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NOMENCLATURE

arbitrary constant

constant of integration

fn)

arbitrary constant

velocity In x direction

velocity in y direction

direction parallel to the plate

direction perpendicular to the plate
coefficient of friction

function of 7

o) /pm

Reynolds number based on x

free stream velocity

time averaged mean velocity in x direction
fluctuating velocity in x direction

shear velocity

dimensionless velocity

time averaged mean velocity in the y direction
fluctuating velocity In the y direction
time average of product of fluctuating velocities
dimensionless distance

boundary layer thickness

step size

ylu,/le

eddy viscosity



kinematic viscosity or molecular diffusivity
eddy diffusivity

X

density

shear stress

shear stress at wail

Reynolds stress

stream function for potential flow

stream function for turbulent flow
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CHAPTER |

INTRODUCTION

One of the basic goals in engineering Is to generate models
which will provide a means for analytically predicting observed
phenomenon. Such a model is often modified several times to obtain
better results. The purpose of this study was to generate a model
for an equilibrium turbulent boundary layer for steady flow over a
flat plate and compare the results obtained by using the model with
experimental data. Part of the objective was to also suggest ways
in which the model could be modifled to obtain better results.

The significance of this project is that It provides a method
to obtain a model of the variation of the eddy diffusivity across
the boundary layer that will yield a velocity profile which is in
agreement with experimental data.

The model of the eddy diffusivity across the boundary layer
obtained will only be an approximation. However, since the simpli-
fied model of the eddy diffusivity will yield a good approximation
to the velocity profile it will be useful. This model of the varia-
tion can then be used in other applications, such as the determina-
tion of the temperature profile in natural convection.

The mode! was generated by reducing the equation of motion

from a partial differential equation to an ordinary differential
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equation by an affine transformation. A similarity solution similar
to the solution obtained by Blasius for a laminar layer flowing over
a flat plate was obtained. The transformed governing equation ob-
tained was found to be dependent on the behavior of the eddy diffu-
sivity within the boundary layer. The modeling of this behavior Is
of particular significance, and will be discussed later In detall.
The results obtained with the model generated are compared with ex-

perimental data, and methods of Improving the model are suggested.



CHAPTER [ |
BACKGROUND MATERIAL

Flow in a turbulent boundary layer is of major interest because
it occurs in a large number of practical fluid and heat transfer
problems.

The motion of the fluid is extremely complex; however there is
a certaln degree of regularity when the motion is viewed statically,
without an attempt to describe the detalled motion of an individual
particle. In the past, this statistical approach has been used by
correlating a vast amount of experimental data. This without making
an attempt to predict turbulent velocity profiles by application of
the equations of motion.

For purely laminar flow the shear stress at any point in the

boundary layer is given by

dw
- s =—
Y =0 dy
in the region very near the wall the shear stress will vary only

slightly from the shear stress at the wali, and thus in this region

YT,
integrating and expressing the result in dimensionless form,

du = (%//ﬂ)d)’
w = (M) +C

w/TMp = WiNp/v +C



But at y = 0, u = 0, therefore C = 0 and the result is

w/Tf = 4 (WP /v
The term i¢34k, is usually called the shear velocity since it has the

dimensions of velocity and is denoted by u*. The two dimensionless

groups are usually represented by the symbols ut and y+ where
which gives for the region very near the wall in laminar flow
Wt = V)T ()

In a fully developed equilibrium turbulent boundary layer the
flow 1s often divided Into three different reglons. The region In
contact with the wall Is termed the viscous sublayer. The intermedi-
ate region Is often called the buffer zone and the outer region is
usually referred to as the fully turbulent region.

Two laws that have gliven some order and meaning to turbulent
flow data are the "law of the wall" attributed to Prandtl [I] and
the "velocity defect law" introduced by von Karman [2]. The first
pertains to the region close to the wall where the effect of viscosity
Is directly felt and the second pertains to the bulk of the shear
layer or turbulent core where the viscous forces become negligible.

In the viscous sublayer the "law of the wall" postulates that
the time-averaged velocity at a point in this region is a function
primarily of local or near-local conditions and does not depend very
strongly on conditions at some faraway point. A list of the measur-

able quantities upon which the time-averaged velocity in this boundary
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region might possibly depend should Include the distance from the sur-
face y; the shear stress at the surface,T, ; and the viscosity and
density of the fluid, » and o . That is

oK = & (Y) T RV b

By application of dimensional analysis this relation can be re-

duced to a functlion of two dimensionless groups, as follows
e /’[7F772;:- = f (>/ FFETZE; 7, )
The two dimensionless groups are simply u* and y+. This gives a final
result
wh= fy?) (2)
which is known as the "law of the wall."

Assuming that all the pertinent variables have been Included, the
above relationship Implies that if turbulent velocity profiles are
measured over a wide range of Reynolds numbers it should be possible
to plot ut versus y+, and all the data should fall on a single curve.

The validity of Equation (2) for purely laminar flow has already
been demonstrated. Here f(y*) is simply y*.

Nikuradse [3] and others have observed that within the viscous

sublayer that

Hence, the viscous sublayer is laminar-iike in that ut o= y+, as is frue
for a laminar boundary layer.

The "velocity defect law" postulates that the reduction in
velocity (Up - u) at a distance y is the result of a tangential stress
at the wall, independent of how this stress arises but dependent on the

distance 8 to which the effect has diffused from the wall, The form



of the relationship Is
Vp—% =9 (TR y, ¢)
which can be reduced by dimensional analysis to
Wo-*)"THe =9 (1/8) ()
This is the "velocity defect law."

Experimental results have shown that the regions of validlty of
the law of the wall and the velocity defect law overlap one another.
Millikan [4] has shown that If there Is any region of overlap in which
both laws are valid, then the functions f and g must be logarithms.

A simple way to arrive at this conclusion is to reexamine Equations
(2) and (3), written in the following forms:

W/t = £ [Cy/mY(SW/u)]

w/n* = Ucp/u-*—ajt‘//53
Since these are two expressions for the same quantity, and since a
multiplying factor inside a function must have the same effect as an
additive factor outside a function, the functions f and g must be
logarithms. The first formula is usually written in the form

W=k logy’ + ¢ 4)

Kestin and Richardson [5] have plotted data from several differ-
ent sources on u+, y+ coordinates. Their results appear in Figure 1.
At very small values of y* the data tend to approach Equation (1),
while for all y+ greater than about twenty-five or thirty an equation
of the form of Equation (4) fits the data very well.

Figure 2 shows three curves which have been proposed by various
investigators to fit the experimental data shown in Figure I. These

investigators have described the universal turbulent velocity behavior
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near the wall in terms of one, two, or three separate algebraic equations.

Martinelli [6] gives three equations to represent the data. They are

yte s wr =y?
f
&y*¢ 30 + = -3, 05+5.00In( )
<y u Y (%)
yt>30 Wz g+ 2.6 lny)
Deissler [7], using Van Driest's [8] modification near the wall, gives
two equations to fit the data which are ( - )
=1 by | L 01 +
T Liomyw)' ) ert (V5 W
y'eat  yts s, exp (T 009 ) 2
(6)

yt >206 wWr= 3.8 +732.78 \n(v)*\

Finally, Spalding [9] gives a single equation for all y*, which Is

Hu® [ z +\3 #\4
IER ‘\_T:as'{e = | =Ry= %2 - C%/ - (——-——q:,,) ] (7)



CHAPTER [ 11

MATHEMAT | CAL MODEL

|f the density and viscosity are constant, and 1f the body forces
and pressure gradient In the x direction are zero, the governing equa-

tions for steady two dimensional flow over a flat plate in a laminar

boundary layer given by Schiichting [10] are

Py ésg -
3:; u v =0 and
Momentum (x dlrection)
N
o X v \ & S\,L
Subject to the boundary conditions
W=0o fwu=v=o0

Continuity

Y=o = Ve

These two equations can be combined fto give

ot Ywv >t
T R (@)

Governing Equation
It is generally assumed that the motion in a turbulent boundary
layer can be separated into a mean flow whose components are u and v,
and a superposed turbulent flow whose components are u' and v', the
mean values of which are zero. Making this assumption the velocities

become



= 1

W= 1w
V=T 4+ V!
Equation (9) them becomes

_S_x(awﬂ)ﬂ} g_\‘,(am)ww') =y .}\_‘r (& +un') (1o)

|f Equation (10) is now time-averaged the resulting relationship Is

- A -
&\Lv& B.Lmv)+ B?Lu v) —‘;,%7;»- (1)

Comparing Equation (I11) with Equation (9) shows that two terms are

added as a consequence of turbulence. Experimental results [I1] have

shown that —
o (W) NS
> <<% Y

Equation (I!) then becomes when rearranged

D+ 2 (27) = g KR _ ') i
MLLA) - ) =y o) v (1)

and is called the mean momentum equation with fluctuations. |f the

turbuient momentum flvx (T%) or Reynolds stress is defined as

Te=-ptulvh)
Then by analogy to the laminar momentum flux
/Tt = “%At &_!\

>y
Mz =V D /3yl

The last term on the right hand side of Equation (12) can be expressed

where

as follows:

— X =
_,S:/(M.V_l\_ + 5 (1 é;yg/)
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(% 8
sy (5
Making this substitution Equation (12) then becomes

%&U\\lﬁ-%(RV) =V ?:ILE' +§Tf(l{¢ Y)

1

or
Ryt syl 3] o
The boundary conditions for flow over a flat plate are
W=o W=V =0 j
\ﬁ = o
Equation (13) Is the basic equation to be used in this analysis. From
this point on u will be replaced by u and v by v,
SIMILARITY SOLUTION
One of the significant results of the study is the reduction of
Equation (13) from a partial differential equation to an ordinary dif-
ferentlal equation by an affine substitution or similarity transforma-
tion. This is done by changing the variable x TO}E and y to ?Z
where
4?.:‘/¢Y/6(n A rD }5 = X )
where A and n are arbitrary constants to be chosen later. In potential

flow the velocity u can be determined from the stream function %F. That

w= f:‘% onn vV = - %—?

\‘)P: UCD"\ — wahh /'4

is,

where

I+ is now assumed that in the turbulent boundary layer that there exists



a "stream function" \kb such that

n
where f(n) means some function of?l and Tn the future will simply be

repiaced by f. Therefore, by analogy

& o= Vot
o

n=l\
e - LU

o

where ' is D (#) /9o )’2
Hence the following relationships result:

;U\_‘UM-FHY\VL

W

and

Y
YA _ Uoo‘CnA
N

N TS BT LY LRV L I L Y
é_ﬁ[(y*Lyé)S\-[—&-p xhn ta N 2" c}—;{:

This, when substituted into Equation (13), resuits in the following:

N
“Upn $"F = (wr i) Us ATE" Ve 1A (14)
N =4 o

!t is obvious from Equation (14) that n should be chosen such that

n=1/2, This, after rearrangement, results in the following:

N N AR - LI L2 2R Y/ W)
Ve Uoe o N

I+ follows that A should be chosen as
A* = Vas /y

If n = 1/2 and A2 ==ijﬁﬁ,, Equation (14) becomes
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___rll_p=:<‘+y£/p)4‘lll+lﬁl} ;_O}ié’_léé_) (IS—)

Equation (15) becomes a nonlinear ordinary differential equation with
variable coefficlients if it is assumed that z%.=1é(h) only. With
this assumption [t will be possible to obtain numerical results. For
a particular value of x or a specified Re, the assumption that
L =,%192) should be very good. For more detalls of the simitarity
solution see Appendix B.

The boundary conditions for the flow case in consideration are

fa=0, £orv=0, Ll =] (1)
As was mentloned previously, f = f(q), f! = sﬁi, etc.
Also 7 =V)W ,and J's w Ve
1t is interesting to note that Equation (15) becomes the solution to
laminar flow over a flat plate when /{‘.-.o .
That is, Equation (|5) becomes
_ Fu{ﬁ - ;--C"l ( ,7)

which is commonly known as the Blasium solution to flow over a flat

plate subject to the usual boundary conditfons.



CHAPTER 1V

NUMERICAL PROGRAM

One common!y used method fo numerically solve ordinary differ-
ential equations Is the method of Runge-Kutta [12]. However, such a
method Is really for Initial-vaiue problems, not boundary-value
problems. Hence, the solution of a boundary-value problem with the
Runge-Kutta method requires that an initlal guess be made for the un-
known boundary conditions at one end. The correct initial boundary
condition guess results in the satisfaction of the boundary conditions
at the other end. The Newton-Raphson method [13,14] reduces the
method described from a trial and error art to a convenient numerical
iteration.

Hence, in obtaining the numerical solution to Equation (15)
with the boundary conditions given by Equation (16) a computer program
was written which utilized both the Runge-Kutta method and the Newton-
Raphson technique to obtain a solution. In particular, a fourth order
Runge-Kutta method was used. For additional details on program used

see Appendix C.



CHAPTER V
EFFECT OF VARIABLE COEFFICIENTS ON SIMILARITY SOLUTION

From Equation (15) it is seen that the numerical solution of
that equation depends upon the values of the variable coefficients at
anypa . Hence, it is necessary to describe the /¢ /, variation as a
function of 7 .

Determination of Eddy Diffusivity

At this point it is of major interest to investigate the vari-
ance of the eddy diffusivity across the boundary layer. Now the eddy
diffusivity can be evaluated in each of the regions of the turbulent
boundary layer by application of the following:

Nfo= (setv) dw/dy (18)
where / has the greatest effect near the wall and A has an in-
creasing effect in going toward the edge of the boundary layer.

Equation (18) can be rearranged as follows:

du ‘
|+ 4y =(Te) /o &5 - dut
\/ ,\/'*

% s [1/¢dwr 1dy) ] = (1)

Now from Equation (5) for y+< 5

then, using Equation (19), for yt& 5



4 B D
7= & "' 7°
&
Hence according to Marinelli's formulation
—j—t:O P to Y+:5 (.7-0)

Equation (5) also gives for 5<& y+4 30
LWr= -3,058 + 50 Iny?

which when put into Equation (19) gives

4% 1 +
7= dEhyn -1 =% (2

which is a simple !finear variation. Equation (5) for y+;> 30 also
yields a simifar variation.

The idea that ‘%_ goes to zero at some arbitrary distance from
the wall such as y+ = 5 is an oversimplification. Deissler proposed
that 4% only approaches zero as Al approaches zero. Application of
Equation (19) to Equation (6) given by Deissler gives

7//!'.: 0.6/19 aty? (22)

Van Driest [8] proposed that the wall has a dampening effect on the

variation which Deissler [7] used to obtain the following

NI

= 0.0/SY L[| = €xp(=6.0/5¢ wiyt)] (22)

which has been used very successfully in some heat transfer calcula-
tions referred to in Kays [14]. Spalding also takes thls exponential

dampening into account as can be seen from Equation (7) and Equation (19)

which gives

. 04 Gt 4 )* Qf}? 2 4
%'ﬁirzf Tl -k +(%+"LE3_J E)



Model of Eddy Diffusivity

I f -4&2, is equal to zero for aIIAZ it would be expected that
the numerical solution obtained would be the same as the one obtained
for the Blasius profile. When this A%7é9 variation was used the re-
sults obtained compared exactly with the results given by Schlichting [10]
for the Blasius solution.

To examine the effect on the solution several different varia-
‘+ﬂons of ‘%/2/ versus‘? were tried and compared with a standard curve.

The general type of model of 44342, versus /7 that was used is
shown in Figure 3.

Examination of Equation (15) shows that the two values of Inferest
for the varliable coefficients are 4/& and j%@’é/l')a‘r any)z . The
simple model of variation of.é%z versus,z shown in Figure 3 will pro-
vide a means of determining the effects of both coefficients of Equa-
titon (15).

Several figures are included in what follows to show the effect
of the 4%42/ varfation on the numerical solution to Equation (i5).
Reference to Figure 4 will clarify the general technique to be used.

In Figure 4, the graph on 4?%2) N coordinates represents the Input
varfation and the graph on f',q& coordinates represents the effect on
the numerical solution of Equation (15). For example, the curve marked
by A on é?') 3 coordinates corresponds to the curve on f"QL co-
ordinates. The reason for presenting the results of this study in the
general form shown in Figure 4 is for clarification of the effects of
the variation of /%4; versus /4 on the solution of Equation (15).

To obtain the solution of Equation (15), the point where the
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2

Fig. 3. == Linear 4// variation as a function of?z .
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boundary layer ceases to exist must be specified. For instance, in
a boundary layer that is completely laminar -f'(ao) =-F.(.‘F) . The numeri-
cal solution to Equation (15) is then forced to have the value of
f' = 1.0 at h =5.0.

Figure 4 shows the effect on the turbulent boundary-layer equation
of three different ramp inputs when ')7.-=@ is specified as 77 = 8.8.
Input A gives the term 9 @%éJ a value of about |1.3 while input B

N

gives the slope a value of 113 and input C gives the slope a value of
226. The results plotted show that as the slope is increased from |!.3
to 113 the solution curve is raised but that somewhere between a slope
of |13 and 226 the curve reaches a maximum and starts to decrease.
Additional numerical data determined that the slope for which a maximum
was reached was about 133. The value of ‘&é/// at any)Z is quite a
bit different for each input. From Figure 4 it Is seen that the solu-

tion curve increases as the value of 1242 increases up to a point and

then decreases. From Figure 4 it is not clear which term, that is

S (Wel )
J N

examination of the numerical values, term for term, in the similarity

or LQZL is really controlling the solution. However,

solution determined that the slope has a much greater effect than the

value of z@z& at any)z . This will be shown later in the thesis.
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CHAPTER Vi

CHANGE OF COORDINATES

The results obtained for turbulent flow in this study are compared
with a plot of Spalding's representation of experimental data.
Spalding's representation was used because of its convenient form. It
seems to be generally agreed that this curve adequately fits the data,
at least within the experimental scatter. The only problem in using
this curve fit+ is that it Is in terms of u’ and y+ instead of f!' and?Z .

I+ can, however, be shown that (see Appendix A)

l -
7?=(%+) El-: Tom, (2¢)

and
£ (v [Ce (2 ¢)
- o=
Hence, all that is necessary to convert u+, y+ data to f', 72
points is to know the relationship between C¢ and Re, at any particular
Rey. One such relationship that has been shown to be valid for turbu-

lent flow over a flat plate was given by Schultz and Grunow [15]. The

relationship is -2,$8

C;p = 0370 <'L£>5,o Re \ <Fl'7)

A comparison of Equation (27) with experimental data [16] is shown on
Figure 5, which shows the relationship fo be in good agreement with

experimental data.
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Fig. 5. -- Local skin coefficient for smooth

wall, zero pressure gradient. Experimental values
represented by points. The curve is Equation (27).
(After Schubauer and Tchen [16])
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Using Equations (25), (26), (27), it is easy to convert Spalding's
representation from u+, y+ coordinates to f', ﬁz coordinates for any

value of Rex.
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CHAPTER VI 1

COMPARISON OF SIMILARITY SOLUTION TO EXPERIMENTAL DATA

For flow over a flat plate with zero pressure gradient it has
been found experimentally [10] that it can generally be assumed that
transition from laminar to turbulent flow will take place in the range
of Re, = 3.5xl05 to Rex = 10%. In this analysis it will be assumed
that turbulent flow exists at Re, = 5%10°.

Figure 6 shows flow profiles for various Re, and the Blasius
profile. All the curves except the Blasius profile are Spalding's
u+, y+ representation transformed to f', coordinates. The rela-
tionship between the curves with respect fto the increasing Re, Is very
interesting. It shows that as the Re, increases, the major part of
the velocity change moves closer to the wall. From this point on all
curves will be for a Re, = 106.

Figure 7 shows the effect of the inputs shown on Figure 8 on
the solution. As may be seen, the slope of the 4242 versus/z fn-
creases, and the curve moves up to a certain value and then decreases.
As before, the slope at which the maximum occurred, that is the slope
at which the solution curve attained its highest value, was found to
be about 133,

Clauser [17], as well as several others, has suggested that the

viscous sublayer of a turbulent boundary layer is about 1/1000 to
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/100 of the total thickness of the boundary layer. This suggests that
the variation of &%22/ versus 4 shown on Figure 9 might yield in-
teresting results. |In other words, it seems reasonable to think, at
least for a simple model, that €§-= © 1n the viscous sublayer. The
effect of such an offset is shown on Figure |0 where Figure || shows
the input variation. |t should be pointed out that Figure Il is no
longer to scale. As shown, the result is to bend the solution curve in
the correct direction. In fact, the Influence of a very small offset
seems to be very critical.

Equation (20) suggested that J/g =© up to a value of about
yt = 5 and Equation (21) suggested that the variation Is linear after
y¥ = 5. Choosing a value of 72';\5 (y* = 5) as the offset point, and
using a ramp input that would yield the curve with the maximum helght,
the results shown In Figure |2 were obtained where Figure i3 1l{us-
trates the input variation. Also plotted on Figure |12 are the curve
fits of Spalding [9] and Diessler [7]. It is very interesting to
notice that the agreement with Curve B is excellent near the wall and
near the edge of the boundary layer but that in the middle the agree-
ment is not as good.

At this point it is clear that the offset has a large influence
on the solution curve. Previously it has been shown that the combina-
tion of slope and value of 4292, also have a large effect. To
determine which of the last two variations had the greatest effect,
the solution curves for Figure |4 were found. Al! three inputs, except
for a small region, have the same value of slope but considerably dif-

ferent values of /!/0 . The solution curves were not plotted because
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they all fell upon one another. This suggests that the slope has a much
greater effect than the value of J%Ab’o

it was also noted that any of the solution curves obtained from
the input of Figure 14 fell on Curve B of Figure |2 which suggests that
the slope has i1ts greatest effect near the offset point.

Figure 12 shows that the simple model for the variation of ¢4ﬁ/2/
versus 7 was not completely successful in duplicating either Spalding's
or Deissler's representation of the data. Figure |5 shows the same

. y+ coordinates, where the lack of agreement is more obvious.

curves on u
To obtain meaningful results it was necessary to use a step size
that was small enough in magnitude so that the behavior near the wall

could be determined. For Re, = 105 the step size used was 4n_ = 0.02.
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CHAPTER VI

DISCUSSION OF RESULTS

The model used to obtain the results reported was based on
Equation (20) and Equation (21). As explained in Chapter |V, this
is an oversimplification of the actual variation. |t seems reason-
able to assume that if a more realistic model of the eddy diffusivity
variation had been used that better results would have been obtained.
Figure |6 shows the variation that has been proposed by Spalding and
the variation used in this thesis. The comparison suggests that the
next model to be used should have a general form of the Spalding

representation.
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CHAPTER 1X
CONCLUSIONS AND RECOMMENDAT I1ONS

The results obtained suggest that it will be possible to obtain
a simple model for the variation of the eddy diffusivity which will
yield a velocity profile that is in agreement with experimental results.
When the working model of the variation is obtained it can be used in
other applications to predict velocity and temperature profiles.

The similarity solution obtained is not a true similarity solu-
tion. A family of curves dependent on Re, are obtained Instead of one
universal curve, as is the case In the Blaslus similarity solution.

For the diffusivity model tested the two parameters that seemed
to have the greatest effect on the solution were the offset point and
value of the slope near the offset point. The results also illustrated
that there was the optimal value for the slope of about {33,

It Is recommended that the general type of variation shown in
Figure 16 be used as the next step in obtaining the desired model.

The numerical method used to obtain the above solutions employs
a constant step size procedure. This introduces two problems. The
first problem can be easily understood by examination of Figure 6.

For a Rey = 106 a step size of at least éﬂl = 0,02 must be used to
obtain a part of the Iinear portion of the curve. However, for Rey

= 10% +the step size must be reduced to at Ieasf'dbq_ = 0,002. For a
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step size of dﬂz_= 0.02 the time required for execution Is about three
minutes per solution while for a A'z = 0.002 the time required is in
excess of one hour. Hence, it is suggested that the computer program

be rewritten to include a variable step size such that It Is very small
when %0 and A7 Increases in size as the value of /] approaches
the edge of the boundary layer. The second problem introduced by the
constant step size is that it is not economical to let the solution

seek its own asymptotic value of f'. Hence the present program requlres
convergence to f' = 1,0 at some specified . A variable step size pro-
gram will greatly reduce the computational time required per run. With
this added flexibifity, the numerical integration can be expected to
seek its natural asymptote, based upon initial slope (f''(0)) and dif-
fusivity profile. This will allow the determination of an acceptable

A@{q) profile without prior Information on the boundary layer thickness.
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APPENDIX C

COMPUTER PROGRAM

INPUT
DATA

SOLVE EQ.
(15)

BY RUNGE-
KUTTA

GUESS NEW
B.C. WITH
NEWTON-
RAPHSON

4

RESULTING

NO .C. CORRECT2

YES

END OF PROGRAM

The input to the program includes the é%‘)/z variation, the
step size, and the definition of the edge of the boundary layer.
Equation (15) is solved numerically by a fourth order Runge-Kutta
method and the resulting boundary conditions are then checked to see

if they are correct. |f so, the computation is completed. |f not,
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a new guess for the initlal conditions Is made by the Newton-Raphson
method and the program is repeated unti| the desired solution is ob-
tained. For a full explanatlon of the Runge-Kutta method used wli+th
all subroutines associated with it see Carnahan [12]. And for a full
explanation of the Newton-Raphson method used in the program see
Scarborough and Blake [14], and Middlecoff [I13]. A listing of the

computer program follows.



MAIN DECK
DIMENSION Y(6),;SAVEY(6) ,PHI(6)sF{6)YINT(6),YSAVE(6)
N=3
READ(5,100) HsXMAX

100 FORMAT (2F10.5)

1 READ (5:80) E1,E2.E3

80 FORMAT (3F10.5)
WRITE (6+90) E1:E2,E3

90 FORMAT (1H1 ,3F20.5)
XINT=0.0
X=XINT
Y(1)=0.0
Y(2)=00.0
Y(3)=2.0
Y(4)=0.0
¥{5)=0,0
Y{6)=0.0
DO 500 K=1,6

500 YINT(K)=Y(K)
CALL RUNGE (HoX XMAX.IFREQo.YE1+sE2.,E3)
ERROR=Y(2)-1.000000
ERRCR=ABS(ERROR)
IF (ERRCR.LT.0,00001) GO TO 700
CALL NR11 (YsHsYINTSsYSAVEaXINTsX)
CALL RUNGE {(H+sXoXMAX . IFREQsYsE12E2.E3)
ERROR=Y(2)-1,006000
ERROR=ABS{ERROR)
IF (ERRCORLT.0.00001) GO TO 700
CALL NR12 (YsHsYINTsYSAVEsPHINEW2XINT»X)
CALL RUNGE (HsX o XMAX, IFREQsYsE1,E2-,E3)
ERROR=Y(2)-1.000000
ERROR=ABS{ERROR)
IF (ERRCRe+LT«0.000601) GO TOC 700

600 CONTINUE
CALL NR21 {YsHl sYINTsYSAVEsPHINEWsPHIOLD«XINTX)
CALL RUNGE (HsX XMAX;IFREQsYsEL12E2,E3)
ERROR=YI[(2)-1.000000
ERRCR=ABS(ERROR)
IF (ERRCR+LT+«D+00001) GO TO 700
CALL NR22 {(YsHlsYINT,PHICLD»XINTsX}
CALL RUNGE (H:XsXMAXsIFREQ;Y E13E2,E3)
ERROR=Y(2)-1.000000
ERROR=ABS{ERRCR)
IF (ERRCRoLT.0.00001) GG TO 700
GC 70 600

700 CONTINUE
GO T0 1

2 CONTINUE

STOP
END
SUBROUTINE RUNGE (H:XoXMAX, IFREGQaY»E1+E25E3)
DIMENSION Y(6),SAVEY (&) FHI(6)sF(6)
N=3
IC=0
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KC=0
LC=0
MC=0
CONTINUE
CALL FUNC (X.YsFoE1sE2,E3)
CALL PASS2 {(YsSAVEY PHIsFoNosHsX)
CALL FUNC (X,YoFsE1,E2,E3)
CALL PASS3 {YSAVEYsPHIoFeNyH)
CALL FUNC (XsYsFsEL1E25,E3)
CALL PASS4 (Y, SAVEY sPHIoFaeNoMHsX)
CALL FUNC {X2YsF2E12E2-,E3}
CALL PASSS (Y,SAVEY PHI FoNyH)
CALL RECORD (IC,JCoKCoLCaMCsXas¥Y{1)o¥Y(2)sY(3))
CONTINUE
IF (XeGE<XMAX) GO TG 4
GO TO 1
CONTINUE
RETURN
END
SUBROUTINE FUNC (X YsF.E1.,E2,E3)
DIMENSION Y{(6)sF(6)
CALL NU (XosE1<E2+E3:G}
CALL PARNU (X:E1,E2,E3,P)
F{1)Y=Y(2)
F{2)=Y(3)
F(3)==Y(3)2p/G-{Y(1)%Y{(3)})/{{(2.0) %G}
F(4)=Y{4)
F(5)=Y(5)
F(6)=Y{6)
RETURN
END
SUBROUTINE PASS2 (YsSAVEYsPHIaFsNogHsX)
DIMENSION Y({N)sSAVEYI{N) PHI{(N)oF{N}
DO 1 J=1sN
SAVEY(J)=Y{(J)
DO 2 J=1sN
PHI(J)Y=F(J)
DO 3 J=1sN
Y{JI=SAVEY(J)+0-SHHEF(J)
X=X+0,5%H
RE TURN
END
SUBROUTINE PASS3 (YsSAVEY PHIcFoNoH}
DIMENSION Y(N) oSAVEY(N):PHI{N) F(N)}
DO 1 J=1,N
PHI{J)=PHI{J)+2.0%F(J}
DO 2 J=1N
Y{J)=SAVEY{J)}+0.5%¥H%F({J)
RE TURN
END
SUBRQUTINE PASS4 (Y:sSAVEYsPHIsFeNsHoX)
DIMENSION Y({N) sSAVEYI{N)}PHI{MN}sF(N)
DO 1 J=1.N



PHI(J)}=PHI(J)+2.0%F (J)

DO 2 J=1N
Y{J)=SAVEY{(JI)+HEF (J)
X=X+0o5%#H

RE TURN

END

SUBROUTINE PASSS5 {(YsSAVEYsPHIsFoNoH)
DIMENSION Y(N)SAVEY{N) PHI{N} . F(N)
DO 1 J=14N
PHI(J)=PHI{J)+F(J)

DO 2 J=1sN

Y{JI=SAVEY{ JU)+I{PHI(J) ) *H/6.0
RE TURN

END

SUBROUTINE NU (XeE12E2¢E3:G)
IF (XoGTeE1l) GO TC 1

G=0.0

GO TO 2

IF {XeGT-E3) GO TO 3
G=({{E3/(E2-E1))-E1}%#X+1.0

GO T0 2

G=E3

CONTINUE

RETURN

END

SUBROUTINE PARNU (XE1:E2-,E3:P)
IF {(XoLToE1l) GO TC 1

IF (XoGT.E3) GO TC 1
P=E3/7(E2~-E1)}

GC T0 2

P=0,0

CONTINUE

RE TURN

END

SUBROUTINE RECORD (ICosJC+KCo LCoMCoXosAoBsC)
IC=IC+1

IF{IC.LTe6) GO TO 1
IF(IC.LT«51) GO TC 2
IF{ICeLT.501) GO TO 3
IF{IC.LT=5001) GO TC 4

GO T0 S

JC=JC+1

IF{(JC-EGe5) GO TO 6

GO 710 100

JC=0

GC 70 1

KC=KC+1

IF{KCoEQeS50) GO TC 7

GG TO 1¢0

KC=g0

GC 7T

LC=LC+1

IF(LC.EG»500) GC TC 8

GC 10 1060



402
100

51
LC=0
GO 10 1
MC=NMC+1
IF(MC.EQs5000) GC TC 9
GC TO 100
MC=¢0
GO T0 1
WRITE (65402) X2A+BaC
FORMAT (1H04F10.5)
CONTINUE
RETURN
END
SUBROUTINE NR11{(YHsYINTsYSAVEsXINT,»X)
DIMENSION Y(6)sYINT(6)YSAVE(6)
DO 1 K=1 .6
YSAVE(K)=Y{K)
DO 2 K=1,6
Y(K)=YINT(K)
Y{3)=YINT(3)+H
X=XINT
RETURN
END
SUBROUTINE NR12 (YoHsYINT»YSAVEPHINEW, XINTsX)
DIMENSION Y{(6)YINT{(6)sYSAVE(S6)
PHICLD=YSAVE{(2)-1.,000000
PHINEW=Y{(2)-1.000000
DPHI={PHINEW—-PHIOLD)/H
DY=-PHICLD/DPHI
YINT(3)=YINT(3)+DY
DO 1 K=14+6
Y{(K)=YINT(K)
X=XINT
RETURN
END
SUBROUTINE NRZ21 (Y Hl1,YINT YSAVE;PHINEW>PHIOLDs XINT X))
DIMENSICN Y{(6)>YINT(6);YSAVE(S)
DC 1 K=1s6
YSAVE(K)=Y(K)
PHICLD=YSAVE{(2)-1.,000000
H1i==-PHICLD/PHINEW
DO 2 K=15;6
Y(K)=YINT{K)
Y(3)=YINT(3)+H1
X=XINT
RETURN
END
SUBROUTINE NR22 {YsH1 YINTsPHIOLDsXINT»X)
DIMENSICN YI{6)sYINT(6)
PHINEW=Y{2)=1,000000
CPHI={(PHINEW-PHICLD)/H1
DY==PHICLD/LDPHI
YINT/3I=YINT{(3}+DY
OC 1 K=1.6
YIKYSYINTIK)
X=XINT
RETURN
END
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ABSTRACT

The purpose of this thesis was to reduce the governing equation
for flow over a flat plate which is a partial differential equation
to an ordinary differential equation by a similarity solution, and
then numerically solve the obtained transformed governing equation.
The solution of this equation was found to be dependent on the model-
ing of the variation of the eddy diffusivity across the boundary layer.
The results obtained by numerically solving the transformed governing
equation were compared with experimental data. The predicted profile'
compared very well| with the experimental profile near the wall and
in the turbulent core. However, the agreement in the buffer region
was poor. The results obtained implied that a better fit could be ob-
tained if a more complex model of eddy diffusivity as a function of

position were used.
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