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CHAPTER I

INTRODUCTION

In the usual therm al s t r e s s  analysis of a body, the s tre s s e s  a re  

found fo r a p rede term ined  tem pera tu re  d is trib u tio n . In p roblem s involving 

com posite m a te ria ls , th e rm al contact re s is tan ce  between m a te ria ls  can 

significantly affect the tem p era tu re  d is trib u tio n . The contact re s is ta n c e  is 

norm ally  a function of the contact p re s su re  and therm ally  induced s tre s s e s  

can affect the te rm p e ra tu re  d is tr ib u tio n . Thus in com posite bodies the 

th e rm al s tre s s  problem  and the heat tra n s fe r  problem  may be coupled and 

req u ire  a sim ultaneous solution of both p ro b lem s.

The purpose of th is th e sis  is  to investigate th is condition and d e te r ­

m ine the effect of p re s su re  dependent contact re s is tan ce  on the tran s ien t 

heat tra n s fe r  in com posite bodies with tim e varying th e rm al s t r e s s e s .

This thesis w ill be concerned p rim arily  with the m athem atical a n a l­

y sis  of the problem  which finds tem p era tu re  d istribution  in two contacting 

bodies with p re s su re  dependent contact re s is ta n c e . Two case s  w ill be co n ­

s id e red . Tne f i r s t  case  considers  the tra n s ien t heat conduction in rec tan g u la r 

co -o rd in a te s . The second case w ill deal with the tran s ien t heat conduction in

1

c irc u la r  co -o rd in a te s .
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The contact re s is tan ce  is significantly h igher in m a te ria ls  having a 

h igher coefficient of conductivity so the following d iscussion  w ill p rim arily  

consider m etal jo in ts .

The influence of the contact re s is tan ce  is im portan t in many heat 

tra n s fe r  p ro b lem s. It is  p a rticu la rly  im portan t in the design of high speed 

veh icles like supersonic je ts  and rockets w here heat tra n s fe r  o r  therm al 

consideration  becom es an im portan t c r i te r ia  in the design . In m odern dev el­

opment, in the a re a  of heat tra n s fe r , it is  not a prudent assum ption  to 

neglect tem p era tu re  drop along the jo in ts, w here the tem p era tu re  gradient 

is  h ig h .

In norm al heat tra n s fe r  p rob lem s, where two contacting su rfaces 

conduct the heat flux, it is usually assum ed that there  is no tem p era tu re  

drop a t the in te rface . Apparently i t  seem s that no contact re s is tan ce  would 

be p re sen t a t a p e rfec t join t, but a carefu l m icroscopic  observation of a lm ost 

a ll the su rfaces rev ea ls  many su rface  a sp e ritie s  which when in contact c r e ­

ate many voids o r gaps in the joint..

1 and 2 - -  Two m ating s u r ­
faces

voids o r  a ir  pockets

A - Contact between a sp e ritie s  
on both the su rfaces
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As shown in the sketch, when heat flux p a sse s  from  one m etal to 

ano ther through the join t, the heat flux concen tra tes on the a re a  w here 

a sp e ritie s  of the two su rfaces a re  in con tac t. Since m etals have high conduc­

tiv ity , the voids containing a ir  have a com paratively  high re s is ta n c e  o r low 

heat tra n s fe r  coefficient, and a very  sm all am ount of heat flux p a sse s  through 

them  convectively . This converges the heat flow lines to very  sm all con­

tacting  a r e a s .  These voids in c rease  the overa ll contact re s is tan ce  of the 

jo in t and an appreciab le  tem p era tu re  drop occurs in the jo in t.

T ie  effect of the therm ally  induced s tre s s e s  on the heat tra n s fe r  

a t the jo in t can be v e ry  significant. F o r exam ple, two m etal p la te s  which 

a re  in contact with each other and whose free  faces a re  held against the rigid 

supports , w ill be considered .

In the s tre s s  free  s ta te , contact re s is tan ce  of the joint w ill be quite 

high, due to a ir  pockets in the jo in t. If the p la te s  a re  heated, the therm al 

expansion takes p la ce . If th is therm al expansion is  obstructed  by rigid 

supports , th e rm al s tre s s  is se t up a t the con tac t. T his th e rm a l s tre s s  

w ill v a ry  with the tem p era tu re  of the two p la te s . T ie  varying th e rm al s tre s s  

a t the joint v a rie s  die contact re s is tan ce  which affects the tem p era tu re  d is ­

tribution  of the p la te s . As the th e rm al s tre s s  a t the joint in c rease s  with 

tem p era tu re , the a rea  of m e ta l-to -m e ta l contact in c rease s  and the volume 

of a ir  pockets gets sm a lle r  and s m a l le r . Since m ore and m ore heat flux 

p a sse s  through m etal dian p a sse s  through a ir  pockets convectively, the co n ­

tac t re s is tan ce  d e c re a se s .
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Many em pirica l re la tions have been estab lished  experim entally  

between contact p re s su re  and contact re s is ta n c e , but a lin e a r profile  w ill 

be selec ted  since th is p ro file  se rv es  the purpose of investigating the p ro b ­

lem  m athem atically . Even though the profile  taken is very  sim ple, it 

includes the physically  estab lished  fact that contact re s is tan ce  d ecreases  

with increasing  therm al com pressive s tre s s  at the jo in t.

hi the f i r s t  case  of rec tangu lar co -o rd ina tes  for the m athem atical 

investigation, the flat plate extending infinitely  in both the d irec tions with 

both the faces held between two rig id  w alls w ill be co nsidered . One of the 

faces is  insulated and the o ther face is exposed suddenly to tem p era tu re  0 o , 

h igher than in itial tem pera tu re  0 oo of the p la te , and heat tra n s fe r  occurs 

from  the source a t Qo to the wall a c ro ss  the jo in t. As seen  before, th e r ­

m al com pressive  s tre s s  w ill be set up a t the in te rfaces .

In the second case , to investigate the problem  in c irc u la r  c o ­

o rd inates, two concentric cy linders with the inner one being solid w ill be 

co nsidered . The axial and the angular tem p era tu re  v aria tion  w ill be neglected 

in th is  p ro b lem .

Tins leads the problem  to a one-dim ensional analysis in the rad ia l 

d irec tio n . Relative d isplacem ent between two cy linders is  not allowed and 

both the cy linders a re  assum ed to expand uniform ly in the ax ial d irec tion , 

thus giving r is e  to the uniform  ax ial s tra in  as  well as ax ial s tre s s  in both the 

c y lin d e rs .

The com posite cy linders a re  subjected a t the periphery  of the outer
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cylinder, to a suddenly applied tem p era tu re  0 0 , being d ifferen t from  the 

in itial tem p era tu re  Qco . The propagation of heat flux in the rad ia l d ir e c ­

tion w ill set up therm al s tre s s  a t die in te rface , thereby affecting the con­

tact re s is tan ce  at the in te rface .

In both the problem s the su rfaces a re  subjected to a step change 

in tem p era tu re , and the heat flux w ill gradually  propagate in one d irec tio n . 

The tim e taken to reach  the steady state  w ill be divided in two p a r t s . The 

tim e taken by heat flux to reach from  one su rface  to the otiier surface will 

be denoted as  f i r s t  dom ain. The m ore incom ing heat flux will in c rease  the 

tem pera tu re  of die o ther su rface from  the in itia l tem pera tu re  to the final 

steady state  tem pera tu re  and this constitu tes the second domain of the p ro b ­

lem  .

In the above two problem s the tem p era tu re  d istribution  will be 

found by the in tegral m ethod. In using die in teg ra l mediod it is  requ ired  

f i r s t  to find the governing in tegral equation. F o r m ulti-d im ensional p ro b ­

lem s with constant p ro p e rtie s  the in teg ra l equation, as given by A rpaci 

(1)*, is

1 §0 
cx a t ) dv 0. ................(M)

The next step is  to se lec t the tem p era tu re  profile , satisfy ing the 

boundary conditions of the p rob lem . The substitution of th is profile  into

^Numbers in p a ren theses re fe r  to the L ist of R eferences.
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the governing in teg ra l equation w ill lead to the d ifferen tia l equation with 

tim e a s  the independent v a ria b le . This d ifferen tia l equation may be lin ea r 

o r  n o n -lin ear depending upon the th e rm al p ro p e r tie s . The solution of th is 

governing d ifferen tia l equation gives the req u ired  tem pera tu re  p ro file .

H ie exact solution for a p ressu re-independen t contact re s is tan ce  

in the f i r s t  case  is  available in ch a rt o r tab u la r fo rm . In the case of p r e s ­

su re  dependent contact re s is ta n c e , the m athem atical com plexity and d iff i­

culty  in a rr iv in g  a t its  exact solution do not tem pt the p re sen t investigato r 

in th is a rea  to tackle the problem  by exact m ethods using d ifferen tia l c a lc u ­

lu s .

So fa r as the au thor knows, no exact solution technique has been 

developed. H ie m ethods like varia tional calcu lus, finite d ifference ap p ro x i­

m ation, and in teg ra l m ethods which a re  re la tive ly  le ss  rigorous and m athe­

m atically  com plex, but s till give re la tive ly  good accuracy  acceptable fo r 

a ll engineering pu rposes, seem  m ore p ro m isin g .

H ie reason  why the in teg ra l m ethod is specifically  used in the above 

prob lem , its re la tiv e  m e rits  and d em erits , its  rapid  developm ent, and its  

application in the a re a  of heat tra n s fe r , w ill be justified  in the following d is ­

cussion  .

If the tem p era tu re  of the solid v a rie s  over a wide range, the th e r ­

m al p ro p e rtie s  becom e tem p era tu re  dependent and heat is t ra n s fe rre d  by 

conduction as  well as rad iation , which w ill give a n o n -lin ear governing equa­

tion and n o n -lin ear boundary conditions . H iis  difficulty n ecessita ted  ea r ly
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investigato rs  to develop a new, ve ry  sim ple, and com paratively  accu ra te  

m athem atical technique fo r solution, known as  the in teg ra l m ethod, by 

which approxim ate solutions to n o n -lin ear tran sien t heat conduction p ro b ­

lem s could be obtained.

The in teg ra l method of solution fo r heat conduction p rob lem s does 

not req u ire  the p roblem  to be linearized  because it is flexible enough to 

encom pass a ll the n o n -lin ea ritie s .

This method is so v e rsa tile  that a lm ost any com plicated heat t r a n s ­

fe r  problem  can be solved by approxim ation giving accuracy  acceptable for 

engineering p u rp o ses . This method can a lso  be used to obtain the ap p ro x i­

m ate solutions to lin ea r problem s with com plicated spacially  dependent 

th e rm al p ro p e r t ie s .

In the th esis  problem  die governing equation itse lf is  lin ea r but 

no n -lin earity  is  introduced in the boundary condition, due to p re s su re  depend­

ent contact re s is ta n c e .

H isto rically , the in teg ra l method was f i r s t  used by Landahl to solve 

the diffusion equation

y r  _ a r  x > o
01 ax* ~ at t  > o

in the field of b iophysics. He selected  a sim ple lin ea r p rofile  to be used in 

the in teg ra l equation fo r his p ro b lem . He a lso  used an exponential p ro file

but the end re su lt was not considered  to give significant im provem ent over



the re su lt obtained using a lin ea r p ro file .

A m ore  sophisticated  approach was adopted by the R ussian author 

Veinik in applying the in teg ra l method to a g re a t num ber of heat conduction 

p rob lem s by taking polynom ial p ro file . None of these early  investigato rs 

showed the accuracy  of the m ethod.

A very  rigo rous m athem atical tre a tis e  is given by L . V. K antoro­

vich and V. I . Krylov (2). They took the polynom ial profile  o r c irc u la r  

p ro file  to satisfy  the boundary conditions. They also  tr ie d  to show the te c h ­

nique fo r h igher o rd e r approxim ation, in the in tegral method, to ap p ro x i­

m ate the in teg ra l solution to the exact solution m ore a cc u ra te ly . They 

suggested two approaches to reduce the e r r o r s  in the approxim ate solution 

a t the points w here maximum d iscrep an c ies  a re  suspected .

The f i r s t  approach w as to consider "n" re la tions to be obtained, 

fo r the n*“ o rd e r approxim ation, by m ultiplying the in tegrand of the in teg ra l 

form ulation of the heat conduction problem  by continuous but otherw ise 

la rge ly  a rb itra ry  function. M athem atically  it can be rep resen ted  as

\  O r
J  V

i = 1, 2, 3, 4 , ------------- N

The above approach has its  roo ts in the calculus of v a r ia tio n . The 

second approach was based on satisfy ing  the d ifferen tia l equation.

-  i . | T )  FiCVJdV = 0

The tre a tis e  of Kantorovich and Krylov gives a very  good m athem atical



9

justification  to the usefulness of the in teg ra l method but it does not justify  

p ro p e rly  its  use in the a re a  of heat t ra n s fe r .

Goodman (3) has justified  v e ry  c lea rly  the im portance of the in teg ra l 

method in the a re a  of heat t ra n s fe r .  He has given the in tegral solutions to 

m any heat tra n s fe r  p rob lem s and has shown that a re la tiv e ly  good accuracy  

is given by the in tegral m ethod .

So fa r  a very  good m athem atical background has been estab lished  

fo r in teg ra l methods but they a re  not used as extensively in the field of 

engineering  as the o ther approxim ate m ethods.

In re fe ren ce  (1), the in teg ra l method is  shown to give accu racy  as 

good as  finite difference methods with le ss  m athem atical rigo r and sk ill. 

M oreover, re su lts  a re  in m ore com pact and generalized  fo rm , applicable to 

a v a rie ty  of heat tra n s fe r  p rob lem s of the sam e catego ry .



CHAPTER II

FLAT PLATE

This chap ter co n sid ers  the case  of a fla t plate extending infinitely 

in two d irec tions with the faces held between two rig id  w a lls . One face is 

insulated and the o ther face is suddenly brought into the contact of a rig id  

wall having infinite conductance, capacitance, and a uniform  tem peratu re  

0 o  . The contact between the plate  and die wall will give the contact r e s i s t ­

ance a t in te rface . As the p late is heated , the th e rm al expansion w ill take 

p lace . This expansion w ill be obstructed  by the two rig id  w alls, setting  up 

the therm al s t r e s s  in the plate  and thereby changing the contact re s is ta n c e . 

The above problem  will be divided into two d o m ain s .

I . FIRST DOMAIN

The propagation of the heat flux from  the rig id  wall through the con­

tac t re s is tan ce  at in terface, and up to the insulated face, constitu tes the 

f i r s t  domain of the p rob lem . In the one-dim ensional analysis  of the problem  

co-ord inate  system  will be such that the d istance in x -d irec tio n  will be m e a s ­

ured  from  the moving boundary of a variab le  contro l volume as shown in F ig ­

ure  1. The control volum e, which has a width To(t), includes the heated

10
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F ig . 1. - -The f i r s t  domain of rec tangu lar case 

(1) A rig id  w all with infinite conductance; (2) a flat plate; (3) v a r ­

iable control volume; (4) rig id  insulated w all.

The assum ed lin ea r re la tion  between the contact conductance h e  , 

and the norm al s tre s s  ©x is

he =  hco -  C (Tx

The therm al expansion in the d ifferen tia l elem ent is

d u  =  Tco) d x   (2 .1)

T herefo re , the total lin ea r s tra in  in the x -d irec tio n  in the variab le  contro l



volume will be

12

pToCt)
= kt = 1  I a (T- Tco) dx

L L J o

The s tre s s  is  given by 

t o C t )
F I

6 x = - I  U  CT-Too) d x
J O

T herefo re ,

r ToCt)
h co + \  CT-Tcx,)dx

Jo

(2 . 2)

(2 .3 )

(2 .4)

2 .1  In tegral form ulation

The generalized  governing equation fo r in tegral form ulation for 

a given control volume is

O b -  s ’ | { ) d v  =  0 ( 1 . 1)

and it w ill be used to derive the governing in teg ra l equation fo r f i r s t  dom ain.

In the case  of fla t p late  the a rea  rem ains constant but the depth v a r ie s .

T herefo re  Equation (1 .1) becom es

-ToCt)
\  ( v 2r
J o

i . S I  ) d x

or

I t  ( T - T4 d>
J  a

=  VT

0

x ~ ct)

x - O
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But the heat tra n s fe r  at the moving boundary of the variab le  co n ­

tro l volume is  z e ro . Hence,

VT | x = o =  O

T h erefo re , the final form  of the governing in teg ra l equation is

d  f to it)
j  \ CT- Tco) dx = a

do

S r
ax X =  To(t) (2 .5)

H ie boundary conditions of the problem  a re :

1 . Tlie heat tra n s fe r  at in terface gives

dT
0X X= To Ct)

=  h e  [ T f  -  T  C T o C t ) , t a ] (2 . 6)

2 . The moving boundary will have zero  tem p era tu re , i .e  .,

C T Cx' t:> "  To° 3  fx„ o  ~  °  ...................

3 . No heat tra n s fe r  a t moving boundary gives

S I  I = 0
9x lx= o ...................

(2 .7)

( 2 . 8)

In th is problem  the tem p era tu re  varia tion  in the f irs t domain 

approaches not a known steady state  tem p era tu re , but an unknown in itia l 

tem p era tu re  of the second domain of the p rob lem . In such a case , unsteady 

tem p era tu re  profile  cannot be constructed  as in die case  of the steady sta te  

p rob lem . A somewhat different approach will be pursued  in constituting 

the unsteady Kantorovich p ro file , which req u ire s  the selection of functions
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(polynom ial, c irc u la r , e tc .)  satisfy ing the given boundary conditions.

Although the selection of the o rd e r of polynom ial is  to a la rg e  

extent a rb itra ry , a parabo lic  tem p era tu re  profile  w ill be p re fe rre d  to get 

f i r s t  o rd e r approxim ation to the p rob lem . T herefo re ,

T C x . t ) - T c o  =  Ax2 + Bx + C ........................ (2 .9)

F or the sake of m athem atical convenience, the analysis  of the p ro b ­

lem  w ill be trea ted  in d im ensionless fo rm . Following d im ensionless p a ra m ­

e te r s  will be u sed .

1. D im ensionless tem pera tu re  

TCx.  t )  -  Too
0  =

Tf Too ( 2 . 10)

2 .

9
X
L

( 2 . 11)

3 . D im ensionless penetration depth

'To CIO
To CD)

(2 . 12)

4 . Biot num ber

h Co ‘ L Bi (2.13)

5 . F o u rie r num ber

oc • t
L

Fo (2.14)
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To get the governing equation (Equation 2 .5) into d im ensionless

fo rm , it is re a rran g ed  as
sTo C t )  

d  V / 'T -  Tco L d n  — —  —  ^°° J
d t   ̂ V.Tf— Tc» J  ' L drj V If-Too /io 9 = To Ct)

Substitution of the previously  defined p a ra m e te rs  gives 
T0 Ct)

i \  e - d n  =  5  - ^
d t  V  ' L* dr, =  T o f t ; (2.15)

The boundary conditions in d im ensionless form  a re  given as

© C9 . t ;  1  ̂= 0 =■ 0 (2.16)

5 0  I
drj I1 7 - 0

=  0 (2.17)

The derivations of the above two conditions a re  obvious; derivation 

of the th ird  is shown below .

R earranging Equation 2 .6 with Equation 2 .4  in d im ensionless p a ra m ­

e te r s

d x V I f -T ot/ X= To Ct) hco  + c -e d
CTf - t9

ToCt)
' T-Tco
.Tf-Tc dx

Tf — Too _ T C To, t)  — Too
Tf — Too Tf-TcCO

gives

k  d e
L difj T0 Ct) >co

C-E cXCTf-Too) L f  T: “ ’ 
I ------- —  \  e d 9

J o
( l - S s )



w here 0 s
T C toC t). t )  -  Tco 

Tf— Too

The tem p era tu re  profile  in d im ension less form  w ill be 

=  A r?a + B r) + C

w here A, B, and C a re  functions of d im ension less tim e (and d iffer by a con­

stan t fac to r from  those in Equation 2 .9).

Unit of slope c:

lbf 1 °F  ft h f . f t . 0 F
Unit of c x —  x —  x x ~' x — _  = dim ensionless

ft2 °F  1 1 BTU

which w ill give

„  c BTUUnit of c =-————-
h r .  ibf°F

Let C- E-cX CTf-Too) L 
l<

= dim ension less p a ra m e te r DP

The th ird  boundary condition w ill be w ritten  as

d© I
3 9  19  =  ( 0

fZ  oCt) '
Bi + DP \  0 dr) 0 -O s). (2.18)

The coefficients A, B, and C in the equation fo r tem perature profile  

in d im ensionless form  w ill be evaluated by applying the above th ree  boundary

conditions. Application of the second boundary condition (Equation 2 .17),
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=  f  2 A n  + B) I =  O
3 9  1 9 = 0  ^  J  !i7 = °

w ill yield B = 0

The application of the f ir s t  boundary condition (Equation 2 .16),

0 ( 9 - y l r ^ o  =  A 9 2 + c  |7 = 0  =  °

w ill yield C = 0

T nerefo re , the tem pera tu re  profile w ill be given as

9  ( 9 , t )  =  A9 a (2.19)

Applying the in terface boundary condition (Equation 2 .18), gives

toCt)
2 Ai7 I9 - toCt) “  Bi + DP ^ A-9* 0)9 ( j  ~  A^oCt)J)

which upon sim plification yields the quadratic equation of the form

A2 DP  - t 5Ct) _  A DP- -  Bi-toCt) -  BtoCt) - 6 i  = 0

To reduce the com plexity of a lgeb ra , le t

c u

b t

DP • t 05 Ct)
3

DP - r& -  Bi r e t )  -  2 ?oCt)
3

= - B iC f



The solution of the above quadratic  equation in A will give

A =  l a ,[bl 1  J b‘ -  40l~ ’ ] (2 . 20)

The substitution of Equation 2 .20 into Equation 2.19

e  (.9 - Fo) =  1 J b < 2 ~  4-dl-CI *7 ................................ (2 -21)

F o r a v e ry  sm all value of c,(D P ~  0), no p re s su re  effect ex ists; hence, the 

convective boundary condition w ill be given as

S©
3 9  9 = To c t;

=  B i ( I -  O s )

T nerefo re .

2 A To (t)  =  8 i ( l -  A r / c t ) }

o r

A [ 2  fo  ( t ;  +  Bi • f 02 C t ) J  =  Bi

which w ill give

Bi

zfoCt) + B l - t f C t )
Cl
bT

hi the case  of p re s su re  effect

2011
bi ± j~b12 - 4 d1 cij

Expanding the d iscrim inan t in binom ial se r ie s
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—  h  ± C i -  i2 ai L ^ 2
4 CM - Ci +  - ]A 2 a l  L v ' 2 toi2

F or ve ry  sm all value of slope c, ~ 0, so te rm s  of power h igher

than one in binom ial expansion a re  neg lec ted . Only negative sign is  feasib le  

for the solution and hence

1 4 a i - C l  "1
A =

_b1 
2
— r i ­al L  2 br

or
£ i
bl

Henceforth in the following d iscussion  only the negative sign will 

be considered  (since the solution is  feasib le  only fo r com pressive s tre s s e s ) .

Substituting the tem peratu re  p rofile  from  Equation 2.19 into the 

governing in teg ra l equation

d C cx de
dt 9  L1 » ) r j -  f o ( t ) (2.15)

gives

£
G

w here

X

y

X ( t o )
y ■ dx 

'x =

A Zo\ t )  

I

(Xn dt
( 2 . 22)

A To Ct)

The in teg ra l (2.22) can be solved by num erical in tegration .



II. SECOND DOMAIN

When the heat flux propagates up to the insulated end, the f ir s t  

domain is com pleted . M ore incom ing flux w ill now build up the tem p era tu re  

a t the insulated face. The tim e from  w here the heat flux reaches the in su ­

lated face to when the steady state  is finally  achieved constitu tes the second 

domain of the p rob lem . The geom etry  is shown in F igure 2 .

F ig . 2. - -The second dom ain of rec tan g u la r case 

(1) A rig id  w all with infinite conductance; (2) flat plate; 

(3) rig id  insulated w all.

F o r th is  domain the governing d ifferen tia l equation will be obtained 

in the sam e way as for the f ir s t  domain; hence,



a re

w here

w ill be

w here

21

d
d t

© d  rj a  _ 6 e
if dq 9 = 1 (2.23)

The boundary conditions of th is domain in the d im ensionless form

1. The heat tra n s fe r  from  the insulated wall is z e ro .

6 9  -  0
6 9  9 = 0

(2.24)

2 . The tem p era tu re  a t the insulated face w ill be given by 

© C 9 . t ) | 9 = Q =  r « Ct>  (2-25)

CO is  the unknown p a ram e te r in the tem p era tu re  profile  .

3 . The convective boundary condition in the dim ensionless form

d o
drj

Jj3 i 4- DP ^  e d 9  J  ( | _  0 s ) (2.26)

T ie  tem p era tu re  p rofile  will be assum ed to be parabolic

© C9 - t )  =  A 9 2 t  B 17 + C (2.27)

, B, and C a re  the functions of the d im ensionless tim e .

The application of the f ir s t  boundary condition, Equation 2.24,  will

yield B = 0.

The application of the second boundary condition (Equation 2.25)
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9 (r?,  t j l r ^ o  (A q 2 + c )  |^ _  0  — ^

w ill yield C =

Tlie tem p era tu re  profile  w ill be

0  C9  . t )  =  Ar)z + t l

Applying the convective boundary condition

d©
d i)

=  [B i  4 O p j V d r j J  C ' - 03J)

Substituting the tem peratu re  p rofile

T herefo re ,

aA  = + DP' A
3

4 D p.r, J  ■?,_ a )

and hence,

2 A -  DP. A2 4
3

A £ ( i -  r f)  ^  -  (6 i 4- Dp.

+ ( l -  r . )  (B i 4  D R T |)

The a rrangem en t of the above equation in the quadratic form  of A is

0- r.) DP (Bi 4- DP. t ,

_  0  -  r , )  (B i 4- D p. TO =  O (2.28)



Let a , - DP
3

b 1 - ( i -  r , )  f -  ( 8 f + D P . r i J  - 2

c i  = - ( i -  r , )  ( s «  + p p  t , )

The solution of the quadratic  equation w ill yield

23

A =  —
R 2 a i

[ b ,  -  J b |2 - 4 a ,c ,  ] (2.29)

As seen in the case  of f i r s t  domain, the negative sign only will give 

feasib le  solution. The tem p era tu re  p rofile  w ill then be given by

0 ( 9 , t )  =  201, ( b|  ~  J b |2 _ 4 c , iCl ) ^  +  ^   (2.30)

Tiie substitution of the tem p era tu re  p rofile  in the governing in teg ra l 

equation w ill give the final in teg ra l form

f 1 d ( A + 3 T\ )  ex f  ,,
\   6 a  =  i* V   <2 -31)o 0 o

The in teg ra l can be solved by the sam e num erical technique employed

for the f i r s t  dom ain.



CHAPTER III

CONCENTRIC CYLINDERS

This chap ter considers  two concentric cy linders, the inner one 

being a solid cy linder.. Tne axial and the angular tem pera tu re  v aria tion  is  

neglected, hence leading to a one-dim ensional p rob lem . In this problem , 

a step change in the tem p era tu re  at the outer p eriphery  of the o u te r cy linder 

w ill be applied . Tne heat tra n s fe r  problem  w ill be trea ted  in the th ree  p a r ts .

1 . T ie  f ir s t  domain of the outer cy linder w ill be d iscussed  in the 

f ir s t  p a r t .  T i s  has little  im portance in this d iscussion , so fa r  a s  the actual 

problem  is concerned, because no contact re s is tan ce  is  involved. To p r e ­

serve  the continuity of d iscussion  it is  stated  very  b rie fly .

2 . T ie  second p a rt d iscu sses  die second domain of the outer cylinder 

and the f ir s t  domain of the inner cy linder to g e th er. This p a rt gives the te m ­

p e ra tu re  d istribu tions 0 i and ©s in the outer and the inner solid cy linders 

respec tive ly , to the tim e heat flux p ropagates to the cen te r of the solid 

cy lin d er. T e  reason  “why both the dom ains a re  considered  together w ill be 

c le a r  in the actual analysis of the p rob lem .

3 . T e  th ird  p a r t d iscu sses  the second domain of the outer cylinder 

and the second domain of the inner cy linder to ge ther. T ie  tem pera tu re  d is -
I /

tribu tions Q5 and 0 | in the solid inner cy linder and the outer cy linder re sp ec -

24
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tively  a re  de term ined , from  the point incom ing heat flux reaches the cen te r 

to the point the steady state  is achieved.
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The propagation of the heat flux from  the ou te r p e rip h ery  of the 

ou te r cy linder to the inner face of the sam e cy linder constitu tes the f i r s t  

domain of the outer cy lin d er. The geom etry  is  shown in F igure 3 .

F ig . 3 . --T he f i r s t  domain of ou te r cy linder 

(1) O uter hollow cylinder; (2) moving boundary of heat propagation; 

(3) inside solid cylinder; (4) T em pera tu re  d istribu tion  in the f i r s t  

dom ain of ou ter cy linder.

The generalized  governing in teg ra l equation fo r any con tro l volume v

( v 2a -  * •§ ?  ) dv = °

w ill be used to determ ine  the governing in teg ra l equation in th is c a s e . For

the one-dim ensional analy sis  of the problem  in  the rad ia l d irec tion , the
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a re a  through which the heat flux p a sse s  w ill depend upon the propagation 

d istance r  m easured  from  the cen te r of the inner solid cy lin d e r. 

T herefo re ,

Volume dV (r) = 2JTrdr 

Substituting dv in Equation 1 .1 , obtain

ToCt)
a
dt

ToCt)
0  • r . d r

!R2

cx r a §
d r (3 .1)

Rs

The heat tra n s fe r  at the moving boundary of the variab le  con tro l

volum e is  z e ro , i . e .

a©
a r  ToCt)

T herefore  Equation 3 .1  becom es

■a
Qt

(?2
e  • r. d r  —

ToCt;
(3 .2)

The above governing in teg ra l equation of the f i r s t  domain w ill be 

transfo rm ed  into the d im ensionless form  fo r the m athem atical convenience. 

Using the following dim ensionless quantities

Ti — Too
©, -

T -f-  Too
......................................... (3 .3)

r
9  = 9.z ......................................... (3 .4)

r 0 c t ; _  To CO ......................................... (3 .5)
R 2

a  • tFo —
R l ......................................... (3 .6)
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the final form  of Equation 3 .2 will be 

r  1
d  \  0 i  • n -  d n  =  — • |

d t  J fo C O  Sfe a •? '1  = 1  (3 -7)

The boundary conditions of the problem  a re

1. ©1 ( 9 .  fc9 l^ =  , =  1

The heat flux a t the moving boundary of the v a riab le  con tro l volum e,

i . e . ,

dGi I _ 0
2 - .......................... <3 -8>

The tem p era tu re  at the moving boundary of variab le  con tro l volume 

w ill be ze ro , i . e . ,

3 . e l O'?'*) \r)=. f 0 a j  =  °  ...........................(3 .9)

4 . Initial condition: 0 ( ( r ,  o )  =  o  ............................ (3.10)

A tem pera tu re  p rofile  in te rm s  of 9  will be assum ed in th is  dom ain.

R iF o r _ L  < .9  " C l  the parabolic  tem p era tu re  p rofile  is
R2

0 , ( q .  t ;  =  a  9 2 + b 9  + c

w here A, B, and C a re  the functions of tim e .

A, B, and C can be evaluated by applying the given boundary condi­

tio n s . T ie  application of the second boundary condition
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8 9 ,

9 9 n = To CO o

w ill yield

B - ~ Z A To (t) (3.11)

The application of the f i r s t  boundary condition

0 i C 9  '^0 — i ^

w ill yield

A+B  K  = 1 (3.12)

Applying the th ird  boundary condition

©I CO- O  lg= To Ci) ~~ 0

w ill yield

C = A To\t) (3.13)

Introducing Equations 3 .11 and 3.13 into Equation 3 .12, the value 

of A will be evaluated.

A =  — ----------->  (3.14)
( T o  C O  -  0

Substituting Equation 3 .14  in the Equations 3.11 and 3 .13 ,
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-  2 fo  CO 
B — — --------------a

( t o  C O - g

and

Xo C t )
C =  ~ ------------u

(ToCt;  -  13 2

When the values of A, B, and C a re  introduced into the actual profile , 

the re su lt w ill be given as

©, ( 19. t) = V) -  ?o ct;
f -  To Ct)

2
(3.15)
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When the in c reasin g  heat flux reach es  the inner su rface  of the outer 

cy linder, it w ill propagate fu rth e r, in c reas in g  the tem p era tu re  of that s u r ­

fa c e . F rom  the point when the incom ing heat flux s ta r ts  building up te m p e r­

a tu re  a t th is su rface to the point the steady s ta te  is  achieved constitu tes  the 

second domain of the outer cy lin d er. The heat flux propagates fu rth e r from  

the contact in terface into the inner solid cy lin d er. Propagation of this heat 

flux up to the cen te r of the solid cy linder constitu tes the f i r s t  domain of the 

in n er cy lin d er. The geom etry  is  shown in F igure  4 .

F ig . 4 . --T he second domain of outside cy linder and the 
f i r s t  domain of inside solid cy linder.

(1) O uter hollow cylinder; (2) inside solid cylinder; (3) moving bound­
a ry  of heat propagation in second domain of solid cylinder; (4) E n­
larged  view of tem pera tu re  drop at in terface; (5) tem p era tu re  d is t r i ­
bution in f i r s t  domain of solid cylinder; (6) tem p era tu re  d istribu tion  
in second domain of outer cy linder.
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The problem  fo r the com posite cy linder will be separa ted  in two

sections according to the tem pera tu re  d is trib u tio n s . The tem p era tu re  d is ­

tribution  for the inner solid  cylinder will be denoted by 0 s  and for the 

outer hollow cylinder by 9 i .

p lexity  of the convective boundary condition a t the in terface of the two cy lin ­

d e rs ,  i . e . ,

(subscrip t "s"  denotes the tem p era tu re  at the surface)

w here

he = h c o  — C • G7-s

hco = the heat tra n s fe r  coefficient in s t r e s s - f r e e  sta te  and 6 7 s  = 

the in terface rad ia l s tre s s  which is  a function of ©1 and 0 s  .

Some equations n ecessa ry  fo r the derivation of in terface  p re s su re  

have been taken from  reference  (1). The derivation of a ll n ecessa ry  form ulae 

is outlined in the Appendix.

The second domain in the outer cy linder

In th is p art the m athem atical difficulty a r is e s  because of the com -

(3.16)

The governing in teg ra l equation is

d t  \
Tt - r  d r  =  R 2 • <x, ■ 0 T

d r  r = R a (3.18)
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The d im ensionless quantities following will be used in the d im en­

sion less  analysis  of the p rob lem .

r
1.

2 .

3 .

9  =

Ti C r, to  —
Tf -  Too

R t  -  
R z

P

Fo  =
t  • o<(

Ra

II

Ra

loo

5.

The governing in teg ra l equation (3 .1 8 ) in d im ensionless form  is

1
\  ©i • 9 • ^ 9  _

d t /3 9  = *Rz

Tlie boundary conditions of the problem  a re ;

1. ©) Cq . t ;  9 =  ,

2. e, ( 9 • tj) Iq — /3 *=

w here Ti is an unknown p a ram ete r in the tem p era tu re  p ro f ile .

3 . The convective boundary condition a t  the in terface is

(3.19)

(3.20)

(3.21)

given by k |
3Ti
d r r -  Ri

h c C t is -  Ts s ) (3.22)

where.T-^ = the tem p era tu re  of the outer cy linder at in te rface,
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Ts = the tem pera tu re  d istribu tion  in the solid co re , and 

Tss = the tem peratu re  of the inner cy linder a t the in te rface . 

The above condition in d im ensionless form  is  given as

Se,
dr)

he ■ R z
(_Q\s  — 0 s s ) (3.23)

9  =  P  ki

Taking the value of h c from  Appendix Equation 60 and rea rran g in g  

Equation 3 .23 ,

hc R z Bi + c 3 \  e5-9-d9 + c4 ^ 0, • r; drj 
^ToCy

. . . (3.24)

w here new constants a re

C3
C, R 

ki

C4 =  Ca R, 
ki

(T f  -  Tco) a n d

Introducing Equation 3 .24 into Equation 3.23 gives

C 73 C 1
Bi + C3  \  ©s- 9  d 9  4- c 4 \  0 | • 9 ,dl?

d t o C t )  d P

3©i

^ 9 9 -  /3

* (  ©is “  Qs s )  . . .

T ie  tem pera tu re  p rofile  is approxim ated as

©1 (9 . t) =• Ar)z +89  + C

(3.25)

w here A, B, and C a re  functions of the d im ensionless tim e .

Applying the f ir s t  boundary condition (Equation 3 .21) gives



A + B + C = 1
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(3.26)

and applying the second boundary condition (Equation 3 .22) gives

A/32 + B/3 + C -  ?1 (3.27)

.Solving 3 .26 and 3.27 sim ulateously , the values of B and C a re  obtained in 

te rm s  of A . The re su lts  a re

B =
I -  t .
I -  p

A C I + p ) (3 .28 )

and

C =  —-----£  +  A/3
I -  p (3.29)

The coefficient A of the tem p era tu re  p rofile  w ill be found by using 

the convective boundary condition dependent upon the tem pera tu re  d is tr ib u ­

tion .

The f ir s t  domain of the inner cy linder

The in teg ra l form ulation of the f i r s t  domain of the inner so lid  cy linder

is  obtained as before;
To f t )

d \  ©5 - rj -dr)
d t  J  o

_. k z  <X3 0© s I

k i Rz2 c>r? 19= I3 (3.30)

The boundary conditions for th is dom ain a re ;

1. ©5 ( 9 - U 9 =  To c t ; (3.31)
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dQs CQ.tj
ar, 9 =

36

.......(3.32)

3 . dQs  CQ. t )  I
d t)  1 9 = y 3

=  h c £_2
k2

o r

3© s
dt7

(0 -t)
9 - / 3

k.
k2

y3
Bi + C3 f  0 3 17 dr/ 

d toCt)

+ 0 4 9 ' d 9 (0 |S  -  0 s  s) (3.33)

A parabolic  tem p era tu re  p ro file  w ill be taken fo r th is domain in

the form

0 s C t ) . t ) =  D r /2 + E 9  + F (3.34)

The constants E and F w ill be found in te rm s of D using the f i r s t  two 

boundary conditions. They a re

E =  - 2 D  f o 'c O   (3.35)

and

F — D To CO (3.36)

Introducing Equations 3 .35 and 3 .36 into Equation 3 .34,
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e s  C g .  t )  =  0 9 2  T  E g  +  F

-  Dg 2 L (- 2 D fo a)^ ■ g + D f j  Ct)

_ — • -> 2
-  0  | ^ 9  -  r o ( t )     (3 .37)

In the following d iscussion , the rela tionsh ip  between A and D using

in te rface  boundary conditions of both the dom ains will be estab lish ed .

A study of Equations 3 .23 and 3 .33 rev ea ls  that

59s CQ, t; 
dr) 9 =  /3

ki
ka

9©i 07. *0 
dr; 9 = /3

T h erefo re ,

-  ( 2A- 9  + b | 9= p )  =  2 D i p  -

fu r th e r sim plification w ill yield A in te rm s  of D

2 D O  ~ 'f'oCt)) 
/3 - I

-t 1 -  t ,
0 - / 3 ) 2

. . . . (3.38)

Let us use the in terface  boundary condition, Equation 3 .33 , to e v a l­

uate constant D

Therefore,

k\
k2

C4-

B i + C 3 9 5 9  d g  -b 

f o  Ct)

\  Q\ • 0  • d 9 
0/3

( © i s  -  © s s )
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2 D ( /3  - To 0 0 ) . k_i 
k 2

-f

{$
B«' +  C3  \  D  ( k)

ToCt)

T0 £tj) 19 dr}

A7* + { o ^ o _ A O + p ) j 9

+ p H  + »? d 7 ( t , - d ( 0-ToCt^j). (3.39)

Let us evaluate die in teg ra ls

r 13 -  2
i ,  =  \  6 -  f» a 9

’To Ct)
-  i

le t >9 “  71 + To Ct) T nerefo re ,

a /3 -  To Ct)

I, =  \  * ( 7 * +  K C t ) ) ]  ^

or

I , =
2 _ ' \  9 ?
4 3

To Ct)
p -  To Ct)

which in. sim plified form  w ill be

i ,  =  (  p  -  r °'t o ) x P + To' Ct) 
4  12 (3.40)

and

\  M '
°/3

3 + ( l - h
1 - p A 0+ B)| 9 2 + |  + Apj 19
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o r
1 2 = a o - & +  i— A * 0 -  f t 3 -  “ 0 + p ) 0 - ^ 3  +
2 4  1 3(i  ~pD

Ĉ I -  A D Q - f O 2 +  A p . Cl _  P2J  

2 0  “ PD 2

or
I 2

1 -  [34 _  Q  +  PD 0 " P 3.P + P £| -  |5Z3
4 3 2 -

Or, -  P O O  + PD

4

4 !]

G ~ r Q ( i - p 3D 

3  0 “ P )

............ (3.41)

s u b s t i t u t i n g  the vqlue. o f A in Eq. 3.41 frotn  Eq. 3 .3§

12 = D r b . k-£. ( A -
L 1 k, CP

0 - 4

@ ( i -  P ZD 
2

j  4

ft _  0 +  P ) 0 “ P3J  
4 3

4*

0 - * D jx[? -  ft4 _  ( H - p D O - p 3) 
4 3 +

Cl-  PD

Ci + p ) ( r , -  pd '
( 3 . 4 2 3

Let

m ,

n ,

1 ? 2̂ . ( P -* ct)J) I f  1 “  ft4 (I + PD 0  - p3D . p (1 - p2) 
1 ‘ o  " C A - o  ' ) [ “ '  ---------3 ---------+

~ f  I z S i  u  1~ ft4 CI+PD(i-P3_)
L 1 1 -  p  J 1 4 3

+ c r < “ / Q a  l  pp  j '

(  p -  rd cty)3 £ -  4 J

• - • * (3 . 4 33

f i j ± z £ ? ] +  j C '- ^ p g - p 3;  
2 J  I  3 ( 1 - PD

......... (3 .44D

vn2 =. • • *• C3.45D
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Introducing these  in teg ra ls  into Equation 3 .39  gives

2 D Cp- &C.O) = ~  [(Bi + n,C() + D (m2C3 +

f t ,  - D ( p -

T herefo re ,

D? C tnz C3 + m , C 4 3 ( / 2 > -  f 0 C 0_)2_  D j^Cmz^3 +■ m ,C 43 ? |

- 2  i *  C / 3 -  ^ o C t ) 3  - ( B i  + n,C4J Q 3 _  £ c t ) ) Z ]

- ( S i  + n , C 4 )  ?,  -  o   C3 . 4 GJ)

Let

ai = Cn92c 3 + m,c4) /i -  ho'ct^2- 

t>i = (m 2 c3 + m ,  c4)  r, -  C l 3 ~

-(B i + n, c 4)  ( / 3  -  fo C t^ 2

and Cj - ( B i  +  n, c 4 )  r ,

T nerefo re ,

3 i  D -  bi D + C | =. O  (3.47)

The solution of Equation 3.47 is  D  — -  J b,z -  4  Cl |C|



The negative sign is  taken because the solution is  feasib le  fo r  com ­

p re ss iv e  s tre s s e s  only. P roper justification  of th is point is  given in the la s t 

c h a p te r .

Introducing the value of D, the tem p era tu re  profile  for the inner 

cy linder w ill be.

0 S C*9 * t Z) - j
2 0 ,

bi — 4 diC, C f] -  ?o Ct)J

F or the second domain of the hollow cylinder, the coefficients of 

A, B, and C a re

A

B

J b ,2 - 4 0 .C,]C /3 — 
C/3 -O

-  A O  + f t )
I -  (3

I -  t ,

1 -  fiZ

and C Ti___ +  A/3
1-  |3

It is  noticed that the coefficients A, B, C, and D a re  the functions 

of To Ct) a n d  T  Ct)

Substituting the tem pera tu re  p rofile  of the second domain of the 

ou te r cy linder in the governing in teg ra l equation (Equation 3.19) gives

_d
d t

D + n .)

Therefore,

(.2A + B 3
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Next, substitu te the tem p era tu re  p ro file  of the f i r s t  domain of the 

inner cy linder in the governing in teg ra l equation (Equation 3 .3 0 ). This gives

x (_|3 -  C t ) )

I
2 3 |

4 c b c , x ( / 3  -  t i ' c t j )

T herefore  the final re su lt is

4 d , c , J ( _ / 3 -  f c C W j

(3.49)

'The two in teg ra l Equations 3. 48 and 3 .49  m ust be solved sim ultan ­

eously since the in tegrands of both the in teg ra ls  a re  functions of "To CO and 

Ti Ct). The solution can be obtained using num erical in tegration and a t r ia l

and e r r o r  p ro ced u re .



P art III
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TIiis p a r t d iscu sses  the second domain of the outer cylinder and the 

inner cy linder re sp ec tiv e ly . From  the point when the heat flux reach es  die

cen te r of the inner cy linder to the point when the steady state  is  achieved, 

constitu tes the second dom ain of the inner cy linder. The geom etry  is  shown

in F igure 5.

F ig . 5 . --T he second domains of outside and inside cylinders

(1) O uter cylinder; (2) inside solid cylinder; (3) tem pera tu re  drop 
along in terface; (4) tem p era tu re  d istribution  in second domain of 
solid cylinder; (5) tem pera tu re  d istribution  a t the end of f i r s t  do­
main of solid cylinder; (6) tem pera tu re  d istribution  in the second 
domain of hollow cylinder a fte r the f ir s t  domain of solid cylinder 
is  com pleted; (7) tem p era tu re  d istribution  in the second domain of 
outer cy linder a t the com pletion of second domain of solid cy linder

The problem  w ill be separa ted  in two sections according to the te m ­

p e ra tu re  d istribu tions . The tem pera tu re  d istribu tion  fo r the inner cy linder

I I
w ill be denoted by 0s and for die outer hollow cy linder by 0 | . This p a rt



44

gives the tem peratu re  d istribu tions 0 3 and 0 | from  the point when the 

second domain of the solid cy linder s ta r ts  to the point the steady sta te  is 

ach iev ed .

The second domain of the inner solid cy linder

The in teg ra l form ulation fo r the second domain is ,

— ^  Q l n d q - k z  . _*s 
d t  J 0 ki  R i dr)

f o r  O < 17 < f t

9 =  ft

The boundary conditions of the problem  a re ;

(3.50)

1 . e s ^ - o l 9 = ~

w here ^ 2^1 s the unknown p a ra m e te r in the tem p era tu re  p ro f ile .

dQs CO.t) 
d 9 9 =  ft

he Rz 

ki

(3.51)

0  C f t .  -* ©s s (/3.t)
i

(3.52)

3 .
d  Os
dr)

= O
9 "= o .(3 .53)

A parabolic  tem p era tu re  profile  is assum ed in the form

0S' C17-1; = G V)2- + W9 + 1 (3.54)

T ie  application of th ird  boundary condition (Equation 3 .53) w ill

yield II - 0 (3.55)
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The application of the f i r s t  boundary condition, Equation 3 .51 ,

e ’ 0 9 - 0  I G n 2 + 1 5 19 = 0

w ill give I 2 =  ^2   (3.56)

Substituting the values of H and I obtained in tem p era tu re  profile  

3 .54 gives

© s  0 9 .  t )  -  G r j z + Z z   (3.57)

Tne second domain of the ou ter cy linder

The following profile  w ill be assum ed for the second domain of the 

outer cylinder:

©1 O7 * tJ) — A 1172 + s '  9  + c ' (3.58)

Tiie boundary conditions a re

1
©1 = 1 ........................ .(3 .5 9 )

~ 1 d  ©|
C M . ) =  r ^ i  t  c 3 ^ e ' s -  9 ‘ d9

O Tj L Jo

c4 \ ' q \ >7 
J /3

d9 ] c e ; s -e U 3 ................. . (3.60)

e i rr =  t , . (3. 61)

When the f ir s t  boundary condition (Equation 3 .59) is  applied,



A' +■ B' +  C' = 1
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(3.62)

The th ird  boundary condition (Equation 3.61) w ill yield

a '/32 + B/3 +  C* = ?i (3.63)

Solving Equation 3.62 and Equation 3 .63 sim ultaneously, B' and C ’ 

in te rm s  of A’ a re  given by

B1 -  ~ A C tT  /3) +
a - ? o

0 “

(3.64)

and

1 -  f3
+ A p (3.65)

To re la te  A’ and G, the in terface heat tra n s fe r  condition is used, 

which is  found by combining Equation 3 .52 and Equation 3 .60.

3 © s c p . o  = b i . S9J cp-t)
drj  1 Kz

substituting the respective values:

2 G y  I r p  P “
-  k i £2 A*iy 4- B ' j  /3

Introducing the value of B' (Equation 3.64) gives

2 G 13 ~ -p 
1 k* A ' c p - 0  +

i -  r ,

«-  P (3.66)

C onsider the in terface boundary condition,
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2 2 ? o j . o
a g \<z

rft ,
Bi 4 C3 \ Qs . r) - dr)

+  C4

(3.67)

Let us evaluate the in teg ra l

P
\  Qs ■ n  ■ d 9

s u b s t i t u t i n g  the value o f  ek

o  h  f  + 1 : _

t h e r e f o r e

■Pr  P 1 , A -
\  e s n ^ dl7 =  Z3
vJn

< 3 jf  +  5  
4 2

Iii the above expression  introducing the value of G in te rm s  of A'

(Equation 3.66)

P  ,
05 ■ n - d 9 -  13  

' 0

A -
o - l  \  /32 I , k,  , 0 -  ^
z p j '  4  +  a /3 h  4 ( 1 -  /3) 2.

or

P

0 S- »7 • dtg =  A

1 o

ki t (3 Cp + Q  

l<2 8
+

03 ki 
8 kz. V 1

M  + ^
■py 2

to reduce the com plexity of die a lg eb ra , le t 

l< 1 . jP. /- o „ i v

(3.68)

(3.69)



and

48

P> k, l - T ,  f32?2
n 2 = — x — x   x -— 5

8 k 2 0 ~ f t )  a
(3.70)

T h e re fo re ,

es • rj ■ dr) -  m2 A1 + nz (3.71)

Let us evaluate the in teg ra l 
1

C e', 9 . d 9
J  A

s u b s t i  tu t ing the value o f  0 t
i

\  (A1!)2 + B#9 + c ' j  19 < dr)

t h e r e f o r e

V 0|'- *9 • d9 =
3/3 ' h B - * ' - , ,

9 3 +

0  -  ft)
F u rth e r sim plification yields

+ A 'p  j |

0 | • !?• dr] = A - p  O + f O O  ft f̂t , I3 C '- i3! )------  —  — *r —---------

T 0 - r 9 Ci - p33 (r> - ft) C1 + ft) 
L  3 ('-ft)  + 2 (3.72)

Let

m i  =
f t  (h + p J ) ( / - p 5J  p  (1  - |3 ?j> 

-----------------------  - + • --------------- (3.73)

and
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0 -  t o o - | 3 3J  C , - f 0 ( i + f O  
= 3 0 - «  4  i .......   <3 -74>

T herefo re ,

m i A* + n,
(3.75)

Subtracting the Equation 3.57 from  the Equation 3.58 gives

0 ^ - Q s s  =   (3.76)

Substituting the values of B', C \  and G into Equation 3 .76 and sim plifying,

©is

(3.77)

Let

and

n 3
( t ,  -  f t

T herefo re ,

©'is ~ 0 s s  = m 3 A1 + n 3

(3.78)

(3.79)

(3.80)



C onsider Equation 3 .6 6 .

Let

and

^ 4  = -  C P - 0
kz

n 4 = k . r  i "  a  
kz v I -  p y

(3.81)

(3.82)

T h erefo re ,

2 G / 3  = rrt4  A + n 4 (3.83)

Substituting Equations 3 .71 , 3 .75 , 3 .80 , and 3.83 in Equation 3.67

gives

i ki
m 4  a  + n 4  =  —

k z
B i + c 5 | m 2 A' + nz j 4* C4  ^  trj j a  4

n, j  + m 3 A 1 + n3

On sim plification it w ill give a quadratic equation in A’:

2
6LI3  (  no 2 c 3  +  c 4  m i )  A — ^  -  m 3  ^ 0 i +  r)z C3  f  n ,  C4)) 

- n 3  ( . m 2 C3  + tvq, C.4 )) +  J < a . r n 4  V A 1
k[ J

0 2 n 4  + n 3 C®1 + n z c 3 +  0 ,0 4 )) V = o
V ■ J (3.84)

To sim plify the a lgebra , le t

a, — C h7 2 c3 + m / C O (3.85)

b i  -  -  1^3 (Bi  + n Ec 3 + n lc4) - n 3 (m2C3 4
m z c 4 3  +  m 4

(3.86)
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C, = -  n 4 + n3 C Bi + n2 c3 + n , c 4)
ki

(3.87)

T h erefo re ,

a i  a ' -  b) A 1 + C| — o (3.88)

Solving the above quadratic equation in A':

. I
A 201)

bi - fcq2 -  4C1,C!
.

(3.89)

i i
Substituting the values of 0 S and 0 , given by Equations 3 .57 and 3 .58  in the

in teg ra l form ulations

—  • 0  ‘ dl9
d t

kj. 3 0 5
z

_  k-z. .
k i Rz Qq 9 = / »

< 9  < /3
(3.90)

and

d
dt

Q, • q ‘ d 9
« i  d©,'

Rz dr; 9:
/3 < g < 1

(3.91)

The final re su lts  for Equations 3 .90  and 3.91 will be

d  Q rOz A T n 2.J  c<

k-2- Cpi4 A1 t  n d  ^2
ki

dt
(3.92)

and

d  C™ i A 1 + n i )

[ T c m 3  + T T 2  ]

<x

Rz
d t

(3.93)
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Both the in teg ra ls  given by Equations 3 .92  and 3 .93 a re  the functions 

of and ^  ; so they can be solved sim ultaneously by a num erical te ch ­

nique s im ila r  to that described  fo r P art II.



CHAPTER IV

COMPUTER SOLUTION

P art I

For the case of the flat p la te , a num erical in tegration technique 

is  used to evaluate the final tim e in te g ra ls . This technique, instead  of 

using  the lin ea r approxim ation assum ing trapezo idal in tegration  form ulae, 

a ssum es parabolic  approxim ation, to get b e tte r  accuracy  of the re s u lts .

A curve fitting p rocedure w ill be used for this p u rp o se .

The set of th ree  points on the actual curve w ill be selec ted  and a 

parabola  passing  through these th ree  points w ill be found. The a re a  under 

th is parabola is  determ ined  by sim ple in teg ra tion . The second se t of 

th ree  points which has the f ir s t  two points common to the last two points 

of the f ir s t  set of th ree  points w ill be co nsidered . Another parabola p a s s ­

ing through these  th ree  points w ill be found, and the a re a  under i t  w ill be 

determ ined  in the sam e w ay. The average of the two a re a s  under the 

parabo las passing  through the second and th ird  points w ill be taken, 

which gives b e tte r  accuracy  than the norm al S im pson's ru le , to find out the 

a re a  under the cu rv e . This p rocedure w ill be extended to a ll such consecu­

tive se ts  of th ree  points, giving the a re a  between any two points twice 

except the f ir s t  two and the la s t two p o in ts . This is usually  known as

53
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the curve fitting p ro ced u re . A com puter p ro g ram  is  p rep ared  to find the 

a re a  under any curve using the above technique. The equations num bered 

2 .22 and 2 .30  w ill be solved using th is com puter p ro g ram .

P art II

In the case  of the com posite cy linders, both the final tim e in teg ra ls  

given by equations 3.48 and 3 .49 fo r P art II and equations 3.92 and 3 .93 fo r 

P art III a re  solved sim ultaneously by using num erica l technique known as 

the tr ia l  and e r r o r .  A com puter p rogram  is p rep ared  to solve the above 

equations sim ultaneously fo r both the p a r ts .  The following flow -chart of 

the com puter p rogram  will describe  thoroughly the technique u sed .



Main routine

55

Main routine con tro ls the values of t, T p  and3f2 • It assigns the

in itia l guess and the second guess o f t^  for each corresponding value of t0 

fo r the f ir s t  domain, and fo r corresponding  values of fo r the second 

dom ain. The TRIAL and TRYER routines w ill give the tru e  value ofT^ for 

corresponding  values of to  in the case  of the f i r s t  domain and for c o r r e s ­

ponding values o f r 2 fo r the second dom ain, respective ly  with requ ired  

accu racy , using the above assigned  g u esse s . F o r successive  in itia l guesses 

o f f p  the preceding true  value o f t^  fo r the corresponding  value of t'g o r 

f 2 , as  the case may be, becom es the in itia l guess fo r the following value 

o f t^  . For the second guess of tq  lin ea r in terpolation between two p re c e d ­

ing true  values o ftq  w ill be done in the case of the f ir s t  domain and the expon­

en tia l interpolation w ill be done between two preceding  tru e  values ofT^ in 

the case  of the second dom ain.

XYCALC and XXCALC routines

denom inator of the equations 3 .48 and 3 .49 fo r given values of T a n d T ^ . 

XXCALC routine calcu la tes  the value of the n u m era to r and the denom inator 

of the equations 3 .92 and 3.93 for given values of Y2 andT ^.

D CALC and X CALC routines

XYCALC routine calcu la tes  the values of the n u m era to r and the

R eferring to equations ^• ' ^'®and 3 - 4 9

(4 . 1)



w here

w here

w here

^Y2 • d x 2 -

x p - 0  -  p h 4) + §  o -  p 3) + f  o -  p2;

f
yi= ^7 (2  A + 13)

x2 ■ d  • o  -  t o 3 .
4  2 J

V2 =
T

£  * | ^ - ^ X D

e*i = Kx/ C j _ .

Again re fe rr in g  to the equations 3. 92 and 3 .9 3

d x  1 = ^  dt

^  Y2 d x 2 = ^  dt
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. (4 . 2)

(4 .3)

(4 .4)

(4.5)

(4.6)

(4.7)

(4 .8)

x i = M iA + n ,

Yi =

Xo =

C<2

Ra
m p A 4 n

|  Ci-  p )  a  + (i -  r . )
C 1 -  P )

72 =

0(2 =

1
Kz „ 2^2
K i Pza

Ki /  ?2C2

(Vl4  • A +  n 4 )

(4.9)

( 4 .10)

(4.11)

(4.12)

. . . .  (4.13)



57

The above illu s tra tio n  m akes the problem  m ore c le a r .  X ]T , Y^T, 

X2T , and Y2T a re  obtained by XYCALC routine for p reced ing  tru e  values 

of and corresponding values of T  in the case  of the f ir s t  dom ain. Sum­

m ary  X10, Y10, X20, and Y20 w ill be calcu lated  for another value of Tj_ 

and the corresponding  value of . The trapezo idal in tegration  form ula is 

used to evaluate the in teg ra l given by equation 4 .1  between points X^T, Y jT  

and X10, Y10, and the in teg ra l given by equation 4 .2  between points X2T, 

Y2T and X10, Y20 to get A  t^ and A t2 re sp ec tiv e ly . DCALC routine n a tu r ­

a lly  calcu la tes  the difference between equations 4 .1  and 4 .2  in case  of the 

f ir s t  dom ain. In the sam e way XCALC routine calcu la tes  the difference

between equations 4 .7  and 4 .8  in the case  of the second dom ain.



TRIAL and TRYER routines
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TRIAL routine calcu la tes the true  value of'Yj for respective  values 

o f f  in the case of the f ir s t  domain, and the TRYER routine calcu lates the 

tru e  value o ft^  for corresponding  values o f i n  case  of the second dom ain. ■ 

The lin ea r in terpolation is done between two gu esses, i .e  ., the in itia l guess 

and the second guess, to get the in term edia te  guess . Again die in te rp o la ­

tion between the in itia l guess and die f i r s t  in term edia te  guess is  done to 

get the second in term ediate  guess . This in terpolation procedure is  repeated 

until the in term ediate  guess obtained sa tisfie s  the req u ired  accu racy . In 

e ssen ce , these routines try  to make

= A  t2 — 0

A t^  and A t2 a re  calculated  e ith e r by DCALC routine or 

routine as  the case may b e . The difference between A  t |  and A  

not n ecessa rily  be zero ; o therw ise, these routines fa il to w ork.

XCALC 

t2 should



CHAPTER V

CONCLUSION

The problem  of th is th esis  was d iscussed  in two p a rts ; (1) one- 

dim ensional heat flow in rec tangu lar coord inates, and (2) one-dim ensional 

rad ia l heat flow in c irc u la r  co o rd ina tes .

The f i r s t  p a rt tre a ts  the problem  in rec tangu lar co o rd ina tes . It 

gives the final form  for the f ir s t  domain of the problem  as  having an equa­

tion with a definite in teg ra l which has tim e-dependent propagation of heat 

flux as  lim its  of in tegration and integrand as a function of th is tim e-depend­

ent d isp lacem ent. An evaluation of the in tegral equation gives the to tal 

d im ensionless tim e (F o u rie r 's  num ber) for com pletion of the f ir s t  dom ain.

A nalysis of the second domain of the problem  leads the problem  to 

final form  as an equation having a definite in tegral with lim its  as tim e- 

dependent tem peratu re  p a ram e te r a t the insulated  face and integrand as a 

function of this tim e-dependent tem p era tu re  p a ra m e te r . Evaluation of this 

in teg ra l gives the to ta l d im ensionless tim e (F o u rie r 's  num ber) for com ple­

tion of the second dom ain.

M athem atical d ifficulties involved in getting an analytical solution 

fo rces one to d isc re tize  the problem  to get the num erical solution for the 

final in teg ra l. A com puter p rogram  giving the num erical solution fo r th is

59
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problem  was made and was found to give the requ ired  engineering a c c u r­

acy for re s u lts .

The second p a rt, which tre a ts  the problem  in c irc u la r  coordinates 

with one-dim ensional rad ia l heat flow only, gives the final fo rm s for two 

d ifferent c a s e s . It is  considered  to obtain tem p era tu re  d istribu tion  until 

a steady state  is achieved, as two sim ultaneous in tegral equations in each 

c a s e .

Integrands of both sim ultaneous equations in the case, considering  

the second domain of the outer cy linder and the f i r s t  domain of the inner 

solid  cylinder, a re  the functions of tim e-dependent propagation of heat 

flux in the inner cy linder and tem pera tu re  p a ra m e te r at the in terface of 

the c y lin d e rs .

The in tegrands of both sim ultaneous equations in the case , ex tend­

ing the problem  to a steady sta te , a re  functions of tim e-dependent te m p e r­

a tu re  p a ram ete r a t the in terface of the cy linders and a t the cen te r of the 

solid cy linder.

In both c a se s , an attem pt has been m ade to solve the sim ultaneous 

in teg ra l equations by num eric methods of t r i a l  and e r r o r  as well a s  by 

num eric in teg ra tion . Since th e re  is  no definite source of checking the r e ­

su lts  obtained by the num eric method to estab lish  the p e rfec t validity  of the 

re s u lts , the author could not avail h im self of the opportunity of p resen ting

the re su lts  in the th e s is . E stab lishm ent of good and perfectly  re liab le
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re su lts  might prove to be a prospective step in the extension of th is th esis  

and a profitab le contribution in th is a re a .
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APPENDIX

DERIVATION OF THE INTERFACE PRESSURE

The determ ination of the in terface  p re s su re  fo r the case  of two 

com posite cy linders, die inner one being a solid  cy linder, is given by Au (4). 

To give a m ore descrip tive  p ic tu re  of the s t r e s s  p a rt of the p roblem , the 

au thor has p re fe rre d  to give the detailed  derivation , and p ro p er o rg an iza ­

tion of the m ajority  of the form ulae leading to the final form  of the e x p re s ­

sion fo r the in terface p re s su re  appropria te  to th is p rob lem .

Let us f ir s t  find the rad ia l p re s su re  a t the in te rface  in te rm s  of 

01 and 0 S . The equation for equilibrium  of s tre s s e s  in the case  of 

c irc u la r  geom etry with sym m etric  tem p era tu re  d istribution  is

d o -  +  -  cre =  Q
d r  r (A)

w here

r  = the rad ia l s t r e s s ,  and 

© = the c ircu m fe ren tia l s t r e s s .

The re la tions between the s tre s s  and s tra in  in the th e rm a l s tre s s  

p rob lem s a re ;

€ r  -  « T  =  -  [V r i C <5e +  <5"z
>]
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(A . 1)
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- * t =  -  |r ° « ~ i  C®"r + S-zH ............ (A .2)

e ,  -  « t  =  |  ] 1 + G1 0
*

1__
_1 ............ (A .3)

w here

£ r  = the rad ia l s tra in  

£ e  * the c ircu m feren tia l s tra in  

6 z = the s tre s s  in axial d irection  

Y = Po ission 's  ra tio

°< = the coefficient of th e rm al expansion.

A ssum ing the axial d isplacem ent to be zero  (plane strain), Equation 

A .3 will become

S z - a  Y ( 6 0  + -  ^ E T  ............ (A .4)

The substitution of Equation A .4 in Equations A .l  and A .2 w ill give

£ r  -  Cl + Yj)<*T =

and

£ e  -  Cl +  IQ oCT =

M ultiplying Equation A .6 by JZ y  and adding the re su lt to Equation 

A .5, the value of in te rm s  o f^ ~  and will be obtained.

-------(A .7)

F V "  -

- 1 Z /  Y x
7  (  M <rrJ  . . . .  (A -6)
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To get 6© in te rm s  of Er  and E , the sam e technique is applied, 

The final form  fo r S'© w ill be

6b
g ( i -  i )  
( i+ - f )  o - 2 / ;

i
+ —  6 r  -  <*T

I ~ i I -  i (A .8)

Introducing the Equations A .7 and A .8 into Equation A, the re su lt is

d  r 6 r  +
1- f

:9
i -  r

o r

r<x (  L ± y - \ d r
M - 1 J  d r (A .9)

The rad ia l s tra in  Gr  is  given by

6 r  =
d u
d r (A .10)

w here u is the rad ia l deflec tion .

Tne c ircu m feren tia l s tra in  is  given by

€ e
u_
r ( A .l l )

Substituting Equations A .10 and A .11, the sim plified  form  w ill be

. . . .  (A .12)d_u + d u _ u , = r ( ></ L±j [ A
‘ - 2- r  V j - Y yd r 2- d r

+ A  d r
d r

Equation A. 12 w ill be a rran g ed  as

d 2U + 1 d u  _ _  .
S T *  r  d r  r 2 ~

I + ■/ \  dT
I -  Y y d r . . . .  (A. 13)

and fu rth e r sim plification will yield
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d*u
d r2

i  / i d
\r I  i"

— c< (  1 + i \  d T
V 1 - V  d r

. . . .  (A. 14)

Integrating both the sides with re sp ec t to r

del ^ U 
dr r

_  I + Y \  'o< I -----   ) T + C ,
I-Y

and a rrang ing  the equation in p ro p e r form ,

r t  + a =  KĈ)Tr + q ' r

in teg ra ting  again and dividing the re su lt by r  gives

u(r) = CtMJ t \T- r- dr + c, r + _2
r . . .(A . 15)

Introducing Equation A. 15 into Equations A. 10 and A. 11, the e x p re s ­

sions fo r 6 r  and G^ w ill be

e r T- r.dr i + C, -  S3 -------(A .16)
r2-

and

€ e - U -  o< T- r d r  -f C,
k-2 (A. 17)

Substituting the values of Gr and Gq in Equations A .7 and A .8, the 

expressions for 6rand  w ill be modified as

(X
dr -

(1 -  D

c z.
r z . . . .  (A. 18)

and
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<o© =
c< E |
0 ~ i )  ~rc

« E T  e 
T. r d r  -  ------ +

o - v ;  I-Y

C|
i - 2f  r

Q
2 (A. 19)

Tlie case  of solid cy linders

In o rd e r to evaluate and C2 in the general expressions for S r  

and (5© the boundary conditions fo r solid cy linders a re  as  follows:

<0CO r -  a =  o

w here "a” is the rad ius of the solid c o re .

( <* Cl 4-tQ J_ f  r

1 ~ a - v  r
UCO I r - O

C>
T. r d r  -h C, r +

_  o
r r  o

The f i r s t  te rm  in the expression  fo r U(r) has an indeterm inate form ,
r  = 0

The application of L’H ospital’s ru le w ill give its  value a s  z e ro  at r  = 0 and 

hence to satisfy  the f ir s t  boundary condition,

c2 = 0

To evaluate the second constant, substitu te  r  = a in Equation A . 18 

and tlie re su lt w ill be

Ci I + Y

( J - z t O  1 “  1
■ <x ■ ±  \  T- r  d r

a 2 J o

Introducing these two constants in the Equations A. 18 and A . 19 gives
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and

<Or =
o< E

(1-Y) V- r- dr
L

1 \ T- r. dr
r * L

(A.20)

cx E
6 © = 0 - Y )

I
a2 yT- r. d r  + -, \ r- r dr -T (A .21)

The ax ia l s tre s s  6 z in te rm s  of rad ia l s tre s s  and c ircu m feren tia l

s t r e s s  can be given as

Gi = Y C6r + 6V) — cx E T

Substituting the Equations A .20 and A .21 in the exp ression  for 6 ~z

Or

(Tz = Y 2 E

0 -Y )
r- r. d r CX E T -  cxET

or
(5~z =

2 cx E Y 
Ci -  V) a<:

T- r- dr
cxET f  Y 
0 - Y )  V(i-y;

+  I

6 z =
<x E

( l - t )

zY

02
T r. d  r  — T

(A .22)

Introducing the values of constants C j and C<? in the expression  fo r U(r), 

Equation A .15, gives

u c n  = L L y . o< fQ - 2'0 " a ' " r
1 - Y

T- r. dr + - \ T- r.dr
o '6  —I

. . . . ( A .23)
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The case  of a hollow cy linder

The constants and C2 In die g enera l expressions fo r £Tr and 

can be evaluated by using the following boundary conditions fo r the h o l­

low cy lin d er.

6"CO I =  0

Or CO

\ r - a

r - b
= 0

w here a = the inner rad ius of the single hollow cy linder, and 

b = the ou ter rad ius of the single hollow cy lin d er.

Hence,

- « E |
G r CO

l r - a o~r) \ T- r. cl r + —— c, C2
)a 0 -Y ) a2 rc o

gives

Cz. _
0 - 2 Y;

=  o
(A .24)

At r  = b the rad ia l s tre s s  is given by

. b
Of CO -o<E 1 r u E C Ci

2 \  T- r.dr f ----  < —L
r=b Ci--/) (l -Yj) V ~ 2y V .  . . . ( A . 25)

Using Equation (A .24) in Equation A .25

b
6 r  CO

r= b

This w ill give

- CXE > V , , E c 2----- ' ~2 \  T- r. dr 4* ------
1-n r

I t
-  O

£ C 2 <XE
(J+Y ) ( i - y;  b2 -

T. r. dr . ( A .26)
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----HI------ -    —- \ t. r. dr
0  + ' 0 0 “ 2 '0  0 - ^ X b “ a J) J a  . . . . ( A . 27)

Substituting Equations A .26 and A .27 in Equations A. 18 and A .19, the e x p re s ­

sions fo r S r  and 5e w ill be obtained.

<5V C O  =
cxE
1-Y

I cr- a z) r b
\ r. r . d r - f  T r.d rr 2LCb2- fa1) i«  J (A .28)

cxE
o - o

r 2+ az
b X l 2

T- rd r + \ T r.dr -  Trz 
'a  X

(A .29)

Introducing Equations A .28 and A .29 in the expression  fo r the ax ial s t r e s s

61; = Y Cpr  + 5 i)  ~ °<ET

gives the final re su lt

cxE

81 =  ( h f )

Substituting the values of and C2 in Equation A. 15, the rad ia l deflection 

can be given as

2 f
b

T- r .d r  -  T . . . . ( A .30)

U CO =
\ \ i  oc 
i - f  r

r  ~r
t. r. dr + —  \  T- r. dr

b2- a2 . . (A .31)

An a ttem pt w ill now be m ade to find out the rad ia l s tre s s  at the

in te rface  of two cy linders, the inner one being a solid c o re .
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At th is stage d iscussion  will be generalized  for N hollow cy linders 

with solid co re  a t the c en te r . The equations fo r the s t re s s e s  w ill a lso  be 

derived  fo r N cy linders .

The rad ia l s tra in  in an n1̂1 cy linder w ill be 

U n a
£ n g   (A .32)

The following rela tion  is  given by Au (4):

Cne t n

n = 1, 2, 3, - - - N hollow cy linders

In this d iscussion  the total s tre s s  a t the in terface  will be die sum of 

the s tre s s  due to the tem p era tu re  and the s tre s s  due is in itia l in terface  p r e s ­

sure  .

6"rn = C ^ r n ) p  +  C & r n ) r

and

(Jen — 0-5® r0p **

w here su b scrip ts

p-denotes the s t r e s s  due to in itia l in terface  p re s su re  and 

T-denotes the s tre s s  due to tem p era tu re  only.

(One — Vn CDrn ~̂zr\) (A .33)

Tne following form ula is  given by Au (4):
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(to m )  p

and 

(Sen)p —

2 2
Pn - Rn + I C pn + i

R n  +  1 -  R n

a 2
— pn3 I Pn Rn ^ Pn-H ^ - t i

' r z + R n^i ~  Rn-.(A.34)

_  Rn Rn+i C P n+  i -  Pn)  _ j_ +  Pn Rn — Pn + i Rn + i

Rn + i R n r Rn + i Rn

............ ................... . . . ( A .35)

The following form ulae fo r hollow cy linders can be generalized  from  the 

p reced ing  d iscu ss io n .

C SV rO t =  ■ i
I-Yn r

2 z 
r  -  Rn
2 2 \ 

Rn + l -  Rn 0

^  Rn + 1
\  T. r-dr -  \  j .  r. d r  

pR n

(A .36)

and

( S e n ) -
c<n £n  i
I -  Yn r2

r^ + Rn
2 Z. \

Rn + i -  Rn JRn

6'rn —

Trie to tal s tre s s e s  become
2 2 

Rn . R m i C Pn + i Pn)

^  Rn+i
\  T. r- d r T- r  d r  -  T r  

Rn

.................. (A .37)

2 2 
Pn Rn — Pn-t-i. Kn+l

Rn+i -  Rn R m i — Rn

+*
otn • Pn l
1 -  Yn r2

r  ~ Rn
Rn + i — Rn

Rn+ i
T. r. d r -

1 Rn

r
T- r-dr

'Rn

(A .38)

and



73
2 2

Rn • Rn+i ( .P n  + i —-Pip)
R n n  -  Rn

J. .(. ^n - ®̂2n ~ P n M • Rnfi 
r 2, Rn+i - Rn

o(n En

I — Yn

I
rz

r 2 t  Rn 
Sr?H -  Rn

r  Rn+i
\ T- r. d r  -  
-J Rn

T- r. d r -  T r2 
URn

(A .39)

The solid  core

The rad ia l s tra in  in the solid core  is  given by

Us
£=05 — r -

Tlie following re la tions w ill be obtained from  Au (4):

1 . E o s  — °^sTs +■ (5qs -  Ys . . (A. 40)

w here

6 r 5  — -  P, + C G rs^ r (A .41)

and

(T0 S = - P i  + (cr05 ) r   (A .42)

p^ is  the contact p re s su re  o r the in itia l tightening p re s su re  and from  the 

preced ing  d iscussion

0 * 0  T

and

d s  Es

T^Ts

R,
T r d r rz I. r. d r

o
-------(A .43)
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( 5 o s >
°<s Es , r  Ri . r r 1— I r. r.dr + I  \ T- r.dr- Ts 

>?* J o  r 2 J 0
(A .44)

Introducing Equations A .43 and A .44 into Equations A .41 and A .42 re s p e c ­

tively , and then substitu ting the re su lts  in the known re la tion ,

& z s  =  i s  C  EsTs

gives the re su lt

5*25 = - Z l s  P, +
0<s £s 
i -  i s \

Cl
T-r.dr Ts (A .45)

If a ll the N cy linders expand uniform ly in z -d irec tio n  and th e re  is 

no re la tiv e  d isplacem ent in a ll the cy lin d ers , the uniform  s tra in  in z - d i r e c ­

tion w ill induce uniform  axial s tre s s  E s-G zs in solid cy linder in that d ir e c ­

tion . The modified value of P>zs w ill be

Zis  rR
(Jzs = -  2 Is p, + \ ~ i s

is r K

Jo
T r.dr -  T + Es - iS ' CZS (A.

w here £ z s  is independent of rad ius r  fo r a ll cy linders . To determ ine  the 

value of for free  ends with the above condition of no end s tre s s :

5

Rn + l 
a jt r- 6 ~z ■ d r -  o

or
f' R i r- N r f?n-t 1
\  r r zs dr + \ \ r  Ozn dr = 0
'Jo  c p - i  JU n . . . .  ( A.47)
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The value of the f ir s t  in teg ra l in Equation A .47 w ill be found by 

substituting the value of Cfzsas given in Equation A .46 and then perfo rm ing  

the ac tua l integration of every te rm  gives

— Ys p, R| 4 1 Es £zs R) + °<s
P Pi
\  T ' J  o

r. d r
(A .48)

The value of the second te rm  in Equation A .47 can be obtained as

follows:

Introducing the values given by the expressions for 5~rnand 

(Equations A .38 and A .39) into the generalized  re la tion

C5zn — Yn (. ^ rn  4 — ^ n  -En -Tn

gives

-  2 Yn Pn. Rn Pn+i ' Pn+i
Rn-H -  Pn

+ °(n Pn 

1 - Yn
2 Yn

Rn+i - R t i

Pn+i
T- r  dr — Tn

Pn
-f £ z n  £n

(A. 49)

Substituting the value of Szn in the given in teg ra l
Pn+i

\ 6In r- dr = 2 Yn 
J Pn

■Rn-ti

Pn • Pn — Rn-ti- Pn+1 
f?n + i -  Pn"

r Pn+i 
\  rdr  -f
J  Rn

\  ^ E n - rdr  + «=*!
-4 Rn I~ Yn

2 Yn
Pn-H -  Pn n<n

r  Rrm
\  t. r. dr 
^Rn

r  Pn+1 
X r d r ~ \  T-r.  dr 

 ̂Rn (A .50)
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equals

f  z 2 1
Yn Pn Rn -  P n + r R r m

E n 6n  c 2)n
Rnt-i ~ Rn

+ c(n E n
r  P n f i
\ T. r. dr 
J Rn

(A .51)

Substituting Equations A .48 and A .51 into Equation A .47, and then t r a n s ­

posing the te rm s  containing £2 on the left-hand side, gives

■Z 2. x—M 2 2
Es Ri + ^  En (R n + i -  Rnn-t

°<s Es f v .
j O

r d r  +

V- 'N rK H tl 2
/  \ T- r- dr + 15 Pi R, —
z n= 1 J(?n

V N a
y* (^Pn • Rn — Pn+i • Rn+l^

...........................(A .52)

Introducing Equations A .41 and A .42 into Equation A .40 gives

P, C l - ^  I
(. =  <xs r s - ------------------  + —
e0S S Es Es

_ Ys or;

(pQ  )  f  “* Ys C t

as
Es

Substituting the values of C(5 q ) j  ,0 ^ V 3 t , and 6 ~zs into the above

equation:

E e s « s Ts -  f lA l l - A j  x  -5- x
Es Es ( l -  Ys)

1  X

S 0 ' T- r - d r  + 7* ^ o r  r d r  - T0 _ Y » c « f x

' 2 P , f s +
R,

T.r.dr -  - a \  T. r. dr
•o Jo

Ys.

E s

£s
I -  / s +  E s £ z  + 1  L  T ' r - d r ~  T s j ]
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£ e s  “  I  [ ' "
o.

\

Ys -  2 r /
7 r 2YS ~1 0(5
] +  [-1 i- rs -1 * ?

T- r- d r + 0 + rQ
0 -  * 0  r I

r . d r  -  Tc£

Substituting th is value in the expression  fo r the rad ia l deflection 

Us , and then rea rran g in g :

U s  C O  = 1 4- Ts 
1 -  Ys

x «*« 0  -  2 r ;
r r R|

> i ?  L T-r'
dr +

r
T. r. dr

rP,
0  + ? s) 0 -  ^ ^ 0  ~ r  Ys 6 z.

Es y  (53)

w here is  positive in the negative r  d irec tion . 

F rom  re fe ren ce  1,

Un = CQ n ; r

©n = °^n Tn + ~  t  n 1--
--

1
(D°l J 1

= °<n Tn + ~  
En [C<55n)p

+ C(5> n )T j + S in J

: °^n Tn + — 
Er

-  Yn C ̂ "r n 3 T ^

n h u r n j p  

Yn ^ z r i

n
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Substituting the values of ( *^Qn)p (S^en)'p (<5?n)p, ( Ern)rp and 

<0~z.n (equations 34, 35, 36, 38, and 49) in the above ex p ression , c ircu m - 

fe ren tia l s tra in  (£n© ) in the nLn cynlinder is  obtained as:

; e n °<n Tn d-
En " (  ( P n + , -  P n )  i 2L L Rn+I -  r

+
2 Z

Pn ■ R n — Pn+ i ■ R rn-1
p A+i P n

- r n J -RV '. xO ^ —2
R n-n -  R n

C p n + ' +
2. -  Pn . Pn -  Pn+) • R n+1
R m i  ~  R n

+

1
E n

°<n En /  I + Pn

5

-1 0 -rn) Vr2 (R

r

2n-ti R n

T. r. dr -  T 
Rn

°^n • En 
n V r

Pn+| ,
T. r .  d r  +

Rn r
1 -  R n

Q - ^ n )  V r a ( R 2n + 1- P n )

n Rn-t 1
\  T. r.d r -  \ T. r. dr

Rn ^Rn

t  2c<n En Iri + r T +r d r - r " En

l a  f 2 x In  I  P" g" - pmi R"dl
En

Rn+t
Rn + r R n

( l - * n ) ( R n + |  -  Rn) d Rn ( i- rn)
•T„-%EnT„+e2nE]

By sim plifying,

r ___R n -  Rn-n / p p \ v I Y /n .
E e n  -  -~2--------—  Rpn+i  - P n ;  * ~ z * ' +

Rn-n -  Rn r

Pn • Rn “ Pn + ] • R n+j

R n + i -  Rn

f-t- Tn +
En

1 + Tr»
> * “ ^n

°<n f  T. r.dr + L±Jfn i  (l- 2/nd + fd I +
j R n  ' " M  r 2 )

<=<n
2 2 i

Rn4 1 -  Rn J

n R n +1
\ T- r. dr — iTnEzn

Rn

(54)
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The rad ia l deflection in the n ^  cy linders  will be

Un = r  • £.on

The rad ia l deflection a t the in terface w ill be the sam e, i . e . .

Us t O r - R ,  = R.

or

1 4 fs  

f -  Ys

Rr i Ri
(I - 2 Ts)  • ~ \ T. r. dr + ~  \ T- r. dr

J n R,

r , ( h - rs )C ‘ - 2 r s)  . El - T s R , e r =
Es

I (1 + *. )
R. El

2 2 
R,  • R,

C p * -  p0  +
R z -  R.

(  1 + * 0  0 "  2T,)  ̂ (p, R,2-  Pz f?z2)  °<|R|
—  _ -  V -  T

e ,  (?2 -  r ,2 ' K z-er

(f •+ * l) Ri0  “  2  f , )  +  2 J

0 -  *«) L

Q t- ^ |)  . C R| 

0 -  Ri2 J R i

r 2

T ■ r. d r

R2
T- r. dr — Ri r, 6Z +

Ri

On sim plification, th is w ill give

R.a ( R z ~  R.2)  -f0  + * 0 0 - 2 r O  n 2 / o 2 r + r,1 2  2
~ Rz ■ R| +■

(f + r , ) C f -  2 r o  4
------------ ---------------- R,

—
p, + F 2  0 + r , x , - r , )

J E>

2  0 + * 0  (.R * ~ R 2 )  °<s ^ 't - r. dr +Jo
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pR2 ^

2 0 +  °<r R|2 1 T- r.dr + £ Z R? C R?  -  R.^J) C*s -  T,_)
J R.

which could be fu rth e r sim plified as

(55)

a oPl +  boP2 r D.O

w here

+

C' + rs) 0  2 / 0  2 , a 2 I + r, 2 2--------------------------- R, (R 2 -  R. 3  +    r 2 . r ,
E |

(t + Y, ) ( > - z r Q  R(4

2 _ 2.

and

2 (I  + 0  +"l^)'R2 '

Ri

+ <x, r,z  ̂ r. r. dr + ez (5,2 (  R22- Ria) 0rs ~ h )

Hence,

Dq = - 2  0  + * O C R a -  O  T- r  d r  + 2 ( l + Y ' )

Rz 
1

'Ri

But in the p resen t d iscussion  n r 1 and outside p re s su re  P.̂  - 0.

aQ p l = D0

When the value of €  z w ill be substituted in the expression  fo r DQ, 

it w ill contain the te rm s  of and . Substituting ? 2  = 0 and transposing  

P  ̂ on the left hand side, the modified DQ, i . e . ,  D0 ',  w ill be
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(L + * 0
Dq. .  2 f  Es CRz ~  Ri 3 ^1 ^ 0

1  R.2 ( E s  - £ , )  + E, R*

Rl (T. r. d r  + 2  j o<, E, x
'o L

0=5 -  < )

< £ * - * * >  ^ ( r . - r Q  +  2 ( l  + r ,} * ,  Rf
(?,2 C E<, -E . )  + E, Rf 
R2

x \ T. r. dr 
Ri (56)

Now let

V = 2 < Go - °<s Es — 0  + * 0  -  i ? o < x s j

and

?o* - 2 j j3 0 <*1 E| + 2 C 1 + ) 0*0  C Ri

w here

Go’
o 7; o -  ro

R,2 C E&- E| ) +  El R*

Introducing these exp ressions in equation 56, the modified D0’ 

w ill be given as

R| | r> Rg
Do' ■ V  ■ \ T r. dr + Fo \

O  J R,
T. r. dr (57)

The modified a 0 and b0 a re  obtained as

■. 0 + * X ' - * r O  Ri» « £ _  + '± 1 . Cr22-  * ? )
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4
0 + ^ ) C ' - zY») 4 2R14 CR2^f3(^T s _ 7 1)2
--------------------- R, _  ------------------------ --------------

R,2 ( E S -  E O +  E , R 2
(58)

and

2 0 + * . ) 0 - y » )  Rz2 -Ri2 Rz- r * ' r i c v l - x o O s - 7 0

V  = R,2 C E S - E . )  4  E,  R\

a Q' has units of ft4 ft6

lb /ft^  lb

and

D0 ' has units of —-— • ft^ • °F  • ft^ - ft4
°F

T herefore , 

Do’ lbp l - — — has units of —  , which ag rees  with the actual units
ft

of P,

The heat tra n s fe r  coefficient at the in te rface  w ill be taken as

• S~r
hc = h -  c co r  - R. . . . . .  (59)

w here hCQ is  the in itia l heat tra n s fe r  coefficient before the ex ternal te m p e r­

a tu re  is  applied at the ou ter periphei-y of the outer hollow cy lin d e r. The 

s t r e s s  in equation 59 is  given by

G“r  C O
r =  R ,

-  -  P , 4  T
r  = R,

r  = R l
: 0but ( (5r) T



T herefo re

Do'
he = hco + C • P1 = hco +  C V 7 -a o

C E *
Substituting the values of d0 * and a.Q' and l e t t in g ______2—  r and

ao'

In fo ; C2 in the resu lting  expression  gives

The above expression  c lea rly  shows that hc depends upon the te m ­

p e ra tu re  d istribu tion  of both c y lin d e rs .

The in itia l tem p era tu re  of the com posite cy linder is taken as  Tco 

and it w ill be trea ted  as re fe ren ce  tem p era tu re  . The s tre s s e s  w ill be c a l ­

culated  from  th is  re fe ren ce  tem p era tu re  and hence at tem pera tu re  T^.

The assem bly  w ill be assum ed to be in s tre s s  free  s ta te .

T h erefo re , equation 3 .71 can be modified as

hc = hco + C I \C"s -  W )r.d r  + c 2 f  ^ T , - Too) r . dr
.......................... (60)

w here

T s = the tem p era tu re  d istribu tion  in die solid co re , and 

Toar the tem pera tu re  d istribution  in the hollow cy lin d er.
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ABSTRACT

The object of this th esis  was to find the influence of p re s su re  

dependent contact re s is tan ce  on the tem p era tu re  d istribu tion  in solid m etal 

bodies having rec tan g u la r and c irc u la r  g e o m e tr ie s .

A rec tangu lar plate extending infinitely in two d irec tions with one 

face being held against the rig id  insulated  w all and the o ther being held 

against the rig id  w all with infinite conductance and a constant tem peratu re  

d ifference from  the plate  was considered . The contact re s is tan ce  a t die 

non-insulated  face was considered  to be dependent on therm al s tre s s  p ro ­

duced at the face due to the tem pera tu re  g rad ien t.

F o r investigating the problem  in c irc u la r  coord inates, two concen­

tr ic  cy linders, the inner one being a solid cy linder, w ere considered . The 

ou ter periphery  of the outer cy linder was subjected to a step change in  te m ­

p e ra tu re . The contact re s is tan ce  a t the in te rfac t of two cy linders was co n ­

s idered  to be dependent on therm al s tre s s e s  produced by tem peratu re  g ra d ­

ien t.

The in teg ra l method was used as an approxim ate method to d e te r ­

mine the tem peratu re  d istribution  in both the c a se s . F o r obtaining num erical

re su lts , com puter p rog ram s w ere p rep ared  fo r both the c a se s .
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