the num ber of degrees of freedom  r e p r e ­

sented by th is system  of equations depends upon the num ber of degrees of 

freedom  n ecessa ry  to model the system  within the d esired  accuracy and is  

a function of the ability  of the individual who perfo rm s the m odeling. T here 

a re  techniques of reducing the dim ensionality of the system  by reducing the 

degrees of freedom  of the system  to include only "m aste r"  d isplacem ents (2). 

These techniques a re  a lso  somewhat dependent upon one's modeling ability , 

and a re  a lso  lim ited  in th e ir application. It is  not the purpose of th is th esis  

to examine these techniques in detail, but one should rea lize  that they do 

e x is t .

M atrix Exponential 

One method of solving the aforem entioned system  of d ifferential 

equations is the m atrix  exponential method (3). A g rea t advantage associated  

with th is method is  the fact that for lin ea r system s, the exponential m atrix  

need only be computed once. Computing the exponential m atrix  may use a p p re ­

ciable com puter tim e, however, if the dim ensionality is  la rg e . This method 

can be readily  applied to non -linear system s as w ell, but since th is  req u ires  

calculation of the exponential m atrix  a t each tim e step, com puter tim e is  

v e ry  significantly in c reased .

Modal Analysis

Modal analysis is  a lso  a useful tool for solving such system s of

d ifferential equations. The principal difficulty with regard  to com puter
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tim e associated  with th is method is  the tim e requ ired  to solve the e igen­

value p rob lem . The principal advantages a re  two:

1. It provides a method of reducing the dim ensionality of the p ro b ­

lem  once the eigenvalue problem  is  solved by w riting  the solution in te rm s  of 

the principal eigenvalues o r modes only.

2 . It provides a m eans of uncoupling the system  of equations r e p re ­

senting conservative (undamped) system s because of the orthogonality of the 

modes (called norm al modes because of the orthogonality).

The second advantage, it should be noted, applies to conservative 

system s only. Since non-conservative system s do not in general have n o r ­

m al m odes, the system  of equations cannot be readily  uncoupled. This g rea tly  

ham pers the u tility  of the modal analysis approach to non-conservative s y s ­

tem s .

The Ritz Method

Another form  of modal analysis is the Ritz method (4). This is  a 

varia tional approach in which a functional is  defined which has a minimum 

value when the p ro p er solution is substituted into i t .  It is commonly used 

to model d istribu ted  system s d irec tly , ra th e r than in conjunction with the 

finite elem ent technique.

A fter a functional is defined, a solution form  is assum ed which con­

ta ins certa in  p a ram ete rs  which a re  then optim ized by finding the values of 

the p a ram ete rs  for which the functional has a minimum value. This method

works well once a functional has been defined. H am ilton's Principle provides
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a m eans of easily  defining a functional fo r conservative system s . F o r non­

conservative system s, the task  is  again m ore difficult as a functional is  not 

easily  defined .

It should be pointed out that the Ritz method is a method of app rox i­

m ating ra th e r than finding exactly the solution. This method is subject to 

e r r o r  due to the fact that some of the modes of v ibration a re  neglected, as 

well as the fact that the assum ed solution form  may not be the best to describe  

the modes considered . For engineering applications, however, the in creased  

efficiency of calculation is  usually much m ore valuable than the accuracy  lo s t. 

For conservative system s, th is method has been used with excellent re su lts  

(4).

Applica tion to Non-conservative Systems

Since both the modal analysis technique applied to m atrix  system s 

as well as the Ritz method have the d iscussed  difficulties when applied to 

damped system s, the m atrix  exponential method is  presen tly  the m ost u se ­

ful method fo r sim ulating them . Modal analysis , expecially in the Ritz 

form , needs only a method of efficiently handling damping to greatly  in ­

c re a se  its  u tility . However, since the form  of modal analysis as applied 

to m atrix  system s is  well developed and m ore intuitive than the Ritz method 

as applied to d istribu ted  system s, th is type of system  was used for begin­

ning th is  investigation. The approach is  varia tional in nature  in that a 

functional is  defined such that it is a minimum at the p ro p e r solution. A 

solution form  is  assum ed in which the modes a re  uncoupled and each mode

has a coefficient of damping associated  with i t .  These damping coefficients
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will then be selected  such that the functional is  m inim ized. In th is m anner 

optimum modal damping coefficients a re  chosen such that the system  can 

be modeled in te rm s  of an uncoupled system  of equations which a re  optimized 

using inform ation from  the orig inal uncoupled system  of equations. Although 

beyond the scope of th is th e s is , it is  hoped that the form  of the functional 

defined and investigated can be extended to allow using the Ritz method fo r 

m odeling damped sy stem s.

Because of the com plexity of the functional defined re la tive  to func­

tionals describ ing  conservative system s, num erical methods will be used 

to optimize the p a ram ete rs  such that the function is  m inim ized. Two such 

optim ization methods w ill be used in th is investigation, the Davidon method 

(6) and the Powell method (5). The fo rm er req u ires  the ability  to calculate 

not only the functional but a lso  the gradient of the functional, while the la tte r

req u ire s  calculation of only the functional.



CHAPTER II

DERIVATION OF EQUATIONS

The Functional (7)

The law of conservation of energy will be used to derive the func­

tional that will be u sed . At any instant, an energy balance fo r a dynamic 

system , given an in itial d isplacem ent an d /o r velocity and allowed to v ibrate  

freely , can be w ritten in the form

E0 -- Ep t Ek t Ed ( 2 .M )

where E0 = the in itial energy in the system  at t = 0

Ep = the instantaneous potential energy in the system  

Ejj = the instantaneous kinetic energy in the system  

Ed = the total energy dissipated  by the system  from  the time t = 0 

until the instant in question

R earranging equation (2 .1 -1),

E0 " Ep - E]< - Ed ■ 0 (2 .1-2)

Note that each of the te rm s  above can be w ritten in te rm s of the d isp lace ­

m ents and velocities of the system . Exact expressions for these d isp lace ­

ments m ust satisfy  th is equation. Since the assum ed solutions will be

6
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approxim ate solutions, equation (2 .1-2) will not be exactly tru e , but the 

expression  on the left w ill be equal to some non-zero  value which will 

be called  the energy defic it. Equation (2 .1-2) for th is  case then becom es

E0 - Ep - Ek - Ed = e(t) (2.1-3)

where £ is  c learly  a function of tim e as well as a function of the damping 

coeffic ien ts. An optimum solution would be one in which £ is  as nearly  zero  

as possib le over some in terval of tim e . In o ther w ords, an optimum solution 

would be one which m inim ized the in tegral over some length of tim e of a posi-

9
tive definite function of £ such as  |£ | o r  £- . P relim inary  work indicated that 

the best function to use was £?■. T herefore  the functional becom es

rtf  2I = / EZdt = I ( f v  f 2, . . . f m) (2.1-4)
Jo

and an optimum solution of the problem  is  defined as the solution which causes 

I to be a m inim um .

Assumed Solution Form  

The assum ed solution vecto r X to a system  of differential equations 

has the form

m - / ^ t  
X = H  e (ai sin

i “ l
^ w jV l-Z ^ t^  + bj cos {vifl  l - / j 21^)

(2 . 2 - 1)

w here X is the vecto r of nodal d isplacem ents

^  is  the v ecto r mode shape of the i^1 mode
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is the damping coefficient of the p 1 mode 

Wj[ is  the c irc u la r  frequency of the itE m ode 

t is  tim e

a  ̂ and bj a re  constants evaluated from  in itia l conditions 

m is the num ber of modes

The above equation can be w ritten  as 

m
X =  £  qi , r<^]q (2 .2 -2)

i = l  L J

w here [£ ] is  the modal m atrix  consisting of the mode shapes column listed  

(see "Modal A nalysis" in Appendix) and q is the vecto r of modal d isp lacem ents. 

The elem ents of q a re  then expressed  by the equation

qj = e i i (a  ̂ sin j  t ^  cos ^wi J l - j ^ t  ^ ) (2 .2-3)

where each of die te rm s has the sam e definition as in equation (2 .1 -1 ).

Each of the energy te rm s  in the m inim ization in teg ra l can now be 

expressed  in te rm s  of th is assum ed solution. The instantaneous potential 

energy,

Ep -- -  XT (K) x

the instantaneous kinetic energy,

Ek = \  * T N  x

and the energy d issipated  by the system  from  t=0 to the time t,



■where [k], (m ), and [c] a re  the stiffness, m ass , and damping m atrices  

respectively , and X rep resen ts  the derivative of the vecto r X with respec t 

to tim e, i .e .,

^ t

X ;
iX 2

t

**n
c) t

Substituting X = q and X
T

these expressions can be w ritten

EP = \  aT (<^T 1K1W  a

Ek = ~  £ T M t  [m) [f] a

Ed = f  ( i T [+} T[C] [f>] q) dt

Recalling that

M V )  M  = [ '% , )

and K T ( k) | »  = [ ' % )  ['« /> ]

a re  diagonal m atrices  which, if the normal modes a re  norm alized  p roperly .



can be reduced to
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( r w w  = w

M t [k) W

w here [ij is  the unity m atrix  and[ is  a diagonal m atrix  with the square 

of the m undamped n a tu ra l frequencies lis ted  on the diagonal. Also, defin­

ing

(D) - l > f  (C) {+]

as the transfo rm ed  damping m atrix  which is  not diagonal. (In the actual case 

w here it happens to be diagonal, the te rm s  listed  on the diagonal contain 

the modal damping coefficients and th is  procedure is  unnecessary .)

Substituting these expressions into the energy equations yields

E p=  J  qT M < !  4  £  <Vli>2
i = l

(2 .2 -4)

%  = 5  aT W a  = |  I \ 2
i = l

(2 .2-5)

t
Ed -- f  (qT [D] q) dt (2 .2 -6 )

o

and the energy te rm s  a re  expressed  as functions of the modal d isp lacem ents.

The in itia l conditions can be somewhat a rb itra r ily  chosen. F or 

convenience the in itia l conditions

= ^i r ’ i :  1, 2, . . . m
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w ere chosen. Substituting these into equation (2 .2 -3) to determ ine at and 

bj yields

and equation (2 .2-3) becom es

qi = ~ T =7 2  e sin ^wi | i " ? i  (2 .2 -7)
wi i f l - ^ i2

D ifferentiating to find c[j,

qt = ---- 1̂qL -----e 1 1 ( - f ^  sin J 'w j^ /l- /j2 t ]  +

wi j l - / i 2

Wj/1  - f j2 cos ^WjaJ i - t j )  (2 .2 -8 )

Also from  the in itial conditions, the in itia l energy in the system  can 

be expressed :

1 m ^
Eo = J  E  (2-2-9)

1=1 1

Substituting (2 .2 -7) into (2 .2 -4) and (2 .2 -8) into (2 .2-5) and (2 .2-6) 

enables calculation of

£ (t)  = E0 - Ep - Ek - Ed 

fo r any t . N um erical in tegration is used to evaluate the in tegral E d . The

functional



is  then found also  using a num erical in tegration routine.
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Hie in teg ra l I is thus expressed  as a function of the p a ram ete rs  

fl> f;2’ • * • f m ‘ Note that a ll o ther p a ram e te rs  a re  known a p r io r i . The 

w /s  have previously been determ ined by modal analysis of the undamped 

sy s te m . The tim e in te rva l tf throughout which the function is in tegrated  

should be long enough to contain sufficient inform ation about the sy stem 's  

response and w ill be somewhat a rb itra r ily  picked a fte r examining £(t) fo r a 

few sy s te m s .

The G radients

To use a Davidon search  method to m inim ize I, the gradient of I, 

defined as the vecto r of p a rtia l derivatives of I with re sp ec t to each of the

2
g

I

m ust be determ ined . To do th is  we note that

o

and
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(2 .3-1)

£ (t) has already been calculated to determ ine I . T herefore , each com pon­

ent of the gradient req u ires  only the evaluation of £ £(t) /<) f  ^ .

Since

£ = Eq - Ep - Ek - Ed

 ̂ Z _ _ ^ Ep _ <) Ek _ } E,j 
i d f i  S f i

as  -~E -  =0 i = 1, 2, . . . m
a r  i

Examining each of the te rm s in equation (2 .3-2),

i_ l

 ̂Ep 2
^  = Wi

1
Ek = 2

m
t :  q,
i ;  1

Ek ^Ti
n f .  " ^i ^ ' i

(2 .3-2)

(2 .3 -3 )

(2 .3 -4 )

Note that ;  0 for i /  j, and th e re fo re  only one te rm  of each of the

sum m ations above rem ains a fte r d ifferentiation .
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Also,

Ed - f  (qT (D) q )d t

^E d

* f i '  j o
(qT (D) q) dt (qT [dJ q ) dt

T
T r s ^

<f| t°> T 7T  * T 77 (D) q ) dt (2.3 -5)

where the vectors

 ̂q
I f T

0 
0

H
1

ok /*

and  ̂q
*Ti

d L  >T

To determ ine -ASL equation (2 .2-7) is  differentiated  with resp ec t to f
c>f i

. - A v

W i j i - r 2
s i n ^ w ^ l - f i  t

f i ̂q. < " fi wi t f  _________ _ L _____
= ^ ° i e ( ( wi d - / i2 ) 3 /2  " J T 7 ^ 2 ) s i n ^ W i J T / i 2 t

t w i ^i c o s ^ w . J i - ^ t j (2 .3 -6)

^ Qi .
and to determ ine — ■ --- - equation (2 .2-8) is d ifferentiated  with resp ec t to 7 j.

dTi



Z f i

_ f,Wit 
-- qo.e ( -

sin  ̂wi J

; j2 + ^ i V  '  1 t <1' A 2) t

( l - / i 2) 3/2 1 ^ 7  f i

1 - f *  t} - Wit (1 + / j )  COS^WiJl - f 2 t ]

(2 .3-7)

The components of the gradient can now be determ ined by back- 

substitu tion . These equations a re  listed  in sum m ary form  in Appendix A.

Damping Coefficients G reater than One

When the form  of the modal d isplacem ents w ere assum ed (equation

2 .2 -3 ), it was assum ed that the absolute value of f [  would always be le ss

than one. This w ill alm ost always be the c ase . If is  g re a te r  than one, 

tilthe i in mode is  overdam ped ( i . e . ,  has g re a te r  damping than c ritic a l dam p­

ing), which should seldom  be the case for the c la ss  of problem s which are  

being considered . Since a search  routine will be used to determ ine the 

optimum damping coefficients, however, it is possible that one o r m ore of 

these / j  may at some tim e during the optim ization p ro cess  be g re a te r  than 

on e . This situation is handled by substituting hyperbolic functions fo r the 

trigonom etric  functions in equations (2 .2 -1) and (2 .2 -3 ). For any mode fo r 

which is g re a te r  than one ( i . e . ,  , j 1- f ^  is a complex num ber), equation



(2 .2 -3) becom es

qt = e " ^ iWit (a{ sinh J f t2 - l  t] + b{ cosh }wt t ] )

(2 .4 -1 )

The o ther equations a re  then derived in a m anner exactly analogous 

to the case where the trigonom etric  functions a re  used . The resu lting  equa- 

ti ons a re  included in the sum m ary in Appendix A . When the q̂  a re  calculated , 

the com puter f ir s t  exam ines the value of and goes to the p ro p er branch 

of the p rogram  to calculate q^, thereby avoiding complex a r ith m e tic .

Excitation of Modes 

As was pointed out during the derivation of the functional, the in itia l 

d isplacem ent given each of the modes was chosen as zero  while the initial 

velocities w ere each given a value q ^ . The re la tive values of these in itia l 

"modal ve locities"  is  a m easure  of the re la tive levels at which we excite 

each of the m odes. The orig inal feeling of the author was that it would be 

p re fe rrab le  to excite each of the modes equally and a ll of the in itial modal 

ve locities w ere chosen such that

qQ. = 1 . 0  i = 1, 2, . . . m

L ate r in the development it was felt that it would be p re fe rrab le  to 

excite the modes in the sam e way that a step im pulse force applied to each 

m ass (node of the system)would excite them . This is  equivalent to giving 

each m ass an equivalent in itia l velocity . T herefore ,
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Xn = 1.0 i = 1, 2, . . . n
ui

and

9o = W T (M) i

The effect of this change in the method of excitation and the motivation 

fo r it w ill be fu rth e r d iscussed  in C hapter V .



CHAPTER III

NUMERICAL METHODS AND COMPUTER 

PROGRAM

The various FORTRAN IV subroutines in the p rogram  used in th is  

study and the functions which they perform ed w ere as follows:

OPDAMP. - -This is the main program  which reads in the data, 

ca lls  the o ther subroutines, and does the final system  sim ulation using 

the optimum damping coeffic ien ts. This subroutine a lso  calcu lates the tim e 

step and the to tal in terval of tim e used fo r evaluation of the in teg ra ls  involved. 

The tim e step was chosen ra th e r a rb itra r ily  as 1/20 of the natu ra l period of 

the h ighest frequency m ode. In a final development of a system  such as  th is , 

a num erical analysis in o rd e r to determ ine the size of the tim e step n e c e s ­

sary  fo r the accuracy  requ ired  would provide fo r maximum program  efficiency. 

This was not justified  in this p re lim inary  derivation and investigation of the 

functional, however, and thus the a rb itra ry  nature of the tim e s tep . S im ilarly , 

the to ta l tim e in terval was se t as th ree  natural periods of the lowest frequency 

mode, with the stipulation that a maximum of two hundred tim e steps be used . 

This lim it was se t to fac ilita te  program m ing and dim ensioning of a rra y s  used

18

in the p ro g ra m .
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MODES*.--A subroutine used to solve the eigenvalue p ro b lem . The 

eigenvalues o r n a tu ra l frequencies of the system  a re  calculated along with the 

eigenvectors o r mode shapes associated  with each m ode. The mode shapes 

a re  norm alized such that when they a re  arranged  into the modal m atrix , , 

that [m ] (<£) = [i). This subroutine provides the modal m atrix  .

DELTA. --A subroutine which uses the modal m atrix  as well as the 

damping m atrix  to calculate the transform ed  damping m atrix  jjDj .

FIND**. --A subroutine which uses the Powell m inim ization technique 

to m inim ize a function of sev era l variab les by m eans of conjugate d irec tio n s . 

This method is outlined in Reference 5.

SEARCH**.--A  subroutine which uses the Davidon m inim ization 

routine to m inim ize a function of sev e ra l v a riab le s . This method is  outlined 

in Reference 6.

FECA L. --A subroutine which calcu lates the value of the functional 

fo r a given set of coordinates (modal damping coefficien ts).

G E E . - -A subroutine which calcu lates the gradient of the functional 

fo r a given set of coordinates .

EXACT. --A subroutine which sim ulates the response of a given s y s ­

tem  using the m atrix  exponential m ethod. The exponential m atrix  itse lf was 

form ed in the following subroutine w hereas this subroutine does the actual



sim ula tion .
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MTXEXP**. --A  subroutine which form s the exponential m a trix .

This subroutine, as well as  a detailed descrip tion  of the m atrix  exponential 

method, is  found in Reference 3.

SINT. - -A subroutine which accom plishes the num erical integration, 

using a modified form  of Sim pson's ru le . A parabolic  fit to the f ir s t  th ree 

values of the function in tegrated  allows "starting" of Sim pson's rule in such 

a way that the subroutine does not requ ire  an even num ber of in te rva ls  in 

o rd e r to perform  the in tegration .

Other subroutines included various subroutines to perfo rm  the 

m atrix  operations requ ired  to do the ca lcu la tions. Part of these were p r o ­

vided on-line by the com puter while some w ere provided by th is p ro g ram . 

Because of th e ir stra igh tfo rw ardness and generality , it is not felt that they 

need be d iscussed  here  .

The to ta l program  was developed piecem eal, each subroutine being 

checked individually w here possib le . The function and gradient subroutines 

w ere used to exam ine the "su rface" of the functional for some tr ia l  c a se s .

In its com pleted form , the total program  solves the undamped eigenvalue 

p roblem , determ ines the optimum damping coefficients, and sim ulates the 

system  using the resu lting  uncoupled equations. It a lso  sim ulates the system  

using the m atrix  exponential m ethod, and the two solutions a re  com pared in

the form  of a plotted output.



A com plete program  lis ting  w ill be placed on file with the office
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copy of th is  thesis  at the D epartm ent of M echanical Engineering Science, 

Brigham Young U niversity .

The subroutines m arked (*) w ere obtained from  D r. H . N. C h r is ­

tian sen . The subroutines m arked (**) w ere obtained from  D r. J . C„ F ree .



CHAPTER IV

EXAMINATION OF THE FUNCTIONAL SURFACE

Examination of the profile  of the functional not only allows v e rif ic a ­

tion that the functional does in fact have a minimum in the co rre c t p lace, but 

a lso  yields insight into the convergence of the m inim ization routines used to 

find the m inim um .

One Dimension

The sim plest form  of the functional is  the one-dim ensional form , 

i . e . , the form  which is  a function of only one variab le  o r damping coefficient 

A one dim ensional functional rep resen ts  a single second o rd e r d ifferential 

equation .
tf

As mentioned previously, the form  of the functional I = f  £^dt
o

r h
was chosen ra th e r than the form  1 = 1  |£ | dt because of p re lim inary  exam -

o

ination of th e ir profiles . F igure 1 is an example of the la tte r  form  while Fig 

u re  2 rep resen ts  the fo rm e r . Both a re  functionals rep resen ting  the sam e

k
differen tia l equation. As can be seen, the form  I j£ | dt has a discontinu-

' Q

ous derivative at the m inim um . This would c rea te  a difficulty fo r  the op tim ­

ization rou tines.
22



Figure l.--Plot of integral of absolute value of energy deficit form of functional
to
CO



Figure 2 . --P lot of one dim ensional functional--C ase 1
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F igures 3 and 4 a re  plots of the in tegral of the energy deficit 

squared functionals fo r two other d ifferen tia l equations. The equation r e p re ­

sented in F igure 3 d iffers by that rep resen ted  in F igure 2 in that it has a 

higher frequency, w hereas the equation of F igure 4 has a low er value of 

damping tha that of F igure 2 . Since F igures 2, 3, and 4 rep resen t d iffe r­

ent c ase s  of the chosen form  of the functional, they a re  listed  as  Case 1,

Case 2, and Case 3, respec tive ly .

Two Dimensions

The two dim ensional functional allows us to observe the in teraction  

of two p a ram e te rs  (or two modes) while allowing us to  v isualize the in te r ­

action as a plot in th ree  dim ensional space . The two dim ensional function 

req u ire s  th ree  space coordinates to rep resen t it, the functional itse lf r e ­

quiring the th ird . R epresented in th is way, the functional is  a su rface , its  

value defined by its  height above a "zero" p lane. Two dim ensional functionals 

a re  rep resen ted  in F igures 5 and 6 by a g rid  of num bers, each num ber r e p r e ­

senting the value of the functional a t that coordinate location. F igure 5 plots 

a functional rep resen ting  a system  of two uncoupled d ifferential equations, 

w hereas F igure 6 rep resen ts  a system  of two coupled equations ( i . e . ,  [d]

not d iagonal).



Figure 3 . --P lo t of one dim ensional functional--C ase 2
bOON
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Figure 4 .--Plot of one dimensional functional--Case 3
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CHAPTER V

DISCUSSION OF RESULTS

The re su lts  of th is  work can be divided into two p a rts :

1. The nature of the surface described  by the functional exam ined,

2. The com parison of the solution resu lting  from  the uncoupled equa­

tions form ed with the m atrix  exponential solution.

The Nature of the Functional Surface

The nature  of the one-dim ensional functional was very  encouraging.

A w ell defined minimum ex ists  at the expected location, and the function is  

well behaved. The gradient is  much s teep e r as the c o rre c t value of dam p­

ing is  approached from  a value too sm all than it is  when approaching from  a 

value too la rg e . This can be observed from  F igures 2, 3, and 4 .

The in teraction  between modes that occurs in the m ultiple dim ension 

case , however, c reated  some difficulty . The f i r s t  t r ia ls  in exam ination of 

the m ultiple dim ensioned functional w ere conducted with system s of uncoupled 

equations, as a check on the accuracy  of the m ethod, since the p ro p e r modal 

damping coefficients w ere known.

Examination of the one dim ensional function appeared to indicate that 

it would be wise to underestim ate  the damping coefficients and then let one of

30
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the optim ization routines p roceed  to the minim um  of the functional. When 

th is was tr ied , it was found that both of the optim ization routines p ro g ressed  

v ery  slow ly. One tria l,th ree-d im ensional case was c a rr ie d  to com pletion 

using the Davidon method in approxim ately two hours of com puter tim e on 

the L ibrascope model L -3055. In some other c ase s , p ro g ress  appeared 

even w o rse . It was evident that the surface of the functional was very  d iffi­

cult fo r the optim ization routines to negotiate. Of the two optim ization 

rou tines, Powell's method made b e tte r  p ro g re s s .

Plotting of two dim ensional functionals (F igures 5 and 6) revealed 

the reason  for the d ifficulty . A very narrow , curved valley appears in the 

surface as shown in the p lo ts . The gradient of the functional in a d irection  

tangent to the valley is much le ss  than the grad ien t encountered at the sides 

of the va lley . If the search  routines happen to en ter the valley at a location 

fa r from  the minimum , negotiation of the valley toward the minimum b e ­

com es very  difficult.

Physical Explanation of the Valley 

The appearance of the valley encountered in the functional surface 

can be accounted fo r on a physical b a s is . The energy deficit 2 from  which the 

functional was form ed req u ires  an energy balance on the system  in o rd e r for 

it to be z e ro . If one mode has too large a damping coefficient, the energy in 

that mode will appear to damp out too quickly. This can be com pensated for 

by a damping coefficient in another mode which is  too sm all, as the energy

in the la tte r  mode appears to be damped out too slow ly. This can even be
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c a rr ie d  to the situation w here a negatively damped mode is  "introducing 

energy into the system " to com pensate fo r o ther modes that have too large  

a damping coefficient. In one tr ia l  case , it  actually happened that the search  

routine was making very  slow p ro g ress  on a functional at a location where 

one mode erroneously  appeared negatively damped w hereas the o ther two 

modes w ere given high damping coefficients . The valley therefo re  r e p re ­

sents a locus of damping coefficients that will d issipate  the total system  

energy a t approxim ately the sam e ra te  as  the c o rre c t v a lu e s .

Choosing Initial Values

Three approaches to overcom e the problem  presen ted  by the valley 

in the functional surface a re :

1. The choice of a new form  of functional which does not have a

valley .

2 . The design of a m inim ization method that w ill use known facts 

about the valley to m ore efficiently find its  minimum value.

3 . The choice of the initial values given the search  subroutine at 

values n ear enough to the p ro p er values that it does not have to negotiate 

the valley for long d istances .

Of these th ree , the th ird  appears to be the m ost feasib le .

Com parison of F igures 5 and 6 indicates that the minimum was 

shifted very  little  by the addition of the off-diagonal te rm s in the jpj m a trix . 

Although the shift w ill not always be th is sm all, a logical place to begin the 

search  is at the location suggested by the diagonal te rm s  in the Ĵd ] m a trix .



This was found to be fa irly  successful in the cases w here it was used .

Change in Excitation of Modes 

As mentioned in C hapter II, each of the modes were originally 

excited equally, i . e . ,  each in itia l modal velocity was equal. The p resence 

of the valley in the functional surface provides the possib ility  that the search  

routine may find only a re la tive minimum som ew here in the valley, being 

unable to negotiate the valley to the absolute m inim um . In th is  case , i t  

would be b e tte r to have the sm alles t e r r o r  in the damping coefficient which 

contributes m ost to the final solution. Giving each mode the sam e am ount 

of excitation when calculating the functional was unduly biasing the final 

re su lt, as a ll modes contribute d ifferently  to i t .  For th is reason , each 

m ass (or node) should be given an equal in itia l velocity and the resu lting  

in itia l modal velocities used for energy determ ination . The resu lt of th is 

was that the functional becam e less  sensitive to unexcited m odes. This c r e ­

ated a difficulty in one case where Powell's m inim ization method could not 

find a minimum in one of the coordinate d irec tio n s . The functional happened 

to be perfectly  level in that direction and the search  routine was unable to 

find a change in the function over the in terval it attem pted to exam ine. David- 

on's method does not have that difficulty, and was therefo re  used to do the 

optim ization in th is c a se . W hether o r not the change in the method of ex c ita ­

tion caused much im provem ent could not be determ ined .



Com parison with M atrix Exponential
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The solution of the system  of uncoupled equations resu lting  from  

the determ ination of "optim um " modal damping coefficients was com pared 

with the m atrix  exponential solution fo r threes th ree-d im ensional cases 

graphically  in F igures 7 through 15.

In Case 1 (F igures 7-9) the damping coefficient fo r at leas t one of 

the modes which contributes quite significantly to the response of the system  

appears to be too  la rg e . In each of the d isp lacem ents, the response is  m ore 

highly damped than the m atrix  exponential so lu tions. The search  routine 

evidently concluded in the valley at a location w here a dominant mode had a 

high damping coefficient.

Case 2 rep resen ts  a negatively damped system . Again the trend  

is  that each of the d isplacem ents deviates from  the m atrix  exponential so lu ­

tion in the same m anner. The co rre la tion  in th is case is  quite good.

In Case 3, the solution follows very  closely  the m atrix  exponential 

solution, providing highly acceptable re s u lts . In each of these case s , the 

|p j  m atrix  contains fa irly  significant off-diagonal te rm s . Table 1 lis ts  the 

dam ping coefficients at the beginning of the search  (estim ated using diagonal 

te rm s  only) and a t the conclusion of the sea rc h . The fact that they changed 

as little  as they did indicates that the in itia l values a re  well chosen. W hether 

o r not the im provem ent in the values justifies the search  may be questioned 

fo r individual c a s e s .

The to ta l e r r o r  rep resen ted  in the th ree  cases illu stra ted  is  a re su lt
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TABLE 1

CHANGE IN DAMPING COEFFICIENTS DURING 
OPTIMIZATION SEARCH

Case Mode 

1 j

Modal Dampin 
Beginning

0.05664

g Coefficient
Final

0. 05672
r >L, 0.6666 0.6666
3 0.7356 0.3909

2 L -0.08440 -0.08441
0.1451 0.2779

3 0.1241 0.1259

3 1 0.04629 0.04598
;> 0.5637 0.5637
3 0.5918 0.5805



of m ore than just the selection of the damping coeffic ien ts . The modal
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analysis routine re lie s  upon a power method convergent routine, the con­

vergence of which is  based upon the frequency o r eigenvalue, at which tim e 

it is  assum ed that the eigenvector has a lso  converged. The eigenvector is 

then used, because of its  orthogonality to o ther e igenvectors, to reduce the 

system  so it w ill converge to the next eigenvalue and e igenvecto r. The final 

s im ila tion  is  a re su lt of e r ro r s  propagated throughout th is  and the whole 

p rocedure, as well as e r ro r s  introduced by choice of the damping coeffi­

c ien ts . The m atrix  exponential solution is a lso  dependent upon a co n v er­

gent m atrix  s e r ie s  evaluation to form  die exponential m a trix . The total 

deviation that we a re  exam ining is a re su lt of a ll of these  effects com bined.



CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

It becam e obvious a lm ost from  the onset that the developed method 

would not compete with the m atrix  exponential in com putational efficiency.

Since it cannot rep resen t the original system  exactly , it cannot hope to com ­

pete with the m atrix  exponential in accu racy . It is  recom m ended, the re fo re , 

that th is method not be used in place of the m atrix  exponential m ethod. If a 

system  is  to be sim ulated a num ber of tim es and with a varie ty  of forcing 

functions, it may be desirab le  to reduce the equations to include only the 

p rincipal m odes. This can be accom plished by the conventional modal an a l­

ysis  technique, however, and the m atrix  exponential can be used to solve the 

resu lting  coupled equations. W hether or not the modal analysis is justified 

depends upon the num ber of tim es the system  will be sim ulated and the r e la ­

tive cost of solving the eigenvalue problem  and evaluating the exponential 

m a trix . In any case , uncoupling the damping in a set of m atrix  equations is 

not ju s tif ie d .

The method investigated is  a workable m ethod. The functional dev el­

oped does have a minimum when the c o rre c t damping coefficients a re  se lec ted . 

If th is method can be extended, applying the sam e basic  approach to finding

46
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modal damping coefficients to assoc ia te  with the Ritz form  of modal analysis , 

applying d irectly  to a d istributed  system , it may provide an efficient w ork­

able method of sim ulating d istributed  dynamic system s .
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r =  C e i t

£ ~ Eo Ep - EK-Ed

G radient of Functional
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MODAL ANALYSIS



Modal Analysis

Modal Analys is  i s  a useful  tool  in reducing the d im ensionali ty  of  a 

problem, and has been well explained in textbooks .  Included here i s  an 

overview of the procedure.

The general form of the dynamics equation is

[MK +-[C]y + [ / ( } / =  £

where x i s  a vector  represent ing the motion of  the n degrees of  freedom 

employed in the dynamic model. The nxn matrices M, C, and K are derived  

from the physics  of  the problem and the vector  f_ represents  the n forces  

applied  at  the n degrees of  freedom.

For undamped, free  v ib r a t io n s ,  equation ( I )  reduces to

[ M ]  x  +  [ K ]  y  -  o  (2)

which for harmonic motion of  c i r c u l a r  frequency w becomes

- ^ Z| K U  +  0
or (3)

( W - 4 m ] ) /  -  o
In general there  are n d i s c r e t e  values of  w, or e ig en v a lu es ,  which wi l l  

permit a n o n - tr iv ia l  s o lu t io n  of  (3 ) .  These e igenvalues  represent the  

natural frequencie s  of  the system. Associated  with each of these  natural 

frequencie s  i s  an e ig en v ec to r  or mode shape X -  . Finding these

natural frequencie s  and t h e i r  a s so c ia te d  mode shapes i s  an eigenvalue  

problem and is  d iscussed  in te s tb ooks .

The mode shapes are orthogonal or normal and are th ere fo re  c a l l e d  

normal modes. If th ese  n mode shapes are column l i s t e d  in an nxn matrix
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I P T [ M ] [ « -  M

is  a diagonal matrix c a l l e d  the transformed mass matrix and

t t r o a t t l  -  N W
where O ' t d i j  is  a l s o  a diagonal matrix c o n s i s t in g  of  the squares of  the  

n natural frequ en c ie s .  Further,  i f  the normal modes (fan are properly 

normalized so th at  each of the diagonal components of  the transformed 

mass matrix is  equal t o  1.0

[ '< !  - [  i  ]

then

p f > ] r [ M ]  1 P 1  --  c n  <4>

and

[<t>r [kJ[4>1 = M  [I]-- M
where [~ X H i s  the unity matrix.

Since the normal modes provide a b as is  for  the displacement vector  

x, we can w rite  the displacement vector  as a l inear  combination of  the  

normal modes.

f a  + f r ( t )  $ » + . • •

I j m w j

p t)  
fr it) = f f l  $  ®

( 6 :

S u b s t i t u t i n g  ( 6 )  i n t o  I  y i e l d s
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Post mult ip ly ing  by H <|) H

[«T M  [<M I + [«T M  M  i  + [flTM M ? -- [# r£
S u b s t i tu t in g  (4) and (5)

k « i

For convenience l e t  us def ine

[ a ] ' - W T C t i W
and the equation (7) becomes

i  + [A ] |  + K 7  £ -  ti>]Tf  «»
At t h i s  point some d iscu ss ion  of  the matrix HA] i s  in order.  EaU in 

general i s  not a diagonal matrix.  If i t  happens to  be d iagonal,  or i f  the  

diagonal elements are much larger than the o f f  diagonal elements so th at  

i t  can be assumed t o  be diagonal with reasonable accuracy,  then the system 

represented by (9) c o n s i s t s  of  n uncoupled s c a la r  equat ions ,  each of which 

can be so lved independently.  Herein l i e s  the u t i l i t y  as well as the d i f f i ­

cu l ty  of the modal a n a ly s i s  technique.  For undamped, or very l i g h t l y  

damped systems,  i t  provides a method of uncoupling the dynamic equat ions .

By examining C $  D f_ one can determine the r e l a t i v e  p a r t i c ip a t io n  of  each

of  the modes in the t o ta l  s o l u t i o n .  By e l im in a t ion  of  modes with r e l a t i v e l y  

low p a r t i c i p a t io n ,  the d im ensionali ty  of  the problem can be reduced such 

th at  only the dominant modes are re ta ined .  Modal a n a ly s i s  th ere fo re  has the
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a b i l i t y  to  reduce the d im ensionali ty  of  an n degree of  freedom system to  

m, where m i s  the number of  dominant modes. The d i f f i c u l t y  involved,  how­

ever ,  is  th a t  of  determining a method of d iagon a l iz in g  the CaH matrix or,  

in physical  terms, determining the damping a s so c ia ted  with each mode.

Reduction in Dimensionality

While performing the a n a ly s i s  j u s t  descr ibed,  the d im ensionali ty  is  

reduced i f  the a n a ly s i s  i s  begun using only the dominant modes. In t h i s  

case the matrix E H  which c o n s i s t s  of  a column l i s t i n g  of  the m dominant 

normal modes is  an nxm matrix,  where n is  the number of  degrees of  freedom 

of the system and m is  the number of  dominant modes used, q is  now a vector  

of m components.

Therefore

i s an m x m matrix,

is an m x m matrix

is  an m x m matrix.

components.

The r e s u l t i n g  equation (9)

J+ 4 [Vjg -- [«Tf

i o t l m i  m  - L H
[ « T [ C ] [ «  = [ A 1

end I K ]  -- fR ]

r r
"t r e s u l t s  in a vector  of  m

is  th ere fo re  now a system of m equations  in m unknowns, rather than n 

equations  in n unknowns. The con tr ib u t ion s  of  the lower p a r t ic i p a t in g  

modes have been neg lected .
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