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I. INTRODUCTION

The object of this thesis was to lay a foundation for 
a comprehensive study of the dynamic response of rotating 
members. This initial phase of the study includes a theoret­
ical investigation and proposes experimental techniques for 
the determination of the stresses and strains in a thin, 
rotating disk with a concentric hole, subjected to transient 
shaft inputs. There are many practical applications of this 
problem including computor memory storage disks, turbine 
rotors, grinding wheels, saw blades, gears, optical reflect­
ors, and solar sails for space vehicles.

The solution for any forced vibration or transient 
response problem in the vibration of continuous media can be 
expressed as a series expansion in terms of the mode shapes 
and natural frequencies for free vibration. Previous theo­
retical investigations have been concerned with solving the 
free vibration problem to determine the natural frequencies 
and mode shapes for application to steady-state forced vi­
brations. Very little numerical data has been obtained for 
the case of in-plane vibrations and basic discrepancies exist 
between the findings of individual investigators. This 
thesis applies the method of generalized integral transforms 
to the in-plane vibration problem and obtains an exact 
solution for the transient response of a rotating disk to
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time-varying shaft inputs. The response has been expressed 
in terms of superposition integrals containing the general 
shaft inputs. The integrals have been evaluated for three 
specific inputs, chosen to approximate the expected results 
of the proposed experimental phase.

To aid in obtaining a numerical solution, numerical 
data for the natural frequencies, nodes, and mode shapes of 
vibration have been obtained and empirical formulas for the 
frequencies have been derived. This data is more complete 
than previously published results and serves to settle 
the differences that have occurred.

In addition, an attempt has been made to organize 
some of the literature and list some of the problems related 
to an experimental investigation, as well as to make recomen- 
dations on techniques.

MATHEMATICAL MODEL 
A disk of uniform thickness with a concentric hole 

was considered clamped to an infinitely rigid shaft and 
subjected to a general time-varying shaft input. The load­
ing was assumed to be pure shear and axially symmetric. ^  
The disk consisted of homogeneous, isotropic, linearly 
elastic material and all surfaces were free from stress or 
any means of support except for the inner radius.

The radius of the disk was assumed large compared 
with the thickness, so that thickness modes of vibration 
might be neglected. All stresses were assumed uniformly
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distributed across the thickness of the disk. In other words* 
the two-dimensional theory of elasticity was applicable.
Creep, stress concentrations, residual stresses,etc, were 
not considered. Furthermore, in the vibration analysis, the 
oscillations were limited to small elastic deformations from 
the steady-state deformation due to the initial angular 
velocity.

SURVEY OF STUDIES ON DISKS
Stresses and Free Vibration of Non-Rotating Disks.

One of the earliest considerations of the vibrations of a 
circular disk was the study by Kirchhoff, in 1850, of the 
free transverse vibrations of a solid disk for two cases—  
free outer edge and clamped outer edge. He found that there 
were two independent sets of nodes (non-vibrating points), 
one forming a pattern of concentric circles, the other 
made up of diameters forming a symmetrical Mwagon-wheel" 
pattern. His results are reproduced and discussed on pages 
359-371 in Lord Rayliegh's Theory of Sound. [lojl* Included 
are experimental and theoretical values of the nodal circle 
radii for the case of no nodal diameters.

The in-plane free vibrations of a solid disk were 
considered by Love [5] in his well-known treatise on elas­
ticity. He found the transcendental frequency equations in 
terms of Bessel functions for the torsional and radially

*“Numbers in brackets refer to references' in the bib­
liography .
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extensional modes from two-dimensional theory of elasticity, 
but calculated no numerical results. Recently, Nowak [s] 
calculated these natural frequencies for the extensional 
modes (without nodal diameters), using both the series expan­
sion for Bessel functions and the large value approximations 
in terms of trigonometric functions. The two sets of fre­
quencies agreed rather well, except for the lower frequen­
cies. He also gave a physical interpretation for the singu­
larity that appears at the origin.

The fundamental (lowest natural) frequency of flex­
ural vibrations for a disk with a concentric hole (annulus) 
was determined analytically from two-dimensional theory of 
elasticity by Raju[9]for nine different combinations of 
boundary conditions and for zero, one, or two nodal diam­
eters, with the discovery that the lowest number of nodal 
diameters did not always produce the lowest frequency.

Since 1950, a great deal of effort has been concen­
trated on determining the effect of thickness on the natural 
frequency spectrum. This interest has primarily been in­
spired by the use of transversely vibrating disks in tele­
phones and in mechanical filters. Experiments by E.A.G.
Shaw [12] stimulated considerable activity in this area,
which has continued to the present time. Shaw used the 
piezoeletric effect to excite the flexural and thickness 
vibration modes of thick barium titanate disks which had 
been silver surfaced. He found that only the axially sym­
metric modes could be excited strongly and reported a definite 
coupling between the flexural and thickness vibrations at
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natural frequencies near those of thickness vibration.

There are at least two distinct thickness inodes 
of vibration? the "thickness shear" mode, produced by rela­
tive angular motion between planes parallel to the face of 
the disk and the "thickness compression" mode, an alternate 
expansion and contraction in thickness due to the Poisson 
effect. The frequency equation for these two modes of 
vibration was determined analytically by Aggarwal [l], who 
found a definite influence when excited with the extensional 
and flexural vibrations.

Mindlin, with several co-workers, published a series 
of papers on the analytical determination of thickness 
effects. They discussed coupling effects between:

The effect of Poisson’s ratio on the natural frequency of 
flexural vibrations was demonstrated analytically and ex- 
perimintally by Sharma [ll] using the thickness-shear cor­
rected theory.

the theory of vibrations in disks and circular plates by 
using three-dimensional theory of elasticity. An alternate 
approach is to start with plane stress theory and add cor­
rection terms. This method was used by Mosely [?] to cor­
rect the radially extensional natural frequencies for

1. flexural and thickness shear modes [2,6
2. extensional and thickness-compression modes
3. extensional modes and thickness-compression and

Host of the foregoing papers attempted to improve
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thickness-compression effects. The correction factor was de­
rived by taking the ratio of the kinetic energy of the disk 
with axial motion due to the Poisson effect, to the kinetic 
energy neglecting this effect.

Stress and Free Vibrations in Rotating Disks. The 
advent of turbo-machinery stimulated interest in the effects 
of rotational velocities on the stresses and vibrations of 
disks. The natural frequencies were needed, so that danger­
ous resonant vibrations of rotors could be eliminated.
Among the first to attempt an analytical investigation were

in frequency of transverse vibrations, neglecting flexural 
forces, for a solid disk and an annulus clamped to a rigid 
hub.

A comprehensive study of steady-state stresses and 
free vibrations of rotating disks was published by Biezeno 
and Grammel in 1939. [13] They derived two-dimensional
differential equations of motion in terms of stresses and 
displacements for disks of varying thickness, with uniform 
disks as a special case. Frequency equations for extensional, 
torsional, and flexual vibrations were determined for a 
number of particular cases, both with and without diametral 
nodes. A detailed discussion was included of the manner by 
which the number and spacing of rotor and stator blades may 
result in forced vibration of the rotor disk. Mathematical 
models were contrived to simulate the affect of shrink- 
fitted drive shafts and blades mounted on the periphery of

Lamb and Southwell
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the disk. Also, a discussion was presented on the natural 
frequency of vibration of rotor blades and their subsequent 
effect on vibrations of disks. Among their conclusions were 
the following:

1. Coriolis acceleration has a negligible effect on 
the natural frequencies of vibration.

2. Vibrations with no diametral nodes are most cri­
tical, because the frequencies are generally lower 
and the amplitudes higher.

3. Vibrations with no circular nodes are most 
critical for the same reasons.

An experimental determination of centrifugal stresses 
was made by Frost and Whitcomb [14] utilizing the "stress 
freezing" technique of photoelasticity, in which a photo­
elastic model was heated to a plastic state while rotating 
at a constant velocity, then cooled slowly with the model 
still rotating, causing it to "set" in its deformed state. 
The model was then analyzed by conventional photoelastic 
methods. This technique has since been extended to disks 
with simulated rotor blades, hubs, discontinuities, etc.
[l5,16,18,20

Two interesting analyses of the steady-state stresses 
and deformations were conducted by Owen [21] , who determined 
the solution for a disk rotated at a constant velocity such 
that the centrifugal stresses were in the plastic range of 
the disk material, and by Karas [l?] , who determined the 
solution for disks of various thickness profiles subjected
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to a constant angular acceleration.

Another two-dimensional analysis of the in-plane free 
vibrations was made by Singh andNandeeswaraiya [23] . They 
began with Biezeno and Grammel's differential equations, 
accepting their assumption of negligible coupling due to 
coriolis, and solved them for two cases— a disk with a rigid 
hub and a disk with a free inner edge--to bracket the effect 
of press fits and the inertial effect of blading. Numerical 
values were calculated to two digits for outside-to-inside 
diameter ration from 1.6 to.0 0.

More recently, a solution for the in-plane vibrations 
was determined by Simmonds. [22] He derived his own differen­
tial equations and concluded that the coupling terms were 
negligible. Solutions were obtained for the frequency equa­
tions and natural frequencies for the same two limiting cases 
as Singh and Nandeeswaraiya. Numerical values for the first 
three natural frequencies have been tabulated to four decimal 
places for each case, for inside-to-outside diameter ratios 
from 0 to 1 and for zero and one diametral node. Three 
values of Poisson's ratio were included to demonstrate its 
effects on frequency. Simmond's torsional frequencies agree 
with those of Singh andNandeeswaraiya [23] , but there was 
considerable disagreement in the extensional frequencies.



II. DERIVATION OF GOVERNING EQUATIONS

EQUATIONS OF MOTION 
Dynamic Equilibrium. Beginning with a general differ­

ential element in polar coordinates as in Fig. 1, the 
equations of motion were derived following the method of 
Timoshenko and Goodier. [25] D’Alembert's principle was 
applied to reduce the dynamic equations to those of static 
equilibrim. Equating forces in the radial and tangential 
directions and neglecting terms of second order, the equa­
tions of motion in terms of stress were found to be:

f f + i f c r - G ' e h i f f + R - O  (D

d Tre , 2. T' r _l_ d ^  + T = f) (2)
r ,re r d e  1 0 (2)

where (Xr and (ĵ  are the radial and tangential normal stresses, 
Tr&ls the shear stress, and R and T are, respectively, the 

radial and tangential body forces per unit volume.
From Hooke's Law for plane stress, the stresses may 

be expressed in terms of the strains -€r, -6eand dfj_e which re­
present strains in the radial, tangential, and shear di­
rections respectively. These relations are as follows:

^ 7 i ( e r + V £ s) >

<3s = p j &(£. +  V^-r)

Tre = &
)

)
(3)
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where is Poisson’s ratio* E is Young’s Modulus and G is the 
shear modulus.

r& + Zr

Figure 1, Differential element of an elastic 
body in polar corrdinates.

Proceeding with the development in reference 25, denot­
ing the displacement in the radial direction by u and the 
tangential direction by v , the strains may be expressed 
in terms of the displacements as follows:

\4L _

- ^4- I SV
r a© (4)

y  _ / &U. , d/ 
- r ae + af

V_
r
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Bodies with Axial Symmetry. For bodies with axial 

symmetry, the partial deratives with respect to 0  are zero 
and equations (1), (2), and (A) become;

I *e + jrrrs + T = o
(5)

= a U 
& r

/-   (A
y

Y  - _  _v
dr r

(6)

/
Substituting equations (6) into equations (3) we 

obtain an expression for the stresses in terms of displace­
ments.

<Tr =_ E
l-yx

bjA ,n)U_
sr ■** ̂  r .

\

I - /
1  + V  r a r

a/
ar r

(7)

And substituting equations(7) into the equations of 
motion (5), we obtain the equations of motion in terms of 
displacements and general body forces:

LA » I “ x r> _ r\
i F ^ ' F  a F " F  +  ~ T ~  R

(8)

-f —  — --- -— |— L T  — 0
b t r x r  b r  ra ̂  & 1 u

(9)
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Compatibility. In any problem in elasticity, a third 
equation in terms of displacements often arises from the re­
lation between the strains. This relation must be satisfied 
so that the solution for the strains will be compatible.

On examining the expression for strain (6) it was 
discovered that no relation exists between the normal 
strains, and and the shear strain, , because the 
former are in terms of u only and the latter is in terms of 
v only. Hbwever, there was a relation between and €.& 
which must be satisfied. Taking the partial derivative of 

we obtain ?
(JA\ _ I du U dr \ r/ r*

_ I /dl/ U_\
r/

Substituting for each term, its corresponding strain 
from equations (6) produces a relation between the normal 
strains:

=  UO)
By Hooke's Law, the strains in terms of the stresses

are:

€ e = i(tr9 - ^ t r t-)
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Substituting these relations into (10) we gets

f? - v If = f K - +
which may be written as:

M e - ± ( c - r -<rg) = y  ! £ - + _L(<rr-<re)d<3V . I (11)
Substituting the first equation of equations (5) into 

the right hand side of (ll)s

-<y6) = - y  r (12)
Now by substituting equations (7), this equation may 

be expressed in terms of displacements:

d U J_ "dJA _  u. . i-v:B r3- ̂  r a r r3- E R ~0

which is identical to equation(8), therefore, no additional 
relation exists due to compatibility.

BODY FORCES AND BOUNDARY CONDITIONS 
Body Forces. The body forces per unit volume, R and 

T, acting on the differential element of Fig. 1. are, by 
Newton’s Second Law, equal to the density of the element 
multiplied by the acceleration, and by D’Alembert’s princi­
ple they are opposite in sense.

F. = p ( a ri+atj) vol
where: ar= radial acceleration

at= tangential acceleration 
l and j= unit vectors. 
p  = density of the material
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Determination of Acceleration. The acceleration 

vector, Apof an arbitrary point P, located at radius rp on 
the disk,may be obtained by a consideration of the theory 
of rigid body dynamics for a particle referred to a rotating 
reference system. Consider an xyz reference coordinate at-- 
tatched to a rotating disk, with its origin at the center of 
the disk. The disk is deformed due to the initial angular 
velocity U)0 . Then, as the angular velocity is changed to
J\(t)=(*J0+u)(t)a displacement of the point P occurs in the 
radial and tangential directions, denoted by u and v, re­
spectively. Letting i,j and k represent the unit vectors in 
the x,y, and z directions, the angular velocity vector is 
-flk . Differentiating this with respect to time (rp=o) 
gives the vector velocity s

VP= U  l + (rp+u)t+vJ + v'J

Where the dot indicated differentiation with respect to time 
and the bar indicates a vector quantity.

By vector analysis, the derivative of a vector, S,
is the cross product of the angular velocity vector and the
vector S' , [41] , so we may write 1 and j as:

• ^
I = _ Q kxi=_aj

and J = _nk xj =-_n.I 
therefore, Vp can be written:

Vp=((A-_n. v) i+(Vf/lrp
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Again taking the time derivatives
A p= j ^ = ( & - A v - s i v ) l + ( i X - J \ v ) X

H  V + A  rf+A  w. +- u ) J +(\> -KJX rf •4-_nu)J

Substituting for i and j and letting A  =<=*;
A P= ( rp S f - u S l * ) !

+(v;+rro< + uo( + a / l u - v I l :i)J
The body forces for any point on the disk are:

R = ~ P a r
T=-/>at

Substituting the acceleration components from(13)s
R = - p ( u - v & - z n v - r _ n ? -  lkS F )

T = ~ p ( v +  ̂ OC+M.CX+a^lU.--VXIa■)

(13)

(14)

Boundary Conditions. As stated in Chapter I., the 
outer edge of the disk is completely unrestrained, therefore, 
the shear stress and stress normal to the edge are zero.
From these conditions we obtains

<£=if̂ JwrO>)+f “W] =0
% 6  = Sr[vh(k)- f  V(i)] = 0  <15)
where r equals b, the outside radius and the sub­

script r denotes the partial derivative with respect to r.
At the inner edge of the disk, the displacements

must be zero, since the disk is clamped to a rigid hub.
The boundary conditions at r equals a, the inside radius are:

Ui(oC) = O  

V(ck)= O
(16)
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Non-dimensionalized system of equations. A non- 

dimensional system of equations and boundary conditions was 
derived by introducing non-dimensional variables x,u, and v, 
defined as:

then,
x=£ I v-*CK.
ax
a <T
From the

_La.
(17)

definition of a partial derivative, the
derivatives of u=f(x,t) are found in the following manner:

bU _ a* BX , BjX 
d r ~  ax 3r + dt £r 
Substituting (18):
d U  _  ±  b u  <18>dr'o. Bx
Differentiating by the chain rule to find the second

derivative and substituting (18):
d xu _ k
■0 rx a2- d7\
Similarly, it can be shown:
b_V ___l b_V
•&r " a- 3X

0 B X*-
Also noting that u = ^  —  ,

etc., the differential equations (8) and (9) become:

^XX + x W = '“ E ^ ^  ) R

— I — I — _ <X*- -p

Finally, substituting the expressions (14) for the 
body forces, the system of equations and the boundary con­
ditions may be written:



u
uO,t)= o
s x(£)+f-va(£)=o
u fx ,o )=  & 0
u t (x,<?)=0

\

17

(19)

vxx+ TTvx “ j ^ v =
[7tt +o(X + c x u t 2 / l u t-_fl*V1

\

v(f,t)=o
^ ) - f v ( i ) = o > (20)

v(x,o)=o
7t& o ) = o



III. SOLUTION BY GENERALIZED TRANSFORMS

GENERALIZED TRANSFORMS 
Definition. The generalized or integral transform

with respect to x of a function of x is defined as:

where the range of values of x is from 0 to ©o. Kn(An ,x) 
is known as the '‘kernel function" and is determined along

an integral transform to partial differential equations 
results in a reduction in the number of independent vari - 
ables,as can be seen in (21), since the transformed f(x) is

In many physical problems, repeated transformations, using 
a different kernel for each independent variable, can reduce 
a differential equation in several variables to an algebraic 
equation in terms of the boundary values and transformed 
variables. The best known example of an integral transform 
is the Laplace transform, often used to eliminate the time 
variable in differential equations. It is defined ass

The greatest single factor limiting the use of integ­
ral transforms is the difficulty in obtaining an inverse

(21)

with the parameter A *  by the form of the differential 
equation and the boundary conditions. The application of

no longer a function of x, but a known function of A n .
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transform. The most common transforms have an inversion 
formula of the form:

where H (7l,x) is the inversion kernel. It is desirable to 
find a symmetrical transform such that K(7\,x)=H(7\,x). In 
most cases, this integral covers the complex plane of real 
and imaginary numbers and cannot be integrated directly.
It is necessary to revert to laborious contour integration 
in the complex plane, which evaluates an integral of a 
function as the Siam of the residues of the function, lying

Finite Transforms. A special class of integral trans­
forms arises when the range of the independent variable x is 
finite. The definition of a finite transform and its inverse 
are respectively:

An important property of finite transforms can be observed 
from (23): the tedious contour integrals have been eliminated 
and the inverse is just an infinite series of orthogonal 
kernel functions.

Another important property of finite transformations 
is that the kernels are "tailored” to match the boundary 
conditions of the problem, making this method ideally suited 
to the solution of boundary value problems.

inside the path of integration.

(22)

(23)
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The limitations to this method are the following;
1. f (x) must satisfy Dirichlet's conditions in the 

interval (a,b), meaning, it must be piece-wise 
continuous and undergo bounded variation (same 
restrictions for uniform convergence of a Fourier 
series.)

2. This method will only solve those problems which 
have a Fourier Series solution. [40]

Initial Conditions. To demonstrate this method, the
initial deformation of the disk due to rotation at a constant 
velocity will be determined by finite transforms. Reducing 
the system of equations (17) to a steady state problem,gives;

The u in the body force may be neglected, since x » W  .
From the definition of the transform (22), the trans­

form of u is:

where the subscript ux indicated the x-transform is tailored 
to fit the u boundary conditions. Next all terms containing 
u, or derivatives of u with respect to x, are collected and 
a transform is derived from (25) and the boundary conditions 
as follows:

where I(x) is an integrating factor to facilitate integrating

u xx+ u x- ^  w. = — - v a)_oT(x + o)

Ct(0- 0 > (24)

/

(25)
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by parts and is part of the kernel. In this case I (x) is 
found to be equal to x, letting the Equation take the form!

Tux [d(50] = I  [CxuV- §3

where primes denote differentiation with respect to x. 
Integration by parts twice fields;

t «* [odO] =[Kxn'-K'/a]*+j, [(k 'x)'s - k - £ M *  (26)

Assuming the transform of this operator can also be
written. I

Tux[d(C0] = ~ k J (27)

and choosing the boundary conditions on K (An>x) such that 
the term in brackets preceeding the integral in (2b) is 
equal to zero, makes it possible to equate the integrals in 
equations (26) and (27) to obtain the differential equation 
and the boundary conditions for K!

(k'x)' - 1 + K  k  * * o
KO) = 0 > (28)

K ,(i)-VfKC43-0 J
It will be noted that this is a standard Sturm- 

Liouville system and has a Fourier series solution. [41] It 
is also valuable to note that the boundary conditions are 
identical to those of u and the equation is the same as 
D(u)=- A^u. The presence of the integrating factor does 
not change the solution of (28) as it may be divided out. 
These results can be generalized to other systems (called
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”self-adjointH) as discussed in Churchill. [35 
The solution of (28) is; [37]
K(\vX)=C, J,C7U) + C*y,&*)

where J, and Y, are Bessel functions of the first and second
kinds of order one.

Using the first boundary condition, K (1)=0, to solve
TfAlfor the arbitrary constants gives C x~ — C t

and the kernel function;
k (k, *)=ct x) [y; c a) jja*) - y.ca y]

(29)

Transforms with this kernel function are known as "finite 
Hankie transforms” [40]

Applying the other boundary condition, it is found 
that C(7\) divides out, therefore it is an arbitrary con­
stant and can be taken (for convenience in inverse trans­
formation) as a normalizing factor as defined by Wylie: [41]

C(7\)= * - ( 3 0 )
The second boundary condition gives the characteris­

tic equation;

(31)

The values of A which satisfy this equation are the eigen­
values and had to be determined numerically since the equa- 
cannot be solved for A  explicitly.

Applying the transform to the rest of equation (24), 
results in the following equation for
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U? = H,(7i)

where (32)
b<3L

(33)

PCi-n3-)

and Hi(ft)~ Tux K x z dx

= [ X M  T|QitO -  j ,o d x & x)] x ^ x

which, by the bessel identities-

lf,£xx)Ŷ (&0<)— _ 2._
becomes; ‘rrot*

h , W =  c(70 x , J , o > i ) - j /?o]

Inverse Transform. Since the kernel forms an ortho~ 
nonnal set of functions with respect to the weight function x, 
we may assume that u(x) may be expanded as an infinite 
series of the form;

OO
U(Y)= Z a n K(K,x)n=l

where an are arbitrary coefficients of the series.
Applying the principal of orthogonality to each term 

in the series we get; ±
r a x  K(a „,x)Jx =  K(K,x) A*

which equals zero except when A* = A™, hence:

("nxKf a r t e l x <35)
811 f*(eC\,x)<Ax
The numerator of (35) is the definition of the
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transform of u (22), while the denominator equals 1.0, since
K( A,x) were normalized by C(A ), therefore?

p -itx an
and the solution of the steady-state problem, which is the 
initial condition of the vibration problem, is:

which agrees with inversion formula (23).
SOLUTION OF THE RADIAL DISPLACEMENT EQUATION 

The solution of the radial displacement equation (19)
can be obtained in the same manner after an examination of 
the terms in the body forces.

Transform of Body Forces. Assuming that a transform 
of equation (19) exists and taking the transform, we get:

Transforming the v equation, (20), produces a similar result;

Note that the transformed u*s in the u equation are functions 
of A, while the transformed u's in the v equation are func­
tions of (3 . Therefore, they cannot be combined. Likewise 
for the v's, resulting in four unknowns in only two, equa­
tions. Hence, no solution can be obtained unless the coupl­
ing terms in each equation can be neglected.

(36)

-  7\x u TA, f t  (A, t)-SL% H, ft)-  cx v YA,t) -RilV^A,t)-ft Û A,̂ ]

Order of Magnitude Consideration. The solution of
a one-dimensional vibration problem by the method of separation



25
of variables assumes a Fourier series solution of the forms

a  Cx,t)= ^ X & o T f (37)
where X^x) is the mode shape or deflection curve and Tn(t) 
is the time response, expressed as a trigonometric or ex­
ponential function of the natural frequencies. For a simple 
second order system T(t) is usually of the forms

where A and B are constants determined from the boundary 
conditions and is the natural frequency of the system in
radians per second, obtained from the characteristic equation.

Similar results are obtained for exponential functions. For 
systems with high natural frequencies, then:

Utt*” u t >> u  
Likewise : ]/tt»  vt  »  V

Similarly, if utt and v^t are the same order of magnitude,

^ tt> > V t >> v 
Vtt >> “ t >> u

The solutions for u and v have the same form as (37),

T(t)= A cos uJnt+ g sin

Now, consider the time derivatives of u:

(A£ — E  X($ (— A sin u)*t +■ B cos oj*t)

E  a cosw*t+B sin wnt)
Therefore,

o  a ]
U  = O  [a]
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the kernel function becoming the mode shape, X(x), and the 
solutions of the ordinary differential equations in time,
Ux and Vx, becoming the transient response, T(t). Therefore, 
results similar to those of (38) are obtained, and the 
necessary assumptions can be made. This of course also 
assumes that J~L is not large enough to makeX^il of the 
same order of magnitude' as utt, which means that the natural 
frequency u)n must be greater than _Q , such that?

If _TX =0 [wj then JX°~ u. = o[jlw*u] = o[^u], but all 
three terms are then negligible with respect to Ji2"X and 
all but the term, can be omitted, which means the
problem is no longer a vibration problem.

Neglecting all but utt, vtt,_n-ix and CX X uncouples 
the equations, so that the vibrations in the radial and 
torsional modes can be considered as independent. The equa­
tion governing the radial or extensional vibrations becomes:

u xx+ x u x x* u “ c? (39)
X-Transform. Comparison of equations (39) and (24) 

made it apparent that the kernel functions of the transforms 
were identical, as also wereC(7\)apd H t(7l). Therefore, the 
transform of the equation was straight forward and produced 
an ordinary differential equation in u and t:

Note that in order to apply the initial conditions to 
this equation, they too had to be transformed with respect 
to X:



U * ( A , 0 ) = ^ f  H,fo = u;

U t*(A,o) = 0

Laplace Transform, Transforming this remaining
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equation by Laplace transforms gave the solution for Uxt.

Uxt=
* Of

where
-Cl (s)= L t [jtY*)]

The inverse Laplace transform was;

Ux=— — f H,(7\)cos —  L-rj^ n,2LC,
<x

r tt + —  Hi(?0 J J??(r)sr«2g L ( t - f U r

Since _0. (t)= <̂ o + w  (t) then;

u*= H|(A) +^;( H,(A)/[ilW- s m  tet(t-r)dr
' "'o

VThe first term in this equation is U0, the steady- 
state solution already determined; the second term is the 
transient response due to the change in body force. 
it will be remembered, is the x-transform of x, so both 
terms have the form of x b u t  the second is also a type 
of periodic motion. This expression for Ux may be short­
ened to;

U x= Uf +  f c (40)

where ^(t) represents the superposition integral.
The solution for u was, by the inverse transform 

theorem (23); oo
u(XX) = Y.

a=i (41)



SOLUTION OF THE TANGENTIAL DISPLACEMENT EQUATION
28

Treating the v system of equations in a manner similar 
to the G system, that is, tailoring the kernel to match the 
system, the same differential equation for the kernel was 
obtained, but the boundary conditions differed, making the 
expressions for the normalizing factor and characteristic 
equation different. These results are listed below; 

a) v equation and boundary conditions;

PW ocx + vtt]

v(/rt)=o v(x, 0)=0
vx(£)--v(!)=o v^x,o)=o

b) kernel function;
[r$ J, W -

c) Normalizing factor;

WfO= [ j t ( £ f [ W - - - S W
d> Characteristic equation;

"i

(42)

(43)

(44)

(45)

Solution by Transforms. The x-transform of the 
equation resulted in the differential equation;

v i + (8 xC*att- c r v = - c

where; C^=

(46)
(47)

Ht((S)=wj8) [x((# 4  f  j,(p)l

The reader will notice the striking similarities in the 
foregoing and corresponding expressions from the u solution
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Laplace transforms
xt__ H,f0)o<t(s)

where : s t(l), ̂  [«(£]
Inverse Laplace transforms

V x= - ̂  Hxp J  I«C-rO Ct-r) ar

=  - jfe K #  Tift)

(48)

where T((t) equals the superposition integral
The inverse X-transform;OO

vCx;t)= ^  N(p„/)Vx(p̂ ,t) (49)

STRESS AND STRAIN SOLUTIONS
Equations (6) and (7) showed the stresses and strains 

in terms of displacements, therefore, substituting the solu­
tions for u and v results in a known series expansion for 
the stresses and strains in terms of the free vibration 
modes and transient response terms. The non-dimensionalized 
forms of (6) and (7) are;

'V — ^~e = 5)v _ _V 'be & X

\

> (50)

_ 3U \

(51)
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Since the same four terms occur in all six express­

ions it is necessary to evaluate only the following:

f =  o) JiM-Jifo) r,(7i x)] u*Ut)

d* n='

y =  v%t)

(52)

Substituting numerical results for these four series 
into equations (50) and (51) will give solutions for both 
the stresses and the strains.



IV. FREE VIBRATION AND TRANSIENT RESPONSE

NUMERICAL RESULTS
Natural Frequencies. The natural frequencies of the 

disk in free vibration appeared in the transformed equations, 
(40) and (48). The natural frequencies in radians per sec­
ond for the extensional vibration were determined to be;

f0

and for torsional vibration;

(53)

 ̂rr\
a.

(m—1,2,3,....)
P ..................  (54)

Two sets of non-dimensional frequencies were then 
defined as;

""A —  CK
“  c,

» - cx

} (55)

These, it will be noticed, are simply the eigenvalues of 
equations (31) and (45), the characteristic equations from 
the u and v solutions. For this reason, the characteristic 
equations are often termed the "frequency equations" in 
vibration problems. An examination of these equations 
reveals that depends upon the geometry of the disk and 
Poisson’s ratio of the material, while depends upon the 
geometry only.

The quantities cj and C2 are respectively, the two-
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dimensional propagation velocities of the dilatational and 
distortional stress waves in solids. The dilatational wave 
is a compression wave in the material characterized by par­
ticle motion in the direction of propagation. [34,39]

To demonstrate the effect of the physical properties 
of materials on these velocities, the approximate values in 
inches per second are listed below for steel and for a photo­
elastic rubber to be mentioned in Chapter Vs

Photoelastic rubber [33] 2.63xl03iE* 1.37x103 -2*-L J sec sec

Numerical Data. Before the series solutions of Chap­
ter III can be evaluated, the roots or eigenvalues ;of the 
characteristic equations must be found. In general, it is 
necessary to determine only the first few roots, since the 
terms of the converging series steadily decrease in magnitude 
and soon make very little contribution to the result.

Numerical results were obtained for the roots of the 
frequency equations for the first five natural frequencies, 
where possible, and for integral ratios of b/a from 2.0 to 
15.0. The extensional eigenvalues were calculated for 
values of 0.3 and 0.5 to show that the effect of Poisson's 
ratio was slight. The results are plotted on graphs, Figs. 
2,3, and 4, and tabulated to four decimals in Appendix A.
A comparison of values on the graphs shows that the only

Carbon steel 217x 1035|£
El
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a
Figure 2\ Eigenvalues for the firee torsional vibration of 

a uniform annular disk versus the radii ratio.
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Poisson's ratio: V  =0.3
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a
Figure 4. Eigenvalues for the free extensional vibration 

of a uniform annular disk versus the radii ratio. 
Poisson' ratio: V  =0.5
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significant difference in A/\ and occurred between the 
very first frequency or fundamental mode of the two types of 
vibration. The first three frequencies of each mode were 
found to agree, within normal limits of accuracy, with 
Simmonds' results, [22], thus helping to substantiate his so­
lution over that of Singh andNandeeswaraiya. [23]

The mode shapes for torsonal vibration are plotted 
graphically in Fig. 5(a) to (e). They represent the shape 
or deflection curve of a radial line of the disk at its 
maximum deformation. The amplitudes are plotted to an ex­
aggerated scale on rectangular coordinates. For small de­
flections, the displacements can be considered nearly normal 
to an undeformed radial line. Each higher mode of vibration 
has a decreased amplitude, illustrating convergence, and one 
additional node, or non-oscillating point of the disk. These 
nodes form concentric circles of torsionally stationary 
points. The mode shapes for the extensional vibrations have 
been plotted in Fig. 6 (a) to (e), only the displacements 
had to be plotted normal to a radial line, rather than in 
their true radial direction, for the sake of visibility. 
Similar nodal circles were found, only these were stationary 
with respect to radial displacement.

The radii of the nodal circles have been calculated 
numerically for each of the eigenvalues. Each set of nodes 
is listed next to its corresponding eigenvalue in Tables II, 
III, and IV of Appendix A. In Fig. 7, the nodes have been 
plotted for the third mode of extensional vibration.
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a

Figure 7. Nodal radii versus --1 for the third mode of 
extensional vibration of a^uniform annular disk. 
Poisson'jS ratio:V =0.5
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This plot indicates that the nodes vary proportionally with 
the size of the disk. When plotted versus ~ -1. they divide 
each size disk into the same proportions.

For close approximations, the constant of proportion­
ality can be determined from the nodes of ~-l equal to 10.0. 
By subtracting 1.0 from these nodal radii and multiplying 
the remaining number by 10.0, the percentage of the dis­
tance from 1 to b/a_ is obtained and can be used in determin­
ing the nodes for other b/a, values, even non-integral values. 
Results obtained by this method, for the extensional mode 
shown in Fig. 7, were compared to the actual percentages for 
b/o. equal to 4.0 and 15.0. They were found to differ by no 
more than 1.127o and by as little as 0.18%.

Empirical Formulas for Frequencies. The analysis of 
the nodal circles with respect to ~-l led to the discovery 

• of empirical formulas representing the natural frequency 
curves of Figs. 2,3, and 4. When plotted on logarithmic 
coordinates versus k-1, as in Fig. 8, the frequency curves 
became linear, indicating a relationship of the form:

lot) An =  m n loqCx-l)+log fin
, m (56)

or A„ = ) "

where is the slope of the line. Both and Bn are con­
stants that differ for each mode of vibration and, for the 
extensional vibrations, they differ for each V  value. Values 
for 1%, Bn and log Bn were determined by the method of least- 
squares and are found in Table I for each mode of vibration
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Figure 8* Logarithmic plot of eigenvalues for the free 
extensional vibrations of a uniform annular disk to 
determine empirical relationship with radii ratio.. 
Poisson's ratio:"!/ =0.5 ,



TABLE I
SLOPE AND INTERCEPT OF EMPIRICAL NATURAL FREQUENCY 

EQUATIONS FOR TORSIONAL AND EXTENSIONAL 
VIBRATIONS OF A UNIFORM ANNULAR DISK,

Mode Slope Intercept Log,oOf
Intercept

Correlation
Coefficient

n % Bn l°gio Bn rxy
Torsional Modes

1 -1.6712007 1.1286800 .052570857 -.99896819
2 -.97334013 4.5249686 .65561557 -.99996903
3 -.98724215 7.7489946 .88924536 -.99997489
4 -.98838096 10.828437 1.0345658 -.99999636
5 -.99254082 14.034957 1.1472111 -.99994853

Extensional Modes; V  =0.3
1 -.92391975 1.5872712 .20065114 -.99999095
2 -.96741117 4.6839973 .67061664 -.99998578
3 -.98387661 7.8302141 .89377364 -.99998577
4 -.98329493 10.807996 1.0337452 -.99999335
5 -.98673173 13.916854 1.1435411 -.99997020

Extensional Modes? V  =0.5
1 -.91858087 1.6580299 .21959236 -.99998603
2 -.96658420 4.7078827 .67282564 -.99998763
3 -.98476765 7.8660153 .89575479 -.99997823
4 -.98319931 10.821343 1.0342812 -.99999306
5 -.98036740 13.675001 1.1359274 -.99987867



and for~V values of 0.3 and 0.5.
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The maximum deviation from the linearized curves 
occured at the lowest mode of torsional frequencies. Corre­
lation coefficients, rXy, were determined for each linear 
equation and are also found in Table I. This coefficient is 
a measure of how well the straight lines represent the data. 
Ideally it should equal ±1.0. It is evident from an examin­
ation of Table I that there was very little scatter of the 
data about the line. Even the first torsional mode had an 
rXy of-0.99896819.

These empirical relations should be invaluable for 
design work and will also simplify the numerical solutions 
to be obtained in the experimental phase of this project.
They are particularly useful in determining the natural 
frequencies for fractional values of and in extrapolating for 
values beyond the range of the tables. When carried to the 
limit, they indicate an infinite frequency for and a
frequency of zero for £=oo, which agrees with the approx­
imations proposed by Simmonds. [22]

Discussion of Error. All of the Bessel functions in 
the frequency and mode shape equations were calculated to 
the nearest 0.00001 from their infinite series definitions, 
while the eigenvalues and nodes were found by : iterative 
techniques to the nearest 0.0005. All calculations were 
made at the Brigham Young University Computer Research Center 
on an IBM 650 digital computer. Although the calculations 
were made to eight significant figures, the results have
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been rounded off to four, corresponding to their required 
accuracy.

The Bessel function subroutines used were limited in 
accuracy to an argument (x or Ax) of 15.0, therefore, the 
highest value of A  or (3 which could be computed accur­
ately was — • 7\<15 or "̂(3 <15. At arguments near 15, the 
dominant J^x) in each calculation was found to be between 
0.25 and 1.07. in error, while the dominant Yn(x) was from 
0.25 to 4.07. in error, making a maximum probable error of 
57« in the combined functions in equations (29), (31), (43) , (45).

The equations cited above all have a similar form-- 
the difference of products of Bessel functions. On sampling 
the change in magnitude of the function for a small change 
in argument x, the ratio was found to be as high as 1259:1. 
This means that A and |£> are not very sensitive to errors 
in the Bessel functions. However, this steepness of slope 
introduced considerable error into iteration process, some­
times causing more than one value to be found for the same 
eigenvalue. An accuracy limit line has been plotted on 
the frequency curves. Figs 2,3,and 4, indicating the argu­
ment A or |S ̂  equal to 15.0. Values near this curve are to 
be used with a lesser degree of confidence.

RESPONSE TO SPECIFIED INPUTS
The response of the disk to a general shaft input has 

been expressed in terms of superposition or Duhamel's inte­
grals. To determine the response of the system to any
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specific input function, then, it is only necessary to 
evaluate the following two integrals, since the rest of the 
solution remains the same s

[_nYtf-coo*] sin u)^(t-r)dT (57)

T[(t)= J o<Ct) sin u>^(t-r)dT
Jo

To assist in evaluating the integrals, a number of 
simple superposition intergals were evaluated and they are 
listed in Table V of Appendix B. The three input functions 
that follow were selected as the best approximations of 
physically realizable inputs that were still comparatively 
simple.

Step-Change in Velocity. For the simple case of a 
step-change in shaft velocity, the shaft inputs become;

Sl(t) ~u)0 t < 0
— 60 o -+• t — O

where u>0 is the initial velocity and cos is the magnitude 
of the step change, and;

oiCt) = O t ^ o
= SCt) t - o

— O t > o

where £(t) is a unit impulse or delta function, that is, 
a pulse of infinite amplitude and zero time duration. The 
integrals for this case are;

^ ( t )  =  J (2oj0 ojs+ u/-) sin u>n(t-T)dT

by (a), Appendix B;
= ~  + w rt) (58)
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by (a), Appendix B:
~ ojS \ ~  c os* (59)

Sinusoidal Shaft Input» For a sinusoidal shaft input

JX(t) =  CJ0 + <̂ s sin OJtt 
cK(t)= u)s u>( cos ojtt

where oJs is the magnitude of the sine wave' and w, is its 
frequency. Thê  integrals for this case become;

€,(t)= \Q(?~ s/'n w,T + w/ sin w,T) sin u>^(t~f) d T

by (g) and (d), Appendix Bs

x

+$ u ? - u Z ) ( cos Zui't ~ cov

Jl(t) = Jo CJSUJ, cosw.f sin

(60)

by (f), Appendix B;
= cJsuJt(cos UJtt-COS u^t) (61)

Combined Sine-Ramp-Step Function. For this function:

ĉo-t- ̂  ^  sin u),t)

— UJ0 4- U>.r

o<(t)= ~^{\-COS w,t)
= o

o< t ̂  t;
t>Tj

o< t ̂-t; 
~t>r,

The intergrals then become, for the interval

[*-̂ (t-A * <■•<«, r)-
s//j wn(t--T)0i'r
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by (b), (c), (d) , (e), (g) and remembering that
S(t) = — (wK- ch u„t)- \

- . 9. r f ^ / v -i
«*"•*)]

_ T/^  rm sm
ttt;L^I W|1- ^

+#7^[X=7-̂ fî  + 4 $

n * > /  % o  ~ C~OS U)tT) sih wjt-r)^t
by (a) and (f)s Appendix Bs

= J^£- (i-cosooU)~ i^J^/COir ̂ - c o s ^ t \  (63)

For the interval t > Tf we must return to the Laplace 
transform solutions of Chapter III. The solutions for Uxt 
and Vxt, before substituting initial conditions are;

U <t= <f+w>[s u x(\;) + ut'IfO+-n-tfc)H,w]

V* = [s v*(X)+ Vtx(V~ oftdHJd]

where UxC7p» V̂ 'Tj), etc, are the conditions at the start of
the interval, evaluated from the solution for the interval

t ± x m.

u*(X)=z£ f ^ f K -  rf‘i u-'t;)
w, w„T7'tr I

6J, €l*y UJkTi f, . , r , <*A Ĉ l%+ ̂>̂ )]
TTT7 U

+ ^  r ^  _ (i- cos U»r,) 1T̂T*- L J\

(62)
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HJf?) — C-or (0,̂1'f)>«<£3 _1

U£
'n 00(Vi co-r cô t; -i

(a))*'— tO

\£Cn)=-Hj) $ iVtô Ti + U)s-
~

to r*y f I" tô Tj 
to^-tJ^3-

And the solution for t>7j becomes

u * = t / T r ; H « ^ , t +

+ W0 Wj + 60/)(|- cor WKt)(aĴ\

l/*= + 5/h^t

~Trr(l-C0S w- t )

\

> (64)

/



48
These solutions for three different cases contain 

both the transient response, in terms of the natural fre­
quencies, and the steady-state response, in terms of the 
forcing function parameters. In the latter two cases, sin­
gularities occur when the frequency of the forcing function 
is equal to a natural frequency or sometimes one half of a 
natural frequency. This was expected, since no structural 
or other damping was considered.



V.PRELUDE TO THE EXPERIMENTAL INVESTIGATION

CURRENT EXPERIMENTAL TECHNIQUES
Dynamic Photoelasticity. The problem of the tran­

sient response of a rotating disk seems ideally suited to 
experimental investigation by dynamic photoelasticity, a 
technique used increasingly in the study of wave propagation 
and transient stresses. Goldsmith [31] cites the advantages 
of this method ass (1) a complete stress picture of the 
entire field can be obtained rather than few finite points, 
and (2) the measurements are accomplished with light and, 
therefore, they add no mass to the experimental model and 
do not alter its response. He further cites the disadvan­
tages ass (1) the model materials are significantly diff­
erent in physical properties from the engineering materials 
they represent, (2) the materials require accurate dynamic 
calibration, and (3) additional information is needed be­
fore individual stresses may be determined at interior 
points. (points not on a free boundary). Consequently, 
photoelastic investigations of transient phenomena often 
requires reliable independent measurements or an appropriate 
theory as a check on the results obtained.

Photoelastic materials are viscoelastic, that is 
they will creep when subjected to a constant load. Gold­
smith states [31] that most transient phenomena are of too 
short a duration to be affected by the creep of the material,
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but the viscous effects do increase the dissipation of 
energy and dispersion of stress waves. They also cause 
some of the physical properties, such as the modulus of 
elasticity, to be dependent upon the rate of loading, hence 
the problem of dynamic calibration. The calibration of the 
material must be made at the same loading rate as the model 
experiences. Dynamic calibration has successfully been 
accomplished by using a vibrating beam for a photoelastic 
model. [27,3o]

Low Modulus Materials. Stress waves ordinarily propa­
gate at such high velocities that it requires very high 
speed photography to stop the motion. Recently, a tech­
nique has been developed based on the fact that propagation 
velocities in a material are a function of the modulus of 
elasticity of the material. Utilizing low-modulus materials, 
propagation velocities have been reduced to the neighborhood 
of 2000 inches per second (see the first section of Chapter 
IV)» Successful movies with a rotating-prism framing 
camera have recorded transient events at framing rates as 
low as 6,000 frames per second. [26,29,32,33] This is the 
technique that is recommended for the experimental phase of 
this study.

The Photoelastic Method. The instrument of photo­
elastic analysis, the polariscop^, employs a beam of polar­
ized light to produce an interference pattern consisting of 
dark and light bands or fringes on the optical image of a 
model. Each band represents the locus of points on the model
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that have the same magnitude of the difference in principal 
stresses, the magnitude depending on the order of the band 
and the constant of proportionality of the birefringent 
model material. Numerous methods have been devised to 
provide an additional relationship, so that the photoelastic 
data may be separated into individual stresses. [27] Some of 
the techniques require independent measurements at finite 
points; others require an approximation by finite defferences; 
still others require a repetition of the test, so a second 
interference pattern can be obtained, differing from the 
first by a known relationship. The first group of proced­
ures is not considered acceptable as it is usually inadequate 
and difficult to obtain in transient problems, the second 
group is long and tedious, but the third is acceptable if 
the events are repeatable. Two of the latter group are men­
tioned here as possible techniques to be utilized in the 
experimental phase of this analysis. They are the “oblique 
incidence” and “interferometer" methods.

Oblique Incidence. The oblique incidence method is 
simply a variation of the ordinary polariscope technique. 
Ordinarily, the photoelastic model is two-dimensional and is 
viewed with the model normal to the transmitted light. By 
the oblique incidence method, the model is inclined at an 
angle to the incident light, thus producing a second 
fringe pattern. The use of this method and the relationship 
between the two fringe patterns is discussed by Drucker. [28]
He states that it is limited to thin models with low stress
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gradients, since the polarized light enters and leaves the 
model at different locations that muse not have widely dif­
fering stress magnitudes.

Interferometry. An interferometer is an optical 
instrument which divides a beam of parallel light, by means 
of a half-silvered mirror called a "beam-splitter," into 
two separate beams, initially in phase. When used for stress 
analysis, one beam is passed through a loaded model, the 
other through an unloaded model, then the two beams are re­
united by another beam-splitter and an interference effect 
results. The stresses in the model alter its thickness be­
cause of the Poisson's ratio of the material, effectively 
changing the path length of one light beam. This may result, 
at some points, with the beam becoming out of phase with its 
unaltered twin, thus producing a pattern of light and dark 
bands or fringes that are proportional to the varying 
model thickness. It can be shown that the change in thick­
ness of a two dimensional model is proportional to the sum 
of the principal stresses, consequently each band of the in­
terference pattern corresponds to the locus of points on the 
model having the same magnitude of principal stress sum, the 
magnitude depending on the order of the band and the constant 
of proportionality of the model material. This, along with 
the photoelastic fringe pattern, provides two equations in 
terms of the principal stresses, which can be solved simul­
taneously for individual stresses at any point on the model.
A number of variations of this instrument have been used and
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are described in refrence [27] .

GENERAL CONSIDERATIONS AND RECOMMENDATIONS 
Repeatability. The principal disadvantage of the 

experimental techniques discussed in the preceding sections, 
when used in the analysis of transients, is the necessity 
of repeating the event in order to obtain information in 
support of the photoelastic data. It does not seem probable 
that the results of any two tests would be identical in both 
time and magnitude.

Considering this problem, two systems are proposed 
as possible solutions, each making possible the simultan­
eous determination of two independent sets of data during a 
single test of a model. The first combines an oblique and 
a normal incidence polariscope into one instrument; the 
second combines a polariscope and an interferometer into a 
single instrument.

It is theorized that combining a normal and oblique 
incidence polariscope can be accomplished by dividing the 
incident light into two beams, as illustrated on Fig. 9, 
passing one through the model normally and the other 
obliquely, then reuniting them for photographing simultan­
eously. Suitable shields are placed in the light paths so 
that only opposite halves of each beam are allowed to pass
through the model to the camera. This limits the method to 
the investigation of systems of stresses that possess a 
line of symmetry. The field of view would be divided about 
the line of symmetry, one side displaying the normal



Figure 9. Schematic of a Combined Normal and Oblique Incidence Polariscope
A - Light source 
B - Aperture 
C - Lens
D - Polarizing plate

E - Quarter-wave plate 
F - Half-silvered mirror 
G - Opaque screen 
H - Plane mirror

I - Model

Ln
-P>
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incidence fringe pattern, the other the oblique, as depicted 
in the inset of Fig. 9. Certainly, the beam splitters form- 
ing the oblique system could be replaced by full-silvered 
mirrors covering only half the field of view, providing the 
edges of the mirrors were sufficiently accurate.

The combination of a polariscope and interferometer 
could be accomplished in a similar manner, as illustrated in 
Fig. 10. Since the light beam is already split in an inter­
ferometer, the portion which is passed through the model 
could be divided in two about a line of stress symmetry, as 
previously described, and polarizing plates inserted in one 
half to form a polariscope. The same limitations as to 
stress symmetry are necessarily applicable to this system.

These systems are not without difficulties, but other 
than allignment problems, it is believed that no serious 
difficulties in addition to those existing in separate 
systems would be introduced.

The most serious difficulties to surmount arise from 
the extreme sensitivity of the interferometer, which must 
adhere to tolerances as fine as one quarter of a wave length 
of light. The first of these is; the instrument must be 
carefully isolated from all sources of vibration,which is 
complicated by the fact that Che model itself is required to 
vibrate. The.second is the required accuracy of the model 
surface. Previous investigators have found it necessary to 
polish the surface of the model to the quality of an optical 
flat, [27] , thus limiting the investigations to very small



I n t e r f e r o m e t e r  P o l a r i s c o p e

Figure 10. Schematic of Combined Polariscope and Interferometer
A - Light source 
B - Aperture 
C - Lens
D - Polarizing Plate 
E - Quarter-wave plate

F - Half-silvered mirror 
G - Model 
H - Plane Mirror 
I - Micro-micro path length 

adjustment

J
K

Opaque screen 
Image
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models. Unfortunately, the present low-modulus materials 
often have residual stresses or non-homogeneities that 
would produce fringes in an unstressed model even though 
the flat surfaces were perfectly parallel. A possible 
solution might be to take a “tare reading”, a photograph of 
the interference fringes of the unloaded model, which could 
then be subtracted from subsequent fringe patterns to obtain 
the absolute magnitude of stresses. The periphery of the 
disk would have to be marked with a code, so that the lo­
cation of the stresses could be identified and the proper 
correction applied.

Dynamic Similarity. The concept of dynamic similar­
ity makes possible the generalization of experimental results. 
To achieve dynamic similarity, the governing differential 
equations must be non-dimensionalized with respect to all 
independent variables, and the resulting coefficients made 
equal for corresponding coefficients of the prototype and 
the model. In the analysis contained in Chapter II, the 
equations were non-dimensionalized with respect to the geo­
metric variables only. For complete similarity, the time 
variable and input functions must also be made dimensionless 
with respect to some characteristic value of the system hav­
ing the dimensions of time.

In the differential equation for u, Equation(39), 
the time dependent terms utt and JX^Ct)X , both have the 
units of l/sec20 if u)0 is chosen as the non-dimensionaliz- 
ing parameter, both terms can be non-dimensionalized by
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dividing by . This, of course, must be compensated by 
an tOo in the coefficient, making the equation become:

u, + ~ x"1 ̂  ^s [^Vr *] (65)

where T  denotes non-dimensional time, o>0t , and F̂- is a 
dimensionless dynamic similitude parameter equal to:

I— P ( l~ V X)oO~OJo _  o O u )l
— r~  ̂X (66)

s E c,
As a natural consequence to the solution of equation

(65), the natural frequencies appear in the non-dimensional
form:

—  _ pJ} __ 7\nci _ 7u 
n (Jo o~u>o -\Jp̂ (67)

Similarly, non-dimensionalizing the v equation,(42) 
results in the dynamic similitude parameter:

p -X (J?

and the dimensionless natural frequency :

(68)

7 T   £3 m ̂2- ft"TT—‘ = 1---  = —COo (^o V57
(69)

A model which is dynamically similar to its prototype 
must therefore have <3̂ and co0 adjusted so that its Fs and Cs
parameters, along with the dimensionaless inputs,

—O- and c>c[t)

are equal to like parameters for the prototype. Then all 
measurements must be non-dimensionalized to correspond to 
the dimensionless coordinates ^  andw0tand dimensionless 
variables and .CL CL

A* -'.v ■■ .
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Loading Apparatus. The design of an apparatus to 
produce impulsive shaft inputs will require the utmost of 
ingenuity. Such problems as the finite time required be­
fore an actuator takes affect, bouncing and chatter between 
members brought into contact, and flexibility of the loading 
members must be minimized by careful design.

A possible choice of a sinusoidal input device for 
the case of a sine wave superimposed on a constant shaft 
velocity, would be a u-joint drive turned at a small angle 
to the drive shaft. This closely approximates the given 
function.

Model Size. The model should be kept as large as 
possible,so that as many pictures as possible may be obtained 
before the dilatation wave is reflected off the outer bound­
ary. On the other hand, the extreme flexibility of the 
model material requires that it be as small as possible to 
minimize transverse motion, which would introduce unwanted 
bending stresses. Hence, a compromise will have to be made. 
It may be found necessary to use smaller models and a faster 
camera.

Other points worthy of consideration arei
1. Thickness coupling. The low modulus materials 

have low natural frequencies. It will be neces­
sary to keep the frequencies of forcing functions 
low and the disk thin in comparison to its radius 
to avoid the coupling effects of the thickness.

2. Increasing shutter speed. The effective speed of 
the camera can be increased by a flashing or modu­
lated light source, synchronized with the framing 
of the camera. This, however, would not alter the 
time between frames, but would stop the motion 
better than the framing of the camera alone.
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3. Eccentricity and balancing. The disk must be bal- 

anced within close tolerances, so that the condi­
tions of axially symmetric loading are met.

4. Test of methods. It would be wise to verify the 
accuracy of the methods used by first determining 
the stresses in a disk rotating with a constant 
velocity, since this solution has been verified 
by other means.

With the techniques thus verified, they may be ex­
tended to numerous complex applications, such as examining 
the response of rotating members with?

1. eccentric shafts
2. flexible hubs
3. discontinuities
4. peripheral excitation
5. jerk or acceleration gradients
6. forcing frequency near a natural frequency
7. shock loaded peripheral gear teeth



VI SUMMARY

In the foregoing chapters, an analysis has been made 
of the in-plane vibrations of a uniform disk with a concen­
tric hole. Finite Hankel transforms have been used to 
obtain a series solution of the approximate equations of 
motion for the radial and tangential displacements, derived 
from plane stress theory. It was concluded that finite 
transforms could not be applied to coupled equations. For­
tunately, it was also determined that the coupling terms, 
such as the coriolis acceleration terms, could be omitted, 
as their effect on the over-all stresses and displacements 
was negligible. General solutions were obtained in terms 
of superposition integrals containing general functions for 
the shaft inputs, so that any integrable function could be 
chosen.

To facilitate numerical solutions of the series ex­
pressions for the stresses and displacements, three simple 
input functions were selected and the superposition in­
tegrals evaluated. Also, the first five natural frequencies 
for each mode of vibration were determined numerically, so 
that the first five terms of each series solution could be 
evaluated. Should the plane stress theory give inadequate 
results, a correction factor may be applied to the natural 
frequencies, such as the one proposed by Mosely.[7]
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Useful empirical relations were discovered, relating 
the natural frequencies to the geometry of the disk by a 
linear logarithmic equation. A linear relation was also 
found between the nodes of vibration and the geometry of the 
disk. These relations were found to be highly accurate and 
should prove valuable in design work. The results should 
provide sufficient information for the determination of 
numerical solutions, which can be used to verify the ex­
perimental data.

Two-dimensionless parameters were introduced, making 
possible the generalization of experimental results to ro­
tating disks of any elastic material.
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TABLE II
EIGENVALUES AND NODES FOR THE TORSIONAL MODES OF FREE 

VIBRATION OF A UNIFORM ANNULAR DISK.

Diam; Mode Eif;en- Nodes Diam. Mode Eî >en- Nodes
Ratio valLues Ratio valLues
b
a m I T ”a m f

2.0 1 .9869
2 4.5891 1.6918
3 7.8545 1.4020

1.8036
3.0 1 .3627

2 2.2973 2.4051
3 3.8940 1.8176

2.6287
4 5.4763 1.5781

2.1240
2.7280

4.0 1 .1916
2 1.5419 3.1275
3 2.6038 2.2349

3.4497
4 3.6563 1.8719

2.7355
3.5976

5.0 1 .1194
2 1.1653 3.8555
3 1.9598 2.6566

4.1732
4 2.7472 2.1684

3.3196
4.4674

6 1 .08147
2 .9388 4.5879
3 1.5738 3.0825

5.0977
4 2.2022 2.4678

3.9058
5.3374

5 2.8250 2.1353
3.2549
4.3701
5.5025

7.0 1 .05959
2 .7877 5.3213
3 1.3159 3,5122

5.9234
4 1.8395 2.7695

4.4921
6.2065

5 2.3720 2.3594
3.6938
5.0220
6.3601

8.0 1 .04514
2 .6790 6.0586
3 1.1316 3.9453

6.7512
4 1.5803 . 3.0733

5.0798
7.0754

5 2.0449 2.5853
4.1341
5.6758
7.2171

9.0 1 .03577
2 .5972 6.7965
3 .9931 4.3805

7.5790
4 1.3850 3.3809

5.6716
7.9490

5 1.7859 2.8250
4.5993
6.3647
8.1355



TABLE II (CONTINUED)

Diam. Mode Eigen- Nodes Diam. Mode Eigen- Nodes
Ratio values Ratio values

b b /Q
a m P m a m rm

10.0 1 .02873 13.0 1 .01694
2 .5333 7.5360 2 .4044 9.7589
3 .8851 4.8175 3 .6688 6,1404

8.4070 10.8952
4 1.2338 3.6886 4 .9297 4.6249

6.2616 8.0423
8.8189 11.4374

5 1.5887 3.0619 5 1.1881 3.7976
5.0580 6.4696
7.0426 9.1253
9.0440 11.7842

11.0 1 .02381 14.0 1 .01475
2 .4819 8.2769 2 .3744 10.5009
3 .7988 5.2578 3 .6188 6.5824

9.2368 11.7220
4 1.1122 3.9996 4 .8594 4.9400

6.8545 8.6377
9.6919 12.3106

5 1.4244 3.3120 5 1.1003 4.0335
5.5391 6.9197
7.7534 9.7871
9.9756 12.6560

12.0 1 .02006 15.0 1 .01288
2 .4397 9.0712 2 .3488 11.2378
3 ..7281 5.6968 3 .5756 7.0269

10.0631 12.5516
4 1.0125 4.3121 4 .7991 5.2557

7.4490 9.2337
10.5664 13.1844

5 1.3023 3.5395 5 1.0203 4.2854
5.9757 7.3983
8.3978 10.4913
10,8164 13.5830



TABLE III
EIGENVALUES AND NODES FOR THE EXTENSIONAL MODES OF FREE 

VIBRATION OF A UNIFORM ANNULAR DISK.
POISSON®S RATIO;V =0.3

Diam. Mode Eigen- Nodes Diam. Mode Eigen- Nodes
Ratio values Ratio values
b
a n A, b

a n A,
2.0 1 1.5920

2 4.7292 1.6711
3 7.9059 1.3992

1.7989
3.0 1 .8314

2 2.3898 2.3488
3 3.9493 1.8059

2.6056
4 5.4404 1.5820

2.1614
2.7475

4.0 1 .5733
2 1.6101 3.0332
3 2.6649 2.2149

3.4110
4 3.6877 1.8643

2.7208
3.5750

5.0 1 .4408
2 1.2191 3.7227
3 1.9926 2.6285

4.2181
4 2.7709 2.1582

3.2997
4.4381

6.0 1 .3596
2 .9831 4.4170
3 1.6004 3.0464

5.0274
4 2.2213 2.4551

3.8804
5.2993

5 2.8461 2.1270
3.2378
4.3438
5.4561

7.0 1 .3041
2 .8253 5.1124
3 1.3391 3.4665

5.8362
4 1.8556 2.7534

4.4614
6.1608

5 2.3711 2.3600
3.6949
5.0246
6.3535

8.0 1 .2639
2 .7117 5.8122
3 1.1516 3.8909

6.6460
4 1.5951 3.0323

5.0412
7.0187

5 2.0471 2.5832
4.1307
5.6706
7.2072

9.0 1 .2330
2 .6261 6.5129
3 1.0110 4.3172

7.4591
4 1.3978 3.3578

5.6278
7.8842

5 1.7882 2.8227
4.5950
6.3588
8.1410



TABLE III (CONTINUED)

Diam. Mode Eigen- Nodes Diam. Mode Eigen- Nodes
Ratio values Ratio values

b
a n A, b

a n

10.0 1 .2088
2 .5593 7.2139
3 .9012 4.7463

8.2721
4 1.2451 3.6631

6.2124
8.7472

5 1.5854 3.0663
5.0668
7.0562
9.0550

11.0 1 .1893
2 .5054 7.9180
3 .8133 5.1768

9.0845
4 1.1228 3.9692

6.7974
9.6079

5 1.4339 3.2959
5.5083
7.7085
9.9204

12.0 1 .1733
2 .4613 8.6208
3 .7411 5.6097

9.8999
4 1.0224 4.2780

7.3846
10.4710

5 1.3061 3.5319
5.9618
8.3777
10.7954

13.0 1 .1596
2 .4242 9.3276
3 .6809 6.0432

10.7127
4 .9385 4.5892

7.9746
11.3369

5 1.2018 3.7639
6.4052
9.0310
11.6558

14.0 1 .1479
2 .3929 10.0286
3 .6301 6.4755

11.5221
4 .8678 4.0189

8.5618
12.1989

5 1.1054 4.0189
6.8918
9.7465
12.6037

15.0 1 .1381
2 .3660 10.7310
3 .5860 6.9141

12.3413
4 .8068 5.2126

9.1520
13.0640

5 1.0311 4.2488
7.3292
10.3895
13.4470
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68

EIGENVALUES AND NODES FOR THE EXTENSIONAL MODES OF FREE ■ 
VIBRATION OF A UNIFORM ANNULAR DISK.

POISSON'S RATIOsV =0.5

Diam.
Ratio

Mode Eigen­
values

Nodes Diam.
Ratio

Mode Eigen­
values

Nodes
“T "
"a n A* b

a n A A
2.0 1 1.6553

2 4.7503 1.6680
3 7.9637 1.3965

1.7931
3.0 1 .8725

2 2.4035 2.3411
3 3.9575 1.8043

2.6021
4 5.4455 1.5816

2.1610
2.7416

4.0 1 .6037
2 1.6203 3.0200
3 2.6512 2.2120

3.4052
4 3.6896 1.8637

2.7196
3.5733

5.0 1 .4651
2 1.2269 3.7043
3 1.9973 2.6242

4.2103
4 2.7779 2.1551

3.2939
4.4272

6.0 1 .3795
2 . .9898 4.3926
3 1.6047 3.0402

5.0166
4 2.2255 2.4521

3.8745
5.2906

5 2.7995 2.1460
3.2759
4.4004
5.5391

7.0 1 .3213
2 .8308 5.0837
3 1.3426 3.4598

5.8231
4 1.8588 2.7545

4.4552
6.1514

5 2.3590 2.3670
3.7090
5.0448
6.3716

8.0 1 ,2787
2 .7167 5.7763
3 1.1547 3.8827

6.6323
4 1.5970 3.0508

5.0361
7.0115

5 2.0518 2.5794
4.1232
5.6604
7.2010

9.0 1 .2463
2 .6308 6.4695
3 1.0137 4.3078

7.4411
4 1.3998 3.3543

5.6212
7.8744

5 1.7835 2.8273
4.6044
6.3729
8.1652



TABLE IV (CONTINUED)

Diam. Mode Elf>en- Nodes Diam. Mode Eigen- NodesRatio valLues Ratio valuesb
a n b

a n

10.0 1 .2209
2 .5632 7.1682
3 .9036 4.7362

8.2528
4 1.2470 3.6587

6.2036
8.7336

5 1.5885 3.0624
5.0584
7.0444
9.0199

11.0 1 .2002
2 .5089 7.8677
3 .8157 5.1641

9.0606
4 1.1240 3.9663

6.7910
9.5982

5 1.4350 3.2939
5.5044
7.7031
9.9043

12.0 1 .1830
2 .4644 8.5665
3 .7434 5.5944

9.8706
4 1.0236 4.2740

7.3771
10.4610

5 1.3030 3.5384
5.9739
8.3951
10.8161

13.0 1 .1686
2 .4273 9.2632
3 .6829 6.0280

10.6840
4 .9400 4.5827

7.9626
11.3199

5 1.1905 3.7914
6.4582
9.1086
11.7529

14.0 1 .1565
2 .1357 9.9626
3 .6317 6.4609

11.4851
4 .8689 4.8940

8.5510
12.1834

5 1.1054 4.0189
6.8918
9.7465
12.6037

15.0 1 . .1459
2 .3683 10.6657
3 .5876 6.8974

12.3102
4 .8080 5.2062

9.1397
13.0466

5 1.0268 4.2631
7.3562
10.4305
13.5048
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TABLE V
SUPERPOSITION INTEGRAL FORMULAS

rt
a> Jsin n ( t ~ T ) d r = ±  [cosn(t-T)fo =-L(i-^os^t)

b) JIt sin (t~r)dT= n (t-r)fn T tor r\(t -r)] = ±̂(n t-sin t)
c) Ir%i» »(t~rUr=̂[(r<xrx-z)cos «(t-r)-hznrsin *(t-rTo rv̂«- j£>

2 + 2-cosnt)

J'st'h rnTsin r\(t,~7 )dT—-L __ f/h [Mft g;'n [wT— n(t~T$I
W\— r\ m + n

m s/n — n s/Vi

0 jfrcv, f ,v »(t~rtdr= jf( -  si ^ r - n(t-r)]

J_fcosC^'i'+n(t-~T)], COS t m ' T -  

(m-n)3- (tr\+n) — ;
/ m  s/>i *fc— ns/Vi *nt\i m x4-w *-
( m a— h 3- ^

f)
i
oos/nTsin n(t-r)dT= — ... cosC*oT+n[t-r)] , cosC^T-n(t-T)]

—  y\̂

rt
g) / S/nVfsm n[t-r)Jir=

-'O

m-//]
'cos nt — cos *nt

K'n'1" — )
COf cos[> nT+*Ct-r)J _ OOS&*v>r-nffc-rS

K\ — K ) 4(Zr*+r\)
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ABSTRACT

The object of this thesis was to lay a foundation 
for a comprehensive study, both theoretical and experimental, 
of the transient response of rotating members.

An analysis was made of the stresses and in-plane 
displacements of a uniform annular rotating disk, clamped to 
a rigid shaft and subjected to transient shaft inputs. The 
solution was obtained from two-dimensional theory of 
elasticity by the method of generalized integral transforms 
in terms of superposition integrals, so that any integrable 
function could be chosen for the shaft inputs. Three in­
puts were selected and the integrals evaluated.

The first five natural frequencies and nodes were de­
termined numerically for the free torsional and extensional 
modes of in-plane vibration. It was concluded that the 
effect of rotation on the natural frequencies was negligible. 
The numerical data is sufficient for numerical determination 
of stresses and displacements for comparison with experimen­
tal results.

A survey is made of some techniques of dynamic photo­
elasticity used in experimental investigation of transient 
phenomena. Two new techniques are proposed, one combining 
normal and oblique incidence polariscopes into one instrument, 
the other combining an interferometer and polariscope, so



that simultaneous photographs of two independent optical 
interference patterns may be obtained as a means of elimina­
ting the need for the exact reproduction of transient re­
sponse phenomena.

A discussion is presented of the problem of dynamic 
similarity in dynamic problems. The equations of motion 
are non-dimensionalized and two dimensionless parameters 
are introduced, which make it possible to generalize the 
experimental results more fully and apply them to rotating 
members constructed of any material.
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