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abstract

Exponential Stability of Intrinsically Stable Dynamical Networks and Switched Networks
with Time-Varying Time Delays

David Patrick Reber
Department of Mathematics, BYU

Master of Science

Dynamic processes on real-world networks are time-delayed due to finite processing speeds
and the need to transmit data over nonzero distances. These time-delays often destabilize
the network’s dynamics, but are difficult to analyze because they increase the dimension of
the network.

We present results outlining an alternative means of analyzing these networks, by focus-
ing analysis on the Lipschitz matrix of the relatively low-dimensional undelayed network.

The key criteria, intrinsic stability, is computationally efficient to verify by use of the
power method. We demonstrate applications from control theory and neural networks.

Keywords: time-varying time-delays, neural network, switched system
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Chapter 1. Introduction

Interactions between network elements are inherently time-delayed since they are seperated

in some way, for example in space, and information can only be transmitted and processed at

finite rates. For example, control systems often operate in the presence of delays, primarily

due to the time it takes to acquire the information needed for decision-making, to create

control decisions, and to execute these decisions. Consequently, systems with delays arise

in engineering, biology, physics, operations research, and economics [1]. To assume that

these delays remain constant in time is unrealistic, since these delays are often generated by

stochastic processes.

These time delays make analyzing the dynamics of a network more complicated, which is

perhaps a reason why the theory of time-delayed systems is less developed than the theory

of undelayed systems. There are significant differences between the dynamics of delayed and

undelayed systems; for example, the presense of delays may either stabilize or destabilize a

dynamical system. For example, an undelayed, stable feedback system may become unstable

for some delays; yet, delaying decision-making allows may allow supply-chain managers

to better observe consumer trends and consequently make better purchasing and stocking

decisions. Hence, understanding the dynamics of a time-delayed system cannot always be

done by analyzing the system without its time-delays [1].

However, since the theory of time-varying time-delayed systems is less developed, we

would like to be able to identify those situations in which analysis of a delayed system

reduces to analysis of the undelayed system. Providing such a criteria justifies ignoring

time-delays when modeling real-world networks.

Recent progress has been made in this regard, by the use of a criteria called intrinsic

stability. It has been demonstrated that discrete-time systems which satisfy this stronger

notion of global stability have the remarkable property that they remain stable even if

time-delays are added or removed from the system, provided that these delays are constant
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in time [2]. Furthermore, for systems with a differentiable mapping rule, verification of

intrinsic stability is performed using the power method for eigenvalues [18], making this

criteria computationally feasible for analyzing large real-world dynamical networks.

However, as described above, the condition that the delays remain constant in time is

unrealistic for stochastically generated delays. Consequently, we demonstrate that dynamical

networks which are intrinsically stable retain stability not only in the presence of constant

time-delays, but also in the presence of time-varying time-delays.

Chapter 2. Dynamical Networks

A network is composed of a set of elements, which are the individual units that make up the

network, and a collection of interactions between these elements. An interaction between two

network elements can be thought of as an element’s ability to directly influence the behavior

of the other network element. More generally, there is a directed interaction between the ith

and jth elements of a network if the jth network element can influence the state of the ith

network element (where there may be no influence of the ith network element on the jth).

The dynamics of a network can be fomalized as follows:

Definition 2.1. (Dynamical Network) Let (Xi, di) be a complete metric space for 1 ≤

i ≤ n. Let (X, dmax) be the complete metric space formed by endowing the product space

X =
⊕n

i=1Xi with the metric

dmax(x,y) = max
i
di(xi, yi) where x,y ∈ X, and xi, yi ∈ Xi.

Let F : X → X be a continuous map, with ith component function Fi : X → Xi given by

Fi = Fi(x1, x2, . . . , xn) in which xj ∈ Xj for j = 1, 2, . . . , n
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where it is understood that there may be no actual dependance of Fi on xj. The dynamical

system (F,X) generated by iterating the function F on X is called a dynamical network. If

an initial condition x0 ∈ X is given, we define the kth iterate of x0 as xk = F k(x0), with

the sequential orbit {F k(x0)}∞k=0 = {x0,x1,x2, . . .} in which xk is the state of the network at

time k ≥ 0.

The component funtion Fi = Fi(x1, x2, . . . , xn) describes the network elements that in-

fluence the ith element of the network, where there is a directed interaction between the ith

and jth elements if Fi actually depends on xj. For the intial condition x0 ∈ X the state of

the ith element at time k ≥ 0 is xki = (F k(x0))i ∈ Xi and {(F k(x0))i}∞k=0 = {x0i , x1i , x2i , . . .}.

Intuitively, the state space X =
⊕n

i=1Xi consists of n nodes, and the mapping F : X →

X consists of the interactions between all nodes at each time step.

While the defintion of a dynamical network allows for the function F to be defined on

general products of complete metric spaces, for the sake of intuition and direct applications of

the theory we develop in this paper, our examples will focus on dynamical networks in which

X = Rn with the infinity norm ‖x‖∞ = maxi |xi|. To give a concrete example of a dynamical

network and to illustrate results throughout this paper, we will use Cohen-Grossberg neural

(CGN) networks.

Example 2.2. (Cohen-Grossberg Neural Networks) For W ∈ Rn×n, σ : R→ R, and ci, ε ∈ R

for 1 ≤ i ≤ n let (C,Rn) be the dynamical network with components

Ci(x) = (1− ε)xi +
n∑
j=1

Wijσ(xj) + ci 1 ≤ i ≤ n, (2.1)

which is a special case of a Cohen-Grossberg neural network in discrete-time [4]. The function

σ is assumed to be bounded, differentiable, and monotonically increasing, with Lipschitz

constant K, i.e. |σ(x)− σ(y)| ≤ K |x− y| for all x, y ∈ R.

In a Cohen-Grossberg neural network the variable xi represents the activation of the ith

neuron. The function σ is a bounded monotonically increasing function, which describes
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the ith neuron’s response to inputs. The matrix W gives the interaction strengths between

each pair of neurons and describes how the neurons are connected within the network. The

constants ci indicate constant inputs from outside the network.

In a globally stable dynamical network (F,X), the state of the network tends toward an

equilibruim irrespective of its initial condition. That is, the network has a globally attracting

fixed point y ∈ X such that for any x ∈ X, F k(x)→ y as k →∞.

Global stability is observed in a number of important systems including neural networks

[4, 5, 6, 7, 8], epidemic models [9], and the study of congestion in computer networks [10]. In

such systems the globally attracting equilibrium is typically a state in which the network can

carry out a specific task. Whether or not this equilibrium stays stable depends on a number

of factors including external influences but also internal processes such as the network’s own

growth, both of which can destabilize the network.

To give a sufficient condition under which a network (F,X) is stable, we define a Lipschitz

matrix (called a stability matrix in [2]).

Definition 2.3. (Lipschitz Matrix) For F : X → X suppose there are finite constants

aij ≥ 0 such that

di(Fi(x), Fi(y)) ≤
n∑
j=1

aijdj(xj, yj) for all x,y ∈ X.

Then we call A = [aij] ∈ Rn×n a Lipschitz matrix of the dynamical network (F,X).

It is worth noting that if A is a Lipschitz matrix of a dynamical network then any matrix

B � A, where � denotes the element-wise inequality, is also a Lipschitz matrix of the

network. However, if the function F : X → X is piecewise differentiable and each Xi ⊆ R

then the matrix A ∈ Rnxn given by

Aij = sup
x∈X

∣∣∣∣∂Fi∂xj
(x)

∣∣∣∣ (2.2)

is the Lipschitz matrix of minimal spectral radius for (F,X) (see [2]). From a computational
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point of view, the Lipschitz matrix A = [aij] of (F,X) can be more straightforward to find

by use of Equation (2.2) if the function F : X → X is differentiable, compared to the more

general formulation in Definition 2.3.

Using Equation (2.2) it follows that the Lipschitz matrix A of the Cohen-Grossberg

Neural Network from Example 2.2 is given by

aij =


|1− ε|+K |Wii| if i = j

K |Wij| otherwise.

(2.3)

It is straightforward to verify that a Lipschitz matrix exists for a dynamical network

(F,X) if and only if the mapping F is Lipschitz continuous. The idea is to use the Lipschitz

matrix to simplify the stability analysis of nonlinear networks, using the following theorem

of [2]. Here

ρ(A) = maxi{|A| : A ∈ σ(A)}

denotes the spectral radius of a matrix A.

Theorem 2.4. (Network Stability) Let A be a Lipschitz matrix of a dynamical network

(F,X). If ρ(A) < 1, then (F,X) is stable.

It is worth noting that if we use the Lipschitz matrix A to define the dynamical network

(G,X) by G(x) = Ax then (G,X) is stable if and only if ρ(A) < 1. Thus, a Lipschitz matrix

of a dynamical network (F,X) can be thought of as the worst-case linear approximation to

F . If this approximation has a globally attracting fixed point, then the original dynamical

network (F,X) must also be stable. Note, however, that the condition that ρ(A) < 1 is

sufficent but not neccesary for (F,X) to be stable. In fact, this stronger condition implies

much more than network stability, so following the convention introduced in [2] we assign it

the name of intrinsic stability.

Definition 2.5. (Intrinsic Stability) Let A ∈ Rnxn be a Lipschitz matrix of a dynamical

network (F,X). If ρ(A) < 1, then we say (F,X) is intrinsically stable.
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The Cohen-Grossberg neural network (C,Rn×n) has the stability matrix A = |1− ε| I +

K |W | given by Equation (2.3) with spectral radius

ρ(A) = |1− ε|+Kρ(|W |)

Here, |W | ∈ Rn×n is the matrix W in which we take the absolute value of each entry. Thus,

(C,Rn×n) is intrinsically stable if |1− ε|+Kρ(|W |) < 1.

Chapter 3. Constant-Time-Delayed Dynam-

ical Networks

As mentioned in the introduction, the dynamics of most real networks are time-delayed. That

is, an interaction between two network elements will typically not happen instantaneously

but will be delayed due to either the physical separation of these elements, their finite

processing speeds, or be delayed due to other factors. We formalize this phenonenom by

introducing a delay distribution matrix D = [dij] into a dynamical network (F,X), where

each dij is a nonnegative integer denoting the constant number of discrete time-steps by

which the interaction from the jth network element to the ith network element is delayed.

Definition 3.1. (Constant Time-Delayed Dynamical Network)

Let (F,X) be a dynamical network and D = [dij] ∈ Nn×n a delay distribution matrix with

maxi,j dij ≤ L, a bound on the delay length. Let XL, the extension of X to delay-space, be

defined as

XL =
L⊕
`=0

n⊕
i=1

Xi,` where Xi,` = Xi for 1 ≤ i ≤ n and 0 ≤ ` ≤ L.
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Componentwise, define FD : XL → XL by

(FD)i,`+1 : Xi,` → Xi,`+1 given by the identity (FD)i,`+1(xi,`) = xi,` for 0 ≤ ` ≤ L−1

(3.1)

and

(FD)i,0 :
n⊕
j=1

Xj,dij → Xi,0 given by (FD)i,0 = Fi(x1,di1 , x2,di2 , . . . , xn,din) (3.2)

where Fi : X → Xi is the ith component function of F for i = 1, 2, . . . , n. Then (FD, XL)

is the the delayed version of F corresponding to the fixed-delay distribution D with delay

bound L.

We order the component spaces of XL in the following way. If x ∈ XL then

x = [x1,0, x2,0, . . . , xn,0, x1,1, x2,1, . . . , xn,L]T

where xi,` ∈ Xi,` for i = 1, 2, . . . , n and ` = 0, 1, . . . , L.

The formalization in Definition 3.1 captures the idea of adding a time-delay to an inter-

action: Each Xi is effectively copied L times, and past states of the ith element are passed

down this chain by the identity component functions (FD)i,`+1 for 0 ≤ ` ≤ L−1 in Equation

(3.1). Finally, when a state of the ith element has been passed through the chain dij times

over dij time-steps it then influences the ith network element, as captured by the entry-wise

substitutions of xj,dij for xj in (FD)i,0 in Equation (3.2).

Example 3.2. Consider a simple 2-neuron version of a Cohen-Grossberg neural network

(C,X) given by

C

(x1
x2

) =

C1(x1, x2)

C2(x1, x2)

 =

(1− ε)x1 +W11φ(x1) +W12φ(x2) + c1

(1− ε)x2 +W21φ(x1) +W22φ(x2) + c2

 , (3.3)
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Figure 3.1: Left: The stable dynamics of the two-neuron Cohen-Grossberg network (C,X)
from Example 3.2 is shown. Right: The unstable dynamics of the constant time-delayed
version of this network (CD, X3) is shown with the delay distribution given by the matrix D
in Equation (3.4).

in which X = R2. For the delay distribution D given by

D =

1 2

1 3

 , (3.4)

which has a maximum delay of L = 3 the time-delayed network (CD, X3) is given by

CD





x1,0

x2,0

x1,1

x2,1

x1,2

x2,2

x1,3

x2,3





=



C1(x1,1, x2,2)

C2(x1,1, x2,3)

x1,1

x2,1

x1,2

x2,2

x1,3

x2,3



=



(1− ε)x1,1 +W11φ(x1,1) +W12φ(x2,2) + c1

(1− ε)x2,3 +W21φ(x1,1) +W22φ(x2,3) + c2

x1,0

x2,0

x1,1

x2,1

x1,2

x2,2


in which X3 = R8. The time-delayed network (CD, X3) is the same as the original network

(C,X) except that the state of x1,0 gets passed through one identity mapping before it is input

into F1 and twice before it is input into F2. Similarly, x2,0 gets passed through one identity
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mapping before it is input into F1 and three identity mappings before it is input into F2.

A natural question is to ask is whether constant time-delays affect the stability of a net-

work. We note that if

W =

0 −3
4

3
4

0

 ,
c1 = c2 = 0, σ(x) = tanh(x), and ε = 2

5
then the dynamical network (C,X) given in

Equation (3.3) is stable as can be seen in Figure (3.1) (left). However, the time-delayed

version (CD, X3) of this network is unstable as is shown in the same figure (right). That is,

the time-delays given by the delay distribution D have a destabilizing effect on this network.

An important fact about the network constructed in this example is that its spectral

radius

ρ(A) = |1− ε|+Kρ(|W |) = 1.35 > 1.

That is, although (C,X) is stable it is not intrinsically stable.

In [1], the authors demonstate that intrinsically stable systems are resilient to the addition

of constant time-delays, as is stated in the following theorem.

Theorem 3.3. (Intrinsic Stability and Constant Delays) Let (F,X) be a dynamical

network and D = [dij] a delay-distribution matrix. Let L satisfy maxi,j dij ≤ L. Then (F,X)

is intrinsically stable if and only if (FD, XL) is intrinsically stable.

Furthermore, we note that any fixed point(s) of an undelayed network (F,X) will also

be fixed point(s) of any delayed version (FD, XL). This is formalized in the following propo-

sition, and proven in the Appendix. Before stating this proposition, we require the following

definition.
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Figure 3.2: Left: The dynamics of the intrinsically stable network (C,X) from Example 3.6
is shown. Right: The stable dynamics of the constant time-delayed version of this network
(CD, X3) is shown with the delay distribution given by the matrix D in Equation (3.4). Both
systems are attracted to the fixed point x∗ = (−.386, 1.595).

Definition 3.4. (Extension of a Point to Delay-Space) Let EL(x) ∈ XL be equal to

L+ 1 copies of x ∈ X stacked into a single vector, namely

EL(x) =



x0

x1

...

xL


where x` = x for 0 ≤ ` ≤ L.

Proposition 3.5. (Fixed Points of Delayed Networks) Let x∗ be a fixed point of a

dynamical network (F,X). Then for all delay distributions D with maxij dij ≤ L, EL(x∗) is

a fixed point of (FD, XL).

As an immediate consequence of Proposition 3.5 and Theorem 3.3, if an undelayed net-

work (F,X) is intrinsically stable with a globally attracting fixed point x∗ ∈ X, then the

delayed version (FD, XL) will have the “same” globally attracting fixed point EL(x∗), in

that x∗ is the restriction of y = EL(x∗) to the first n component spaces of XL. Thus, the

asymptotic dynamics of an intrinsically stable network and any version of the network with

constant time delays are essentially identical.
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Example 3.6. For example, consider the Cohen-Grossberg neural network (C,X) and delay

matrix D given in Example 3.2 where W and σ are as before but ε = 4
5
, c1 = −1 and c2 = 1.

Since |1− ε|+ρ(|W |) = .95 < 1 then (C,X) is intrinsically stable with the globally attracting

fixed point x∗ = (−.386, 1.595) as seen in Figure 3.2 (left). Since (C,X) is intrinsically stable

then Theorem 3.3 together with Proposition 3.5 imply that not only is (CD, X3) stable but its

globally attracting fixed point is E3(x
∗). This is shown in Figure 3.2 (right).

This result justifies the modeling choice of ignoring constant time-delays when analyz-

ing intrinsically stable real-world neworks, but does not account for the potential time-

dependance of delays arising from external or stochastic influences. Consequently, the main

results of this paper presented in the next chapter focuses on strengthening the conclusion

of Theorem 3.3.

Chapter 4. Time-Varying Time-Delayed Dy-

namical Networks

As the title of this chapter suggests, constant time-delays are not the only type of time delays

that can occur in dynamical networks. More importantly, time-delays that vary with time

occur in many real-world networks and in such systems are a significant source of instability

[1]. It is worth noting that modeling such delays introduces even more complexity into

models of dynamical networks that can already be quite complicated. This can hinder the

tractability of analyzing such systems.

In order to define a network with time-varying time-delays, we first define the more

general concept of a switched network.

Definition 4.1. (Switched Network) Let M be a set of Lipschitz continuous mappings

on X, such that for every F ∈ M , (F,X) is a dynamical network. Then we call (M,X) a

switched network on X. Given some sequence {F (k)}∞k=1 ⊂ M , we say that ({F (k)}∞k=1, X)

11



is an instance of (M,X), with orbits determined at time k by the function

F k(x) = F (k) ◦ . . . ◦ F (2) ◦ F (1)(x) for x ∈ X.

For the switched network (M,X) we construct a Lipschitz set S consisting of a set of n× n

matrices as follows: For each F ∈ M , contribute exactly one Lipschitz matrix A of (F,X)

to the set S.

(M,X) is an ensemble of dynamical systems formed by taking all possible sequences of

mappings {F (k)}∞k=1 ⊂ M . For a switched network (M,X), the set S serves an analagous

purpose to the Lipschitz matrix A of a dynamical network (F,X), as we soon demonstrate.

Before describing this we consider the following example.

Example 4.2. Let (P,R2) and (Q,R2) be the simple dynamical networks given by

P (x) =

ε 1

0 ε

x and P (x) =

ε 0

1 ε

x for small ε << 1.

For M = {P,Q} let {F (k)}∞k=1 be the sequence that alternates between P and Q, i.e. F (k) = P

if k is odd and F (k) = Q if k is even. Note that if we let U = Q ◦ P then

U(x) =

ε2 ε

ε 1 + ε2

 with ρ(U) =
1

2
(1 + 2ε2 +

√
1 + 4ε2) > 1.

Since F (2k)(x) = U ◦. . .◦U(x) for x ∈ R2 then, as U(x) is a linear system limk→∞F (2k)(x) =

∞ for any x 6= 0. This is despite the fact that both (P,R2) and (Q,R2) are intrinsically stable

both having the globally attracting fixed point 0.

The issue is that although the spectral radius of both P and Q in this example are

arbitrarily small, their joint spectral radius is not.
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Definition 4.3. (Joint Spectral Radius) Given some z0 ∈ Rn and some set of matrices

S ⊂ Rn×n, let zk = Ak . . . A2A1z
0 for some sequence {Ai}∞i=1 ⊂ S. The joint spectral radius

ρ(S) of the set of matrices S is the smallest value ρ ≥ 0 such that for every z0 ∈ Rn there is

some constant C > 0 for which ∥∥zk∥∥ ≤ C(ρ)k.

It is known that {zk}∞k=1 converges to the origin for all z0 ∈ Rn if and only if ρ(S) < 1

[11]. This allows us to state the following result regarding the asymptotic behavior of a

nonlinear switched network (M,X) whose Lipschitz set S satisfies ρ(S) < 1.

Main Result 1. (Independence of Initial Conditions for Switched Networks) Let

S be a Lipschitz set of a switched network (M,X) satisfying ρ(S) < 1, and let ({F (k)}∞k=1, X)

be an instance of (M,X). Then for all initial conditions x0,y0 ∈ X, there exists some C > 0

such that

dmax(F
k(x0),F k(y0)) ≤ Cρ(S)k.

Additionally, if x∗ is a shared fixed point of (F,X) for all F ∈M , then limk→∞F k(x0) = x∗

for all initial conditions x0 ∈ X.

Hence, if the joint spectral radius of the Lipschitz set S of M is less than 1, all orbits in a

switched network become asymptotically close to one another as time goes to infinity. Even

if this limit-orbit is not convergent to any fixed point, it demonstrates an independence of

asymptotic behavior to initial conditions. An example of this is the following.

Example 4.4. Let (G,X) and (H,X) be the Cohen-Grossberg neural networks given by

G

(x1
x2

) =

(1− ε1)x1 − 3
4
φ(x2) + c1

(1− ε1)x2 + 3
4
φ(x1) + c2

 and H

(x1
x2

) =

(1− ε2)x1 + 1
4
φ(x2) + d1

(1− ε2)x2 + 1
4
φ(x1) + d2

 ,
respectively, in which σ(x) = tanh(x), ε1 = 4

5
, ε2 = 3

10
, c1 = d2 = −1, and c2 = d1 = 1.

Setting M = {G,H} and letting S be the Lipschitz set of M given by

13
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Figure 4.1: Left: The dynamics of the switched network in Example 4.4 is shown for two
different initial conditions x0 = (2, 3) (shown in blue and yellow) and y0 = (−2,−3) (shown
in green and red). As the corresponding joint spectral radius ρ(S) of the network is less
than 1, the orbits of these initial conditions converge to each other. Right: Modifying this
switched network so that both F,G ∈ M have the shared fixed point 0 results in a stable
switched system with with the globally attracting fixed point 0.

S =


1

5
3
4

3
4

1
5

 ,
 7

10
1
4

1
4

7
10


 .

It can be shown that the joint spectral radius ρ(S) = .95. As this is less than 1, then for any

instance ({F (k)}∞k=1, X) of M and any initial conditions x0 and y0, we have

lim
k→∞

dmax(Fk(x0),Fk(y0)) = 0

by the Main Result 1. This can be seen in Figure 4.1 (left) where ({F (k)}∞k=1, X) is the

instance given by {F (k)}∞k=1 = {G,G,G,H,H,H, . . . }.

If we set c1 = c2 = d1 = d2 = 0 in both (G,X) and (H,X) then both systems have the

shared fixed point 0. In this case Main Result 1 indicated that any instance ({F (k)}∞k=1, X)

of M will be stable with the globally attracting fixed point 0. This is shown in Figure 4.1

(right) where again {F (k)}∞k=1 = {G,G,G,H,H,H, . . . }.

Thus, as might be expected from the complicated nature of a switched system, the

condition ρ(S) < 1 alone is not able to match the strong implication of global stability,

as ρ(A) < 1 does for a dynamical network (see Theorem [3.3]). Furthermore, it is often

14



notoriously difficult to compute or approximate the joint spectral radius ρ(S) of a general

set of matrices S [11].

Somewhat surprisingly, these issues are resolved when our switched system arises from

a network experiencing time-varying time-delays. In this case, the computation of the joint

spectral radius reduces to computing the spectral radius of the Lipschitz matrix of the original

undelayed dynamical network (F,X), which for even large systems can be done efficiently

using the power method [18]. This provides a general and computationally efficient method

for verifying asymptotic stability despite time-varying time-delays.

Main Result 2. (Intrinsic Stability and Time-Varying Time-Delayed Networks)

Suppose (F,X) is intrinsically stable with ρ(A) < 1, where A ∈ Rn×n is a Lipschitz matrix

of F and x∗ is the network’s globally attracting fixed point. Let L > 0 and

Md = {FD|D ∈ Nn×n with max
ij

dij ≤ L}

and Sd be the Lipschitz set of Md.

Then EL(x∗) is a globally attracting fixed point of every instance ({FD(k)}∞k=1, XL) of (Md, XL).

Furthermore, ρ(Sd) = ρ(AL) < 1, where

AL =

 0n×nL A

InL×nL 0nL×n

 .
Hence, any intrinsically stable dynamical network (F,X) retains convergence to the same

equilibrium even when it experiences time-varying time-delays. This extends Theorem 2.3

of [2] to the much larger and more complicated class of switching-delay networks. Further-

more, note that intrinsic stability is a delay-independant result, which makes no assumption

regarding the rate of growth of the time delays. In Main Result 2 we call ρ(M) the conver-

vence rate of the system, since it provides the exponential rate to which all orbits converge

to the fixed point EL(x∗).

15
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Figure 4.2: Left: The dynamics of the intrinsically stable two-neuron Cohen-Grossberg
network (C,X) from Example 3.6 is shown in which the network has periodic time-varying
time-delays. Right: The dynamics of the same Cohen-Grossberg network is shown in which
the network has stochastic time-varying time-delays. Both systems are attracted to the fixed
point x∗ = (−.386, 1.595) similar to the behavior in Figure 3.2.

It is worth emphasizing that as a consequence of this result, to determine the asymptotic

behavior of a network (M,XL) with M = {FD|D ∈ Nn×n with maxij dij ≤ L}, in which

the presence and magnitude of time delays is not exactly known, it suffices to study the

dynamics of the much simpler undelayed system (F,X).

Example 4.5. (Periodic and Stochastic Time-Varying Delays) Consider the intrin-

sically stable Cohen-Grossberg neural network (C,X) from Example 3.6 with the exception

that we let {D(k)}∞k=1 be the sequence of delay distributions given by

D(k) =

k mod 5 k mod 6

k mod 6 k mod 5

 . (4.1)

These time-varying delays are periodic with period 30 and L = 5. The result of these delays

on the network’s dynamics can be seen in Figure 4.2 (left) where we let (CP , X5) denote the

network (C,X) with time-varying time-delays given by 4.1. Note that although the trajecto-

ries are altered by these delays they still converge to the same fixed point x∗ = (−.386, 1.595)

as in the undelayed and constant time-delayed networks (cf. Figure 3.2) as guaranteed by

Main Result 2.
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If instead we let

D
(k)
U [0,10] ∈ N2×2. (4.2)

be the random matrix in which each entry is sampled uniformly from the integers {0, 1, . . . , 10}

the resulting switched network is still stable, as guaranteed by Main Result 2. Moreover, the

network’s trajectories still converge to the point x∗ = (−.386, 1.595) as shown in Figure 4.2

(right) where we let (CU , X10) denote the network (C,X) with time-varying time-delays given

by 4.2.

4.1 Application: Linear Systems with Distict Delayed and Un-

delayed Interactions

A number of papers have published delay-dependant results regarding time-varying time-

delayed systems whose delayed interactions differ from the undelayed interactions [13, 14,

15, 16, 17]. We demonstrate how to analyze these by use of Main Result 2.

Consider a linear system of the form

xk+1 = Axk +Bxk−τ(k) where 1 ≤ τ(k) ≤ L (4.3)

where A,B ∈ Rn×n are constant matrices, and τ(k) is a positive integer representing the

magnitude of the time-varying time-delay, bounded by some L > 0. Here A and B represent

distict weights of the delayed and undelayed interactions.

The minimally delayed version of system (4.3) is given by

xk+1 = Axk +Bxk−1 (4.4)

17



which we can express in terms of a single transition matrix Ã as

x̃k+1 = Ãx̃k where Ã =

 A B

In×n 0n×n

 and x̃k =

 xk

xk−1

 (4.5)

As in [17], we say that system (4.5) is the lifted representation of system (4.4).

Now observe that we may represent system (4.3) in the notation of Main Result 2 as the

system (F,R2n) where

F (x̃k) = Ãx̃k

where since F is linear, the Lipschitz matrix of F is given by
∣∣∣Ã∣∣∣ and the zero vector 0n is

a fixed point. Then system (4.3) is the switched system instance ({FD(k)}∞k=1, XL) obtained

from the sequence of delay distributions

D(k) = τ(k)

0n×n 1n×n

0n×n 0n×n


ensuring that delays only occur to interactions corresponding to B, with magnitude τ(k).

Immediately it follows by Main Result 2 that the system (4.3) is stable for arbitrary large

delay bounds L when (F,R2n) is intrinsically stable, that is that ρ(Ã) < 1 is satisfied.

Example 4.6. (Intrinsically Stable) Consider system (4.3) with

A =

 0.6 0

0.35 0.7

 , B =

0.1 0

0.2 0.1

 .
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The transition matrix of the lifted representation is

Ã =



0.6 0 0.1 0

0.35 0.7 0.2 0.1

1 0 0 0

0 1 0 0



which satisfies ρ(
∣∣∣Ã∣∣∣) ≈ 0.822 < 1. Hence this system is intrinsically stable, so is in fact

stable for an arbitrarily large delay bound L > 0.

However, there are systems of the form (4.3) which are not intrinsically stable.

Example 4.7. (Stable, not Intrinsically Stable) Consider system (4.3) with

A =

 0.8 0

0.05 0.9

 , B =

−0.1 0

−0.2 −0.1

 .
The transition matrix of the lifted representation is

Ã =



0.8 0 −0.1 0

0.05 0.9 −0.2 −0.1

1 0 0 0

0 1 0 0



which satisfies ρ(
∣∣∣Ã∣∣∣) = 1.0. Hence this system is not intrinsically stable, even though [13]

showed that it is stable for all 0 ≤ L ≤ 9.61× 108.

However, even though some systems are not intrinsically stable, the fact that intrinsic

stability can be verified much more efficiently than the results of [13, 14, 15, 16, 17] justifies

checking anyways, in case the system under consideration is in fact intrinsically stable. For

further analysis of the computational complexity of checking intrinsic stability, see chapter

6.
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Chapter 5. Row-Independence Closure of

Switched Networks

Using Main Result 1 and Main Result 2, we can extend our analysis of time-varying time-

delays to a more general class of switched networks.

Definition 5.1. (Row-Independence Closure) Let (M,X) be a switched network with

Lipschitz set S. Then we denote RI(S), the row-independence closure of S, by

RI(S) = {A∗| a∗i = a
(i)
i for some A(1), . . . , A(n) ∈ S}

where a
(i)
i denotes the ith row of the ith matrix A(i).

Intuitively, row-independence indicates that there is no conditional relationship between

rows of the matrices in RI(S). Note that S ⊂ RI(S).

The row-independence closure provides a computationally efficient sufficient condition

for satisfying the hypothesis of Main Result 1. The following proposition follows directly

from Definition 5.1 the results of [11] (Theorem B.4 in the Appendix).

Proposition 5.2. (Row-Independence Closure, Intrinsic Stability, and Switched

Networks) Let (M,X) be a switched network with Lipschitz set S. Then

ρ(S) ≤ ρ(RI(S)) = max
A∈RI(S)

ρ(A).

We then have the following extension of Main Result 2, which provides a sufficient con-

dition ensuring that when time-varying time-delays are applied to a stable already-switched

system, the resulting hyper-switched system retains stability.

Main Result 3. (Intrinsic Stability and Row-Independent Switched Networks)

Let (M,X) be a switched network with Lipschitz set S. Assume x∗ is a shared fixed point of
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(F,X) for all F ∈M . Assume ρ(A) < 1 for all A ∈ RI(S). Let L > 0 and

Md = {FD|F ∈M,D ∈ Nn×n with max
ij

dij ≤ L}

and Sd be the Lipschitz set of Md.

Then EL(x∗) is a globally attracting fixed point of every instance ({F (k)

D(k)}∞k=1, XL) of (Md, XL).

Furthermore,

ρ(Sd) ≤ max
A∈RI(S)

ρ(AL) < 1

where given some A ∈ Rn×n, AL is defined as

AL =

 0n×nL A

InL×nL 0n×n

 .
Thus, a switched network with a fixed point satisfying ρ(A) < 1 for all A ∈ RI(S) retains

convergence to the same equilibrium, even when it experiences time-varying time-delays.

This extends Main Result 2 further to the even more complicated class of switching-delay

switched networks.

5.1 Application: Switched Linear Systems with Distict De-

layed and Undelayed Interactions

We now extend our analysis of Section 4.1 to the case where system (4.3) is also a switched

system:

xk+1 = Aσ(k)x
k +Bσ(k)x

k−τ(k) where 1 ≤ τ(k) ≤ L (5.1)

where as before, each A,B ∈ Rn×n are constant matrices, and τ(k) is a positive integer

representing the magnitude of the time-varying time-delay, bounded by some L > 0. The

difference between system (5.1) and system (4.3) is that in system (5.1) there are multiple

possibilities for the transition weights of the delayed and undelayed interactions.
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The minimally delayed version of system (5.1) is given by

xk+1 = Aσ(k)x
k +Bσ(k)x

k−1 (5.2)

so the lifted version of system (5.2) is

x̃k+1 = Ãσ(k)x̃
k where Ãσ(k) =

Aσ(k) Bσ(k)

In×n 0n×n

 and x̃k =

 xk

xk−1

 (5.3)

Now observe that we may represent system (5.1) in the notation of Main Result 3 as the

system (M0,R2n) where

M0 = {F | F (x̃k) = Ãσ(k)x̃
k}

where since each F is linear, the Lipschitz matrix of F is given by
∣∣∣Ãσ(k)∣∣∣ and the zero vector

0n is a shared fixed point. Then system (5.1) is the switched system instance ({F (k)

D(k)}∞k=1, XL)

obtained from the sequence of transition matrices Ãσ(k) and the sequence of delay distribu-

tions

D(k) = τ(k)

0n×n 1n×n

0n×n 0n×n


once the sequences σ(k) and τ(k) are determined. ensuring that delays only occur to inter-

actions corresponding to B, with magnitude τ(k). Immediately it follows by Main Result 3

that the system (5.1) is stable for arbitrary large delay bounds L when (M0,R2n) satisfies

ρ(A) < 1 for all A ∈ RI(S) of the Lipschitz set S of M0.

Example 5.3. (Switched Transitions) Consider system (5.1) with

A1 = A2 =

 0 0.3

−0.2 0.1

 , A3 = A4 =

 0 0.3

−0.2 −0.1


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B1 = B3 =

0 0.1

0 0.2

 , B2 = B4 =

0 0.1

0 0


The set M0 of lifted transition matrices consists of the following four matrices:

Ã1 =



0 0.3 0 0.1

−0.2 0.1 0 0.2

1 0 0 0

0 1 0 0


Ã2 =



0 0.3 0 0.1

−0.2 0.1 0 0

1 0 0 0

0 1 0 0



Ã3 =



0 0.3 0 0.1

−0.2 −0.1 0 0.2

1 0 0 0

0 1 0 0


Ã4 =



0 0.3 0 0.1

−0.2 −0.1 0 0

1 0 0 0

0 1 0 0


Note that this satisfies M0 = RI(M0), as well as ρ(

∣∣∣Ãk∣∣∣) < 1.0 for all Ãk ∈ M0. Hence this

switched system is intrinsically stable, so is in fact stable for an arbitrarily large delay bound

L > 0, no matter the sequences chosen.

Chapter 6. Analytical and Computational

Considerations

We now summarize how these results are used to analyze real-world dynamical systems with

network structure, that is, systems (F,X) of the form X =
⊕n

i=1Xi with a corresponding

mapping F defined componentwise. Consider the simpler model of the network where all

interactions occur instantaneously, excluding all delays of the form of Definition 3.1 (i.e.

affecting only a single component by an identity mapping).

Find a Lipschitz matrix A of the network by equation 2.2 if the mapping F is piecewise

differentiable and X = Rn, otherwise directly determine the pairwise Lipschitz constants by
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use of Definition 2.3. Recall that there are infinitely many Lipschitz matrices for a given

dynamical network; ideally, we would like to find one which minimizes the spectral radius, as

this tightens the convergence rate of the system. However, in certain cases it may simplify

analysis considerably to merely find upper bounds for each entry of the Lipschitz matrix.

The spectral radius ρ(A) can be computed efficiently in O(mn) time by use of the power

method, where m is the number of nonzero entries in A [18]. As soon as a single Lipschitz

matrix A of (F,X) satisfies ρ(A) < 1, even if this A does not have minimal spectral radius,

the results of Theorem 3.3 and Main Result 2 apply, guarenteeing that all delayed versions

of (F,X) are stable, even if the delays are varying in time (so long as the magnitude of these

delays are eventually bounded by some L). The convergence rate of the delayed system is

given by ρ(AL), where AL is defined in Main Result 2. Since AL is sparse with m+nL nonzero

entries, ρ(AL) can also be computed in O(mnL+ n2L2) time using the power method.

Chapter 7. Future Work

While Main Results 2 and 3 provide upper bounds on the convergence rate, further work

is needed to find the expected convergence rate when the sequence of delay distributions

{D(k)}∞k=1 is generated stochastically, as in Example 4.5. In addition, note that the addition

of time-delays can be viewed as a form of network growth in which cycles are extended, but

otherwise unaltered. Further research regarding the Lipschitz matrix of a dynamical nework

may provide similar invariance of stability to network changes such as weight updates and

cycle removal, as occurs with various machine learning techniques such as backpropagation

and dropout. Lastly, the results presented here merit further investigation of applications,

including high-dimensional, nonlinear switched systems with time-varying time-delays.

24



Chapter 8. Conclusion

Time-delays can destabilize a dynamical network, and increase the difficulty of anlayzing the

asymptotic behavior of the network. An alternative method to typical Lyanpunov methods

was presented in this thesis. This method, which consists of determining whether the lower-

dimensional undelayed network is intrinsically stable, is computationally feasible to verify

on large networks. Furthermore, this resilience to time-varying time-delays is extended to

row-independent switched networks.

Appendix A. Proof of Proposition 3.5 and

Main Result 1

A.1 Proof of Proposition 3.5

Proof. Let x∗ = [x∗1, x
∗
2, . . . , x

∗
n]T be a fixed point of a dynamical network (F,X). Then by

definition

Fi(x
∗
1, x
∗
2, . . . , x

∗
n) = x∗i for all 1 ≤ i ≤ n.

Let D be a delay distribution with maxij dij ≤ L for some L > 0. With the usual ordering

of the component spaces of x ∈ XL, we have

FD(EL(x∗)) =



(FD)1,0(x
∗
1, x
∗
2, . . . , x

∗
n)

(FD)2,0(x
∗
1, x
∗
2, . . . , x

∗
n)

...

(FD)n,0(x
∗
1, x
∗
2, . . . , x

∗
n)

(FD)1,1(x
∗
1)

(FD)2,1(x
∗
2)

...

(FD)n,L(x∗n)



=



F1(x
∗
1, x
∗
2, . . . , x

∗
n)

F2(x
∗
1, x
∗
2, . . . , x

∗
n)

...

Fn(x∗1, x
∗
2, . . . , x

∗
n)

x∗1

x∗2
...

x∗n



=



x∗1

x∗2
...

x∗n

x∗1

x∗2
...

x∗n



= EL(x∗).
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A.2 Proof of Main Result 1

Proof. Let x,y ∈ X and k > 0 be arbitrary. Note that for any F ∈ M with corresponding

A ∈ S we have, by definition of A being a Lipschitz matrix of F , that


d1(F1(x), F1(y))

...

dn(Fn(x), Fn(y))

 � A


d1(x1, y1)

...

dn(xn, yn)


where � denotes an element-wise inequality. Thus, for the specific instance ({F (k)}∞k=1, X)

given in the hypothesis, we have inductively


d1(F k

1 (x),F k
1 (y))

...

dn(F k
n (x),F k

n (y))

 =


d1(F

(k)
1 ◦F k−1(x), F

(k)
1 ◦F k−1(y))

...

dn(F
(k)
n ◦F k−1(x), F

(k)
n ◦F k−1(y))



� A(k)


d1(F

k−1
1 (x),F k−1

1 (y))

...

dn(F k−1
n (x),F k−1

n (y))



� A(k)A(k−1) . . . A(1)


d1(x1, y1)

...

dn(xn, yn)

 .
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Hence, by the definition of the joint spectral radius, there exists some positive constant C

(possibly dependant on x and y) such that

dmax(F
k(x),F k(y)) =

∥∥∥∥∥∥∥∥∥∥


d1(F k

1 (x),F k
1 (y))

...

dn(F k
n (x),F k

n (y))


∥∥∥∥∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥∥∥∥∥
A(k)A(k−1) . . . A(1)


d1(x1, y1)

...

dn(xn, yn)


∥∥∥∥∥∥∥∥∥∥
∞

≤ C(ρ(S))k

where ‖x‖∞ = maxi |xi|.

Now, assume x∗ is a shared fixed point of (F,X) for all F ∈ M . Then F 1(x∗) =

F (1)(x∗) = x∗, and if it is assumed that F k−1(x∗) = x∗, then it follows immediately that

F k(x∗) = F (k) ◦F k−1(x∗) = F (k)(x∗) = x∗.

Hence by induction, x∗ is a fixed point of ({F (k)}∞k=1, X). Thus

dmax(F
k(x0),x∗) = dmax(F

k(x0),F k(x∗)) ≤ Cρ(S)k

so limk→∞F k(x0) = x∗ for all initial conditions x0 ∈ X.
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Appendix B. Proof of Main Results 2 and 3

We divide up the proof of Main Result 3 into several lemmata.

B.1 Preliminaries

First, we make explicit the effect of time delays on the Lipschitz matrix of a dynamical

network.

Lemma B.1. (Structure of the Lipschitz Matrix of a Delayed Network) Let (F,X)

be a dynamical network with Lipschitz matrix A = [aij] ∈ Rn×n and D = [dij] ∈ Nn×n a delay

distribution matrix with maxi,j dij ≤ L. Let AD be defined in terms of A as

AD =



A0 A1 . . . AL−1 AL

In 0 . . . 0 0

0 In . . . 0 0

...
...

. . .
...

...

0 0 . . . In 0


∈ Rn(L+1)×n(L+1)

where each A` ∈ Rn×n is defined element-wise as A` =

[
aij1dij=`

]
, with the indicator function

1dij=` defined as

1dij=` =


1 if dij = `

0 otherwise.

for 0 ≤ ` ≤ L

Then AD is a Lipschitz matrix of (FD, XL).

Proof. Recall that for x ∈ XL, we order the components xi,` of x as

x = [x1,0, x2,0, . . . , xn,0, x1,1, x2,1, . . . , xn,L]T
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where xi,` ∈ Xi,` for i = 1, 2, . . . , n and ` = 0, 1, . . . , L. Let x,y ∈ X be given. Then

di,0 ((FD)i,0)(x), (FD)i,0)(y)) = di (Fi(x1,di1 , x2,di2 , . . . , xn,din), Fi(y1,di1 , y2,di2 , . . . , yn,din))

≤
n∑
j=1

aijdj(xj,dij , yj,dij) =
L∑
`=0

n∑
j=1

aij1dij=`dj,`(xj,`, yj,`)

which matches the first n rows of AD. For ` ≥ 1,

di,` ((FD)i,`)(x), (FD)i,`)(y)) = di,`−1(xi,`−1, yi,`−1)

yields the identity matrices In in AD.

The following theorem follows as a direct corollary of [[3], Lemma 3.3], restated here for

convenience and consistency of notation.

Theorem B.2. Let (F,X) be a dynamical network with Lipschitz matrix A. Then for any

delay distribution D the constant time-delayed dynamical network (FD, XD) has the Lipschitz

matrix AD with

(i) ρ(A) ≤ ρ(AD) < 1 if ρ(A) < 1;

(ii) ρ(AD) = 1 if ρ(A) = 1; and

(iii) ρ(A) ≥ ρ(AD) > 1 if ρ(A) > 1.

Suppose D and D̂ are delay distribution matrices such that D � D̂, i.e. entries of D

are less than or equal to the corresponding entries of D̂. If (F,X), (FD, XD), and (FD̂, XD̂)

have the corresponding Lipschitz matrices A, AD, and AD̂, respectively, with ρ(A) < 1 then

Theorem B.2 part (i) implies that

ρ(A) ≤ ρ(AD) ≤ ρ(AD̂) < 1.

That is to say that the spectral radius of the network is monotonic with respect to the

addition of delays if ρ(A) < 1.
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B.1.1 Results Regarding the Joint Spectral Radius. We require the following def-

inition and theorem from [Equation (3.1), Theorem 2 in [11]] regarding sets of matrices with

independent row uncertainties.

Definition B.3. (Independent Row Uncertainties) We say that a set of matrices S ⊂

Rn×n has independent row uncertainty if S can be expressed as

S = {(a1, a2, . . . , an)T | ai ∈ Qi, 1 ≤ i ≤ n}

where the sets Qi ⊂ Rn, 1 ≤ i ≤ n are closed and bounded.

Theorem B.4. (Joint Spectral Radius of Nonnegative Matrices with Independent

Row Uncertainty) Let S be a set of nonnegative matrices with independent row uncertainty.

Then

ρ(S) = max
A∈S

ρ(A).

Furthermore, we will use the equivalence of Definition 4.3 of the joint spectral radius

with the following representation from (someone) and (someone) [cite me].

Theorem B.5. (Alternate Form of the Joint Spectral Radius) Given a set of matrices

S ⊂ Rn×n, the joint spectral radius ρ(S) is given by

ρ(S) = lim sup
k→∞

max{‖A‖
1
k : A is a product of length k of matrices in S}

It follows immediately by the form of Theorem B.5 that if S1 ⊂ S2, then ρ(S1) ≤ ρ(S2).

B.1.2 Proof of Proposition 5.2.

Proof. Let (M,X) be a switched network with Lipschitz set S. By the form of B.5 we have

ρ(S) ≤ ρ(RI(S)) since S ⊂ RI(S). For 1 ≤ i ≤ n, let Qi = {ai| A ∈ S} be the set of ith
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rows of all A ∈ S. Then RI(S) may be expressed as

S = {(a1, a2, . . . , an)T | ai ∈ Qi, 1 ≤ i ≤ n}

so RI(S) is row-independent. Thus

ρ(S) ≤ ρ(RI(S)) = max
A∈RI(S)

ρ(A).

by Theorem B.4, as desired.

Lemma B.6. (Equality of AD’s) Let L > 0, 1 ≤ i ≤ n be given. Let A(1), A(2) satisfy

a
(1)
i = a

(2)
i , and D(1), D(2) satisfy d

(1)
i = d

(2)
i . Then (A

(1)

D(1))i = (A
(2)

D(2))i.

Proof. It suffices to show that (A
(1)
` )i = (A

(2)
` )i, where given some A and D, A` is defined as

in Lemma B.1. Let 0 ≤ ` ≤ L be arbitrary. By Lemma B.1,

(A
(1)
` )ij = a

(1)
ij 1d(1)ij =`

= a
(2)
ij 1d(2)ij =`

= (A
(2)
` )ij for 1 ≤ j ≤ n.

Thus (A
(1)
` )i = (A

(2)
` )i, so by Lemma B.1, (A

(1)

D(1))i = (A
(2)

D(2))i.

Lemma B.7. (Equality of sets) Let (M0, X) be a switched network with Lipschitz set S.

Let L > 0 and D = {D ∈ Nn×n| maxij dij ≤ L}.

Then RI({AD| A ∈ S,D ∈ D}) = {AD| A ∈ RI(S), D ∈ D}.

Proof. Let (AD)∗ ∈ RI({AD| A ∈ S,D ∈ D}). Then there exist (AD)(1), . . . , (AD)(n) ∈

{AD| A ∈ S,D ∈ D} such that (AD)∗i = ((AD)(i))i. Furthermore, there exist A(1), . . . , A(n) ∈

S, D(1), . . . , D(n) ∈ D such that (AD)(i) = A
(i)

D(i) . Let A∗ be constructed as (A∗)i = a
(i)
i , and

D∗ be constructed as (D∗)i = d
(i)
i . Then A∗ ∈ RI(S), and since each D(i) satisfies dij ≤ L,

we have D∗ ∈ D. Thus,

(AD)∗i = ((AD)(i))i = (A
(i)

D(i))i = (A∗D∗)i for 1 ≤ i ≤ n
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where the last equality follows from Lemma B.6. Thus (AD)∗ = A∗D∗ ∈ {AD| A ∈ RI(S), D ∈

D}, so

RI({AD| A ∈ S,D ∈ D}) ⊂ {AD| A ∈ RI(S), D ∈ D}.

Now let AD ∈ {AD| A ∈ RI(S), D ∈ D}. Then there exist A(1), . . . , A(n) ∈ S and D ∈ D

such that (AD)i = ((A(i))D)i. Let (AD)(i) = (A(i))D. Then (AD)(i) ∈ {AD| A ∈ S,D ∈ D} so

AD ∈ RI({AD| A ∈ S,D ∈ D}). Thus

{AD| A ∈ RI(S), D ∈ D} ⊂ RI({AD| A ∈ S,D ∈ D})

B.2 Proof of Main Result 3

Proof. Let (M0, X) be a switched network with Lipschitz set S. Assume x∗ is a shared

fixed point of (F,X) for all F ∈ M0, and ρ(A) < 1 for all A ∈ RI(S). Let L > 0,

D = {D ∈ Nn×n| maxij dij ≤ L}, Md = {FD|F ∈ M0, D ∈ D}, and Sd be the Lipschitz set

of Md. We will show ρ(AD) < 1 for all AD ∈ RI(Sd) and invoke Proposition 5.2.

By Lemma B.7, we have RI(Sd) = {AD| A ∈ RI(S), D ∈ D}. Then

max
AD∈RI(Sd)

ρ(AD) = max
A∈RI(S)

max
D∈D

ρ(AD) < 1

by the hypothesis and Theorem B.2. Now given some A ∈ RI(S), by Lemma B.1 and

repeated application of Theorem B.2 we have that

max
D∈D

ρ(AD) = ρ(AL) where AL =

 0n×nL A

InL×nL 0n×n

 .
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Thus by Proposition 5.2,

ρ(Sd) ≤ ρ(RI(Sd)) = max
AD∈RI(Sd)

ρ(AD) = max
A∈RI(S)

ρ(AL) < 1.

Since x∗ is a shared fixed point of (F,X) for all F ∈M0, by Proposition 3.5 EL(x∗) is a

shared fixed point of (FD, XL) for all FD ∈Md. Thus by Main Result 1, EL(x∗) is a globally

attracting fixed point of every instance ({F (k)

D(k)}∞k=1, XL) of (Md, XL).

B.3 Proof of Main Result 2

Proof. Let M0 be the singleton set consisting of F . Then the Lipschitz set S of M0 consists

only of the matrix A, and so trivially satisfies S = RI(S). Thus the hypothesis of Main

Result 3 is trivially satisfied, and the result follows.
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