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abstract

The Arithmetic of Modular Grids

Grant Steven Molnar
Department of Mathematics, BYU

Master of Science

Let M
(∞)
k (Γ, ν) denote the space of weight k weakly holomorphic weight modular forms

with poles only at the cusp (∞), and let M̂
(∞)
k (Γ, ν) ⊆ M

(∞)
k (Γ, ν) denote the space of

weight k weakly holomorphic modular forms in M
(∞)
k (Γ, ν) which vanish at every cusp other

than (∞). We construct canonical bases for these spaces in terms of Maass-Poincaré series,
and show that the coefficients of these bases satisfy Zagier duality.

Keywords: weakly holomorphic modular forms, harmonic Maass forms, Zagier duality,
Bruinier-Funke pairing
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Chapter 1. Introduction and Statement of

Results

1.1 Introduction

In [36], Zagier defined canonical bases for spaces of weight 1/2 and weight 3/2 weakly holo-

morphic modular forms for Γ0(4) in the Kohnen plus space. The weight 1/2 basis elements

fn = q−n +
∑

j≥1 a1/2(n, j)qj and weight 3/2 basis elements gm = q−m +
∑

j≥0 a3/2(m, j)qj

have Fourier coefficients satisfying the striking duality

a1/2(n,m) = −a3/2(m,n),

so that the nth Fourier coefficient of the mth basis element in one weight is the negative of

the mth Fourier coefficient of the nth basis element in the other weight. This duality is very

clear when the Fourier expansions of the first few basis elements are computed, as follows.

f0(z) = 1 + 2q + 2q4 + 0q5 + 0q8 + · · · ,

f3(z) = q−3 − 248q + 26752q4 − 85995q5 + 1707264q8 + · · · ,

f4(z) = q−4 + 492q + 143376q4 + 565760q5 + 18473000q8 + · · · ,

f7(z) = q−7 − 4119q + 8288256q4 − 52756480q5 + 5734772736q8 + · · · ,

f8(z) = q−8 + 7256q + 26124256q4 + 190356480q5 + 29071392966q8 + · · · .

g1(z) = q−1 − 2 + 248q3 − 492q4 + 4119q7 − 7256q8 + · · · ,

g4(z) = q−4 − 2 − 26752q3 − 143376q4 − 8288256q7 − 26124256q8 + · · · ,

g5(z) = q−5 + 0 + 85995q3 − 565760q4 + 52756480q7 − 190356480q8 + · · · ,

g8(z) = q−8 + 0 − 1707264q3 − 18473000q4 − 5734772736q7 − 29071392966q8 + · · · .
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Looking at these expressions, we see that the coefficients appearing in the rows of one basis

appear, with opposite sign, in the columns of the other basis.

Thus, these coefficients form a “modular grid”, where each row contains the coefficients

of a basis element of one space, and each column contains the negatives of the coefficients

of the basis elements of the other weight. Zagier gave two proofs of this duality. The first

proof relies on showing that these basis elements have a common two-variable generating

function that encodes the modular grid as the Fourier coefficients in both variables. Similar

generating functions for bases of modular forms have been used by Eichler [17, 18], Borcherds

[5, 6], Faber [20, 21] and others [4] in studying the Hecke algebra and the zeros of modular

forms. The second proof of duality given by Zagier, attributed to Kaneko, is simpler and

involves considering the constant term of the product fn(z)gm(z), which is a(n,m)+b(m,n).

However fn(z)gm(z) lives in a space of weight 2 forms which are derivatives, and hence have

constant term equal to 0.

Duke and Jenkins [16] used similar generating functions to prove duality between spaces

of forms on SL2(Z) of any even integer weights k and 2 − k; additionally they used these

generating functions to study the zeros of these forms and prove congruences for the Fourier

coefficients of the basis elements. Zagier duality has been proven in various settings [17,

18, 5, 6, 4, 1, 2, 7, 8, 11, 12, 13, 14, 19, 23, 25, 26, 27, 28, 29, 30, 34, 35, 37, 38, 22]. In

many cases, Zagier’s and Kaneko’s proofs are difficult to adapt directly, and authors have

adapted them in ad hoc ways to obtain duality for the modular forms they study. In general,

generating functions become increasingly complicated and difficult to find in the presence of

higher dimension spaces of cusp forms, while the existence of weight 2 Eisenstein series in

higher levels allow for non-zero constant terms, which interfere with Kaneko’s proof in these

settings.

Harmonic Maass forms provide an alternate path to duality. The Maass–Poincaré series

form a basis for a space of harmonic Maass forms with poles at specified cusps. Explicit

formulas for their coefficients [8] demonstrate that duality holds in this setting, creating
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“mock modular grids” [11, 3]. However, unlike the proofs of Zagier and Kaneko, these

formulas do not give any intuitive reason why we should expect duality, only that it exists.

1.2 Statement of Results

In this thesis, we generalize both Zagier’s and Kaneko’s proofs for duality to a very general

setting, without relying on explicit formulas for coefficients of the Maass-Poincaré series.

In particular, suppose k ∈ 1
2
Z with k 6= 1

2
, 1, 3

2
, suppose N ∈ N, and let Γ ⊆ SL2(R) be

any discrete group with finite index above Γ(N). Moreover, let ν be a multiplier for Γ which

acts trivially on {µ−1 ( 1 N
0 1 )µ | µ ∈ SL2(Z)}.

If k is as above, we let M
(∞)
k (Γ, ν) denote the space of weight k weakly holomorphic

modular forms for Γ and ν with poles allowed only at the cusp (∞), and let M̂
(∞)
k (Γ, ν) ⊆

M
(∞)
k (Γ, ν) be the subspace of weakly holomorphic modular forms which vanish at every

cusp besides (∞).

Remark. The notation S]k is used to denote analogous spaces in [1, 23, 26, 27, 28, 29, 30, 35].

We have altered the notation here to avoid confusion with S!
k, which represents the space of

weakly holomorphic cusp forms which have vanishing constant terms at every cusp.

The multiplier ν governs which powers of q := e2πiz can occur in the Fourier expansions of

modular forms for Γ and ν. This is independent of the weight, as can be seen by considering

the image of ν on the translations in Γ (See Chapter 2). Let Z(ν) ⊆ 1
N
Z be defined as in

(2.2), with numerators satisfying certain congruence conditions defined by ν. We note that

Z(ν) will satisfy opposite congruence conditions, so that Z(ν) = −Z(ν). In Chapter 4 we define

canonical bases for M
(∞)
k (Γ, ν) and M̂

(∞)
k (Γ, ν) given by
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{f (ν)
k,m(z) := q−m +

∑
n∈Z(ν)

n6∈Ĩ(ν)
k

a
(ν)
k (m,n)qn | m ∈ Ĩ(ν)

k },

{g(ν)
k,m(z) := q−m +

∑
n∈Z(ν)

n 6∈J̃(ν)
k

b
(ν)
k (m,n)qn | m ∈ J̃ (ν)

k }

respectively, where the indexing sets Ĩ
(ν)
k and J̃

(ν)
k are defined in Chapter 4.

With this notation we have the following.

Theorem 1.1. If k 6= 1
2
, 1, 3

2
, then the spaces M

(∞)
2−k (Γ, ν) and M̂

(∞)
k (Γ, ν) are dual. In

particular, the coefficients of the forms f
(ν)
2−k,m and g

(ν)
k,n satisfy

a
(ν)
2−k(m,n) = −b(ν)

k (n,m).

This theorem includes the main results of [16, 1, 23, 26, 27, 28, 29, 30, 35] as corollaries.

Our proof of this theorem shows that duality can be seen as a consequence of the Bruinier–

Funke pairing; this generalizes Kaneko’s proof in a way that applies equally well to weakly

holomorphic forms of essentially arbitrary level.

Chapter 2. Modularity and Cusps

Let Γ be a discrete subgroup of SL2(R). Given γ = ( a bc d ) ∈ SL2(R), let j(γ, z) := (cz+ d). If

k ∈ 1
2
Z, then a weight k multiplier for Γ is a map ν : Γ → C× satisfying the multiplication

law

ν(γ1)ν(γ2)j(γ1, γ2z)kj(γ2, z)
k = ν(γ1γ2)j(γ1γ2, z)

k, (2.1)

for any matrices γ1, γ2 ∈ Γ.

If k is an integer, this reduces to the condition that ν is a multiplicative homomorphism. If

k is a half-integer then (here and throughout) we take the principal branch of the square root,
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and this multiplication law is closely related to the group law of the metaplectic group [31].

We may extend this notation to GL+
2 (R) (the 2× 2 real matrices with positive determinant)

by defining

j(γ, z) := det(γ)−1/2(cz + d),

and requiring both that ν is trivial on scalar matrices γ = ( a 0
0 a ) with a > 0 and that

ν(−I) := (−1)−k = j(−I, z)−k.

Given a function f : H→ C and γ ∈ GL+
2 (R), the action of the weight k Petersson slash

operator is defined by

f(z)|kγ := j(γ, z)−kf(γz).

If a group Γ has a weight k multiplier system ν, then for γ ∈ Γ we define

f(z)|k,νγ := ν(γ)−1j(γ, z)−kf(γz).

Equation (2.1) is equivalent to

f(z)|k,νγ1|k,νγ2 = f(z)|k,ν(γ1γ2).

We say that f is modular of weight k for Γ with multiplier ν if f(z)|k,νγ = f(z) for every

γ ∈ Γ.

By construction, •|k,νγ acts trivially whenever γ = aI ∈ R 6=0I. Because of this, we may

identify SL2(R) with GL+
2 (R)/R+I. In particular, we may scale matrices in a subgroup

Γ ⊆ GL+
2 (R) as convenient.
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2.1 Cusps

Given a discrete subgroup Γ ⊆ SL2(R), we define the modular curve Y (Γ) := Γ\H. The

compactified modular curve X(Γ) (if it exists) is the unique connected compact Riemann

surface containing Y (Γ). It turns out that X(Γ) may be obtained from Y (Γ) by adding a

finite collection of points Ω(Γ) called cusps to Y (Γ) (see Chapter 2 of [15]).

The extended rationals and the extended upper half plane are the sets

Q? := Q ∪ {∞} and H? := H ∪Q?,

respectively. Then the curve X(N) := X(Γ(N)) can be described as the quotient with

the extended upper half plane X(N) ' Γ(N)\H?, with Ω(N) := Ω(Γ(N)) given by the

equivalence classes Γ(N)\Q?.

Proposition 2.1. Let Γ be a discrete subgroup of SL2(R) containing Γ(N) for some N .

Then [Γ : Γ(N)] is finite. Moreover, Γ acts on Q? and Ω(Γ) ' Γ\Q?.

Proof. Let Γ? = Γ(N)\Γ. The curve Y (N) := Y (Γ(N)) has finite (but positive) volume

with respect to to the hyperbolic measure on H. Since Γ contains Γ(N), the volume of

Y (Γ) ' Γ?\Y (N) is also finite. Since Γ is discrete, the volume is positive. Therefore, the

quotient map Y (N) → Y (Γ) has finite degree, equal to [Γ : Γ(N)]. This quotient map lifts

to a quotient on X(N). Since X(N) is compact, the image is also. Hence, X(Γ) exists and

is X(Γ) ' Γ?\X(N). The quotient map must send cusps to cusps, and so

Ω(Γ) ' Γ?\Ω(N) ' Γ\Q?.

The fact that Γ acts on Q? can also be proven algebraically. This fact implies that each

γ ∈ Γ (with Γ viewed as a subgroup of GL+
2 (R)/R+I) may be scaled appropriately so that

all its entries are rational. More specifically, each γ has a canonical choice of scaling so that

each entry is integral, but so that the entries do not share a common factor greater than 1.

For ρ ∈ Q?, let (ρ) = Γρ denote the cusp containing ρ.
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For example, consider Γ0(2)+ = 〈Γ0(2),W2〉, where W2 is the Fricke involution which

normalizes Γ0(2). The Fricke involution can be represented by the determinant 1 matrix(
0 −1√

2√
2 0

)
, or more simply by the determinant 2 matrix ( 0 −1

2 0 ). A computation shows that

Ω(Γ0(2)+) = {(∞)}, whereas Ω(Γ0(2)) = {(∞) , (0)}.

2.2 Expansions at cusps

Let Γ, ν, k, and N be as above. Suppose is f : H→ C is smooth and modular for Γ and ν

of weight k. Then since ( 1 N
0 1 ) ∈ Γ(N) ⊆ Γ, f has a Fourier expansion of the form

f(z) =
∑
n∈ 1

N
Z

a(n, y)e2π inx,

where (here and throughout) z = x + i y. Indeed, let µ ∈ SL2(Z) be arbitrary, and let

fµ = f |kµ. We see fµ is modular on Γµ := µ−1Γµ with multiplier νµ defined so that

νµ(µ−1γµ) = ν(γ). We say that fµ is an expansion of f at the cusp (µ−1). Furthermore, as

Γ(N) is normal in SL2(Z), we have [Γµ : Γ(N)] = [Γ : Γ(N)] < ∞, and so fµ has a Fourier

expansion of the form

fµ(z) =
∑
n∈ 1

N
Z

aµ(n, y)e2π inx.

By the Euclidean algorithm, a modular function f may be expanded at any cusp (ρ) ∈ Ω(Γ)

using a matrix µ ∈ SL2(Z). For µ ∈ SL2(Z) (indeed, for µ ∈ GL2(Q)), we write (µ) = (µ∞).

Let Γµ∞ ⊆ Γµ denote the group of upper-triangular matrices in Γµ. As Γµ is of finite index

over Γ(N), the group Γµ∞ is generated (up to sign) by a single element Tµ =
(

1 s
t

0 1

)
, where s

t

is positive and rational. Moreover, the numerator s divides N , as otherwise we could replace

s with gcd(s,N). In fact t also divides N , although we will neither prove nor use this. We

define ω(Γ, µ) := s
t

to be the cuspidal width of (µ) in Γ with respect to µ.

Let T = TI be the generator of Γ∞ = ΓI
∞, and let ω = ω(Γ, I). Further, let ν(T ) = ζ.
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Notice that

ζ
N
ω = ν(T

N
ω ) = ν ( 1 N

0 1 ) = 1,

and so ζ = e2π i c ω
N , for some integer c. Define

Z(ν) :=
{m
N
| m ∈ Z, m ≡ c (mod N

ω
)
}

(2.2)

Then f(Tz) = f(z + ω) = ζf(z), and we conclude

f(z) =
∑
n∈Z(ν)

a(n, y)e2π inx. (2.3)

We refer to (2.3) as the Fourier expansion of f at the cusp (∞). Any linear change of

variable also gives an expansion about the cusp (∞), but (2.3) is the canonical choice. If we

define

Z(µ)
ν := Z(νµ), (2.4)

we also have

fµ(z) =
∑
n∈Z(µ)

ν

aµ(n, y)e2π inx. (2.5)

Chapter 3. Harmonic Maass forms

Here we recall the definition of harmonic Maass forms of weight k for a group Γ and multiplier

ν. As above, we set z = x + i y with x and y real, and q = e2π i z. The weight k hyperbolic

Laplacian is defined by

∆k := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ i ky

(
∂

∂x
+ i

∂

∂y

)
.
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Definition 3.1. Let Γ ⊃ Γ(N) and ν be as in the previous section. Then a real analytic

function F : H→ C is a harmonic Maass form of weight k for Γ and multiplier ν if:

(i) The function F (z) is modular for Γ and ν, so that

F |k,νγ = F

for every matrix γ ∈ Γ;

(ii) The function F is harmonic, so that ∆kF = 0;

(iii) The function F has a meromorphic principal part at each cusp.

Using (2.2), we can restate part (3) of the definition as the following: if γ ∈ SL2(Z) and

F γ = F |kγ, then there is some polynomial P γ(q−
1
N ) ∈ C[q−

1
N ] so that

lim
y→∞

F γ − P γ(q−
1
N ) = 0.

We denote the space of harmonic Maass forms of weight k for Γ and ν by Hk(Γ, ν). If we

strengthen this growth condition to require that

F γ − P γ(q−
1
N ) = O(e−

1
N
y),

then we obtain the subspace H !
k(Γ, ν) ⊆ Hk(Γ, ν). These spaces only differ in weights 2 and

3/2. In these cases the larger space contains non-holomorphic Eisenstein series, not present

in the smaller space. We also define H
(∞)
k (Γ, ν) ⊆ H !

k(Γ, ν) as the subspace of harmonic

Maass forms with holomorphic principal part at every cusp other than (∞).

The differential equation given by ∆kF = 0 implies that harmonic Maass forms have

Fourier expansions which split into two components: one part which is a holomorphic q-

series, and one part which is non-holomorphic.
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Lemma 3.2 ([10, Proposition 3.2]). Let F (z) ∈ Hk(Γ, ν), with Γ and ν as above. Then we

have that

F (z) = F+(z) + F−(z)

where F+ is the holomorphic part of F or mock modular form, given by

F+(z) :=
∑
n∈Zν
n�−∞

c+
F (n)qn,

and F− is the non-holomorphic part given by

F−(z) := c−F (0)y1−k +
∑
n∈Zν<0

c−F (n)Γ(k − 1, 4πy|n|)qn.

3.1 Differential operators, the Petersson inner product, and

the Bruinier–Funke Pairing

Differential operators yield some important relations between spaces of harmonic Maass

forms and weakly holomorphic modular forms of dual weight. Define the operators

Dk−1 :=

(
1

2πi

∂

∂z

)k−1

and ξk := 2iyk
∂

∂z

where for the first operator we require that k ≥ 2 be an integer. These maps yield the exact

sequences

0→M2−k(Γ, ν) ↪→H2−k(Γ, ν)
Dk−1

−−−→ S⊥k (Γ, ν)→ 0, (3.1)

0→M !
2−k(Γ, ν) ↪→H !

2−k(Γ, ν)
ξ2−k−−−→ Sk(Γ, ν)→ 0. (3.2)

Here, we note that in the first sequence, M2−k(Γ, ν) is 0 unless k = 2 and ν is trivial, in

which case it is C. The space S⊥k (N ;C) is a distinguished subspace of M !
k(Γ, ν) consisting of

those forms with vanishing constant term at all cusps and which are orthogonal to the cusp
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forms Sk(Γ, ν) with respect to the regularized Petersson inner product described below. In

the second sequence, note that for 2 − k = 3
2
, 2, we have H2−k(Γ, ν) 6= H !

2−k(Γ, ν). In these

weights, we also have the exact sequence

0→M !
2−k(Γ, ν) ↪→H2−k(Γ, ν)

ξ2−k−−−→Mk(Γ, ν)→ 0. (3.3)

The Dk−1 operator preserves integrality of coefficients, and so extends to a map

Dk−1 : M !
2−k(Γ, ν)

Dk−1

−−−→M !
k(Γ, ν).

The usual Petersson inner product for Mk(Γ, ν)×Mk(Γ, ν) is given by

〈f, g〉k,Γ :=

∫
FΓ

ykf(z)g(z)dµ,

wherever this expression is defined (it is sufficient for f or g to vanish at each cusp). Here,

dµ := dxdy
y2 and FΓ ⊆ H is any fundamental domain for Γ. Note that if we replace Γ by

any subgroup Γ′ with [Γ : Γ′] < ∞, the inner product changes by a factor of [Γ : Γ′]. The

inner product is sometimes normalized to remove this dependence; however, we choose not to

normalize it. We will only be interested in whether or not it vanishes, and the non-normalized

version simplifies the equation in Theorem 3.3 below.

The integral may be regularized for convergence as in [10], extending the inner product

to M !
k(Γ, ν)×Mk(Γ, ν) with the same vanishing conditions as above. This regularization is

accomplished by truncating the fundamental domain at a fixed height above the real axis and

by circular arcs around each cusp. As the height of the truncated domain goes to infinity

and the radius of the arcs around each cusp goes to zero, the integral converges and the

limit is defined to be the inner product. For k = 0, the regularized inner product 〈f, g〉0,Γ is

well-defined if f ∈ M !
0(Γ, ν) and g ∈ C. For k = 2, the regularized inner product 〈f, g〉2,Γ is

well-defined if f ∈ H2(Γ, ν) and g ∈ S2(Γ, ν).
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The Bruinier–Funke pairing {•, •} is given by

{f,G} := 〈f, ξ2−kG〉k.

with f ∈ Hk(Γ, ν) and g ∈ H2−k(Γ, ν), wherever the inner product is defined. Bruinier and

Funke showed that although {f,G} depends only on ξ2−kG, not the choice of pre-image G

itself, the pairing {f,G} can be calculated in terms of the coefficients of G and f .

Theorem 3.3 ([10, Proposition 3.5]). Suppose f ∈ Hk(Γ, ν) and G ∈ H2−k(Γ, ν) have

Fourier expansions at cusps given by

f |kγ =
∑
n∈Q

aγ(n)qn

and

(G|kγ)+ =
∑
n∈Q

bγ,+(n)qn.

Then

{f,G} =
∑

(ρ)∈Ω(Γ)

ω(Γ, γρ)
∑
n∈Q

aγρ(n)bγρ,+(−n).

provided the pairing on the left is defined. Here γρ ∈ SL2(Z) is any matrix with (ρ) = (γρ∞) .

The inner sum in the theorem is the residue of f(z)G(z) at the cusp (ρ), which is the

constant term of (f ·G)|2γρ, weighted by the width of the fundamental domain of Γγρ .

The original version of this theorem given in [10] was written in terms of vector-valued

modular forms for SL2(Z). If Γ ⊆ SL2(Z), we may rewrite the expression in Theorem 3.3 in

a manner more similar to the original:

{f,G} =
∑

γ∈Γ\SL2(Z)

∑
n∈Q

aγ(n)bγ,+(−n).

In this case, the widths ω(Γ, γ) which appear in Theorem 3.3 can be interpreted as counting

the number of elements in Γ\SL2(Z) which give expansions at the same cusp.
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Sketch of Proof. The theorem is an application of Stokes’ Theorem, using the truncated fun-

damental domains described above for the regularized inner product. With Stoke’s theorem,

the integral becomes the sum of line-integrals on the arcs Cρ,r of radius r around each cusp

ρ. In the limit the becomes a sum of residues at each cusp. To calculate the residue at a

given cusp ρ, we make the change of variable z 7→ γρz, which gives

lim
r→∞

∫
Cρ,r

f(z)G(z)dz = lim
T→∞

∫ x′+w+iT

x′+iT

(f ·G)|2γρ(z)dz

for some real x′, and where w = ω(Γ, γρ).

3.2 Maass-Poincaré Series

Following Niebur [32], Bringmann-Ono [9], etc., we define the Maass Poincaré series as

follows. Define the seed function φs,k,m : H→ C by

φs,k,m(z) := |4πm|−s|y|−
k
2 M k

2
sgn(m),s− 1

2
(|4πmy|) e2π imx,

where Mκ,µ(w) is the usual M-Whittaker function which satisfies

(
∂2

∂w2
− 1

4
+
κ

w
+

1/4− µ2

w2

)
Mκ,µ(w) = 0.

This definition holds for m ∈ R6=0 and s ∈ C such that 2s 6∈ Z≤0. We extend to m = 0 by

taking the limit

φs,k,0(z) := lim
m→0

φs,k,m(z) = ys−k/2.

Using standard formulas for the derivative of Mκ,µ we find

Rk φs,k,m(z) =
(
s+ k

2

)
φs,2+k,m(z), (3.4)

ξk φs,k,m(z) =
(
s− k

2

)
φs,2−k,−m(z). (3.5)

13



where Rk :=
(

2 i ∂
∂z

+ k
y

)
is the Maass raising operator which for k positive and even satisfies

−(4π)k−1Rk−2 ◦ . . . R4−k ◦R2−k = Dk−1.

The second identity implies that φs,k,m(z) is holomorphic if s = k
2

with k ≥ 1/2. In this

case φk/2,k,m(z) = qm. Iterating the second identity, we find

∆k φs,k,m(z) = −ξ2
k φs,k,m(z) =

(
s(1− s)− k

2
(1− k

2
)
)
φs,k,m(z),

which implies that φs,k,m(z) is harmonic if s = k
2

or 1− k
2
. If k ≥ 1

2
and m < 0 we have

φk/2,2−k,m(z) = |4πm|1−k(k − 1)γ(k − 1, 4π|m|y) · qm (3.6)

= |4πm|1−k (Γ(k)− (k − 1)Γ(k − 1, 4π|m|y)) · qm, (3.7)

where γ(s, x) and Γ(s, x) are the lower and upper incomplete Γ-functions respectively.

If m ∈ Z(ν) and Re s > 1, then the Maass–Poincare series

P(ν)(s, k,m; z) :=
∑

γ∈Γ∞\Γ

φs,k,m|k,νγ

converges absolutely. From (3.5) we have that

ξkP(ν)(s, k,m; z) = (s− k
2
)P(ν)(s, 2− k,−m; z). (3.8)

In particular, for k > 2 we have that P(ν)(k
2
, k,m; z) is weakly holomorphic, while

P(ν)(k
2
, 2− k,m; z) is harmonic.

The series P(ν)(s, k,m; z), viewed as a function in s, may be meromorphically continued

to s = 1 and s = 3/2. The continuation to s = 3/2 is non-trivial and requires estimates

for the conditional convergence of the Selberg–Kloosterman zeta function [24, 33]. The

continuation may result in a simple pole for P(ν)(s, k,m; z) at s = 1 or s = 3/2 if k = 0 or

k = 1/2 respectively. In particular, if k = 3/2 or k = 2 and s = k/2, then (3.8) still holds,
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but we may need to interpret the right hand side as a residue. In this case P(ν)(s, k,m; z)

is harmonic and P(ν)(s, 2− k,−m; z) is holomorphic.

With these known convergence conditions, we define the harmonic Maass–Poincaré series

as follows. For k > 1 and m ∈ Z(ν)
≥0 let

P(ν)
k,m(z) := P(ν)(k

2
, k,−m; z), (3.9)

for k < 1 and m ∈ Z(ν)
>0 let

P(ν)
k,m(z) :=

|4πm|1−k

Γ(2− k)
P(ν)(1− k

2
, k,−m; z). (3.10)

Exact formulas for the coefficients of P(ν)
k,m(z) can be obtained using Poisson summation.

See for instance [9]. However, elementary bounds can give basic information about the

principal parts of the Maass–Poincaré series. We have that φs,k,m(z) = ys−k/2 +O(ys+1−k/s)

as y →∞. If γ = ( a bc d ) ∈ SL+
2 (R) with c 6= 0, then φs,k,m(z)|kγ = O(y−s−k/2). Using Poisson

summation to sum over the non-upper triangular matrices in the group, we find that these

contribute a term which is O(y1−s−k/2), where the implied constant depends on s and k. In

particular, if k < 1 and s = 1 − k/2, we find that P
(ν)
k,m(z) = q−m + O(1) for all m ∈ Z(ν)

≥0,

and P
(ν)
k,m(z)|kγ = O(1) for any γ ∈ GL+

2 (Q) not upper triangular. If k > 1 and s = k/2, the

same results hold, but can be strengthened from O(1) to O(y1−k). Therefore in these cases

the constant term at every cusp must vanish.

We write q−m +
∑

n∈Z(ν)

A(ν)
k (m,n) qn for the holomorphic part of P(ν)

k,m.

Proposition 3.4. Let k, Γ, and ν be as above, and let

F =
∑

m∈Z(ν)
≥0

am · P(ν)
k,m

be a sum of Maass-Poincaré series, with a0 = 0 unless k > 1.
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Then F is weakly holomorphic if and only if the Bruinier–Funke pairing {F, h} = 0 for

every holomorphic modular form h ∈ M2−k(Γ, ν). In particular, F is is weakly holomorphic

if k > 2.

If k < 1, then F is weakly holomorphic if and only if the Bruinier–Funke pairing {F, h} =

0 for every cusp form h ∈ S2−k(Γ, ν).

Proof. The statement is trivial for k > 2.

We have that F is harmonic, and so has a non-holomorphic part F− = c−F (0)y1−k +∑
n∈Zν c

−
F (n)Γ(k − 1, 4πy|n|)qn. Since P(ν)

k,m(z) = q−m +O(1), we have that c−F (n) = 0 for all

n > 0, and for n = 0 unless k = 2 or 3/2. This holds similarly at every cusp. Therefore ξkF

is a holomorphic modular form in M2−k(Γ, ν), and if k < 1 we have that ξkF ∈ S2−k(Γ, ν).

Recall that F is weakly holomorphic if and only if ξkF = 0, which in turn is true if and only

if {F, h} = 0 for every h ∈M2−k(Γ, ν). If k < 1, we need only check the pairing against the

cusp forms.

Chapter 4. Weakly Holomorphic Modular

Forms

4.1 Construction of Bases

The space of weight k holomorphic modular forms for a group Γ and multiplier ν is denoted

by Mk(Γ, ν). This space has finite dimension, and so it has a basis of forms whose Fourier

expansions at (∞) are in reduced echelon form. We denote this basis by

{F (ν)
k,m(z) = qm +

∑
n∈Z(ν)

≥0

n 6∈I(ν)
k

A
(ν)
k (m,n)qn | m ∈ I(ν)

k }.

Here, we have defined the finite set I
(ν)
k ⊆ Z(ν)

≥0 implicitly to be the set of indices for the

reduced basis. Note that if k < 0, then I
(ν)
k is empty.
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The space Sk(Γ, ν) of weight k holomorphic cusp forms for Γ and ν also has finite dimen-

sion, and has a basis of forms whose Fourier expansions at (∞) are in reduced echelon form.

We denote this basis by

{G(ν)
k,m(z) = qm +

∑
n∈Z(ν)

>0

n 6∈J(ν)
k

B
(ν)
k (m,n)qn | m ∈ J (ν)

k }.

Here, as before, we have implicitly defined the finite set J
(ν)
k ⊆ Z(ν)

>0 to be the set of indices

for the reduced basis.

We will use the holomorphic basis elements F
(ν)
k,m(z) and G

(ν)
k,m(z) and the Maass–Poincaré

series P(ν)
k,m(z) to define the weakly holomorphic forms f

(ν)
k,m(z) and g

(ν)
k,m(z) appearing in

Theorem 1.1. In particular, let f
(ν)
k,m(z) := F

(ν)
k,−m(z) for −m ∈ I(ν)

k , and g
(ν)
k,m(z) := G

(ν)
k,−m(z)

for −m ∈ J (ν)
k .

The forms f
(ν)
k,m(z) and g

(ν)
k,m(z) are indexed by sets Ĩ

(ν)
k and J̃

(ν)
k respectively, which are

defined so that they satisfy the disjoint unions

Ĩ
(ν)
k t J

(ν)
2−k = −

(
Z(ν)
<0 t I

(ν)
k

)
,

J̃
(ν)
k t I

(ν)
2−k = −

(
Z(ν)
≤0 t J

(ν)
k

)
.

A short manipulation shows that these imply the relations

(
− J̃ (ν)

2−k
)
t Ĩ(ν)

k = Z(ν), (4.1)(
− Ĩ(ν)

2−k
)
t J̃ (ν)

k = Z(ν). (4.2)

The Maass–Poincaré series may also be reduced against the forms F
(ν)
k,n(z) and G

(ν)
k,n(z) at

(∞), to obtain forms
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P̃(ν)
k,m(z) := P(ν)

k,m(z)−
∑
n∈I(ν)

k

A(ν)
k (m,n)F

(ν)
k,n(z),

P̂(ν)
k,m(z) := P(ν)

k,m(z)−
∑
n∈J(ν)

k

A(ν)
k (m,n)G

(ν)
k,n(z).

Let us write q−m +
∑

n∈Z(ν)

Ã(ν)
k (m,n) qn for the holomorphic part of P̃(ν)

k,m, and

q−m +
∑

n∈Z(ν)

Â(ν)
k (m,n) qn for the holomorphic part of P̂(ν)

k,m. Clearly

Ã(ν)
k (m,n) = A(ν)

k (m,n)−
∑
`∈I(ν)

k

A(ν)
k (m, `)

(
δ`n + A

(ν)
k (`, n)

)
,

Â(ν)
k (m,n) = A(ν)

k (m,n)−
∑
`∈J(ν)

k

A(ν)
k (m, `)

(
δ`n +B

(ν)
k (`, n)

)
,

where δ`n =


1 if ` = n,

0 else.

The remaining forms f
(ν)
k,m(z) and g

(ν)
k,m(z) may then be defined in terms of these reduced

Maass–Poincaré series as follows. If k 6= 2 or ν is nontrivial, for m ∈ Ĩ
(ν)
k , −m 6∈ I

(ν)
k we

define

f
(ν)
k,m(z) := P̃(ν)

k,m(z)−
∑

n∈J(ν)
2−k

B
(ν)
2−k(n,m)P̃(ν)

k,n(z). (4.3)

If k = 2 and ν is trivial, let A2,m(γ) denote the constant term of F
(ν)
2,m(z)|kγ. We define

f
(ν)
2,m(z) := P̃(ν)

2,m(z) +

∑
n∈I(ν)

2

A(ν)
2 (m,n)

∑
(µ)∈Ω(Γ)

ω(Γ, µ)A
(ν)
2,n(µ)

P(ν)
2,0 (z). (4.4)
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If k 6= 0 or ν is nontrivial, for m ∈ J̃ (ν)
k , −m 6∈ J (ν)

k we define

g
(ν)
k,m(z) := P̂(ν)

k,m(z)−
∑

n∈I(ν)
2−k

A
(ν)
2−k(n,m)P̂(ν)

k,n(z). (4.5)

If k = 0 and ν is trivial, we define

g
(ν)
0,m(z) := P̂(ν)

0,m(z) +A(ν)
2 (0,m)−

∑
n∈I(ν)

2

A
(ν)
2 (n,m)

(
P̂(ν)

0,n(z) +A(ν)
2 (0, n)

)
. (4.6)

These are each harmonic Maass forms, being sums of Maass–Poincaré series. We will see

that they are also weakly holomorphic, although this is non-trivial for k < 1.

We write

q−m +
∑

m∈Z(ν)

a
(ν)
k (m,n)qn

for the holomorphic part of f
(ν)
k,m(z) and

q−m +
∑

m∈Z(ν)

b
(ν)
k (m,n)qn

for the holomorphic part of g
(ν)
k,m(z). Then by construction we have

a
(ν)
k (m,n) =


−B(ν)

2−k(−n,m) if − n ∈ J (ν)
2−k,

0 if n ∈ I(ν)
k ,

and

b
(ν)
k (m,n) =


−A(ν)

2−k(−n,m) if − n ∈ I(ν)
2−k,

0 if n ∈ J (ν)
k

for m in Ĩ
(ν)
k and m ∈ J̃ (ν)

k respectively. Note that unless 0 ≤ k ≤ 2, at least one case in each

statement is vacuous.

Let us also define E
(ν)
k,γ(z) = P(νγ)

k,0 (z)|kγ−1 to be the weight k Eisenstein series with
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a constant at (γ), and write
∑

n∈Z(ν)

s
(ν)
k,γ(n)qn for the holomorphic part of E

(ν)
k,γ . For Γ a

congruence group, it is well-known that when k < 1 we have 〈E(ν)
k,γ , g〉k,Γ = 0 for all cusp forms

g ∈ Sk (Γ, ν) (see pages 206-207 of [15]). This argument can be extended in a straightforward

way to any level N Fuchsian group.

With this notation, we have the following.

Lemma 4.1. For k < 1, the constant term of P(ν)
k,m|kγ is − s

(ν)
2−k,γ(n)

ω(Γ,γ)
.

Proof. Let k < 1, and consider
{
E

(ν)
2−k,γ,P

(ν)
k,m

}
. Note that E

(ν)
2−k,γ is holomorphic if 2−k > 2,

so this pairing makes sense. By the previous paragraph,
{
E

(ν)
2−k,γ,P

(ν)
k,m

}
= 0. Write A(ν)

k,γ(m)

for the constant term of P(ν)
k,m|kγ. By Theorem 3.3,

{
E

(ν)
2−k,γ,P

(ν)
k,m

}
= s

(ν)
2−k,γ(m) + ω(Γ, γ)A(ν)

k,γ(m),

since the product E
(ν)
2−k,γP

(ν)
k,m vanishes at every cusp other than (∞) and (γ), and the result

follows.

Lemma 4.2. For k 6= 1
2
, 1, 3

2
, the forms f

(ν)
k,m(z) and g

(ν)
k,m(z) defined as above are weakly

holomorphic, and form bases for M
(∞)
k (Γ, ν) and M̂

(∞)
k (Γ, ν) respectively.

Proof. We begin with the f
(ν)
k,m(z) with m ∈ Ĩ(ν)

k . By (3.2), ξkf
(ν)
k,m ∈ S2−k(Γ, ν). By Propo-

sition 3.4, if k 6= 2, f
(ν)
k,m(z) is weakly holomorphic if and only if

{
G

(ν)
2−k,n, f

(ν)
k,m

}
= 0 for each

n in J
(ν)
2−k. By Theorem 3.3, and because f

(ν)
k,mG

(ν)
2−k,n vanishes at every cusp other than (∞),

we calculate

{
G

(ν)
2−k,n, f

(ν)
k,m

}
= a

(ν)
k (m,−n) +B

(ν)
2−k(n,m) +

∑
`∈Z(ν)

a
(ν)
k (m, `)B

(ν)
2−k(n,−`) = 0.

Here, the terms outside the summation cancel, whereas in each of the summands, either

a
(ν)
k (m, `) = 0 (if ` ∈ Ĩ(ν)

k ), or B
(ν)
2−k(n,−`) = 0 (if −` ∈ Z(ν)

≤0 ∪ J
(ν)
2−k = −

(
J̃

(ν)
2−k ∪ I

(ν)
k

)
). By

(4.1), this is covers every `. Thus the f
(ν)
k,m(z) are weakly holomorphic.
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Now suppose k = 2. If ν is nontrivial, then S0(Γ, ν) = M0(Γ, ν) = {0} and Proposition

3.4 holds vacuously. If ν is trivial, then by Proposition 3.4, f
(ν)
2,m is weakly holomorphic if

and only if
{

1, f
(ν)
2,m

}
= 0. But by (4.4), we have

{
1, f

(ν)
2,m

}
= (1− 1)

∑
n∈I(ν)

k

A(ν)
k (m,n)

∑
(µ)∈Ω(Γ)

ω(Γ, µ)A2,n(µ) = 0

and f
(ν)
2,m is weakly holomorphic as desired.

In order to see that f
(ν)
k,m(z) with m ∈ Ĩ

(ν)
k is a basis for M

(∞)
k (Γ, ν), recall that the

Maass–Poincaré series P(ν)
k,m(z) together with the holomorphic modular forms Mk(Γ, ν) span

the harmonic Maass forms H
(∞)
k (Γ, ν). The co-dimension of M

(∞)
k (Γ, ν) inside H

(∞)
k (Γ, ν)

is the dimension of S2−k(Γ, ν). By considering the possible orders of poles, we see that the

space spanned by the f
(ν)
k,m(z) is a subset of M

(∞)
k (Γ, ν) with the same co-dimension, and is

therefore the whole space. By construction the forms
{
f

(ν)
k,m(z)

}
m∈Ĩ(ν)

k

are row-reduced.

In order to verify that g
(ν)
k,m(z) is weakly holomorphic, it suffices to show that

{
F

(ν)
2−k,n, g

(ν)
k,m

}
=

0 for each n in I
(ν)
k . In fact, showing that

{
G

(ν)
2−k,n, g

(ν)
k,m

}
= 0 would be sufficient (unless k = 2

and ν is trivial), but our construction of g
(ν)
k,m(z) makes the former identity easier to verify.

By the above argument, we see g
(ν)
k,mF

(ν)
2−k,n vanishes at each cusp other than infinity, and

so as before we need only consider the contribution at the cusp (∞) which is

{
F

(ν)
2−k,n, g

(ν)
k,m

}
= b

(ν)
k (m,−n) + A

(ν)
2−k(n,m) +

∑
`∈Z(ν)

b
(ν)
k (m, `)A

(ν)
2−k(n,−`) = 0. (4.7)

As before, the terms outside the summation cancel directly, whereas each term of the sum-

mand itself is 0. Thus the g
(ν)
k,m(z) are all in M̂

(∞)
k (Γ, ν).

We now have an extra step: we must show that the g
(ν)
k,m(z) vanish away from infinity.

If k > 1, the paragraph before Proposition 3.4 tells us that the constant term of P̂(ν)
k,m(z) at

the cusp (ρ) is 0 unless (ρ) = (∞); then in this case g
(ν)
k,m(z) ∈ M̂ (∞)

ν k (Γ, ν).

Let k < 1. Suppose first that k 6= 0. Given a cusp (γ) 6= (∞) , Lemma 4.1 tells us that
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the constant of P̂(ν)
k,m|kγ is − s

(ν)
2−k,γ(n)

ω(Γ,γ)
Hence, the constant term of g

(ν)
k,m|kγ is

− 1

ω(Γ, γ)

s(ν)
2−k,γ(m)−

∑
n∈I(ν)

2−k

A
(ν)
2−k(n,m)s

(ν)
2−k,γ(n)

 .

Since the F
(ν)
2−k,n(z) form a basis for M2−k(Γ, ν), and E

(ν)
2−k,γ(z) is in this space, we have

E
(ν)
2−k,γ =

∑
n∈I(ν)

2−k

s
(ν)
2−k,γ(n)F

(ν)
2−k,n(z).

Considering just the the mth coefficient, we find

s
(ν)
2−k,γ(m) =

∑
n∈I(ν)

2−k

A
(ν)
2−k(n,m)s

(ν)
2−k,γ(n),

and so the constant term of g
(ν)
k,m|kγ is zero.

Now suppose k = 0. If ν is nontrivial, then S0(Γ, ν) = M0(Γ, ν) = {0} and Eν
2,γ ∈

M2(Γ, ν) by Proposition 3.4, so the above argument goes through unchanged. If ν is trivial,

then by definition the constant term of g
(ν)
0,m|0γ is

− 1

ω(Γ, γ)

s(ν)
2,γ(m)− ω(Γ, γ)A(ν)

2 (0,m)−
∑
n∈I(ν)

2

A
(ν)
2 (n,m)

(
s

(ν)
2,γ(n)− ω(Γ, γ)A(ν)

2 (0, n)
) .

Now observe Eν
2,γ − ω(Γ, γ)Eν

2,I = Eν
2,γ − ω(Γ, γ)P(ν)

2,0 is holomorphic by Proposition 3.4.

Then we have

Eν
2,γ − ω(Γ, γ)P(ν)

2,0 =
∑
n∈I(ν)

2

(
s

(ν)
2,γ(n)− ω(Γ, γ)A(ν)

2 (0, n)
)
F

(ν)
2−k,n(z).
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Considering just the mth term, we find

s
(ν)
2,γ(m) = ω(Γ, γ)A(ν)

2 (0,m) +
∑
n∈I(ν)

2

A
(ν)
2 (n,m)

(
s

(ν)
2,γ(n)− ω(Γ, γ)A(ν)

2 (0, n)
)
,

and so the constant term of g
(ν)
0,m|0γ is zero.

As before, a co-dimension argument shows that in fact the g
(ν)
k,m(z) span M̂

(∞)
k (Γ, ν), and

by construction the forms
{
g

(ν)
k,m(z)

}
m∈J̃(ν)

k

are row-reduced.

Corollary 4.3. If f =
∑

n∈Z(ν)

anq
n ∈ M

(∞)
k (Γ, ν) then f =

∑
n∈Ĩ(ν)

k

anf
(ν)
k,−n, and if f ∈

M̂
(∞)
k (Γ, ν) then f =

∑
n∈J̃(ν)

k

ang
(ν)
k,−n.

4.2 Proof of Theorem 1.1

Suppose that k > 1. We apply the Bruinier–Funke pairing to g
(ν)
k,n and f

(ν)
2−k,m. As these

are both weakly holomorphic functions, we see that
{
g

(ν)
k,n, f

(ν)
2−k,m

}
= 0. On the other hand,

since f
(ν)
2−k,mg

(ν)
k,n vanishes at every cusp other than (∞), Theorem 3.3 gives

{
g

(ν)
k,n, f

(ν)
2−k,m

}
= a

(ν)
2−k(m,n) + b

(ν)
k (n,m) +

∑
`∈Zν

a
(ν)
2−k(m, `)b

(ν)
k (n,−`). (4.8)

Note that a
(ν)
2−k(m, `) is 0 unless ` ∈ Z(ν) \ Ĩ(ν)

2−k, or equivalently using (4.1), unless ` ∈ J̃ (ν)
k .

However, b
(ν)
k (n,−`) = 0 for −` ∈ J̃ (ν)

k , so (4.8) reduces to

{
g

(ν)
k,n, f

(ν)
2−k,m

}
= a

(ν)
2−k(m,n) + b

(ν)
k (n,m) = 0.

The case k < 1 is similar, but we consider
{
f

(ν)
2−k,m, g

(ν)
k,n

}
instead of

{
g

(ν)
k,n, f

(ν)
2−k,m

}
. This

concludes the proof.
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