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CHAPTER I

INTRODUCTION

Although analytical techniques are generally available for the simu-
lation of dynamic systems, often these techniques require a great deal of com-
puter time and storage. This difficulty was vividly pointed out by a previous
thesis undertaken in this Department by R. L. Webster (1). Mr. Webster
undertook the determination of orthotropic material properties using dynamic
response test data from plates. A major difficulty which was encountered
was the enormous amount of computer time required for the simulation.

This thesis is an investigation of a method which when fully developed, may

provide the ability to simulate such systems much more efficiently.

The Finite Element Method

Perhaps the most popular method for simulation of distributed dyna-
mic systems is the finite element technique. In this method, the distributed
mass, elasticity, and damping properties are lumped, forming a system of
masses, springs, and dashpots. The resulting equations which model the
system are often a large system of matrix differential equations which de-
scribe the motion of the lumped parameters. It is an approximate model in
the sense that a distributed system cannot be exactly represented by a lumped

1



system. The dimensionality or the number of degrees of freedom repre-
sented by this system of equations depends upon the number of degrees of
freedom necessary to model the system within the desired accuracy and is

a function of the ability of the individual who performs the modeling. There
are techniques of reducing the dimensionality of the system by reducing the
degrees of freedom of the system to include only "master" displacements (2).
These techniques are also somewhat dependent upon one's modeling ability,
and are also limited in their application. It is not the purpose of this thesis
to examine these techniques in detail, but one should realize that they do

exist.

Matrix Exponential

One method of solving the aforementioned system of differential
equations is the matrix exponential method (3). A great advantage associated
with this method is the fact that for linear systems, the exponential matrix
need only be computed once. Computing the exponential matrix may use appre-
ciable computer time, however, if the dimensionality is large. This method
can be readily applied to non-linear systems as well, but since this requires
calculation of the exponential matrix at each time step, computer time is

very significantly increased.

Modal Analysis

Modal analysis is also a useful tool for solving such systems of

differential equations. The principal difficulty with regard to computer



time associated with this method is the time required to solve the eigen-
value problem. The principal advantages are two:

1. It provides a method of reducing the dimensionality of the prob-
lem once the eigenvalue problem is solved by writing the solution in terms of
the principal eigenvalues or modes only.

2, It provides a means of uncoupling the system of equations repre-
senting conservative (undamped) systems because of the orthogonality of the
modes (called normal modes because of the orthogonality).

The second advantage, it should be noted, applies to conservative
systems only. Since non-conservative systems do not in general have nor-
mal modes, the system of equations cannot be readily uncoupled. This greatly
hampers the utility of the modal analysis approach to non-conservative sys-

tems.

The Ritz Method

Another form of modal analysis is the Ritz method (4). This is a
variational approach in which a functional is defined which has a minimum
value when the proper solution is substituted into it. It is commonly used
to model distributed systems directly, rather than in conjunction with the
finite element technique.

After a functional is defined, a solution form is assumed which con-
tains certain parameters which are then optimized by finding the values of
the parameters for which the functional has a minimum value. This method

works well once a functional has been defined. Hamilton's Principle provides
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a means of easily defining a functional for conservative systems. For non-
conservative systems, the task is again more difficult as a functional is not
easily defined.

It should be pointed out that the Ritz method is a method of approxi-
mating rather than finding exactly the solution. This method is subject to
error due to the fact that some of the modes of vibration are neglected, as
well as the fact that the assumed solution form may not be the best to describe
the modes considered. For engineering applications, however, the increased
efficiency of calculation is usually much more valuable than the accuracy lost.
For conservative systems, this method has been used with excellent results

4).

Application to Non-conservative Systems

Since both the modal analysis technique applied to matrix systems
as well as the Ritz method have the discussed difficulties when applied to
damped systems, the matrix exponential method is presently the most use -
ful method for simulating them. Modal analysis, expecially in the Ritz
form, needs only a method of efficiently handling damping to greatly in-
crease its utility. However, since the form of modal analysis as applied
to matrix systems is well developed and more intuitive than the Ritz method
as applied to distributed systems, this type of system was used for begin-
ning this investigation. The approach is variational in nature in that a
functional is defined such that it is a minimum at the proper solution. A
solution form is assumed in which the modes are uncoupled and each mode

has a coefficient of damping associated with it. These damping coefficients
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will then be selected such that the functional is minimized. In this manner
optimum modal damping coefficients are chosen such that the system can
be modeled in terms of an uncoupled system of equations which are optimized
using information from the original uncoupled system of equations. Although
beyond the scope of this thesis, it is hoped that the form of the functional
defined and investigated can be extended to allow using the Ritz method for
modeling damped systems.

Because of the complexity of the functional defined relative to func-
tionals describing conservative systems, numerical methods will be used
to optimize the parameters such that the function is minimized. Two such
optimization methods will be used in this investigation, the Davidon method
(6) and the Powell method (5). The former requires the ability to calculate
not only the functional but also the gradient of the functional, while the latter

requires calculation of only the functional.



CHAPTER II

DERIVATION OF EQUATIONS

The Functional (7)

The law of conservation of energy will be used to derive the func-
tional that will be used. At any instant, an energy balance for a dynamic
system, given an initial displacement and/or velocity and allowed to vibrate

freely, can be written in the form

E, = By + By + By (2.1-1)

P

where Eg,

the initial energy in the system att = 0

Ep = the instantaneous potential energy in the system
Ey = the instantaneous kinetic energy in the system
Eq4 = the total energy dissipated by the system from the time t = 0

until the instant in question

Rearranging equation (2.1-1),

Eo'Ep_Ek-Ed-O (2.1-2)

Note that each of the terms above can be written in terms of the displace-
ments and velocities of the system. Exact expressions for these displace-
ments must satisfy this equation. Since the assumed solutions will be

6



approximate solutions, equation (2.1-2) will not be exactly true, but the
expression on the left will be equal to some non-zero value £, which will

be called the energy deficit. Equation (2.1-2) for this case then becomes
Eq - Ep - Bg - Eq = €() (2.1-3)

where € is clearly a function of time as well as a function of the damping
coefficients. An optimum solution would be one in which € is as nearly zero
as possible over some interval of time., In other words, an optimum solution
would be one which minimized the integral over some length of time of a posi-
tive definite function of € such as |&]or 2 Preliminary work indicated that
the best function to use was €2, Therefore the functional becomes

t

e
L= ] €%t = 1(f), Ty v v fy) (2.1-4)

o]

and an optimum solution of the problem is defined as the solution which causes

I to be a minimum.

Assumed Solution Form

The assumed solution vector X to a system of differential equations

has the form

m -fiw.t
ivi [ 2
X = $ e (aj sin {wi-\ll-)"izt} + by cos%wi l-fi t%)
i=1
(2.2-1)
where X is the vector of nodal displacements

h

éi is the vector mode shape of the it mode



f; is the damping coefficient of the ith mode

h mode

wj is the circular frequency of the it
tis time

aj and b; are constants evaluated from initial conditions

m is the number of modes

The above equation can be written as

m
- T ba = [¥q (2.2-2)
i-1

| <

where [¢]is the modal matrix consisting of the mode shapes column listed
(see "Modal Analysis" in Appendix) and q is the vector of modal displacements.

The elements of q are then expressed by the equation

-f.w.t —_—
q =e b (aj sin {wijl-fizt } + b, cos {wiﬂll-]’izt%) (2.2-3)
where each of the terms has the same definition as in equation (2.1-1).
Each of the energy terms in the minimization integral can now be
expressed in terms of this assumed solution. The instantaneous potential

energy,

1 T
Ep ) X [K] X
the instantaneous kinetic energy,
1 .T -
== M] X
Bg =5 X M]X

and the energy dissipated by the system from t=0 to the time t,



Ed=f(&T (€] X)ar
0

where [K], [M], and [C] are the stiffness, mass, and damping matrices
respectively, and )i represents the derivative of the vector X with respect
to time, i.e.,

5%
3t

3X9
3t

3X,
It

T
Substituting X = (qb] gand X = gT [d)]T, these expressions can be written

By =2 a' (¢)7IK|[¢] @

s 4 6T M ()a
Eq = /} @7 (¢) T [#] @ at

Recalling that

and A 1) [m,) [ws)

are diagonal matrices which, if the normal modes are normalized properly,
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can be reduced to

(1 ) (4] = 1]
T 4] [ we]

where [I} is the unity matrix and[“"{} is a diagonal matrix with the square
of the m undamped natural frequencies listed on the diagonal. Also, defin-

ing

as the transformed damping matrix which is not diagonal. (In the actual case
where it happens to be diagonal, the terms listed on the diagonal contain
the modal damping coefficients and this procedure is unnecessary.)

Substituting these expressions into the energy equations yields

1 T[> 1 3 2
Ep: 5 [@{]q -3 ?:1 (w;q) (2.2-4)
1=
1 T m 2
Ep=35 4 [I] q = > L4 (2.2-5)
iz1
b
By [ @ (D] @ a (2.2-6)
o]

and the energy terms are expressed as functions of the modal displacements.
The initial conditions can be somewhat arbitrarily chosen. For

convenience the initial conditions
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were chosen. Substituting these into equation (2.2-3) to determine aj and

bi yields
b, =0 a; = ____c_l..!‘_:.___
wj 41~ .7712
and equation (2.2-3) becomes
Goi gt _—
q e e | sin Sw; [1-7; t2 (2.2-7)
: wiJl-fi.?. % 1‘[ 1S
Differentiating to find q;,
. P - Towt 55
q; = qoi - € 1 ('flwl sin gwl/\/l'fiz t? +

wiJl-T’iz cos gwiJl-T"iz t7) (2.2-8)

Also from the initial conditions, the initial energy in the system can
be expressed:

m )
Yo d (2.2-9)
i=1 !

D f =

EO:

Substituting (2.2-7) into (2.2-4) and (2.2-8) into (2.2-5) and (2.2-6)

enables calculation of
E(t):EO-Ep-Ek-Ed

for any t. Numerical integration is used to evaluate the integral Eq. The

functional
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is then found also using a numerical integration routine.
The intégral I is thus expressed as a function of the parameters
1, for o - Ym- Note that all other parameters are known a priori. The
w;'s have previously been determined by modal analysis of the undamped
system. The time interval t; throughout which the function is integrated
should be long enough to contain sufficient information about the system's

response and vill be somewhat arbitrarily picked after examining £(t) for a

few systems.

The Gradients

To use a Davidon search method to minimize I, the gradient of I,

defined as the vector of partial derivatives of I with respect to each of the [,

[sl

3 3,,701

oI

S 2

R!

Tom

must be determined. To do this we note that
~&
I = / ¢ 2t
Z 0

and N t t
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(‘t dE(r)
= 2¢(t) Y7 dt (2.3-1)
JO

€ (t) has already been calculated to determine I. Therefore, each compon-

ent of the gradient requires only the evaluation of o €(t) /o f ;.
Since

EZEO'EP‘Ek‘Ed

se 3By 0By JEq

(2.3-2)

as 9 Eo
oY1

Examining each of the terms in equation (2.3-2),

L 2

Ep =5 (wi q; )
i=1

BEP

ST = Wi G N (2.3-3)

7 %I (2.3-4)

.

éqi
37

Note that

=0 fori £ j, and therefore only one term of each of the

summations above remains after differentiation.
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Also,
T
Eq- [ @ (D) ®a
"0
il R fl(qT[D]q)dt ft @ Dara
S T 37 . Y+ M4
: 34 un
. T = o9 ; )
_fo(q bl 57 e D (2.3-5)
where the vectors
S
0
T .
Nq !éqi and 3q - ° g )T
37 AT 37i 3y
0
S
s

3 % equation (2.2-7) is differentiated with respect to f’i:

To determine -
o1

e—fiwit | 2
.oz —————— i 11 -f' t
i qoi wiJl-fiZ SmEW1J ' ?

i

ééli . e'fiwit [( flz . t ) 5
i - qoi Wi(l_fi )3/2 ’1_f12 sin %Wi )l'fi t
tw; f B
-t L cosgwi\/l- i (2.3-6)
3G . o
equation (2.2-8) is differentiated with respect to J;

and to determine
aYf;
1
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- 'f;wit

q; = Goi ¢ ( "fiwi sin gwiJl-fiz t% + wiJl-fiz

Wi Jl' 12

27 i (1-r.2) 3/2 72 7;

sin%wiJl_-f_Ft} -wit (1 +f)) cos%wiJl -sz t}!
(2.3-7)

'The components of the gradient can now be determined by back-

substitution. These equations are listed in summary form in Appendix A.

Damping Coefficients Greater than One

When the form of the modal displacements were assumed (equation
2.2-3), it was assumed that the absolute value of )01 would always be less
than one. This will almost always be the case. If fj is greater than one,
the ith mode is overdamped (i.e., has greater damping than critical damp-
ing), which should seldom be the case for the class of problems which are
being considered. Since a search routine will be used to determine the
optimum damping coefficients, however, it is possible that one or more of
these fj may at some time during the optimization process be greater than
one. This situation is handled by substituting hyperbolic functions for the
trigonometric functions in equations (2.2-1) and (2.2-3). For any mode for

which _J"i is greater than one (i.e., Jl‘- 7012 is a complex number), equation
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(2.2-3) becomes

q; = e_fiwit (aj; sinh 5 wiinz-l t% + b; cosh gwh/?lfjl_ t})

(2.4-1)
The other equations are then derived in a manner exactly analogous
to the case where the trigonometric functions are used. The resulting equa-
ti ons are included in the summary in Appendix A, When the q; are calculated,
the computer first examines the value of fi and goes to the proper branch

of the program to calculate q;, thereby avoiding complex arithmetic.

Excitation of Modes

As was pointed out during the derivation of the functional, the initial
displacement given each of the modes was chosen as zero while the initial
velocities were each given a value q ;. The relative values of these initial
"modal velocities" is a measure of the relative levels at which we excite
each of the modes. The original feeling of the author was that it would be
preferrable to excite each of the modes equally and all of the initial modal

velocities were chosen such that

Go; = 1.0 i=1,2,...m

Later in the development it was felt that it would be preferrable to
excite the modes in the same way that a step impulse force applied to each
mass (node of the system)would excite them. This is equivalent to giving

each mass an equivalent initial velocity. Therefore,
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1.0 i=1,2, ...n
and
& <[4 %, = 8] (M) X,

The effect of this change in the method of excitation and the motivation

for it will be further discussed in Chapter V.



CHAPTER III

NUMERICAL METHODS AND COMPUTER

PROGRAM

The various FORTRAN IV subroutines in the program used in this

study and the functions which they performed were as follows:

OPDAMP .--This is the main program which reads in the data,
calls the other subroutines, and does the final system simulation using
the optimum damping coefficients. This subroutine also calculates the time
step and the total interval of time used for evaluation of the integrals involved.
The time step was chosen rather arbitrarily as 1/20 of the natural period of
the highest frequency mode. In a final development of a system such as this,
a numerical analysis in order to determine the size of the time step neces-
sary for the accuracy required would provide for maximum program efficiency.
This was not justified in this preliminary derivation and investigation of the
functional, however, and thus the arbitrary nature of the time step. Similarly,
the total time interval was set as three natural periods of the lowest frequency
mode, with the stipulation that a maximum of two hundred time steps be used.
This limit was set to facilitate programming and dimensioning of arrays used
in the program.

18



19
MODES*. --A subroutine used to solve the eigenvalue problem. The
eigenvalues or natural frequencies of the system are calculated along with the

eigenvectors or mode shapes associated with each mode. The mode shapes

are normalized such that when they are arranged into the modal matrix, [qb] ,

that [¢]T [M] [¢] = (I). This subroutine provides the modal matrix [qb] .

DELTA.--A subroutine which uses the modal matrix as well as the

damping matrix to calculate the transformed damping matrix LD] .

FIND**.--A subroutine which uses the Powell minimization technique
to minimize a function of several variables by means of conjugate directions.

This method is outlined in Reference 5.

SEARCH**, --A subroutine which uses the Davidon minimization
Toutine to minimize a function of several variables. This method is outlined

in Reference 6.

FECAL. --A subroutine which calculates the value of the functional

for a given set of coordinates (modal damping coefficients).

GEE. --A subroutine which calculates the gradient of the functional

for a given set of coordinates.

EXACT. --A subroutine which simulates the response of a given sys-
tem using the matrix exponential method. The exponential matrix itself was

formed in the following subroutine whereas this subroutine does the actual
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simulation,

MTXEXP**,--A subroutine which forms the exponential matrix.
This subroutine, as well as a detailed description of the matrix exponential

method, is found in Reference 3.

SINT.--A subroutine which accomplishes the numerical integration,
using a modified form of Simpson's rule. A parabolic fit to the first three
values of the function integrated allows "starting"” of Simpson's rule in such

a way that the subroutine does not require an even number of intervals in

order to perform the integration.

Other subroutines included various subroutines to perform the
matrix operations required to do the calculations. Part of these were pro-
vided on-line by the computer while some were provided by this program.
Because of their straightforwardness and generality, it is not felt that they
need be discussed here,

The total program was developed piecemeal, each subroutine being
checked individually where possible. The function and gradient subroutines
were used to examine the "surface” of the functional for some trial cases.
In its completed form, the total program solves the undamped eigenvalue
problem, determines the optimum damping coefficients, and simulates the
system using the resulting uncoupled equations. It also simulates the system
using the matrix exponential method, and the two solutions are compared in

the form of a plotted output.
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A complete program listing will be placed on file with the office
copy of this thesis at the Department of Mechanical Engineering Science,
Brigham Young University.

The subroutines marked (*) were obtained from Dr. H. N. Chris-

tiansen. The subroutines marked (**) were obtained from Dr. J. C. Free.



CHAPTER IV

EXAMINATION OF THE FUNCTIONAL SURFACE

Examination of the profile of the functional not only allows verifica-
tion that the functional does in fact have a minimum in the correct place, but

also yields insight into the convergence of the minimization routines used to

find the minimum.

One Dimension

The simplest form of the functional is the one-dimensional form,
i.e., the form which is a function of only one variable or damping coefficient.

A one dimensional functional represents a single second order differential

equation.
tf
As mentioned previously, the form of the functional I = [ £2dt
o
4
was chosen rather than the form I = |[ Igl dt because of preliminary exam-
0

ination of their profiles. Figure 1 is an example of the latter form while Fig-

ure 2 represents the former. Both are functionals representing the same
155

differential equation. As can be seen, the form li l8| dt has a discontinu-
7/
Q

ous derivative at the minimum. This would create a difficulty for the optim-

ization routines.
22
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Figure 1,--Plot of integral of absolute value of energy deficit form of functional
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Figure 2,--Plot of one dimensional functional--Case 1
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Figures 3 and 4 are plots of the integral of the energy deficit
squared functionals for two other differential equations. The equation repre-
sented in Figure 3 differs by that represented in Figure 2 in that it has a
higher frequency, whereas the equation of Figure 4 has a lower value of
damping tha that of Figure 2. Since Figures 2, 3, and 4 represent differ -
ent cases of the chosen form of the functional, they are listed as Case 1,

Case 2, and Case 3, respectively.

Two Dimensions

The two dimensional functional allows us to observe the interaction
of two parameters (or two modes) while allowing us to visualize the inter-
action as a plot in three dimensional space. The two dimensional function
requires three space coordinates to represent it, the functional itself re-
quiring the third. Represented in this way, the functional is a surface, its
value defined by its height above a "zero" plane. Two dimensional functionals
are represented in Figures 5 and 6 by a grid of numbers, each number repre-
senting the value of the functional at that coordinate location. Figure 5 plots
a functional representing a system of two uncoupled differential equations,
whereas Figure 6 represents a system of two coupled equations (i.e., [D]

not diagonal).
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CHAPTER V

DISCUSSION OF RESULTS

The results of this work can be divided into two parts:
1. The nature of the surface described by the functional examined.
2. The comparison of the solution resulting from the uncoupled equa-

tions formed with the matrix exponential solution.,

The Nature of the Functional Surface

The nature of the one-dimensional functional was very encouraging.
A well defined minimum exists at the expected location, and the function is
well behaved. The gradient is much steeper as the correct value of damp -
ing is approached from a value too small than it is when approaching from a
value too large. This can be observed from Figures 2, 3, and 4.

The interaction between modes that occurs in the multiple dimension
case, however, created some difficulty. The first trials in examination of
the multiple dimensioned functional were conducted with systems of uncoupled
equations, as a check on the accuracy of the method, since the proper modal
damping coefficients were known.

Examination of the one dimensional function appeared to indicate that

it would be wise to underestimate the damping coefficients and then let one of

30
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the optimization routines proceed to the minimum of the functional. When
this was tried, it was found that both of the optimization routines progressed
very slowly. One trial,three-dimensional case was carried to completion
using the Davidon method in approximately two hours of computer time on
the Librascope model 1.-3055. In some other cases, progress appeared
even worse. It was evident that the surface of the functional was very diffi-
cult for the optimization routines to negotiate. Of the two optimization
routines, Powell's method made better progress.

Plotting of two dimensional functionals (Figures 5 and 6) revealed
the reason for the difficulty. A very narrow, curved valley appears in the
surface as shown in the plots. The gradient of the functional in a direction
tangent to the valley is much less than the gradient encountered at the sides
of the valley. If the search routines happen to enter the valley at a location
far from the minimum, negotiation of the valley toward the minimum be-

comes very difficult.

Physical Explanation of the Valley

The appearance of the valley encountered in the functional surface
can be accounted for on a physical basis. The energy deficit € from which the
functional was formed requires an energy balance on the system in order for
it to be zero, If one mode has too large a damping coefficient, the energy in
that mode will appear to damp out too quickly. This can be compensated for
by a damping coefficient in another mode which is too small, as the energy

in the latter mode appears to be damped out too slowly. This can even be
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carried to the situation where a negatively damped mode is "introducing
energy into the system" to compensate for other modes that have too large
a damping coefficient. In one trial case, it actually happened that the search
routine was making very slow progress on a functional at a location where
one mode erroneously appeared negatively damped whereas the other two
modes were given high damping coefficients. The valley therefore repre-
sents a locus of damping coefficients that will dissipate the total system

energy at approximately the same rate as the correct values,

Choosing Initial Values

Three approaches to overcome the problem presented by the valley

in the functional surface are:

1. The choice of a new form of functional which does not have a
valley.

2, The design of a minimization method that will use known facts
about the valley to more efficiently find its minimum value.

3. The choice of the initial values given the search subroutine at
values near enough to the proper values that it does not have to negotiate
the valley for long distances.

Of these three, the third appears to be the most feasible.

Comparison of Figures 5 and 6 indicates that the minimum was
shifted very little by the addition of the off-diagonal terms in the [_D] matrix.
Although the shift will not always be this small, a logical place to begin the

search is at the location suggested by the diagonal terms in the [D] matrix.
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This was found to be fairly successful in the cases where it was used.

Change in Excitation of Modes

As mentioned in Chapter II, each of the modes were originally
excited equally, i.e., each initial modal velocity was equal. The presence
of the valley in the functional surface provides the possibility that the search
routine may find only a relative minimum somewhere in the valley, being
unable to negotiate the valley to the absolute minimum. In this case, it
would be better to have the smallest error in the damping coefficient which
contributes most to the final solution. Giving each mode the same amount
of excitation when calculating the functional was unduly biasing the final
result, as all modes contribute differently to it. For this reason, each
mass (or node) should be given an equal initial velocity and the resulting
initial modal velocities used for energy determination. The result of this
was that the functional became less sensitive to unexcited modes. This cre-
ated a difficulty in one case where Powell's minimization method could not
find a minimum in one of the coordinate directions. The functional happened
to be perfectly level in that direction and the search routine was unable to
find a change in the function over the interval it attempted to examine, David-
on's method does not have that difficulty, and was therefore used to do the
optimization in this case. Whether or not the change in the method of excita-

tion caused much improvement could not be determined.
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Comparison with Matrix Exponential

The solution of the system of uncoupled equations resulting from
the determination of "optimum" modal damping coefficients was compared
with the matrix exponential solution for three three-dimensional cases
graphically in Figures 7 through 15.

In Case 1 (Figures 7-9) the damping coefficient for at least one of
the modes which contributes quite significantly to the response of the system
appears to be too large. In each of the displacements, the response is more
highly damped than the matrix exponential solutions. The search routine
evidently concluded in the valley at a location where a dominant mode had a
high damping coefficient.

Case 2 represents a negatively damped system. Again the trend
is that each of the displacements deviates from the matrix exponential solu-
tion in the same manner. The correlation in this case is quite good.

In Case 3, the solution follows very closely the matrix exponential
solution, providing highly acceptable results. In each of these cases, the
[D] matrix contains fairly significant off-diagonal terms. Table 1 lists the
damping coefficients at the beginning of the search (estimated using diagonal
terms only) and at the conclusion of the search., The fact that they changed
as little as they did indicates that the initial values are well chosen. Whether
or not the improvement in the values justifies the search may be questioned

for individual cases.

The total error represented in the three cases illustrated is a result
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TABLE 1

CHANGE IN DAMPING COE FFICIENTS DURING
OPTIMIZATION SEARCH

44

Case Mode Modal Damping Coefficient
Beginning Final
1 ] 0.05664 0.05672
2 0.6666 0.6666
3 0.7356 0.3909
2 L -0.08440 -0.08441
2 0.1451 0.2779
3 0.1241 0.1259
3 1 0.04629 0.04598
3 0.5637 0.5637
3 0.5918 0.5805
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of more than just the selection of the damping coefficients. The modal
analysis routine relies upon a power method convergent routine, the con-
vergence of which is based upon the frequency or eigenvalue, at which time
it is assumed that the eigenvector has also converged. The eigenvector is
then used, because of its orthogonality to other eigenvectors, to reduce the
system so it will converge to the next eigenvalue and eigenvector. The final
sim 1lation is a result of errors propagated throughout this and the whole
procedure, as well as errors introduced by choice of the damping coeffi -
cients. The matrix exponential solution is also dependent upon a conver-
gent matrix series evaluation to form the exponential matrix. The total

deviation that we are examining is a result of all of these effects combined.



CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

It became obvious almost from the onset that the developed method
would not compete with the matrix exponential in computational efficiency.
Since it cannot represent the original system exactly, it cannot hope to com-
pete with the matrix exponential in accuracy. It is recommended, therefore,
that this method not be used in place of the matrix exponential method. If a
sysiem is to be simulated a number of times and with a variety of foreing
functions, it may be desirable to reduce the equations to include only the
principal modes. This can be accomplished by the conventional modal anal-
ysis technique, however, and the matrix exponential can be used to solve the
resulting coupled equations. Whether or not the modal analysis is justified
depends upon the number of times the system will be simulated and the rela-
tive cost of solving the eigenvalue problem and evaluating the exponential
matrix. In any case, uncoupling the damping in a set of matrix equations is
not justified.

The method investigated is a workable method. The functional devel-
oped does have a minimum when the correct damping coefficients are selected.

Ii this method can be extended, applying the same basic approach to finding

46
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modal damping coefficients to associate with the Ritz form of modal analysis,
applying directly to a distributed system, it may provide an efficient work-

able method of simulating distributed dynamic systems.
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SUMMARY OF EQUATIONS
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MODAL ANALYSIS
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Modal Analysis

Modal Analysis is a useful tool in reducing the dimensionality of a
problem, and has been well explained in textbooks. Included here is an

overview of the procedure.

The general form of the dynamics equation is
[M1x +[CIx + [k]x = § (1)

where x is a vector representing the motion of the n degrees of freedom
employed in the dynamic model. The nxn matrices M, C, and K are derived
from the physics of the problem and the vector f represents the n forces
applied at the n degrees of freedom.

For undamped, free vibrations, equation (1) reduces to
[M] X +[K])_( =0 2)

which for harmonic motion of circular frequency w becomes

-wi My +[Kly = 0

or (3)
[(k]-w'M] )2 = ©

In general there are n discrete values of w, or eigenvalues, which will
permit a non-trivial solution of (3). These eigenvalues represent the
natural freguencies of the system. Associated with each of these natural
frequencies is an eigenvector or mode shape X_T- th . Finding fhese
natural frequencies and their associated mode shaB;; is an eigenvalue
problem and is discussed in testbooks.

The mode shapes are orthogonal or normal and are therefore called

normal modes. If fthese n mode shapes are column listed in an nxn matrix

q}j_ then
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(O [M][6] = Cm]

is a diagonal matrix called the transformed mass matrix and

(67" (k1[0] = [ fm

where DWL] is zlso a diagonal matrix consisting of fthe squares of the
n natural frequencies. Further, if the normal modes @h} are properly

normalized so that each of the diagonal components of the transformed

mass matrix is equal to 1.0

] = [T

then

(617 [m1LO] = (1]

and

(017 [x1 [¢]= [ [1]= [ae] (5)

vhere [T is the unity matrix.
Since the normal modes provide a basis for the displacement vector

x, we can write the displacement vector as a linear combination of the

normal modes.
X(t)= gt b, + T (t) B+ ttt) P

[(.I.)' (bz d) ] %1(&) _ [(b] z({) (6}

I?'S"J

I

—

Substituting (6) into | yields
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(MI61§ + [cI(¢]g +[KI#14 = £

T
Post multiplying by [_@ J

(0T ] 0674 + [617[CT (615 + [6]7[K1 (6] 8 =[41F

Substituting (4) and (5)

Go[1 [e][8] § s Twr]g=[6]"F

For convenience tet us define

[4]=[¢]"[c]L[0]

and the equation (7) becomes

§rLAT+[]g=10T4

At this point some discussion of the matrix [A] is in order. [A] in
general is not a diagonal matrix. |[|f it happens to be diagonal, or if the
diagonal elements are much farger than the off diagonal elements so that
it can be assumed to be diagonal with reasonable accuracy, then The system
represented by (9) consists of n uncoupled scalar equations, each of which
can be solved independently. Herein lies the ufility as well as the diffi-
culty of the modal analysis technique. For undamped, or very lightly
damped systems, it provides a method of uncoupling the dynamic equations.
By examining [(b jTi one can determine the relative participation of each
of the modes in the total solution. By elimination of modes with relatively
low participation, the dimensionality of the problem can be reduced such

that only the dominant modes zre retained. Modal analysis therefore has the
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ability to reduce the dimensionality of an n degree of freedom system to
m, where m is the number of dominant modes. The difficulty involved, how-
ever, is that of determining a method of diagonalizing the [A] matrix or,

in physical terms, determining the damping associated with each mode.

Reduction in Dimensionality

While performing the analysis just described, the dimensionality is
reduced if the analysis is begun using only the dominant modes. In this
case the matrix [¢}] which consists of a column listing of the m dominant
normal modes is an nxm matrix, where n is the number of degrees of freedom
of the system and m is the number of dominant modes used. q is now a vector

of m components.

Therefore

[(DT [M] [Qb] = ,—_I] is an m x m matrix,
(6T LCTBI=LAT e onnxn motrix

and [dJ]T (kT [6] :[\L}\] is an mx m matrix.

= v
Lﬂi‘ —{ results in a vector of m components.

—

The resulting equation (9)

§4 (414 + [2Tg = (6174

=

is therefore now a system of m equations in m unknowns, rather than n
eguations in n unknowns. The contributions of the lower participating

modes have been neglected.
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ABSTRACT

A variational approach to the determination of optimum modal damp-
ing coefficients for dynamic systems is presented. A functional is defined,
derived, and examined. Numerical optimization techniques are used to deter-
mine the modal damping coefficients that minimize the functional. Application
of the theory is to a matrix system of differential equations and the results
are compared to the matrix exponential solution of the equations. Conclusions
are drawn regarding the utility of the method and the direction of future inves-
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