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abstract

Model Predictive Control with Successive Linear Approximation on Robotic Systems

Jesse Robert Friedbaum
Department of Mathematics, BYU

Master of Science

Robots have been a revolutionizing force in manufacturing in the 20th and 21st centuries
but have proven too dangerous around humans to be used in many other fields including
medicine. We describe a new control algorithm for robots developed by the Brigham Young
University Robotics and Dynamics and Robotics Laboratory that has shown potential to
make robots less dangerous to humans and suitable to work in more applications. We
analyze the computational complexity of this algorithm and find that it could be a feasible
control for even the most complicated robots. We also show conditions for a system which
guarantee local stability for this control algorithm.

Keywords: control theory, robotics, numerical analysis, model predictive control, mpc
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Chapter 1. Introduction

Robots have been a revolutionizing force in many industries in the 21st century, with the

number of industrial robots projected to exceed three million by the year 2020, which rep-

resents a doubling of the stock within a 7-year period [1]. Unfortunately, because current

robot technologies make them very dangerous to human bystanders, robots have primarily

only been able to work on tasks that include very little human interaction, often being placed

in cages in order to avoid contact with humans, see figure 1.1. Indeed, over 70% of robot

related accidents reported by the United States Department of Labor were fatal [2]. Regard-

less, there is an increasing need for robots in areas which require close human interaction

particularly in medical and nursing care due to the aging populace in the United States and

many other parts of the world [3].

There are two principle ways to make robots more safe for human interaction. The first

approach is software based and involves developing new control algorithms so that traditional

“hard robots” with rigid parts can move around humans in such a way that they are not likely

to cause serious injury. The second approach is hardware based and involves the creation

of new “soft robots” such as the King Louis robot in the BYU Robotics and Dynamics

(RAD) Laboratory shown in Figure 2.3. King Louis is built to be compliant so that it may

be pushed off of its course, making it less likely to injure a human even in the event of an

unplanned collision. Regrettably, the dynamics dictating the movement of such soft robots

are far more complicated than their hard counter parts and traditional control algorithms

have proven ineffective on these new robots [4]. Hence both methods for making robots safe

around humans will require the development of improved control algorithms. Here we will

examine mathematically a novel control algorithm developed by the BYU RAD Lab that

has already proven effective in controlling soft robots [4]. We give sufficient conditions on

the robotic system that guarantee the local stability of this new algorithm and examine its

computational advantages over traditional techniques.
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Figure 1.1: Industrial robot kept in a cage to prevent injuries from humans.

Chapter 2. Robotics

2.1 Hard Robots

We will begin by giving a brief explanation of robotic systems and the equations that govern

their evolution in time. We define a robot as a series of rigid elements called links connected

together end to end. We will call the connection between links a joint. Each joint has a

single axis around which the two links attached to the joint may rotate relative to each

other. We will call the angle at which the two links are rotated relative to each other the

bend in the joint. Figure 2.1 shows the Baxter Robot from Rethink Robotics with two of its

joints labeled. Throughout this thesis we will also assume one end of this robot is fixed to

the reference frame i.e. the base of the robot is fixed in space. For traditional robots (as

opposed to soft robots), we assume that there is an actuator motor at each joint capable of

applying torque to that joint. Instead of describing the position of a robot by the position

of its joints and links in space we will describe the position of a robot by the angle at which

each of its joints are bent. We call this description configuration space and note that it has
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(a) Full Robot (b) Joints labeled

Figure 2.1: The Baxter Robot from Rethink Robotics with 2 joints labeled on one arm. Used
with permission of BYU RAD lab

the advantage of being describable with a simple vector q(t) ∈ Rn which contains the angle

at which each of the joints on an n jointed robot is bent at time t. It is a simple matter to

find the locations of the links and joints of a robot in space when we know the configuration

space description of the robot.

Newtonian physics gives us a model of our robot’s movement:

D(q)q̈ = C(q, q̇)q̇ + F (q, q̇) + g(q) + τ (2.1)

where D(q) ∈ Rn×n is a generalized mass matrix which represents the resistance of the robot

to acceleration and depends solely on the joint angles q. In this equation C(q, q̇) ∈ Rn×n

is the matrix of Christoffel symbols. The vector C(q, q̇)q̇ gives the Coriolis forces acting

on each joint which are a naturally occurring phenomenon in rotating systems. We note

that this vector not only depends on the position of the robot but also its velocity. Next,

g(q) ∈ Rn is the torque which gravity applies to each of the joints of the robot which again

depends on the robot’s current position. Each of the terms explained above will typically

contain long sums, products and compositions of various trigonometric functions which grow

much more complex with the addition of each joint to the robot. To illustrate this, we will

3



Figure 2.2: Diagram of a 2-joint robot

examine the equations of motion for the simple two joint robot in figure 2.2. We will leave

out F (q, q̇) in these equations as we have not yet discussed its meaning. The following table

defines all the terms needed for these equations of motion.

Variable Meaning

q1 Bend in joint 1

τ1 Torque at link 1

m1 Mass of link 1

`1 Length of link 1

`c1 Distance from joint 1 to the center of mass of link 1

Iz1 Moment of inertia of link 1 about its center of mass with respect to the z axis

q2 Bend in joint 2

τ2 Torque at link 2

m2 Mass of link 2

`2 Length of link 2

`c2 Distance from joint 1 to the center of mass of link 1

Iz1 Moment of inertia of link 2 about its center of mass with respect to the z axis

4



The equation of motion for the robot consisting of only joint one in the figure is simply

[
m1l

2
c1 + Iz1

]
·
[
q̈1

]
=

[
0

]
·
[
q̇1

]
+

[
m1lc1g cos(q1)

]
+

[
τ1

]
.

However, when considering the entire robot depicted in the figure, the equations of motion

becomem1l
2
c1 +m2(l21 + l2c2 + 2l1lc2 cos(q2)) + Iz1 + Iz2 m2(l2c2 + l1lc2 cos(q2)) + Iz2

m2(l2c2 + l1lc2 cos(q2)) + Iz2 m2l
2
c2 + Iz2

 ·
q̈1

q̈2


=

−m2l1lc2 sin(q2)q̇2 −m2l1lc2 sin(q2)(q̇1 + q̇2)

m2l1lc2 sin(q2)q̇1 0

 ·
q̇1

q̇2


+

(m1lc1 +m2l1)g cos(q1) +m2lc2g cos(q1 + q2)

m2lc2g cos(q1 + q2)

+

τ1

τ2

 . (2.2)

A similar jump in complexity can be expected for the inclusion of each additional joint.

The vector F (q, q̇) ∈ Rn, which we previously ignored, represents the frictional forces

on our robot which result from complicated interactions between the materials inside the

joints of the robot. This friction could be modeled as Coulomb friction, viscous friction,

aerodynamic friction, or any combination of the preceding. In order to keep our system

tractable we will model this friction only as viscous friction. That is, we set

F (q, q̇) = Fvq̇

where Fv ∈ Rn×n is a constant diagonal matrix with nonnegative entries representing the

frictional coefficient for each joint.

Finally, the vector τ(t) ∈ Rn represents the torques applied by the actuator motors at

each joint at time t. We will assume we can choose the value of this quantity at any time or

“control this quantity directly”. This is the only part of the robot we may control directly.
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(a) Full Robot (b) Joints labeled

Figure 2.3: The King Louie soft robot from the BYU RAD Lab used with permission of the
RAD lab

It is useful to reformulate (2.1) as a first-order differential-equation. To do this we define

the vector x ∈ R2n by

x =

q

q̇


in which case (2.1) can be rewritten as

ẋ =

0 −D−1(q)(C(q, q̇) + Fv)

0 I

x +

D−1(q)

0

u (2.3)

where u = g(q) + τ. Note that any mass matrix D(q) coming from a real physical system

will be positive definite and therefore D−1 will exist.

2.2 Soft Robots

The principle difference between soft and hard robots is that, instead of using actuator

motors to move the joints, soft robots contain two inflatable bladders for each joint. As
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they inflate, one bladder applies a torque to the joint in the positive direction and the other

applies a torque in the negative direction. Because air is compressible this allows the robot’s

joints to be forced backwards if they come in contact with a person or other unexpected

object. The drawback to this design is that we can no longer pick the torques to apply to

each joint directly. Instead the torque at the joints is given by the equation

τ = Sq + Γ+p+ − Γ−p− (2.4)

where S ∈ Rn×n is a stiffness matrix that represents the tendency of the robot to snap back

to its resting position. The vectors p+ and p− ∈ Rn are the pressures in the two air bladders

that apply torques to the joints in the positive and negative direction respectively. Both

Γ+,Γ− ∈ Rn×n are constant diagonal matrices which represent how strongly the air pressure

in each bladder affects the joint to which it is attached.

Unfortunately, we are not even able to choose the values of p+ and p− directly. Instead

we may only directly control the pressure of the air in the tube that fills and drains each

bladder. We will refer to this pressure as p+
in and p−in. This effects p+ and p− through the

following differential equation

ṗ+ = α+p+ + β+p+
in (2.5)

ṗ− = α−p− + β−p−in (2.6)

where α+,α−,β+ and β− are n× n constant diagonal matrices.

The dynamics of a soft robot is then described by the system of ODE’s consisting of

(2.5), (2.6) and

D(q)q̈ = C(q, q̇)q̇ + Fvq̇ + g(q) + Sq + Γ+p+ − Γ−p−. (2.7)

7



We can rewrite this as a first order ODE by defining

y =



q̇

q

p+

p−


,u =

p+
in

p−in

 .

We then arrive at the system

ẏ =



−D−1(q)S −D−1(q)(C(q, q̇) + Fv) D−1(q)Γ+ D−1(q)Γ−

0 I 0 0

0 0 α+ 0

0 0 0 α−


y

+



D−1(q)g(q)

0

0

0


+



0 0

0 0

β+ 0

0 β−


u. (2.8)

Now that we have described the systems with which we will be working we are now

prepared to discuss the tasks we wish to perform on these systems.

Chapter 3. Control Theory

We now give a brief introduction to control theory and discuss the specific difficulties of

controlling robotic systems. Principally control theory asks: If we have a dynamical system

(such as the movement of a robotic arm) and we control one aspect of the system (such as

the torque produced by the actuator motors of that robot), is it possible to choose the aspect

of the system we can control so that the entire system moves to some desired state? This is

usually possible with robotic systems, but finding the right choice for the part of the system

8



we can control can be very challenging, particularly for soft robots. We will discuss several

well known control methods and one recently developed method from the BYU RAD Lab

that is uniquely effective with soft robots.

3.1 Technical Details of Control Theory

Suppose we have two distinct points in Rn, x0 and xgoal. (Although the principles of control

theory need not be limited to Rn, we will limit ourselves to Rn because this is the space most

applicable to robotics.) We also have either a continuous-time first order differential-equation

ẋ = f(t,x,u) (3.1)

x(t0) = x0 (3.2)

or a discrete-time dynamical system

xn+1 = f(n,xn,u). (3.3)

In (3.1) and (3.3) u is a function from Rm to Rk in which m = n or m = 1. The function u

is called the control for our system and we will assume we have the freedom to decide what

this function is. With f , x0, and xgoal known, we wish to choose u so that x is driven to

xgoal. If we pick u to be solely a function of t or a function of n, for the continuous and

discrete cases respectively, our control is known as an open loop control. If we pick u to be a

function of x, our control is known as a closed loop control. Generally speaking, closed loop

controllers are preferable to open loop controllers because they tend to have a property know

as robustness. A control is robust if it is effective at not only moving the system for which

it was designed to the desired location, but is also effective for slightly perturbed versions

of that system. Open loop controllers cannot adapt to perturbed systems. On the other

hand, if a closed loop controller is applied to a perturbed system and the perturbance causes

9



the system to move in an unexpected way, then the new location will be fed back into the

controller giving it a chance to modify its output to better fit the new system.

If xgoal is a stable fixed point for ẋ = f(t,x, ũ(t)) or xn+1 = f(n,xn, ũ(n)) for some control

ũ(t) or ũ(n) respectively, we call the control ũ stable. Similarly, if xgoal is an asymptotically

stable fixed point, we call the control asymptotically stable.

It is often useful to have a deterministic way to compare the performance of different

possible controls. We do this by creating a cost functional J(x,u) which assigns a score to

any possible control. The typical forms of a cost functional are

J(x,u) =

∫ ∞
t0

(xTQx + uTRu)dt (3.4)

J(x,u) =

∫ tfinal

t0

(xTQx + uTRu)dt+ x(tfinal)
TQx(tfinal) (3.5)

where Q and R are positive-definite matrices. Equation (3.4) is known as an infinite time

horizon cost functional and (3.5) is an finite time horizon cost functional. With a cost

functional it is often possible to find a unique optimal control u∗(t), which minimizes the

value of the cost functional. This also applies to discrete-time control problems with the

discrete-time cost functionals

J(x,u) =
∞∑
i=0

(xTi Qxi + uTi Rui) (3.6)

J(x,u) =
N∑
i=0

(xTi Qxi + uTi Rui)dt+ xTNQxN . (3.7)

Unfortunately, the optimal u∗(t) is generally an open loop control and potentially not

very robust. However, in practice it is sometimes possible to write that optimal control as a

close loop control such as in the case of a linear quadratic regulator (LQR) where the cost

functional is of the form of (3.4), (3.5), (3.6) or (3.7) and the system’s dynamics are linear

in both x and u. In practice it is common to test and make adjustments to Q and R in

a trial and error process until the controller functions as desired. This process is known

10



as parameter tuning. This is usually necessary because it is very difficult to design a cost

function that prioritizes the desired performance without trial and error.

3.2 PD control

In order to understand the new control method developed by the RAD lab that we will

consider in this thesis, we will first review two commonly used controllers.

Perhaps the most widely used control algorithm in any application is the Proportional

Derivative or PD controller. For a single dimensional system, the PD controller is defined as

u = kp(xgoal − x) + kd(ẋgoal − ẋ),

where kp and kd are positive numbers called gains. These values are usually adjusted through

trial and error (tuned) to perform well for the specific system being controlled. The first term

is known as the proportional term because it applies a force proportional to the distance from

the current state of the system to the desired state. If x represents physical displacement,

this term is identical to the the force that would be applied if an Ideal Newtonian Spring

with stiffness coefficient kp and natural length zero was attached to x and xgoal. This term is

responsible for pushing the system to the desired location. The second term is known as the

derivative term because it is proportional to the difference in derivatives between our actual

and desired system state. This can be thought of as a physical damper and reduces system

overshoot and oscillations. In practice it is common to ignore ẋgoal because we usually wish

our system to be stationary (have a zero derivative) at xgoal. The control then becomes

u = kp(xgoal − x)− kdẋ.

This technique can be applied to higher dimensional systems by simply applying a differ-

ent PD controller to each individual element of the state, e.g. each joint of the robot. Our

11



control is then given by

u = Kp(xgoal − x) +Kd(ẋgoal − ẋ)

or

u = Kp(xgoal − x)−Kdẋ

where Kp and Kd are now constant diagonal n × n matrices containing the gains for each

individual element of x. This control system is effective in a wide variety of situations and

provably stable when applied to robotic systems [5]. Unfortunately, in order to achieve

quick and precise movements in robotic systems the gains must typically be set to very large

numbers. This is equivalent to mounting extremely stiff springs and dampers between the

robot and the desired location of the robot, which gives the robot a propensity to move

through any obstacles with great force and makes the robot inherently dangerous to anyone

or anything in its vicinity. Moreover, this technique has also proven to be ineffective at

controlling more complicated inflatable “soft” robots, generally leading to wild oscillations

in the robot’s movement [4]. For this reason, more sophisticated controls such as the control

introduced in section 3.4 are needed.

3.3 Model Predictive Control

Model Predictive Control (MPC) or Receding Time Horizon Control is a more sophisticated

and computationally expensive control technique when compared to PD control. In order

to implement this control a time horizon T and a time step ∆t must be chosen such that

T >> ∆t. The time horizon T will be used as a time by which we want to reach xgoal when

calculating our control. The time step ∆t will be used as the amount of time we wait between

calculations of a new control. We will also require a finite time horizon cost functional that

may be tuned in order to improve performance. The MPC algorithm has the following steps:

(i) Calculate the optimal control u∗(t) with finite time horizon T.

12



(ii) Apply the optimal control for ∆t amount of time.

(iii) Return to step (i).

Despite calculating the optimal control u∗(t), MPC is suboptimal because the control

problem changes with each cycle through the algorithm as the time at which our system is

supposed to arrive at its goal keeps getting pushed backwards (the receding time horizon).

These constant recalculations do, however, make this algorithm more robust to unexpected

disturbances, such as errors in our physical model or collisions with unknown objects. This

is because u is now calculated using x at each step and the controller has essentially become

a closed loop controller. The principle drawback of MPC is that it is very computationally

expensive to calculate and recalculate the optimal control after each time step ∆t. For this

reason, it is not commonly applied to robotic systems, however the method introduced in

the following section modifies MPC in such a way that it is practical for robotic systems.

3.4 New Control Method

We now explore a new control method developed by the BYU RAD lab to make traditional

robots less dangerous to use around humans and to effectively control soft robots for which

traditional control methods fail to work effectively.

We first implement PD controllers on each individual joint. We intentionally choose very

small gains that would typically lead to wild oscillations of the system. These small gains do,

on the other hand, make the robot less dangerous. (Recalling that small gains can be seen

as moving the joints with very weak springs and dampers should make these safety benefits

obvious.) In order to counteract the tendency of the controller to oscillate we replace xgoal

with xcommand. We then apply an MPC controller to choose xcommand in order to move the

system to xgoal as quickly as possible. In essence, we switch our control from τ to xcommand.

If we are attempting to control a hard robot, we may rewrite the equations of motion as:

13



ẋ =

−D−1(q)Kp −D−1(q)(C(q, q̇) + Fv +Kd)

0 I

x +

D−1(q)Kp

0

u

u = xcommand +D−1g(q).

To make this control scheme more understandable, we again try to visualize this process

through the use of springs and dampers. This new control system amounts to attaching very

weak springs and dampers to the robot’s joints. Then, instead of attaching the other end

of the spring directly to the desired location, we intelligently pull on the other end of the

spring to move the whole robot to xgoal as quickly as possible.

Unfortunately, this control method is every bit as computationally expensive as regular

MPC control and far too complex to be applied to any useful robotic systems. In order to

make this problem computationally tractable we make linear approximations of the system

at each time step ∆t and calculate the optimal control for these greatly simplified linear

systems. Our method may now be described as:

(i) Create a linear approximation of the system around the current state of the system

x(t).

(ii) Calculate the optimal control on the linearized approximate system with finite time

horizon T.

(iii) Apply the optimal control for ∆t amount of time.

(iv) Return to step (i).

Because the optimal control for a simple linear system is much easier to compute than

the optimal control for a complicated system such as (2.2) (or for most industrial robots

which are considerably more complicated) this control technique can be used to control

robotic systems in real time. There is considerable freedom in this method to choose how we

14



make the linear approximation to our system in step (i). The choice of which linearization

technique we use significantly affects the practicality of this method and will be the topic of

the next section.

Chapter 4. Introduction of Linearization

Techniques

We now discuss several different methods to create the linear approximations of our system

required by the algorithm in section 3.4. We introduce some additional notation which will

aid us in discussing different linearization techniques. The linearization techniques we put

forward are designed for systems of the form

ẋ = A(x)x +B(x)u. (4.1)

The equations of motion for a hard robot may be written this way by setting

A(x) =

−D−1(q)Kp −D−1(q)(C(q, q̇) + Fv +Kd)

0 I


and

B(x) =

D−1(q)Kp

0

 .
The equations of motion for a soft robot may be written this way by setting

A(x) =



−D−1(q)S −D−1(q)(C(q, q̇) + Fv) D−1(q)Γ+ D−1(q)Γ−

0 I 0 0

−β+Kd −β+Kp α+ 0

β−Kd β−Kp 0 α−
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and

B(x) =



0 0

0 0

β+ 0

0 β−


.

We define xstart to be the state of our system at the beginning of step (i) of our control

algorithm.

We now explore two linearizations techniques: the commonly used Fixed State technique

and the new Coupled Torque method developed by the BYU RAD Lab.

4.1 Fixed State

Our first linearization technique comes from [6]. This technique simply assumes that the

matrices A and B remain fixed as x changes. This gives us the equation

ẋ = A(xstart)x +B(xstart)u. (4.2)

We may then consider A = A(xstart) and B = B(xstart) to be constant matrices. This system

has the advantage of possessing the easily computable analytical solution

x(t) = eA(xstart)txstart + (eA(xstart)t − I)A−1(xstart)B(xstart)u. (4.3)

We refer to this system as the Fixed State Approximation of (4.1) because we assume, for

the sake of calculating A and B, that our state x remains fixed (at least for ∆t amount of

time). The optimal control for this linear system is far easier to compute than the optimal

control for the full non-linear system and makes our control computationally practical in the

sence that it can be implemented on certain robotic systems [4]. Unfortunately, even using

this simplification, it is still too computationally expensive to implement this control on soft

robots. For this reason, we introduce an even more simplified model.
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4.2 Coupling Torque

In this method we not only assume that A and B are constant but that most of the terms

in the vectors Ax and Bu are also constant.

To do this we first create the coupling matrices

CA =

I I

I I

 , CB =

I
I

 .
where I is the n× n identity matrix. Next we define

C̃A = 12n×2n − CA, C̃B = 12n×n − CB

where 1m×n is an m × n matrix of ones. That is C̃A has ones where CA has zeros and visa

versa. We will use ◦ to represent the Hadamard Product, which is pointwise multiplication

of two matrices of the same dimensions. We now define

Adiag = CA ◦ A(xstart), Bdiag = CB ◦B(xstart).

Note that these matrices contain the values of A(xstart) and B(xstart) on the main diagonal

and the nth super and sub-diagonals and contains zeros elsewhere. We also define

Anondiag = C̃A ◦ A(xstart), Bnondiag = C̃B ◦B(xstart).

These matrices are identical to A(xstart) and B(xstart) except with the elements of the main

diagonal and the nth super and sub-diagonals replaced with zeros.

We then use the linearized system

ẋ = Adiagx +Bdiagu + Anondiagxstart +Bnondiagustart. (4.4)
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Note that the last two terms of (4.4) are constant. These terms represent the torque applied

on one joint from the movement of other joints, which are the terms that couple the dynamics

of each joint to the other joints. The Coupling Torque method assumes these coupling terms

can be represented by as constant torque, or at least may be approximated by a constant

torque over ∆t amount of time. We note that there is also an easily calculable analytic

solution to the linearized Coupled Torque system in (4.4) given by

x(t) = eAdiagxstart + (eAdiag − I)A−1
diag(Bdiagu + Anondiagxstart +Bnondiagu). (4.5)

This solution will typically be even easier to solve for than (4.3), because it will likely be

easier to take the inverse and matrix exponential of Adiag than the denser matrix A(xstart).

The primary advantage of this method is that the resulting system consists of n decoupled

equations (one for each joint) and the optimal control for each of these equations may

therefore be calculated independently of the other joints. This opens the possibility of

solving all of these control problems simultaneously on separate processors, increasing the

speed of the algorithm and the complexity of the systems to which it may be applied. This

method is currently the only method that has proven capable of controlling real soft robots

in the RAD lab [4].

4.3 Proofs of Linear Approximations

Here we prove that both of these linear approximation become arbitrarily close to the non-

linear system they approximate when looking at a sufficiently small region about the point

at which the approximations are taken. Note that || · || will refer to the Euclidean norm in

Rn.

Theorem 4.1. Let f : R2n × Rn → R2n be a continuous function of the form

f(x,u) = A(x)x +B(x)u.
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Let fFS : R2n × Rn → R2n be the Fixed State approximation given by (4.2) and fCT :

R2n × Rn → R2n be the Coupled Torque approximation given by (4.4) at some x0 ∈ R2n.

For every ε > 0 there exists a δFS > 0 such that x ∈ B(x0, δFS) implies

||f(x,u)− fFS(x,u)|| < ε,

and there also exists δCT > 0 such that x ∈ B(x0, δCT ) implies

||f(x,u)− fCT (x,u)|| < ε

for all u ∈ Rn.

Proof. Fix ε > 0 and u ∈ Rn

Note

fFS(x0,u) = A(x0)x0 +B(x0)u

= f(x0,u)

and

fCT (x0,u) = Adiagx0 +Bdiagu + Anondiagx0 +Bnondiagu

= A(x0)x0 +B(x0)u

= f(x0,u)

Recall f is continuous and fFS and fCT are linear and affine respectively and therefore

continuous as well. Then there exists δ, δ1 and δ2 such that

||x− x0|| < δ ⇒ ||f(x,u)− f(x0,u)|| < ε

2
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and

||x− x0|| < δ1 ⇒ ||fFS(x,u)− fFS(x0,u)|| < ε

2

and

||x− x0|| < δ2 ⇒ ||fCT (x,u)− fCT (x0,u)|| < ε

2
.

We now define δFS = min{δ, δ1} and δCT = min{δ, δ2}. ||x− x0|| < δFS then implies

||f(x,u)− fFS(x,u)|| = ||f(x,u)− f(x0,u) + f(x0,u)− fFS(x,u)||

≤ ||f(x,u)− f(x0,u)||+ ||f(x0,u)− fFS(x,u)||

= ||f(x,u)− f(x0,u)||+ ||fFS(x,u)− fFS(x0,u)||

<
ε

2
+
ε

2
= ε,

and ||x− x0|| < δCT implies

||f(x,u)− fCT (x,u)|| = ||f(x,u)− f(x0,u) + f(x0,u)− fCT (x,u)||

≤ ||f(x,u)− f(x0,u)||+ ||f(x0,u)− fCT (x,u)||

= ||f(x,u)− f(x0,u)||+ ||fCT (x,u)− fCT (x0,u)||

<
ε

2
+
ε

2
= ε

Another way to state this result would be that as x → x0 our linear approximations of

f(x,u) approaches the real system.

20



Chapter 5. Comparing Linearization Tech-

nique Performance

5.1 Introdution of Genetic Algorithms

In order to compare the performance of the linearization techniques put forward in the previ-

ous chapter, we must first understand how the optimal control from part (ii) of the algorithm

put forward in section 3.4 is calculated in the ”real world.” The BYU RAD lab, where this

control method was developed, has found the most effective algorithm for calculating the

optimal control to be a genetic algorithm introduced in [7].

Genetic algorithms get their name from the fact that they were designed to simulate the

evolution of genetic code in living organisms. In order to perform a genetic optimization

algorithm on a certain problem, there must be a way to combine a certain number of potential

solutions to create new and distinct potential solutions. This process is known as mating

and is meant to mimic how living organisms mate to create distinct organisms that to some

extent possess a mixture of the attributes of its parents. Genetic algorithms also require

a process that makes random changes to a potential solution. This process is known as

mutation and represents the random changes that occasionally occur in the DNA of living

things.

All genetic algorithms follow the same basic steps:

(a) Start with a population of candidate solutions P .

(b) Calculate the performance of each element of P . (In the case of optimal control this

means to find the value of the cost functional that would result from applying each

control.)

(c) Select a subset of the elements in P and mate them together to get a new population

C of the same cardinality as P .
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(d) Apply mutations to some or all of the elements of C.

(e) Return to step (a) replacing P with C.

Each new population of candidate solutions P is called a generation. After a certain stopping

requirement is met the algorithm is carried out until step (ii) is reached and the highest

performing candidate is returned. Although a variety of stopping criterion could be used,

in the case of using a genetic algorithm inside of the algorithm introduced in section 3.4,

the natural choice for stopping criterion is to simply go through the loop a set number

of times. This is because there is a set time, ∆t, within which the calculation must be

completed. Other stopping criterion run the risk of not finishing the calculation before a

result is needed.

Although all genetic algorithms follow this same basic outline there still exists a consid-

erable amount of freedom in how they are implemented, particularly in the way the subset

of P from step (iii) is chosen and how its elements are grouped for mating. That subset

is usually chosen to contain primarily well performing candidates to represent the principle

of “survival of the fittest.” There is also a substantial amount of freedom in how many

mutations are applied in step (iv).

When applying genetic algorithms to our particular control problem we note that it is

impossible to apply any control varying continuously in time on actual hardware. For this

reason when actually calculating controls we divide the time horizon, T, into S > 0 equally

sized subintervals and assume that our control is constant on each of these intervals. This is

equivalent to making a step function approximation of a control that is continuous in time.

With this assumption the space of possible controls becomes a subset of RS×N where N is

the dimension of the control (equal to the number of joints in a hard robot and twice the

number of joints in a soft robot). If we define ui,j to be the jth component of the control

vector in the ith time interval of some potential control u, we can then define a mating

algorithm. If {uk}mk=1 is a set of controls, we can mate them to make a new control ũ where

ũi,j = uki,j for some randomly chosen k. We can apply mutations to a control u by adding
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some randomly generated number to ui,j for randomly chosen i and j. Now that we have

described a mating and mutation algorithm we can compare the computational complexity

for a genetic algorithm using both Fixed State and Coupled Torque linear approximations.

5.2 Comparing Computational Complexity with Genetic Algo-

rithms

There are two concepts to keep in mind when calculating the computational complexity of a

genetic algorithm. First, it is important to keep track of the number of operations that must

be performed in order to carry out each step in order to estimate how long it will take to

complete a single loop through the algorithm. Second, we must have some estimate on how

quickly the algorithm will converge, or how many generations we must pass through before

we arrive at an acceptable solution. Precise calculations of the convergence rates of genetic

algorithms are often very difficult to derive and, although we touch on this briefly, we will

spend the majority of this section examining the cost per loop of the algorithm.

We will first examine the cost of each step of the Genetic Algorithm presented in section

5.1. We will present the steps in increasing order of complexity.

Step (e) has no significant cost.

Step (a) only has significant complexity cost on the first pass through the loop when

we must create our first population of candidates. Because we anticipate numerous passes

through the loop we will therefore view its cost as negligible.

We will calculate the complexity of step (c) using the mating algorithm put forward in

section 5.1. This process involves looking up a random number and replacing a value for

every element of every candidate control at every time step and should then run in O(NS|P |)

time for each iteration of the loop; where N is the dimension of the control vector, S is the

number of time steps our horizon is broken into and |P | is the number of candidate solutions

considered in each generation. This step will most likely also involve sorting the elements

of P by their performance (calculated in step (b)) in order to find the highest performing
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candidates to mate together. A good sorting algorithm should run in O(ln |P |) time and is,

therefore, negligible compared to the cost of the rest of this step.

We will use the mutation algorithm in section 5.1 to calculate the complexity of step

(d). It is only necessary to look up three random numbers and replace one value for each

mutation using this algorithm. This step will then run in O(M) time where M is the number

of mutations applied. If the number of mutations applied is proportional to the number of

values that could potentially change, then our cost becomes O(NS|P |).

Finally we will now show that step (b) has considerably larger complexity than the other

steps, but that its complexity is significantly lower for Coupling Torque linearziations than

Fixed State linearziations. This step requires that we calculate the trajectory of the system

for every candidate control. This may be approximated in several ways. We will use Euler’s

method here because it is what current RAD Lab control code uses, but using a Runga-

Kutta method or calculating the analytic solutions found in (4.3) and (4.5) should yield

similar results. We now count the number of floating point operations (flops) necessary to

perform step (b).

For Fixed State at every time step except the last time step and every control we must:

(i) Calculate this steps contribution to the cost function which has two parts:

• Calculate uTi Rui ((2N − 1)(N + 1) flops)

• Calculate xTi Qxi ((4N − 1)(2N + 1) flops)

(ii) Calculate the position at the next time step as follows:

• Calculate xi + A(x0)xi +B(x0)ui ((6N − 1)2N flops)

In the last time step we only calculate the contribution to the cost function. Adding all of

these costs together and multiplying by the number of time steps and size of a generation

we arrive at the result:
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Theorem 5.1. The number of flops required to perform step (b) of a genetic algorithm for

a control problem that has been linearized with the Fixed State method grows at a rate of

O(N2T |P |) with leading term behavior 22N2T |P |.

For Coupled Torque we may look at every element of the control vector separately. We

will define xi,j to be the jth and j+nth elements of xi. We also define M̂j to be the submatrix

of a matrix M containing the elements found jth or j+nth row and the jth or j+nth column.

Let rj,j be the jth element of the main diagonal of R. Then at every time step except the

last time step and every element of each control we must:

(i) Calculate this steps contribution to the cost function

• Calculate uTi,jrj,jui,j (2 flops)

• Calculate xTi,jQ̂jxi,j (9 flops)

(ii) Calculate the position at the next time step

• Calculate xi,j + Âdiagjxi,j + B̂diagju0 + Ânondiagjx0i,j + B̂nondiagju0i,j (16 flops)

Here we assume that the values of Ânondiagjx0i,j+B̂nondiagju0i,j were already calculated when

we constructed the linearization. As before we need only calculate the contribution to the

cost function in the last time step. Adding the cost of each piece together and multiplying

by the number of time steps, size of a generation and dimension of a control vector we arrive

at the result:

Theorem 5.2. The number of flops required to perform step (b) of a genetic algorithm for

a control problem that has been linearized with the Coupled Torque method grows at a rate

of O(NT |P |) with leading term behavior 27NT |P |.

Comparing theorems 5.1 and 5.2 shows a significant improvement in computational com-

plexity when using Coupled Torque compared to Fixed State, but in a real world implemen-

tation the advantages of Coupled Torque would likely be even more pronounced. There are
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a couple reasons for this. First, we have not yet considered the possibility of solving the

decoupled optimization problems coming from the coupled torque approximation in parallel.

Using Coupled Torque, we could divide these calculation evenly over multiple processors up

to N processors. This would lead to greatly improved performance:

Theorem 5.3. The temporal complexity of step (b) of a genetic algorithm for a control

problem that has been linearized with the Coupled Torque parallelized over n ≤ N processors

method grows at a rate of O(NT |P |) with leading term behavior 27
⌈
N
n

⌉
T |P |.

It seems reasonable, however, to assume that one might design the hardware to solve this

control problem specific to the robot being controlled. In which case we would ensure there

were at least N processors. In this case our performance would be even better.

Corollary 5.4. The temporal complexity of step (b) of a genetic algorithm for a control

problem that has been linearized with the Coupled Torque parallelized over N processors

method grows at a rate of O(T |P |) with leading term behavior 27T |P |.

Secondly, in our previous calculations we assumed that the number of candidate solutions

in a generation for each decoupled optimization problem in the Coupled Torque problem

would be the same as the cardinality of each generation for the single optimization problem

that must be solved for the Fixed State approximation. The space of potential candidate

solutions for these simplified problems would be much smaller and would most likely require

a smaller generation size in order to solve the problem effectively. [8] presents a rigorously

calculated bound for convergence of a genetic algorithm. This bound, however, requires that

the set of all possible solutions to the problem, which we will call E, to be finite. This would

necessarily be the case with a computer implementation of a genetic algorithm, but for our

problem it may be expedient to limit the number of candidate solutions even more by picking

a finite number of values, Ei, that the ith component of the control vector can take. If we

were to then look at our decoupled control problem for just one element of the control we

would see the possible number of controls for this problem would be significantly smaller
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than the number of possible controls for the problem of calculating the entire control vector

at once. [8] give the bound

||pk − p∞|| ≤ {1− [|E|2|P | − (|E|2 − |E|)|P |](pmps)2|P |}b
k
2
c (5.1)

where k represents the generation number and ||pk − p∞|| is the difference between the

distribution of solutions given in generation k and the final distribution of solutions the

algorithm converges to. The value pm represents the minimum probability of changing

from one potential solution to another potential solution via a mutation and ps is another

probability related to the system. From this inequality we see that if we have a smaller

number of possible solutions we may then be able to get similar convergence while using

a smaller population size. This suggests that we could get similar convergence rates for

solving a Coupled Torque linearization as a Fixed State Linearization while using smaller

generation sizes. This would improve the computational complexity of solving a Coupled

Torque Problem even more when compared to a Fixed State problem.

Chapter 6. Proof of New Control Method

Several proofs of the global stability of the MPC control algorithm exist [9], and the modified

control introduced in Section 3.4 has shown itself to be effective on a variety of robots [4],

but the rigorous stability results for regular MPC do not apply to this new method. We will

show that the usual control theory assumptions of Lipschitz continuous system dynamics

and a compact set of possible controls are insufficient to show global stability for the control

method introduced in 3.4. We will also prove in this chapter that this algorithm is stable

inside of a small region of the goal xgoal when both the regular control theory assumptions

and a few additional assumptions are made.
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Figure 6.1: Phase plot of equation (6.1)

6.1 Global Instability

In this section we give a counter example to stability. Consider the system

ẋ
ẏ

 =

 3x− y

9x− 4y

u

This is of the form (4.1) with

A(x, y) = 0, B(x, y) =

 3x− y

9x− 4y

 .
Figure 6.1 shows a phase plot of

ẋ
ẏ

 =

 3x− y

9x− 4y

 (6.1)
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as well as a starting location and a goal location for our control problem and the linearized

dynamics at the starting location. By choosing u to be either positive or negative, we may

move either forward or backward along phase trajectories respectively. One can clearly see

form the picture that choosing u < 0 will cause us to move backwards along a trajectory

right to the goal, so the control problem does have a solution. However, using the linearized

dynamics it will clearly be favorable to pick positive u to move closer to the goal. This,

unfortunately, will drive us closer and closer to the fixed point marked in red, from which

there will be no escape. In this example we see that the control method from Section 3.4 is

not globally stable. That is, for certain systems this control method will utterly fail to move

from certain starting conditions, x0, to a certain goal, xgoal.

We now turn our attention to showing local stability, but before that we will prove several

preliminary continuity results to help build intuition.

6.2 Continuity Results

We will define the set of viable controls as the controls that we may apply to a given system.

In terms of robotics this is typically limited by the amount of torque that can be created

by the actuator motors in hard robots, and in soft robots this is limited by the amount

of pressure that can be produced by the air compressors. In continuation we will assume

that the set of viable controls is compact and a subset of the Banach of space L∞[t0, tfinal]

functions. To simplify notation in continuation, unless otherwise specified L∞ will refer to

L∞[t0, tfinal].

We show that the optimal control of a system is continuously dependent on the system

that is being controlled.

Theorem 6.1. Let V be a subset the space of bounded differentiable functions from R2n×Rm

to R2n, W be the compact subset of L∞ functions from R to R2n which are viable controls
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and Z be the set of cost functionals of the form 3.5. Define C : V × Z× R→W by

C(f(x, u), J(x, u),x0) = u∗

where u∗ is the optimal control for the problem

ẋ = f(x,u)

x(t0) = x0

J(x,u) =

∫ tfinal

t0

(xTQx + uTRu)dt+ x(tfinal)
TQx(tfinal)

Assume that C is well defined, e.g. there exists a unique optimal control u∗ for every combi-

nation of f ∈ V, J ∈ Z and x0 ∈ R2n. Then the output of C in the L∞ norm is continuously

dependent on the input f(x, u) in the L∞ norm.

In order to prove this, we will first need several lemmas.

Lemma 6.2. Suppose φ(t) is the unique solution to

ẋ = f(t,x(t),u(t))

x(t0) = x0

Then φ(t) is continuously dependent on u(t) in the L∞ norm.

Proof. By the Main Theorem for Ordinary Differential Equations in B-spaces [10] φ(t) is

continuously dependent on both x0 and u(t) where a unique solution exists.

In the next lemma we will use the function Jg,x0 : W→ R defined by

Jg,x0(u) =

∫ tfinal

t0

(φTQφ + uTRu)dt+ φ(tfinal)
TQφ(tfinal) (6.2)
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where φ is the solution to

ẋ = g(t,x,u)

x(t0) = x0

Lemma 6.3. The output of the function defined in (6.2) is continuously dependent on the

input u in the L∞ norm when g is differentiable.

Proof. Fix ε > 0. Because
∫ tfinal

t0
uTRudt is the composition of a continuous functions and,

therefore, continuous itself. Then there must exist δ1 > 0 such that ||u− ũ||L∞ < δ1 implies

∣∣∣∣∫ tfinal

t0

uTRudt−
∫ tfinal

t0

ũTRũdt

∣∣∣∣ < ε

2

Similarly, there must exist δ2 > 0 such that ||φ− φ̃||L∞ < δ2 implies

∣∣∣∣(∫ tfinal

t0

φTQφdt+ φ(tfinal)
TQφ(tfinal)

)
−
(∫ tfinal

t0

φ̃
T
Qφ̃dt+ φ̃(tfinal)

TQφ̃(tfinal)

)∣∣∣∣ < ε

2

By lemma 6.2 there must exist δ3 > 0 such that ||u − ũ||L∞ < δ3 implies ||φ − φ̃||L∞ < δ2.

Define δ = min{δ1, δ3}. Let φ̃ be the unique solution to

˙̃x = f̃(t, x̃, ũ)

x̃(t0) = x0

31



Then ||u− ũ||L∞ < δ will imply

∣∣Jg,x0(u)− Jg,x0(ũ)
∣∣ =

∣∣∣∣∣
∫ tfinal

t0

(φTQφ + uTRu)dt+ φ(tfinal)
TQφ(tfinal)

−
∫ tfinal

t0

(φ̃
T
Qφ̃ + φ̃

T
Rφ̃)dt+ φ̃(tfinal)

TQφ̃(tfinal)

∣∣∣∣∣
≤

∣∣∣∣∣
∫ tfinal

t0

uTRudt−
∫ tfinal

t0

ũTRũdt

∣∣∣∣∣
+

∣∣∣∣∣
(∫ tfinal

t0

φTQφdt+ φ(tfinal)
TQφ(tfinal)

)

−
(∫ tfinal

t0

φ̃
T
Qφ̃dt+ φ̃(tfinal)

TQφ̃(tfinal)

)∣∣∣∣∣
<
ε

2
+
ε

2

= ε

For the next and final lemma we will need one additional definition.

Definition 6.4. Let Ω be the set of possible values for φ(t), the solution to

ẋ = f(t,x)

x(t0) = x0

for t ∈ [t0, tfinal].

Lemma 6.5. Suppose φ is the solution to

ẋ = f(t,x,u)

x(t0) = x0

where f is differentiable. then φ is continuously dependent on the function f(t,x,u) in the

L∞([t0, tfinal]× Ω×W) norm.
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Proof. Fix ε > 0 and define φ̃ to be the solution to

˙̃x = f̃(t, x̃,u)

x̃(t0) = x0.

Define

F (t,y,λ) = f(t,y,u) + λ

where λ is a function in L∞([t0, tfinal]× Ω×W). Note that φ solves

ẋ = F (t,x, 0)

x(t0) = x0.

and φ̃ solves

˙̃x = F (t, f̃(t, x̃,u)− f(t, x̃,u))

x̃(t0) = x0,

By the Main Theorem for Ordinary Differential Equations in B-spaces [10] we know that

the solution to

ẏ = F (t,y,λ)

y(t0) = x0.

is continuously dependent on λ. Then there exists δ > 0 such that

||f̃(t,x,u)− f(t,x,u)||L∞([t0,tfinal]×Ω×W) < δ implies ||φ− φ̃||L∞ < ε

We are now prepared to prove Theorem 6.1
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Proof. Fix ε > 0. Define the open ball B(u∗, ε) = {u ∈W : ||u∗ − u||L∞}

Consider

K :=W −B(u∗, ε)

=W ∩B(u∗, ε)C

B(u∗, ε)C is closed because B(u∗, ε) is open. K is then the intersection of two closed sets

and also closed. K is then a closed subset of the compact set W and compact itself. Then

the continuous function (Lemma 6.3) Jf,x0(u) achieves its minimum in K by the generalized

extreme value theorem [11]. Define

α := min
u∈K

Jf,x0(u)

and let

β := α− Jf,x0(u
∗).

β > 0 because u∗ is the unique minimum of Jf,x0(u) in W. Further

Jf (u)− Jf (u∗) ≥ β

for any u ∈ K.

Let

c(φ(t)) :=

∫ tfinal

t0

(φTQφ)dt+ φ(tfinal)
TQφ(tfinal).

c(φ(t)) is continuous so there exists some δ1 > 0 such that ||φ(t) − φ̃(t)||L∞ < δ1 implies

|c(φ(t))− c(φ̃(t))| < β/2.
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Let φ be the solution to

ẋ = f(t,x)

x(t0) = x0

and φ̃ be the solution to

˙̃x = f̃(t, x̃)

x̃(t0) = x0

By Lemma 6.5 there must exist δ > 0 such that ||f̃ − f ||L∞ < δ we have that ||φ(t) −

φ̃(t)||L∞ < δ1. then ||f̃ − f ||L∞ < δ implies that for any u ∈W

||Jf (u)− Jf̃ (u)|| =
∣∣∣∣ ∫ tfinal

t0

(φTQφ + uTRu)dt+ φ(tfinal)
TQφ(tfinal)

−
∫ tfinal

t0

(φ̃
T
Qφ̃ + uTRu)dt+ φ̃(tfinal)

TQφ̃(tfinal)

∣∣∣∣
=

∣∣∣∣ ∫ tfinal

t0

φTQφdt+ φ(tfinal)
TQφ(tfinal)

−
∫ tfinal

t0

φ̃
T
Qφ̃dt+ φ̃(tfinal)

TQφ̃(tfinal)

∣∣∣∣
= |c(φ(t))− c(φ̃(t))|

<
β

2

which in turn implies

Jf̃ (u)− Jf (u) > −β
2

and

Jf (u)− Jf̃ (u) > −β
2
.
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Then for any f̃ such that ||f̃ − f ||L∞ < δ2 and any u ∈ K

Jf̃ (u)− Jf̃ (u
∗) = Jf̃ (u) + [−Jf (u) + Jf (u)] + [−Jf (u∗) + Jf (u

∗)]− Jf̃ (u
∗)

= [Jf̃ (u)− Jf (u)] + [Jf (u)− Jf (u∗)] + [Jf (u
∗)− Jf̃ (u

∗)]

≥ Jf̃ (u
∗)− Jf (u∗) + β + Jf (u)− Jf̃ (u)

> −β
2

+ β − β

2

> 0

This implies

Jf̃ (u) > Jf̃ (u
∗)

and u cannot be the optimal control for the system

ẋ = f̃(t,x,u)

x(t0) = x0.

Then the optimal control must lie within B(u∗, ε) and C depends continuously on f

With this result we are prepared to show that we may force the system using the optimal

control from the linearized dynamics to follow the system using the optimal control for the

full non-linear dynamics arbitrarily closely by requiring that our initial condition x0 be close

to our goal xgoal.

Theorem 6.6. Consider the optimal control for the problem

ẋ = f(x,u) (6.3)

x(t0) = x0 (6.4)

J(x,u) =

∫ tfinal

t0

(xTQx + uTRu)dt+ x(tfinal)
TQx(tfinal) (6.5)
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where f ∈ V, J ∈ Z and u ∈W as defined in theorem 6.1.

Let f̃(x,u) be a linearization (either Coupled Torque of Fixed State) of f(x,u). let u∗be

the optimal control for the problem defined by (6.3), (6.4) and (6.5) and ũ∗ be the optimal

control for the problem defined by

ẋ = f̃(x,u),

(6.4) and (6.5). Define φ∗ and φ̃
∗

to be the solutions to

ẋ = f(x,u∗)

x(t0) = x0.

and

ẋ = f(x, ũ∗)

x(t0) = x0.

respectively. Let Ω∗ = {φ∗(t)|t ∈ [t0, tfinal]}

For every ε > 0 there exists δ > 0 such that ||φ∗ − φ̃
∗||L∞ < ε whenever x0 ∈ B(xgoal, δ)

and ||φ∗(t)− xgoal|| is non-increasing in t.

Note that the requirement that ||φ∗(t) − xgoal|| is non-increasing in t would have to be

true in some small region of xgoal in order for us to be able to effectively control our system.

Proof. Fix ε > 0. By lemma 6.2 there must exist δ1 > 0 such that ||u∗− ũ∗||L∞ < δ1 implies

||φ∗ − φ̃
∗||L∞ < ε. By theorem 6.1 there must exist δ2 > 0 such that ||f − f̃ ||(Ω∗×W) < δ2

implies ||u∗ − ũ∗||L∞ < δ1. By theorem 4.1 there exists δ3 > 0 such that x ∈ B(x0, δ3)

implies ||f(x,u)− f̃(x,u)|| < δ2. We then choose δ < δ3
2

. Then x0 ∈ B(xgoal, δ) implies that

B(xgoal, δ) ⊂ B(x0, δ3). Because ||φ∗(t) − xgoal|| is non-increasing Ω∗ ⊂ B(xgoal, δ). Then

||f − f̃ ||(Ω∗×W) < δ2 and ||φ∗ − φ̃
∗||L∞ < ε.
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This thereom tells us that, for all bounded differentiable f(x,u) for which the optimal

control is unique, starting close enough to xgoal will force our control using the linearized

system to follow the actual optimal control arbitrarily closely. Because the true optimal

control is usually stable this suggests that the control method introduced in section 3.4 may

also be stable. Regrettably, this is insufficient for a proof of local stability. This proof also

requires a concept of a certain rate of convergence to the optimal control at the starting

location x0 approaches xgoal. In the next section we define this concept precisely.

6.3 Local Stability

Definition 6.7. Let Q be the subset of bounded differentiable functions such that there

exists γ > 0 and λ > 0 such that ||φ∗(t)− xgoal|| < ||x0 − xgoal||e−λt when x0 ∈ B(xgoal, γ).

Further, there exists δ > 0 such that for all δ > δ̃ > 0 there exists a value ε̃ > 0 such that

x0 ∈ B(xgoal, δ̃) implies ||φ∗(t) − φ̃
∗
(t)|| < ε̃(t − t0) and ε̃ < λδ̃ and ε̃ < δ̃ where φ and φ̃

∗

are defined as in Theorem 6.6.

We note that Q should be non-empty because there exists systems for which the Fixed

State and Coupled Torque aproximations are exactly identical to the original system, and

one of these systems would lie in Q if it was possible to find an asymptotically stable control

for that systems.

Theorem 6.8. Suppose f(x,u) ∈ Q. There exists α > 0 such that for all α > α̃ > 0 there

exists ∆t such that ||x0 − xgoal|| = α̃ implies x̃∗(∆t) ∈ B(xgoal, α̃).

Proof. Let α = min{γ, δ}. If α > α̃ > 0 and ||x0 − xgoal|| = α̃. This yields

||x̃∗(∆t)− xgoal|| = ||x̃∗(∆t)− x∗(∆t) + x∗(∆t)− xgoal||

≤ ||x̃∗(∆t)− x∗(∆t)||+ ||x∗(∆t)− xgoal||

≤ ε̃∆t+ ||x0 − xgoal||e−λ∆t

38



Note

||x̃∗(0)− xgoal|| = 0.

Taking the derivative with respect to ∆t yields

d

d∆t
(ε̃∆t+ ||x0 − xgoal||e−λ∆t) = ε̃− λ||x0 − xgoal||e−λ∆t

Now if we set ∆t = 0 we find

d

d∆t
(ε̃∆t+ ||x0 − xgoal||e−λ∆t)

∣∣∣∣∣
∆t=0

= ε̃− λ||x0 − xgoal||

Because

ε̃ < λδ̃ ≤ λ||x0 − xgoal||

we have

d

d∆t
(ε̃∆t+ ||x0 − xgoal||e−λ∆t)

∣∣∣∣
∆t=0

< 0.

This means there must exist some sufficiently small value of ∆t such that

||x̃∗(∆t)− xgoal|| < ||x̃∗(0)− xgoal|| = ||x0 − xgoal||

This means that x̃∗(∆t) ∈ B(xgoal, α̃).

Because all of the hypothesis of theorem 6.8 are still met if we set x0 = x̃∗(∆t), this

theorem can be applied again in the next step of our control. This is significant because it

means that if we choose proper ∆t we can make a trapping region around xgoal arbitrarily

small when using the algorithm presented in section 3.4.

Corollary 6.9. When using the control algorithm form section 3.4 on a system in Q, for

any ε > 0 there exists ∆t such that B(xgoal, ε) is a trapping region.

This condition is slightly stronger than stability but not as strong as asymptotic stability.
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Chapter 7. Conclusion

The new control algorithm developed by the BYU Rad lab has shown itself in practice to

be uniquely capable of controlling complicated robotic systems and especially those found in

so-called soft robots in both simulations and in the real world [4], but has also shown itself

to be particularly difficult to analyze mathematically. We have shown that, when using the

Coupled Torque technique for linear approximations, this technique can be computationally

feasible for use in even the most complicated robots. Of particular note is the fact that as

long as computational hardware is designed specifically for the robot to be controlled we

can virtually eliminate the growth in computational complexity as the number of joints, and

therefore the dimension of the system, increases.

Via counter-example, we found that global stability for this control method using the

standard control theory assumptions of Lipschitz continuous dynamics and a compact space

of controls was insufficient to prove global stability (asymptotic or not) of this method. We

did, however, show the existence of arbitrarily small trapping regions around the desired

location for a specific subset of control problems. This result although slightly stronger than

local stability is not as strong as local asymptotic stability.

7.1 Future Work

It is no easy task to look at the dynamics of a specific system and determine whether it

is part of the subset of differentiable systems (called Q in this paper) that where we have

proved local stability as it is currently formulated. To make these results more applicable

to the real world it would be useful to have sufficient conditions for a system to reside in

Q. It would also be a clear improvement to the results of this thesis to find conditions

which guarantee the new control method is locally asymptotically stable or guarantee global

stability.
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