Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

1969-8

Analytical Study of Heat Conduction and Thermal
Stress in Solids with Pressure Dependent Contact
Resistance

Dhruvkumar S. Patel
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd
b Part of the Mechanical Engineering Commons

BYU ScholarsArchive Citation

Patel, Dhruvkumar S., "Analytical Study of Heat Conduction and Thermal Stress in Solids with Pressure Dependent Contact
Resistance” (1969). All Theses and Dissertations. 7167.
https://scholarsarchive.byu.edu/etd /7167

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an

authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.


http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F7167&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F7167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F7167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F7167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F7167&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F7167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/7167?utm_source=scholarsarchive.byu.edu%2Fetd%2F7167&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

ANALYTICAL STUDY OF HEAT CONDUCTION AND THERMAL STRESS

IN SOLIDS WITH PRESSURE DEPENDENT CONTACT RESISTANCE

A Thesis
Presented to the
Department of Mechanical Engineering Science

Brigham Young University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

by
Dhruvkumar S. Patel

August 1969



This thesis, by Dhruvkumar S. Patel, is accepted in its present
form by the Department of Mechanical Engineering Science of Brigham Young
University as satisfying the thesis requirements for the degree of Master of

Science.

(—@AJ—(. w,'f:' /—}- l qu/“

Date | /

Typed by Katherine Shepherd

i



ACKNOWLEDGMENTS

An expression of gratitude is extended to Dr. Howard S. Heaton,
my thesis advisor, for his valuable direction and constant encouragement
throughout the thesis work.

My indebtedness is also expressed to Param Pujya Shree Mota, for
impregnating in me his spiritual ideals, enlightening my path of prosperity.
He has been, is, and will be my real teacher for my whole life.

Appreciation is also conveyed to my parents for their continuous
inspiration to me to gain higher education and for their personal care in

laying down the foundation of my academic career.

iii



TABLE OF CONTENTS

ACKNOWLEDGMENTS .. ittt it it i ittt ettt eaesnnnens iii
LISTOF FIGURES . . o ittt ittt it ittt ettt stsensonneseaa v
NOMENCLATURE ...ttt ittt ittt ti sttt nennns vi
Chapter

I. INTRODUCTION & ¢t ittt it ettt e ae e e e tnntononnons 1
II. FLAT PLATE ... i it ittt ittt st te it annnnns 10

First Domain
Second Domain

III. CONCENTRICCYLINDERS . ... i it ittt it ittt ssaennos 24

Part 1

Part II

The Second Domain in the Outer Cylinder

The First Domain of the Inner Cylinder

Part IIL

The Second Domain of the Inner Solid Cylinder
The Second Domain of the Outer Cylinder

IV. COMPUTER SOLUTION. . . ¢ttt ittt ittt v et o e anoeanss 53

Part I

Part II

Main Routine

XYCALC and XXCALC Routines
TRIAL and TRYER Routines

V., CONCLUSION & v vt vttt ettt st noeenseeenonsennas 59
LIST OF REFERENCES. &t v v v v v et vt et o s oo e nnnosennenes 62
APPENDIX . Derivation of the Interface Pressure. « . v v v v o s o o v o » . 63

iv



LIST OF FIGURES

Page

The First Domain of RectangularCase . . . ...t iv v e, 11

The Second Domain of Rectangular Case . . .. .. v v v v v v v 20

The First Domain of Quter Cylinder. . . . ... .. v v v 26
The Second Domain of Qutside Cylinder and the First Domain

of Inside Solid Cylinder . .... ...t vn e 31

The Second Domains of Outside and Inside Cylinders........ 43



Os

Os

NOMENCLATURE

Definition

Suddenly applied temperature

Initial temperature

Suddenly applied temperature

Initial temperature

Length of the plate

Temperature distribution in outer cylinder
up to the end of the first domain in the
inner cylinder

Temperature distribution in the inner solid
cylinder during the first domain

Temperature distribution in the outer cylinder
from the beginning to the end of the second
domain in the inner solid cylinder

Temperature distribution in the inner solid
cylinder during the second domain

The heat flux propagation in the outer cylinder
as well as in the flux plate

The heat flux propagation in the outer cylinder

vi

Units

OrR

O°R
Dimensionless
Dimensionless

ft.

Dimensionless

Dimensionless

Dimensionless

Dimensionless

ft.



Symbol

<>(1

X2

coO

Definition
as well as in the flat plate
The heat flux propagation in the inner cylinder
Temperature at the interface of the composite
cylinders as well as at the insulated face of
the flat plate
Temperature at the center of the inner solid
cylinder

. t
Fourier number ——._

L
Diffusivity of inner solid cylindexr
Diffusivity of outer cylinder

Heat transfer coefficient

Heat transfer coefficient in stress-free state

vii

Units
Dimensionless

ft.

OR
Dimensionless
ftz/hr
£t /hr

20
B.T.U./hr.ft °F

20

B.T.U./hr.fit™"F



CHAPTER 1

INTRODUCTION

In the usual thermal stress analysis of a body, the stresses are
found for a predetermined temperature distribution. In problems involving
composite materials, thermal contact resistance between materials can
significantly affect the temperature distribution. The contact resistance is
normally a function of the contact pressure and thermally induced stresses
can affect the termperature distribution. Thus in composite bodies the
thermal stress problem and the heat transfer problem may be coupled and
require a simultaneous solution of both problems.

Tre purpose of this thesis is to investigate this condition and deter-
mine the effect of pressure dependent contact resistance on the transient
heat transfer in composite bodies with time varying thermal stresses.

This thesis will be concerned primarily with the mathematical anal-
ysis of the problem which finds temperature distribution in two contacting
bodies with pressure dependent contact resistance. Two cases will be con-
sidered. The first case considers the transient heat conduction in rectangularx
co-ordinates. The second case will deal with the transient heat conduction in

circular co-ordinates.



The contact resistance is significantly higher in materials having a
higher coefficient of conductivity so the following discussion will primarily
consider metal joints.

The influence of the contact resistance is important in many heat
transfer problems. It is particularly important in the design of high spe~d
vehicles like supersonic jets and rockets where heat transfer or thermal
consideration becomes an important criteria in the design. In modern devel-
opment, in the area of heat transfer, it is not a prudent assumption to
neglect temperature drop along the joints, where the temperature gradient
is high.

In normal heat transfer problems, where two contacting surfaces
conduct the heat flux, it is usually assumed that there is no temperature
drop at the interface. Apparently it seems that no contact resistance would
be present at a perfect joint, but a careful microscopic observation of almost
all the surfaces reveals many surface asperities which when in contact cre-

ate many voids or gaps in the joint.

1 and 2 -- Two mating sur-
faces

voids or air pockets

A - Contact between asperities
on both the surfaces
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As shown in the sketch, when heat flux passes from one metal to
another through the joint, the heat flux concentrates on the area where
asperities of the two surfaces are in contact. Since metals have high conduc-
tivity, the voids containing air have a comparatively high resistance or low
heat transfer coefficient, and a very small amount of heat flux passes through
them convectively. This converges the heat flow lines to very small con-
tacting areas. These voids increase the overall contact resistance of the
joint and an appreciable temperature drop occurs in the joint.

The effect of the thermally induced stresses on the heat transfer
at the joint can be very significant. For example, two metal plates which
are in contact with each other and whose free faces are held against the rigid
supports, will be considered.

In the stress free state, contact resistance of the joint will be quite
high, due to air pockets in the joint. If the plates are heated, the thermal
expansion takes place. If this thermal expansion is obstructed by rigid
supports, thermal stress is set up at the contact. This thermal stress
will vary with the temperature of the two plates. The varying thermal stress
at the joint varies the contact resistance which affects the temperature dis-
tribution of the plates. As the thermal stress at the joint increases with
temperature, the area of metal-to-metal contact increases and the volume
of air pockets gets smaller and smaller. Since more and more heat flux
passes through metal than passes through air pockets convectively, the con-

tact resistance decreases.
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Many empirical relations have been established experimentally
between contact pressure and contact resistance, but a linear profile will
be selected since this profile serves the purpose of investigating the prob-
lem mathematically. Even though the profile taken is very simple, it
includes the physically established fact that contact resistance decreases
with increasing thermal compressive stress at the joint.

In the first case of rectangular co-ordinates for the mathematical
investigation, the flat plate extending infinitely in both the directions with
both the faces held between two rigid walls will be considered. One of the
faces is insulated and the other face is exposed sucddenly to temperature Qs ,
higher than initial temperature Bw of the plate, and heat transfer occurs
from the source at Bo to the wall across the joint. As seen before, ther-
mal compressive stress will be set up at the interfaces.

In the second case, to investigate the problem in circular co-
ordinates, two concentric cylinders with the inner one being solid will be
considered. The axial and the angular temperature variation will be neglected
in this problem.

This leads the problem to a one-dimensional analysis in the radial
direction. Relative displacement between two cylinders is not allowed and
both the cylinders are assumed to expand uniformly in the axial direction,
thus giving rise to the uniform axial strain as well as axial stress in both the
cylinders.

The composite cylinders are subjected at the periphery of the outer



S
cylinder, to a suddenly applied temperature 90, being different from the
initial temperature Bx. The propagation of heat flux in the radial direc-
tion will set up thermal stress at the interface, thereby affecting the con-
tact resistance at the interface.

In both the problems the surfaces are subjected to a step change
in temperature, and the heat flux will gradually propagate in one direction.
The time taken to reach the steady state will be divided in two parts. The
time taken by heat flux to reach from one surface to the other surface will
be denoted as first domain. The more incoming heat flux will increase the
temperature of the other surface from the initial temperature to the final
steady state temperature and this constitutes the second domain of the prob-
lem.

In the above two problems the temperature distribution will be
fourd by the integral method. In using the integral method it is required
first to find the governing integral equation. For multi-dimensional prob-
lems with conastant properties the integral equation, as given by Arpaci
(1)*, is

(vze' ~ é-_(g_% ) dv = 0. ............ (1.1)
v

The next step is to select the temperature profile, satisfying the

boundary conditions of the problem. The substitution of this profile into

*Numbers in parentheses refer to the List of References.
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the governing integral equation will lead to the differential equation with
time as the independent variable. This differential equation may be linear
or non-linear depending upon the thermal properties. The solution of this
governing differential equation gives the required temperature profile.

The exact solution for a pressure -independent contact resistance
in the first case is available in chart or tabular form. Tn the case of pres-
sure dependent contact resistance, the mathematical complexity and diffi-
culty in arriving at its exact solution do not tempt the present investigator
in this area to tackle the problem by exact methods using differential calcu-
lus.

So far as the author knows, no exact solution technique has been
developed. The methods like variational calculus, finite difference approxi-
mation, and integral methods which are relatively less rigorous and mathe-
matically complex, but still give relatively good accuracy acceptable for
all engineering purposes, seem more promising.

The reason why the integral method is specifically used in the above
problem, its relative merits and demerits, its rapid development, and its
application in the area of heat transfer, will be justified in the following dis-
cussion.

If the temperature of the solid varies over a wide range, the ther-
mal properties become temperaturce dependent and heat is transferred by
conduction as well as radiation, which will give a non-linear governing equa-

tion and non-linear boundary conditions. This difficulty necessitated early



investigators to develop a new, very simple, and comparatively accurate
mathematical technique for solution, known as the integral method, by
which approximate solutions to non-linear transient heat conduction prob-
lems could be obtained.

The integral method of solution for heat conduction problems docs
not require the problem to be linearized because it is flexible enough to
encompass all the non-linearities.

This method is so versatile that almost any complicated heat trans-
fer problem can be solved by approximation giving accuracy acceptable for
engineering purposes. This method can also be used to obtain the approxi-
mate solutions to linear problems with complicated spacially dependent
thermal properties.

In the thesis problem the governing equation itself is linear but
non-linearity is introduced in the boundary condition, due to pressure depend-
ent contact resistance.

Historically, the integral method was first used by Landahl to solve

the diffusion equation

aZT oT X > 0

X 5x? ot t > O

in the field of biophysics. He selected a simple linear profile to be used in
the integral equation for his problem. He also used an exponential profile

but the end result was not considered to give significant improvement over



the result obtained using a linear profile,

A more sophisticated approach was adopted by the Russian author
Veinik in applying the integral method to a great number of heat conduction
problems by taking polynomial profile. None of these early investigators
showed the accuracy of the method.

A very rigorous mathematical treatise is given by L. V. Kantoro-
vich and V. I. Kxylov (2). They took the polynomial profile or circular
profile to satisfy the boundary conditions. They also tried to show the tech-
nique for higher order approximation, in the integral method, to approxi-
mate the integral solution to the exact solution more accurately. They
suggested two approaches to reduce the errors in the approximate solution
at the points where maximum discrepancies are suspected.

The first approach was to consider "n" relations to be obtained,
for the n™ order approximation, by multiplying the integrand of the integral

formulation of the heat conduction problem by continuous but otherwise

largely arbitrary function. Mathematically it can be represented as

The above approach has its roots in the calculus of variation. The
second approach was based on satisfying the differential equation.

The treatise of Kantorovich and Krylov gives a very good mathematical
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justification to the usefulness of the integral method but it does not justify
properly its use in the area of heat transfer.

Goodman (3) has justified very clearly the importance of the integral
method in the area of heat transfer. He has given the integral solutions to
many heat transfer problems and has shown that a relatively good accuracy
is given by the integral method.

So far a very good mathematical background has been established
for integral methods but they are not used as extensively in the field of
engineering as the other approximate methods.

In reference (1), the integral method is shown to give accuracy as
good as finite difference methods with less mathematical rigor and skill.
Moreover, results are in more compact and generalized form, applicable to

a variety of heat transfer problems of the same category.



CHAPTER II
FLAT PLATE

This chapter considers the case of a flat plate extending infinitely
in two directions with the faces held between two rigid walls. One face is
insulated and the other face is suddenly brought into the contact of a rigid
wall having infinite conductance, capacitance, and a uniform temperature
Oo . The contact between the plate and the wall will give the contact resist-
ance at interface. As the plate is heated, the thermal expansion will take
place. This expansion will be obstructed by the two rigid walls, setting up
the thermal stress in the plate and thereby changing the contact resistance.

The above problem will be divided into two domains.
I. FIRST DOMAIN

The propagation of the heat flux from the rigid wall through the con-
tact resistance at interface, and up to the insulated face, constitutes the
first domain of the problem. In the one-dimensional analysis of the problem
co-ordinat¢ system will be such that the distance in x-direction will be meas-
ured from the moving boundary of a variable control volume as shown in Fig-
ure 1. The control volume, which has a width To(t), includes the heated

10
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region of the plate.

oNZ

as

/)

INITIAL
TEMPERATURE DROP TEMDERATURE
AT CONTACT-SHOWN ENLARGED LEVEL
dXx = K =]

Fig. 1.--The first domain of rectangular case
(1) A rigid wall with infinite conductance; (2) a flat plate; (3) var-

iable control volume; (4) rigid insulated wall.

Trke assumed linear relation between the contact conductance hc ,

and the normal stress 6x is

he = hco ~ € Gx

The thermal expansion in the differential element is

Therefore, the total linear strain in the x-direction in the variable control
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volume will be

(\To(t)
w1 - dx
Ex = T - L 3ofx(T To)dax (2.2)
The stress is given by
Toll)
6x = -~ -E S x (T-Te)dx . ... .. (2.3)
o
Therefore,
 To(t)
he = hco + C‘ELO( \\ (T—Tco)dx .......... (2.4)
Jo

2.1 Integral formulation

Tre generalized governing equation for integral formulation for

a given control volume is

.
SV(VZT - é'%—i)dv =0 . (1.1)

and it will be used to derive the governing integral equation for first domain.
In the case of flat plate the area remains constant but the depth varies.

Therefore Equation (1.1) becomes

To (L) 5
2 1 T
SCVT“&‘E-{_)C’X = 0
o

or
Tolt) X = Tolt)
d K (T~ Tw) dX

dt Je ‘o

I
<
-
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But the heat transfer at the moving boundary of the variable con-

trol volume is zero. Hence,

YT lx=o =0©°

Therefore, the final form of the governing integral equation is

Toll)
cTt y CT-— Too ) dx
J

(o]

oT
= &

AX [y =Tolt) e (2.5)
The boundary conditions of the problem are:

1. The heat transfer at interface gives

or

o ~he[Te = TCww, ] (2.6)

x= To (k)

2. The moving boundary will have zero temperature, i.e.,
[Tx. ) = To ] I'x-:.o =0 . (2.7)

3. No heat transfer at moving boundary gives

oT _
X ,xzo =0 (2.8)

In this problem the temperature variation in the first domain
approaches not a known steady state temperature, but an unknown initial
temperature of the second domain of the problem. In such a case, unsteady
temperature profile cannot be constructed as in the case of the steady state
problem. A somewhat different approach will be pursued in constituting

the unsteady Kantorovich profile, which requires the selection of functions
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(polynomial, circular, etc.) satisfying the given boundary conditions.
Although the selection of the order of polynomial is to a large
extent arbitrary, a parabolic temperature profile will be preferred to get

first order approximation to the problem. Therefore,

Tx, ) - To = Ax2 + Bx + C (2.9)

For the sake of mathematical convenience, the analysis of the prob-
lem will be treated in dimensionless form. Following dimensionless param-
eters will be used.

1. Dimensionless temperature

TCXx.t) — T

a =
e e (2.10)
2.
X
r) = E .......... (2.11)

3. Dimensionless penetration depth

— To(t)

Tolt) = === (2.12)
4, Biot number

heo't —o@e (2.13)

k

5. Fourier number

. x-t
Fo & Z (2.14)
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To get the governing equation (Equation 2.5) into dimensionless

form, it is rearranged as
To t

— o T- T
T— To ), . . x 9 [I=To}
S\ER) 0 - 5 GR)

on \ T¢-Tew/ = To (t)
Substitution of the previously defined parameters gives
To (1)
d &% Oe
— 8-dn = = - —
gt L.Z ar) ‘7: 'Z'O(t) .......... (2.15)
“o

The boundary conditions in dimensionless form are given as

6 (n.t)lp=o =0

08 =0

ar) n=o0 oo (2.17)

The derivations of the above two conditions are obvious; derivation

of the third is shown below.

Rearranging Equation 2.6 with Equation 2.4 in dimensionless param-

eters - .
g (I-Tw - CE o T Teo
K 3 ax \ T¢- Too) X = Ca (L) nco + 3 (TF —TOQ T T dx
= 0
X —n:_Tm — T(TO,t) - Too-_
LT{: = Too Tf -Tew
gives .
k de ~, C-E & (Te-Too) L ot
Lodp ln=Towt Neo + —“‘7*\5 6 dy (1-6s)
(e}
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or =
Tolt)
do| = fheol  CEXC(F-To)L g e.df)](l~95)
T(TW), t) - To
where Bs =

Ts ~ Too
The temperature profile in dimensionless form will be
e(n.t) = An? + Bn +C
where A, B, and C are functions of dimensionless time (and differ by a con-
stant factor from those in Equation 2.9).

Unit of slope c:

Ibg 1 9  ft nf, fr. °F
Unitofcx — x— X X — X =dimensionless
ft2 OF 1 1 BTU

which will give

BTU

Unit of ¢ =~——""——
hr. lbfoF

C-ExX (Te-Teo) L
Kk

Let = dimensionless parameter DP

The third boundary condition will be written as

%'o(t)

08 % (t)= |_B|' + DP goe drp:' (0-8s). ......... (2.18)

oo |
R

The coefficients A, B, and C in the equation for temperature profile
in dimensionless form will be evaluated by applying the above three boundary

conditions. Application of the second boundary condition (Equation 2.17),
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oe | —
aol?=o

will yield B=0
The application of the first boundary cordition (Equation 2.16),

0 (). o = AN* + Clyoo=0°

will yield C=0
Therefore, the temperature profile will be given as

o(n.t) =An® L (2.19)

Applying the interface boundary condition (Equation 2.18), gives

- o () 2
= 1 .n2 —_ To(
2hg lg: To(t) [_B' bP SOA 0 d'?] (=A%)

which upon simplification yields the quadratic equation of the form

2 = =3 B _
ADp T _ A [Dp_’toét) ~Biti) -2 G (tﬂ —Bi =0
3 _

To reduce the complexity of algebra, let

DP . To ()
3

== %]
bi DP- %o (V) _ B 2ty — Z’Z“OCt)_‘
3

I

ct = —Bi
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The solution of the above quadratic equation in A will give

A = ';Tm [bs T Jb? —~ 40¢Cl :\ .......... (2.20)

The substitution of Equation 2,20 into Equation 2.19

e (n.Fo) = 2—16‘ [bi i/EZ'4'd"C'J n* . (2.21)

For a very small value of c¢,(DP = 0}, no pressure effect exists; hence, the

convective boundary condition will be given as

o6 .
an ln= Ty = P (1= os)

Therefore,

2 AT = Bi (1- A”&act))

or
A [a T (t) + Bi- ﬁf(t)] = Bi
which will give

Bi o
2%ty + Bi -GoCt) bl

A::

In the case of pressure effect

| N
L — —_— + 2 — .
A 2o i_bi t l b 4a1 c1]

Expanding the discriminant in binomial series
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b1 [ 1 4a1.¢4 ]
_ Bl !+ - 1. o
A= Zai t (- 3 o1z T

For very small value of slope ¢, a; 2 0, so terms of power higher
than one in binomial expansion are neglected. Only negative sign is feasible

for the solution and hence

(oX| 1. 4a5ct 7
[2 T e

A= 201 b1‘_"_ _,
or A <
b

Henceforth in the following discussion only the negative sign will
be considered (since the solution is feasible only for compressive stresses).
Substituting the temperature profile from Equation 2.19 into the

governing integral equation

g To () 36
— o.dn = — * —
St 30 ) z 3 "7= Tolh) e (2.15)
gives
x () t
! . <
6 7 X 2 % b (2.22)
\Jx (?0:0) 0]
where
3
- !
ATs (t)

The integral (2.22) can be solved by numerical integration.
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II. SECOND DOMAIN

When the heat flux propagates up to the insulated end, the first
domain is completed. More incoming flux will now build up the temperature

at the insulated face. The time from where the heat flux reaches the insu-

lated face to when the steady state is finally achieved constitutes the second
domain of the problem. The geometry is shown in Figure 2.

—omd "‘*X*
Y

i

IO

7
2%

JRE

-—-(gD—- o]
[T lHHHH(IlHHI TR

(<
=] T INITIAL
TEMPERATURE DROP b X TEMPERATURE
ALONG THE CONTACT LEVEL

~ SHOWN ENLARGED

Fig. 2.--The second domain of rectangular case

(1) A rigid wall with infinite conductance; (2) flat plate;

(3) rigid insulated wall.

For this domain the governing differential equation will be obtained

in the same way as for the first domain; hence,
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d 5.dn = & .99
dt%o 0 E onln=r e (2.23)

The boundary conditions of this domain in the dimensionless form

1. The heat transfer from the insulated wall is zero.

L]

_a_r) r):o: c . (2.24)

2. The temperature at the insulated face will be given by

&N t)]po0 = Ly (2.25)

where 1) is the unknown parameter in the temperature profile.

will be

3. The convective boundary condition in the dimensionless form

:T% ) - [5.' + DP S:}edo] (-es) ..., (2.26)

The temperature profile will be assumed to be parabolic

e(n.ty= An*+ 8Bn +C . (2.27)

where A, B, and C are the functions of the dimensionless time.

The application of the first boundary condition, Equation 2.24, will

yield B - 0.

The application of the second boundary condition (Equation 2.25)
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9Cr)'t)lr)=o ‘:Q\’?z*fc_)'r):o = T

will yield C - i

The temperature profile will be
on.t) = An?+ T

Applying the convective boundary condition

de

50 lp=1 = [Bi 4 DPSOIG-d")] (t-©s)

Substituting the temperature profile

BA = [Bi + DPSL(AF)Z—!- Tl)dq] [l - (Ar)2+ TI)IO: 1]

Therefore,

2A = [Bi + 9’_’3;5 ¥ DP'T'] (- T-4)
and hence,

2A — — DP. A% 4 A [(I—T;) oP _(_Bn' + DP-’(“.)]
3 3

+ (1~ u) (8i + DP.T)

The arrangement of the above equation in the quadratic form of A is

A2 %_P__ al - %’ ~ (Bi + Dp. 2‘,)—2]

—~ (-%)(Bi+DP. W)= 0O
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: 3

Let a, - opP
b. - (1_ ) %_P — (Bi+ DP.T) — 2
Cl H —-(j_“T')(BI + DPTI)

The solution of the quadratic equation will yield

A = ZLOH [b‘ - jbla - 4a,¢ ] .......... (2.29)

As seen in the case of first domain, the negative sign only will give

feasible solution. The temperature profile will then be given by

9U7lt)=;"a| (b —Jb,z—Aq,c,>V)2+ T (2.30)

The substitution of the temperature profile in the governing integral

equation will give the final integral form

1d(A+3'(!) ox b,
o = F_. \Clt. .......... (2.31)
= sy

0

The integral can be solved by the same numerical technique employed

for the first domain.



CHAPTER III
CONCENTRIC CYLINDERS

This chapter considers two concentric cylinders, the inner one
being a solid cylinder.. The axial and the angular temperature variation is
neglected, hence leading to a one-dimensional problem. In this problem,

a step change in the temperature at the outer periphery of the outer cylinder
will be applied. The heat transfer problem will be treated in the three parts.

1. Tre first domain of the outer cylinder will be discussed in the
first part. This has little importance in this discussion, so far as the actual
problem is concerned, because no contact resistance is involved. To pre-
serve the continuity of discussion it is stated very briefly.

2. The second part discusses the second domain of the outer cylinder
and the first domain of the inner cylinder together. This part gives the tem-
perature distributions ©y and ©Os in the outer and the inner solid cylinders
respectively, to the time heat flux propagates to the center of the solid
cylinder. The reason why both the dornains are considered together will be
clear in the actual analysis of the problem.

3. 'The third part discusses the second domain of the outer cylinder
and the second domain of the inner cylinder together. The temperature dis-

1 /
tributions ©s and ©; in the solid inner cylinder and the outer cylinder respec-
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tively are determined, from the point incoming heat flux reaches the center

to the point the steady state is achieved.
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Part I

The propagation of the heat flux from the outer periphery of the
outer cylinder to the inner face of the same cylinder constitutes the first

dorain of the outer cylinder. The geometry is shown in Figure 3.

T.U l

Fig. 3.--The first domain of outer cylinder

(1) Outer hollow cylinder; (2) moving boundary of heat propagation;
(3) inside solid cylinder; (4) Temperature distribution in the first

domain of outer cylinder.
The generalized governing integral equation for any control volume v

%V(VZQ - gi'%%)d": .......... (1.1)

will be used to determine the governing integral equation in this case. For

the one -dimensional analysis of the problem in the radial direction, the
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area through which the heat flux passes will depend upon the propagation
distance r measured from the center of the inner solid cylinder.

Therefore,
Volume dV (r) = 2)rrdr

Substituting dv in Equation 1.1, obtain

To (t) _ To(t)
Qt S o.r.dr = Lr ‘39] .......... (3.1)
0 APS or R

The heat transfer at the moving boundary of the variable control

volume is zero, i.e.

_8_9
or

=0
To Ct)

Therefore Fquation 3.1 becomes

Re oo
3 r.dr = xRz —=
57;& © Or lry, e (3.2)
To (B

The above governing integral equation of the first domain will be
transformed into the dimensionless form for the mathematical convenience.

Using the following dimensionless quantities

_ -l
e = Te = T e (3.3)
r
D= 5, e (3.4)
Tty = €8 (3.5)
Rz
Foa = O('at
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the final form of Equation 3.2 will be

~ 1
9 \ o, dn = aefl

_ g / 2 TN =1 eeeterennn 3.7)
d J o () FEZ al? )r)—l (

The boundary conditions of the problem are
1. 6y (n. ) lr)z, =1

The heat flux at the moving boundary of the variable control volume,

dei |
2. I]r) T Ct) =0 (3.8)

The temperature at the moving boundary of variable control volume

will be zero, i.e.,
3. & o gwy=0 (3.9)
4. Initial condition: O (r; 0)=0 .......... (3.10)

A temperature profile in terms of Y) will be assumed in this domein.

For El <n < 1 the parabolic temperature profile is
R2

0, (n.t) = An? + Bn + C

where A, B, and C are the functions of time.
A, B, and C can be evaluated by applying the given boundary condi-

tions. The application of the second boundary condition
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i} _
dn In= To (t)

will yield

B=-2A% & (3.11)
The application of the first boundary condition
1 (n.t) |,7=1 =1
will yield
A+B+C =1 ..o, (3.12)
Applying the third boundary condition
©; (9. B Ir): Tolty = ©
will yield
C= AT (3.13)

Introducing Equations 3.11 and 3.13 into Equation 3.12, the value

of A will be evaluated.

1
N (Tolt) — 1)7

Substituting Equation 3.14 in the Equations 3.11 and 3.13,
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-2 ?o 49
(?o t) - |)Z

and
—2
To ()
(Tt -1)*
When the values of A, B, and C are introduced into the actual profile,

the result will be given as

- 2
'7" To(t))
o, (n.t)y = L~
y (-8 el EE PR (3.15)
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Part H

When the increasing heat flux reaches the inner surface of the outer
cylinder, it will propagate further, increasing the temperature of that sur-
face. From the point when the incoming heat flux starts building up temper-
ature at this surface to the point the steady state is achieved constitutes ihe
second domain of the outer cylinder. The heat flux propagates further from
the contact interface into the inner solid cylinder. Propagation of this heat
flux up to the center of the solid cylinder constitutes the first domain of the

inner cylinder. The geometry is shown in Figure 4.

Fig. 4.--The second domain of outside cylinder and the
first domain of inside solid cylinder.

(1) Outer hollow cylinder; (2) inside solid cylinder; (3) moving bound -
ary of heat propagation in second domain of solid cylinder; (4) En-
larged view of temperature drop at interface; (3) temperature distri-
bution in first domain of solid cylinder; (6) temperature distribution
in second domain of outer cylinder.
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The problem for the composite cylinder will be separated in two
sections according to the temperature distributions. The temperature dis-
tribution for the inner solid cylinder will be denoted by ©s and for the
outer hollow cylinder by ©y .
In this part the mathematical difficulty arises because of the com-
plexity of the convective boundary condition at the interface of the two cylin-

ders, i.e.,

(subscript "s" denotes the temperature at the surface)

where

he - hco — C- Grg

hco = the heat transfer coefficient in stress-free state and ©Ors =
the interface radial stress which is a function of &y and ©s.

Some equations necessary for the derivation of interface pressure
have been taken from reference (1). The derivation of all necessary formulae

is outlined in the Appendix.

The second domain in the outer cylinder

The governing integral equation is

aS 1 rar = R, 2T
dt |\ ’ 2 ' or lr=Ra  +«... (3.18)
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The dimensionless quantities following will be used in the dimen-

sionless analysis of the problem.

r
1. =
n R
Jt - T
9 o, = Ty Cr, t)— T
Tf — Too
Ry _
3, — =/
Ra
t - Ay
4. Fo = ——p—
Ra
] 4
- To
5. G = =
° Ra

The governing integral equation (3.18) in dimensionless form is

d{enan _ % 20

= -—3 =  ..... 3.19
dt Yg Re on lp=t 319
The boundary conditions of the problem are:
1. 81 (n. £ lr)z o= . (3.20)
2. 9 (T)-t)lr):ﬁ =G . (3.21)

where T is an unknown parameter in the temperature profile.

3. The convective boundary condition at the interface is

. arT
given by Ky aj" F= R =he (Tjs *Tss) ..........

where T, = the temperature of the outer cylinder at interface,
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"

the temperature distribution in the solid core, and

Tgg = the temperature of the inner cylinder at the interface.

The above condition in dimensionless form is given as

2o _ heRe
on In=p ki

(B1s—8ss)  .......... (3.23)

Taking the value of he from Appendix Equation 60 and rearranging

Equation 3.23,

— B
heRe _ 'Bi + csﬁ_ ©s-n-dn +C4& ©1 -1 -dn

] ... (3.24)
K1 Zo() vB Ny
where new constants are a
Ci R
C3 = —22 (T¢-Tw) and
2
Co = G (7o)
1

Introducing Equation 3.24 into Equation 3.23 gives

38,

. B ' -
= ‘ = tbi +C3(1 95 1 -dn +C4§\e"'7'd4
an n=FR |

JZ,ct) Jp

x (O1s =O8ss) ..., (3.25)
The temperature profile is approximated as

el (O.t) = Ar)z + Br) + C

where A, B, and C are functions of the dimensionless time.

Applying the first boundary condition (Equation 3.21) gives



A+B +C=1 ... (3.26)

and applying the second boundary condition (Equation 3.22) gives

At +BprC =T (3.27)

Solving 3.26 and 3.27 simulateously, the values of B and C are obtained in
terms of A. The results are

|- T
ﬁzl—_——pﬁA(”PJ .......... (3.28)

and
T| -
= B T e (3.29)
The coefficient A of the temperature profile will be found by using
the convective boundary condition dependent upon the temperature distribu-

tion.

The first domain of the inner cylinder

The integral formulation of the first domain of the inner solid cylinder

is obtained as before:

n. — ke &g 00s |
5 ki RS an 1»7;—!3 ..... (3.30)

The boundary conditions for this domain are:

1. 8 (n.t) n= o () =9 (3.31)
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00s (N.t)

an n= %ch 0 e (3.32)

3 aes (r)'t)

on n=>
or
aes (‘7 t) ' = ._!EJ Bi + G (l s 1) dl)
ke L JZw
+Cq E 91 n-dn ! (B1s-6ss) ... .. (3.33)
A parabolic temperature profile will be taken for this domain in
the form

05 (n.t) = Dn* + En +F ... (3.34)

The constants E and F will be found in terms of D using the first two

boundary conditions. They are

E= —205C) i, (3.35)

and
-.—-I2
F = DG cYy (3.36)

Introducing Equations 3.35 and 3.36 into Equation 3 .34,
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©s (N.t)= Dn2z + En + F

~ 1 2
= Dn2+ (—ZD?GCt))-r) + D?oI Ct)

In the following discussion, the relationship between A and D using
interface boundary conditions of both the domains will be established.

A study of Equations 3.23 and 3.33 reveals that

_ ki oer(nt)

365 (N. t)
an

Therefore,

%2 (ZA.r) + Blr)zﬁ) =2D(p- % (1))

further simplification will yield A in terms of D

ke

A::
Kk

2D (p - '?Jct)_)"j+ - )
- B (-p) "7t

Let us use the interface boundary condition, Equation 3.33, to eval-

uate constant D

B3
_ k¢ .. A +
i £ _ = 2= B +C e n
% )"7”/3 ka |— | 38’&';)’7
f _
Car\ O, - ”)-dol(eis—-@ss>
Ja "

Therefore,



let

or
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., k =L (-B F | 2
ZD(B-”(OU:)‘): E; LB,- +C\ D(n- To(v) n-dn

2 —
(€143
1

¥ Ca S I_Af)2+ { -7 _ 4 ("*/3)}0
-l

G-

) { S8 4 oa pHn]dq (v -0 (B-Tw). .. ...

Let us evaluate the integrals
& » 2 4
- t .
[ = K (h-7%¢ )) 1-dn

To (V)
_
n= N+ To () Therefore,
=Tt

o= \[0f x G+ Te)]dy
(]

4 3 4 R- '?°lct)
I, = e Zen
{ 4 3
~ 0
which in simplified form will be
L= (p-Ga)x [ B4 G’
b N 2

and

1
Ry aes)et (55
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or
4 3 A 3
~ A UL (- - S (FR)U-RD+
I2 ‘ZC‘ F)J * 3(‘_p) (' @ 3
(u=PXC-PF | A a4 (-
2 (1~P) 2
or B A .3 { o Tl)(l“ﬁ?))
_ dDU-pD /3 E
L - ‘#LZE U+ 3C ¥ (1~ TS
N @ -G+ B) . . (3.41)

2

substituting the value of A in Eq. 3.41 from Eq. 3.33

I, = DH (B~ nm)} {|_ S U RIU-R)
1) 4 3
] ¢ (R 8 o,

3
+Q(1“52Jj + U- 2OU-R)
2 3U-~B)

(1+ ﬁ)(?-“ﬂ)]

Let

= {ote o T ) Hi:jf_(w RICT PN m_s-;f)i
ki (p-1) 4+ 3 5
- (3.43)
n o= {1 1 =BT em0-E) | s u- j (- )0
e * 3 2 { 3 (-
+(_?.'|—‘ BY(1+ [5)}] e - -(3.44)
2
=1

me = (- T E i al;” - (3.45)
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Introducing these integrals into Equation 3.39 gives

2D (’3— %ol(t)) = Ti—lz [:(Bl + n.C4_) 4+ D [m2C3 + m|C4)

X II:’(. - D ([3— %D'(t))zj

Therefore,

Let

and

DF (myCs + m, Ca)(p- W)’ p [(mzcs + m,C%
-2 i} Cp- ’E;o'(“t)) -(Bi + nCy)(p -~ ’E,,'ct)JZ:’
I

—(Bi + NCyT, =0 e (3.46)

i

ap = (MaCy +MiCa) (P~ % (8)>

o
—
]

(M, C3 + M Ca) % — Zt_?] (B~ Bw)
@i +nics) (p- Z co)z
cp - (Bi + niCq)
Therefore,

2
30~ bD + ¢ = O (3.47)

I
The solution of Equation 3.47 is D = 2—;:1‘, [bl - I bZ - 4a|c,J
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The negative sign is taken because the solution is feasible for com-
pressive stresses only. Proper justification of this point is given in the last

chapter.

Introducing the value of D, the temperature profile for the inner

cylinder will be,

65 (n:03= o [bi= [oi- 4ac | (0 Zo )

For the second domain of the hollow cylinder, the coefficients of

A, B, and C are

= L (o= [574ac ] (R- W) 1=
A - 3, [bl Jbl - 4a,C, ({3—-|) ’—.[52

= %
= ~ A+
B — QRYED
and  C VPR Ap
- B

It is noticed that the coefficients A, B, C, and D are the functions

of To (1) and TCt)

Substituting the temperature profile of the second domain of the

outer cylinder in the governing integral equation (Equation 3.19) gives

_é (m; D + n.) = .(2(_1 (_ZA + B)
dt 2
Therefore,
gdcm:D'f'ﬂs) _ % gdt
(2A + B) Ry

.......... (3.48)
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Next, substitute the temperature profile of the first domain of the

inner cylinder in the governing integral equation (Equation 3.30). This gives

4d 1t _ ~ , _ et B ’?:oct))]
b 20.Cbl lbl 4a.Cy ) X (R ) ( |

x (B~ T ()

K -
=2 . 1 ’:bl o b|2*‘40hC|
2y .

x ZL(p-% )
Rs ‘

Therefore the final result is

d [éja, (b~ W.) (p- t’”(‘t)J Cﬁ ’t'c(t) ]

YA (b= bF-aac) (B Bw®)

I

Kg
g gdt .......... (3.49)

Rz

The two integral Equations 3.48 and 3.49 must be solved simultan-
eously since the integrands of both the integrals are functions of To(t)and
Ty ). The solution can be obtained using numerical integration and a trial

and error procedure.,
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Part lI_I

This part discusses the second domain of the outer cylinder and the
inner cylinder respectively. ‘From the point when the heat flux reaches the
center of the inner cylinder to the point when the steady state is achieved,
constitutes the second domain of the inner cylinder. The geometry is shown

in Figure 5.

Fig. 5.--The second domains of outside and inside cylinders

(1) Outer cylinder; (2) inside solid cylinder; (3) temperature drop
along interface; (4) temperature distribution in second domain of
solid cylinder; (5) temperature distribution at the end of first do-
main of solid cylinder; (6) temperature distribution in the second
domain of hollow cylinder after the first domain of solid cylinder

is completed; (7) temperature distribution in the second domain of
outer cylinder at the completion of second domain of solid cylinder.

The problem will be separated in two sections according to the tem-
perature distributions. The temperature distribution for the inner cylinder

1 |
will be denoted by ©Os and for the outer hollow cylinder by ©; . This part
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1 |
gives the temperature distributions 6gand 6, from the point when the

second domain of the solid cylinder starts to the point the steady state is

achieved.

The second domain of the inner solid cylinder

The integral formulation for the second domain is,

B |
i% 0. n-dn = ko As 905

for o0 <n <«pf

’ ki RZ B0 lp=p e, (3.50)
The boundary conditions of the problem are;
|
€ = T ...
1. s (n 3lr):o . (3.51)

where C:%s the unknown parameter in the temperature profile.

yield

1 ' R, [ i
9. 9__95 (r),t) = ;:’C___Z 6;5 C p. i'_,_) — 955 (B.t_ﬂ
on n= p ke L
............... (3.52)
aes = O
3n In=o e (3.53)
A parabolic temperature profile is assumed in the form
0, (n.t)= Gn>+ Hn+ 1 . .. . . . .. (3.54)

8 (3.55)
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The application of the first boundary condition, Equation 3.51,

' 1 2 = ’z’z
9, (0 )'}o=o Gr* ¢ 1,

will give I, =% L. (3.56)

Substituting the values of H and I obtained in temperature profile

3.54 gives

8y (n.t) = Gr)z + T e (3.57)

The second domain of the outer cylinder

The following profile will be assumed for the second domain of the

outer cylinder:
' ! 1 !
& (n.t)= ANt 4. 81 +tC
The boundary conditions are

L. @I.(O't)lr):l e (3.59)

2 _a_e_.: £) = i g . .d
Y. o (p-t) [Bl + C3 Soes ) en

and 3 6: Cp.t) = T (3.61)

When the first boundary condition (Equation 3.59) is applied,
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A'+ B+ C =1 L., (3.62)

The third boundary condition (Equation 3.61) will yield

Solving Equation 3.62 and Equation 3.63 simultaneously, B' and C'

in terms of A’ are given by

b A ) + S (3.64)

B = - | C‘,__ ﬁ) .......... .
and

c'= Lo B LA'p (3.65)

t- B
To relate A' and G, the interface heat transfer condition is used,

which is found by combining Equation 3.52 and Equation 3.60.

?__Q'SCP‘Z) = —k—l . a—————-—el CB.t)
3N kz 90

substituting the respective values:

ZG'?lr):ﬁ = ”:z_‘; (2An + BIJ’QZﬂ

Introducing the value of B' (Equation 3.64) gives

k| T - T B
2Gp = Ez‘ ACp=1D f-p 1 e (3.66)

Consider the interface boundary condition,
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ae’(!) t) = -k—l Bi + Cy Q 65 - an
on n= 3 ka |
1 " .
+ Ca % = - r)‘dr)] (O1s ~ @ss)
p
..... (3.67)
Let us evaluate the integral
B
Qs - N dn
Yo

I
substituting the value of Bs

= 1R
) (':n')q fzol
| Cant+ Tdmedn =g 5
5 _
therefore
r By 2 [ GgE* T~
\esndr7=/34~f-+~zJ

(‘)

In the above expression introducing the value of G in terms of A'

(Equation 3.66)

p [k Bty (-7)R7,
QGS'V)‘dOZ P A'E'(zp)'2+ap Kz 4((«;3) 2
Jo _
or

B 5 : 2,
N e, Z ARl
: ! o\ —
Ve ke 8| B TR L (3.68)
to reduce the complexity of the algebra, let
<, @ r L
ma= o, o CR-YD L (3.69)
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and
3
f3> k, |~ ’Z‘| BE'Z'Z
N = — X — X XK — . (3.70)
8 ka  (1-p) 2
Therefore,
3
|
% Gs-r)-dr.) :mzAl + N, ... (3.71)
o]

Let us evaluate the integral

{
I
C\ - ndp
P
substituting the value of =Y

|
g (A'n*+8'n + c'yndy

3
therefore | e
‘, dn = A_Q {- T At ;73
&[se. n.dn ‘_ e {(——'“p') A(i+}3)j3 +
-1
(’t’,—{&) ! nz
+ A L
{cw ) p} 2
Further simplification yields - 3
I ! Vo 4 » . 3 LR2y
(o nan = o[t 0o, ROED ]
€ . % 3 2
- Z"f-)(l~ﬁ3)+(r.~p)(l+p)
3(1-pB) 2 e (3.72)
Let
% 3
Jost P+ - =2
I P C+BC (3)_+' pPU-BY 6.7

4 3 2

and
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_ U= - ) RCEDIGTD!

N, 50-p) ST e (3.74)

Therefore,
|

%al'frdv = mi ATy

(0]

Subtracting the Equation 3.57 from the Equation 3.58 gives
{ ] 2 T
O - =T -Gp™=- T L (3.76)

Substituting the values of B', C', and G into Equation 3.76 and simplifying,

o -8ss= A [ 2 (52 8]

*‘E‘“n}— —S% (11::% ..... (3.77)
Let
ms = % (1—2r5> B (3.78)
and
Ny = Ffa ~ By )~ L; 1;—‘2 C{—% } .......... (3.79)
Therefore,

1 1
O —Oss = Mz A + N3
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Consider Equation 3.66.

28! = _Z -1
Let 4= Cp-=2 (3.81)
i ~ 7
and n,a = Sz aN (3.82)
ke 1= f3/
Therefore,

]
2GB = Mg A+ Ny

Substituting Equations 3.71, 3.75, 3.80, and 3.83 in Equation 3.67

gives

Bi + Csz {mz At nz} + c4{m.A'+

n‘j +M3Al+n3

|_<_.-
ka

Ma A + Ng =

Oa simplification it will give a quadratic equation in A':

2
m3 (m2(',3 + Cu YTM)A‘ - {""mS <B|'+H2C3+nlc4)

1
~ns (M2Gz +mMCa) + ka . m4 4 A

ki
+{__ ‘k:z Na + n3(Bi + N,Cs + h,C4)§r =0
= T . (3.84)
To simplify the algebra, let
a, = My (maCs +MiCa) L, (3.85)
b = — M3 (Bi +nNnzCxz +1n,Cq)—nN; (mpcs+ ... (3.86)

k
Mz Cad + £5 ma
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i =-5 n, +n; (Bi+naCs +niCaYy  onn.. (3.87)
k1 ]
Therefore,
12 I -
A -bA +C =0 . (3.88)

Solving the above quadratic equation in A';

| !
Substituting the values of ©g and 8, given by Equations 3.57 and 3.58 in the

integral formulations

d gpgslr)dr):’fﬁgizage—s o < < f3
iy R = /3
dt Jo e O ER (3.90)
and
| 1
c_“ Q, " dr): ilé d_e_'_ B LN <&t
dt Rz dV? l7:=1
B
............... (3.91)
The final results for Equations 3.90 and 3.91 will be
1
d[mzA +n2J _ iz Sdt
52: (,m4 A ru) =S S R (3.92)
kit ~
and
d CrmiATF N o =y Sdt
(A" ct-p) + (= Rz J L. (3.93)

(=B
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Both the integrals given by Equations 3.92 and 3.93 are the functions
of Ciand G2 , so they can be solved simultaneously by a numerical tech-

nique similar to that described for Part II.



CHAPTER IV

COMPUTER SOLUTION

Part I

For the case of the flat plate, a numervrical integration technique
is used to evaluate the final time integrals. This technique, instead of
using the linear approximation assuming trapezoidal integration formulae,
assumes parabolic approximation, to get better accuracy of the results.

A curve fitting procedure will be used for this purpose.

The set of three points on the actual curve will be selected and a
parabola passing through these three points will be found. The area under
this parabola is determined by simple integration. The second set of
three points which has the first two points common to the last two points
of the first set of three points will be considered. Another parabola pass-
ing through these three points will be found, and the area under it will be
determined in the same way. The average of the two areas under the
parabolas passing through the second and third points will be taken,
which gives better accuracy than the normal Simpson's rule, to find out the
area under the curve. This procedure will be extended to all such consecu-
tive sets of three points, giving the area between any two points twice
except the first two and the last two points. This is usually known as

53
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the curve fitting procedure. A computer program is prepared to find the
area under any curve using the above technique. The equations numbered

2.22 and 2.30 will be solved using this computer program.

Part II

In the case of the composite cylinders, both the final time integrals
given by equations 3.48 and 3.49 for Part II and equations 3.92 and 3.93 for
Part IIT are solved simultaneously by using numerical technique known as
the trial and error. A computer program is prepared to solve the above
equations simultaneously for both the parts. The following flow-chart of

the computer program will describe thoroughly the technique used.

START

2nd Domain 1st Domain
MAIN ROUTINE

CALL TRYER CALL TRIAL
CALLXCALC CALL DCALC
CALL XXCALC CALL XYCALC

CALL OUTPUT

END
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Main routine

Main routine controls the values of t, T}, and¥,. It assigns the
initial guess and the second guess of ¥ for each corresponding value of t,
for the first domain, and for corresponding values of ¥, for the second
domain. The TRIAL and TRYER routines will give the true value of Ty for
corresponding values of ¥y in the case of the first domain and for corres-
ponding values of ¥, for the second domain, respectively with required
accuracy, using the above assigned guesses. For successive initial guesses
of ¥}, the preceding true value of ¥ for the corresponding value of ¥, or
¥), as the case may be, becomes the initial guess for the following value
of¥;. For the second guess of ¥j linear interpolation between two preced-
ing true values of ¥ will be done in the case of the first domain and the expon-
ential interpolation will be done between two preceding true values of ¥ in

the case of the second domain.

XYCALC and XXCALC routines

XYCALC routine calculates the values of the numerator and the
denominator of the equations 3.48 and 3 .49 for given values ofTandTl .
XXCALC routine calculates the value of the numerator and the denominator

of the equations 3.92 and 3.93 for given values of ¥5 and ¥ .

D CALC and X CALC routines

Referring to equations 3.48,,4 3-49

Sm'Xm e gdt .......... (4.1)



where

%2

Y2

&yz-dXZ ;Sdt

----------

% (1~ph4) + g (l— [33) + %(1—{52) .....

1

&
—, —(2A+8
Rz J

D-(p=- (B + L)

N

1

K2 X =y
Rz jall _z
7 oy (BR-T)x D

where &; =K;/¢; C;.

where

Again referring to the equations 3.92 and 3.93

X1

Y2

X2

Syldxlz Sdt
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The above illustration makes the problem more clear. X417, YlT,

XoT, and YoT are obtained by XYCALC routine for preceding true values

of T; and corresponding values of T in the case of the first domain. Sum-

mary X10, Y10, X20, and Y20 will be calculated for another value of T}

and the corresponding value of T;. The trapezoidal integration formula is

used to evaluate the integral given by equation 4.1 between points X T, YT

and X10, Y10, and the integral given by equation 4.2 between points XoT,

Yo T and X10, Y20 to get & t; and At2 respectively. DCALC routine natur-

ally calculates the difference between equations 4.1 and 4.2 in case of the

first domain. In the same way XCALC routine calculates the difference

between equations 4.7 and 4.8 in the case of the second domain.
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TRIAL and TRYER routines

TRIAL routine calculates the true value ofT) for respective values
of T in the case of the first domain, and the TRYER routine calculates the
true value of ¥] for corresponding values of¥, in case of the second domain.
The linear interpolation is done between two guesses, i.e., the initial guess
and the second guess, to get the intermediate guess. Again the interpola-
tion between the initial guess and the first intermediate guess is done to
get the second intermediate guess. This interpolation procedure is repeated
until the intermediate guess obtained satisfies the required accuracy. In

essence, these routines try to make
™~
Aty - At2 ~ 0

Aty and A, are calculated either by DCALC routine or XCALC
routine as the case may be. The difference between A tj and A ty should

not necessarily be zero; otherwise, these routines fail to work.



CHAPTER V

CONCLUSION

The problem of this thesis was discussed in two parts: (1) one-
dimensional heat flow in rectangular coordinates, and (2) one-dimensional
radial heat flow in circular coordinates.

The first part treats the problem in rectangular coordinates. It
gives the final form for the first domain of the problem as having an equa-
tion with a definite integral which has time -dependent propagation of heat
flux as limits of integration and integrand as a function of this time-depend-
ent displacement. An evaluation of the integral equation gives the total
dimensionless time (Fourier's number) for completion of the first domain.

Analysis of the second domain of the problem leads the problem to
final form as an equation having a definite integral with limits as time-
dependent temperature parameter at the insulated face and integrand as a
function of this time-dependent temperature parameter. Evaluation of this
integral gives the total dimensionless time (Fourier's number) for comple-
tion of the second domain.

Mathematical difficulties involved in getting an analytical solution
forces one to discretize the problem to get the numerical solution for the

final integral. A computer program giving the numerical solution for this

59
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problem was made and was found to give the required engineering accur-
acy for results.

The second part, which treats the problem in circular coordinates
with one-dimensional radial heat flow only, gives the final forms for two
different cases. It is considered to obtain temperature distribution until
a steady state is achieved, as two simultaneous integral equations in each
case.

Integrands of both simultaneous equations in the case, considering
the second domain of the outer cylinder and the first domain of the inner
solid cylinder, are the functions of time-dependent propagation of heat
flux in the inner cylinder and temperature parameter at the interface of
the cylinders.

The integrands of both simultaneous equations in the case, extend-
ing the problem to a steady state, are functions of time-dependent temper-
ature parameter at the interface of the cylinders and at the center of the
solid cylinder.

In both cases, an attempt has been made to solve the simultaneous
integral equations by numeric methods of trial and error as well as by
numeric integration. Since there is no definite source of checking the re-
sults obtained by the numeric method to establish the perfect validity of the
results, the author could not avail himself of the opportunity of presenting

the results in the thesis. Establishment of good and perfectly reliable
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results might prove to be a prospective step in the extension of this thesis

and a profitable contribution in this area.
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APPENDIX
DERIVATION OF THE INTERFACE PRESSURE

The determination of the interface pressure for the case of two
composite cylinders, the inner one being a solid cylinder, is given by Au (4).
To give a more descriptive picture of the stress part of the problem, the
author has preferred to give the detailed derivation, and proper organiza -
tion of the majority of the formulae leading to the final form of the expres-
sion for the interface pressure appropriate to this problem.

Let us first find the radial pressure at the interface in terms of
Ot and ©Og . The equation for equilibrium of stresses in the case of

circular geometry with symmetric temperature distribution is

dor , 6r - Ge =0 (A)
dr r

where

=
1

the radial stress, and

"

O = the circumferential stress.
The relations between the stress and strain in the thermal stress

problems are:

€r — X7 =

lE [:()“r -~ { (5o + 6‘2):] ..... (A.1)
63



€o ~T = = [69““f<6_r+6_23 ..... (A.2)
€z — xXT = ’iE rcrz —7(or + GQJ ..... (A.3)
where

€r = the radial strain

€e =~ the circumferential strain

6z = the stress in axial direction

7 - Poission's ratio

& = the coefficient of thermal expansion.

Assuming the axial displacement to be zero (plane strain), Equation

A .3 will become

5z = 1 (65 + 62) —-xET ... (A.4)

The substitution of Equation A.4 in Equations A.1 and A.2 will give

- i ]
er — (I+7)&T = — (o—r -2 oz ....(A.5)
E -7
and
2
| - / 7
€Eo — U+ VT = ~—1 <<Te— — Or .. ..(A.B)
E (-7
Y
Multiplying Equation A.6 by ::3-/ and adding the result to Equation
A.5, the value of in terms of ° and U8 will be obtained.

c (A7)
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To get 6gin terms of € and € , the same technique is applied.

The final form for g will be

E(1-7)
(+rryu-2y)

PR A
o +'—:‘Yér—°(T('“f_ ..... (A.8)

Introducing the Equations A.7 and A.8 into Equation A, the result is

d a f— 27
r - € + — € ) - G
dr ’:r ..‘/ 9— I~ 7 Cgr CB)
or
L+ 7y dT
o —_— —
r ( 1__ 1 d rorrrs e e ae (A .9)
The radial strain € is given by
. - du
L (A.10)
where u is the radial deflection.
The circumferential strain is given by
u
€o = =P (A.11)

Substituting Equations A.10 and A.11, the simplified form will be

rgiL_J 4+ du - _L.’- = & l.L{\ dT

dr?_ a;: r 1_1//'5 ....(A.12)
Hquation A.12 will be arranged as
r4

d'u 1
drz r

du _ U TN dT
5 af —— el

r e = —7 ) ar cee . (AL13)

and further simplification will yield
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d?u d [y L +7\dT
dr2+ (I/ d(’___l‘—" -...(A-l4)

du , U /l+7'\ !
add 4 B o
dr r \I—Y/T G

and arranging the equation in proper form,

- T HH’)Tr FQr
dr

integrating again and dividing the result by r gives

L49
ur) = o ,_) \Trdr +Cr+iz ... .(A.15)

Introducing Equation A .15 into Equations A.10 and A.11, the expres-

sions for Er and Eg will be

Ju 1+ 1 q ]
esc—:tx<—— -1\ C, - Sz . ...(A.16
r 1—1’){ rlgrr.drjs+, = (A.16)
and

I+
€o = H':"‘<—-r)—' T-rdr +C, — C2
1= o R -2 e (A1)

Substituting the values of €y and €¢ in Equations A.7 and A.8, the

expressions for 6rand 65 will be modified as

_er 1 4 E G _ Cz
S = ('-Y =3 STr Sl - .. (A.18)

and
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ey Lo
1o 2
RET-: N ol

+
-7 -7

The cace of solid cylinders

In order to evaluate ¢ and ¢, in the general expressions for Or
and Ge the boundary conditions for solid cylinders are as follows:

Ucr;,r:O = 'O

o‘cr)lr; g = 0©°

where "a" is the radius of the solid core.

[ _{ea+y 1 (F C _
U lr=o ‘{—'—* B = ST.rAdr +C|r+—§z = O
a-m FJo r r=o0
The first term in the expression for U(r) has an indeterminate form.

r=0
The application of L'Hospital's rule will give its value as zero at r = 0 and

hence to satisfy the first boundary condition,

02=0

To evaluate the second constant, substitute r = a in Equation A.18

and the result will be

a
T r.dr

o

Ci _ ’+'{.
(1-27) =

X -

[E g )

1
I
g 2

Introducing these two constants in the Equations A.18 and A .19 gives
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. (A.20)

o
/_T

Q
_,)\m
N
—
& |-
<_._./'7
—101
~

Q

i

|

il Baet
N

("7
40
~
Q.
L=

Q
|

and
< E

Go = Q"

The axial stress Oz in terms of radial stress and circumferential

(o]

__1 a ~r -
EZST.r.dr }}Trdr—-J._‘(A.ZI)

stress can be given as
Gz = Y (6F +68) — XET

Substituting the Equations A .20 and A.21 in the expression for Gz

_ 3 B

Gz = ¥ _2_5 I T-r.dr — LET - XET

(-v) &%), a-)

O d
’ 65 — 20(E¥H S T.r.dr — _O(_ET_‘ (_L + l)

‘ G-v)a* Jo (-7 \¢-7)
or

E d %
6z = okl {——Zj S Trdr —
-1 @ Jo e (A.22)

Introducing the values of constants C;) and Cq in the expression for U(r),

Equation A.15, gives

 ~a N e
T o [znr \rrar s g {rrad

| (_ a2 .(A.23)

Ulr)=

o ) -



69

The case of a hollow cylinder

The constants Cj and C, in the general expressions for Gy and

Os can be evaluated by using the following boundary conditions for the hol-

low cylinder.

ey =0
G ¢ )lr:a

Cr cr)lr:b =0

where a - the inner radius of the single hollow cylinder, and

b = the outer radius of the single hollow cylinder.
Hence,
E C° E ]
— X { C C
GFCO’ = ——-“zST.r.dr+ ! ~_22 =
Ir=a G-y 4 )y G-v) ((-27) d
gives
& — _C_Z'_ = O
(1-27) az e i (A.24)
At r = b the radial stress is given by
~XE | [P E /¢ _C
GFCV)' :-“__{—'_'z(T'r-dr'F———{:'g""g-z%
r=b  (-Y1) b ) =D\ 5 (a.2s)
Using Equation (A.24) in Equation A.25
x E 1 P EC { |
Or CP " = , ' Bz\ T-r.dr & z (52“ ;a) =0
r= 1- J=1
L d =)
This will give
ECz .  KkE = a&° b
U_}_,{) (l‘“”{) B2 a2 SGT. r.dr ... . (AL26)



70

or
b
EC, E L&
L
(14"{)(1"21) (-7)(b-a") Ja ... (AL27)

Substituting Equations A.26 and A.27 in Equations A.18 and A,19, the expres-

sions for Or and Geo will be obtained.

— b r
X E | (rz__ az)
S (S T.rdr -\ T rdr
Gr () = I~ rztﬁbz_ i) &a r.ar &a ] ............ (A.28)
- b
_ XE 1 r2+62§ (" r2
Go (r) = 0_1) 2 ;z’——a'z ,T.rdr +\3T-r.dr— = (A.29)
= Jg a -

Introducing Equations A.28 and A.29 in the expression for the axial stress
6z = Y(O6r + Ga) — XET

gives the final result

xE

=3 _{ b
&z = ;7 7 _'2;_"”2 S T r.dr - T] (A .30)
(1_1) b -4 e ae o (AL

d

Substituting the values of C, and C, in Equation A.15, the radial deflection

1

can be given as

r ~ b -
Y &T.r.der (1-av’)r‘°‘+az\ - r dr
Ucr) = -7 ?_ 3 B> - a? Vs ... .(A.3])

An attempt will now be made to find out the radial stress at the

interface of two cylinders, the inner one being a solid core.
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At this stage discussion will be generalized for N hollow cylinders
with solid core at the center. The equations for the stresses will also be
derived for N cylinders.

The radial strain in an nt! cylinder will be

Une

€neg ~ T e (A.32)

The following relation is given by Au (4):

1 = = -
€ne =N -Tn + €n Oneg — ’{n (&rn +0zn) ... (A33)
n=1, 2, 3, - - - Nhollow cylinders

In this discussion the total stress at the interface will be the sum of
the stress due to the temperature and the stress due is initial interface pres-

sure.

Orn = C_O—rh)p + CGP‘n)T

and

Gen = ((SérOp + (Gen)t

where subscripts
p-denotes the stress due to initial interface pressure and
T-denotes the stress due to temperature only.

Tre following formula is given by Au (4):
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2 2
2 2
((5- )  Bn-. Rn+t (Pn — Pn) J. + Pnl?nz—‘Pn-anH
S m/p RZ, — RZ rt - Rngi — Rp.(A.34)
and
2 2 2 2
. _ Rn - Rn+t (Pnti=Pn) .1 4 PnRn — Pn+tRn+y
(.Geh)p—. Z 2 o 2 z
Rn+1 — Rn v Rn+1— R'n
.............. (A.35)

The following formulae for hollow cylinders can be generalized from the

preceding discussion.

- —- Qn+' r -
X 2_ 4 r
Grn)1 = pEn . | r—zﬁ—z % T. r.dr - \\ T.r.dr
.............. (A.36)
and
- 2 2 Rn-+1 r =~
T f-1n 2| Rnt+1—Rn Jgn Rn B
.............. (A.37)
The total stresses become
2 2 2 2
Rn . Rn+1t (Pn+t = Pn) 1 . Pn.Rn — Pnts. Rny
= z
orn = R+ — RA r RAt1 — R
c -, 2 Rn+1 r -
O . AN P TI  T
1= Tn | Rewr-R6 J 2n Jrn B
.............. (A.38)

and
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2 2 b 2
. Rn-Rn# (Pn+1-Pn) 1 ' Pn. Rn —Pnti-Rny

Son = z 2 T2 - -
Rn+1 — RA r RN+ - Rn

R+t r =

+ *nfn 1 r______+2n ( T.rdr - R T rdr.Tr?

=Yn T R -Rn S o, IRn
.............. (A.39)

The solid core

The radial strain in the solid core is given by

) Us
€os =

The following relations will be obtained from Au (4):

1. Cos = KsTs + lEs [O"es - s (_5rs+5'zs3:[ .. (A .40)
where
6&rs = —p, + (OGrsdT ... (A.41)
and
Gos = —Pi +(Ces)r ... ... (A .42)

p; is the contact pressure or the initial tightening pressure and from the

preceding discussion

R r
L S T rdr- - g T.t’.dr‘J A .43
(E)YS)T = t'_f; [Q‘Z r2 o ( )

and
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X5 Eg

~ r
. ~—(Trdr+er dr - Ts A .44
(5-'95)_;:—' | - _{S '2' ._) o 2 3 A R (A.44)

Introducing Equations A .43 and A .44 into Equations A .41 and A .42 respec-

tively, and then substituting the results in the known relation,
Bzs = Ys (Grs + Gos) — As EsTs

gives the result

~ R\
E
Bzs = _'215 P, + Xs SL& T-rdr - T;‘ ... .(A.4D)

If all the N cylinders expand uniformly in z-direction and there is
no relative displacement in all the cylinders, the uniform strain in z-direc-
tion will induce uniform axial stress Es-€zg in solid cylinder in that direc-

tion. The modified value of 0zg will be

1*—7/5 RI Jo

where €zs is independent of radius r for all cylinders. To determine the

value of €7 for free ends with the above condition of no end stress:

R+t
S 27 r 6z - dr 82 Q0

Q

or

Ri — N Rn+1
% r 6zs dr + ) S s G_én dr = o)
Jo ion=1 J9Rn v (A4

R =
Grs = —2¥sp, + o rﬁ \ TrdroT J + Bs: €25 - (A.46)
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The value of the first integral in Equation A .47 will be found by
substituting the value of Ozgas given in Equation A .46 and then performing

the actual integration of every term gives

R 2,
2 2 T‘r_d
Xﬁisrdr: = TsPR A+ JEs€as Rt XsBs o TN (A.48)
o

The value of the second term in Equation A .47 can be obtained as

follows:

Introducing the values given by the expressions for ©rnand Gan

(Equations A .38 and A.39) into the generalized relation

ozn = Yh ( 6rn + Gon) — An-En-Tnh

gives

- 2 2
Pn. Rn — Pny "Rnil . on En z2Yn X
Rnti - RA - Tn Riit - R

Ozn = 2Tn

Rn+ -
S T-rdr - TnJ + €zp En

Rn A (A .49)
Substituting the value of ©zn in the given integral
cRoti " Pn R — Rnt1=-Rnsp Rt
\ 6zn-rrdr = 2¥Tn | — P2 Pz 1 ( rdr -+
J en Nt — Xn J Jen .
Rn4i =~ 27n n+{
& €zn En — rdr + %n En z z g [
Rn - '{n __-QVH—I —Rn 2n
Rn+ Rn+1 =
K T.T. dr] X r.dr~& T.r.dr
jRn B U PN (A .50)
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equals
- 2 2 7 E T, 2 |
Yn [PnQn - Pn+|'Rn+|J ~ haezn LQnH - Rn
PQH‘H
= S (A.51)
Rn

Substituting Equations A.48 and A .51 into Equation A.47, and then trans-

posing the terms containing €. on the left-hand side, gives

. 2 — R
2z N X< E S T r.dr +
EsR+ S En(RAt -RA L = Yo
Nn=1{
Y’N c RNt 2
) SnEa\ redr 4+ 15 pi R
—n=1 Jen

— N
> Yn (Pn-RA = Prss- Rzmi)
—nN=1

Introducing Equations A .41 and A .42 into Equation A .40 gives

P, C1—Ys) I
= o(sTs - R — + E
)

(Co)y — 15 (6v) 1
s : -

eE):‘S

_ Ys Uz

Es
Substituting the values of (Gé)r ,CG'Y‘_)T , and ©zs iato the above

equation:

P, (1-7s) { X4 E i x
€ = g I - A~ 7 — X 22 2
os °F Es a Es Q"Ys) Ri
R, ’ ¥ | y
go T rdr + o SOT r dr —Ts>—Ys Eﬁ
R r -
1 {-v ..{
K T.r‘.dr““‘2 T.r.dr> - 2 l-2pts +

s £ E {g_'fé XE‘I
I___Ys +‘ SEZ + |:g.2 . Tr dr‘—Ts
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In simplified form, " X ~ ZYSZ A, ’
= - - 2 -
Eos = "E’l; [1 Ts ¥ J t Li l—-’]/s] Rlz
3 o, ("
g“r.r.dr + (H-Ys)x—f’gr-r-dr"ysez
) (= 7s) " Jo

Substituting this value in the expression for the radial deflection

Ug, and then rearranging: Q
C I

e Cr) = H"'sxo( 21_21)-5-23T.r.dr+
= 1- s ? R

~
o

r 1 rpR
I\ T rdr | = — (1+7)(1-27) ¥ 15 €2
r Es
(o]
where P) is positive in the negative r direction.
From reference 1,

Un= €Egn''l

€Eon= XnTnh + 'é‘ l:é—en = Tn (6¥n + Gzn)]
n

An Tn + ’én [C %”)P + CG—QHJT —Tn [{(G_r”)p

+ (GFn) 1 ‘(‘ + Gin]]

| —
R [{(e-en>p = tn (E7n)p +

n
Tn 6zn
En

(Cﬂ'”)-r = Tn Cs_r‘n)r S] =
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Substituting the values of (Gén)p (Gén)T (GFn)p, ( 6rn)p and
Gzn (equations 34, 35, 36, 38, and 49) in the above expression, circum-

ferential strain (&€ ne) in the n" cynlinder is obtained as:

_ L [{-RrA . rA 1
€on = %nln + En [_{ Me (Ph+y — Pr) P

Rn+1 — RTH

+ Pn - er\ - Pn4y -Q?FH-1 } Y S Qy21 . Q2n+| X
z -ny o
Rn+1 — RH L Rﬁﬂ - Rn

2 2

CPH—H —-Pn) ‘:72 + Pn.F?nz—— Pn+y - Rn+y }] +
Rnys — R%

{dnEn ’/I‘i‘ Q‘: gph-f-] {

2 w—
G=1) \r* (Rhyy = Rn) ), 7797 * 2

1
En
(°<n E - RA
Trdr-T)§ -7, ”( n
S )} L (D (RS- Rn)><
- ] Bfern{r
\ nL [ Qn-H—Qn
f

2tn T " (p?+r'”dr T En

L(l 'fn>(‘2n+| Rn) an (I"Yn).

Ty = AnEnTn+ éan_%J

By simplifying,
2 2
R'n —Rn4y »

€on = =~ —z———— (Pn+1 —Pn x Loy +Tn o
Rty ~ RE \ ) re En
2 2
Pn'pﬂ “pnﬂ'QnH( > s ) I+ Tn

- 2
.xfﬁ(‘Trdr+ ’*”‘50—2ﬁo+ EP} +
2

l._
‘)Qn n | r
=N R+t y
Z T r.dr - hEZl’]
Rnt1 - Rn S
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The radial deflection in the nh cylinders will be
Un =1r- Een

The radial deflection at the interface will be the same, i.e.,

USCI’)?‘:—Q| = UT(F) r= R,
or
Rr ('El B
r 1
‘+‘{S-°(5'[(1—215)' I S T rdr+ — \ Tr'er
1—15 Rr‘] [e) R’ JO
P I+ 7
~R, (14 7s)(1-2%5) - L — Ts R, € = e, o 5 ( )
Es Q! E’
2 2
Ry Ry (or b)) + R+ 1) (- 27) (PR PRy ) %R
Rs — Ry E, T RZ2-R? Ry -R:
- 2 Ra
-+ 7) l>Q —2%) + —Q—'z g T.r.dr — Ry, €z +
- Re' 1 Jry

R
tr7) = ¢ "Tordr
G- 7)) R2 g,

On simplification, this will give

[ O+%)0-27) 2, 2 2 I+
B z 2
’_. Es Rl CRZ RI) + Ell RZ . R' +
F+ %) (- N
C 1) 27!)‘ R? p, + 2+T1)(-7) u'?;R,z P
E, ‘ B Ey i =

Ri
= - 2 (1+ Ys)(_R;—Q.Z)o(s S T.r.de +
Q
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Rz

2
2(1-{- f,)- oAy R|2 XT. r.dr + G_z Q; (Q;_?— Q,z) CTS - T|_) ..... (55)
Ry

which could be further simplified as

aoP| + bPy = D

where
1+ - 1= 27, . 7,
a, B CR )R,z (Re-RZ )+ 1T o2 o2
Es
!
-27
+Q+y,)(n .)_R'4
E)
2 _2
by= 2 (1+7) (U=-7M)R, - Ry
Ey
and

R
1S3
QZ 2 2 2
+ o R S T.r.dr + €Ry (Rz-Ri)(¥vs~T)
R
But in the present discussion n = 1 and outside pressure P2 = 0,
Hence,

ao Pl = DO

When the value of €z will be substituted in the expression for D,
it will contain the terms of Py and Pp. Substituting Py = 0 and transposing

Pl on the left hand side, the modified Do, i.e., D will be

L
o b4



Now let

and

where
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2
Dg' = 2 { Xs Es (QZ —Q"z) le CTS_Y
RF (Es —£,) + E RE

2 () x

2 2. Ry
CRZ—Rl)dxsj A R T r.dr + 2{-°<|E| X

<o

. | 2 2

- R, R Ys — 7

(R _ D R (s 1) + 2 (1+7) "‘n‘Q.Z
Q\ (_E5 "E|)+El R;

R2
x( T.r.dr
')RI .....

|
Bl - 2 {Go - s Eg — Q+1's)(z=2§—?f’)o<s}

I:o' = 2 {(G:) 0(,E| + 2(|+T,)C<X|><R|2)j

(ra" = R (RP) (P - 1)

RZ (Eg— Ey)+ E\RS

Gy’ -

Introducing these expressions in equation 56, the modified Dy’

will be given as

R 1 o Rz

i
Dy’ = Eo' \ T. r.dr + Fp }R T.r.dr ... (57)
-.)O 1

The modified a5 and b, are obtained as

N YS)-C"ZT-") R’ (R -r%) + £ (ri-r))

ES El

a

(0]
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e 1) C-21) 4 2RI (RE-RD) (- 1)

R -
+ YT T T 2 e 58
& R (Es-E D+ E R, (58)

and

2 2 2 2 2 2
2 (1+7)(1-7) Rz - Ry Ry. R -7 (Ry-R)(¥g-T)

b - - 2
o By RZ2(Es.E) + E, R]
4 6
ao' has units of f - z _fE__
b/ ft4 1b
and
D,' has units of ci? Lo -2 . gt
0
F
Therefore,
Do’ . b . . .
P = has units of —~ , which agrees with the actual units
ag' fc
of Pl .

The heat transfer coefficient at the interface will be taken as
c.61
he = hCo - r= Rl ..... (59)
where h. is the initial heat transfer coefficient before the external temper-
ature is applied at the outer periphery of the outer hollow cylinder. The

stress in equation 59 is given by

Gy (FD = — Py + (o
‘ F= R, 1* Cordr F=R,
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Therefore
Do’
he =h. o+ C. P} = h +C e
o
o . . . C E
Substituting the values of dy’ and a," and letting —— =Cjand
ao'
C F,' ; ; S
"o = Co in the resulting expressicn gives
a L}
° Ry X
he = heo + Cy g T.c.dr 4 Cy S T.r.de ... .(59)
0 R}

The above expression clearly shows that h, depends upon the tem-
perature distribution of both cylinders.

The initial temperature of the composite cylinder is taken as T,
and it will be treated as reference temperature. The stresses will be cal-
culated from this reference temperature and hence at temperature T,

The assembly will be assumed to be in stress free state,

Therefore, equation 3.71 can be modified as

Tg = the temperature distribution in the solid core, and

Taa = the temperature distribution in the hollow cylinder.
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ABSTRACT

The object of this thesis was to find the influence of pressure
dependent contact resistance on the temperature distribution in solid metal
bodies having rectangular and circular geometries.

A rectangular plate extending infinitely in two directions with one
face being held against the rigid insulated wall and the other being held
against the rigid wall with infinite conductance and a constant temperature
difference from the plate was considered. The contact resistance at the
non-insulated face was considered to be dependent on thermal stress pro-
duced at the face due to the temperature gradient.

For investigating the problem in circular coordinates, two concen-
tric cylinders, the inner one being a solid cylinder, were considered. The
outer periphery of the outer cylinder was subjected to a step change in tem-
perature. The contact resistance at the interfact of two cylinders was con-
sidered to be dependent on thermal stresses produced by temperature grad-
ient,

The integral method was used as an approximate method to deter-
mine the temperature distribution in both the cases. For obtaining numerical

results, computer programs were prepared for both the cases.
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