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abstract

Adding Limit Points to Bass-Serre Graphs of Groups

Alexander Jin Shumway
Department of Mathematics, BYU

Master of Science

We give a brief overview of Bass-Serre theory and introduce a method of adding a limit
point to graphs of groups. We explore a basic example of this method, and find that while
the fundamental theorem of Bass-Serre theory no longer applies in this case we still recover
a group action on a covering space of sorts with a subgroup isomorphic to the fundamental
group of our new base space with added limit point. We also quantify how much larger the
fundamental group of a graph of groups becomes after this construction, and discuss the
effects of adding and identifying together such limit points in more general graphs of groups.
We conclude with a theorem stating that the cokernel of the map on fundamental groups
induced by collapsing an arc between two limit points contains a certain fundamental group
of a double cone of graphs of groups, and we conjecture that this cokernel is isomorphic to
this double cone group.
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Chapter 1. Introduction

1.1 Introduction

Bass-Serre theory was first developed by Jean-Pierre Serre, compiled into the book Trees [1]

in collaboration with Hyman Bass, who later made substantial contributions on his own to

the basics of the theory. The theory concerns itself with decompositions of groups using free

products with amalgamation and HNN extensions, and is an important tool in fields such as

geometric group theory. While largely algebraic treatments of the theory are available (see

[1], for instance), we will focus on obtaining topological intuition for the theory and building

from that point.

Graphs of groups are defined by choosing a graph and assigning groups to each edge

and vertex, together with inclusions between groups when necessary. Our work explores the

effect of moving one step away from simplicial graphs by introducing a limit point to a graph.

1.2 Outline

In Chapter 2 we will give an introduction to Bass-Serre theory. We will discuss the build-

ing blocks of the theory (free products with amalgamation and HNN extensions), give a

topological interpretation of those operations, and show how they fit together to define a

fundamental group of a graph of groups. We will also introduce the fundamental theorem

of Bass-Serre theory in this chapter.

In Chapter 3 we will introduce inverse limits, the main tool used to coherently add a

limit point to our graphs. We will then work out the details of obtaining {0} ∪ { 1
n
|n ∈ N}

with the standard topology as an inverse limit of finite point sets in preparation for a more

complicated inverse limit in chapter 4.

In Chapter 4 we will work out a basic example of adding a limit point to a graph of

groups. We will show that while it does not have a universal covering space we can still

1



find a cover of sorts via an inverse limit of covering spaces, and we explore properties of this

pseudo-cover.

Finally, in Chapter 5 we will discuss how our method of adding a limit point creates

a much larger group out of the original fundamental group of a graph of groups. We will

further explore adding limit points to more general graphs of groups than covered in chapter

4, and end with a theorem and a conjecture regarding the identification of limit points.
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Chapter 2. Bass-Serre Theory

Our treatment of Bass-Serre Theory will come largely from [2]. As this will necessarily be a

brief overview, the reader interested in a fuller treatment is invited to study [2]. Any theorems

stated without proof in this chapter can be found in [2]. Another excellent introduction to

this theory is [1], though his treatment is algebraic as opposed to topological.

We start by defining our main object, a graph of groups .

Definition 2.1. An abstract graph Γ is given by sets E(Γ) and V (Γ), called the edges and

vertices of Γ, a fixed point free involution on E(Γ), and a map ∂0 : E(Γ) → V (Γ). We will

denote the image of e under the involution by ē. We define ∂1e = ∂0ē and say that e joins

∂0e to ∂1e.

Definition 2.2. Given an abstract graph Γ, we denote the realization of Γ by |Γ| and

define it to be the topological graph with vertices V (Γ), an edge for each element in the set

{{e, ē}|e ∈ E(Γ)}, and edges attaching to vertices according to the map ∂0.

Definition 2.3. A graph of groups G consists of an abstract graph Γ (whose realization we

will assume is connected), together with a function assigning to each vertex v of Γ a group

Gv and to each edge e a group Ge and an injective homomorphism fe : Ge → G∂0e, where

we insist that Ge = Gē.

These graphs of groups are the main objects of Bass-Serre theory. In the remainder

of this chapter we will discuss free products with amalgamation and HNN extensions, and

show both algebraically and topologically how graphs of groups are essentially the result of

successive applications of these operations.

2.1 Free Products with Amalgamation

Definition 2.4. Let A and B be groups. A word in A and B is a string p1p2...pn, where

each pi is a group element of A or B. A word p = p1p2...pn can be reduced by either

3



• removing some pi from p if pi is the identity of A or B, or

• replacing a product pipi+1 by its product in A or B if pi and pi+1 are both in A or both

in B.

A word is called a reduced word if it cannot be reduced.

Definition 2.5. Let A and B be groups. The free product of A and B, denoted A ∗ B,

is the group of reduced words in A and B together with the empty set (which acts as the

identity), where the group operation is concatenation followed by reduction to arrive at a

reduced word.

Definition 2.6. Let A, B, and C be groups, with injective group homomorphisms α1 : C →

A and α2 : C → B. Let H be the subgroup of A ∗B generated by the elements α1(c)α−1
2 (c)

for all c ∈ C. The free product with amalgamation A ∗C B is defined by

A ∗C B = A ∗B/〈〈H〉〉,

where 〈〈H〉〉 is the normal closure of H in A ∗B.

This free product with amalgamation arises naturally when gluing two topological spaces

together via path connected subspaces, as summarized in the famous Seifert van Kampen

theorem (see [3], Theorems 70.1 and 70.2), listed below. We note, however, that the Seifert

van Kampen does not require the maps i1, i2 as defined in the theorem below to be injective;

free products with amalgamation thus arise as a special case of the Seifert van Kampen

theorem.

Theorem 2.7. Let X = U ∪V be a topological space, where U and V are open in X; assume

U , V , and U ∩ V are path connected; let x0 ∈ U ∩ V . Let i1 : π1(U ∩ V, x0)→ π1(U, x0), i2 :

π1(U ∩ V, x0) → π1(V, x0), j1 : π1(U, x0) → π1(X, x0) and j2 : π1(V, x0) → π1(X, x0) be
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homomorphisms induced by the the respective inclusions of topological spaces. Let

j : π1(U, x0) ∗ π1(V, x0)→ π1(X, x0)

be the homomorphism extending j1 and j2. Then, j is surjective, and its kernel is the least

normal subgroup N of the free product that contains all elements represented by words of the

form (i1(g)−1i2(g)), for g ∈ π1(U ∩ V, x0).

We can also write A ∗C B as a pushout in the category of groups, defined below categor-

ically (see [4]):

Definition 2.8. In any category, given a pair f : a → b, g : a → c of arrows with common

domain a, a pushout of f and g is a commutative square

a b

c r

f

g u

v

such that for any other commutative square built from f and g as shown below,

a b

c s

f

g h

k

there is a unique arrow t : r → s such that t ◦ u = h and t ◦ v = k, i.e., all commutative

squares built from f and g factor through the pushout.

A∗CB is the pushout of α1 and α2 in the category of groups, as pictured below, where β1

and β2 are the obvious inclusions of A and B into A ∗C B, looking it as a quotient of A ∗B.

C A

B A ∗C B

α1

α2 β1

β2

5



Again hearkening back to definition 2.6, it is easy to see that any element of A ∗C B

can be written a1b1a2b2...anbn, ai ∈ β1(A), bi ∈ β2(B). Further, each element has a reduced

representative, as follows:

Write each αi as an inclusion, so that C ⊂ A and C ⊂ B. Pick representatives ai ∈ A for

right cosets aiC of C, giving a section of the projection A→ A/C, and do the same for B.

We impose the restriction that the identity coset C is represented by the identity element.

Then, a reduced representative is a sequence a1b1...anbnc such that c ∈ C and each ai and bi

is one of the representatives chosen above.

We conclude this section with the following result, again due to [2]:

Theorem 2.9. The maps A→ A ∗C B and B → A ∗C B are injective, and each element of

A ∗C B has a unique reduced representative.

2.2 HNN Extensions

HNN Extensions are extremely similar to free products with amalgamation. They can also

be defined topologically and as a pushout, and their elements have similarly defined reduced

representatives.

Definition 2.10. Let A be a group with presentation A = 〈S|R〉, and let α1 : C → A and

α2 : C → A be injective homomorphisms. Let t be a symbol not in S. Then, the HNN

extension of A relative to α1 and α2 is given by:

A∗C = 〈S, t|R, tα2(c)t−1 = α1(c) ∀c ∈ C〉

Topologically, an HNN extension corresponds to the following situation. Suppose we have

a space X with π1(X) = A; pointed subspaces (Y1, y1) and (Y2, y2) such that the inclusion

maps Y1 ↪→ X and Y2 ↪→ X induce inclusions π1(Y1, y1) ⊂ π1(X, y1) and π1(Y2, y2) ⊂

π1(X, y2); a homeomorphism h : Y1 → Y2 with h(y1) = y2; and a path l from y1 to y2. We

write π1(Y1, y1) = π1(Y2, y2) = C, and we define α1 and α2 as follows. α1 : π1(Y1, y1) ↪→
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π1(X, y1) is the inclusion on fundamental groups induced by inclusion of Y1 into X, and

α2 : π1(Y2, y2) ↪→ π1(X, y1) is the composition of the inclusion of π1(Y2, y2) into π1(X, y2)

with the isomorphism π1(X, y2) → π1(X, y1) induced by conjugation of paths by l. Let X̃

be the space obtained from X t (Y1 × I) by attaching the endpoints of Y1 × I to Y1 and Y2

according to the homeomorphism h. Let t be the image of l ∪ (y1 × I) in π1(X̃, y1). Then,

it can be shown that π1(X̃, y1) = A∗C , with αi as defined above.

In other words, HNN extensions describe how the fundamental group of a space changes

when sufficiently nice homeomorphic subspaces are joined together with a tube. Details of

this interpretation can be found in [2].

The initial setup described is pictured in Figure 2.1:

Figure 2.1: HNN Extension Setup

We can also write A∗C as a pushout, just as with A ∗C B, where β is the inclusion of A

into A∗C :

C A

A A∗C

α1

α2 β

β

Or, more succinctly,

C A A∗C
α1

α2

β

7



Each element of A∗C can be written as a1t
r1a2t

r2 ...ant
rn , ai ∈ β(A), ri ∈ Z, and has a

reduced expression, as follows:

Pick right transversals Ti of αi(C) in A. Our reduced expressions are defined as

a1t
ε1a2t

ε2 ...ant
εnan+1, where each ε = ±1, ai ∈ T1 if εi = 1, ai ∈ T2 if εi = −1, and an+1 is

arbitrary.

As with section 2.1, we conclude this section with the following result (see [2] for a proof):

Theorem 2.11. The map β : A→ A∗C is injective, and every element of A∗C has a unique

reduced representative.

2.3 Graphs of Groups

Graphs of groups were defined at the beginning of this chapter in definition 2.3. Now

that we are equipped with an understanding of free products with amalgamation and HNN

extensions, we will define in detail the fundamental group of a graph of groups and the

associated topological realization of a graph of groups.

Given a graph G of groups, we can define an analogous graph X of pointed topological

spaces as follows: For each Gv and Ge in G, choose pointed topological spaces (Xv, v0)

and (Xe, e0) such that π1(Xv, v0) = Gv and π1(Xe, e0) = Ge, together with pointed maps

f ′e : (Xe, e0)→ (X∂0e, v0) inducing the associated injections in G. Clearly such choices exist,

such as via choosing Eilenberg-Maclane spaces for each Xv and Xe. We will call our (Xv, v0)

vertex spaces and our (Xe, e0) edge spaces . Given such a graph X , we define a total space

XΓ as the quotient of ∪{Xv|v ∈ V (Γ)} ∪ (∪{Xe × I|e ∈ E(Γ)}) by the identifications

Xe × I → Xē × I via (x, t)→ (x, 1− t),

Xe × 0→ X∂0e via (x, 0)→ f ′e(x).

Definition 2.12. The fundamental group GΓ of the graph G of groups is the fundamental

group of its associated total space XΓ.

8



Though we do not cover the details here, it can be shown that GΓ is independent of the

choice of X (see [2] for details).

Consider the case when Γ has two vertices x and y, with one edge pair {e, ē} joining

them. In this case, we see from the Seifert van Kampen Theorem that GΓ = Gx ∗Ge Gy. In

the case where Γ has one vertex x and one loop {e, ē}, we see from our discussion concerning

HNN extensions in section 2.2 that GΓ = Gx∗Ge . The fundamental group of a general graph

of groups is then obtained simply by an iteration of free products with amalgamation and

HNN extensions.

We also insert here a result about the nature of GΓ, and point the interested reader to

[2] for a proof.

Proposition 2.13. If G is a graph of groups as above, then each map Gv → GΓ is injective.

This formulation of Bass-Serre theory relies heavily upon covering space theory to analyze

the structure of free products with amalgamation, HNN extensions, and general graphs of

groups. A consideration of covering spaces associated with subgroups of fundamental groups,

for instance, gives theorem 2.14 below. We point the reader to [2] for a proof, but note that

it follows immediately from treating G as the fundamental group of a graph of groups with

two vertices and one edge pair and noting that the universal cover of its total space is a

union of covers of its vertex spaces Xv and of its edge spaces crossed with intervals, Xe × I.

Theorem 2.14. If G = A ∗C B or A∗C and if H ⊂ G, then H is the fundamental group

of a graph of groups, where the vertex groups are subgroups of conjugates of A or B and the

edge groups are subgroups of conjugates of C.

Finally, we note that though our introduction to graphs of groups has been highly topo-

logical, the fundamental group of a graph of groups can also be defined entirely algebraically,

as in Serre’s original exposition [1]. While we omit the details here, we recommend this ex-

position to the reader interested in an algebraic construction of the fundamental group of a

graph of groups using words.

9



2.4 Fundamental Theorem of Bass-Serre Theory

The fundamental theorem of Bass-Serre theory allows us to obtain a group acting without

inversions on a graph (i.e., without sending e to ē) from a graph of groups and vice versa

in mutually inverse operations. We will conclude our overview of Bass-Serre theory with a

brief explanation of this process. We only give an outline of the constructions here, but we

refer the interested reader to [2] for details.

Firstly, given a graph G of groups we choose a corresponding graph X of spaces and note

that the universal cover X̃Γ of the total space XΓ is a union of copies of the universal covers

X̃v and X̃e× I of Xv and Xe× I. By identifying each copy of X̃v to a point and each X̃e× I

to a copy of I, we obtain a quotient space Z, which turns out to be a tree. The action of G

on X̃Γ induces an action on Z, giving us our desired group action.

Coversely, given a group G acting on a tree Y without inversions, we first choose a

connected CW complex U with fundamental group G. G then acts freely on its universal

cover Ũ , and thus also on Ũ × Y . We get a projection X = (Ũ × Y )/G→ Y/G = Γ, where

Γ is a graph. We choose a maximal tree T in Γ and a lifting j : T → Y and write j(T ) = T̃ .

Each vertex v ∈ Γ has an associated vertex ṽ ∈ T̃ : we define Gv to be the stabilizer of ṽ (it

turns out that this is also the isotropy group of (Ũ × v)/G). For each e ∈ T , we define Ge

the same way. This automatically gives us the needed maps fe : Ge → G∂0e for edges in T ,

via inclusions of isotropy groups. For each e /∈ T , we choose an edge ẽ ∈ Y over e such that

∂0ẽ = ˜(∂0e) and an element ge ∈ G such that ∂1ẽ = ge ˜(∂1e) and again let Ge be the stabilizer

of ẽ. α0(e) is simply the inclusion of stabilizer groups, and α1(e) is induced via conjugation

by ge. We thus obtain all the vertex groups, edge groups, maps between them, and maps

from edges to vertices needed to define our desired graph of groups.

The fundamental theorem of Bass-Serre Theory says that these two constructions are

essentially mutually inverse (see [2] for details):

Theorem 2.15. The above two constructions are mutually inverse up to isomorphisms and

(for graphs of groups) replacing the αi(e) by conjugate homomorphisms (to account for the

10



choice of maximal tree T ).

2.5 Next Step

We can visualize moving between any two graph of group decompositions of a given group

via successive operations of either collapsing an edge into a vertex, expanding a vertex into

two vertices and an edge, creating a loop, or collapsing a loop. These operations, as we

know, corresponds algebraically to applying and reversing free products with amalgamation

and HNN extensions. The simplest extension is to take a vertex and add a new edge pair

(e, ē) and a new vertex v, where Ge = Gv = 0. In terms of XΓ, this would correspond to

simply adding a line segment to the space.

The rest of this thesis will revolve around exploring a slight modification of this trivial

extension. In particular, we will explore what occurs if this new vertex is instead a limit

point of the graph of groups, by which we mean that each neighborhood of it always contains

at least one other Xv.

11



Chapter 3. Inverse Limits

Inverse limits will be the main tool used to add a limit point to a graph of groups in a

coherent fashion. The definitions and basic properties in section 3.1 come from [5] unless

otherwise noted, and the reader interested in a more thorough exposition of the topic is

encouraged to look at [5, Appendix 2, Section 2].

3.1 Definition and Basic Properties

Definition 3.1. A binary relation ≤ on a set R is a preorder if it is reflexive and transitive,

i.e., if

(i) a ≤ a

(ii) a ≤ b, b ≤ c =⇒ a ≤ c

Definition 3.2. Let A be a preordered set and {Yα|α ∈ A} be a family of spaces indexed

by A. For each pair of indices α, β satisfying α ≺ β, assume there is given a continuous

map µβα : Yβ → Yα and that these maps satisfy the following condition: If α ≺ β ≺ γ, then

µγα = µβα ◦µγβ. Then the family {Yα;µβα} is called an inverse spectrum over A with spaces

Yα and connecting maps µβα

In other words, an inverse spectrum is a set of spaces and maps between them in a man-

ner compatible with their ordering. We note that though we have defined inverse limits for

topological spaces above, inverse spectra are defined similarly in other categories. In partic-

ular, an inverse spectra of groups is defined by replacing spaces by groups and continuous

maps by homomorphisms in the above definition.

We also note that though we have defined inverse spectra for general preordered sets

above, we will only be discussing inverse spectra over linear orders in this thesis.

Definition 3.3. Let {Yα;µβα} be an inverse spectrum over A. Form
∏
{Yα|α ∈ A}, and

for each α, let pα be its projection onto the α-th factor. The subspace {y ∈
∏

α Yα|∀α, β :

12



[α ≺ β] =⇒ [pα(y) = µβα ◦ pβ(y)]} is called the inverse limit space of the spectrum and is

denoted by lim
←
Yα or Y∞.

The above subspace can be thought of as the space of all coherent sequences in the

inverse spectrum, and its topology is the subspace topology on the product topology. For

each α, let µα : Y∞ → Yα be the restriction of the projection map pα to Yα. The topology

of Yα can be expressed by a convenient basis, described in theorem 3.4 below. Since our

motivating example in chapter 4 is a countable sequences of metric spaces, we also include

for convenience a classical result regarding the metrizability of countable sequences of metric

spaces ([6, Theorem 4.2.2]).

Theorem 3.4. If A is a directed set, then the sets {µ−1
α (U)| all α, all open U ⊂ Yα} form

a basis for Y∞.

Theorem 3.5. Let {Xi}∞i=1 be a family of metrizable spaces and let ρi be a metric on the

space Xi bounded by 1. The topology induced on the set X =
∏∞

i=1Xi by the metric ρ defined

as ρ(x, y) =
∑∞

i=1

1

2i
ρi(xi, yi), where x = {xi}, y = {yi}, coincides with the topology of the

Cartesian product of the spaces {Xi}∞i=1.

We also list here some basic results about inverse limits of topological spaces (see [5] for

proofs):

Theorem 3.6. Let {Yα;µβα} be an inverse spectrum over A.

(i) If each Yα is Hausdorff, then Y∞ is closed in
∏

α Yα

(ii) If each Yα is compact, then Yα is compact, but possibly empty.

(iii) If A is a directed set, each Yα is compact and nonempty, and for each α ∈ A, {x ∈

Yα|µαα(x) = x} 6= ∅, then Y∞ is nonempty.

Finally, we introduce the universal property of inverse limits (again, see [5] for a proof):

13



Theorem 3.7. Let {hα} : {Xα;λβα} → {Yα;µβα} be a continuous map of inverse spectra.

Then there exists a unique continuous h∞ : X∞ → Y∞ such that for each α ∈ A, the following

diagram commutes:

X∞ Y∞

Xα Yα

h∞

λα µα

hα

In other words, coherent maps into Yα extend uniquely to a map into Y∞.

3.2 {0} ∪ 1
n as an Inverse Limit

We will now construct the subset {0} ∪ { 1
n
|n ∈ N} of R as an inverse limit, in preparation

for considering the limiting process of graphs of groups that we wish to explore.

We construct an inverse spectrum {Xi;µji} and show its limit is homeomorphic to {0}∪

{ 1
n
|n ∈ N}. For each i ∈ N, let Xi consist of i points with the discrete topology, ordered from

left to right as x0, ..., xi−1. Define µii to be the identity, and let µ(i+1)i send x0 to x0 and xk to

xk−1 for k 6= 0. Define all µjl by compositions of the µ(i+1)i. In essence, each map Xi+1 → Xi

projects x1 to x0 and is the identity elsewhere. Since we have indexed our Xi by the natural

numbers, we will treat points x ∈ X∞ (our inverse limit) as sequences. Notice that any point

x ∈ X∞ is either of the form {x0, x0, ......} or of the form {x0, x0, ...., x0, x1, x2, x3, ...}. Let

x0 = {x0, x0, ......}, and for x 6= x0 ∈ X∞, if k is the minimum number for which µk(x) 6= x0,

we will write x = xk.

We will define a map f : {0} ∪ { 1
n
|n ∈ N} → X∞ and show it is a homeomorphism. Let

f(0) = x0, and for each n ∈ N, let f( 1
n
) = xk+1. Clearly f is a bijection, and it immediate

from theorem 3.4 that it is a continuous map. Since {0} ∪ { 1
n
|n ∈ N} is compact and X∞ is

Hausdorff, f a homeomorpism and we have succeeded in constructing {0} ∪ 1
n

as an inverse

limit of finite sets of points. We will state this result as a theorem:

Theorem 3.8. The space X∞ as defined in this section is homeomorphic to {0} ∪ { 1
n
|n ∈

14



N} ⊂ R with the standard topology.

It is also instructive to analyze X∞ using the standard bounded metric on R and the

metric given in theorem 3.5. We see that the further in the sequence that two sequences di-

verge, the smaller their maximum distance from each other becomes. Since x0 has sequences

branching off from it arbitrarily far into the sequence, it has points arbitrarily close to it and

is a limit point in our space.

In the next chapter we will employ a largely similar construction to sequences of graphs

of groups to obtain limit points of graph of groups.
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Chapter 4. A Chain of Zs

4.1 Inverse Limit of a Chain of Zs

The simplest graph of groups with an infinite number of vertices is perhaps the graph of

groups G pictured in figure 4.1: the underlying graph Γ has realization homeomorphic to

the nonpositive real numbers with vertices at integer points, with Gv = Z for each vertex

and Ge = 0 for each edge. As discussed earlier, we are interested in the effect of introducing

a limit point to a graph of groups, and this example will serve as an appropriate starting

point. We will introduce a limit point to G in much the same fashion as in section 3.2 above.

Z Z Z

Figure 4.1: Chain of Zs

We first construct an inverse spectrum {Xi;µji} in a manner similar to section 3.2. For

simplicity, we will assume that each vertex space (Xv, v0) is (S1, (0,−1)) (treating S1 as

a subset of R), the simplest space with fundamental group Z. For each i ∈ N, let Xi be

the quotient of [0, i − 1] with t{S1
k}i−1

k=1 where for each k, we identify (0,−1) ∈ S1
k with

k ∈ [0, i − 1]. We define µii to be the identity and µ(i+1)i to be the map that sends 0 to 0,

(0, 1] and S1
1 to 0, and, for k ∈ Z+, sends (k + 1, k + 2] and S1

k+2 to (k, k + 1] and S1
k+1 via

the standard identification. In a similar fashion to our example in 3.2, we can visualize a

new arc with S1 attached appearing out of 0 every time i increases. We denote the inverse

limit of this sequence by X∞

We will now construct a space Y and show it is homeomorphic to X∞. Let {S1
j }∞j=1 be

a sequence of copies of S1 with each S1
j having a diameter of

1

j
. Let Y be the quotient of

[0, 1] with tS1
j defined by, for each j, attaching each (0,−1) ∈ S1

j to
1

j
.
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Define maps fi : Y → Xi as follows:

fi

([
0,

1

i

])
= 0

fi

([
1

i− k
,

1

i− k − 1

])
= [k, k + 1] for k ∈ {0, 1, ..., i− 2} via a

linear order preserving homeomorphism.

fi(S
1
j ) = 0 for j ≥ i

fi(S
1
j ) = S1

j for j < i via the natural identification.

In other words, fi sends all but the rightmost i − 1 arcs between adjacent points in the

set

{
1

n
|n ∈ N

}
and the associated copies of S1 to 0, and identifies the remainder of Y with

Xi in the obvious fashion. The fi induce a bijective map f : Y → X∞ as per theorem 3.7,

and we see from applying theorem 3.4 that f is continuous. Thus, since f is a continuous

bijection from a compact space to a Hausdorff space, f is a homeomorphism. We state this

result as a theorem for emphasis:

Theorem 4.1. Let X∞ and Y be as defined in this section. Then X∞ and Y are homeo-

morphic.

4.2 Inverse Limit of Covers

At this point we wish to examine our construction above in 4.1 with an eye to see how the

machinery of Bass-Serre theory has been affected upon moving to our inverse limit. The

largest loss of this construction arises from the fact that the space X∞ there defined is not

semilocally simply connected, meaning X∞ does not have a universal cover and making it

difficult to transfer the covering space tools used in Bass-Serre theory into this new setting.

That said, while X∞ does not have a covering space, our construction in 4.1 lends itself to

a natural inverse limit of covering spaces over X∞. In fact, much of this construction of an

inverse limit of covers is rather general, so we present it as such.
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First, a general theorem about liftings of homotopies, the proof of which we will omit

(see [3], Lemma 79.1):

Theorem 4.2. Suppose B and E are path connected and locally path connected. Let p : E →

B be a covering map; let p(e0) = b0. Let f : Y → B be a continuous map, with f(y0) = b0.

Suppose Y is path connected and locally path connected. The map f can be lifted to a map

f̃ : Y → E such that f̃(y0) = e0 if and only if f∗(π1(Y, y0)) ⊂ p∗(π1(E, e0)). Furthermore, if

such a lifting exists, it is unique.

Let {(Bi, bi)|i ∈ N} be pointed path connected and locally path connected topolog-

ical spaces with universal covers pi : (Ei, ei) → (Bi, bi). Suppose we have maps fn :

(Bn+1, bn+1) → (Bn, bn). Let f ′n : (En+1, en+1) → (En, en) be the maps induced from

fn ◦ pn via Theorem 4.2, and fn∗ : π1(Bn+1, bn+1) → π1(Bn, bn) the obvious induced map

on fundamental groups. Let B = lim←−
fi

Bi, E = lim←−
f ′i

Ei, and G = lim←−
fi∗

π1(Bi, bi), and let

b = (b1, b2, ...) ∈ B, e = (e1, e2, ...) ∈ E. This setup gives the commutative diagram be-

low:

(E1, e1) (E2, e2) ...

(B1, b1) (B2, b2) ...

p1 p2

f ′1

f1

Theorem 4.3. If g = (g1, g2, ...) ∈ G (where we treat each gi is a covering transformation),

and x ∈ Ei, f ′i−1(gi(x)) = gi−1(f ′i−1(x))

Proof. Let q : [0, 1]→ Ei be a path from ei to gi(ei).

Let q : [0, 1]→ Ei be a path from ei to gi(ei). Let α : [0, 1]→ Ei be a path from x to ei,

and let α′ = pi ◦α. α ∗ q ∗ (gi ◦α−1) is then a path from x to gi(x), where α−1(t) = α(1− t).

α′ is a representative for gi thought of as an element of π1(Bi, bi), and since g is a coherent

sequence, fi−1(α′) is a representative of gi−1 thought of as an element of π1(Bi−1, bi−1), and

it lifts to a path in Ei−1 from ei−1 to gi−1(ei−1), which equals f ′i−1(gi(ei)) by definition
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of f ′i−1. Similarly, f ′i−1(α) is a path from f ′i−1(x) to ei1 , and f ′i−1(gi(α
−1)) is a path from

gi−1(ei−1) to gi−1(f ′i−1(x)). We see then that f ′i−1(α ∗ q ∗ (gi ◦ α−1)) begins at f ′i−1(x) and

ends at gi−1(f ′i−1(x)). By definition of f ′i−1 as the map induced from fi−1 ◦ pi−1, we have

f ′i−1(gi(x)) = gi−1(f ′i−1(x)), as desired.

Theorem 4.4. G acts on E by homeomorphisms.

Proof. By theorem 4.3, for any g = (g1, g2, ...) ∈ G, the map sending (x1, x2, ...) ∈ E to

(g1(x1), g2(x2), ...) is a map from E to E and it is clear it is a group action. The result then

follows once we can show the action by g is continuous. This, however, is immediate once we

recall the basis for an inverse limit given in theorem 3.4 and note that g sends basis elements

to basis elements.

Theorem 4.5. Let H be the subset of G that fixes the path component of E containing e.

Then, H is a subgroup of G.

Proof. H contains the identity element of G, and is clearly closed under the group operation

and under taking inverses.

This next theorem requires that π1(E, e) = 0. It turns out that our space X∞ from

section 4.1 satisfies this property, as will be proved below.

Let p : E → B be the projection induced by the pi. Define h : H → π1(B, b) as follows.

Given g ∈ H, let α be a path from e to g(e). Let h(g) = [p ◦ α]. This is clearly an element

of π1(B, b), and if we assume π1(E, e) is trivial, h is well-defined despite the choice made in

choosing α, since all paths from e to g(e) will then be path homotopic.

Similarly, we define a map k : π1(B, b)→ H as follows. Given a loop in B, each projection

of this loop into Bi lifts to a path in Ei based at ei, the endpoint of which defines a group

element in π1(Bi, bi). Since these group elements form a coherent sequence, this defines a

group element in H, and this map is well defined on homotopy classes of loops in B because

it is well defined in each Bi by standard arguments.
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Theorem 4.6. If π1(E, e) = 0, the map h : H → π1(B, b) is an isomorphism.

Proof. First we show that h is a homomorphism. Since each g ∈ G is a sequence of covering

transformations, given any x ∈ E we have p(x) = p(g(x)). Given g1, g2 ∈ H, let αi be a path

from e to gi(e). Then, h(g1g2) = [p ◦ (α1 ∗ g1(α2)]) = [p ◦α1 ∗ p ◦ g1(α2)] = [p ◦α1] ∗ [p ◦α2] =

h(g1)h(g2), and we see that h is a homomorphism.

To show that k is also a homomorphism, we take loops α1 and α2 representing g1 and

g2 ∈ π1(B, b). The projection of k(g1) into π1(Bi, bi) will simply be the group element [pi◦α1],

and similarly, k(g2) projects to [pi◦α2] and k(g1g2) projects to [pi◦(α1∗α2)]. Since k(g1)k(g2)

agrees with k(g1g2) in each π1(Bi, bi), k is a homomorphism.

It is easy to see from the function definitions that h and k they are inverses of each

other.

Finally, we prove the following to show 4.6 applies to our space X∞ from section 4.1.

Theorem 4.7. Let Xi be as introduced in section 4.1, and for each i, let (Ei, ei) be covering

trees of Xi with projection maps pi such that pi(ei) = 0. Let f ′i : (Ei+1, ei+1) → (Ei, ei) be

as defined in this section, and let E be the inverse limit of the Ei and e = (e1, e2, ...) ∈ E.

Then, π1(E, e) = 0.

Proof. Given any loop s : [0, 1] → T based at e, we will construct a contraction of a

subspace of E containing s that fixes e. In other words, we will construct a sequence

compatible contractions of subspaces of our Ei which contain the projections of s. We will

let si : [0, 1]→ Ei be the projection of s into Ei.

By compactness, the image of s1 is contained in a minimal finite tree T1. Construct a

contraction c1 : T1 × I → T1 as follows.

Subdivide I into n equally long segments for a sufficiently large n (such that the below

construction works), and call them I1, I2, ..., In in the obvious linear order. During I1, c1 is

the constant map. During I2, c1 is a strong deformation retract which takes the outermost

edges (i.e. the edges containing a vertex connected to only that edge) and contracts them

20



to their inner vertex. During I3, c1 is the constant map. I4 is another strong deformation

retract as in I2, and so on. This process will terminate after some finite iterations when T1

has contracted to its vertex e1, since T1 is a finite tree. We insist also that In be a constant

map.

Note that each map f ′i either sends edges homeomorphically to edges or collapses them

to vertices. Thus if we choose T2 to be the minimal subtree of E2 containing the image of

s2 we obtain f ′(T2) = T1, obtained via collapsing edges down to points. We can construct a

contraction c2 of T2 by collapsing those edges to points during the constant portions of c1. In

general, given a contraction ci : Ti×I → Ti, let ci+1 : Ti+1×I → Ti be the contraction defined

by setting ci+1 = ci during the strong deformation retract periods, and during periods where

ci is constant, subdividing those periods into segments and alternating between constant

maps and strong deformation retracts in exactly the same fashion as in c1 as necessary to

collapse edges to a point if edges are present in Ti+1 that are collapsed in Ti.

The above construction gives a coherent sequence of contractions of Ti, and thus a ho-

motopy of s to the constant map. Thus, π1(E, e) = 0.

We end this chapter by noting that in the construction of X∞ in section 4.1, the choice

of S1 for each vertex space with fundamental group Z was arbitrary. We will see in the next

chapter that the fundamental group of the inverse limit space is independent of this choice,

but it is not clear whether the associated π1(E, e) is also independent of this choice, leaving

some uncertainty about the general applicability of theorem 4.6.
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Chapter 5. More General Chains and Graphs

5.1 X∞ as a Shrinking Wedge

Our space X∞ defined in 4.1 is homotopy equivalent to a well-studied space known as the

Hawaiian Earring. The Hawaiian Earring H is defined as the union of a countable set of

circles in the plane with center (0,
1

n
) and radius

1

n
, and it is easy to see that collapsing the

arc on which the S1
j are attached in X∞ gives us H. While H has been studied extensively,

it is sufficient for our purposes at the moment to make note of the fact that π1(H) is much

larger the fundamental group of a free group with countably many generators (i.e., the

fundamental group of a wedge of countably many circles), and that this free group in fact

embeds in π1(H) [7]. We see that process of adding a limit point to a graph of groups has

caused an expansion of the fundamental group of the space. In this final section we will

quantify just how much larger our group has become upon adding a limit point. We will

draw heavily upon results in [8] for our results.

Recall our construction of X∞ in section 4.1. We construct a new space Z∞ out of spaces

Zi in exactly the same way, except that each Zi is now the quotient of [0, i−1] and t{Xk}i−1
k=1

(as opposed to t{S1
k}i−1

k=1), where each Xk is now an arbitrary space. Z∞ is then homotopy

equivalent to the homotopy shrinking wedge >H
n Xi, defined below in definition 5.2.

Definition 5.1. Let Z be the space obtained from Z∞ above by collapsing the arc to which

each Xk is attached. We call Z a shrinking wedge of spaces and write Z = >nXi.

Definition 5.2. Using the terminology in definition 5.1 above, let X̃k be the space obtained

from Xk by attaching an arc pk to its base point and shifting the base point to the other end

of pk. The homotopy shrinking wedge >H
n Xi is defined by >H

n Xi = >nX̃i, where the X̃i are

wedged together at their new base points.

We note that >H
n Xi is homotopy equivalent to Z∞.
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Definition 5.3. Given a wedge of spaces ∨nXi, we can define the homotopy wedge ∨Hn Xi by

replacing each Xi by X̃i as in definition 5.2 above and taking their wedge. In other words,

∨Hn Xi = ∨nX̃i.

Definition 5.4. Given a homotopy shrinking wedge Z = >H
n Xi with π1(Xi) = Gi, π1(Z)

is known to be a topologist’s product , written ~nGn and defined by ~nGn =
⋂
I(Gi ∗

lim
←n
∗1≤j≤n,j 6=iGj), a certain infinite free product where each group can only be used finitely

many times (see [8] for more information).

Our X∞ example from section 4.1 was obtained by adding a limit point to a graph of

groups with a ray as its underlying graph. In this case, we can see that the inclusion of

the fundamental group of our original graph of groups into π1(X∞) is induced topologically

via mapping the standard wedge ∨nS1
n to >nS

1
n in the obvious fashion, since collapsing the

underlying graph in the graph of groups in this example leaves us with a wedge of spaces

∨nS1
n.

Given more arbitrary spaces Xi as in the construction for Z∞, the inclusion of the fun-

damental group of the original graph of groups (i.e., the graph of groups with graph a ray

and vertex spaces isomorphic to π1(Xi)) into Z∞ is induced via the standard map from the

homotopy wedge ∨Hn Xi to >H
n Xi, due again to the associated homotopy equivalences of the

wedges with the original graph of groups and Z∞ as in the above paragraph. This subsumes

the case for X∞ in the above paragraph, since it is clear that ∨nS1
n and ∨Hn S1

n are homotopy

equivalent, and similarly that >nS
1
n and >H

n S
1
n are homotopy equivalent.

We are interested in homotopy wedges and homotopy shrinking wedges because of the

equivalences π1(∨Hn Xn) = ∗nπ1(Xn) and π1(>H
n Xn) = ~nπ1(Xn) for arbitrary spaces (see [8]

for more details).

To find the difference between the fundamental group of the graph of group and the

fundamental group of the space with added limit point, then, we are interested in the cokernel

of the map π1(∨Hn Xi) ↪→ π1(>H
n Xi), i.e., in the group ~nGn/〈〈∗nGn〉〉. For our X∞ example

in section 4.1, we thus see that the process of adding a limit point generated a cokernel
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~nZ/〈〈∗nZ〉〉.

Conner, Hojka, and Meilstrup proved the following in [8]:

Theorem 5.5. (Conner, Hojka, Meilstrup) Let {Gn}n∈N a collection of nontrivial countable

(possibly finite) groups. If only finitely many of the Gn have elements of order 2, then

~nGn/〈〈∗Gn〉〉 ∼= ~nZ/〈〈∗nZ〉〉

If infinitely many of the Gn have elements of order 2, then

~nGn/〈〈∗Gn〉〉 ∼= ~nZ2/〈〈∗nZ2〉〉

Further, it is currently unclear whether ~nZ/〈〈∗nZ〉〉 and ~nZ2/〈〈∗nZ2〉〉 are in fact

different groups.

This leads immediately to the following theorem:

Theorem 5.6. Given an arbitrary Z∞ as described in this section, the map on fundamental

groups induced by the inclusion Z∞ \ {(0, 0, ...)} ↪→ Z∞ has cokernel

~nZ/〈〈∗nZ〉〉 if only finitely many of the π1(Xi) ⊂ Z∞ have elements of order two.

~nZ2/〈〈∗nZ2〉〉 if infinitely many of the π1(Xi) ⊂ Z∞ have elements of order two.

Proof. This follows immediately from theorem 5.5 and the discussion in the paragraph im-

mediately prior.

In other words, in terms of the cokernel of the map on fundamental groups that arises

when adding a limit point, it does not matter very much what groups are used in the original

graph of groups. Our process of adding a limit point expands the fundamental group largely

without regard to the groups at each vertex, leaving us with one of two (or perhaps just one)

distinct cokernels.
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5.2 Limit Points on More General Graphs

Up to this point we have only considered adding a limit point to a graph of groups with

a ray as the underlying graph. We will now consider expanding our view to more general

graphs.

In particular, we will consider three situations:

(i) The case of a general graph of groups whose realized graph contains an infinite chain

of edges, the vertices of which are attached to exactly two edges each and whose edge

groups are trivial.

(ii) The case of joining two limit points with an arc.

(iii) The case of identifying two limit points.

The first situation is simply the situation where we attach our space Z∞ from section 5.1

to a generic graph of groups. We state the result of this operation below:

Theorem 5.7. Let G be a graph of groups with underlying graph Γ, total space XΓ, and

fundamental group GΓ. Choose v ∈ V (Γ) and let Xv be the vertex space associated with v.

Define Z∞ as in section 5.1, with the restriction that X1 = Xv. Let Y be the space obtained

by identifying XΓ and Z∞ along Xv. Then π1(Y ) = GΓ ∗π1(Xv) π1(Z∞), with the associated

maps on π1 induced by inclusion of Xv.

Proof. This is a trivial application of the Seifert Van Kampen theorem, recalling that free

products with amalgamation are a special case of the Seifert Van Kampen theorem where

the inclusion of the shared subspace induces injective maps on fundamental groups.

We see from this theorem that given any graph of groups with total space XΓ, we can

essentially ”compactify” any number of arcs that extend forever without branching, and in

the case where edge groups of the arcs extending forever are trivial, this process amounts

simply to starting with the fundamental group of a subspace of XΓ and repeatedly taking

the free product with amalgamation of it with various copies of π1(Z∞).
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Situation (ii) is covered by the following theorem:

Theorem 5.8. Let Y be a space obtained from the total space XΓ of a graph of groups G

through multiple applications of theorem 5.7. Let x and y be two distinct points of Y −XΓ,

i.e., two distinct limit points of copies of Z∞ as defined in section 5.1. If W is the space

obtained from Y by joining x and y by an arc, then π1(W ) = π1(Y ) ∗ Z.

Proof. Joining x and y together by an arc amounts to taking an HNN extension of π1(Y )

relative to maps from the trivial group. This is equivalent to simply adding a generator to

the group, hence our conclusion.

The third and final situation deals with collapsing the arc between limit points in theorem

5.8 above to a point. We will explore this below.

Recall our discussion in 5.1 stating that our space X∞ from section 4.1 is homotopy

equivalent to the Hawaiian Earring. Let H1 and H2 be two copies of the Hawaiian Earring,

and let x1 ∈ H1 and x2 ∈ H2 be the point in each space at which the circles are wedged

together. Join x1 and x2 by an arc, call that space H, and denote the midpoint of the arc by

x. We will consider what occurs when we collapse the arc to obtain the wedge of Hawaiian

Earrings, H1 ∨H2 (denote the identified point by y).

Denote the cone of Hi by H̄1, and let H̄1 ∨ H̄2 be the space obtained by identifying

xi ∈ H̄i to a point, denoted z ∈ H̄1 ∨ H̄2. Let f : H → H1 ∨H2 be the map collapsing the

arc, and let g : H1 ∨ H2 → H̄1 ∨ H̄2 be the obvious inclusion. The following result makes

use of basic results regarding the Hawaiian Earring; the interested reader is referred to [7]

for details regarding the Hawaiian Earring.

Theorem 5.9. Let H1, H2, H, H1 ∨H2, f , and g be as defined above. Then f∗ : π1(H, x)→

π1(H1 ∨ H2, y) is injective, and f and g induce a surjective map h from the cokernel of f

into π1(H̄1 ∨ H̄2, z), i.e., a map h : π1(H1 ∨H2, y)/〈〈π1(H, x)〉〉 → π1(H̄1 ∨ H̄2, z).

Proof. To show injectivity of f∗, we note that given any nulhomotopic loop in Im(f), since

the loop can only cross between H1 and H2 finitely many times it is easy to see that there
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is a nulhomotopy that does not pass from H1 to H2 or vice versa, and that this extends

to a nulhomotopy in H. This gives us injectivity. We thus treat π1(H, x) as a subgroup of

π1(H1 ∨H2, y).

Since loops in H can only cross between H1 and H2 finitely many times, g ◦ f is the

trivial map. Thus, Im(f) ⊂ ker(g) and we get an induced map from the cokernel of f∗ to

π1(H̄1 ∨ H̄2, z), which is surjective because g is trivially surjective.

The above theorem states that for the case of two copies of our space X∞ as defined in

section 4.1, collapsing an edge between limit points as in theorem 5.8 has cokernel at least

as large as the wedge of the cones of the two copies of X∞. An entirely similar argument

with similar implications holds for more general Z∞ as well.

We note that π1(H̄1 ∨ H̄2, z) is known to be an uncountable group [7, Theorem 2.6], and

that, intuitively, it consists of all loops that go between H1 and H2 infinitely often. We also

comment that, though not proven, the induced map in the theorem above is likely injective

as well, in which case the cokernel is isomorphic to π1(H̄1 ∨ H̄2, z).

We summarize the above paragraphs with a theorem and a conjecture:

Theorem 5.10. Let Z∞ be a space as described in 5.1. Let X be the space obtained by

taking two copies Z∞,1, Z∞,2 of Z∞ and joining their limit points z1 = (0, 0, ...) ∈ Z∞,1, z2 =

(0, 0, ...) ∈ Z∞,2 by an arc. Let Z∞,1 ∨ Z∞,2 be the wedge of Z∞,1 and Z∞,2 obtained by

identifying z1 and z2 to a point z. Let ZDC be the double cone of the Z∞,i, i.e., the space

obtained by taking the cone of each Z∞,i and taking their wedge at z1 and z2. We also call

the identified point in this case z.

Let f : X → Z∞,1 ∨ Z∞,2 be the map that collapses the arc between z1 and z2, and let g

be the obvious inclusion of Z∞,1 ∨ Z∞,2 into ZDC. Then f∗ : π1(X, z1)→ π1(Z∞,1 ∨ Z∞,2, z)

is injective, and f and g induce a surjective map h from the cokernel of f∗ into π1(ZDC , z).

Proof. The proof is entirely similar to that of 5.9.
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Conjecture 5.11. The cokernel in Theorem 5.10 above is isomorphic to the fundamental

group of ZDC.

These last theorem have described operations that can be performed on graphs of groups

to take limit points, connect them, and identify them. While this thesis has only covered

adding limit points to graphs of groups in the case where edge groups are trivial, our inverse

limit construction for adding a limit point also works when we have nontrivial edge groups.

The bottleneck in this case is the lack of a clean description of the resulting space, in contrast

with our situation with trivial edge groups. The addition of nontrivial edge groups may be

a profitable direction to explore in future work.
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