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abstract

Network Specializations, Symmetries, and Spectral Properties

Dallas C. Smith
Department of Mathematics, BYU

Doctor of Philosophy

In this dissertation, we introduce three techniques for network sciences. The first of these
techniques is a series of new models for describing network growth. These models, called net-
work specialization models, are built with the idea that networks grow by specializing the function
of subnetworks. Using these models we create theoretical networks which exhibit well-known
properties of real networks. We also demonstrate how the spectral properties are preserved as the
models grow. The second technique we describe is a method for decomposing networks that con-
tain automorphisms in a way that preserves the spectrum of the original graph. This method for
graph (or equivalently matrix) decomposition is called an equitable decomposition. Previously this
method could only be used for particular classes of automorphisms, but in this dissertation we have
extended this theory to work for every automorphism. Further we explain a number of applications
which use equitable decompositions. The third technique we describe is a generalization of net-
work symmetry, called latent symmetry. We give numerous examples of networks which contain
latent symmetries and also prove some properties about them.

Keywords: Networks Growth Model, Specialization, Equitable Partition, Automorphism, Network
Symmetry, Isospectral Network Reduction
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Chapter 1. Introduction

Today networks can be found in just about every field of study, from food webs to the Internet,

from social sciences to statistical physics, from facebook to bibliographies. Though graph theory

has been around since Leonhard Euler solved the Seven Bridges of Königsburg problem in 1736

[1], network theory has only recently become a field of study in its own right. This is partly due to

the large amount of network data that has become available via the Internet and social networks.

When scientists analyzed this new data, they found a number of common properties which were

very different from the properties expected in a randomly generated graph (for instance the Erdös-

Rényi graph [2]). These observations sparked an interest in understanding how and why networks

form and function.

Early on, many network scientists recognized that spectral properties were useful in analyzing

networks. There are a number of ways that spectral properties of a network can be used to ana-

lyze the structure of a network. Spectral properties are quantities related to the eigenvalues and

eigenvectors of a matrix associated with the network. An example of the application of a spectral

property is a centrality measure called eigenvector centrality. Eigenvector centrality ranks vertices

at a level of higher importance depending on the level of importance of their neighbors. Eigenvec-

tor centrality is calculated by ranking vertices according to their corresponding entry in the leading

eigenvector associated with the network’s adjacency matrix. Eigenvector centrality is widely used.

For example, Google uses a variation of eigenvector centrality, called ‘Page-rank centrality’, when

ranking web-pages in a World Wide Web search.

Another example of analyzing a graph via its spectral properties is community detection. De-

termining which members of a network are most tightly connected and/or alike is a significant and

often difficult problem to solve. There are multiple methods used in community detection which

utilize spectral properties. For instance, the most basic algorithm for detecting communities relies

on looking at the eigenvector of the graph Lapacian matrix which is associated with the smallest
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non-zero eigenvalue [3]. It is remarkable that we can use these spectra to find potential communi-

ties or natural clusters in a network.

A third example of using spectral properties of a graph to analyze a network is stability analysis

of a dynamical network. This example is discussed in section 2.6, and explains that the spectral

radius of a network (the largest magnitude of all the eigenvalues) can be used to determine whether

particular dynamics on a network are stable.

This dissertation is a collection of three tools for analyzing various types of networks and

graphs. The common thread which weaves each of these topics together is that each is concerned

with the graph’s spectral properties. In Chapter 2, we develop a new model for network growth

which adds eigenvalues to the graph’s spectrum in a controlled way as the network grows. In

Chapter 3, we develop a technique to decompose a network which contains a symmetry in a way

which preserves the eigenvalues of the network. Finally, in Chapter 4, we develop a generalization

of symmetry which is related to automorphisms in an isospectral reduction of the graph. An

isospectral graph reduction is a smaller graph with essentially the same spectrum (see Section 2.5).

One of the most important features observed in real networks is that, as a network’s topology

evolves so does the network’s ability to perform various complex tasks. To explain this, it has

also been observed that as a network grows certain subnetworks begin to specialize the function(s)

they perform. In Chapter 2, we use this notion of specialization to design a new model of network

expansion. This new model is significant as it has the property that as a network is grown using

this specialization method its topology becomes increasingly sparse, modular, and hierarchical,

each of which are important properties observed in real networks. The procedure outlined is also

highly flexible in that a network can be specialized over any subset of its elements. This flexi-

bility allows those studying specific networks the ability to search for mechanisms that describe

their growth. For example, we find that by randomly selecting these elements a network’s topol-

ogy acquires some of the most well-known properties of real networks including the small-world

property, disassortativity, and a right-skewed degree distribution. Beyond this, we show how this
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model can be used to generate networks with real-world like clustering coefficients and power-law

degree distributions, respectively.

In addition to creating graphs with many real-world properties, this method of specialization

also preserves basic spectral properties of a network. In Section 2.6, we show that the network

maintains certain dynamic properties, specifically stability, as its structure evolves, under mild

conditions, which links this model of specialization to the robustness of network function.

The theory of equitable decompositions introduced in [4] shows that if a graph (network) has

a particular type of symmetry, i.e., a uniform or basic automorphism φ, it is possible to use φ to

decompose a matrix M appropriately associated with the graph. The result is a number of strictly

smaller matrices whose collective eigenvalues are the same as the eigenvalues of the original matrix

M. It is significant that this method is based on network symmetries as having many symmetries is

a hallmark of real networks [5]. In Chapter 3, we extend the theory to include all automorphisms,

not just those that are uniform and basic. We also show that not only can a matrix M be decomposed

but that the eigenvectors of M can also be equitably decomposed. After proving in Sections 3.3,

3.4 and 3.5 that this can always be done, we go through a number of applications of equitable

decompositions. For instance, we show that under mild conditions, if a matrix M is equitably

decomposed the resulting divisor matrix, which is the divisor matrix of the associated equitable

partition, will have the same spectral radius as the original matrix M. Thus this process could

be used to reduce the complexity in finding a matrix’s spectral radius. We also describe how an

equitable decomposition affects the Gershgorin region Γ(M) of a matrix M, which can be used to

localize the eigenvalues of M. We show that the Gershgorin region of an equitable decomposition

of M is contained in the Gershgorin region Γ(M) of the original matrix. We demonstrate on a

real-world network that by a sequence of equitable decompositions it is possible to significantly

reduce the size of a matrix’ Gershgorin region. Thus, given a graph with a symmetry, there is a

process which could improve simple estimates for a network’s eigenvalues and spectral radius. At

the end of Chapter 3 we show how graphs can be decomposed over separable automorphisms to

give a more visual interpretation of an equitable decomposition of a graph.
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We know symmetries are ubiquitous in real networks and often characterize network features

and functions. The last topic explored in this dissertation in Chapter 4 is a new notion of symme-

try. Here we present a generalization of network symmetry called latent symmetry, which is an

extension of the standard notion of symmetry. Latent symmetries are defined in terms of standard

symmetries in a reduced version of the network. One unique aspect of latent symmetries is that

each one is associated with a size, which provides a way of discussing symmetries at multiple

scales in a network. We demonstrate several examples of networks (graphs) which contain latent

symmetry, including a number of real networks. Further we use numerical experiments to show

that latent symmetries are found more frequently in graphs which were built using preferential at-

tachment, a standard model of network growth, when compared to non-network like (Erdős-Rényi)

graphs. We also prove that if vertices in a network are latently symmetric, then they must have the

same eigenvector centrality, similar to vertices which are symmetric in the standard sense. This

suggests that the latent symmetries present in real-networks may serve the same structural and

functional purpose standard symmetries do in these networks. We conclude from these facts and

observations that latent symmetries are present in real networks and provide useful information

about the network. Because latent symmetries can appear at multiple scales, information derived

from latent symmetries is potentially more useful than information derived from only standard

symmetries. Finally, at the end of this chapter, we prove that latently symmetric vertices are also

co-spectral.

Throughout this dissertation, we will use the terms “network” and “graph” interchangeably, as

a graph is the only model we use in each chapter to study the structure of a network.

1.1 Notation

In this section we will describe some basic concepts connected to networks and graph theory. We

will also establish the notation which will be used through the dissertation.

The standard method used to describe the topology of a network is a graph. Here, a graph

G = (V, E, ω) is composed of a vertex set V , an edge set E, and a function ω used to weight the
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edges E of the graph. The vertex set V represents the elements of the network, while the edges

E represent the links or interactions between these network elements. The vertices of a graph are

typically represented by points in the plane and an edge by a line or curve in the plane that connects

two vertices.

In some networks, it is useful to define a direction to each interaction. This is the case in which

an interaction between two network elements influences one but not the other. For instance, in a

citation network, in which network elements are papers and edges represent whether one paper

cites another, papers can only cite papers that have already been written. Thus each edge has a

clearly defined direction. We model this type of network as a directed graph in which each edge

is directed from one network element to another. If this does not apply, the edges are not directed

and we have an undirected graph. The degree of a vertex is the number of edges which connect to

the vertex. For a directed graph, we use the terms in-degree and out-degree, to refer to the number

of edges pointing into the vertex and out of the vertex, respectively.

The weights of the edges given by ω measure the strength of these interactions. Some exam-

ples of weighted networks include: social networks where weights corresponds to the frequency

of interaction between actors, food web networks where weights measure energy flow, or traffic

networks where weights measure how often roads are used [6]. Throughout this work we will

mostly consider networks with real-valued edge weights because they represent the majority of

weighted networks considered in practice. Though it is worth mentioning that much of the theory

we present throughout the chapter is valid for more general edge weights, e.g. complex-valued or

more complicated weights (see for instance [7]).

Let G = (V, E, ω) be a weighted graph on n vertices representing a network. Its weighted

adjacency matrix, M = M(G), is an n × n matrix whose entries are given by

Mi j =


ω(ei, j) , 0 if ei, j ∈ E

0 otherwise
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where ei, j is the edge from vertex i to vertex j. An unweighted graph can be considered to be a

special case of a weighted graph where all edge weights are equal to 1. Moreover, the weighted

adjacency matrix of an undirected graph is symmetric since each edge can be thought of as a

directed edge oriented in both directions. Figure 4.1 gives an example of an unweighted, undirected

graph with its corresponding adjacency matrix. In practice there are a number of matrices that are

often associated with a given graph G.

Another common matrix associated with a graph G is the Laplacian matrix L = L(G). To define

the Laplacian matrix of a simple graph G, i.e., an unweighted undirected graph without loops, let

DG = diag[deg(1), . . . , deg(n)] denote the degree matrix of G, where deg(i) denotes the degree of

vertex i. Then the Laplacian matrix L(G) is the matrix L(G) = DG − M(G).

For an n × n matrix M = M(G) associated with a graph G we let σ(M) denote the eigenvalues

of M. For us σ(M) is a multiset with each eigenvalue in σ(M) listed according to its multiplicity.

It is also worth noting that there is a one-to-one relation between weighted graphs (networks)

and their corresponding weighted adjacency matrices M ∈ Rn×n meaning that there is no more

information presented in one than the other. Often it is more convenient to work with matrices

instead of graphs, though both are useful ways to represent network structure. Graphs are typically

used for network visualization while matrices are better suited for network analysis [6]. Through-

out this work we will use graphs and matrices without ambiguity to refer to the “graph of the

network” and the “matrix associated with the network.”

Chapter 2. Specialization Models for Network

Growth

2.1 Overview and Background

Networks studied in the biological, social, and technological sciences perform various tasks, which

are determined by both the network’s topology as well as the network’s dynamics. In the biologi-

cal setting gene regulatory and metabolic networks allow cells to organize into tissues, and tissues
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into organs whose dynamics are essential to the network’s function [8, 9], e.g. a beating heart

in a circulatory network. Neuronal networks are responsible for complicated processes related to

cognition and memory, which are based on the network’s structure of connections as well as the

electrical dynamics of the network’s neurons [10]. Social networks such as Facebook, Twitter, the

interactions of social insects [11, 12], and professional sports teams [13] function as a collection of

overlapping communities or a single unified whole based on the underlying topology and hierar-

chies present within the network’s social interactions. Technological networks such as the Internet

together with the World Wide Web allow access to information based on the topology of network

links and the network’s dynamic ability to route traffic.

In the study of networks a network’s topology refers to the network’s structure of interactions

while a network’s dynamics is the pattern of behavior exhibited by the network’s elements [10]. It

is worth emphasizing that real-world networks are not only dynamic in terms of the behavior of

their elements but also in terms of their topology, both of which affect the network’s function. For

example, the World Wide Web has an ever changing structure of interactions as web pages and the

hyperlinks connecting these pages are updated, added, and deleted (see [14] for a review of the

evolving topology of networks).

These models are devised to create networks that exhibit some of the most widely observed

features found in real networks. This includes (i) having a degree distribution that is right-skewed

and monotonically decreasing beyond a certain point, e.g. power-law distributions, (ii) having a

disassortative neighbor property where vertices with high (low) degree have neighbors with low

(high) degree, (iii) having a high clustering coefficient indicating the presence of many triangles

within the network, and (iv) having the small-world property, meaning that the average distance

between any two network elements is logarithmic in the size of the network (see [6] for more

details on these properties).

Aside from these structural features, one of the hallmarks of a real network is that, as its

topology evolves, so does its ability to perform complex tasks. This happens, for instance, in

neural networks, which become more modular in structure as individual parts of the brain become
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increasingly specialized in function [15]. Similarly, gene regulatory networks can specialize the

activity of existing genes to create new patterns of gene behavior [16]. In technological networks

such as the Internet, this differentiation of function is also observed and is thought to be driven by

the need to handle and more efficiently process an increasing amount of information.

In this section we propose a very different class of models than those described above. These

models are built on the notion of specialization. We refer to these as specialization models of

network growth. These models are based on the fundamental idea that as a network specializes

the function of one or more of its components, i.e. a subnetwork(s) that performs a specific task,

the network first creates a number of copies of this component. These copies are attached to the

network in ways that reflect the original connections the component had within the network only

sparser. The new copies “specialize” the function of the original component in that they carry out

only those functions requiring these specific connections (cf. Figure 2.1).

The components which are specialized in this growth process form motifs, i.e. statistically sig-

nificant structures in which particular network functions are carried out. As copies of these motifs

are placed throughout the network via the process of specialization the result is an increase in the

network’s modularity [17]. Moreover, repeated application of this process results in a hierarchi-

cal topology in which this modular structure appear at multiple scales. Because new components

are far less connected to the network than the original components the result is an increasingly

sparse network topology. Hence the network acquires a more modular [18], hierarchical [19, 20],

and sparse topology [21, 22], each of which is a distinguishing feature of real networks when

compared, for instance, to random graphs (see [14] Section 6.3.2.1).

Importantly, our model of network growth is extremely flexible in that a network can be

uniquely specialized over any subset B of its elements. We refer to any such subset B as a net-

work base. Since B can be any subset of a network’s elements there is a significant number of

ways in which a network can be specialized. This is why we refer to multiple network special-

ization models. An obvious application is, given a particular network, to find a base over which

this network can be specialized that evolves the network’s topology in a way that models its ob-
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served growth. Finding a rule τ that generates this base is a natural objective of a network scientist

who wishes to use this model to investigate their particular network(s) of interests. The reason is

that finding such a rule suggests a mechanism for the particular network’s growth that can then be

tested against the growth of the actual network.

A particularly simple rule we consider in section 2.3 is the rule r = rp for p ∈ (0, 1) that

uniformly selects a random network base consisting of p percent of the network’s elements. Under

this specialization rule we find that an initial network evolves under a sequence of specializations

into a network that has (i) a right-skewed degree distribution that is monotonically decreasing, (ii)

a disassortative degree property, and (iii) the small-world property. Hence, this random variant of

the specialization model appears to capture a number of the well-know properties observed in real

networks (see Example 2.5). To our knowledge this is the only such class of models to capture

these properties along with creating an increasingly sparse, modular, and hierarchical network

topology.

Since one of the main points of this chapter is that different specialization rules lead to different

growth models we consider two other rules in Section 2.3. The first is the rule that selects p ∈ (0, 1)

percent of those vertices that are not part of a triangle. The result of this choice is a network whose

clustering coefficient is similar to many real-world networks in that it remains relatively large as

the network evolves under this rule (see example 2.6). The second additional rule chooses the

top and bottom twenty-five percent of the network’s vertices that have the largest in-degree and a

random fraction of the remaining vertices. The result of repeatedly using this specialization rule is

a network with a power-law like degree distribution, i.e. a scale-free network, (see example 2.7).

Additionally, we show how specialization rules can be used to compare the topology of differ-

ent networks. Specifically, two graphs G and H are considered to be similar to each other with

respect to a rule τ if they specialize to the same graph under τ. This notion of similarity, which

we refer to as specialization equivalence, can be used to partition any set of networks into those

that are similar, i.e. are specialization equivalent, with respect to a given rule τ and those that are

not (see Section 2.4, Theorem 2.8). One reason for designing such a rule τ is that typically it is
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not obvious that two different graphs are in some sense equivalent. That is, two networks may

be similar but until both are specialized with respect to τ this may be difficult to see. Here we

show that by choosing an appropriate rule τ one can discover this similarity (see example 2.9). Of

course, it is important that this rule be designed by the particular biologist, chemist, physicist, etc.

to have some significance with respect to the nature of the networks under consideration.

Beyond the structural properties of specialized networks we also consider how specialization

affects the spectral properties of a network. This is done by using the theory of isospectral network

transformations [23, 7], which describes how certain changes in a network’s structure affect the

network’s spectrum, i.e. the eigenvalues associated with the network’s weighted or unweighted

adjacency matrix (see Section 2.5). We show that if a network is specialized then the eigenvalues

of the resulting network are those of the original network together with the eigenvalues of the spe-

cialized components (see Section 2.5, Theorem 2.10). Additionally, using the theory of isospectral

transformations we show that the eigenvector centrality of the core vertices of a network remain

unchanged as the network is specialized (see Section 2.5, Theorem 2.15).

As a network’s dynamics can be related to the network’s spectrum we can in certain cases

determine how specialization of a network will affect the network’s dynamics. Specifically, we

consider stability, a property observed in a number of important systems including neural networks

[24, 25, 26, 27, 28], network epidemic models [29], and in the study of congestion in computer

networks [30].

In a stable dynamical network the network’s state always evolves to the same unique state

irrespective of the network’s initial state. We show that if a dynamical network is intrinsically

stable, which is a stronger form of this standard notion of stability (see definition 2.18 or [31] for

more details), then any specialized version of this network will also be intrinsically stable (see

Section 2.6, Theorem 2.21). Hence, network growth, at least via specialization will not destabilize

the network’s dynamics if the network has this stronger version of stability. This is important in

many real world applications since network growth can have a destabilizing effect on a network. A
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well-known example of this phenomena is cancer, which is the abnormal growth of cells that can

impair the function and ultimately lead to the failure of specific biological networks.

Although networks exhibit many other types of dynamics the reason we study stability is be-

cause of its simplicity and use it as a first step to understanding the interplay of network dynamics

and network growth. Importantly, our results suggest that if the network’s growth is due to spe-

cialization and the network has a strong form of dynamics, e.g. intrinsic stability, the network can

maintain this type of dynamics. The ability to maintain dynamics is an important feature found in

real networks that maintain a specific function as their structure evolves, e.g. the cellular network

of a beating heart.

The chapter is organized as follows. In Section 2.2 we introduce the specialization model and

the notion of specialization rules. In Section 2.3 we show that if a network is randomly specialized

over a fixed percentage of its elements the result is a network that has many properties found in

real-world networks including the small-world property, disassortativity, and right-skewed degree

distributions. We show that by using slightly more sophisticated rules we can also create networks

that have other properties such as real-world like clustering coefficients and power-law degree

distributions, respectively. In Section 2.4 we describe the notion of specialization equivalence

and how this notion can be used to compare the structure of different networks. In Section 2.5

we explain our main results regarding the spectral properties of network specializations, which

describe the effect that specialization has on the eigenvalues and eigenvectors associated with a

network. In Section 2.6 we use graph specializations to evolve the structure of a dynamical system

used to model network dynamics. We show that if such a network is intrinsically stable then any

specialized version of the network is also intrinsically stable. Finally Section 2.7 contains some

concluding remarks.

2.2 SpecializationModel of Network Growth

In this section we will model networks using the notation set forth in Section 1.1. In this section

edges E of a graph can either be directed or undirected, weighted or unweighted. Without loss
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Figure 2.1: This figure shows the effect of disambiguating the Wikipedia page on “Mercury” into
three distinct webpages, which are respectively Mercury the mythological figure, Mercury the
planet, and mercury the element.

in generality, we consider those graphs that have weighted directed edges. The reason is that

an undirected edge is equivalent to two directed edges pointing in opposite directions and any

unweighted edge can be weighted by giving the edge unit weight.

As mentioned in the introduction, one of the hallmarks of real networks is that as a network

evolves so does its ability to perform various tasks. It has been observed that to accomplish this a

network will often specialize the tasks performed by one or more of its components, i.e. subnet-

works. As motivation for our model of network growth we give the following example of network

specialization.

Example 2.1. (Wikipedia Disambiguation) The website Wikipedia is a collection of webpages

consisting of articles that are linked by topic. The website evolves as new articles are either added,

linked, or modified within the existing website. One of the ways articles are added, linked, or

modified is that some article within the website is disambiguated. That is, if an article’s content is

deemed to refer to a number of distinct topics then the article can be disambiguated by separating

the article into a number of new articles, each on a more specific or specialized topic than the

original.
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Wikipedia’s own page on disambiguation gives the example that the word “Mercury” can refer

to either Mercury the mythological figure, Mercury the planet, or mercury the element [32]. To

emphasize these differences the Wikipedia page on Mercury has since been disambiguated into

three pages on Mercury; one for each of these subcategories. Users arriving at the Wikipedia

“Mercury” page [33] are redirected to these pages (among a number of other related pages).

The result of this disambiguation is shown in Figure 2.1. In the original undifferentiated Mer-

cury page users arriving from other pages could presumably find links to other “mythology”,

“planet”, and “element” pages (see Figure 2.1, left). After the page was disambiguated users

were linked to the same pages but only those relevant to the particular “Mercury” page they had

chosen (see Figure 2.1, right). In terms of the topology of the network, this disambiguation results

in the creation of a number of new “Mercury” pages each of which is linked to a subset of pages

that were linked to the original “Mercury” page. Growth via disambiguation is a result of the new

“copies” of the original webpage.

However, what is important to the functionality of the new specialized network is that the way

in which these new copies are linked to the unaltered pages reflects the topology of the original

network. In our model the way in which we link these new components, which can be much more

complex than single vertices, is by separating out the paths and cycles on which these components

lie, in a way that mimics the original network structure.

Hence, to describe our different models of network specialization and their consequences we

first need to consider the paths and cycles of a graph. A path P in the graph G = (V, E, ω) is an

ordered sequence of distinct vertices P = v1, . . . , vm in V such that ei,i+1 ∈ E for i = 1, . . . ,m− 1. If

the vertices v1 and vm are the same then P is a cycle. If it is the case that a cycle contains a single

vertex then we call this cycle a loop.

Another fundamental concept that is needed is the notion of a strongly connected component.

A graph G = (V, E, ω) is strongly connected if for any pair of vertices vi, v j ∈ V there is a path

from vi to v j or G consists of a single vertex. A strongly connected component of a graph G is a

subgraph that is strongly connected and is maximal with respect to this property.
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vi
e0 S 1

e1 S 2
e2 . . . em−1 S m

em v j

Figure 2.2: A representation of a path of components is shown, consisting of the sequence
S 1, . . . , S m of components beginning at vertex vi ∈ B and ending at vertex v j ∈ B. From S k to
S k+1 there is a single directed edge ek+1. From vi to S 1 and from S m to v j there is also a single
directed edge.

Because we are concerned with evolving the topology of a network in ways that preserve, at

least locally, the network’s topology we will also need the notion of a graph restriction. For a

graph G = (V, E, ω) and a subset B ⊆ V we let G|B denote the restriction of the graph G to the

vertex set B, which is the subgraph of G on the vertex set B along with any edges of the graph G

between vertices in B. We let B̄ denote the complement of B, so that the restriction G|B̄ is the graph

restricted to those vertices not in B.

The key to specializing the structure of a graph is to look at the strongly connected components

of the restricted graph G|B̄. If S 1, . . . , S m denote these strongly connected components then we will

need to find paths or cycles of these components, which we refer to as component branches.

Definition 2.2. (Component Branches) For a graph G = (V, E, ω) and vertex set B ⊆ V let

S 1, . . . , S m be the strongly connected components of G|B̄. If there are edges e0, e1, . . . , em ∈ E and

vertices vi, v j ∈ B such that

(i) ek is an edge from a vertex in S k to a vertex in S k+1 for k = 1, . . . ,m − 1;

(ii) e0 is an edge from vi to a vertex in S 1; and

(iii) em is an edge from a vertex in S m to v j, then we call the ordered set

β = {vi, e0, S 1, e1, S 2, . . . , S m, em, v j}

a path of components in G with respect to B. If vi = v j then β is a cycle of components. We call the

collection BB(G) of these paths and cycles the component branches of G with respect to the base

set of vertices B.
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v1
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v4v5

v6v7
G

v1 v4

S 1
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Figure 2.3: The unweighted graph G = (V, E) is shown left. The components S 1 and S 2 of G
with respect to the vertex set B = {v1, v4} are shown right. These components are the subgraphs
S 1 = G|{v2,v3,v5} and S 2 = G|{v6,v7}, indicated by the dashed boxes, which are the strongly connected
components of the restricted graph G|B̄.

A representation of the path of components is shown in Figure 2.2. The sequence of compo-

nents S 1, . . . , S m in this definition can be empty in which case m = 0 and β is the path β = {vi, v j}

or loop if vi = v j. It is worth emphasizing that each branch β ∈ BB(G) corresponds to a subgraph

of G. Consequently, the edges of β inherit the weights they had in G if G is weighted. If G is

unweighted then its component branches are likewise unweighted.

Once a graph has been decomposed into its various branches we construct the specialized

version of the graph by merging these branches as follows.

Definition 2.3. (Graph Specialization) Suppose G = (V, E, ω) and B ⊆ V . Let SB(G) be the graph

which consists of the component branches BB(G) = {β1, . . . , β`} in which we merge, i.e. identify,

each vertex vi ∈ B in any branch β j with the same vertex vi in any other branch βk. We refer to the

graph SB(G) as the specialization of G over the base vertex set B.

A specialization of a graph G over a base vertex set B is a two step process. The first step is the

construction of the component branches. The second step is the merging of these components into

a single graph. We note that, in a component branch β ∈ BB(G) only the first and last vertices of β

belong to the base B. The specialized graph SB(G) is therefore the collection of branches BB(G) in

which we identify an endpoint of two branches if they are the same vertex. This is demonstrated

in the following example.
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Example 2.4. (Constructing Graph Specializations) Consider the unweighted graph G = (V, E)

shown in Figure 2.3 (left). For the base vertex set B = {v1, v4} the specialization SB(G) is con-

structed as follows.

Step 1: Construct the branch components of G with respect to B. The graph G|B̄ has the strongly

connected components S 1 = G|{v2,v3,v5} and S 2 = G|{v6,v7}, which are indicated in Figure 2.3 (right).

The set BB(G) of all paths and cycles of components beginning and ending at vertices in B consists

of the component branches

β1 = {v1, e12, S 1, e34, v4} β2 = {v4, e46, S 2, e71, v1}

β3 = {v1, e12, S 1, e56, S 2, e71, v1} β4 = {v1, e12, S 1, e57, S 2, e71, v1};

which are shown in Figure 2.4 (left).

Step 2: Merging the branch components. By merging each of the vertices v1 ∈ B in all branches

of BB(G) = {β1, β2, β3, β4} shown in Figure 2.4 (left) and doing the same for the vertex v4 ∈ B, the

result is the graph SB(G) shown in Figure 2.4 (right), which is the specialization of G over the base

vertex subset B.

To summarize, our model of network growth consists in evolving the topology of a given net-

work by selecting some base subset of the network’s elements and specializing the graph associ-

ated with the network over the corresponding vertices. We refer to this process as the specialization

model of network growth.

The idea is that in an information network, such as the World Wide Web, this model of spe-

cialization can model the differentiation and inclusion of new information (cf. Example 2.1). In

a biological model this can be used to describe various developmental processes, for instance, the

specialization of cells into tissue. In a social network this model can similarly be used to model
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Figure 2.4: The component branches BB(G) = {β1, β2, β3, β4} of the graph G = (V, E) from fig-
ure 2.3 over the base vertex set B = {v1, v4} are shown (left). The specialized graph SB(G) is
shown (right), which is made by merging each of the vertices v1 and v4 respectively in each of the
branches of BB(G). The edge labels and vertex labels are omitted, except for those vertices in B,
to emphasize which vertices are identified.

how new relationships are formed when, for example, an individual is introduced by someone to

their immediate group of friends.

It is also worth mentioning that a network specialization evolves the network’s topology by

maintaining the interactions between its base elements B and by differentiating the other network

functions into sequences of components. The result is a network with many more of these com-

ponents. These components are important for a number of reasons. The first is that they form

network motifs, which are statistically important subgraphs within the network that typically per-

form a specific network function [34]. Second, because there are very few connections between

these components the resulting network has a far more modular structure, which is a feature found

in many real networks (see [18] for a survey of modularity). Third, because of the number of

copies of the same component, the specialized graph has a certain amount of redundancy in its

topology, which is another feature observed in real networks [35, 36]. Last, specializations results

in sparser graphs, i.e. graphs in which the ratio of edges to vertices is relatively small, which is

again a characteristic found in real networks [21, 22].

Additionally, many networks exhibit hierarchical organization, in which network vertices di-

vide into groups or components that further subdivide into smaller groups of components, and so
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on over multiple scales. It has been observed that these components often come from the same

functional units, e.g. ecological niches in food webs, modules in biochemical networks including

protein interaction networks, metabolic networks or genetic regulatory networks or communities

in social networks [19, 20]. Because new components are created each time a graph is specialized

a network becomes increasingly hierarchial as this process of specialization is repeated.

2.3 Specialization Rules

As a significantly large number of bases are possible for any reasonably sized network a natural

question is, given a particular real-world network (or class of networks) can we find a base or

sequence of bases that can be used to model this network’s growth via specialization. Another way

of stating this is: is it possible to find a specialization rule that selects network base(s) that can be

used to specialize the network in a way that mimics its actual growth?

Here a specialization rule τ is a rule that selects for any graph G = (V, E, ω) a base vertex

subset Vτ(G) ⊆ V . For simplicity of notation, we let

τ(G) = SVτ(G)(G) and τk(G) = τ(τk−1(G)) for k > 0

denote the specialization of G with respect to τ and the kth specialization of G with respect to τ,

respectively. Each rule τ generates a different type of growth and as such can be thought of as

inducing a different specialization model of network growth.

The specialization τ(G) is unique if τ selects a unique base vertex subset of G. Not all rules

produce a unique outcome as τ can be a rule that selects vertices of G in some random way. Here

the first example of specialization uses a random specialization rule. We chose this because it

is a very simple rule which produces graphs which exhibit properties found in many real world

networks.

Example 2.5. (Random Specializations) For p ∈ (0, 1) let r = rp be the specialization rule that

uniformly selects a random network base consisting of p percent of the network’s elements rounded
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to the nearest whole number. To understand how this rule evolves the topology of a network we

start by considering its effect on a random undirected graph with ten vertices and fifteen undirected

edges. Specifically, we sequentially specialize a thousand such graphs G and analyze the statistics

of the first six iterates G, r(G), . . . , r6(G) in this process.

In Figure 2.5 (first row) we show a single realization of this process using the rule r = rp for

p = .9. The iterates that are shown beyond the initial graph G are the first, second, and sixth.

Below this the degree-distribution of each iterate is shown averaged over the thousand realizations

we generate. Moving from left to right these distributions become increasing monotonic and right-

skewed with each succesive specialization. This increase in skewness can be seen in Figure 2.5

(a) where the average, median, first and third quartiles of the graphs skewness is shown over each

iterate.

Similarly, for each iterate the average, median, first and third quartiles for the graph’s (b) size,

(d) density, (e) clustering coefficient, and ( f ) assortativity is shown. These suggest that under

iteration the graph’s size is exponentially increasing and its density is exponentially decreasing,

where density is ρ = m/2(n(n − 1)) for a graph with m edges and n vertices. In part (e) the

network’s clustering coefficient per iteration is plotted (blue) along with the clustering coefficient

of the corresponding configuration model (red). That is, the clustering coefficient we would expect

for a random graph with the same degree distribution. In both cases we note that the clustering

coefficients appear to be approaching zero.

In ( f ) the network’s assortativity is shown for each iterate. The network is disassortative at

each iterate but this dissassortativity has an interesting nonmonotonic behavior in which the dis-

sasortativity initially makes a large jump then eventually relaxes back into less negative values.

In (c) the mean-distance between any two vertices vs. the network’s size is shown for the

sequence of graphs in the top row. Each dot from left to right indicates the next iterate in this

sequence of specializations. In this particular plot, we display data for 12 iterations. This data is

well fit by the indicated line which has the form L(k) = logβ(ck), for some constants c > 0 and
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Figure 2.5: A realization of the specialization process using the rule r = r.9 is show in the first
row. In the second the average degree distribution over a thousand realization of this process per
iteration is shown. For these thousand realizations we plot the average, median, first and third
quartiles of the (a) degree distribution skewness vs. iteration, (b) graph size vs. iteration, (d)
density vs. iteration, (e) global clustering coefficient vs iteration of the network (blue) and of the
associated configuration model (red), (f) degree assortativity vs. iteration. In (c) the mean-distance
between any two vertices vs. number of vertices is shown for the sequence shown in the first row.
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β > 2. This logarithmic fit is on average quite good which indicates that as a graph evolves under

this rule, it has the small-world property.

Similar behavior to those shown in Figure 2.5 is observed for a wide range of p-values. It is

worth noting that a number of the properties shown in this figure mimic those found in real-world

networks. These include monotonic right-skewed degree distributions, disassortativity, and the

small-world property [6].

Example 2.6. (Specialization and Clustering Coefficients) Many real-world networks have a

large number of triangles. This property is often found in social networks, where we expect with a

high probability that two connected individuals have common contacts [6]. One of the properties

not found in the specializations of the previous example is the presence of many triangles, i.e. these

graphs do not have a high clustering coefficient. In fact, Figure 2.5 (e) suggests that as a network

evolves under the rule r the probability of finding a triangle in the network tends to zero.

What is observed in many real networks is that as the network evolves the networks clustering

coefficient is much higher than is expected for a randomly generated network with the same degree

distribution [6]. In this example we consider a rule ∆ = ∆p that chooses a base that causes a

network to maintain a large number of its triangles as the network is specialized. This rule is

similar to the rule rp with the important exception that ∆p only chooses from p percent of the

network’s vertices which are not part of a triangle. In our directed graphs, we define a triangle to

be any three vertices where each pair is connected by at least one directed edge.

The top row of Figure 2.6 shows a realization of the process of sequentially specializations a

graph using the rule ∆.9. For simplicity, the initial graphs we use are the undirected graphs on

fifteen vertices with fifteen edges that have a single triangle. As can be seen in the figure, since the

vertices of any triangle cannot be part of a base under the rule ∆ the motif of a triangle is copied

throughout the network in each successive iteration.

As in the previous example we randomly generate a thousand initial graphs and sequentially

evolve each using the rule ∆.9. The number of iterates we consider here is five. Figure 2.6 shows

the same statistic for these graphs and their iterations as it did in the previous example. Again we

21



2 4 6 8 10 12 14 16

1

10

100

1000

5 10 15 20

10

100

1000

104

10 20 30 40

1

10

100

1000

104

105

0 50 100 150 200 250

1

10

100

1000

104

105

106

G ∆(G) ∆2(G) ∆5(G)

initial network first iterate second iterate fifth iterate
Average Degree-Distribution per Iteration

0 1 2 3 4 5
0

1

2

3

4

5

6

7

0 1 2 3 4 5

20

50

100

200

500

0 500 1000 1500 2000
0

2

4

6

8

10

12

14

(a) Average Skewness (b) Average Network Size (c) Average Mean Distance

0 1 2 3 4 5

0.005

0.010

0.050

0.100

0 1 2 3 4 5
0.001

0.005

0.010

0.050

0.100

0.500

0 1 2 3 4 5
-0.4

-0.3

-0.2

-0.1

0.0

(d) Average Density (e) Average Clustering Coefficient ( f ) Average Assortativity

Figure 2.6: Similar to the previous figure a realization of the specialization process using the rule
∆ = ∆.9 is show in the first row. In the second the average degree distribution over a thousand
realization of this process per iteration is shown. For these thousand realizations we plot the
average, median, first and third quartiles of the (a) degree distribution skewness vs. iteration, (b)
graph size vs. iteration, (d) density vs. iteration, (e) global clustering coefficient vs iteration of
the network (blue) and of the associated configuration model (red), (f) degree assortativity vs.
iteration. In (c) the mean-distance between any two vertices vs. number of vertices is shown for
the sequence shown in the first row.
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see that this rule results in a sequence of networks whose degree-distributions becomes increas-

ingly right-skewed, whose average density decreases, and whose average assortativity is negative.

Moreover, the network has the small-world property as evidenced by the Figure 2.6 (c), which

shows the growth of the average mean distance between vertices in the sequence of graphs shown

in the top row of the figure.

However, the point of this example is that the network’s clustering coefficient is nearly constant

after a few iterates. This is shown in Figure 2.6 (c) in blue. In the same figure the clustering

coefficient of the associated configuration model is shown in red, which appears to tend to zero

with increasing iterates. Hence, by singling out the “triangle” as a motif that is preserved under the

rule ∆ our network maintains a high number of triangles as it is specialized, similar to many real

networks.

Example 2.7. (Specialization and Power-Law Degree Distributions) As a final example, we

chose a rule which is designed to generate networks whose degree distributions tend toward a

power-law. That this can be done is significant as many real world networks seem to exhibit this

behavior including the World Wide Web, actor networks, metabolic networks, citation networks,

etc. [37].

The specialization rule we consider is the rule Ξp,q,s which at each iterate i chooses vertices

with the highest p − 1 −
∑i−1

k=0 qi percent and lowest p − 1 +
∑i−1

k=0 qi percent in-degree from the

network, as well as a uniformly random s percent of the remaining vertices. The specific rule we

use is Ξ = Ξ.25,.09,.02. As before we sequentially apply this rule a thousand times to measure the

statistical properties of this process. The difference from the previous examples is that here we

start with the single undirected graph G shown in the upper left-hand corner of Figure 2.7. The

statistics derived from the first seven iterations in this procedure are shown in the same figure.

Similar to the rules r and ∆ we find that this rule creates networks that are increasingly sparse,

disassortative, have increasingly right-skewed degree distribution, as well as clustering coefficients

that tend towards a fixed constant. Somewhat surprisingly though, this rule does not lead to net-

works that have the small-world property as can be seen in Figure 2.7 (c). In this example there is
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Figure 2.7: As in the previous two figures a realization of the specialization process using the rule
Ξ is show in the first row. In the second the average degree distribution over a thousand realization
of this process per iteration is shown. For these thousand realizations we plot the average, median,
first and third quartiles of the (a) degree distribution skewness vs. iteration, (b) graph size vs.
iteration, (d) density vs. iteration, (e) global clustering coefficient vs iteration of the network
(blue) and of the associated configuration model (red), (f) degree assortativity vs. iteration. In
(c) the mean-distance between any two vertices vs. number of vertices is shown for the sequence
shown in the first row.
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also much less variance in our statistics. This is likely due to the fact that we start with the same

initial graph and at most two percent of the network’s vertices are chosen at random at any stage

to be part of the base.

The most striking feature and the point of this example is the particular type of degree distri-

bution these networks have. In the second row of Figure 2.7 the average degree-distributions of

the networks we generate using this rule together with initial graph G are shown on a log-log plot

with logarithmic binning. The shape of these distributions suggest that G may evolve under the

specialization rule Ξ into a scale-free network, at least on average.

In order to verify that we do indeed get a power-law distribution after some cut-off point, we

followed the procedure outlined in [38]. In this method one first finds the optimal degree xmin

beyond which the degree-distribution of a single specialized network is most power-law like. This

is done by finding the xmin which minimizes

D = max
x≥xmin

|S (x) − P(x)| (2.1)

where S (x) is the CDF of the data of our observations and S (x) the CDF for the power-law model

that best fits our data in the region x ≥ xmin. Before finding P(x) we calculate its power-law

exponent α given by

α = 1 + n

 n∑
i=1

ln
xi

xmin −
1
2

−1

.

Thus by minimizing D in equation (2.1), which is our goodness-of-fit value, we get both an xmin

and an α-value.

To determine how power-law like our distribution is we generate a large number of power-law

distributed synthetic data sets with the same xmin and α values. Following the method in [38] we

find a goodness of fit for each of these synthetic data sets. We let φ be the percent of these data sets

for which our goodness-of-fit D of our degree distribution is better (smaller) than the goodness-

of-fit of these synthetic data sets. According to the method described in [38] we have a power-law

like distribution if φ ≥ 0.1.
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Figure 2.8: The average, median, first and third quartiles of the (a) power-law exponents α and (b)
the φ-values is plotted per iterate for the process described in Example 2.7. In (c) the percent of
those specialization that have φ-values greater than 0.1 is shown per iterate.

In Figure 2.8 (a) and (b) the average, median, first and third quartiles of the power-law expo-

nents α and φ-values are shown per iterate for the thousand sequential specializations we consider

of the graph G under Ξ. The percent of those specializations for which φ ≥ 0.1 is shown in (c)

for each iterate. It is worth noting that before the fourth iterate none of the specialized networks

passed the test of having φ ≥ 0.1 but thereafter a large percentage did indicating that these net-

works evolved into scale-free networks. Moreover, the exponent α for these iterates is on average

between 3.0 and 3.5, which is typical of many real networks including citation networks, collabo-

ration networks, the Internet, and email networks [37].

2.4 Specialization Equivalence

As mentioned before Example 2.5 there are two types of specialization rules; those that select a

unique base vertex subset and those that do not. For instance, the random specialization rule in

Example 2.5 does not select unique bases. We refer to τ as a structural rule if it does select a

unique nonempty subset of vertices from any graph G. For instance, τ could be the rule that selects

all vertices with a certain number of neighbors, or eigenvector centrality, etc. (cf. example 2.9).

An important property of structural rules is that they give us a way of comparing the topologies

of two distinct networks. In particular, any such rule allows us to determine which networks are

similar and dissimilar with respect to the rule τ.
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To make this precise we say two graphs G = (V1, E1, ω1) and H = (V2, E2, ω2) are isomorphic

if there is a relabeling of the vertices of V1 such that G = H as weighted digraphs. If this is the

case, we write G ' H. The idea is that two graphs are similar with respect to a rule τ if they both

evolve to the same, i.e. isomorphic graph, under this rule. This allows us to partition all graphs,

and therefore networks, into classes of similar graphs with respect to a structural rule τ. This can

be stated as the following result.

Theorem 2.8. (Specialization Equivalence) Suppose τ is a structural rule. Then τ induces an

equivalence relation ∼ on the set of all weighted directed graphs where G ∼ H if τ(G) ' τ(H). If

this holds, we call G and H specialization equivalent with respect to τ.

Proof. For any G = (V, E, ω) and structural rule τ the set τ(V) ⊆ V is unique implying the graph

τ(G) = Sτ(V)(G) is unique up to a labeling of its vertices. Clearly, the relation of being specialization

equivalent with respect to τ is reflexive and symmetric. Also, if τ(G) ' τ(H) and τ(H) ' τ(K)

then there is a relabeling of the vertices of τ(G) such that τ(G) = τ(H) and of τ(K) such that

τ(K) = τ(H). Hence, τ(G) = τ(K) under some relabeling of the vertices of these graphs implying

τ(G) ' τ(K). This completes the proof. �

Theorem 2.8 states that every structural rule τ can be used to partition the set of graphs we con-

sider, and by association all networks, into subsets. These subsets, or more formally equivalence

classes, are those graphs that share a common topology with respect to τ. By common topology we

mean that graphs in the same class have the same set of component branches and therefore evolve

into the same graph under τ.

One reason for studying these equivalence classes is that it may not be obvious, and most often

is not, that two different graphs belong to the same class. That is, two graphs may be structurally

similar but until both graphs are specialized this similarity may be difficult to see. One of the

ideas introduced here is that by choosing an appropriate rule τ one can discover this similarity as

is demonstrated in the following example.
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G `(G) ' `(H) H

Figure 2.9: The graph G and the graph H are specialization equivalent with respect to the rule ` that
selects those vertices of a graph that have loops. That is, the graphs `(G) and `(H) are isomorphic
as is shown.

Example 2.9. (Specialization Equivalent Graphs) Consider the unweighted graphs G = (V1, E1)

and H = (V2, E2) shown in Figure 2.9. Here, we let ` be the rule that selects all vertices of a graph

that have loops, or all vertices if the graph has no loops. The vertices of G and H selected by

the rule ` are the vertices highlighted (red) in Figure 2.9 in G and H, respectively. Although G

and H appear to be quite different, the graphs `(G) and `(H) are isomorphic as is shown in Figure

2.9 (center). Hence, G and H belong to the same equivalence class of graphs with respect to the

structural rule `.

It is worth mentioning that two graphs can be equivalent under one rule but not another. For

instance, if w is the structural rule that selects vertices without loops then w(G) ; w(H) although

`(G) ' `(H).

From a practical point of view, a specialization rule τ allows those studying a particular class of

networks a way of comparing the specialized topology of these networks and drawing conclusions

about both the specialized and original networks. Of course, the rule τ should be designed by the

particular biologist, chemist, physicist, etc. to have some significance with respect to the networks

under consideration.

2.5 Spectral Properties of Specializations

To understand how specializing a network’s topology affects the network’s dynamics and in turn

the network’s function, we need some notion that relates both structure and dynamics. One of the
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most fundamental concepts that does this is the notion of a network’s spectrum [39, 23, 31]. The

spectrum of a network can be defined in a number of ways since there are a number of ways that

a matrix can be associated with a network. Matrices that are often associated with a network in-

clude various Laplacian matrices, e.g. the regular Laplacian, combinatorial Laplacian, normalized

Laplacian, signless Laplacian, etc. Other matrices include the adjacency and weighted adjacency

matrix of a graph, the distance matrix of a graph, etc.

The type of matrix we consider is the weighted adjacency matrix of a graph. The reason

we consider the adjacency matrix of a graph G versus any one of the other matrices that can be

associated with G is that there is a one-to-one relationship between the matrices M ∈ Rn×n and the

weighted directed graphs we consider.

Because we are concerned with the spectrum of a graph, which is a set that includes multiplici-

ties, the following is important for our discussion. First, the element α of the set A has multiplicity

m if there are m elements of A equal to α. If α ∈ A with multiplicity m and α ∈ B with multiplicity

n then

(i) the union A ∪ B is the set in which α has multiplicity m + n; and

(ii) the difference A − B is the set in which α has multiplicity m − n if m − n > 0 and where

α < A − B otherwise.

For ease of notation, if A and B are sets that include multiplicity then we let Bk = ∪k
i=1B for

k ≥ 1. That is, the set Bk is k copies of the set B where we let B0 = ∅. For k = −1 we let

A ∪ B−1 = A − B. With this notation in place, the spectrum of a graph G and the spectrum of the

specialized graph SB(G) are related by the following result.

Theorem 2.10. (Spectra of Specialized Graphs) Let G = (V, E, ω), B ⊆ V, and let S 1, . . . , S m be

the strongly connected components of G|B̄. Then

σ(SB(G)) = σ(G) ∪ σ(S 1)n1−1 ∪ σ(S 2)n2−1 ∪ · · · ∪ σ(S m)nm−1

where ni is the number of branches in BB(G) that contain S i.
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Figure 2.10: An example of a graph G = (V, E, ω) with the single strongly connected component
S 1 = G|B̄ is shown (left), where solid boxes indicate the graph G|B. As there are two edges from
G|B to S 1 and two edges from S 1 to G|B there are 2 × 2 branches in BB(G) containing S 1. These
are merged together with G|B to form SB(G) (right).

Proof. For the graph G = (V, E, ω) without loss of generality let B = {v1, . . . , v`} where V =

{v1, . . . , vn}. By a slight abuse in notation we let B denote the index set B = {1, . . . , `} that indexes

the vertices in B.

For the moment we assume that the graph G|B̄ has the single strongly connected component S 1.

The weighted adjacency matrix M ∈ Rn×n then has the block form

M =

 U W

Y Z


where U ∈ R`×` is the matrix U = MBB, which is the weighted adjacency matrix of G|B. The matrix

Z ∈ R(n−`)×(n−`) is the matrix Z = MB̄B̄, which is the weighted adjacency matrix of G|B̄ = S 1. The

matrix W = MBB̄ ∈ R
`×(n−`) is the matrix of edges weights of edges from vertices in G|B to vertices

in S 1 and Y = MB̄B ∈ R
n−`×` is the matrix of edge weights of edges from vertices in S 1 to vertices

in G|B.

The specialization SB(G) is the graph in which all component branches of the form

β = vi, eip, S 1, eq j, v j for all vi, v j ∈ S , vp, vq ∈ B̄ and eip, eq j ∈ E

are merged together with the graph G|B (cf. Figure 2.10). The weighted adjacency matrix M̂ =

M(SB(G)) has the block form
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M̂ =



U
[
W1 · · · W1

]
· · ·

[
Ww · · · Ww

]


Y1

...

Yy




Z

. . .

Z

 0

...
. . .

Y1

...

Yy

 0


Z

. . .

Z





=

 U Ŵ

Ŷ Ẑ

 ,

where each Wi ∈ R
`×(n−`), each Y j ∈ R

(n−`)×`,
∑w

i=1 Wi = W and
∑y

j=1 Y j = Y . Here, w ≥ 0 is the

number of directed edges from G|B to S 1. The matrix Wi has a single nonzero entry corresponding

to exactly one edge from this set of edges. Similarly, y ≥ 0 is the number of directed edges from

S 1 to G|B. The matrix Yi has a single nonzero entry corresponding to exactly one edge from this

set of edges. Since there are w · y component branches in SB(G) containing S 1 then the matrix

M̂ ∈ R(`+p(n−`))×(`+p(n−`)) where p = w · y.

To prove the result of Theorem 2.10 we will use the Schur complement formula, which states

that a matrix with the block form of M has the determinant

det[M] = det[Z] det[U −WZ−1Y]

if Z is invertible. Here we apply this formula to the block matrix M − λI, which results in the

determinant

det[M − λI] = det[Z − λI] det[(U − λI) −W(Z − λI)−1Y]

= det[Z − λI] det[(U − λI) −
w∑

i=1

y∑
j=1

Wi(Z − λI)−1Y j],
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where the matrix Z − λI is invertible as a result of the proof of Theorem 1.2 in [7]. Similarly,

applying the Schur complement formula to the matrix M̂ − λI we have the determinant

det[M̂ − λI] = det[Ẑ − λI] det[(Û − λI) − Ŵ(Z − λI)−1Ŷ]

= det[Z − λI]p det[(U − λI) −
w∑

i=1

y∑
j=1

Wi(Z − λI)−1Y j],

where the equality Ŵ(Z − λI)−1Ŷ =
∑w

i=1
∑y

j=1 Wi(Z − λI)−1Y j can be seen by direct multiplication

of the block entries in the matrix M̂. Hence,

det[M − λI] det[Z − λI]p−1 = det[M̂ − λI]

implying

σ(SB(G)) = σ(G) ∪ σ(S 1)p−1, (2.2)

so that Theorem 2.10 holds if G|B̄ has a single strongly connected component S 1.

In order to prove Theorem 2.10 in full generality, we will first need to describe an alternative

process which generates the specialized graph SB(G), which we refer to as “stepwise specializa-

tion.” We start this process by defining L1 to be the set of the strongly connected components of

G|B̄, and label the components of this set as L1 = {S 1,1, S 2,1, . . . , S m,1}. Next we set G1 = G and

randomly choose a strongly connected component S i1,1 ∈ L1 with the property that specializing G

around S i1,1 generates a non-trivial specialization, i.e. SS̄ i,1(G1) , G1. That is, when G, is special-

ized over S̄ i,1, the result is a larger graph, meaning that there is more than one directed edge into

or out of S i,1. We then let G2 = SS̄ i,1(G1). Because S i1,1 is a single strongly connected component,

we showed in the beginning of this proof that the only new vertices which appear in G2 as G1 is

specialized must be w · y copies of S i1,1, where w is the number of edges which are directed into

S i1,1 and y is the number of edges which are directed out of S i1,1. Now we relabel the collection of

all copies of S i1,1 in the specialized graph G2 as {S i1,1, S i1,2, . . . , S i1,r1}.
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Next we define L2 to be the collection of all strongly connected components of G2|B̄, which

includes all the elements of L1, plus the newly relabeled collection of copies of S i1,1. Thus

L2 = {S 1,1, S 2,1, . . . , S i1−1,1, S i1,1, S i1,2, . . . , S i1,r1 , S i1+1,1, . . . , S m,1}. We then define G3 by select-

ing a random element S i2, j2 of L2 which does not induce a trivial specialization of G2 and set

G3 = SS̄ i2 , j2
(G2). Again we relabel all of the strongly connected component copies of S i2, j2 which

appear in G3 (this includes new copies and any copies which previously existed in the graph) and

define L3 to be the collection of all strongly connected components of G3|B̄. We continue this pro-

cess inductively, at each step defining Gk+1 = SS̄ ik , jk
(Gk) where S ik , jk is randomly chosen from Lk

and has the property that SS̄ ik , jk
(Gk) , Gk. Then we relabel all copies of S ik ,1 in Gk as {S ik ,1, . . . S ik ,pk}

and define Lk+1 as the strongly connected components of Gk+1 with all the newly defined labels.

Note that at each step we only specialize over one strongly connected component of GB̄. An

important observation about this process is that the set of component branches with respect to

base B is invariant over each step. This can be seen by recognizing that there is a one-to-one

correspondence between the component branches BB(Gk) and BB(Gk+1). From this fact we can

conclude that

SB(Gk) = SB(G) (2.3)

for all k ≥ 1, since we defined specialization to be the graph built by identifying elements of B in

all component branches of the graph.

We will continue the process described above until all strongly connected components of GK |B̄

induce a trivial specialization. At this point, the process terminates and we are left with the final

graph GK . We claim that eventually this process must reach this condition and terminate. Suppose

the process did not terminate, then the specialized graph in each step would be strictly larger than

the graph in the previous step. Thus the number of vertices in Gk must diverge to infinity, which

we denote as limk→∞ |Gk| = ∞. However, we know that by construction |Gk| ≤ |SB(Gk). Using

Equation (2.3) we know that |SB(Gk)| = |SB(G)| < ∞. Therefore, at some point this process must

terminate.
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When the process does terminate, we claim the final graph GK = SB(G). To see this, first recall

that we defined SB(G) to be the graph which consists of the component branches of BB(G) in which

all elements of B are individually identified (see Definition 2.3). Thus, if S is a strongly connected

component of G|B̄, then each copy of S found in SB(G) will have exactly one edge pointing into

it and exactly one edge pointing out of it by the definition of a component branch. In the final

graph GK , there are no more strongly connected components for which specializing gives a larger

graph. Therefore, each strongly connected component in LK has exactly one edge directing into it

and one edge directing out of it. Since this is true for each strongly connected component, then GK

must be composed of a collection of component branches where all corresponding vertices in B are

identified. We already showed GK has the same component branches with respect to B as SB(G).

Using this fact and because strongly connected components of GK |B̄ are each their own component

branch, we can conclude that GK = SB(G).

Hence, we can repeatedly apply the result given in Equation (2.2) for a single strongly con-

nected component at each step in our “stepwise specialization process.” Thus the spectrum of

the specialized graph Gk is the spectrum of the graph Gk−1 from the previous step together with

the eigenvalues σ(S ik)
pk where pk is the number of copies of S ik which were added. Therefore

the eigenvalues of the final graph will be the eigenvalues of the original graph together with the

eigenvalues of all the copies of the strongly connected components we added at each step. That is

σ(SB) = σ(G) ∪ σ(S 1)n1−1 ∪ · · · ∪ σ(S m)nm−1

where ni is the number of component branches in BB(G) containing S i. This completes the proof.

�

For now, we consider an example of Theorem 2.10. In Section 2.6 we consider some conse-

quences and applications of Theorem 2.10 where we study the interplay of network dynamics and

network growth.
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Example 2.11. Continuing example 2.4, we can calculate the graph G in Figure 2.3 (left) has

eigenvalues

σ(G) ≈ {1.38,−1.18, 0.57 ± 0.93i,−0.67 ± 0.74i, 0}.

For B = {v1, v4} the graph G|B̄ has the strongly connected components S 1 and S 2 with eigenvalues

σ(S 1) ≈ {1.32,−0.66 ± 0.56i, } and σ(S 2) = {±1}. Since three branches of BB(G) contain S 1 and

S 2 respectively, Theorem 2.10 implies that

σ(SB(G)) = σ(G) ∪ σ(S 1)2 ∪ σ(S 2)2.

A simple eigenvalue calculation of SB(G) will demonstrate that this is true.

If a network has an evolving structure that can be modeled via a graph specialization, or

more naturally a sequence of specializations, then Theorem 2.10 allows us to effectively track

the changes in the network’s spectrum, resulting from the components S 1, . . . , S m.

Not only are the eigenvalues of a graph G preserved in a specific way as the graph is specialized

but so are its eigenvectors. An eigenvector v of a graph G corresponding to the eigenvalue λ is a

vector such that M(G)v = λv, in which case (λ, v) an eigenpair of G. If B is a subset of the vertices

of G then we let vB denote the eigenvector v restricted to those entries indexed by the set B.

The remainder of the results in this section rely on the concept of isospectral graph reduction,

which is a way of reducing the size of a graph while essentially preserving its set of eigenvalues.

Since there is a one-to-one relation between the graphs we consider and the matrices M ∈ Rn×n,

there is also an equivalent theory of isospectral matrix reductions. Both types of reductions will

be useful to us.

For the sake of simplicity we begin by defining an isospectral matrix reduction. For these re-

ductions we need to consider matrices of rational functions. The reason is that, by the Fundamental

Theorem of Algebra, a matrix A ∈ Rn×n has exactly n eigenvalues including multiplicities. In order

to reduce the size of a matrix while at the same time preserving its eigenvalues we need something
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that carries more information than scalars. The objects we will use are rational functions. The

specific reasons for using rational functions can be found in [7], chapter 1.

We let Wn×n be the set of n × n matrices whose entries are rational functions p(λ)/q(λ) ∈ W,

where p(λ) and q(λ) , 0 are polynomials with real coefficients in the variable λ. The eigenvalues

of the matrix M = M(λ) ∈Wn×n are defined to be solutions of the characteristic equation

det(M(λ) − λI) = 0,

which is an extension of the standard definition of the eigenvalues for a matrix with complex

entries.

For M ∈ Rn×n let N = {1, . . . , n}. If the sets T,U ⊆ N are proper subsets of N, we denote by

MTU the |T | × |U | submatrix of M with rows indexed by T and columns by U. The isospectral

reduction of a square real valued matrix is defined as follows.

Definition 2.12. (Isospectral Matrix Reduction) The isospectral reduction of a matrix M ∈ Rn×n

over the proper subset B ⊆ N is the matrix

RB(M) = MBB − MBB̄(MB̄B̄ − λI)−1MB̄B ∈W
|B|×|B|.

One of the most important properties of an isospectral reduction is the following result which

relates the eigenvalues and eigenvectors of a graph G and its reduction RB(G).

Theorem 2.13. (Eigenvectors of Reduced Matrices) Suppose M ∈ Rn×n and B ⊆ N. If (λ, v) is an

eigenpair of M and λ < σ(MB̄B̄) then (λ, vB) is an eigenpair of RB(M).

Proof. Suppose (λ, v) is an eigenpair of M and λ < σ(MB̄B̄). Then without loss in generality we

may assume that v = (vT
B, v

T
B̄)T . Since Mv = λv then

 MBB MBB̄

MB̄B MB̄B̄


 vB

vB̄

 = λ

 vB

vB̄

 ,
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which yields two equations the second of which implies that

MB̄BvB + MB̄B̄vB̄ = λvB̄.

Solving for vB̄ in this equation yields

vB̄ = −(MB̄B̄ − λI)−1MB̄BvB, (2.4)

where MB̄B̄ − λI is invertible given that λ < σ(MB̄B̄).

Note that

(M − λI)v =

 (M − λI)BBvB + (M − λI)BB̄vB̄

(M − λI)B̄BvB + (M − λI)B̄B̄vB̄


=

 MBBvB − MBB̄(MB̄B̄ − λI)−1MB̄BvB

MB̄BvB − (MB̄B̄ − λI)(MB̄B̄ − λI)−1MB̄BvB


=

 (RB(M) − λI)vB

0

 .
Since (M − λI)v = 0 it follows that (λ, vB) is an eigenpair of RB(M).

Moreover, we observe that if (λ, vB) is an eigenpair of RB(M) then by reversing this argument,

(λ, (vT
B, v

T
B̄)T ) is an eigenpair of M where vB̄ is given by (2.4). �

Using the previous theorem, we can now prove that the eigenvectors of the specialized graph

are related to the original eigenvectors.

Proposition 2.14. (Eigenvectors of Evolved Graphs) Let (λ, v) be an eigenpair of the graph G =

(V, E, ω). If B ⊆ V and λ < σ(G|B̄) then there is an eigenpair (λ,w) of the specialized graph SB(G)

such that wB = vB.
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Proof. Let M = M(G) and M̂ = M(SB(G)) where B ⊆ N. If (λ, v) is an eigenpair of M and

λ < σ(MB̄B̄) then Theorem 2.13 implies that (λ, vB) is an eigenpair of RB(M). The claim is that by

reducing both M and M̂ over B the result is the same matrix. To see this we note that by Definition

2.12 the reduced matrix RB(M) is

RB(M) = U −W(Z − λI)−1Y ∈W|B|×|B|.

For the matrix M̂ its reduction over B is the matrix

RB(M̂) = U − Ŵ(Ẑ − λI)−1Ŷ

= U − Ŵ diag[(Z − λI)−1, . . . , (Z − λI)−1]Ŷ

= U −
w∑

i=1

y∑
j=1

Wi(Z − λI)−1Y j

= U − (
w∑

i=1

Wi)(Z − λI)−1(
y∑

j=1

Y j)

= U −W(Z − λI)−1Y ∈W|S |×|S |.

Hence, RB(M) = RB(M̂).

Using the fact that RB(SB(M)) = RB(M) (see the proof of Theorem 2.10) and the observation

in the last line of the proof of Theorem 2.13 it follows that (λ, v̂) is an eigenpair of M̂ where

v̂ =

 v̂B

v̂B̄

 =

 vB

−(M̂B̄B̄ − λI)−1M̂B̄BvB

 .
Note that vB = v̂B, which completes the proof. �

Proposition 2.14 states that the graphs G and SB(G) have the same eigenvectors if we restrict

our attention to those entries that correspond to the base vertices B and to those eigenvectors with

corresponding eigenvalues in σ(G) − σ(G|B̄) ⊂ σ(SB(G)). One consequence of this fact is that the

eigenvector centrality of the vertices in B remain the same as the graph is specialized.
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To describe eigenvector centrality note that by the Perron-Frobenius theorem, if the unweighted

graph G = (V, E) is strongly connected then G has a unique eigenvalue ρ, which is the spectral

radius of G, i.e. ρ = max{|λ| : λ ∈ σ(G)}. Moreover, ρ is a simple eigenvalue and the eigenvector p

associated with ρ has nonnegative entries. The vector p, which is unique up to a constant, gives the

relative ranking pi to each vertex vi ∈ V . This value pi is referred to as the eigenvector centrality

of the vertex vi (see [6] for more details). Here we refer to the vector p as an eigencentrality vector

of the graph G. A graph specialization of G preserves its vertices’ eigenvector centrality in the

following way.

Theorem 2.15. (Eigenvector Centrality of Specialized Graphs) Let G = (V, E) be strongly con-

nected with eigencentrality vector p. If B ⊂ V then SB(G) has an eigencentrality vector q where

pB = qB. Hence, the relative eigenvector centrality of the vertices in the base B is preserved as the

graph is specialized.

Proof. Suppose that G = (V, E) is strongly connected and B ⊂ V . Since the specialization SB(G)

preserves the path structure of G, i.e. there is a path from vi to v j in SB(G) if and only if there is a

path from the corresponding vi to v j in G, then SB(G) must be strongly connected. Therefore, both

G and SB(G) have eigencentrality vectors.

Given that M(G) is a nonnegative matrix, Theorem 2.10 together with Corollary 8.1.20 in [40]

imply that G and SB(G) have the same spectral radius ρ. Since ρ is a simple eigenvalue of both

G and SB(G), Proposition 2.14 implies that given an eigencentrality vector p of G there is an

eigencentrality vector q of SB(G) such that pB = qB completing the proof. �

The graph G in Figure 2.3 (left) and its specialization SB(G) in Figure 2.4 (right) have eigen-

centrality vectors p ∈ R7 and q ∈ R17, which correspond to the spectral radius ρ ≈ 1.38 of both

graphs. Since G is strongly connected it follows from Theorem 2.15 that pB = qB ≈ {1.27, 1}. That

is, the vertices v1 and v4 of B have the same relative eigenvalue centrality in G and in S B(G).
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2.6 Network Growth, Dynamics, and Function

In this chapter thus far we have been primarily concerned with the dynamics of a network’s topol-

ogy. This evolution determines to a certain extent the network’s function and how well the network

preforms this function. However, the network’s performance also depends on the type of dynam-

ics that emerges from the interactions between the network elements, i.e. the dynamics on the

network.

One of the more complicated processes to model is the growth of a network that needs to

maintain a specific type of dynamics. Some of the most natural examples come from the biological

sciences. As mentioned in the introduction, the network of cells in a beating heart will attempt

to maintain this function even as this network grows. Similarly, in the technological sciences

electrical grids are designed to consistently carry power to consumers even as new lines, plants,

etc. are added to the grid.

The dynamics of a network with a fixed structure of interactions can be modeled by iterating

a map F : X → X on a product space X =
⊕

i∈N Xi where N = {1, . . . , n} and each local phase

space (Xi, d) is a metric space. Here the dynamics of the ith network element is given by the ith

component of F given by

Fi :
⊕

j∈Ii

X j → Xi, Ii ⊆ N,

where the set Ii indexes the elements that interact with the ith element. We refer to the system

(F, X) as a dynamical network.

The dynamics of the network (F, X) is generated by iterating the function F where we let

x(k) ∈ X be the state of the network at time k ≥ 0 and x(k +1) = F(x(k)) be the state of the network

at time k + 1. The ith component xi(k) represents the state of the ith network element at time k + 1.

The specific type of dynamics we consider here is global stability, which is observed in a

number of important systems including neural networks [24, 25, 26, 27, 28], in epidemic models

[29], and is also important in the study of congestion in computer networks [30] to name just a

few. In a globally stable network, which we will simply refer to as stable, the state of the network
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tends towards equilibrium irrespective of its present state. That is, there is an x̄ ∈ X such that for

any x(0) ∈ X, x(k)→ x̄ as k → ∞.

This globally attracting equilibrium is typically a state in which the network can carry out a

specific task. Whether or not this equilibrium stays stable depends on a number of factors including

external influences such as changes in the environment the network is in. However, it is worth

emphasizing that not only can outside influences destabilize a network but potentially the network’s

own growth. As mentioned, an important example is cancer, which is the abnormal growth of cells

that can lead to failure in a biological networks.

Here we consider how network specialization affects the stability of the network. We find that

if the network is stable then, as the network specializes, the network can, in fact, lose stability

(cf. example 2.24). However, if the network has a stronger form of stability, which we refer to as

intrinsic stability, the network will remain stable as its topology is specialized.

For simplicity in our discussion we assume that the map F : X → X is differentiable and that

each Xi is some closed interval of real numbers, although this can be done in more generality (see

[23, 7]). Under this assumption we define the following matrix which can be used to investigate

the stability of a dynamical network.

Definition 2.16. (Stability Matrix) For the dynamical network (F, X) suppose there exist finite

constants

Λi j = sup
x∈X

∣∣∣∣∂Fi

∂x j
(x)

∣∣∣∣ for 1 ≤ i, j ≤ n. (2.5)

Then we call the matrix Λ ∈ Rn×n the stability matrix of (F, X).

The stability matrix Λ can be thought of as a global linearization of the typically nonlinear

dynamical network (F, X). The matrix Λ can also be used to describe the topology of the dynamical

network (F, X) in that the graph we associate with (F, X) is the graph G where M(G) = Λ.

The original motivation for defining the matrix Λ is that if the linear dynamical network (Λ, X)

given by x(k + 1) = Λx(k) is stable then the same is true of the original network (F, X) (see

[23]). To make this precise we let ρ(Λ) denote the spectral radius of Λ.The fact that stability of
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the linearized network (Λ, X) implies stability of the original network (F, X) is summarized in the

following result, the proof of which can be found in [23].

Theorem 2.17. (Network Stability) Suppose Λ is the stability matrix of the dynamical network

(F, X). If ρ(Λ) < 1 then the dynamical network (F, X) is stable.

An important aspect of the dynamic stability described in Theorem 2.17 is that it is not the

standard notion of stability. In [31] it is shown that if ρ(Λ) < 1 then the dynamical network

(F, X) is not only stable but remains stable even if time-delays are introduced into the network’s

interactions. Since the introduction of time-delays can have a destabilizing effect on a network,

the type of stability considered in Theorem 2.17 is a stronger version of the standard notion of

stability. To distinguish between these two types of stability, the stability described in Theorem

2.17 is given the following name (see [31] for more details).

Definition 2.18. (Intrinsic Stability) If ρ(Λ) < 1, where Λ is a stability matrix of the dynamical

network (F, X), then we say that this network is intrinsically stable.

The goal in this section is to describe how intrinsic stability is a natural notion for stability of

a network with a topology that evolves via specialization. The idea is that, not only is it possible

to specialize the graph structure G of a network with respect to a specialization rule τ but it is also

possible to specialize a dynamical network (F, X) with respect to τ.

Consider the class of dynamical networks (F, X) having components of the form

Fi(x) =

n∑
j=1

Ai j fi j(x j), i = 1, . . . , n (2.6)

where the interaction matrix A ∈ {0, 1}n×n is an n × n matrix of zeros and ones and fi j : X j → R

are functions with bounded derivatives for all 1 ≤ i, j ≤ n. It is worth noting that the matrix A in

equation (2.6) could be absorbed into the functions fi j. The reason we use A is for convenience

as it will be the means by which we will evolve (F, X). The reason is that the theory of graph

specializations presented here applies equally well to matrices. That is, given a matrix A ∈ Rn×n

there is a unique graph G for which M(G) = A. Hence, for a given rule τ we can define
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τ(A) = M(τ(G)) where A = M(G)

to be the specialization of A with respect to τ. This allows us to define the specialization of the

dynamical network (2.6).

Definition 2.19. (Specializations of Dynamical Networks) Let τ be a structural rule. Then the

specialization of (F, X) in (2.6) with respect to τ is the dynamical network (Fτ, Xτ) with compo-

nents

(Fτ(x))i =

m∑
j=1

τ(A)i j fτ(i j)(x j), i = 1, . . . ,m

where Xτ = Rm for τ(A) ∈ Rm×m. Here τ(i j) = pq is the index such that Aτ(i j) = τ(A)pq. We let Λτ

denote the stability matrix of the specialized network (Fτ, Xτ).

The connection to real-world networks is the idea that, under certain conditions the topology

of a dynamical network will specialize over time according to some fixed rule τ.

To give an example of a well known class of dynamical networks that can be specialized ac-

cording to Definition 2.19 we consider the class of dynamical networks known as discrete-time

recurrent neural networks (DRNN). The stability of such systems has been the focus of a large

number of studies, especially time-delayed versions of these systems [41]. The class of DRNN we

consider is the dynamical network (R, X), which has the form

Ri(x) = aixi +

n∑
j=1, j,i

bi jg j(x j) + ci, i = 1, . . . , n. (2.7)

Here the component Ri describes the dynamics of the ith neuron of the network in which each

|ai| < 1 are the feedback coefficients, the matrix B ∈ Rn×n with bii = 0 is the connection weight

matrix, and the constants ci are the exogenous inputs to the network. In the general theory of

recurrent neural networks the functions g j : R → R are typically assumed to be differentiable,

monotonically increasing, and bounded. Here, for the sake of illustration we make the additional

assumption that each g j has a bounded derivative.
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Before continuing we note that equation (2.7) can be written in the form of equation (2.6) by

setting

fi j(x j) =


a jx j + c j, for i = j

bi jg j(x j), for i , j
and Ai j =


0 if fi j(x j) ≡ 0,

1 otherwise.
(2.8)

In the following example we describe how a DRNN is specialized with respect to a given rule.

Example 2.20. (Topological Specialization of a DRNN) Consider the recurrent dynamical net-

work (R,R4) given by equation (2.7) where each a j = α, bi j = β for i , j and is zero otherwise,

c j = γ, and g j(x) = tanh(x) for 1 ≤ i, j ≤ 4 where |α| < 1 and β, γ ∈ R.

Let A be the interaction matrix

A =



1 1 0 0

1 1 1 0

0 0 1 1

1 0 1 1


.

We choose the function g j(x) = tanh(x) as this is a standard activation function used to model

neural interactions in network science as it converts continuous inputs to binary outputs. Under

these conditions the dynamical network (R,R4) is given by

R(x) =



αx1 + β[tanh(x2)] + γ

αx2 + β[tanh(x1) + tanh(x3)] + γ

αx3 + β[tanh(x4)] + γ

αx4 + β[tanh(x1) + tanh(x3)] + γ


.

We evolve the topology of the network (R,R4) using the rule δ(V) = {v ∈ V : degin(v) = 1},

where degin(v) is the in-degree of vertex v. This rule specializes the matrix A and the dynamical

network (R,R4) into δ(A) and (Rδ,R
6) where

44



δ(A) =



1 0 0 1 1 0

0 1 1 0 0 1

1 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

0 1 0 0 0 1



and Rδ(x) =



αx1 + β[tanh(x4) + tanh(x5)] + γ

αx2 + β[tanh(x3) + tanh(x6)] + γ

αx3 + β[tanh(x1)] + γ

αx4 + β[tanh(x2)] + γ

αx5 + β[tanh(x1)] + γ

αx6 + β[tanh(x2)] + γ



,

respectively. Using the fact that supx∈R |
d
dx tanh(x)| = 1, the stability matrix Λ of (R,R4) and the

stability matrix Λδ of (Rδ,R
6) are

Λ =



|α| |β| 0 0

|β| |α| |β| 0

0 0 |α| |β|

|β| 0 |β| |α|


and Λδ =



|α| 0 0 |β| |β| 0

0 |α| |β| 0 0 |β|

|β| 0 |α| 0 0 0

0 |β| 0 |α| 0 0

|β| 0 0 0 |α| 0

0 |β| 0 0 0 |α|



.

The graphs G and δ(G) associated with the stability matrices Λ and Λδ are shown in Figure 2.11

left and center, respectively. Importantly, δ(Λ) = Λδ, meaning that if the stability matrix of (R,R4)

is specialized by δ the result is the stability matrix of the expanded network (Rδ,R
6).

The fact that δ(Λ) = Λδ in this example is not a coincidence but is a simple consequence of how

specializations of dynamical networks are defined. That is, if a dynamical network (F, X) given

by (2.6) with stability matrix Λ is specialized with respect to the rule τ, the resulting dynamical

network (Fτ, Xτ) has the stability matrix Λτ = τ(Λ). It is therefore possible to test the stability of a

specialized version of (F, X) with stability matrix Λ by specializing Λ.

It is worth noting that in previous studies of dynamical networks including DRNN the goal has

been to determine under what condition(s) a given network has stable dynamics (see for instance

the references in [41]). Here we consider a different but related question which is, under what con-
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Figure 2.11: The sequence G, δ(G), and δ2(G) represents the topology of the recurrent dynamical
network (R,R4) and its sequence of specializations (Rδ,R

6), and (Rδ2 ,R10) respectively, considered
in example 2.20. The vertices selected by the rule δ are highlighted in each graph. The parameters
α, β ∈ R.

dition(s) does a dynamical network with an evolving structure of interactions maintain its stability

as it evolves. As a partial answer to this general question, we show that if a dynamical network is

not only stable but intrinsically stable and evolves via specialization then its stability is preserved

as its topology evolves.

Theorem 2.21. (Stability of Specialized Networks) Let (F, X) be a dynamical network given by

equation (2.6) and τ a specialization rule. The specialized dynamical network (Fτ, Xτ) is intrinsi-

cally stable if and only if (F, X) is intrinsically stable.

The importance of Theorem 2.21 is that it describes, as far as we know, the first general mech-

anism for evolving the structure of a network that preserves the network’s stability. A proof of

Theorem 2.21 is the following.

Proof. Suppose the dynamical network (F, X) is intrinsically stable so that in particular ρ(Λ) < 1.

Given a specialization rule τ, Theorem 2.10 states, in terms of matrices, that

σ(τ(Λ)) = σ(Λ) ∪ σ(Λ1)n1−1 ∪ · · · ∪ σ(Λm)nm−1 (2.9)

where each Λi is a square submatrices of Λ and ni ≥ 0 for all 1 ≤ i ≤ m.

Since Λ is a nonnegative matrix then ρ(Λi) ≤ ρ(Λ) for all 1 ≤ i ≤ m (see, for instance,

corollary 8.1.20 in [40]). Hence, ρ(τ(Λ)) = ρ(Λ) < 1 by equation (2.9). Since τ(Λ) = Λτ is the
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stability matrix of (Fτ, Xτ) then this implies that ρ(Λτ) < 1 so that the specialized network (Fτ, Xτ)

is intrinsically stable. Conversely, if (Fτ, Xτ) is intrinsically stable then ρ(Λτ) < 1 and equation

(2.9) likewise implies that ρ(Λ) < 1, completing the proof. �

Theorem 2.21 is built on the fact that the spectral radius of a graph is preserved under a graph

specialization if the graph has nonnegative weights. This follows directly from the proof of Theo-

rem 2.21 and is stated as the following corollary.

Corollary 2.22. Suppose G = (V, E, ω) is a graph with nonnegative weights. Then for any base

vertex set B ⊆ V the spectral radius ρ(SB(G)) = ρ(G).

Note that the recurrent network (R,R4) in example 2.20 has the stability matrix Λ with eigen-

values σ(Λ) = {|a| ±
√

2|b|, |a|, |a|}. Hence, (R,R4) is intrinsically stable if ||a| +
√

2|b|| < 1. If this

condition holds then, Theorem 2.21 implies that the specialized network (Rδ,R
6) is intrinsically

stable. Here, one can directly compute that σ(Λδ) = {|a| ±
√

2|b|} ∪ {|a|}4 verifying the result.

It is also worth noting that if (F, X) is given by (2.6) then its specialization (Fτ, Xτ) is also of

the same form. Hence, (Fτ, Xτ) can also be specialized by τ, resulting in the dynamical network

(Fτ2 , Xτ2). As a direct consequence to Theorem 2.21, if (F, X) is intrinsically stable then any

sequence of specializations of (F, X) results in an intrinsically stable network.

Corollary 2.23. Suppose (F, X) is a dynamical network given by (2.6) and τ is a specialization

rule. If (F, X) is intrinsically stable then (Fτ j , Xτ j) is intrinsically stable for all j ≥ 0.

Continuing the sequence of network specializations in example 2.20, if we evolve the network

(Rδ,R
6) again with respect to δ the result is the dynamical network (Rδ2 ,R10) whose stability matrix

Λδ2 is represented by the graph δ2(G) shown in Figure 2.11 (right). One can again check that

σ(Λδ2) = {|a| ±
√

2|b|} ∪ {|a|}8.

As guaranteed by corollary 2.23, (Rτ2 ,R10) is intrinsically stable if and only if the original network

(R,R4) is intrinsically stable.
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In contrast, if a dynamical network (F, X) is stable but not intrinsically stable, it can fail to

maintain its stability as its topology is specialized even if it is a simple linear dynamical network

as is illustrated in the following example.

Example 2.24. (Loss of Stability) Let w be the rule that selects all vertices of a graph without

loops. Consider the linear dynamical network (F,R3) given by

F(x) =


0 −1 3/4

0 0 1/2

−1/2 0 3/2




x1

x2

x3

 . (2.10)

Its specialization (Fw,R
4) with respect to w is given by

Fw(x) =



0 −1 0 3/4

0 0 1/2 0

−1/2 0 −3/2 0

−1/2 0 0 −3/2





x1

x2

x3

x4


.

If M ∈ R3×3 is the matrix in (2.10) such that F(x) = Mx then Fw(x) = w(M)x where w(M) ∈ R4×4.

Here one can compute that ρ(M) ≈ .938 whereas ρ(w(M)) = 3/2. Since both systems are linear, it

follows immediately that (F,R3) is a stable dynamical network whereas (Fw,R
4) is unstable.

The reason (F,R3) can lose its stability as it is specialized is that it is not intrinsically stable.

That is, the stability matrix of (F, X) is the matrix |M|, which is the matrix with entries |M|i j = |Mi j|

with spectral radius ρ(|M|) = 1.787. Since this is greater than one, the system is stable but not

intrinsically stable. Therefore, it is possible, as it is demonstrated here, for the network to lose

stability as its topology is specialized.

Example 2.24 is meant to emphasize the fact that more than the standard notion of stability is

needed to guarantee a network’s stability as a network evolves under some rule τ. A natural and

open question is whether this is the case for other types of dynamics exhibited by networks, i.e.
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what conditions are required for other dynamical behaviors such as multistability, periodicity, and

synchronization, etc. to be maintained as the network grows.

2.7 Concluding Remarks

In this chapter we introduce a class of models of network formation, which we refer to as special-

ization models of network growth. These models are based on the observation that most, if not

all, real networks specialize the function of their components as they evolve. As a first observa-

tion we note that by specializing a network via this model the result is a network whose topology

becomes sparser, more modular, and more hierarchical. This is particularly relevant since each of

these properties is found throughout networks studied in the biological, technological, and social

sciences.

Our method of specialization is highly flexible in that a network can be specialized over any

subset of its elements, i.e. any network base. Since so many bases are possible, a natural question

is, “given a particular real-world network can we find a rule that generates a base that can be used

to accurately model this network’s growth?”

To give evidence that this is possible, we first consider the simple rule that randomly selects a

certain percentage of a network’s elements. Numerically we show that this rule evolves the topol-

ogy of a network in ways that are consistent with the properties widely observed in real networks.

This includes the small-world property, disassortativity, and a right-skewed degree distribution. We

then consider two other rules that give us networks with real-world like clustering coefficients and

power-law like degree distributions, respectively. So far as we know this is the only such model to

capture these properties that also creates an increasingly sparse, modular, and hierarchical network

topology.

Additionally, we show how certain specialization rules, which we refer to as structural rules,

can be used to compare the topology of different networks. This notion of similarity, which we

refer to as specialization equivalence, can be used to partition all networks into those that are

similar and dissimilar with respect to a given rule τ. It is worth emphasizing that in practice it
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is important that this rule be designed by the particular biologist, chemist, physicist, etc. to have

some significance with respect to the nature of the networks under consideration.

Additionally, we show that as a network is specialized the network maintains a number of

important spectral properties (see Theorems 2.10, 2.14 and 2.15). These spectral properties are

related to the dynamics on the network, which in turn is related to the network’s function. This

suggests an interdependence between the network’s ability to maintain its primary function and the

topological properties of modularity, etc. that results from this process of specialization.

With the network’s function in mind, we show that if a network’s dynamics is intrinsically

stable then the network will remain intrinsically stable even as the network’s topology becomes

more specialized (see Theorem 2.21). As the standard notion of stability is not always preserved

under specialization this suggests that real networks may need to have stronger versions of behavior

such as stability, multistability, periodicity, etc. that are robust to changes in network structure

to maintain their function rather than those that are typically studied in the theory of dynamical

systems.

The notion of specialization and the associated specialization growth model introduced in this

chapter also leads to a number of open questions, a few of which we mention here. The first, and

likely most important, is whether specific specialization rules can be designed to model the growth

of specific networks in a way that captures the network’s finer more specific structure. Such rules

will likely be very network dependent and therefore need to be devised and examined again by

the particular biologist, chemist, physicist, etc. who has some expertise with the nature of the

particular network.

Related to this, the properties observed as consequences of specializing using the rules intro-

duced in examples 2.5 2.6 and 2.7 are only observed numerically. It is currently unknown whether

these properties can be proven rigorously.

Last, it is worth reiterating the question posed at the end of section 2.6 regarding other types

of intrinsic dynamics. Specifically, whether other types of network dynamics can be established,

analogous to intrinsic stability, that are robust to changes in network growth, specifically special-
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ization. The hope is that by discovering such new types of dynamics we can better understand the

interplay of network topology, dynamics, and growth.

Chapter 3. Equitable Decompositions

3.1 Overview and Background

Spectral graph theory is the study of the relationship between two objects, a graph G and an asso-

ciated matrix M. The goal of this theory is to understand how spectral properties of the matrix M

can be used to infer structural properties of the graph G and vice versa.

The particular structures we consider in this chapter are graph symmetries. A graph is said

to have a symmetry if there is a permutation φ : V(G) → V(G) of the graph’s vertices V(G) that

preserves (weighted) adjacencies. The permutation φ is called an automorphism of G, hence the

symmetries of the graph G are characterized by the graph’s set of automorphisms. Intuitively, a

graph automorphism describes how parts of a graph can be interchanged in a way that preserves

the graph’s overall structure. In this sense these smaller parts, i.e., subgraphs, are symmetrical and

together these subgraphs constitute a graph symmetry.

In a previous paper [4] it was shown that if a graph G has a particular type of automorphism

φ then it is possible to decompose any matrix M that respects the structure of G into a number of

smaller matrices Mφ, B1, . . . , Bk−1. Importantly, the eigenvalues of M and the collective eigenvalues

of these smaller matrices are the same, i.e.

σ(M) = σ(Mφ) ∪ σ(B1) ∪ · · · ∪ σ(Bk−1).

This method of decomposing a matrix into a number of smaller pieces over a graph symmetry

is referred to as an equitable decomposition due to its connection with the theory of equitable

partitions. An equitable partition of the adjacency matrix A associated with a graph G is a partition

of the graph’s set of vertices, which may arise from an automorphism φ of G, yielding a smaller

matrix Aφ whose eigenvalues form a subset of the spectrum of A (Theorem 9.3.3 of [42] , Theorem

3.9.5 of [43] ).
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In [4] the notion of an equitable partition is extended to other matrices beyond the adjacency

matrix of a graph to include various Laplacian matrices, distance matrices, etc. (see Proposition

3.4). This class of matrices, referred to as automorphism compatible matrices, are those matrices

associated with a graph G that can be equitably decomposed over an automorphism φ of G. In

particular, the matrix Mφ in the resulting decomposition is the same as the matrix that results from

an equitable decomposition of G if M = A is the adjacency matrix of G.

The particular types of automorphisms considered in [4] are referred to as uniform and basic

automorphisms. A uniform automorphism φ is one in which all orbits have the same cardinality

(see Remark 3.2). A basic automorphism φ is an automorphism for which all nontrivial orbits, i.e.

orbits of size greater than one, have the same cardinality. Hence, any uniform automorphism is a

basic automorphism.

Since many graph automorphisms are not basic, a natural question is whether an automor-

phism compatible matrix M can be decomposed over a nonbasic automorphism. In this chapter

we first show in Section 3.3 that if an automorphism is separable, i.e. is an automorphism whose

order is the product of distinct primes, then there are basic automorphisms ψ0, ψ1, . . . , ψh that in-

duce a sequence of equitable decompositions on M. The result is a collection of smaller matrices

Mφ, B1, . . . , Bk such that

σ(M) = σ(Mφ) ∪ σ(B1) ∪ · · · ∪ σ(Bk)

where k = p0 p1 . . . ph−1 and Mφ is again the matrix associated with the equitable partition induced

by φ (see Theorem 3.4). That is, the theory of equitable decompositions can be extended to any

separable automorphism of a graph G.

In section 3.4 we develop a more sophisticated decomposition process which allows us to

decompose matrices with prime-power automorphism φ, i.e. an automorphism whose order is pN

for some prime p and integer N > 1. This more advanced method is needed as it guarantees that

there exists a sequence of automorphisms to completely decompose a matrix with a prime-power

automorphism using a process which is similar to the one described in Section 3.3. Example 3.9
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describes an instance where just using the method of Section 3.3 cannot be used to complete the

equitable decomposition.

Finally in section 3.5, we show how it is possible to completely equitably decompose a matrix

with any automorphism, by finding a sequence of automorphisms to decompose the matrix itera-

tively. For each of the decomposition processes described above an explicit algorithm is given that

describes in detail the steps to complete the decomposition.

After establishing how to do equitable decompositions, we then show how the eigenvectors

(and generalized eigenvectors) of M can be decomposed over an automorphism φ. More specifi-

cally, if M can be decomposed into the matrices Mφ, B1, . . . , Bk over φ then the eigenvectors of M

can be explicitly constructed from the eigenvectors of Mφ, B1, . . . , Bk. That is, the eigenvectors of

these smaller matrices form the building blocks of the larger eigenvectors of the original matrix

M (see Theorem 3.18), which we refer to as an equitable decomposition of the eigenvectors (and

generalized eigenvectors) of M.

Importantly, an equitable decomposition of M, as opposed to its spectral decomposition, does

not require any knowledge of the matrix’ eigenvalues or eigenvectors. Only the knowledge of

a symmetry of G is needed. In fact, if an automorphism describes a graph symmetry that in-

volves only part of the graph i.e. a local symmetry, this local information together with the theory

presented here can be used to determine properties of the graph’s associated eigenvalues and eigen-

vectors, which in general depend on the entire graph structure!

This method of using local symmetries to determine spectral properties of a graph is perhaps

most useful in analyzing the spectral properties of real-world networks. One reason is that many

networks have a high degree of symmetry [5] when compared, for instance, to randomly generated

graphs [44, 6, 45, 46]. From a practical point of view, the large size of these networks limit our

ability to quickly compute their associated eigenvalues and eigenvectors. However, their high

degree of symmetry suggests that it may be possible to effectively estimate a network’s spectral

properties by equitably decomposing the network over local symmetries, which is a potentially

much more feasible task.
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For instance, we show that in a network given by the graph G with automorphism compatible

matrix M, the spectral radius of M and its divisor matrix Mφ are equal if M is both nonnegative

and irreducible (see Proposition 3.21). This result is of interest by itself since the spectral radius

can be used to study stability properties of a network’s dynamics [23, 31].

Finally, we show that the Gershgorin region associated with an equitable decomposition is con-

tained in the Gershgorin region associated with the original matrix (see Theorem 3.25). Since the

eigenvalues of a matrix are contained in its Gershgorin region [47], then by equitably decomposing

a matrix over some automorphism that is either basic or separable it is possible to gain improved

eigenvalue estimates of the matrix’ eigenvalues. Again, this result is potentially useful for estimat-

ing the eigenvalues associated with a real network as such networks often have a high degree of

symmetry.

This Chapter is organized as follows. In Section 3.2 we summarize the theory of equitable

decompositions found in [4]. In Section 3.3 we describe how the theory of equitable decompo-

sitions can be extended to separable automorphisms by showing that a decomposition over such

an automorphism φ can be realized as a sequence of decompositions over basic automorphisms

ψ0, ψ1, . . . , ψh (Corollary 3.7). We also present an algorithm describing how these automorphisms

can be generated and used to equitably decompose an associated matrix.

In Section 3.4 we give an algorithm for decomposing a graph over any automorphism of order

pN . Finally, in Section 3.5 we give a general algorithm for equitably decomposing a graph over

any of its automorphisms.

In Section 3.6 we introduce the notion of an equitable decomposition of a matrix’ eigenvectors

and generalized eigenvectors (Theorem 3.18). We also demonstrate that M and Mφ have the same

spectral radius if M is both nonnegative and irreducible (Proposition 3.21).

In Section 3.7 we show that we gain improved eigenvalue estimates using Gershgorin’s theorem

when a matrix is equitably decomposed (Theorem 3.25), which we demonstrate on a large social

network from the pre-American revolutionary war era.
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Though much of this theory is stated in term of matrices, in Section 3.8 we show how the theory

of equitable decompositions can be directly applied to graphs, at least for those with separable

automorphisms. This provides a visual way of thinking about equitable decompositions for graphs

with separable automorphisms. Section 3.9 contains some closing remarks including a few open

questions regarding equitable decompositions.

3.2 Graph Symmetries and Equitable Decompositions

One of our main concerns in this chapter is understanding how symmetries in a graph’s structure

(i) affect the eigenvalues and eigenvectors of a matrix M = M(G) and (ii) how these symmetries

can be used to decompose the matrix M into a number of smaller matrices in a way that pre-

serves the eigenvalues of M. Such graph symmetries are formally described by the graph’s set of

automorphisms.

Definition 3.1. (Graph Automorphism) An automorphism φ of an unweighted graph G is a per-

mutation of V(G) such that the adjacency matrix A = A(G) satisfies Ai j = Aφ(i)φ( j) for each pair

of vertices i and j. Note that this is equivalent to saying i and j are adjacent in G if and only if

φ(i) and φ( j) are adjacent in G. For a weighted graph G, if w(i, j) = w(φ(i), φ( j)) for each pair of

vertices i and j, then φ is an automorphism of G.

The set of all automorphisms of G is a group, denoted by Aut(G). The order of φ is the smallest

positive integer ` such that φ` is the identity.

Remark. For a graph G with automorphism φ, we define the relation ∼ on V(G) by u ∼ v if and

only if v = φ j(u) for some nonnegative integer j. It follows that ∼ is an equivalence relation on

V(G), and the equivalence classes are called the orbits of φ. The orbit associated with the vertex i

is denoted Oφ(i).

Here, as in [4] we consider those matrices M = M(G) associated with a graph G whose struc-

ture mimics the symmetries of the graph.
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Definition 3.2. (Automorphism Compatible) Let G be a graph on n vertices. An n × n matrix M

is automorphism compatible on G if, given any automorphism φ of G and any i, j ∈ {1, 2, . . . , n},

Mφ(i)φ( j) = Mi j.

Some of the most well-known matrices that are associated with a graph are automorphism

compatible. This includes the adjacency matrix, combinatorial Laplacian matrix, signless Lapla-

cian matrix, normalized Laplacian matrix, and distance matrix of a simple graph. Additionally,

the weighted adjacency matrix of a weighted graph is automorphism compatible. (See Proposition

3.4, [4].)

If M = M(G) is an automorphism compatible matrix, M can be decomposed over an automor-

phism φ of G into a number of smaller matrices if φ is a basic automorphism.

Definition 3.3. (Basic Automorphism) If φ is an automorphism of a graph G with all orbits of

size k > 1 and possibly 1, then φ is a basic automorphism of G with orbit size k. Any vertices with

orbit size 1 are said to be fixed by φ.

Given a basic automorphism φ with orbit size k, we form a set by choosing one vertex from

each orbit of size k. We call this set T0 of vertices a semi-transversal of the orbits of φ. Further we

define the set

T` = {φ`(v) | v ∈ T0} (3.1)

for ` = 0, 1, . . . , k − 1 to be the `th power of T0 and we let M[Ti,T j] be the submatrix of M whose

rows are indexed by Ti and whose columns are indexed by T j. This notion of a semi-transversal

allows us to decompose an automorphism compatible matrix M = M(G) in the following way.

Theorem 3.4. (Basic Equitable Decomposition) [4] Let G be a graph on n vertices, let φ be a

basic automorphism of G of size k > 1, let T0 be a semi-transversal of the k-orbits of φ, let T f be

the vertices fixed by φ, and let M be an automorphism compatible matrix on G. Set F = M[T f ,T f ],

H = M[T f ,T0], L = M[T0,T f ], Mm = M[T0,Tm], for m = 0, 1, . . . , k − 1, ω = e2πi/k, and

B j =

k−1∑
m=0

ω jmMm, j = 0, 1, . . . , k − 1. (3.2)
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Then there exists an invertible matrix S that can be explicitly constructed such that

S −1MS = Mφ ⊕ B1 ⊕ B2 ⊕ · · · Bk−1 (3.3)

where Mφ =

 F kH

L B0

 . Thus σ(M) = σ
(
Mφ

)
∪ σ(B1) ∪ σ(B2) ∪ · · · ∪ σ(Bk−1).

The decomposition in Equation (3.3) is referred to as an equitable decomposition of M asso-

ciated with the automorphism φ. The reason for this is that this decomposition is related to an

equitable partition of the graph G.

Definition 3.5. (Equitable Partition) An equitable partition of a graph G and a matrix M asso-

ciated with G, is a partition π of V(G), V(G) = V1 ∪ . . . ∪ Vk which has the property that for all i,

j ∈ {1, 2, . . . , k} ∑
t∈V j

Mst = Di j (3.4)

is a constant Di j for any s ∈ Vi. The k × k matrix Mπ = D is called the divisor matrix of M

associated with the partition π.

Definition 3.5 is, in fact, an extension of the standard definition of an equitable partition, which

is defined for simple graphs. For such graphs the requirement that π be an equitable partition is

equivalent to the condition that any vertex ` ∈ Vi has the same number of neighbors in V j for all

i, j ∈ {1, . . . , k} (for example, see p. 195-6 of [42]).

An important fact noted in [4] is that, if φ is a basic automorphism of G and M is an automor-

phism compatible matrix associated with G, the orbits of φ form an equitable partition of V(G) (see

Proposition 3.2, [4]). If M is equitably decomposed over the basic automorphism φ as in Equation

(3.3), the matrix Mφ in the resulting decomposition is in fact the divisor matrix D associated with

the equitable partition induced by φ (see Theorem 4.4, [4]), which is the reason this decomposition

is referred to as an equitable decomposition.

If φ is an automorphism in which every orbit has the same size k > 1 then φ is referred to as

a uniform automorphism of size k. Any uniform automorphism is clearly a basic automorphism
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in the sense that it is a basic automorphism that fixes no vertices. Thus, Theorem 3.4 holds for

uniform automorphisms as well, in which case the divisor matrix Mφ = B0.

If a graph G has a non-basic automorphism φ, the current theory of equitable decompositions

does not directly allow us to decompose a matrix M = M(G) over φ. In the following section we

show that an automorphism compatible matrix M can be decomposed with respect to any separable

automorphism φ of G via a sequence of basic automorphisms.

3.3 Equitable Partitions using Separable Automorphisms

Many graph automorphisms are not basic automorphisms. In this section we will demonstrate

how to equitably decompose a matrix with respect to an arbitrary separable automorphism by

repeated use of Theorem 3.4. Here, a separable automorphism φ of a graph G is an automorphism

whose order |φ| = p0 p1 . . . ph where p0, p1, . . . , ph are distinct primes. Before we can describe an

equitable decomposition over a separable automorphism we first need the following propositions

and algorithm.

Remark. Notice that if B = Mφ ⊕ B1 ⊕ · · · ⊕ Bk−1 is the equitable decomposition of a matrix M

with respect to φ, then we may view B as the weighted adjacency matrix for a new graph G̃ with

the same vertex set as G. In the proofs of Theorems 3.8 and 4.4 of [4] the rows and columns of the

matrix M are labeled in the order U,T0, . . . ,Tk−1. We continue this row/column labeling, so that

the labeling for the divisor matrix Mφ follows the ordering U,T0, and for all remaining matrices

Bm in the decomposition the labeling follows Tm.

Proposition 3.6. Let φ be an automorphism of order pq with p prime and p - q of a graph

G = (V, E,w) with automorphism compatible matrix M. Then ψ = φq is a basic automorphism of G

with order p and we can construct an automorphism φ̃ associated with the equitable decomposition

of M over ψ of order q such that the divisor matrix (Mψ)φ̃ = Mφ.

Proof. Let M and φ be as described in Proposition 3.6. For ease of notation, let M(i, j) = Mi j,

the i jth element of M. Certainly, the automorphism ψ = φq must have order p implying that ψ is a

basic automorphism.
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In order to perform an equitable decomposition with respect to ψ, we choose a semi-transversal

T0 in the following way: For each orbit of φ that is not fixed by ψ, pick an element a. Then |a| = pqa

for some qa ∈ Z>0. We add the elements of the set {a, φp(a), φ2p(a), . . . , φ(qa−1)p(a)} to T0. We let U

denote the set of vertices fixed by ψ.

To see that T0 is a semi-transversal, notice that the element a gives qa orbits under ψ and there

are qa elements in the set listed above. We now show that the elements in the above set must

come from different orbits. Suppose that φηp(a) and φη
′p(a) (with 0 < |η − η′| < qa) are in the

same ψ-orbit, then for some integer s < p, φηp(a) = ψsφη
′p(a) = φqa s+η′p(a). Thus, qa | (η − η′), a

contradiction.

Now we define a map φ̃ = φp, and notice that φ̃(Tm) ⊆ Tm. Recall that the decomposed matrix

B = Mψ ⊕ B1 ⊕ · · · ⊕ Bp−1 guaranteed by Theorem 4.4 of [4], will have row and column order

agreeing with the vertex order U,T0,T1, . . . ,Tp−1. Thus, to show that φ̃ is an automorphism of B,

we need only demonstrate that each φ̃|Tm is an automorphism on Bm (see Theorem 3.4). Recall that

Bm =

p−1∑
j=0

ωm jM[T0,T j],

Thus, if a, b ∈ Tm, and we wish to calculate the (a, b) entry in Bm, we must examine the corre-

sponding entries in M which come from T0 and T j. This is expressed in the first equality below:

Bm(φ̃|Tm(a), φ̃|Tm(b)) =

p−1∑
j=0

ωm jM(ψ−mφ̃(a), ψ j−mφ̃(b)) =

p−1∑
j=0

ωm jM(φpψ−m(a), φpψ j−m(b))

=

p−1∑
j=0

ωm jM(ψ−m(a), ψ j−m(b)) = Bm(a, b)

where the second equality holds because ψ = φq, and the third equality is the defining property of

automorphism compatible matrices. Thus, φ̃ is an automorphism on each Bm and subsequently, φ̃

is an automorphism on B, the decomposition of M.

The equality below similarly shows that φ̃ is an automorphism of the vertices (a, b) that appear

in Mψ (those in U ∪ T0).
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Mψ(φ̃(a), φ̃(b)) = Mψ(φp(a), φp(b)) =

|Oψ(b)|∑
m=1

M(φp(a), φqm+p(b))

=

|Oψ(b)|∑
m=1

M((a), φqm(b)) = Mψ(a, b).

To show the final equality in Proposition 3.6, we consider a semi-transversal T̃0 of φ̃ and the

set of vertices fixed by φ̃ (which we call Ũ). Then for vertices a and b in Ũ ∪ T̃0 we find that

Mφ(a, b) =
∑

s∈Oφ(b)

M(a, s) =
∑

m∈Oφ̃(b)

 ∑
s∈Oψ(m)

M(a, s)

 =
∑

s∈Oφ̃(b)

Mψ(a, s) = (Mψ)φ̃(a, b).

The second equality holds because

Oφ(s) =
⋃

t∈Oφ̃(S )

Oψ(t)

Hence, Mφ = (Mψ)φ̃. �

Thus, for any automorphism φ ∈ Aut(G) of order pq = ` where p is prime and p - q, we

can equitably decompose an automorphism compatible matrix M over φq and subsequently create

another automorphism φ̃ associated with the decomposed matrix. In fact, if φ is separable then

we can repeat this process until we exhaust each of the distinct prime factors p0, p1, . . . , ph of `

where ` = p0 p1 · · · ph is the order of φ. This decomposition of the matrix M, is summarized in the

following theorem.

Theorem 3.7. (Equitable Decompositions Over Separable Automorphisms) Let φ be any separa-

ble automorphism of a graph G with automorphism compatible matrix M. Then there exists basic

automorphisms ψ1, . . . , ψh that induce a sequence of equitable decompositions on M, such that the

divisor matrix satisfies

Mφ = (. . . (Mψ0)ψ1 . . .)ψh .
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Proof. This follows from repeated use of Proposition 3.6. �

We now give an algorithm for decomposing a graph with respect to any of its automorphisms.

Performing Equitable Decompositions using Separable Automorphisms

For a graph G with automorphism compatible matrix M and separable automorphism φ of

order ` with prime factorization ` = p0 p1 · · · ph, set M(0) = M, `0 = `, and φ0 = φ. We

perform h + 1 sequential decompositions of M, one for each prime in our factorization.

Thus we will run through Steps a-c h + 1 times to fully decompose the matrix. To begin

we start with i = 0, and move to Step a.

Step a: Let `i+1 = `i/pi. Form the basic automorphism ψi = φ`i+1
i of order pi.

Step b: Perform an equitable decomposition of M(i) over ψi as in Theorem 3.4 by choosing

a semi-transversal T0 of the pi-orbits of ψi according the the method set out in Proposition

3.6 and setting U to be the set of all vertices fixed by ψi. Let M̃(i) be the matrix ob-

tained from M(i) by permuting the rows and columns to agree with the new vertex order:

U,T0,T1, . . . ,Tpi−1. Then define

M(i + 1) = S M̃(i)S −1 = M̃(i)ψi ⊕ B(i)1 ⊕ B(i)2 ⊕ · · · ⊕ B(i)pi−1

Step c: Define φi+1 = φ̃i = (φi)pi as described in the proof of Proposition 3.6. If i < h, then

set i = i + 1 and return to Step a. Otherwise, the decomposition is complete.

Remark. Each occurrence of Step b requires choosing a semi-transversal T0 and setting up a new

fixed set U (determined by ψi). By slight abuse of notation we will simply reuse the same notation

for each ‘round’, forgetting the previously used semi-transversals and fixed vertex sets.

The procedure described in Steps a–c allows one to sequentially decompose a matrix M over any

of its separable automorphisms. By extension we refer to the resulting matrix as an equitable
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1

5

7

6

8

10

9

2

43

A =



0 1 0 0 1 0 0 1 0 0
1 0 1 1 1 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
1 1 0 0 0 1 1 1 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
1 1 0 0 1 0 0 0 1 1
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0


Figure 3.1: The graph G considered in Example 3.8 with automorphism φ = (2, 5, 8)
(3, 6, 9, 4, 7, 10) and adjacency matrix A = A(G).

decomposition of M over φ. The following example illustrates an equitable decomposition over a

separable automorphism that is not basic.

Example 3.8. Consider the graph G in Figure 3.1 whose adjacency matrix A = A(G) is also shown,

which has the separable automorphism

φ = (2, 5, 8)(3, 6, 9, 4, 7, 10). (3.5)

The automorphism φ has order ` = 6 = 3 · 2. Since ` factors into two primes we will proceed

through Steps a-c two times to equitably decompose the adjacency matrix A with respect to φ.

Round 1: Let A(0) = A, φ0 = φ, `0 = 6, and p0 = 3.

Step a: Note that `1 = 2 and ψ0 = φ2
0 = (2, 8, 5)(3, 9, 7)(4, 10, 6), which is a basic automorphism of

order p0 = 3.

Step b: To choose a semi-transversal T0 of ψ0, we select vertices 2 and 3 from the orbits of φ0,

and add φ3
0(3) = 4 to T0 as well (following the method for choosing semi-transversals set out in

Proposition 3.6. Then T1 = {8, 9, 10} and T2 = {5, 7, 6}, with U = {1}. We let Ã be the matrix

obtained from A by permuting the rows and columns to agree with the vertex order U,T0,T1,T2 =

1, 2, 3, 4, 8, 9, 10, 5, 7, 6 (in this case Ã = A). Using Theorem 3.4, we have
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Ã(0)0 = Ã [T0,T0] =


0 1 1

1 0 0

1 0 0

 , Ã(0)1 = Ã [T0,T1] =


1 0 0

0 0 0

0 0 0

 = Ã(0)2,

and F(0) = Ã(0)
[
T f ,T f

]
=

[
0
]
, H(0) = L(0)T =

[
1 0 0

]

from which the matrices

Ã(0)ψ0 =

F(0) p0H(0)

L(0) B(0)0

 =



0 3 0 0

1 2 1 1

0 1 0 0

0 1 0 0


, B(0)1 = B(0)2 =


−1 1 1

1 0 0

1 0 0

 (3.6)

A(1) =


Ã(0)ψ0 0 0

0 B(0)1 0

0 0 B(0)2


can be constructed.

Step c: Next, we derive φ1 = φ̃0 = (φ0)p0 = (3, 4)(6, 7)(9, 10). And notice that

φ1|T0 = (3, 4), φ1|T1 = (9, 10), and φ1|T2 = (6, 7).

where φ1 is the automorphism associated with A(1) guaranteed by Proposition 3.6. Since ` factors

into two primes we proceed to Round 2.

Round 2: A(1) and φ1 have been computed, `1 = 2, and p1 = 2.

Step a: Since `2 = 1 then ψ1 = φ1 = (3, 4)(6, 7)(9, 10), which is a basic automorphism of order

p1 = 2.
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Step b: We choose the semi-transversal T0 = {3, 6, 9} which causes T1 = {4, 7, 10}. Note that the

set of fixed points is U = {1, 2, 5, 8}. Now, we create the matrix Ã(1) from A(1) by reordering the

rows and columns to agree with the order U,T0,T1 = 1, 2, 5, 8, 3, 6, 9, 4, 7, 10. By decomposing

the matrix Ã(1) as is Theorem 3.4 we have

Ã(1)0 = Ã(0) [T0,T0] =


0 0 0

0 0 0

0 0 0

 , Ã(1)1 = Ã(0) [T0,T1] =


0 0 0

0 0 0

0 0 0

 ,

F(1) = Ã(0)
[
T f ,T f

]
=



0 3 0 0

1 2 0 0

0 0 −1 0

0 0 0 −1


, and H(1) = L(1)T = Ã(0)[T0,T f ] =



0 0 0

1 0 0

0 1 0

0 0 1


from which we can construct the matrices

B(1)0 =


0 0 0

0 0 0

0 0 0

 , B(1)1 =


0 0 0

0 0 0

0 0 0

 and A(2) =


F(1) p1H(1) 0

L(1) B(1)0 0

0 0 B(1)1

 .

Step c: The matrix A(2) is now decomposed into blocks, and in this final step there is no need to

find φ2 since the decomposition is complete.

Thus, our final decomposition is the matrix A(2). To see the block diagonal form of A(2) we

permute the rows and columns with a permutation matrix P to put the associated vertices back in

the original order. The result is the matrix PA(2)P−1 which equals
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P



0 3 0 0 0 0 0 0 0 0

1 2 0 0 2 0 0 0 0 0

0 0 −1 0 0 2 0 0 0 0

0 0 0 −1 0 0 2 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0



P−1 =



0 3 0 0 0 0 0 0 0 0

1 2 2 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 −1 2 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 2 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0


We can see in the final decomposition, that the (twice) decomposed divisor matrix is found in

the first block (Aψ0)ψ1 =


0 3 0

1 2 2

0 1 0

, which is the divisor matrix Aφ associated with the equitable

partition of A induced by φ.

3.4 Equitable Decompositions over Prime-Power Automorphisms

One might naively believe that we could also use the method described in the previous section to

completely equitably decompose a matrix with an automorphism whose order is pN , by repeating

the process as was outlined but using the same prime number on subsequent steps. The following

is an example showing this method does not work in general and demonstrating a need for a more

sophisticated method to decompose matrices over automorphisms of order pN .

Example 3.9. Consider the following matrix and its corresponding adjacency graph in Figure 3.2.

We attempt to follow the recursive method of equitable decompositions for separable automor-

phisms found in the previous section by first forming a new automorphism
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4

5

6

7

89

10

11

12

3

2

1



0 1 1 1 0 0 1 0 0 1 0 0
1 0 1 0 1 0 0 1 0 0 1 0
1 1 0 0 0 1 0 0 1 0 0 1
1 0 0 0 1 0 1 0 0 1 0 1
0 1 0 1 0 1 0 1 0 0 1 0
0 0 1 0 1 0 1 0 1 0 0 1
1 0 0 1 0 1 0 1 0 1 0 0
0 1 0 0 1 0 1 0 1 0 1 0
0 0 1 0 0 1 0 1 0 1 0 1
1 0 0 1 0 0 1 0 1 0 1 0
0 1 0 0 1 0 0 1 0 1 0 1
0 0 1 1 0 1 0 0 1 0 1 0


Figure 3.2: The graph G on 12 vertices and its adjacency matrix with automorphism φ = (1, 2, 3)
(4, 5, 6, 7, 8, 9, 10, 11, 12).

ψ = φ3 = (4, 7, 10)(5, 8, 11)(6, 9, 12). The first decomposition gives a direct sum of smaller matri-

ces with the associated digraphs found in Figure 3.3.

0 1 1 3 0 0
1 0 1 0 3 0
1 1 0 0 0 3
1 0 0 2 1 1
0 1 0 1 2 1
0 0 1 1 1 2


⊕

 ω + ω2 1 ω2

1 ω + ω2 1
ω 1 ω + ω2

 ⊕
 ω + ω2 1 ω

1 ω + ω2 1
ω2 1 ω + ω2



1

2 3

4

5 6

11

1

22

2

31

3

1

3

1

1 1

1

2

3 1

1

ω
−1−1

−1

ω2

1 1
1

2

3 1

1

ω2
−1−1

−1

ω

1 1
1

Figure 3.3: The decomposition of the graph G on 12 vertices using the basic automorphism ψ =

(4, 7, 10), (5, 8, 11), (6, 9, 12).
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While there is an automorphism of order three which acts on the first “piece” of the decomposed

matrix, there is no automorphism permuting all of the vertices of G as φ does. Thus, if we continue

the recursive process in this example, we fail to account for part of the symmetry found in φ.

This decomposition was done using the transversal T0 = {4, 8, 12}. One may wonder if a different

choice of semi-transversal could give better results. However, simple computations demonstrate

that any choice of transversal yields a similarly unsatisfying conclusion. Thus we conclude that

the methods contained in Section 3.3 cannot be used to completely decompose examples like this.

In this section we give a step-by-step method for decomposing a graph over any of its au-

tomorphisms φ of order pN for some prime p and N ≥ 1, which we refer to as a prime-power

automorphism. (We note that if N = 1 then φ is a basic automorphism.) This result will allow us

in the following section to describe the general case of an equitable decomposition of a graph over

any of its automorphisms.

To show how a graph can be equitably decomposed over a prime-power automorphism we

require the following lemma. The lemma describes a special case in which it is possible to com-

pletely equitably decompose a matrix given it has a particular form. Later in Proposition 3.11

we will show that, in fact, the situation prescribed in this lemma is the general case. That is any

graph with a prime powered automorphism can be labeled in such a way that its corresponding

adjacency matrix has the special form prescribed in Lemma 3.10 . By combining these results

we will be able to give an algorithm in this section for equitably decomposing a graph over any

prime-powered automorphism.

Lemma 3.10. For a prime p and N ≥ 2 let M be the ( f + rpN) × ( f + rpN) block matrix
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M =



F H H H · · · H

L

L

L C
...

L



, (3.7)

where F is an f × f matrix, H is an f × rpN−1 matrix, L is an rpN−1 × f matrix, and C is an

rpN × rpN matrix. Suppose that the matrix C can be partitioned in two ways:

C =



C0 C1 C2 · · · CpN−1

CpN−1 C0 C1 · · · CpN−2

CpN−2 CpN−1 C0 · · · CpN−3

...
...

...
...

C1 C2 C3 · · · C0


=



D0 D1 D2 · · · Dp−1

Dp−1 D0 D1 · · · Dp−2

Dp−2 Dp−1 D0 · · · Dp−3

...
...

...
...

D1 D2 D3 · · · D0


(3.8)

where each Di block is of size rpN−1 × rpN−1, and each C j of is size r × r. Then there exists an

( f + rpN) × ( f + rpN) invertible matrix T such that

T−1MT = M̃ ⊕ B1 ⊕ B2 ⊕ · · · ⊕ BpN−pN−1 , (3.9)

with

M̃ =

 F pH

L B0

 , B0 =

p−1∑
m=0

Dm, and B j =

pN−1∑
m=0

ωγ jmCm for j = 1, 2, . . . , pN − pN−1, (3.10)

where γ j are elements of {1, 2, . . . , pN − 1} which are not multiples of p. Consequently,

σ(M) = σ
(
M̃

)
∪ σ(B1) ∪ σ(B2) ∪ · · · ∪ σ(BpN−pN−1).
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We refer to any matrix which has the form of the first equality in Equation (3.8) block-circulant.

A matrix which has the form of C which is block-circulant for two different sized block partitions

is called double block-circulant.

Proof. Before we begin let us establish some useful identities involving roots of unity. Let ω =

e2πi/pN
, and γ and γ′ be integers that are both relatively prime to p with 0 < γ < γ′ < pN . Thus ωγ

is a primitive pN-root of unity. Using the fact that
∑pN−1

k=0 (ωγ)km = 0 if pN does not divide m it is

trivial to prove the following identities for any integer a

p−1∑
m=0

ωγ(mpN−1+a) = 0, and
pN−1∑
m=0

ωm(γ−γ′) = 0. (3.11)

Let S be the rpN × rpN−1(p − 1) block matrix written below in r × r blocks:

S =



Ir Ir . . . Ir

ωγ1 Ir ωγ2 Ir . . . ωγρ Ir

ω2γ1 Ir ω2γ2 Ir . . . ω2γρ Ir

...
...

...

ω(pN−1)γ1 Ir ω(pN−1)γ2 Ir . . . ω(pN−1)γρ Ir


, (3.12)

where ω = e2πi/pN
, and ωγ1 , ωγ2 , . . . , ωγρ are the pN − pN−1 generators of the cyclic group of the

pN-roots of unity. We let T be the block matrix

T =



I f 0 0

IrpN−1

0 IrpN−1 S
...

IrpN−1


, (3.13)
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let R =

[
IrpN−1 IrpN−1 · · · IrpN−1

]
, and consider the product


I f 0

0 1
pR

0 1
pN S ∗


 I f 0 0

0 RT S

 =


I f 0 0

0 1
pRRT 1

pRS

0 1
pN S ∗RT 1

pN S ∗S


,

where S ∗ is the conjugate transpose of S . The matrix RS is a pN−1 × pN r-block matrix where the

(a, b)th block is given by

Ir

p−1∑
m=0

ωγb(mpN−1+a−1) = 0,

using Equation (3.11). Therefore RS = 0 and similarly, S ∗RT = 0.

Next we consider S ∗S as a block matrix with r × r blocks where the (a, b)th block has the form

Ir

pN−1∑
m=0

ωm(γb−γa) =


pN Ir if a = b

0r if a , b.


So, S ∗S = pN I, and therefore

T−1 =


I f 0

0 1
pR

0 1
pN S ∗


.

Next we show that performing a similarity transformation using T gives the equitable de-

composition in Equation (3.9). Let M be the matrix given in Equation (3.7). Then with P =

[H H · · · H] and Q = [LT LT · · · LT ]T , we have

T−1MT =


I f 0

0 1
pR

0 1
pN S ∗


 F P

Q C


 I f 0 0

0 RT S

 =


F PRT PS

1
pRQ 1

pRCRT 1
pRCS

1
pN S ∗Q 1

pN S ∗CRT 1
pN S ∗CS


.
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It is straightforward to verify that

PRT = pH, RQ = pL, and RCRT = p
p−1∑
m=0

Dm = pB0.

To show that PS = 0, we break P into f × r blocks Hi and observe that Hi = Hi+pN−1 for 0 ≤ i ≤

pN − pN−1 − 1. The kth f × r block in the product PS is given by

pN−1−1∑
i=0

Hi

p−1∑
m=0

ωγk(mpN−1+i) = 0,

as in Equation (3.11). A similar calculation shows that S ∗Q = 0. Next we consider the matrix

product RCS . The (a, b)th block has the form

pN−1∑
m=0

Cmω
(m+a−1)γb

p−1∑
j=0

ωγb( jpN−1) = 0

using Equation (3.11) (with a = 0). Thus RCS = 0 and similarly S ∗CRT = 0.

We then calculate S ∗CS . The (a, b)th r × r block of S ∗CS is given by

pN−1∑
n=0

pN−1∑
m=0

Cmω
(m+n)γaω−nγb =


pN

pN−1∑
m=0

Cmω
mγa = pN Ba if a = b

pN−1∑
m=0

Cmω
mγa

pN−1∑
n=0

ωn(γa−γb) = 0 if a , b,

using Equation (3.11) for entries where a , b. Thus,

S ∗CS = B1 ⊕ B2 ⊕ . . . ⊕ BpN−pN−1 .

Finally, we have

T−1MT =

 F pH

L B0

 ⊕ B1 ⊕ B2 ⊕ . . . ⊕ BpN−pN−1

and the result follows.
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Our goal is to show that if a graph has a prime-power automorphism φ then any automorphism

compatible matrix M of the graph has the form given in Equation (3.7) if we choose the transversal

of the automorphism correctly.

Proposition 3.11. Let G be a graph with automorphism φ of order pN for some prime p and

integer N > 0. Let T0 be a transversal of the orbits of length pN of φ, and let T̃0 be a transversal

of the orbits of φp when restricted to only vertices contained in orbits of maximal size given by

T̃0 =
⋃pN−1−1

m=0 Tm . Let M be an automorphism compatible matrix on G and set

TF = {v ∈ V(G) | |Oφ(v)| < pN}, f = |TF |, F = M[TF ,TF],

H = M[TF , T̃0], L = [T̃0,TF], Cm = M[T0,Tm], and Ds = M[T̃0, T̃s].

Then there is a permutation similarity transformation of M which is the matrix in Equation (3.7)

satisfying the conditions of Lemma 3.10.

Proof. Let r be the number of orbits of length pN , thus |Tk| = r, and |T̃k| = rpN−1. Permute the

rows and columns of M so that they are labeled in the order TF ,T0,T1, ...,TpN−1 and let C be the

principal submatrix consisting of the last rpN rows and columns of M. Also let

TC = T0 ∪ T1 ∪ . . .TpN−1. (3.14)

Notice that φ|TC : TC → TC. Hence, C is compatible with φ|TC , since

M[Ts,Tt] = M[φ(Ts), φ(Tt)] =



M[Ts+1,Tt+1] if s, t , pN − 1

M[T0,Tt+1] if s = pN−1, t , pN − 1

M[Ts+1,T0] if s , pN−1, t = pN − 1

M[T0,T0] if s, t = pN − 1

Thus C is a block-circulant matrix made up of r × r blocks.
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Since C is automorphism compatible with φ|TC , C must also be automorphism compatible with

φpN−1
|TC . Thus

M[T̃s, T̃t] = M[φpN−1
(T̃s), φpN−1

(T̃t)] =



M[T̃s+1, T̃t+1] if s, t , p − 1

M[T̃0, T̃t+1] if s = p − 1, t , p − 1

M[T̃s+1, T̃0] if s , p − 1, t = p − 1

M[T̃0, T̃0] if s, t = p − 1

implying C is also block circulant with rpN−1 × rpN−1 blocks.

Notice that φpN−1
fixes T f , so that

H = M[TF , T̃0] = M[φmpN−1
(TF), φmpN−1

(T̃0)] = M[TF , T̃m], and

L = M[T̃0,TF] = M[φmpN−1
(T̃0), φmpN−1

(TF)] = M[T̃m,TF].

Thus, M has the form as required in Lemma 3.10. �

Given a graph G with a prime-powered automorphism φ our goal is to equitably decompose

this graph, or equivalently the associated automorphism compatible matrix M, by sequentially

decomposing M into smaller and smaller matrices. The way we do this is to first use Lemma 3.10

and Proposition 3.11 to decompose M into the product

M̃ ⊕ B1 ⊕ B2 ⊕ · · · ⊕ BpN−pN−1

as in Lemma 3.10. By virtue of the way in which this decomposition is carried out the smaller

matrix M̃ also has a “smaller” automorphism ψ that can similarly be used to decompose the matrix

M̃.

Proposition 3.12. Assume the graph G, the matrix M, and the automorphism φ satisfy the condi-

tions in Proposition 3.11. Then there exists an automorphism ψ ∈ Aut(M̃) of order pN−1 where
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M̃ =

 F pH

L B0


is the matrix described in Lemma 3.10.

Proof. Let M be the automorphism compatible matrix with the correct ordering:

TF ,T0,T1, . . . ,TpN−1 . Recall that under this vertex ordering, each orbit of maximal length of φ looks

like

Oφ(i) = (i, i + r, i + 2r, . . . , i + rpN).

We define a map ψ on TF ∪ T̃0 (where T̃0 is defined in Proposition 3.11) by

ψ(i) =


φ(i) i < TpN−1−1

φ1−pN−1
(i) otherwise.

It is straightforward to verify that φ(TF) = TF , φk(Tm) = Tk+m, so that ψ : TF ∪ T̃0 → TF ∪ T̃0.

We wish to show for all i, j ∈ TF ∪ T̃0 that M̃(ψ(i), ψ( j)) = M̃(i, j). To do this we first consider

the case where i or j is in TF . For ε1, ε2 ∈ {0, 1}, M̃(ψ(i), ψ( j)) is equal to the quantities below in

the cases indicated.

M(φ(i), φ( j)) = M(i, j) = M̃(i, j) i ∈ TF j ∈ TF

M̃(φ(i), φ1−ε1 pN−1
( j)) = M̃(φ(i), φ( j)) = pM(φ(i), φ( j)) = pM(i, j) = M̃(i, j) i ∈ TF j < TF

M̃(φ1−ε2 pN−1
(i), φ( j)) = M̃(φ(i), φ( j)) = M(φ(i), φ( j)) = M(i, j) = M̃(i, j) i < TF j ∈ TF

The first equalities in the second and third cases are valid because of the block circulant nature of

M, as described in Proposition 3.11 and Lemma 3.10.
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Finally, we consider the case where neither i nor j is in TF . Then for ε1, ε2 ∈ {0, 1},

M̃(ψ(i), ψ( j)) = M̃(φ1−ε1 pN−1
(i), φ1−ε2 pN−1

( j)) =

p−1∑
m=0

M(φ1−ε1 pN−1
(i), φ1+(m−ε2)pN−1

( j))

=

p−1∑
m=0

M(i, φ(m+ε1−ε2)pN−1
( j)) =

p−1∑
m=0

M
(
i,
(
φpN−1)m

( j)
)

= M̃(i, j),

where the second to last equality is true because the sum passes through all p distinct powers of

φN−1 exactly once, and the addition of ε1 and ε2 only changes the order in which this happens. �

Each time we use Propositions 3.11 and 3.12 on a matrix M with automorphism φ of order

|φ| = pN we obtain a smaller matrix M̃ with automorphism ψ of order |ψ| = pN−1. It is in fact

possible to sequentially repeat this process until we “run out” of powers of p. The result is the

equitable decomposition of the graph G over φ.

Theorem 3.13. (Equitable Decompositions over Prime-Powered Automorphisms) Suppose G is a

graph with automorphism φ where |φ| = pN for some prime p and N ≥ 1. If M is an automorphism

compatible matrix of G then by repeated application of Propositions 3.11 and 3.12, we obtain the

equitable decomposition

Mφ ⊕ M̂1 ⊕ M̂2 ⊕ · · · ⊕ M̂N ,

where Mφ is the divisor matrix associated with φ and M̂i =
(

iB1 ⊕ iB2 ⊕ · · · ⊕ iBpN−i+1−pN−i

)
where

iB j has size ri × ri, where ri is the number of orbits of φ with length greater than or equal to pN−i+1

and for 1 ≤ j ≤ pN−i+1 − pN−i

Proof. By Proposition 3.11 and Lemma 3.10 we can decompose M into M1 = M̃ ⊕ M̂, where

M̃1 = M̃ and M̂1 =1 B1 ⊕1 B2 ⊕ · · · ⊕1 BpN−pN−1 . Also let ψ be the automorphism of M̃1 as in

Proposition 3.12.

Next we will use ψ to decompose M̃1. We pick a transversal T0 of the orbits of maximal

length of ψ, and TF which will contain all the indices belonging to orbits of length less than pN−1.

If we perform a permutation similarity transformation on M1 so that our indices now appear in
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the order T f ,T0, . . . ,TpN−1 , we can use Proposition 3.11, and Lemma 3.10 to complete another

decomposition. We repeat this process N times.

We need to show that the block matrix M̃N appearing in the upper left portion of the final

decomposition satisfies M̃N = Mφ, where Mφ is the divisor matrix obtained from an equitable

partition of the original matrix M using the orbits of φ as the partition set. To do so, recall that

Mφ(i, j) =
∑

r∈Oφ( j)

Mi,r.

It is easy to verify that each of the indices of the rows and columns of M̃N correspond to a distinct

orbit of length pk.

Suppose that j is an index appearing in M̃N and in an orbit of length pk for some k > 0. Then

in the first N − k decompositions, j will be placed in the set TF . Thus, if M̃κ−1 is the matrix

created at the end of the (κ − 1)th decomposition and M̃ is the matrix created at the end of the κth

decomposition, and 1 ≤ κ ≤ N − k, then M̃κ(i, j) = M̃κ−1(i, j) = M(i, j).

We consider the (N − k + 1)th decomposition, which begins with an automorphism of order pk.

Examining the formulas in Equation (3.9) gives

M̃N−k+1(i, j) =

p−1∑
m=0

M(i, φmpk−1
( j)).

The next decomposition will yield

M̃N−k+2(i, j) =

p−1∑
m2=0

M̃N−k+1(i, φm2 pk−2
( j)) =

p−1∑
m2=0

p−1∑
m1=0

M(i, φm1 pk−1+m2 pk−2
( j)).

Thus, the entries in M̃N are determined by

M̃N =

p−1∑
m1,m2,...,mk=0

M(i, φm1 pk−1+m2 pk−2+...+mk( j)) =
∑

r∈Oφ( j)

Mi,r.

�
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We note here that in the case that N = 1, this process is exactly the same as the algorithm

discussed in Section 3.3 for equitably decomposing over a basic automorphisms.

According to Theorem 3.13 it is possible to equitably decompose a graph over any of its prime-

power automorphisms. Although this is true it is likely unclear at this point how this type of

decomposition can be carried out. What follows is an algorithm detailing the steps involved in this

process.

Performing Equitable Decompositions Using Prime-Power Automorphisms

For a graph G with automorphism compatible matrix M and automorphism φ with |φ| =

pN , set M0 = M, and φ1 = φ. To begin we start with i = 1, and start with Step a.

Step a: Choose TF to be all elements of the graph G which are contained in orbits of φi

with length less than pN−i+1. Choose T0 to be a transversal of all orbits of φi with length

equal to pN−i+1, and let

T̃0 = {T0, φi(T0), φ2
i (T0), . . . , φpn−i

i (T0)}

and use this T0 and T̃0 to order your matrix Mi as in Proposition 3.11.

Step b: Form the T matrix as described in Lemma 3.10. Perform the equitable decompo-

sition of Mi via a similarity transformation and define

Mi+1 = T MiT−1.

Step c: Extending the definition of ψ in the method described in the proof of Proposition

3.3, we define φi+1 by

φi+1(k) =



φi(k) k ∈ T f ∪ T0 ∪ T1 ∪ · · · ∪ T`i+1−1

φ1−`i+1
i (k) k ∈ T`i+1

k otherwise.

(3.15)

If i < N, then set i = i + 1 and return to step (a), otherwise the decomposition is complete.
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To demonstrate how this algorithm is applied we consider the following example. The example

we consider is the graph and automorphism shown in Figure 3.2, which we are now able to fully

decompose.

Example 3.14. Consider the graph shown in Figure 3.2 previously considered in Example 3.9.

Here, φ = φ1 is the automorphism φ1 = (1, 2, 3)(4, 5, 6, 7, 8, 9, 10, 11, 12), which has order 9 = 32.

Thus we will run through steps (a)-(c) in our algorithm twice.

Note that the matrix M has the form guaranteed by Proposition 3.11. Following the initial steps to

equitably decompose M we set i = 1.

Round 1

Step (a): We choose TF = {1, 2, 3} and T0 = {4}, which gives us T̃0 = {4, 5, 6}. Thus the adjacency

matrix M for G given in Figure 3.2 is already ordered appropriately.

Step (b): Following Proposition 3.11, we can perform an equitable decomposition, which gives

M2 =



2 1 1 1 0 0

1 2 1 0 1 0

1 1 2 0 0 1

3 0 0 0 1 1

0 3 0 1 0 1

0 0 3 1 1 0



⊕ [λ1] ⊕ [λ2] ⊕ [λ3] ⊕ [λ4] ⊕ [λ5] ⊕ [λ6]

where (with ω = e
2πi
9 )

λ1 = ω + ω3 + ω6 + ω8 ≈ −0.652,

λ2 = ω2 + ω6 + ω12 + ω16 ≈ −2.879,

λ3 = ω4 + ω12 + ω24 + ω32 ≈ 0.532,

λ4 = ω5 + ω15 + ω30 + ω40 ≈ 0.532,

λ5 = ω7 + ω21 + ω42 + ω56 ≈ −2.879,

λ6 = ω8 + ω24 + ω48 + ω64 ≈ −0.652,
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which are six eigenvalues of the adjacency matrix M. The associated adjacency graph is shown in

Figure 3.4.

1

2 3

4

5 6

11

1

22

2

31

3

1

3

1

1 1

1

7

λ1

8

λ2

9

λ3

10

λ4

11

λ5

12

λ6

Figure 3.4: The decomposition of the graph G on 12 vertices using the method outlined in Propo-
sition 3.11 after Round 1.

Step (c): Now we form our new automorphism to act on the matrix M̃2. This is the automor-

phism φ2 = (1, 2, 3)(4, 5, 6) constructed using Equation 3.15. Now, we then set i = 2 and return to

Step (a).

Round 2

Step (a): First we choose T f = ∅ and T0 = {1, 4}. In this step we have T̃0 = {1, 4}.

Step (b): We reorder the rows and columns of M̃2 to correspond to our transversals. The relevant

block matrices are

C0 =

 0 3

1 2

 ,C1 = C2 =

 1 0

0 1


Performing the equitable decomposition as described in Proposition 3.11 gives

M3 =

2 3

1 4

 ⊕
 −1 3

1 1

 ⊕
 −1 3

1 1

 ⊕ [λ1] ⊕ [λ2] ⊕ [λ3] ⊕ [λ4] ⊕ [λ5] ⊕ [λ6] (3.16)

with associated adjacency graph in Figure 3.5.
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Figure 3.5: The decomposition of the graph G on 12 vertices using the method outlined in Propo-
sition 3.11 after Round 2.

Step (c): Because i = 2, the decomposition is complete and there is no need to find φ2.

It is worth noting that in this equitable decomposition we have recovered the divisor matrix of

the equitable partition associated with the prime-power automorphism φ. This is the matrix

2 3

1 4


seen in Equation (3.16).

3.5 General Equitable Decompositions

Typically the order of an automorphism φ of a graph G will not be prime-powered. That is it will

have the order φ = pN` where the prime p does not divide `. In this case Theorem 3.13 nor any

previous result guarantees that it is possible to create an equitable decomposition of G with respect

to φ. In this section we show that this can, in fact, be done.

Remark. When performing an equitable decomposition of a graph using an automorphism φwhose

order is not prime-powered (say, |φ| = pN`), our strategy will be to create an automorphism ψ = φ`

of order pN and follow the procedure set out in Theorem 3.13. In order to guarantee that the

resulting decomposed matrix still has an automorphism of order `, we must restrict our method of

choosing transversals. This is done using the following rules:

• If a ∈ V(G) was chosen to be in T0 in a previous round, a must appear in T0 in the next round

as well.
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• If a ∈ V(G) is chosen to be in T0 in a certain round, and |Oφ(a)| = pkm, then φpk
(a), φ2pk

(a), . . .,

φ(m−1)pk
(a) must also be in T0.

Proposition 3.15. Let φ be an automorphism of a graph G with automorphism compatible matrix

M. Suppose that φ has order pN`, with p a prime which does not divide `. Then ψ = φ` is

an automorphism of G of order pN . Moreover, it is possible to construct an automorphism φ̃

associated with the equitable decomposition of M over ψ of order ` such that the divisor matrix

Mφ = (Mψ)φ̃.

Proof. Let M be an automorphism compatible matrix of the graph G and φ ∈ Aut(G) of order

|φ| = pN` where p is a prime that does not divide `. Then ψ = φ` has order pN , which allows us to

use Theorem 3.13 to decompose M with respect to this automorphism.

To carry out this decomposition we follow the procedure outlined in the previous propositions

and theorems, choosing our transversals according to the guidelines in Remark 3.5.

Note that since pk and ` are relatively prime, there exist integers α and β such that 1 = `α+ pNβ.

We define our automorphism φ̃ : V(G)→ V(G) by

φ̃(a) = φ(1−`α)(a) = φpk(pN−k)β(a).

The second equality above demonstrates that φ̃ is closed on each Tm.

We now show that φ̃ is an automorphism of M̃k for each k = 0, . . . ,N.

By hypothesis, M = M̃0 is compatible with φ1−`α. We then assume that M̃k−1 is as well. Let

TF , T0, . . . ,Tpk−1 be defined in Round k of the decomposition. Note that since φ̃ is closed on each

transversal, a and φ1−`α(a) must both be in TF or neither, and if a ∈ Tm, then φ1−`α(a) must also be

an element of Tm. Thus, φ1−`α is a closed map on the indices of M̃k.

We wish to show that for any a, b ∈ TF ∪ T̃0,

M̃k(φ1−`α(a), φ1−`α(b)) = M̃k(a, b). (3.17)
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Lemma 3.10 and Proposition 3.11 give

M̃k(φ1−`α(a), φ1−`α(b)) =



M̃k−1(φ1−`α(a), φ1−`α(b)) if b ∈ TF

pM̃k−1(φ1−`α(a), φ1−`α(b)) if b < TF , a ∈ TF∑p−1
m=0 M̃k−1(φ1−`α(a), φm`pk−1

φ1−`α(b)) if b < TF , a < TF

=



M̃k−1(a, b) = M̃k(a, b) if b ∈ TF

pM̃k−1(a, b) = M̃k(a, b) if b < TF , a ∈ TF∑p−1
m=0 M̃k−1(a, φm`pk−1

(b)) = M̃k(a, b) if b < TF , a < TF .

All three cases give the desired result in Equation (3.17) because, by assumption, M̃k−1 is compat-

ible with φ̃.

We now consider the block matrices kB j in M̂k (cf. Theorem 3.13), setting i = N − k + 1 in the

kth decomposition and ω to be a primitive pith root of unity. Note that

kB j(φ̃(a), φ̃(b)) =

pi−1∑
m=0

ωmγ j M̃k−1(φ̃(a), φ`m(φ̃(b)) =

pi−1∑
m=0

ωmγ j M̃k−1(φ̃(a), φ̃ ◦ φ`m(b)

=

pi−1∑
m=0

ωmγ j M̃k−1(a, φ`m(b) =k B j(a, b)

since M̃k−1 is compatible with φ̃. Thus, φ̃ is an automorphism on the decomposed matrix Mk =

M̃k + M̂k for each k = 0, 1, . . . ,N. It is straightforward to verify that φ̃ has order ` on MN , since the

row and column indices in this matrix contain representatives from each orbit of φ.

Finally, we need to show by first decomposing M using ψ then using φ̃ the result is the divisor

matrix Mφ. To see this we assume that |Oφ(b)| = pkm and note that

(
Mφ`

)
φ̃

(a, b) =
∑

r∈Oφ̃(b)

Mφ`(a, r) =
∑

r∈Oφ̃(b)

∑
s∈O

φ`
(r)

M(a, s)
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Since Oφ̃(b) = {φ(1−`α)t(b) = φβpN−k pkt(b) | t = 0, . . . ,m} (since β is relatively prime to both p and m),

⋃
r∈Oφ̃(b)

Oφ`(r) = {φ`x ◦ φ(1−`α)t(b) | t = 0, . . . ,m, x = 0, . . . , pk}.

Thus we obtain
(
Mφ`

)
φ̃

(a, b) = Mφ(a, b), as desired.

�

By repeated application of Theorem 3.13 and Proposition 3.15 we can finally state the general

theorem of equitable decompositions.

Theorem 3.16. (Equitable Decompositions over Arbitrary Automorphisms) Let G be a graph, φ

be any automorphism of G, and M be an automorphism compatible matrix of G. Then there exists

an invertible matrix T that can be explicitly constructed such that

T−1MT = Mφ ⊕ B1 ⊕ B2 ⊕ · · · Bh−1 (3.18)

where Mφ is the divisor matrix associated with φ. Thus σ(M) = σ
(
Mφ

)
∪ σ(B1) ∪ σ(B2) ∪ · · · ∪

σ(Bh−1).

We now give an algorithm for completely decomposing a graph with respect to any of its

automorphisms.

Performing Equitable Decompositions of General Type

Let G be a graph with automorphism compatible matrix M and φ of order ` with prime factor-

ization ` = pN0
0 pN1

1 · · · p
Nh−1
h−1 . Initially set M0 = M, `0 = `, and φ0 = φ. We perform h sequential

decompositions of M, one for each prime in the factorization of `. To begin we start with i = 0,

and move to Step (a).

Step a: Let `i+1 = `i/pNi
i . Form the prime-power automorphism ψi = φ`i+1

i , which has order

pNi
i .
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Step b: Perform the Ni equitable decompositions of Mi using the algorithm described

in Section 3.4. Throughout this process we choose a semi-transversal as prescribed in

Remark 3.5. Finally we define Mi+1 to be the resulting matrix of the above algorithm.

Step c: Define φi+1 = φ̃i = φ1−`iα
i , where α is the integer chosen so that 1 = `i+1α + pNi

i β as

described in the proof of Proposition 3.15. If i < h, then set i = i + 1 and return to Step a.

Otherwise, the decomposition is complete.

The procedure described in Steps (a)–(c) allows one to sequentially decompose a matrix M over

any of its automorphisms. By extension we refer to the resulting matrix as an equitable decompo-

sition of M over φ. The following example illustrates an equitable decomposition over an automor-

phism that is neither basic, separable, nor prime-powered, i.e. an equitable partition that cannot be

done by any previously given algorithm.

Example 3.17. Consider the graph G shown in Figure 3.6. Here we consider its adjacency matrix

M.

Figure 3.6: The graph G with automorphism of order 12.

This graph has the automorphism

φ = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)(13, 14, 15, 16, 17, 18),
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which has order 12 = 22 · 3. Thus in the prime decomposition of |φ|, p0 = 2,N0 = 2 and p1 =

3,N1 = 1. Because there are two distinct prime factors in this prime decomposition we will go

through the steps (a)-(c) in our algorithm two times in order to fully decompose the graph G. We

start with i = 0, M0 = M, `0 = 12, and φ0 = φ.

Round 1

Step (a): We start with `1 = `0/pN0
0 = 12/22 = 3 so that

ψ0 = φ3
0 = (1, 4, 7, 10)(2, 5, 8, 11)(3, 6, 9, 12)(13, 16)(14, 17)(15, 18).

Step (b): Now we run though the algorithm given in Section 3.4 for decomposing a graph over a

prime-power automorphism. In this case we will require two rounds for the automorphism ψ0.

In Round 1 of this decomposition, we have three orbits of maximal length. When choosing our

semi-transversal T0, we are free to choose any element from the first orbit, but based on that choice

the other two elements of T0 are determined by the rules in Remark 3.5. We choose vertex 1 to be

in T0. Therefore T0 = {1, φ4
0(1), φ2·4

0 (1)} = {1, 5, 9}. Thus,

T0 = {1, 5, 9}, T1 = {4, 8, 12}, T2 = {7, 11, 3}, and T3 = {10, 2, 6}.

The remaining vertices are put into TF = {13, 14, 15, 16, 17, 18} since they are contained in orbits

of ψ0 whose order is not maximal. The relevant block matrices for this stage of the decomposition

are
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F =



0 1 0 0 0 1

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 1 0

0 0 0 1 0 1

1 0 0 0 1 0



, H = LT =



1 0 0 0 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 0 1


C0 = C2 =


0 0 0

0 0 0

0 0 0

 , C1 =


0 0 1

1 0 0

0 1 0

 , C3 =


0 1 0

0 0 1

1 0 0


D0 =

 C0 C1

C3 C0

 , D1 =

 C2 C3

C1 C2


The first round of this algorithm will result in a decomposed matrix M1 whose adjacency matrix

has the form,


F 2H

L
0 C1 + C3

C1 + C3 0

 ⊕


−i i

i 0 −i

−i i 0

 ⊕


i −i

−i 0 i

i −i 0

 .

The decomposed graph is shown in Figure 3.7. In the second iteration of the sub-algorithm, we

use Equation (3.15) to find the new automorphism

ψ1 = ψ2
0 = (1, 4)(5, 8)(9, 12)(13, 16)(14, 17)(15, 18),

which has six cycles of length two. We now must choose the semi-transversals for the next step.

We begin with T0 = {1, 5, 9} from the previous round. Now we are free to choose any element from

the orbits of length 21 of φ0, so we choose 13, and then add {13, φ2
0(13), φ2·2

0 (13)} = {13, 15, 17} to
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Figure 3.7: The decomposed graph G after one round of decomposing using automorphism
ψ0 = (1, 4, 7, 10) (2, 5, 8, 11)(3, 6, 9, 12)(13, 16)(14, 17)(15, 18). The weights of unidirectional and
bidirectional edges are equal to one unless otherwise stated.

T0. Thus we have

T0 = {1, 5, 9, 13, 15, 17} and T1 = {4, 8, 12, 16, 18, 14}.

Using these transversals, the relevant block matrices are
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F = H = L = ∅, C0 =



0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 1 0

2 0 0 0 0 0

0 0 2 0 0 0

0 2 0 0 0 0



, C1 =



0 1 1 0 0 0

1 0 1 0 0 0

1 1 0 0 0 0

0 0 0 0 1 1

0 0 0 1 0 1

0 0 0 1 1 0


So, the second round results in an adjacency matrix M2 with the corresponding weighted adja-

cency matrix



0 1 1 1 0 0

1 0 1 0 0 1

1 1 0 0 1 0

2 0 0 0 1 1

0 0 2 1 0 1

0 2 0 1 1 0



⊕



0 −1 −1 1 0 0

−1 0 −1 0 0 1

−1 −1 0 0 1 0

2 0 0 0 −1 −1

0 0 2 −1 0 −1

0 2 0 −1 −1 0



⊕


−i i

i 0 −i

−i i 0

⊕


i −i

−i 0 i

i −i 0

 (3.19)

with decomposed graphs given in Figure 3.8

Step (c): Now we have exhausted the decompositions that can be accomplished using p0 = 2. We

move to the prime p1 = 3, and notice that

1 = 1 · 4 + (−1) · 3.

Thus we now use the automorphism

φ1 = φ̃ = φ(1+3)
0 = (1, 5, 9)(2, 6, 10)(3, 7, 11)(4, 8, 12)(13, 17, 15), (14, 18, 16).

Round 2

Step (a): Now `2 = 1 and ψ1 = φ1
1. We begin with the matrix M0 equal to the matrix given in

equation (3.19).
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Figure 3.8: The decomposed graph G after the second round using ψ0 = (1, 4, 7, 10)(2, 5, 8, 11)
(3, 6, 9, 12)(13, 16)(14, 17)(15, 18).The weights of unidirectional and bidirectional edges are equal
to one unless otherwise stated.

Step (b): On this step we only need to run through the above algorithm once since the order of φ1

is three. It is worth mentioning that during this step we do not need to be worried about how we

choose the transversal for this decomposition because this is the final step and the transversal only

need to be carefully chosen to guarantee that the resulting decomposed graph contains a symmetry

for the next round. We choose the transversal T0 = {1, 2, 3, 4, 13, 14}, thus

T0 = {1, 13, 4, 14, 2, 3}, T1 = {5, 17, 8, 18, 6, 7}, and T2 = {9, 15, 12, 16, 10, 11}
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The relevant block matrices for this decomposition are

C0 =



0 1 0 0 0 0

2 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



, C1 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 −1 0 0 0

0 0 2 −1 0 0

0 0 0 0 i 0

0 0 0 0 0 i



C2 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 −1 1 0 0

0 0 0 −1 0 0

0 0 0 0 −i 0

0 0 0 0 0 −i


So, setting ω = e

2πi
3 the final matrix decomposition is

 2 1

2 2

 ⊕
 −2 1

2 −2

 ⊕ [0] ⊕ [0]⊕

 −1 1

2 −1

 ⊕
 1 ω2

2ω 1

 ⊕ [
√

3] ⊕ [
√

3]⊕

 −1 1

2 −1

 ⊕
 1 ω

2ω2 1

 ⊕ [−
√

3] ⊕ [−
√

3]

Step (c): There is no need to find φ2 since we cannot decompose this matrix any further.

Notice that the first matrix appearing in the above decomposition

 2 1

2 2

 is precisely the

divisor matrix associated with the original automorphism φ.

3.6 Eigenvectors and Spectral Radii Under Equitable Decompositions

Our first result in this section introduces the notion of an equitable decomposition of the eigenvec-

tors and generalized eigenvectors of a matrix M associated with a graph G. The following theorem

tells us how the eigenvectors of a matrix can be constructed from the collection of eigenvectors of

the smaller matrices which result from the similarity transformation described in Lemma 3.10.
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Theorem 3.18. (Eigenvector Decomposition) Let M be an n×n automorphism compatible matrix

of the graph G. For φ a prime-powered automorphism of G with f vertices in orbits with length

less than pN . Thus n = f + rpN . Let M̃⊕B1⊕ · · ·⊕BpN−pN−1 be the result of one step of an equitable

decomposition of M as described in Lemma 3.10. Suppose {um,` : 1 ≤ ` ≤ r} is a (generalized)

eigenbasis for Bm for 1 ≤ m ≤ pN− pN−1 and {u0,i : 1 ≤ i ≤ f +rpN−1} is a (generalized) eigenbasis

for M̃ and where each u0,i = wi ⊕ vi with wi ∈ C
f and vi ∈ C

rpN−1
. Then a (generalized) eigenbasis

of M is the set

{
0 f ⊕

 pN−1⊕
j=0

ωm jum,`

 ,wi ⊕

 p−1⊕
j=0

vi

 :1 ≤ m ≤ pN − pN−1, 1 ≤ ` ≤ r, (3.20)

1 ≤ i ≤ f + rpN−1, ω = e2πi/pN

}
.

Moreover, if xm,l = 0 f ⊕

pN−1⊕
j=0

ωm jum,l

 and x0,i = wi ⊕

 p−1⊕
j=0

vi

 then the following hold.

(i) If λm,` is the `th eigenvalue of Bm then λm,` ∈ σ(M) corresponds to the (generalized) eigenvector

xm,l.

(ii) If λ0,i is an eigenvalue of M̃ then λ0,i ∈ σ(M) corresponds to the (generalized) eigenvector x0,i.

Proof. Now according to Lemma 3.10, we can decompose M as

T−1MT = M̃ ⊕ B1 ⊕ B2 ⊕ · · · ⊕ BpN−pN−1 = B,

where M̃ =

 F kH

L B0

. Now let u be a (generalized) eigenvector of B corresponding to the

eigenvalue λ, so that (B − λI)t u = 0 for some positive integer t, where t > 1 if u is a generalized

eigenvector. We now consider the vector Tu which has the property that
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(M − λI)t Tu = (T BT−1 − λI)tTu

= (T (B − λI)T−1)tTu

= (T (B − λI)tT−1)Tu

= T (B − λI)tu

= 0.

Thus, Tu is a (generalized) eigenvector for M.

Because B is block diagonal, the (generalized) eigenvectors of B are either

(0T
f 0T

rpN−1 , 0T
r . . . uT

m,` . . . 0
T
r )T or (wT

i vT
i 0T

r . . . 0T
r )T where um,` is the mth component in this block

vector and represents the `th (generalized) eigenvector of Bm associated with eigenvalue λm,` and

wi ⊕ vi = u0,i, (wi ∈ C
f and vi ∈ C

rpN−1
), the ith (generalized) eigenvector of Mφ. Thus the (gener-

alized) eigenvectors of M are represented by

T



0 f

0rpN−1

0r

...

um,l

...

0r



=



I f 0 0 0 · · · 0

0 IrpN−1

0 IrpN−1

0 IrpN−1 S
...

0 IrpN−1





0 f

0rpN−1

0r

...

um,`

...

0r



=



0 f

um,`

ωmum,`

ω2mum,`

...

ωm(pN−1)um,`



= 0 f ⊕

k−1⊕
j=0

ωm jum,l

and
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T



wi

vi

0r

...

0r


=



I f 0 0 0 · · · 0

0 IrpN−1

0 IrpN−1

0 IrpN−1 S
...

0 IrpN−1





wi

vi

0r

...

0r


=



wi

vi

vi

...

vi


= wi ⊕

p−1⊕
j=0

vi.

Thus we have found n (generalized) eigenvectors of the original matrix M. In order to show this

is a complete (generalized) eigenbasis, we need to show that (3.20) is a set of linearly independent

vectors. To do so let E0 be the ( f + rpN−1)× ( f + rpN−1) matrix formed from the eigenbasis vectors

of the divisor matrix Mφ and let Ei for 1 ≤ i ≤ r be the r × r matrices formed from the eigenbasis

vectors of Bi, i.e E0 =
[
u0,1 u0,2 . . . u f +rpN−1

]
, Ei =

[
ui,1 ui,2 . . . ui,r

]
. Let E denote the matrix built

from the vectors in Equation (3.20) as the columns. Thus we can write E in the following block

form

E =



E0 0 0 0 . . . 0

V E1 E2 E3 . . . EpN−pN−1

V ωE1 ω2E2 ω3E3 . . . ωpN−pN−1
EpN−pN−1

V ω2E1 ω4E2 ω6E3 . . . ω2(pN−pN−1)EpN−pN−1

...
...

...
...

. . .
...

V ωk−1E1 ω2(k−1)E2 ω3(k−1)E3 . . . ω(pN−pN−1)2
EpN−pN−1



,

where V = [v1 v2 . . . vN+r]. Showing that the vectors in (3.20) are linearly independent, is

equivalent to showing that det E , 0. Here, we notice that
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det (E) = det


T



E0 0 0 . . . 0

0 E1 0 . . . 0

0 0 E2 . . . 0
...

...
...

. . . 0

0 0 0 . . . Ek−1




= det(T ) det



E0 0 0 . . . 0

0 E1 0 . . . 0

0 0 E2 . . . 0
...

...
...

. . . 0

0 0 0 . . . Ek−1


= det(T )

k−1∏
j=0

det(E j).

We have shown previously that the columns of T are orthogonal, thus det(T ) , 0. Also we chose

the columns of Ei, for 0 ≤ i ≤ pN − pN−1, to be generalized eigenbases. Thus we can guarantee

that, for every i, det Ei , 0 and thus det E , 0. This proves that that the set of n vectors we have

found actually constitutes a (generalized) eigenbasis for the matrix M.

One can check that the (generalized) eigenvectors correspond to the eigenvalues, as stated in

the theorem, by showing that

(M − Iλm,l)tm,l

0N ⊕

 pN−1⊕
j=0

ωm jum,l


 = 0 for tm,l = (rank of xm,l)

and also that

(M − Iλ0,i)t0,i

wi ⊕

 p−1⊕
j=0

vi


 = 0 for t0,i = (rank of x0,i).

�

In this proof we only showed how to construct the eigenvectors after a single decomposition

step, i.e. a single similarity transformation. Because we were able to show in Section 3.4 that

equitably decomposing a matrix over prime-power automorphism can be done via a sequence of

such similarity transformations, we can use this formula iteratively to reconstruct the eigenvectors

of a matrix M starting with the eigenvectors of MN . Further, because we were able to describe an

equitable decomposition over a general automorphism in Section 3.5 as a sequence of decomposi-
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tions over prime-power automorphisms, we can again use this formula iteratively to construct the

eigenvectors for a matrix starting with the eigenvectors of the decomposition associated with any

general automorphism.

Example 3.19. As an illustration of Theorem 3.18 we consider the graph G with a basic automor-

phism shown in Figure 3.1. In Example 3.8 we found the decomposition A(1) = A(0)ψ ⊕ B(0)1 ⊕

B(0)2 of the adjacency matrix A = A(G) over the basic automorphism ψ = φ2 = (2, 8, 5)(3, 9, 7)(4, 10, 6)

(see Equation (3.6)). Eigenbases corresponding to Aψ, B1, and B2, respectively, are given by the

vectors u0,i, u1,i, and u2,i where

Aψ =



0 3 0 0

1 2 1 1

0 1 0 0

0 1 0 0



u0,1 = (3, 1 +
√

6, 1, 1)T w1 = (3) v1 = (1 +
√

6, 1, 1)T

u0,2 = (3, 1 −
√

6, 1, 1)T w2 = (3) v2 = (1 −
√

6, 1, 1)T

u0,3 = (−1, 0, 0, 1)T w3 = (−1) v3 = (0, 0, 1)T

u0,4 = (−1, 0, 1, 0)T w4 = (−1) v4 = (0, 1, 0)T

B1 = B2 =


−1 1 1

1 0 0

1 0 0


u1,1 = u2,1 = (−2, 1, 1)T

u1,2 = u2,2 = (1, 1, 1)T

u1,3 = u2,3 = (0, −1, 1)T

.

Note that wi has only one component since the first basic automorphism only fixed one vertex, i.e.

N = 1. Using the formula in Theorem 3.18 an eigenbasis of the original matrix A is given by
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w1 ⊕ v1 ⊕ v1 ⊕ v1 = (3, 1 +
√

6, 1, 1, 1 +
√

6, 1, 1, 1 +
√

6, 1, 1)T

w2 ⊕ v2 ⊕ v2 ⊕ v2 = (3, 1 −
√

6, 1, 1, 1 −
√

6, 1, 1, 1 −
√

6, 1, 1)T

w3 ⊕ v3 ⊕ v3 ⊕ v3 = (−1, 0, 0, 1, 0, 0, 1, 0, 0, 1)T

w4 ⊕ v4 ⊕ v4 ⊕ v4 = (−1, 0, 1, 0, 0, 1, 0, 0, 1, 0)T

0N ⊕ u1,1 ⊕ ωu1,1 ⊕ ω
2u1,1 = (0, −2, 1, 1, −2ω, ω, ω, −2ω2, ω2, ω2)T

0N ⊕ u1,2 ⊕ ωu1,2 ⊕ ω
2u1,2 = (0, 1, 1, 1, ω, ω, ω, ω2, ω2, ω2)T

0N ⊕ u1,3 ⊕ ωu1,3 ⊕ ω
2u1,3 = (0, 0, −1, 1, 0, −ω, ω, 0, −ω2, ω2)T

0N ⊕ u2,1 ⊕ ω
2u2,1 ⊕ ω

4u2,1 = (0, −2, 1, 1, −2ω2, ω2, ω2, −2ω, ω, ω)T

0N ⊕ u2,2 ⊕ ω
2u2,2 ⊕ ω

4u2,2 = (0, 1, 1, 1, ω2, ω2, ω2, ω, ω, ω)T

0N ⊕ u2,3 ⊕ ω
2u2,3 ⊕ ω

4u2,3 = (0, 0, −1, 1, 0, −ω2, ω2, 0, −ω, ω)T

where ω = e2πi/3.

The process carried out in Example 3.19 of constructing eigenvectors of a matrix from the

eigenvectors of its decomposition over a basic automorphism can also be done for separable au-

tomorphisms. This is done by finding the eigenvectors of the matrices in the final decomposition

and working backwards, as in this example, until the eigenvectors of the original matrix have been

fully reconstructed.

If φ is a uniform automorphism of a graph G then the eigenvectors of an automorphism com-

patible matrix M can also be decomposed as is shown in (3.20) for N = 0. Specifically, if

Mφ ⊕ B1 ⊕ B2 ⊕ · · · ⊕ Bk−1 is an equitable decomposition of M with respect to φ in which um,`

is the `th eigenvector of Bm then the eigenvectors of M are given by the set

 k−1⊕
j=0

ωm jum,` : 1 ≤ m ≤ k − 1, 1 ≤ ` ≤ r, ω = e2πi/k

 .
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It is worth noting that both the eigenvalues and eigenvectors of M are global characteristics of

the matrix M in the sense that they depend, in general, on all entries of the matrix or equivalently

on the entire structure of the graph G. In contrast, many symmetries of a graph G are inherently

local, specifically when they correspond to an automorphism that fixes some subset of the vertex

set of G, e.g. a basic automorphism.

This difference is particularly important in the case where we are interested in deducing spectral

properties associated with the graph structure of a network. Reasons for this include the fact

that most real networks are quite large, often having either thousands, hundreds of thousands,

or more vertices. Second, real networks are on average much more structured and in particular

have more symmetries than random graphs (see [5]). Third, there is often only partial or local

information regarding the structure of many of these networks because of the complications in

obtaining network data (see, for instance, [19]).

The implication, with respect to equitable decompositions, is that by finding a local graph sym-

metry it is possible to gain information regarding the graph’s set of eigenvalues and eigenvectors,

which is information typically obtained by analyzing the entire structure of the network. This

information, although incomplete, can be used to determine key spectral properties of the network.

One of the most important and useful of these characteristics is the spectral radius associ-

ated with the graph structure G of a network. The spectral radius ρ(M) of a network, or, more

generally, a dynamical system, is particularly important for studying the system’s dynamics. For

instance, the matrix M associated with a network may be a global or local linearization of the sys-

tem of equations that govern the network’s dynamics. If the network’s dynamics are modeled by

a discrete-time system, then stability of the system is guaranteed if ρ(M) < 1 and local instability

results when ρ(M) > 1 [23, 31, 48].

Using the theory of equitable decompositions, it is possible to show not only that σ(Mφ) ⊂

σ(M), but also that the spectral radius ρ(M) of M is an eigenvalue of Mφ if M is both nonnegative

and irreducible.
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Proposition 3.20. (Spectral Radius of Separable Equitable Partition) Let φ be a basic or separa-

ble automorphism of a graph G with M an automorphism compatible matrix. If M is nonnegative,

then ρ(M) = ρ(Mφ). If M is both irreducible and nonnegative then the spectral radius, ρ(M), is an

eigenvalue of Mφ.

Proof. We begin by proving the result for basic (and uniform) automorphisms and then extending

the result to separable automorphisms. Assume M is nonnegative and with basic automorphism

φ. To prove that ρ(M) = ρ(Mφ), we first claim that ρ(Mφ) ≥ ρ(B j) for 1 ≤ j ≤ k − 1 where

Mφ ⊕ B1 ⊕ · · · ⊕ Bk−1 is an equitable decomposition of M with respect to φ.

To verify this claim, we first need Corollary 8.1.20 in [40] which states that if N is a principal

submatrix of M then ρ(N) ≤ ρ(M) if M is nonnegative. Recall that Mφ =

F kH

L B0

 if φ is a basic

automorphism that fixes some positive number of vertices. Thus, for a basic automorphism, B0 is a

principal submatrix of Mφ. Since M is nonnegative, Equation (3.2) shows that Mφ is nonnegative,

and we can conclude that ρ(B0) ≤ ρ(Mφ). In the case that φ is a uniform automorphism, Mφ = B0.

Next, for a matrix P ∈ Cn×n, let |P| ∈ Rn×n
≥0 denote the matrix with entries |P|i j = |Pi j|, i.e.

|P| is the entrywise absolute value of P. Moreover, if P,Q ∈ Rn×n let P ≤ Q if Pi j ≤ Qi j for all

1 ≤ i, j ≤ n. Theorem 8.1.18 in [40], states that if |P| ≤ Q then ρ(P) ≤ ρ(Q). Because

∣∣∣B j

∣∣∣ =

∣∣∣∣∣∣∣
k−1∑
m=0

(
ω j

)m
Mm

∣∣∣∣∣∣∣ ≤
k−1∑
m=0

∣∣∣∣(ω j
)m

Mm

∣∣∣∣ =

k−1∑
m=0

Mm = B0

we can conclude that ρ(B j) ≤ ρ(B0) for all 1 ≤ j ≤ k − 1. Therefore,

ρ(B j) ≤ ρ(B0) ≤ ρ(Mφ) for all 1 ≤ j ≤ k − 1, (3.21)

which verifies our claim. Using this claim and the fact that σ(M) = σ(Mφ)∪σ(B1)∪ · · · ∪σ(Bk−1)

we can immediately conclude that ρ(M) = ρ(Mφ).

Now we assume that M is both nonnegative and irreducible. The Perron-Frobenius Theorem

implies that r = ρ(M) is a simple eigenvalue of M.
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Next we claim that if M is irreducible, then Mφ is also irreducible. Let M be an n×n nonnegative

matrix with an associated basic automorphism φ with order k, and let M` be the submatrix of M

associated with the `th power of the semitransversal in an equitable decomposition of M over φ.

Recall that a matrix is reducible if and only if its associated weighted digraph is strongly connected,

meaning for any two vertices in the graph there is a directed path between them. Suppose G is the

strongly connected graph with weighted adjacency matrix M. Also we suppose that Gφ is the

graph whose weighted adjacency matrix is Mφ and let a and b be vertices of Gφ. Note that every

vertex fixed by φ in G directly corresponds to a vertex in Gφ, and all other vertices correspond to

a collection of k vertices in G. Choose a′ and b′ in G to be any vertices corresponding to a and b,

respectively. Now because G is strongly connected it contains a path a′ = v′0, v
′
1, v
′
2, . . . , b

′ = v′m

from a′ to b′. Consider the sequence of vertices a = v0, v1, v2, . . . , b = vm where vi is the unique

vertex in Gφ to corresponding v′i in G. To prove this is a path we must show each of the entries in

matrix Mφ corresponding to the edges vi → vi+1 are positive. If v′i or v′i+1 are fixed by φ then the

entry in M corresponding to the v′i → v′i+1 edge is either equal to the entry in Mφ corresponding to

the vi → vi+1 edge, or is a positive multiple thereof. If v′i and v′i+1 are not fixed by φ, then suppose

the v′i → v′i+1 edge corresponds to M`(r, s) for some ` and for some indices r and s. By hypothesis,

M`(r, s) > 0. The vi → vi+1 edge corresponds to B0(r, s), and B0 =
∑
` M`, where each M`(r, s) is

nonnegative. Therefore this entry must also be positive in Mφ. Thus we can conclude that Gφ is

strongly connected and therefore Mφ is irreducible.

Because Mφ is irreducible, we can apply the Perron-Frobenius Theorem to Mφ. This implies

that ρ(Mφ) is an eigenvalue of Mφ, but from the first part of this theorem, we already showed that

ρ(M) = ρ(Mφ), thus we conclude that ρ(M) must be an eigenvalue of Mφ.

This completes the proof if φ is a basic automorphism. If φ is separable then Proposition

3.7 guarantees that there are basic automorphisms ψ0, . . . , ψh that induce a sequence of equitable

decompositions on M such that Mφ = (. . . (Mψ0)ψ1 . . . )ψh . By induction each subsequent decom-

position results in a nonnegative divisor matrix (. . . (Mψ0)ψ1 . . . )ψi for i ≤ h with the same spectral

radius r = ρ(M) implying that ρ(Mφ) = ρ(M) for any φ ∈ Aut(G). �
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This result can be generalized in that the spectral radius ρ(M) of an automorphism compatible

matrix M is the same as the spectral radius of the divisor matrix Mφ for any automorphism φ if M

is both nonnegative and irreducible.

Proposition 3.21. (Spectral Radius of a General Equitable Partition) Let φ be any automorphism

of a graph G with M an automorphism compatible matrix. If M is nonnegative and irreducible,

then ρ(M) = ρ(Mφ).

Before we can prove the proposition we need the following Lemma.

Lemma 3.22. If irreducible, non-negative matrix M has block circulant form

M =



A1 A2 A3 . . . An

An A1 A2 . . . An−1

An−1 An A1 . . . An−2

...
...

...
. . .

...

A2 A3 A4 . . . A1


, and N =

n∑
m=1

Am

then

ρ(M) = ρ(N).

Proof. Because M is non-negative and irreducible, then N must also be non-negative and irre-

ducible. Thus the Perron-Frobenius Theorem guarantees that the spectral radius of N, ρ(N), is a

positive eigenvalue of N. It also guarantees that the eigenvector v associated to ρ(N) can be chosen

to have all positive entries. Now consider the vector w = v ⊕ v ⊕ · · · ⊕ v (a total of m v’s in the

direct sum). We can see that w is an eigenvector of M since
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Mw =



A1 A2 A3 . . . An

An A1 A2 . . . An−1

An−1 An A1 . . . An−2

...
...

...
. . .

...

A2 A3 A4 . . . A1





v

v

v
...

v


=



∑
Amv∑
Amv∑
Amv
...∑
Amv


=



ρ(N)v

ρ(N)v

ρ(N)v
...

ρ(N)v


= ρ(N)w.

Thus w is an eigenvector of M with only positive entries and with eigenvalue ρ(N). Because M is

irreducible and non-negative, the Perron-Frobenius Theorem tell us the only eigenvector of M that

is all positive must correspond the the largest eigenvalue, which is the spectral radius. Therefore

we conclude that ρ(N) = ρ(M). �

Now we prove Proposition 3.21.

Proof. Suppose we have matrix M which is irreducible and non-negative with an associated auto-

morphism φ. Using the process outlined in the algorithm found in Section 3.5, we can decompose

M through a process of similarity transformations. Throughout this proof we will follow all the

notation found in Lemma 3.10. We will first show after the similarity transformation in Lemma

3.10 that ρ(M) = ρ(M̃). At the final step, M̃ = Mφ, the divisor matrix associated with φ

In order to perform the similarity transformation, we first need to reorder the rows and columns

of M as prescribed in Proposition 3.11 and construct the T matrix. From Lemma 3.10, we have

T−1MT = M̃ ⊕ B1 ⊕ B2 ⊕ · · · ⊕ BpN−pN−1 .

where M̃ =

 F kH

L B0

. First we will prove the claim that ρ(M̃) ≥ ρ(B j) for 1 ≤ j ≤ pN − pN−1.

To begin, we use Corollary 8.1.20 in [40] which states for a non-negative matrix Q, if P is

a principal submatrix of Q then ρ(P) ≤ ρ(Q). Since M is nonnegative, and B0 =
∑p−1

m=0 Dm, we

know M̃ is nonnegative. Because B0 is a principal submatrix of M̃, using this corollary 8.1.20 we

conclude that ρ(B0) ≤ ρ(M̃).
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Next we must show that ρ(B j) ≤ ρ(B0) for 1 ≤ j ≤ pN − pN−1. Because

∣∣∣B j

∣∣∣ =

∣∣∣∣∣∣∣∣
pN−1∑
m=0

(ωmγ j)Cm

∣∣∣∣∣∣∣∣ ≤
pN−1∑
m=0

|(ωmγ j) Cm| =

pN−1∑
m=0

Cm,

we can use Theorem 8.1.18 in [40] to conclude that

ρ(B j) ≤ ρ

pN−1∑
m=1

Cm


for all 1 ≤ j ≤ pN − pN−1, similar to the proof of Proposition 3.20. We note that

B0 =

p−1∑
i=0

Di =



∑p−1
t=0 CtpN−1

∑p−1
t=0 CtpN−1+1 . . .

∑p−1
t=0 CtpN−1+pN−1∑p−1

t=0 CtpN−1+pN−1
∑p−1

t=0 CtpN−1 . . .
∑p−1

t=0 CtpN−1+pN−2

...
...

. . .
...∑p−1

t=0 CtpN−1+1
∑p−1

t=0 CtpN−1+2 . . .
∑p−1

t=0 CtpN−1 ,


which has block-circulant form. Now we apply Lemma 3.22, which shows that ρ(B0) = ρ (

∑
Cm).

Therefore,

ρ(B j) ≤ ρ(B0) ≤ ρ(M̃) for all 1 ≤ j ≤ pN − pN−1, (3.22)

which verifies our claim.

Using this claim and the fact that σ(M) = σ(M̃)∪σ(B1)∪· · ·∪σ(BpN−pN−1) we can immediately

conclude that ρ(M) = ρ(M̃).

We have showed after one step, the spectral radius is always maintained in M̃. We can now

just consider decomposing M̃ at each step of the algorithm since all other elements are fixed by

the decomposition. In order to use the same argument on the subsequent decompositions, we just

need to prove that (M̃) is also irreducible and non-negative. Because M is non-negative, and M̃ is

built from elements of M and sums of elements from M (see equation 3.10), we know M̃ is also

always non-negative. Also if M is irreducible, then we claim M̃ must also be irreducible. This is

proven in the proof of Proposition 3.20.
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Now we can repeat the above argument for each decomposition of this algorithm. If φ has

order pN1
1 · pN2

2 · · · · · pNh
h , then Proposition 3.15 shows that it is possible to decompose the matrix

using a sequence of automorphisms that induce a sequence of equitable decompositions on M. By

induction each subsequent decomposition results in a nonnegative divisor matrix (. . . (Mψ0)ψ1 . . . )ψi

for i ≤ h with the same spectral radius r = ρ(M) implying that ρ(M) must be the largest eigenvalue

for Mφ for any φ ∈ Aut(G). �

It is worth noting that many matrices typically associated with real networks are both non-

negative and irreducible. This includes the adjacency matrix as well as other weighted matrices

[6]; although, there are some notable exceptions, including Laplacian matrices. Moreover, when

analyzing the stability of a network, a linearization M of the network’s dynamics inherits the sym-

metries of the network’s structure. Hence, if a symmetry of the network’s structure is known then

this symmetry can be used to decompose M into a smaller divisor matrix Mφ. As M and Mφ

have the same spectral radius, under the conditions stated in Proposition 3.21, then one can use

the smaller matrix Mφ to either calculate or estimate the spectral radius of the original unreduced

network as is demonstrated in the following example.

Example 3.23. Returning to Example 3.17, we can calculate that the eigenvalues of the graph’s

adjacency matrix M in this example are

σ(M) = {−2 ±
√

2, 2 ±
√

2,±1 ±
√

2, 0}

not including multiplicities. Similarly, we can compute that the eigenvalues of Mφ are

σ(Mφ) = {2 +
√

2, 2 −
√

2}.

Thus, ρ(M) = ρ(Mφ) = 2 +
√

2.
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3.7 Equitable Decompositions and Improved Eigenvalues Estimates

Beginning in the mid-19th century a number of methods were developed to approximate the eigen-

values of general complex valued matrices. These included the results of Gershgorin [47], Brauer

[49], Brualdi [50], and Varga [51]. The main idea in each of these methods is that for a matrix

M ∈ Cn×n it is possible to construct a bounded region in the complex plane that contains the

matrix’ eigenvalues. This region serves as an approximation for the eigenvalues of M.

In this section we investigate how equitable decompositions affect, in particular, the approx-

imation method of Gershgorin. Our main result is that the Gershgorin region associated with an

equitable decomposition of a matrix M is contained in the Gershgorin region associated with M.

That is, by equitably decomposing a matrix over a separable automorphism it is possible to gain

improved eigenvalue estimates by use of Gershgorin’s theorem.

To describe this result we first give the following classical result of Gershgorin.

Theorem 3.24. (Gershgorin’s Theorem) [52] Let M ∈ Cn×n. Then all eigenvalues of M are

contained in the set

Γ(M) =

n⋃
i=1

λ ∈ C : |λ − Mii| ≤

n∑
j=1, j,i

|Mi j|


Geometrically this theorem states that all eigenvalues of a given matrix M ∈ Cn×n must lie in

the union of n disks in the complex plane, where the ith disk is constructed from the ith row of M.

Specifically, the ith disk is centered at Mii ∈ C and has the radius
∑n

j=1, j,i |Mi j|. The union of these

disks forms the Gershgorin region Γ(M) of the matrix M. The following theorem describes the

effect that an equitable decomposition has on a matrix’ Gershgorin region.

Theorem 3.25. Let φ be a basic or separable automorphism of a graph G with M an automorphism

compatible matrix. If B = Mφ ⊕ B1 ⊕ · · · ⊕ Bk is an equitable decomposition of M with respect to φ

then Γ(B) ⊆ Γ(M).

Proof. First, suppose for simplicity that φ is a uniform automorphism of G. The ith row of the

matrix M defines a disk in the complex plane centered at Mii with radius equal to
∑

j,i

∣∣∣Mi j

∣∣∣. So we
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want every disk generated by each Bt matrix to be contained in some disk generated by M. We can

achieve this if the distance between disk centers is less than the difference in the two disk’s radii.

Thus we need to show that for every i and t that
∣∣∣Mqq − [Bt]ii

∣∣∣ ≤ ∣∣∣∣∣∣∑j,q

∣∣∣Mq j

∣∣∣ − ∑
j,i

∣∣∣[Bt]i j

∣∣∣∣∣∣∣∣∣ for some q.

Let q = i. Using Equation (3.2) and rearranging terms we see that

∣∣∣∣∣∣∣∑j,q

∣∣∣Mq j

∣∣∣ −∑
j,i

∣∣∣[Bt]i j

∣∣∣∣∣∣∣∣∣∣ ≥
n∑

l,i

|Mil| −

r∑
j,i

∣∣∣[Bt]i j

∣∣∣
=

 k−1∑
m=0

r∑
j=1

∣∣∣[Mm]i j

∣∣∣ − r∑
j,i

∣∣∣∣∣∣∣
k−1∑
m=0

(
ωt)m[Mm]i j

∣∣∣∣∣∣∣
 − |[M0]ii|

=

 k−1∑
m=0

r∑
j=1

∣∣∣(ωt)m[Mm]i j

∣∣∣ − r∑
j,i

∣∣∣∣∣∣∣
k−1∑
m=0

(
ωt)m[Mm]i j

∣∣∣∣∣∣∣
 − |[M0]ii|

≥

 k−1∑
m=0

r∑
j=1

∣∣∣(ωt)m[Mm]i j

∣∣∣ − r∑
j,i

k−1∑
m=0

∣∣∣(ωt)m[Mm]i j

∣∣∣ − |[M0]ii|

=

k−1∑
m=0

 r∑
j=1

∣∣∣(ωt)m[Mm]i j

∣∣∣ − r∑
j,i

∣∣∣(ωt)m[Mm]i j

∣∣∣ − |[M0]ii|

=

k−1∑
m=0

[∣∣∣(ωt)m[Mm]ii

∣∣∣] − |[M0]ii|

=

k−1∑
m=1

∣∣∣(ωt)m[Mm]ii

∣∣∣
≥

∣∣∣∣∣∣∣
k−1∑
m=1

(
ωt)m[Mm]ii

∣∣∣∣∣∣∣
= |[Bt]ii − Mii|

= |Mii − [Bt]ii|

(3.23)

where the Mm matrices are the block matrices found in the block circulant form of M. Therefore,

every disk generated by Bm for each m is contained in some disk generated by M and we conclude

that Γ(B) ⊂ Γ(M) for a uniform automorphism.

Next we assume our graph has a basic automorphism φ that fixes a positive number of vertices
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of G. Then the matrix M decomposes in the following way



F H H H · · · H

L M0 M1 M2 · · · Mk−1

L Mk−1 M0 M1 · · · Mk−2

L Mk−2 Mk−1 M0 · · · Mk−3

...
...

...
...

...

L M1 M2 M3 · · · M0



→



F kH 0 0 · · · 0

L B0 0 0 · · · 0

0 0 B1 0 · · · 0

0 0 0 B2 · · · 0
...

...
...

...
...

0 0 0 0 · · · Bk−1


Clearly the first N rows, which correspond to vertices fixed by the automorphism, have exactly the

same Gershgorin region in both matrices. For the next block row, the previous argument implies

that the Gershgorin disks associated with these rows are contained in the Gershgorin disks of the

corresponding rows in M if we disregard the first block column. Including the first block column

in the Gershgorin region calculation increases the radii of the corresponding Gershgorin disks for

both matrices by the same amount. Thus we still get containment. For all remaining rows the same

argument applies except we only increase the radii of the disks from the original matrix when

considering the first block column. Thus, for the basic automorphism φ we have Γ(B) ⊂ Γ(M).

We showed in Proposition 3.7 that decomposing a matrix over a separable automorphism can

be done as a sequence of decompositions of basic automorphisms. After each decomposition of a

basic automorphism we get containment. Thus, using an inductive argument we can extend this

theorem to all separable automorphisms. �

Example 3.26. Again we consider the graph G shown in Figure 3.1 with basic automorphism

ψ0 = φ2 = (2, 8, 5)(3, 9, 7)(4, 10, 6). The equitable decomposition of the adjacency matrix A =

A(G) with respect to ψ0 is given by B = Aψ0 ⊕ B1 ⊕ B2 where Aψ0 , B1, B2 are given in Equation

(3.6). The Gershgorin regions of both A and B are shown in Figure 3.9 where Γ(B) ⊂ Γ(A). That

is, the equitable decomposition of A over ψ0 results in an improved Gershgorin estimate of its

eigenvalues.
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Figure 3.9: The Gershgorin regions Γ(A) and Γ(B) each made up of a union of disks corresponding
to the adjacency matrix A = A(G) of the graph G in Figure 3.1 and its equitable decomposition
B over the automorphism ψ0 = (2, 8, 5)(3, 9, 7)(4, 10, 6), respectively. Black points indicate the
eigenvalues σ(A) = σ(B).

The effectiveness of Gershgorin’s theorem in estimating a matrix’s eigenvalues depends heav-

ily on whether the row sums
∑n

j=1, j,i |Mi j| are large or small. For example, if the matrix M is

the adjacency matrix of a graph G then the ith disk of Γ(M) has a radius equal to the number of

neighbors the vertex vi has in G. Real networks often contain a few vertices that have an abnor-

mally high number of neighbors. These vertices, which are referred to as hubs, greatly reduce the

effectiveness of Gershgorin’s theorem.

One application of the theory of equitable decompositions is that it can be used to potentially

reduce the size of the Gershgorin region associated with a graph’s adjacency matrix A = A(G).

Note that this region is made up of disks where the radius of the ith disk is equal to the degree of the

ith vertex. Hence, the graph’s hubs generate the graph’s largest Gershgorin disks. The strategy we

propose is to find an automorphism φ of a graph G that permutes the vertices adjacent to the graph’s

largest hub. After decomposing the adjacency matrix over φ, the resulting decomposed matrix will

potentially have a smaller row sum associated with this largest hub and consequently a smaller

Gershgorin region. This process can be continued by finding automorphisms of the decomposed

graph to further decompose and potentially further reduce the Gershgorin region associated with

the decomposed matrix.

This is demonstrated in the following example.
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Figure 3.10: Left: A graph representing 254 individuals belonging to seven different organizations
in the Boston area prior to the American revolutionary war. Edges represent whether two individ-
uals belonged to the same organization. The black vertex vPR represents Paul Revere. Right: The
transposed Gersgorin regions corresponding to a sequence of equitable decompositions performed
on the network’s adjacency matrix, in which each subsequent decomposition results in a smaller
region contained in the previous. Black points indicate the eigenvalues σ(A).

Example 3.27. Figure 3.10 (left) shows a social network of 254 members of seven different orga-

nizations in the Boston area prior to the American revolutionary war [53]. Each vertex represents

a person and an edge between two people appears when these two people belong to the same or-

ganization. The colors of the graph represent symmetries present in the graph, i.e. two vertices are

colored the same if they are automorphic, by which we mean that there is an automorphism φ of

the graph such that these two vertices belong to the same orbit under φ. The black central vertex

vPR with the most neighbors (Paul Revere) is connected to 248 of the 254 vertices.

The Gershgorin region Γ(A) where A is the adjacency matrix of the this social network is shown

as the largest disk in Figure 3.10 (right). The region consist of the union of 254 concentric disks

each centered at the origin the largest of which is the disk of radius 248, corresponding to the

vertex vPR. Hence, the spectral radius of A is less than or equal to 248.

Using equitable decompositions we can decrease this Gershgorin estimate. The largest contrib-

utor to the size of the Gershgorin region is, in fact, the central vertex vPR, since it has the highest

degree of any vertex in the network. In order to reduce the associated Gershgorin disk, we look for
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an automorphism ψ that permutes a subset of the vertices neighboring this hub, where our goal is

to decompose the network’s adjacency matrix A over ψ. The issue we run into is that if ψ fixes the

vertex vPR then, as is shown in the proof of Theorem 3.25, the Gershgorin disk associated with vPR

will not decrease in size as A is decomposed over ψ. Consequently there will be no improvement

in the Gershgorin region.

To actually improve this Gershgorin estimate, we note that finding the eigenvalues of a matrix

is equivalent to finding the eigenvalues of its transpose. Thus, making Gershgorin regions from

columns instead of rows, i.e. a transposed Gershgorin region Γ(MT ) of a matrix M could poten-

tially improve the Gershgorin region, even when the region is dominated by the fixed portion of

the graph. One complication is that we are not guaranteed the Gershgorin region formed from the

transpose of the decomposed matrix columns will be contained in the Gershgorin region of the

original matrix. Thus, this method of using a matrix’ transposed Gershgorin region for gaining

improved eigenvalue estimates may not be effective for all networks.

In this example we are, in fact, able to decrease the transposed Gershgorin region associated

with the network by decomposing the matrix A over certain automorphisms where points in non-

trivial orbits are adjacent to vPR. In fact, we are able to find a number of automorphisms that allow

us to sequentially decompose the matrix A such that at each step we gain an improved estimate of

the network’s eigenvalues.

This process results in a significant improvement in the original (transposed) Gershgorin esti-

mate of the network’s eigenvalues. This improvement is shown in Figure 3.10 (right), where each

disk starting from the largest and moving inward represents the next transposed Gershgorin region

after the corresponding equitable decomposition is performed on the network. After 4 equitable

decompositions, the final, smallest region is the union of two disks one centered at 5 with radius

150 and one centered at 1 with radius 148, which is roughly thirty-seven percent the size of the

original Gershgorin region associated with the network.
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3.8 Graphical Realization of Equitable Decompositions

Carrying out an equitable decomposition is much more visual on a graph than on an associated

matrix, and the (tedious) ordering of the labels is trivial when working with graphs instead of

matrices. To illustrate the process of an equitable decomposition of a graph we introduce the

notion of a folded graph. A folded graph can be thought of as a graph G in which we have folded

together all the vertices that are in the same orbit under an automorphism of G. The resulting

graph can be used to generate a number of smaller graphs Gφ,G1, . . . ,Gk−1 that correspond to an

equitable decomposition Mφ ⊕ B1 ⊕ · · · ⊕ Bk−1 of a matrix M associated with G.

To describe this procedure of folding a graph we first note that a graph G can be either weighted

or unweighted. If it is unweighted it is possible to weight the graph’s edges by giving each edge

unit weight. Under this convention any graph G can be considered to be a weighted graph with

weighted adjacency matrix W = W(G).

For simplicity, we assume in this section that the eigenvalues associated with a graph G are

the eigenvalues of the graph’s weighted adjacency matrix, which we denote by σ(G). This can be

done without loss in generality since any automorphism compatible matrix M associated with G is

the weighted adjacency matrix of a graph H where Aut(G) = Aut(H).

By extending Theorem 3.4 to graphs, an equitable decomposition of a graph G over a basic

automorphism φ results in a number of smaller matrices G0,G1 . . .Gk−1 where

σ(G) = σ(G0) ∪ σ(G1) · · · ∪ σ(Gk−1)

where W(Gi) = Bi is given by Equation (3.2). Here we describe how the graphs Gφ,G1 . . .Gk−1

can be generated from a single (folded) weighted graph Gφ(m). To show how this is done we let

G = (V, E,w) denote the (weighted) graph G with vertices V = V(G) and edges E = E(G). The

function w : E → C gives the weight of each edge (i, j) in E. The following steps allow one to

equitably decompose a graph.
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Performing Equitable Graph Decompositions

Step 1: The basic automorphism φ partitions the graph’s vertices into V = V1∪· · ·∪Vr∪U,

where U is the union of the vertices of orbit size 1. Choose a semi-transversal T0 of the

orbits of φ, i.e. the index of one vertex from each set Vi. If this is not the last round, this

semi-transversal must be chosen according to the method set out in Proposition 3.15.

Step 2: From the graph G = (V, E,w) we construct the folded graph Gφ(m) = (Vm,Em, νm)

as follows. The vertices of the graph are labeled by Vm = {φm(i) : i ∈ T0 ∪ U}. The edge

weights of Gφ(m) are given by the formula

νm(φm(i), φm( j)) =


∑k−1
`=0 ω

`mw(i, φ`( j)) if j ∈ T0

w(i, j) if j ∈ U.

Step 3: Next we generate the k graphs Gm = Gφ(m) for m = 0, . . . , k−1 where Gφ(0) = Gφ.

If m = 0 then V0 = T0 ∪ U, otherwise Vm = Tm. (When drawing Gφ(m) we draw the

vertices in U as open circles to indicate that these vertices are only in the graph for m = 0,

see Figure 3.11).

If φ is a uniform automorphism of G then G can be equitably decomposed over φwhere steps 1–

3 are adjusted such that U = ∅. If φ is separable then using the method described for decomposing

a matrix with respect to a separable automorphism in Section 3.3 we can sequentially decompose

G over some sequence of basic automorphisms ψ0, ψ1, . . . , ψh associated with φ.

One of the main advantages of visualizing equitable decompositions in terms of a folded graph

as opposed to the matrix procedure prescribed in Section 3.3, is that it makes the blocks of the

decomposition immediately apparent. For instance, recall that in Example 3.8, at the end of Round

2 we were required to reorder the vertices (equivalent to relabeling the graph) in order to see

the block diagonal structure. In the graphical approach presented in this section the connected

subgraphs are the blocks resulting from the decomposition.
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Figure 3.11: The folded graph Gψ(m) (center) of the unweighted graph G (left) with basic automor-
phism ψ = (2, 8, 5)(3, 9, 7)(4, 10, 6) created using the semi-transversal T0 = {2, 3, 4}. The equitable
decomposition Gψ, G1, G2 of G is shown (right) where Gψ = Gψ(0) and Gm = Gψ(m) for m = 1, 2.
Here ω = e2πi/3.

Example 3.28. Let G be the graph originally introduced in Figure 3.1, which is also shown in

Figure 3.11 (left), with the basic automorphism ψ = (2, 8, 5)(3, 9, 7)(4, 10, 6). Following steps 1–3

given in this section, we first choose the semi-transversal T0 = {2, 3, 4} of ψ. The folded graph

Gψ(m) that results from this choice is shown in Figure 3.11 (center). The graphs Gψ, G1, G2, which

together form an equitable decomposition of the graph G over ψ are also shown in the same figure

(right). One can check that σ(G) = σ(Gψ) ∪ σ(G1) ∪ σ(G2) since the matrices W(Gψ) = A(0)ψ0 ,

W(G1) = B(0)1, and W(G2) = B(0)2 given in Equation (3.6).

3.9 Conclusion

The purpose of this chapter is to extend the theory of equitable decomposition as well as to intro-

duce a number of its applications. The theory of equitable decompositions, first presented in [4],

describes how an automorphism compatible matrix M can be decomposed over any uniform or ba-

sic automorphism of an associated graph. In this chapter we first extend this result by providing a

method for equitably decomposing M over any separable automorphism φ by converting any such

automorphism into a sequence of basic automorphisms. After establishing the method for decom-

posing matrices over separable automorphisms, we then further extended this method to equitably
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decompose over any automorphism. This further extension required us to describe a more sophis-

ticated way to decompose over a prime-power automorphism than what was described in Section

3.3. These decompositions result in a number of smaller matrices Mφ, B1, . . . , Bh whose collective

eigenvalues are the eigenvalues of the original matrix M (see Theorem 3.4, Proposition 3.7 and

Theorem 3.16). Importantly, this decomposition relies only on a knowledge of the automorphism

φ and requires no information regarding any spectral properties of the graph.

Additionally, the algorithms we give for equitably decomposing a graph depends both on the

order of the prime factorization of the automorphism’s order as well as some choices surrounding

the semi-transversals. An open question is whether making these choices differently will result

in a fundamentally different decomposition (i.e. not just a simple reordering of resulting block

matrices) or if, up to reordering, the decomposition is, in fact, unique.

Beyond preserving the eigenvalues of a matrix, we also show as a direct application of this

theory that the eigenvectors of the matrix M are fundamentally related to the eigenvectors of the

matrices Mφ, B1, . . . , Bk and give an explicit formula for their construction (see Theorem 3.18).

This theorem also extends to generalized eigenvectors in the case where the original matrix does

not have a full set of eigenvectors. In this way the concept of an equitable decomposition can be

applied not only to matrices but also to their eigenvectors.

A theme throughout this chapter, and in particular in the applications introduced here, is that in-

formation regarding spectral properties of a graph can be deduced from knowledge of the graph’s

local symmetries. One example, shown in Proposition 3.21, is that if M is nonnegative and ir-

reducible then the divisor matrix Mφ associated with the automorphism φ has the same spectral

radius as M. Since Mφ is smaller than M, and potentially much smaller if the graph (network) is

highly symmetric, then Mφ could be a useful tool in determining this spectral radius. It is an open

question whether this result can be extended to matrices with negative or complex-valued entries.

Another application mentioned here is concerned with the way in which Gershgorin regions are

affected by equitable decompositions. Here, we prove that the Gershgorin region of an equitable

decomposition is contained in the Gershgorin region of the original matrix (see Theorem 3.25).
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Thus, such decompositions can be used to potentially reduce the size of the resulting Gershgorin

region. In particular, Example 3.27 demonstrates this by significantly reducing the size of the

Gershgorin region associated with a large network via a series of decompositions.

Lastly, we introduce the analogue of an equitable decomposition for graphs. An equitable

graph decomposition, which is built around the notion of a folded graph, has the advantage that

it is more visual than an equitable decomposition on a matrix. Moreover, performing a graph

decomposition does not require any reordering of the graph’s vertices as opposed to the row and

column reordering that is required in an equitable decomposition of a matrix. The method of

“graph folding” introduced in this section only applies to basic (or separable) automorphism and it

is still an open question to understand how this method can be extended to general automorphisms.

Chapter 4. Hidden Symmetries in Real and Theoretical

Networks

4.1 Background and Overview

As we discussed in Section 2.1, real networks have a number of properties that distinguish them

from many other graphs of interest. For instance, they tend to have right-skewed degree distribu-

tions, high clustering coefficients, and the “small-world” property, etc. [6]. In addition to these

properties, real networks generally contain a significant number of symmetries [54]. Consequently,

many real networks have a large symmetry group [5]. It is important to study these symmetry

groups for a number of reasons. First, understanding network symmetry helps us better understand

the formation of particular networks [55]. Symmetries can also provide information about vertex

function. For instance, it has been observed that two symmetric vertices can play the same role in a

network, which is thought to increase network robustness [56]. In the case of networks’ dynamics

and function, symmetries are known to be important to the processes of synchronization or partial

synchronization [57].

Beyond these standard symmetries, “near” symmetries also naturally occur in real networks
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[55]. Even though these approximate symmetries are not represented in the symmetry group of

the network, they still have an effect on network behavior, both in form and in function [55]. For

this reason, there has been a number of attempts to weaken the notion of structural symmetry. By

structural symmetry, we mean there exists a permutation of the network’s vertices that does not

change the network structure. A near symmetry can be described in terms of properties invariant

under some other network transformation. As an example the network’s vertex degree could be

maintained as the network’s topology is transformed [58].

Notions of stochastic symmetry have also been established [55] to characterize near symmetries

in real networks. In this framework one chooses a statistical ensemble of networks which are

similar but not exactly identical and assigns a probability measure to them. This allows one to

quantify approximate symmetry and associate characteristics of similar networks. This weakening

of the notion of symmetry has led to the study of symmetry groupoids, which can be used to create

synchronization in dynamical networks [59], [60], [61].

In this chapter we propose a very different extension of the notion of symmetry called latent

symmetry. Latent symmetries are derived from structural symmetry in a particular reduced version

of the network. There are many ways to reduce a network, such as removing edges in a speci-

fied way or collapsing chosen subnetworks into single vertices to “coarse grain” the network (for

instance, see [62]). When finding latent symmetries, we do not use any of these techniques but

use the isospectral graph reduction [7] to reduce the size of the network as discussed in Section

2.5. That is, a latent symmetry is a standard structural symmetry in an isospectral reduction of the

network. This specific method is chosen because it preserves the spectral properties of a network,

i.e. the eigenvalues and eigenvectors associated with the network. The motivation for using a

isospectral reduction is that a network’s spectral properties encode various structural characteris-

tics, including graph connectivity, vertex centrality, and importantly symmetry (see [4], [63], [64],

[65], among others). Additionally, for dynamical networks, stability and other dynamic properties

depend on the spectrum of the network [7], [66].
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An important property of latent symmetries that is, to the best of our knowledge, not possessed

by any other type of symmetry is that it has a sense of scale. That is, we can define a measure

of latency for any latent symmetry, which one can think of as how deep the symmetry is buried

within the network. This is of particular interest since many real networks are known to have a

hierarchical structure in which statistically significant substructures known as motifs are repeated

at multiple scales throughout the network [67]. Our findings suggest that not only are motifs to be

found at multiple levels in a real network, but also symmetries. Thus one can study a network’s

hierarchical structure of symmetries to better understand the interplay of network structure and

function, in particular a network’s multiple levels (scales) of redundancy.

This chapter is organized as follows. In Section 4.2, after describing standard network sym-

metries, we precisely define a latent symmetry and give a number of examples. We then define the

measure of latency of a latent symmetry. In Section 4.3 we give examples of real-world networks

which exhibit latent symmetries. In Section 4.4 we prove various spectral properties regarding

latent symmetries, including showing that if two vertices are latently symmetric then they have

the same eigenvector centrality i.e. the same importance in the network using a particular metric.

In section 4.5 we further argue that latent symmetries have relevance in the real world by show-

ing that they are more likely to occur in networks generated using preferential attachment, rather

than networks that are randomly generated, e.g. Erdős-Rényi graphs. This is significant because

preferential attachment models capture many characteristics of real networks, while Erdős-Rényi

graphs do not [68]. In Section 4.6 we demonstrate another application of latent symmetries by

combining the notion with equitable decompositions. In Section 4.7 we prove that two vertices in

an undirected network are latently symmetric if and only if they are cospectral vetices. Finally, we

make some concluding remarks in Section 4.8.

4.2 Network Symmetries

Throughout this chapter, we will use graphs to describe network topology and use the notation

outlined in Section 1.1.
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M(G) =



0 1 1 1 1 0 0 0
1 0 0 0 0 1 0 1
1 0 0 1 0 0 1 0
1 0 1 0 1 0 0 0
1 0 0 1 0 0 0 0
0 1 0 0 0 0 1 1
0 0 1 0 0 1 0 1
0 1 0 0 0 1 1 0


Figure 4.1: An example of an unweighted, undirected graph G and its corresponding adjacency
matrix M(G). The graph has the symmetry given by the automorphism φ = (68). The symmetric
vertices 6 and 8 are highlighted yellow.

We are most interested in strongly connected graphs, meaning for any two vertices in the graph

there exists a path in the graph which starts at one vertex and ends at the other. For graphs that

are not strongly connected, we often only consider the largest strongly connected component of

the graph. Our reasons for doing this are essentially pragmatic since many real-world networks

are extremely large consisting of a million or more vertices. However, our theory applies to all

networks whether strongly connected or not.

The particular type of structure we consider in this chapter is the notion of a graph symmetry,

which can be understood via graph automorphisms. These symmetries have received considerable

attention in the literature [5], [55], [69]. Intuitively, a graph automorphism describes how parts of a

graph can be interchanged in a way that preserves the graph’s overall structure. In this sense these

parts, i.e., subgraphs, are symmetrical and together constitute a graph symmetry. For example,

consider the graph in Figure 4.1. Here, it is easy to visually identify the symmetry between the

yellow vertices 6 and 8, since transposing them would not change the graph’s structure. Formally,

a graph automorphism was defined in Definition 3.1. In the case of an unweighted graph, this

definition is equivalent to saying vertices i and j are adjacent in G if and only if φ(i) and φ( j) are

adjacent in G. A collection S of vertices in V are symmetric if for any two elements a, b in S there

exists an automorphism φ of G such that φ(a) = b. As an example, the vertices 6 and 8 in Figure

4.1 are symmetric since the permutation φ that transposes 6 and 8 and fixes all other vertices of G

(written in permutation cycle notation as φ = (68)), is an automorphism of G.
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Structural symmetries in networks are important as they can provide information about net-

work robustness as well as the function of specific vertices [56]. Often some of the same type

of information can be extracted from a set of vertices which are “nearly” symmetric. There are

a number of ways which have been proposed to precisely define a “near” symmetry [55]. Our

method involves finding structural symmetries in a reduced version of the network. The network

is reduced in a way that preserves spectral properties of the network’s adjacency matrix. We are

interested in preserving the spectrum of the network since there are a number of important network

characteristics which can be determined from its spectrum.

To make this idea more precise, we need the notion of an isospectral graph reduction, which

is the method we will use to reduce the underlying graph structure of a network. This method was

introduced in Section 2.5 and defined in Definition 2.12. Recall that an isospectral graph reduction

is a graph operation which produces a smaller graph with essentially the same set of eigenvalues

as the original graph. The matrix formula was given by

RS (M) = MS S − MS S̄ (MS̄ S̄ − λI)−1MS̄ S ∈W
|S |×|S |.

This method for reducing the graph associated with a network can be formulated both for the graph

and equivalently for the adjacency matrix associated with the network, i.e. an isospectral graph

reduction and an isospectral matrix reduction, respectively. Both types of reductions will be useful

to us.

Also recall that the eigenvalues of the matrix M = M(λ) ∈W are defined to be solutions of the

characteristic equation

det(M(λ) − λI) = 0,

which is an extension of the standard definition of the eigenvalues for a matrix with complex

entries.

An important aspect of an isospectral reduction is that the eigenvalues of the matrix M and

the eigenvalues of its isospectral reduction RS (M) are essentially the same, as described by the

following theorem [7].
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Theorem 4.1. (Spectrum of Isospectral Reductions) For M ∈ Rn×n and a proper subset S ⊆ N,

the eigenvalues of the isospectral reduction RS (M) are

σ(RS (M)) = σ(M) − σ(MS̄ S̄ ).

That is, when a matrix M is isospectrally reduced over a set S , the set of eigenvalues of the

resulting matrix is the same as the set of eigenvalues of the original matrix M after removing any

elements which are eigenvalues of the submatrix MS̄ S̄ .

Phrased in terms of graphs, if the graph G = (V, E, ω) with adjacency matrix M is isospectrally

reduced over some proper subset of its vertices S ⊆ V then the result is the reduced graph RS (G) =

(S ,E, µ) with adjacency matrix RS (M). Hence,

σ(RS (G)) = σ(G) − σ(G|S̄ ).

where eigenvalues of a graph are the eigenvalues of a graph’s adjacency matrix and where G|S̄

denotes the subgraph of G restricted to the vertices not contained in S . It is worth noting that

the matrix M and the submatrix MS̄ S̄ often have no eigenvalues in common, in which case the

spectrum is unchanged by the reduction, i.e. σ(RS (M)) = σ(M).

Using isospectral reductions we can define a generalization of the notion of a graph symmetry.

Definition 4.2. (Latent Symmetries) We say a graph G has a latent symmetry if there exists a

subset of vertices which are symmetric in some isospectral reduction RS (G) of G.

It is also worth mentioning here that the definition for latent symmetries works for both directed

and undirected graphs. The reason we refer to such symmetries as latent symmetries is that they are

difficult to see before the graph reduction is performed, thus they are in some sense hidden within

the network. For the remainder of the chapter, structural symmetries as defined in Definition

3.1 will be referred to as standard symmetries to distinguish them from the latent symmetries

defined in Definition 4.2. We note here that technically standard symmetries are a subset of latent
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Figure 4.2: (Left) The undirected graph G from Figure 4.1 which has both standard and latent
symmetries. Red vertices 2 and 3 are latently symmetric. Yellow vertices 6 and 8 have a standard
symmetry between them, but 4 is latently symmetric to both of 6 and 8. (Right) The isospectral
reduction of the top graph over vertices 2 and 3, showing the latent symmetry between these two
vertices

symmetries since reducing a graph G = (V, E, ω) over its entire set of vertices preserves the graph,

i.e. RV(G) = G. However, throughout this chapter we will often abuse this terminology by using

the term ‘latent symmetry’ to mean ‘latent symmetry which is not also a standard symmetry.’

Example 4.3. The graph in Figure 4.2 is an example of a graph with both standard and latent

symmetries. In this figure, colors correspond to groups of vertices which are latently symmetric

e.g. vertices 2 and 3. We note that the yellow vertices 6 and 8 form a standard graph symmetry

since transposing the two vertices, (i.e. switching their labels), does not change the graph structure

of the graph G. When G is reduced over vertices 4 and 6 (or 4 and 8), the resulting reduced graph

contains a standard symmetry, i.e. 4 and 6 (4 and 8) are latently symmetric. Also reducing G over

the red vertices 2 and 3 results in a graph with symmetry as shown on the right of Figure 4.2.

Some properties of standard symmetries extend to latent symmetries (see, for example, the

results in section 4.4). Like standard symmetries, latent symmetries are transitive. By this we

mean that if there exists a latent symmetry between vertices a and b and a latent symmetry between

the vertices b and c in a graph, there must be a latent symmetry between vertices a and c. We note,

however, in this scenario there is no guarantee that there exists a subset of vertices S such that a, b,

and c are all symmetric in RS (G), i.e. a, b and c may not be latently symmetric as a set. This

is in contrast to standard symmetries where for any set of vertices that are pairwise symmetric,

there must exist an automorphism for which all these vertices lie in the same orbit i.e. they are all
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2 3
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x2
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x2
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x2
(1+x+x2)2

x5

1+x+x2

x2

Figure 4.3: In the graph G (left) the vertices labeled 1,2, and 3 are latently symmetric. This is
apparent by the three-fold symmetry in R{1,2,3}(G) (middle). However, there is no symmetry in
R{2,3}(G) (right).

symmetric as a set. In the setting of standard symmetries this is proved by noting the composition

of two automorphisms is an automorphism.

In the above example, as well as in most examples throughout the paper, we reduce the graph to

two vertices before discovering the latent symmetry, i.e. the automorphism in the reduced graph is a

simple transposition. In general, we may actually find larger groups of vertices with are symmetric

after reducing the graph. In a directed graph, it is actually possible to “miss” a symmetry between

a set of vertices by reducing too far as is shown in the following example.

Example 4.4. Consider the directed graph in Figure 4.3 (left). When the graph is reduced over the

vertices 1,2, and 3 we get Figure 4.3 (middle), which has a symmetry between each of these three

vertices. However, if we reduce G over just vertices 1 and 2, we get the graph in Figure 4.3 (right),

which has no symmetry. Vertices 1,2 and 3 are latently symmetric as a set, but this symmetry is

missed when the graph is reduced to any two of these vertices.

The following is an example of a directed graph with a latent symmetry, which we include here

to give the reader some intuition for how latent symmetries can arise. For this we note that a path

in a directed graph G = (V, E, ω) is a sequence of distinct vertices, {v0, v1, . . . , vn} ⊆ V such that

the set of directed edges {(vi, vi+1) | 0 ≤ i ≤ n− 1} is contained in E and a cycle is a path for which

v0 = vn.
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Figure 4.4: In the graph G (left) vertices 1 and 4 are latently symmetric as can be seen by reducing
G to R{1,4}(G) (right).

Example 4.5. Consider the directed graph G on the left of Figure 4.4. Because all cycles in this

graph contain one of the red vertices (labeled 1 and 4), we can write a finite list of paths and cycles

that both begin and end on these vertices. We observe that the paths from 1 to 4 are {1,2,4} and

{1,2,5,4}, while all paths from 4 to 1 are {4,6,1} and {4,7,8,1}. Thus, there are the same number of

paths with the same lengths from 1 to 4 as there are from 4 to 1. Also there is only one cycle from

vertex 1 to itself (not including 4); namely {1,2,3,1}, and only one cycle from vertex 4 to itself (not

including 1); namely {4,9,10,4}. Both of these cycles have length 4. This symmetry in number and

length of paths and cycles guarantees that a symmetry will appear after reducing the graph over

these two vertices. That is, vertices 1 and 4 are latently symmetric. This can be seen in the reduced

graph R{1,4}(G) in which there is an automorphism between these two vertices (transposition).

When a graph contains cycles which do not contain any vertices in the reducing set S , it is not

possible to write down all the paths and cycles as we did for the graph G. In this case it becomes

much more difficult to construct and identify latent symmetries. This is the case for even small

undirected graphs. To highlight the unintuitive nature of latent symmetry in this case as well as

give a sense of the variety of latent symmetries that occur in undirected graphs, Figure 4.5 depicts

six more graphs with examples of latent symmetries. It is worth mentioning that by an exhaustive

search we have found the smallest undirected graphs which contain a latent symmetry which is

also not a standard symmetry have eight vertices (e.g. Figure 4.5, top left).

Another useful concept we can explore regarding latent symmetries is the scale at which the

symmetry is found within the network.
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Figure 4.5: Six examples of undirected graphs which contain latent symmetries. Vertices of the
same color in a graph correspond to latent symmetries. (Top left) A smallest example of a graph
with a latent symmetry but no standard symmetries (fewest edges and vertices), (Top middle) a
graph which is symmetric without the pendant vertex on top, which turns the standard symmetry
into a latent symmetry, (Top right) a graph where every vertex is latently symmetric to at least one
other, though there are no standard symmetries, (Bottom left) a tree, (Bottom middle) a 3-regular
graph, (Bottom right) a non-planar graph.
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Figure 4.6: (Left) A network representation of the largest strongly connected component of all
Wikipedia webpages in the “logic puzzle” category [70]. Vertices represent webpages while the
direct edges represent hyperlinks between them. (Right) A subgraph of this network. Red vertices
are symmetric and the yellow vertex is latently symmetric with the two red vertices. Purple vertices
are vertices which have edges that are not displayed.

Definition 4.6. (Measure of Latency) Let G = (V, E, ω) be a graph with n vertices and let S be

a subset of its vertices which are latently symmetric. This latent symmetry can be said to have a

measure of latency M, defined as

M(S ) =
n − |T |
n − |S |

where T ⊆ V is a maximal set of vertices such that the vertices S are symmetric in RT (G).

From this definition it is clear that 0 ≤ M(S ) ≤ 1 since |T | ≥ |S |. Moreover, if the vertices S

are symmetric in the unreduced graph, i.e. are symmetric in the standard sense, then T = S and

M(S ) = 0. On the other hand, if there is no possible choice of a vertex set T for which RT (G) has

a symmetry between the vertices in S , except for S = T , then M(S ) = 1. This is the most hidden a

latent symmetry can be since it requires reducing the entire graph to the set S before the symmetry

can be seen. We note that although this is an interesting measure, it can be computationally difficult

to find since it requires finding the largest possible reducing set under which a symmetry forms.

Example 4.7. For the graph G in Figure 4.2 we have shown that vertices 2 and 3 are latently

symmetric as they are symmetric in the reduced graph R{2,3}(G). However, we actually do not
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need to reduce to such a small graph to see this symmetry. In fact, 2 and 3 are symmetric in

the graph R{2,3,4,8}(G), but are not symmetric in any reduction over five or more vertices. Thus

the largest reducing set T in which this symmetry appears must contain four elements. Thus,

M({2, 3}) = n−|T |
n−|S | = 8−4

8−2 = 2/3.

The measure of latency we give to a network symmetry gives the symmetry a size or a scale

within the network. This is reminiscent of one of the hallmarks of real networks in which spe-

cific structures, known as motifs, are found at multiple scales within the network [18], [20]. In

the following section we investigate whether latent symmetries occur in real-world networks and

specifically whether these occur at different scales.

4.3 Latent Symmetries in Real Networks

The first question one might have concerning latent symmetries is the extent to which they are

actually observed in real network data. In this section we present two very different real-world

networks which contain latently symmetric vertices.

Example 4.8. Consider the web graph shown in Figure 4.6 (left) which represents all Wikipedia

pages contained in the category “Logic Puzzles” in August 2017. Each vertex represents a web-

page and directed edges represent hyperlinks between webpages [70]. The two red vertices are

symmetric in this graph, while the yellow vertex is pairwise latently symmetric with the two red

vertices. Figure 4.6 (right) shows a subgraph of the left graph to more clearly demonstrate the path

structure causing the latent symmetry. In this second graph purple vertices do not display all of

their connections. All vertices labeled 1-7 represent puzzles published by “Nikoli.” We can see

that puzzles 1, 2 and 3 all have an edge pointing to another puzzle (4, 5 and 6 respectively). How-

ever, 6 also has vertex 7 pointing to it. This breaks the symmetry between 3 and 1 (also between 3

and 2). The latent symmetry is still present between 3 and 1 (also between 3 and 2) since the same

paths are available for traversing the graph from 1 to 3 or from 3 to 1. Thus the latent symmetry

is highlighting a common feature in these three puzzles that a standard symmetry search would

overlook.
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For the vertices which are latently symmetric one can calculate their measure of latency to be

M({1, 3}) = 1/30 ≈ 0.033.

We mention that in the next section will show that by using the metric of eigenvector centrality,

vertices 1 and 3 have the same importance to this network. In fact, any set of vertices that are

latently symmetric have the same eigenvector centrality (see Theorem 4.10).

Example 4.9. A second example of a latent symmetry in real-world network data is in the metabolic

network for the cellular processes in Arabidopsis thaliana, a eukaryotic organism [71]. This is a

biological network of chemical reactions, which is a very different type of network than the one

considered in Example 4.8. Figure 4.7 (left) shows the largest strongly connected component of

this network. Here vertices represent cellular substrates (as well as intermediary states) and edges

represent metabolic pathways. The red vertices highlighted in the figure (left) have a latent symme-

try between them. The right graph is a subgraph of the left where vertex color is preserved. Yellow

vertices represent substrates for which all of their edges from the original network are displayed,

while purple vertices do not have all of their edges displayed. We can see that many of these ver-

tices are almost symmetric, meaning many of the vertices appear to have a corresponding vertex

with a similar local path structure. It is worth noting that between the red vertices there exists the

same number of paths of the same length. As in the previous example, this suggests some kind of

structural similarity exists between these vertices that a search for standard symmetry would over-

look. These vertices are again very close to being symmetric, which is quantized by their measure

of latency M(S ) ≈ .0231.

Currently it is an open question whether latently symmetric vertices have similar or comple-

mentary functions within a network. The answer is likely that both are possible and is presumably

network dependent. An important point is that once a latent symmetry has been found, an expert

in the field which studies the specific network may be able to better answer these questions.

It is also worth emphasizing that both of the real networks we consider in this section have

symmetries at different scales. That is, both have standard and latent symmetries which are not

standard. We can think of this as symmetries at multiple levels which leads to what one could refer
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Figure 4.7: Left: Metabolic network of the eukaryotic organism Arabidopsis Thaliana [71]. Right:
Subnetwork of left network. In both latently symmetric vertices are colored red. Yellow vertices
have been drawn with all their original connections intact whereas purple vertices are missing
edges from the original graph.

to as a hierarchy of symmetries. It is currently an open question as to how such symmetries might

be distributed at various scales through a typical real network.

Going through real-network data, we find it more difficult to find examples of undirected net-

works than directed networks with latent symmetries. In fact, these symmetries appear to become

more rare as the number of vertices in the undirected network gets large. We explore this further

using numerical simulations in section 4.5.

4.4 Eigenvector Centrality

In the previous section we presented examples of latent symmetries in real-world networks. We

now present evidence to support our claim that latent symmetries capture some type of hidden

structure in a network. Specifically we prove that when two vertices are latently symmetric they

must have the same eigenvector centrality, which is a standard measure of how important a vertex

is compared to the other vertices in the network. This result suggests that the notion of a latent

symmetry is indeed a natural extension of the standard notion of symmetry since vertex symmetries

in the standard sense have the same eigenvector centrality and is therefore an important structural

concept that can be used to analyze real networks.

Eigenvector centrality is a widely used metric in network analysis [6]. In fact, it is the basic

principle used by “Google” to rank the webpages in the World Wide Web. It is calculated by
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ranking the vertices by the value of the corresponding entry in the leading eigenvector of the

network’s adjacency matrix, where the leading eigenvector is the eigenvector associated with the

matrix’ largest eigenvalue. Not all graphs have a leading eigenvector. However, essentially all

real world networks satisfy the conditions of the Perron-Frobenius theorem which guarantees the

existence of a leading eigenvector for the network [6].

To define eigenvector centrality, suppose a network G is represented by a matrix M, and λ0 is

its largest eigenvalue with eigenvector x. The eigenvector centrality of a vertex i ∈ G is the ith

entry in x, or xi.

In order to extend this concept of eigenvector centrality to reduced networks, we first need to

extend the notion of eigenvectors to the class of matrices with rational function entries.

If R(λ) = RS (M) is an |S | × |S | matrix with rational function entries and λ0 ∈ σ(M) − σ(MS̄ S̄ )

then R(λ0) is defined, that is each rational function in the matrix R(λ) is defined at λ0. Hence,

R(λ0) is simply an |S | × |S | real-valued matrix [7]. We say the vector v ∈ Cn×1 is an eigenvector

corresponding to λ0 if (R(λ0) − λ0I)v = 0. We note that if the network we are considering is

strongly connected with non-negative edge weights then R(λ0) is always defined and λ0 = ρ(M),

where ρ(M) = max{|λ| : λ ∈ σ(M)} is the spectral radius of M [40].

It is easy to show that vertices always have the same eigenvector centrality if there is a stan-

dard symmetry between them [72]. As previously mentioned, one interesting property of latent

symmetries is that if two vertices in a network are latently symmetric, then they will also have the

same eigenvector centrality. That is, using the metric of eigenvector centrality, latently symmetric

vertices have the same importance in the network. This suggests that latent symmetries reveal

something as important as the presence of a standard symmetry in the underlying structure of a

network.

In order to show that two latently symmetric vertices have the same eigenvector centrality,

we reduce the graph over these vertices to create a graph that contains a symmetry. The leading

eigenvector of the reduced graph can then be related to the eigenvectors of the original graph using

the following result.
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Theorem 4.10. (Eignvector Centrality and Latent Symmetries) Let G = (V, E, ω) be a graph

(directed or undirected) with nonnegative edge weights which is strongly connected. If there exists

a set L ⊆ V of vertices that are latently symmetric, then these vertices all have the same eigenvector

centrality.

Before we prove this theorem, we need the following lemma.

Lemma 4.11. If B is a nonzero square submatrix of A where A is nonnegative and irreducible,

then ρ(B) < ρ(A).

Proof. Let A be an irreducible, nonnegative, n × n matrix with square submatrix B. Now we can

write A as A = A1 + A2 where A1 is the matrix A with all entries corresponding to B set to zero.

Now let Cε = εA1 + A2 and Dε = (1 − ε)A1 for some 0 < ε < 1. Thus A = Cε + Dε where Cε

and Dε are both nonnegative matrices, and Cε is irreducible (this is inherited from A) and Dε is

not zero (since B is not zero). Now according to exercise 8.4.P14 in [40], ρ(Cε + Dε) > ρ(Cε).

Next we note that A2 = C0, where C0 is Cε with ε set to 0. But Cε > A2 for any ε, thus we can

use Theorem 8.1.18 in [40] to guarantee that ρ(Cε) ≥ ρ(A2). Finally we notice that A2 and B only

differ by rows and columns of zeros. Thus, except for zero eigenvalues, A2 and B share the same

spectrum. Therefore, ρ(A2) = ρ(B). Putting these results together we see that

ρ(A) = ρ(Cε + Dε) > ρ(Cε) ≥ ρ(A2) = ρ(B).

Thus we have shown that ρ(A) > ρ(B). �

Now the proof of Theorem 4.10 which connects latent symmetries and eigenvector centrality.

Proof. Because G is strongly connected, the Perron-Frobenius Theorem, guarantees that M =

M(G) has a largest simple eigenvalue, λ0 ∈ R, which is equal to the spectral radius ρ(M). Lemma

4.11 guarantees that λ0 < σ(MS̄ S̄ ) for any vertex set S . The eigenvector v associated to λ0 is by

definition the leading eigenvector of M. Also, the isospectral reduction of a strongly connected

graph must also be strongly connected, thus RS (G)|λ=ρ(M) also has a leading eigenvector.
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Figure 4.8: (Left) The two large black vertices a and b in the graph G are not latently symmetric, but
have the same eigenvector centrality. Red and yellow vertices are represent two latent symmetries
in the graph. (Right) The Perron complement graph of G over {a, b}, P{a,b}(G).

Now recall that a set L ⊆ V of vertices of G is latently symmetric if when G is reduced over

a set S ⊇ L, the vertices in L are symmetric in the resulting reduced graph. Thus all vertices in L

have the same eigenvector centrality in RS (G) since symmetric vertices have the same eigenvector

centrality, meaning each has the same value in the leading eigenvector, vS . Next we use Theorem

2.13. Since symmetric vertices correspond to entries in vS with the same value, they must also

correspond to equal entries in v, the leading eigenvector for the original matrix. This is because

vS is simply a projection of v. Thus vertices which are latently symmetric must have the same

eigenvector centrality. �

If two vertices are latently symmetric then by Theorem 4.10, both vertices have the same eigen-

vector centrality. However, it is worth emphasizing that even though being latently symmetric is a

sufficient condition for having the same eigenvector centrality, it is not a necessary condition. For

example, consider the graph in Figure 4.8. The two large black vertices have the same eigenvector

centrality, although these vertices are not latently symmetric. We can, however, strengthen the

conclusion of Theorem 4.10 for the case of undirected graphs. We do this by searching for sym-

metry in the graph associated with the Perron complement of the networks adjacency matrix (as

opposed to the isospectral reduction of the network which was defined in section 2.5). The Perron

complement of a matrix is defined as follows.
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Definition 4.12. (Perron complement) [73] Let M ∈ Rn×n be a nonnegative, irreducible matrix

with spectral radius ρ(M). If S ⊆ N then the matrix

PS (M) = MS S − MS S̄ (MS̄ S̄ − ρ(M)I)−1MS̄ S ∈ R
|S |×|S |

is the Perron complement of M over S.

Note that PS (M) is the isospectral reduction of M over S in which we let λ = ρ(M) so that

PS (M) is a real-valued matrix.

Regarding the Perron complement, the following results hold.

Theorem 4.13. (Theorem 2.2 and 3.1 in [73]) Let M ∈ Rn×n be a nonnegative irreducible matrix

and let S ⊆ N. Then

(i) the Perron complement PS (M) is also a non-negative and irreducible matrix with the same

spectral radius, i.e. ρ(M) = ρ(PS (M)); and

(ii) if v is the leading eigenvector of M then its projection vS is the leading eigenvector of PS (M).

Property (i) in Theorem 4.13 shows that the spectral radius is unaffected by this reduction.

Property (ii) is analogous to (and a result of) Theorem 2.13, which tells us that the eigenvectors in

the Perron complement are projections of the eigenvectors of the original matrix.

We note here that analogous to isospectral reduction for graphs, we can also define the Perron

complement graph for a graph G with adjacency matrix M and vertex subset S denoted by PS (G),

which is the graph whose weighted adjacency matrix is PS (M). The Perron complement graph

can in some sense be more convenient for analysis since it must have real-valued edge weights, as

opposed to the rational function weights which result from isospectral reductions.

However, our interest in the Perron complement in that using the properties of Theorem 4.13,

we can give a necessary and sufficient condition under which two vertices of a graph have the same

eigenvector centrality.
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Theorem 4.14. (Eigenvector Centrality in the Perron Complement Graph) Let G be an undi-

rected connected graph. Vertices i, j have the same eigenvector centrality if and only if they are

symmetric in P{i, j}(G).

Proof. Suppose a, b are symmetric in P{a,b}(G); then a, b have the same value in v{a,b}, the leading

eigenvector of P{a,b}(A). Thus by Theorem 4.13 (ii), a, b must also have the same value in v, the

leading eigenvector of A since v{a,b} is just a projection of v. Thus a and b must have the same

eigenvector centrality in G.

Now suppose that a and b have the same eigenvector centrality in G. Thus for the unique largest

eigenvalue, which in this case is the spectral radius, ρ(G) = λ0 with corresponding eigenvector v,

we know that va = vb = v, (where vi is the entry in v corresponding to vertex i). Now using

Theorem 2.13, we know that λ0 is also an eigenvalue of R{a,b}(G) with corresponding eigenvector

v{a,b} =

vv
. Now using the definition of the eigenpair we get

R{a,b}(A)|λ=λ0v{a,b} = λ0v{a,b}p11(λ0) p12(λ0)

p21(λ0) p22(λ0)


vv

 =

λ0v

λ0v

 . (4.1)

However, because we started with a symmetric matrix (undirected graph) we know that the

result of an isospectral matrix reduction is also symmetric (see [7]. Thus p21(λ) = p12(λ) and

p11(λ0) p12(λ0)

p12(λ0) p22(λ0)


vv

 =

λ0v

λ0v

 . (4.2)

Therefore we conclude that p11(λ0) = p22(λ0) and the reduced matrix R{a,b}(A)|λ=ρ(G) has the form

p11(λ0) p12(λ0)

p12(λ0) p11(λ0)


which is symmetric between the two remaining vertices. �
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As an example of this theorem the large black vertices a and b in Figure 4.8 (left) have the same

eigenvector centrality. In the Perron complement graph, P{a,b}(G), shown in Figure 4.8 (right), we

can see a symmetry appears between these two vertices.

Remark. We note here that Theorem 4.14 is stated for two vertices and does not extend to any

other set of vertices. Specifically if two vertices of some network G have the same eigenvector

centrality then they are symmetric in the Perron complement graph of G over these two vertices.

The conclusion does not hold for a larger set of vertices which all have the same eigenvector

centrality. By this we mean that if a network G, has a set S of three or more vertices which all have

the same eigenvector centrality, then there is no guarantee that PS (G) contains a symmetry. We

also note here that the above theorem is only true in general for undirected graphs. For instance

vertices 2 and 6 for the graph G in Figure 4.4 have the same eigenvector centrality but are not

symmetric in P{2,3}(G).

The reason we use isospectral reductions instead of the comparatively simple Perron comple-

ment is that by using isospectral reductions we have a smaller class of symmetries. If there is

a symmetry in the Perron complement graph PS (G) this does not always correspond to a latent

symmetry in RS (G). That is, the Perron complement cannot be used to find latent symmetries

in general. Further, we do not gain any new information regarding network symmetries from the

Perron complement graph for directed graphs where Theorem 4.14 does not hold.

4.5 Latent Symmetries and Network GrowthModels

Real-world networks are constantly evolving and typically growing (see [14] for a review of the

evolving structure of networks). A number of network formation models have been proposed to de-

scribe the type of growth observed in these networks. The purpose of this section is to demonstrate

that, like standard symmetries, latent symmetries appear to be a hallmark of such networks.

To determine how likely it is to find a latent symmetry in a given network, we perform a number

of numerical experiments. In these experiments we count how many latent symmetries occur in
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randomly generated graphs. We focus these numerical experiments on directed networks, where

latent automorphisms are more likely to occur.

The most well-known class of network growth models are those related to the Barabási-Albert

model [74] and its predecessor the Price model [68]. In these models elements are added one by

one to a network and are preferentially attached to vertices with high degree, i.e. to vertices with a

high number of neighbors or some variant of this process [75, 76, 77]. These models are devised to

create networks that exhibit some of the most widely-observed features found in real networks such

as scale-free degree distributions. We choose to generate networks using this theoretical model to

understand whether latent symmetries are likely to appear in a real-network setting.

We choose a two-parameter growth model which is a variation of the one originally devised

by Price (see [6], section 14.1). When generating a graph, we begin with a complete graph on

3 vertices and add vertices and edges iteratively. At each step we add one vertex and two edges.

Both of these edges connect to the new vertex on one end. The other end of each new edge attaches

to a vertex in the existing graph with a probability proportional to the number of edges already

connected to it plus some intrinsic weight α given to each vertex, which is a parameter we vary

in our experiment. Vertices that already have many adjacent edges are more likely to attach to the

new vertex at each step. The α parameter changes how strongly the new vertices are preferentially

attached to vertices with larger degrees. The idea is that as α gets larger the graph is generated in

a less preferentially-attached way.

In these experiments, we generate 1000 graphs with 180 vertices at each value of α. We then

randomly determined which direction each edge points, where there is a 1/5 probability the edge

will point in both directions, otherwise it points in only one direction. We use this to method

increases the connectivity of the resulting network. The reason for these probabilities is that this

makes each edge half as likely to be directed in both directions compared to being directed in just

one direction. That is, an edge is directed in one way with probability 2/5, and the other way with

2/5 probability, and in both ways with probability 1/5. Once a graph is generated, we reduce the

graph to its largest strongly connected component since networks are often analyzed at this level.
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Figure 4.9: The left figure plots the percentage of graphs which were generated using preferential
attachment that contain a standard symmetry. The horizontal axis (plotted logarithmically) gives
different values of a, the parameter which controls how strongly each edge is attached preferen-
tially. The right is the same figure in which the occurrences of latent symmetries are plotted.

The result is a collection of graphs with a mean number of about 137 vertices. Finally, we count

how many of the resulting graphs have at least one standard symmetry and how many have at least

one latent symmetry.

Figure 4.9 plots the percentage of graphs generated for each value of α which have a standard

symmetry (left) and latent symmetry (right). We first notice that both plots essentially decrease as

α increases, demonstrating that as graphs are generated in a way less like preferential attachment,

we find less symmetry at any scale. Though there are fewer total latent symmetries than real

symmetries, they both follow the same general trend, suggesting the process of creating standard

and latent symmetries are correlated. This suggests that mechanisms which allow for a greater

number of standard symmetries also allow for the formation of more latent symmetries. Exactly

what this mechanism is and how it operates even in these experiments is an interesting and open

question. One possibility is that having regions of low edge density among collections of vertices

creates an environment where symmetries are more likely to occur randomly. Thus a method which

generates a network using preferential attachment concentrates most of the connection around

vertices with high degree (hubs), allowing other vertices to have a lower density of edges.

To compare the results of our experiments, we do the same experiment by building graphs via

the Erdős-Rényi method [78]. This is a method for generating random graphs where there is a

fixed probability α that an edge will exist between any two vertices in the graph. Importantly,

it is known that this does not lead to graphs that resemble real-world networks [2]. Starting as
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before with 180 vertices, we generate Erdős-Rényi graphs in which there is an edge between every

pair of vertices in the graph with probability p. We then follow the same procedure of randomly

directing edges and reducing the network to its largest strongly connected component as in the

previous experiment where we considered preferential attachment. After generating 1000 graphs

for a given value of p we determine what percentage of these graphs have at least one structural

symmetry and at least one latent symmetry as before.

The results of this experiments show there is a very narrow range of values for p, between

p = .02 and p = .03, for which we find any symmetries and also generate graphs with a substantial

largest connected component. For all values of p we found that 5.9% was the highest percentage

of these graphs having a standard symmetry, and 0.3% was the highest percentage of these graphs

having a latent symmetry. These numbers are much lower than anything we found using prefer-

ential attachment. These experiments were repeated for larger starting vertex numbers and similar

results were obtained. This suggests that symmetries, and in particular latent symmetries, are not

as likely to be found in nonnetwork-like graphs as they are in graphs that capture some important

features of real-world networks.

Remark. We note here that these experiments were only performed on directed networks. We

find that latent symmetries are extremely rare in undirected networks generated using either of the

above models for a large number of vertices (more than fifteen). Interestingly, when searching

for symmetries in small undirected graphs, we were actually able to find more latent symmetries

using the Erdős-Rényi model than with preferential attachment. Although most networks are much

larger than fifteen vertices, it is not understood why the trend observed for large networks should

reverse for small networks.

4.6 Latent Symmetries and Equitable Decompositions

Another potentially useful application of latent automorphisms is that they can be used in conjunc-

tion with the equitable decomposition theory discussed in Chapter 3. This provides a way to equi-
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Figure 4.10: (Left) The graph G. (Right) The graph G isospectrally reduced over the red ver-
tices, i.e. Rred(G). The rational functions f and g are given by f (x) = x2−1

x2(x2−3)2−3 + 1 and

g(x) =
3x2(x4−5x2+6)−4

x(x2(x2−3)2−3) .

tably decompose networks which only have latent symmetries and no standard symmetries. First

we isospectrally reduce the network to create the symmetry, then use the resulting automorphism

to decompose the graph. Because both of these steps essentially preserve the graph’s spectrum, the

collection of the eigenvalues of the resulting small graphs is essentially equal to the spectrum of

the original graph.

The only thing we need to verify is that all of the same theory for equitable decompositions still

applies to graphs weighted with rational functions. Because the equitable decomposition process

only utilizes similarity transformations via complex matrices and permutations, the fact that we

use rational functions for entries of the adjacency matrix will have no effect on any of the theory

which we have established.

A benefit to using both of these tools is it can simplify the process of finding eigenvalues for

a given graph. Because each step preserves the spectrum of the network, we change the eigen-

value problem from solving one large characteristic equation for the graph into solving a series of

lower degree characteristic equations for each resulting piece. This method is demonstrated in the

following example.
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Example 4.15. Consider the graph G in Figure 4.10 (left). The red vertices, are latently symmetric.

When G is reduced over the red vertices, the result is Rred(G) in Figure 4.10 (right). Now can we

use the theory of equitable decomposition to break this graph around the four-fold symmetry. The

result is four graphs whose characteristic equations are:

(1) −8 − 9x + 50x2 + 10x3 − 68x4 + 6x5 + 30x6 − 6x7 − 4x8 + x9 = 0

(2) −4 + 3x + 21x2 − 9x3 − 24x4 + 6x5 + 9x6 − x7 − x8 = 0

(3) −8 + 15x + 38x2 − 34x3 − 32x4 + 24x5 + 6x6 − 8x7 + x9 = 0

(4) −4 + 3x + 21x2 − 9x3 − 24x4 + 6x5 + 9x6 − x7 − x8 = 0.

Now the roots of these four polynomials must also be roots of the characteristic polynomial as-

sociated the original graph G. Thus by breaking the graph into smaller graphs, we can find roots

of the characteristic polynomial of G, which has degree 38, by solving for roots of these smaller

polynomials with degree 8 and 9. In this particular example, we do not recover all of the eigenval-

ues from the original graph because four of them are lost in the isospectral reduction step. We can

calculate in this example each of the lost eigenvalues are equal to zero.

This process of reducing a matrix and then decomposing it is especially useful if we are only

concerned with finding the spectral radius of a large graph. It is not hard to show that isospectrally

reducing a matrix always preserves the spectral radius in the resulting graph. This means that

the largest eigenvalue cannot be lost in the reduction process. We showed in Section 3.6 that the

spectral radius of an equitable decomposition is always the spectral radius of the divisor matrix.

Because both of these steps are guaranteed to preserve the spectral radius, the resulting divisor

matrix must always contain the spectral radius. In the above example, finding the spectral radius

reduces to finding the largest root of a polynomial with degree 9 instead of a polynomial with

degree 38.
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4.7 Cospectral Vertices are Latently Automorphic

Given a weighted, undirected graph, two vertices are said to be cospectral if the adjacency matrices

of G\a and G\b have the same characteristic polynomial (where G\v denotes the graph G after

removing vertex v and all of edges adjacent to v). This is an important concept in spectral graph

theory [42], and comes up in quantum walks on graphs [79].

In this section we prove that for any weighted undirected graph G = (V, E, ω), two vertices

a, b ∈ V are cospectral if and only if they are latently automorphic. In order to prove this result,

we will need the following definition.

Definition 4.16. (Smash Functions)

For a graph G = (V, E, ω) with a vertex a ∈ V , the Smash Function of vertex a, denoted SFG(a),

is the single rational function entry in the matrix which is the result of performing an isospectral

reduction on the adjacency matrix M = M(G) over the single vertex a i.e.,

SFG(a) = R{a}(M).

In order to prove the following theorem, we will show a number of statements are equivalent.

First, we show that if two vertices are latently symmetric, then they must be automorphic when the

graph is reduced to only those two vertices. Second, we show two vertices are automorphic when

reduced down to just those two vertices if and only if the two vertices have exactly the same smash

function. Finally, we show that two vertices have the same smash function if and only if they are

cospectral. Thus putting all of these equivalences together proves that being latently symmetric is

a necessary and sufficient condition for being cospectral.

Theorem 4.17. Let G = (V, E, ω) be a (real or complex weighted) graph (potentially with self-

loops). Two vertices a, b ∈ V are latently automorphic if and only if a and b are cospectral.

Proof. We will prove the following three equivalences.
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a and b are latently automorphic in G ⇐⇒ a and b are automorphic in R{a,b}(G) (1)

a and b are automorphic in R{a,b}(G) ⇐⇒ SFG(a) = SFG(b) (2)

SFG(a) = SFG(b) ⇐⇒ a and b are cospectral (3)

Proof of (1)

We first assume that a and b are automorphic in R{a,b}. By definition, two vertices are latently

automorphic if a and b are automorphic in RS (G) for some S ⊂ V . Thus this direction is trivial

since we can let S = {a, b}.

Assume a and b are latently automorphic in G and let M be the adjacency matrix of G. Saying

that two vertices are automorphic in a graph is equivalent to saying that the associated adjacency

matrix is unchanged after permuting the associated rows and columns. We first suppose a and b are

automorphic vertices of G, or in other words interchanging the rows and columns of M associated

with a and b leaves M unchanged. For notational simplicity, let T = {a, b}. In order to show that

a and b are automorphic in RT (M) ∈ W2×2, we must show that RT (G) is equal to RT (G) after

interchanging its rows and columns. We can write this in terms of matrices as

RT (M) =

0 1

1 0

RT (M)

0 1

1 0

 .
Now we note that because a and b are automorphic in M then

MTT =

0 1

1 0

 MTT

0 1

1 0

 , MTT̄ =

0 1

1 0

 MTT̄ , MT̄T = MT̄T

0 1

1 0

 .
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Now we use the definition of the Isospectral Matrix Reduction given in Definition 2.12, to show

RT (M) =MTT − MTT̄ (MT̄ T̄ − λI)−1MT̄T

=

0 1

1 0

 MTT

0 1

1 0

 −
0 1

1 0

 MTT̄ (MT̄ T̄ − λI)−1MT̄T

0 1

1 0


=

0 1

1 0

 (MTT − MTT̄ (MT̄ T̄ − λI)−1MT̄T

) 0 1

1 0


=

0 1

1 0

RT (M)

0 1

1 0

 .
Thus a and b are automorphic in RT (G).

Now we assume that a and b are latently automorphic in G. By definition, two vertices are

latently automorphic if a and b are automorphic in RS (G) for some S ⊂ V . We can apply the

above result to the matrix RS (M). Suppose a and b are automorphic in RS (M), then they are also

automorphic in RT (RS (M)) = RT (M) (this last equality is Theorem 1.3 in [7]). Therefore we get

the result for the associated graphs for these matrices.

Proof of (2)

Suppose there exists an automorphism between a and b in the reduced graph R{a,b}(G). Then

we know R{a,b}(G) has the form in Figure 4.11 and the adjacency matrix has the form

h(λ) f (λ)

f (λ) h(λ)

 .
Now we calculate SF(a) using Theorem 2.1 in [7]. This calculation is the same for both vertices,

SF(a) =
f 2(λ)

λ − h(λ)
+ h(λ) = SF(b).

Thus we have shown that the smash functions for both vertices are equal.
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a b
f (λ)

f (λ)

h(λ) h(λ)

Figure 4.11: The isospectral reduction of a graph over two vertices which are latently automorphic

Suppose that there is not a latent automorphism between a and b in the undirected graph G.

When we reduce to just these two vertices, then R{a,b}(G) must have the form in Figure 4.12, where

g(λ), h(λ), f (λ) ∈W. Because a and b are not latently automorphic, we know that h , g, otherwise

this reduced graph would have a standard automorphism. Now using Theorem 2.1 in [7] page 24,

suppressing λ dependence for notational simplicity, we calculate that the resulting smash functions

are

SF(a) =
f 2 + h(λ − g)

λ − g

SF(b) =
f 2 + g(λ − h)

λ − h
.

Now suppose by way of contradiction that both vertices have the same smash function. After we

set the two expressions equal to each other we simplify to

(
λ2 + λg + λh + gh + f 2

)
(g − h) = 0.

Because h , g, this simplifies to

λ2 + λg + λh + gh + f 2 = 0,

which implies that

g =
f 2

h − λ
+ λ.

As long as the original graph only has real or complex weights (not rational functions), we claim

that the rational functions g, h and f must have a larger degree in the denominator than in the
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numerator (or equal degrees if the function is a constant). To prove this claim we use an equivalent

formula for the isospectral graph reductions which is found in [7], Chapter 2. Edge weights of

any isospectral reduction can be calculated as sums of branch products, where a branch product is

given by

Pω(β) = ω(e12)
m−1∏
i=2

ω(ei,i+1)
λ − ω(eii)

. (4.3)

(for a a description of this formula see Equation 2.1 in [7]). From this formula we see that when

a graph is reduced, factors involving λ are only added in the denominator of the branch product.

Therefore, the edge weight of a graph resulting from any sequence of reductions is always a rational

function whose numerator degree is less than or equal to the degree of its denominator.

Now we calculate

g (λ) =
f 2

h − λ
+ λ =

(a/b)2

c/d − λ
+ λ =

a2d
b2(c − dλ)

+ λ =
p
q

+ λ =
p + qλ

q

where a, b, c, d, p, q are polynomials and deg (a) ≤ deg (b) and deg (c) ≤ deg (d). Now if we can

show that deg(p) < deg(q), then this would imply deg (p) , deg (q + 1) and thus

deg(p + λq) = max{deg(p), deg(q + 1)} > deg(q)

which would contradict the fact that the degree of the polynomial in the denominator of g(λ) must

have be greater than or equal to the degree of the polynomial in its numerator. Thus all we need to

show is that deg (p) < deg (q), where p = a2d and q = b2(c − dλ). We know that

deg (c) ≤ deg (d)⇒ deg (c) < deg (dλ)⇒ deg (c − λd) = deg (λd) > deg (d).

Because deg (a2) ≤ deg (b2) and deg (c − λd) > deg (d), we can conclude that deg (a2d) <

deg
(
b2(c − dλ)

)
, and therefore deg (p) < deg (q). Thus we have shown that SF(a) cannot be equal

to SF(b).
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a b
f (λ)

f (λ)

h(λ) g(λ)

Figure 4.12: The isospectral reduction of an undirected graph over any two vertices. In the case of
a latent symmetry between a and b, we have h(λ) = g(λ)

Proof of (3)

Equation 1.11 in [7], gives the following equality

det(RS (M) − λI) =
det(M − λI)

det(MS̄ S̄ − λI)
.

Thus if we take the reduction set S to be the single vertex a, we get

det(R{a}(M) − λI) =
det(M − λI)

det(Māā − λI)

⇔ SF(a) =
det(M − λI)

det(Māā − λI)
+ λ

⇔ SF(a) =
p(λ)
pa(λ)

+ λ

where p(λ) is the characteristic polynomial of M, and pa(λ) is the characteristic polynomial of Māā,

(which corresponds to the subgraph G\a). Now suppose SF(a) = SF(b) for two vertices a, b ∈ G,

then

SF(a) = SF(b) ⇐⇒
p(λ)
pa(λ)

+ λ =
p(λ)
pb(λ)

+ λ ⇐⇒ pa(λ) = pb(λ).

Because the characteristic polynomials of the subgraphs created by removing these two vertices

are equal, these subgraphs have the same spectrum. Therefore we can conclude that the smash

functions for two vertices are equal if and only if the vertices are cospectral.

This concludes the proof since we have proved all three equivalences. �
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4.8 Concluding Remarks

We have proposed a novel generalization of the notion of a symmetry for a network (graph), which

reveals to an extent the latent structure of both real and theoretical networks. We define these latent

symmetries to be structural symmetries in an isospectrally reduced version of the original network.

Though we showed some simple examples of latent symmetries in a number of simple graphs, we

demonstrated they naturally occur in real networks (see Section 4.3). In addition we also define

a measure of latency of a symmetry which gives a sense of scale of the symmetry or how deep

the symmetry is hidden in the network. It is worth mentioning that this measure of latency can

be difficult to compute as it requires searching through all possible vertex subsets of a graph. An

interesting and open question is whether M(S ) can be efficiently computed or approximated.

In the real-world networks we considered, and in the theoretical networks we numerically

generated we were able to find latent symmetries that coexisted at various scales within the same

network. This seems to suggest that real-world networks are not only rich with symmetries [5],

but have what we might term a hierarchical structure of symmetries in which symmetries can be

found at multiple scales within the network.

In Section 4.4, we showed that vertices in a network which are latently symmetric also have the

same eigenvector centrality. Thus, in this sense latently symmetric vertices share equal importance

in the network. This suggests that latent symmetries are encoding some type of network structure

which is invisible to a simple symmetry search. Theorem 4.14 strengthens this result for the

undirected case, showing that the Perron complement of the network over two vertices results

in a symmetry if and only if those two vertices have the same eigenvector centrality in the original

network.

One of the strongest cases for the importance of latent symmetries comes from the numerical

study we perform in section 4.5, which shows that structural symmetries and latent symmetries are

correlated in graphs generated using preferential attachment. This suggests that we should expect

latent symmetries to naturally occur in real networks which form via some type of preferential

attachment.
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Having demonstrated the potential of latent symmetries as a concept for analyzing the structure

of networks, many questions still remain. For instance, do networks utilize latent symmetries the

same way they utilize standard structural symmetries? More specifically, do latently symmetric

vertices often have similar functions? Or could they have complimentary functions? If a set of

vertices are latently symmetric and some subset of them fail, what happens to the network?

In Section 4.6, we found latent symmetries are more likely to occur in a network built using

a preferential attachment model. It is natural to ask if there are other models of network growth

which also lead to the formation of latent symmetries. It was also noted that latent symmetries

seem to be rare in large undirected networks. There is still work to be done to understand why this

is and if there is a model which could result in latent symmetries in undirected graphs. In fact, the

seeming dichotomy between directed and undirected graphs, which we find in our numerical and

theoretical results, is not well understood and is a source of many open questions.

Finally, in Section 4.7 we prove the surprising fact that in undirected graphs vertices are latently

symmetric if and only if they are also co-spectral. This fact opens up a new world of possible

research questions. For instance, in the study of quantum walks on graphs, it has been shown

that perfect state transfer can only occur between vertices which are co-spectral [79]. Perhaps this

new equivalent characterization of cospectrality will be helpful in discovering other conditions for

perfect state transfer.

In summary, there is much more work to do regarding latent symmetries, but from our prelim-

inary work it seems that understanding how and why latent symmetries form could provide clues

to how network structures form and are utilized.

Chapter 5. Conclusions and Future work

Throughout this dissertation, we introduce a number of new tools whose common theme is main-

taining or controlling spectral properties of networks. This is significant as spectral properties of

networks can be used to bridge network dynamics and structure [7],[66],[80]. Spectral properties
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are also connected to centrality measures, connectivity, and other network measures. Since this

dissertation focused mostly on introducing and explaining these three tools, we have not explored

their potential use in other fields, especially those which are interested in dynamical networks. In

future work, we plan to partner with other disciplines to use these new ideas to help solve problems

in various types of networks.

In Chapter 2, we introduced a class of models for network growth based on the notion of

specialization. This model produces networks with topologies that are increasingly hierarchical,

more sparse, and modular, three properties typically found in many real-world networks. Further

we were able to find rules for choosing the base at each step to generate models that numerically

showed other network properties of interest. The first question that naturally arises is “can we prove

our numerical claims analytically?” It is a very difficult question to determine the expected value

for any of the properties we tracked including global clustering coefficient, degree distribution,

or even sparsity for each stage of any specialization. Perhaps we could make estimates for the

asymptotic behavior of these properties for at least some of the rules we have introduced.

Moreover, because a network can be specialized over any subset of its elements, the number of

rules for choosing a base to specialize are endless. Another line of future work involves inventing

new rules for developing other properties of networks. These new rules could be used for devel-

oping networks with a specific application in mind. Perhaps they could be used to predict how a

particular real network would evolve over time. This type of research would require working with

an expert in the field which studies the specific network. Alternatively, we could design rules that

would develop a theoretical network with a particular property, such as a specific degree distri-

bution after many iterates. Further, we could find such rules to develop properties which we can

prove analytically.

In Section 2.6, we found that if a network was intrinsically stable, then growing the network

via specialization will not disrupt the network stability. We are interested in exploring if there is

a way to maintain other network dynamics. For instance, we could ask, “Is there a condition for

which a network which synchronizes will continue to synchronize after being specialized?”
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In Chapter 3, we first extended the technique of equitable decompositions to matrices which

have separable automorphisms, then to prime-powered automorphisms and finally to all automor-

phisms. In some sense we completed this theory since there are no more classes of automorphisms

to which we can extend these decompositions.

Although most of this chapter is written in terms of matrices, it is equivalent to work with

the associated adjacency graph, where a matrix automorphism corresponds to a symmetry in the

graph. This theory has roots in the graph interpretation as one of the smaller matrices which results

from the decomposition is the divisor matrix. The divisor matrix’ adjacency graph is the quotient

graph for the equitable partition associated with the particular automorphism. The term equitable

decomposition comes from this fact.

We note that although every automorphism of a graph induces an equitable decomposition,

there are equitable decompositions which are not associated with an automorphism (see [81]).

One thing which we have not explored is the possibility of finding a decomposition which creates

the divisor matrix for an equitable partition not associated with an automorphism. It would be

interesting to develop such a technique since it would add a new class of matrices which we could

equitably decompose.

We also developed a few applications for equitable decompositions including Gershgorin es-

timates. One avenue of future research could extend these ideas to other eigenvalue estimation

techniques including Brauer regions and Brualdi regions [52].

In Chapter 4, we proposed a novel generalization of network symmetry called latent symme-

tries. The latent symmetries are standard network symmetries in an isospectrally reduced graph.

Much of Chapter 4 provided examples of latent symmetries and argued their usefulness for analyz-

ing network structure. This included demonstrating that latent symmetries have the same eigenvec-

tor centrality. Now that latent symmetries have been defined and found in both real and theoretical

networks, we can work toward understanding what they mean and how they are used in networks.

For instance, we can study how networks utilize vertices which are latently symmetric. Do ver-

tices which are latently symmetric have similar or complementary functions? Do these vertices
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add robustness to the network? There is still much to learn about latent symmetries and how they

function.

Finally in Section 4.8 we made the connection between latent symmetries in undirected graphs

and cospectral vertices. Cospectral vertices have recently become an important object in the study

of quantum walks on graphs as vertices being cospectral is a necessary condition for perfect state

transfer to occur between them [79]. Some further research we plan to pursue is determining if the

graph structure revealed by latent symmetries is useful in unraveling the open questions regarding

perfect state transfer.

The tools we developed in this dissertation are interesting by themselves and they create many

open questions to explore. Because these tools can be useful for various applications, numerous

different courses of future research are available to us. As we pursue as many of these directions

as we can, we hope to continue to find solutions to interesting problems and also to inevitably find

more interesting questions.
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