






Figure 4.5: TORTOISE Board and SelectMAP Connector

JTAG and SelectMAP modules will connect on the side opposite the AXI DMA. Figure 4.4 shows

the case in which the AXI DMA is the master and the JTAG and SelectMAP modules are the

slaves, providing read access to memory using DMA. In order for the JCM modules to have both

write and read access to memory using DMA, there must be two of these interconnects: one for

each direction.

The AXI4-Stream Interconnect IP is controlled by writing software-accessible registers at

runtime. There is a register associated with every master interface that is connected to the IP. For

each master interface, its associated register must be written with either the index of the slave

interface that should be connected to the master interface, or with a constant that disables the

interface. After writing any of these registers, a commit command must be written to a control

register in the IP before the changes will take effect. The DMA kernel module, which will be

explained in Chapter 5, handles all of this to ensure that the AXI DMA is connected to the right

device at the right time.

The SelectMAP signals are routed to the accessory connector on the JCM breakout board.

From there, several options exist to connect the interface to the SelectMAP interface on the DUT.

Individual flying wires are a viable option, but also messy and error-prone. The TORTOISE board,

shown in Figure 4.5, was designed to connect directly to the accessory connector on the JCM to

provide SelectMAP access. This is an effective solution, but a board must be designed from the

ground up in order to take advantage of it. Connecting and disconnecting the two boards must also

be done very carefully to avoid bending the pins. With 88 total pins connected via the accessory
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Figure 4.6: Multi-JTAG Simplified Block Diagram

connector, this is actually quite difficult. In the future, an FPGA Mezzanine Card (FMC) connector

option will likely replace these initial solutions.

4.4.3 Multi-JTAG

With DMA and interrupts allowing user processes running on the JCM to periodically

sleep, processing resources are used more efficiently. This means that managing multiple JTAG

chains simultaneously using the same JCM is now much more feasible. The Multi-JTAG version

of the JCM firmware was created to make this possible. This version includes eight JCM JTAG

modules that are connected to one AXI DMA IP using the AXI4-Stream Interconnect in the same

manner that was described in Section 4.4.2. A simplified block diagram of the PL design that

implements the Multi-JTAG system is shown in Figure 4.6. The blocks in gray at the top are all
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Figure 4.7: Multi-JTAG Expansion Card

connected via high performance AXI4. The two directions of AXI4-Stream interfaces are shown

in orange and light blue along with the AXI4-Stream Interconnect blocks that allow the AXI DMA

to switch between connections. Finally, the JTAG hardware modules are shown in dark blue along

the bottom. The AXI4-Lite connection between the processor and these modules in present in the

actual design, but absent from the figure to make it more readable.

The JCM breakout board has also been modified to enable the simultaneous use of eight

JTAG connectors. There are two JTAG connectors natively on the JCM breakout board. In addition

to these, an expansion card that connects to the expansion slot on the breakout board provides six

more connectors. The expansion card is shown in Figure 4.7. By enabling a single JCM to manage

eight JTAG chains simultaneously, hardware resources can be used much more effectively. The

performance of this system will be shown in Chapter 6.

This chapter has described the changes that have been made to the JCM firmware to add

support for DMA and interrupts. While no single piece of the system is particularly complicated

on its own, assembling everything into a working system where different blocks interact correctly

with each other is a formidable task. The way the software interacts with the firmware is yet

another vital piece of this system that will be described in the coming chapter.
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CHAPTER 5. JCM DMA SOFTWARE

This chapter describes the changes made to the JCM software to support the new DMA and

interrupt features added in the firmware. The majority of these changes take place within the Linux

kernel used on the JCM. Specifically, kernel modules are added to the Linux kernel on the JCM

to serve as interfaces between software and hardware. These modules are referred to as drivers.

This chapter justifies the need for kernel changes by describing the differences between kernel

space and user space. Then, the mechanisms used to modify the kernel, namely the device tree

and kernel modules, are described. Finally, the specific kernel modules developed for the JCM are

discussed in detail.

5.1 Kernel Space

Kernel space refers to the region of memory where the actual Linux kernel code operates

and user space refers to the region of memory where user programs operate [28]. However, the

region of memory is not the only difference between the two. Kernel space and user space code

also executes with different levels of privilege on the processor. These privilege levels, referred

to as rings, determine what functionality is available. Although more than two rings exist in most

processors, only the outermost (least privileged) and innermost (most privileged) rings are used in

Unix systems. User space code operates in the outermost ring and kernel space code operates in

the innermost ring. This means that kernel space essentially has no restrictions on operations it can

perform and user space is more limited.

It is important to note that the lack of restrictions in kernel space does not necessarily

make programming easier. Writing code to run in kernel space can be difficult because a lot

of functionality designed for user space, such as C standard library functions, is unavailable in

kernel space. Debugging is particularly difficult because the safety net of the kernel is taken away.

Errors that occur in kernel space can easily crash the entire system and require a reboot to recover.
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Standard debugging tools like GDB also cannot be used in the same way when debugging kernel

code. This makes for a very steep learning curve when trying to write kernel code for the first time.

With all of these drawbacks, it is generally wise to look for solutions in user space before jumping

to kernel space. However, for this system there is ample reason to write kernel code because of the

inclusion of DMA and interrupts.

Using a DMA engine requires manipulation of physical memory, which is handled exclu-

sively in kernel space. User space programs are confined to processes that are managed by the

kernel to ensure that they do not interfere with each other. Each process has a virtual address space

that is mapped to physical memory by memory management code in the kernel. This type of mem-

ory management is problematic for a user space program that wants to use DMA because the DMA

controller in hardware only uses physical addresses and has no knowledge of the virtual address

space used in a process. Also, memory that appears to be contiguous in the virtual address space

of a user process could actually be spread out through different parts of physical memory. This

is a problem for standard1 DMA controllers that depend on contiguous chunks of memory when

they transfer multiple bytes of data. Due to these obstacles, allocating DMA buffers and handling

DMA transfers is best suited for kernel space code.

In addition to the management of physical memory, registering and handling interrupts also

occurs within kernel space. The new JCM firmware generates several different interrupts that can

be used to utilize processor resources more effectively if handled properly. Before this can happen,

the interrupts must be registered with the kernel and associated with an Interrupt Service Routine

(ISR) that will execute every time the interrupt occurs.

Considering all of this, writing kernel code to handle the new DMA and interrupt fea-

tures is essential for the new JCM system. This code is contained in kernel modules, which will

be explained in Section 5.3. Before developing the modules, however, the kernel needs to have

information about the device that it will be interacting with. This is done through the device tree.

1DMA controllers that feature a scatter-gather mode can deal with noncontiguous memory and efficiently transfer
data that is spread out through the physical address space, but it makes interacting with the DMA controller more
complicated and it is not necessary if there is a sufficient amount of contiguous physical memory available.
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/ { / / t h e r o o t node
an−empty−p r o p e r t y ;
a−c h i l d−node {

a r r a y−prop = <0x100 32>;
s t r i n g −prop = ” h e l l o , w or l d s ” ;

} ;
a n o t h e r−c h i l d−node {

b i n a r y−prop = [00102CAFE ] ;
s t r i n g − l i s t = ” yes ” , ” no ” , ” maybe ” ;

} ;
} ;

Figure 5.1: Device Tree Source Example

5.2 Device Tree

To interact properly with hardware devices, the kernel needs to know some fundamental

information about them. A device tree is a data structure used to convey this information to the

kernel by describing the hardware devices present in an embedded computing system [29]. The

kernel loads this data structure at boot time so that it can properly configure the kernel and load

device drivers as necessary. Desktop and server environments can avoid using this due to stan-

dardized firmware interfaces that can be probed at boot time so the system is aware of attached

hardware. However, the device tree is important for embedded systems because the type of hard-

ware available in the system can vary wildly from one system to another and is not as uniform as

hardware intended for use on desktops or servers. This is especially true in heterogeneous systems

involving CPUs and FPGAs because the FPGA can be reconfigured to contain a wide variety of

different hardware modules. The alternative to device trees is to hard code information about the

system into the kernel itself, which requires the kernel to be recompiled whenever the hardware

changes. Device trees can be changed much more easily, which enables more flexible systems.

A device tree is represented in a readable text format as a device tree source (.dts) file. A

simple example of a .dts file is shown in Figure 5.1. The .dts file contains a list of devices present in

the system that are organized into nodes. A single root node encompasses all of the other nodes in

the entire tree. Common child nodes of this root node include CPUs, memory, and programmable

logic. The leaf nodes that have no children represent actual devices present in the system.
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Each node in the device tree includes a list of properties which can contain different types

of data. These properties can specify memory address spaces for memory-mapped IO, interrupt

information, or any other information that the kernel needs to know about the device. Every node

also includes a string property with the compatible label. This is a unique identifier so the kernel

can determine what device is associated with that node.

The number of necessary properties in each node can be large, so creating an entire device

tree source file by hand is tedious and error prone. Fortunately, Xilinx’s Vivado design suite in-

cludes tools for generating device tree source files based on a hardware design. This can be done

by exporting the Vivado block design to the Software Development Kit (SDK) and creating a de-

vice tree project based on the exported files. Before the device tree can be used by the kernel, it

must be compiled into a device tree blob (.dtb) file using a device tree compiler. This compiler is

also available through Xilinx for use with Xilinx SoCs such as the ZYNQ 7010 used in the JCM.

A more specific walkthrough of the process of creating a usable device tree using Xilnix tools can

be found at [30].

The device tree nodes that have been added to the JCM’s device tree are shown in Figure

5.2. The auto-generated information that is not directly used by the kernel modules has been

omitted for the sake of space. From top to bottom, these nodes correspond to the AXI DMA IP

(including the read and write channels as separate nodes), the two AXI4-Stream Interconnects, the

JTAG module, and the SelectMAP module respectively. The additional seven JTAG modules used

in the Multi-JTAG implementation of the JCM hardware are also present, but not shown in this

figure.

This section has covered the basics of device trees as they are used in the Linux kernel and

the specific changes to the device tree in the new JCM system. The remainder of this chapter is

dedicated to Linux kernel modules and how they are used in the new system.

5.3 Kernel Modules

A kernel module is a piece of code that can be inserted into or removed from the kernel

on demand [28]. This means that code can be added to the kernel without recompiling the entire

kernel, making the kernel more flexible. In the case of the JCM, this is desirable because there are

several different hardware configurations used on the FPGA as described in the previous chapter.
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dma@40400000 {
c o m p a t i b l e = ” xlnx , ax i−dma−1 .00 . a ” ;
i n t e r r u p t −p a r e n t = <0x4>;
i n t e r r u p t s = <0x0 0x1d 0x4 0x0 0 x1e 0x4>;
r e g = <0x40400000 0x10000 >;

dma−channel@40400000 {
c o m p a t i b l e = ” xlnx , ax i−dma−mm2s−c h a n n e l ” ;
i n t e r r u p t s = <0x0 0x1d 0x4>;

} ;

dma−channel@40400030 {
c o m p a t i b l e = ” xlnx , ax i−dma−s2mm−c h a n n e l ” ;
i n t e r r u p t s = <0x0 0 x1e 0x4>;

} ;
} ;

ax i s swi t ch@43c10000 {
c o m p a t i b l e = ” xlnx , a x i s−swi t ch −1.1 ” ;
r e g = <0x43c10000 0x10000 >;

} ;

ax i s swi t ch@43c20000 {
c o m p a t i b l e = ” xlnx , a x i s−swi t ch −1.1 ” ;
r e g = <0x43c20000 0x10000 >;

} ;
j c m j t a g m o d u l e 0 : jcm j tag module@79c00000 {

c o m p a t i b l e = ” xlnx , jcm−j t a g−module−1.0−0” ;
i n t e r r u p t −p a r e n t = <0x4>;
i n t e r r u p t s = <0x0 0 x1f 0x4>;
r e g = <0x79c00000 0x10000 >;

} ;
jcm smap module@43c00000 {

c o m p a t i b l e = ” xlnx , jcm−smap−module−1.0 ” ;
i n t e r r u p t −p a r e n t = <0x4>;
i n t e r r u p t s = <0x0 0x20 0x4>;
r e g = <0x43c00000 0x10000 >;

} ;

Figure 5.2: JCM Device Tree Nodes

By implementing the software interfaces for the JCM hardware using modules, the set of interfaces

used in the kernel can be changed without recompiling the kernel and creating a new disk image.

Kernel modules can serve different purposes, but the modules developed for the new JCM

system are known as device drivers. These are modules that are specifically intended to provide

a software interface to hardware devices. When a device driver is inserted into the kernel, several
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things happen. First, an initialization function in the driver is called which registers the device

with the kernel. Then the initialization function calls a probe function defined in the driver that

probes the device tree for information about the device associated with the driver. This is where

the compatible property in the device tree comes into play. The probe function executes once for

each node in the device tree for which the compatible property matches a string in the match table2

defined in the driver. The probe function can then pull information such as address space and

interrupt numbers from the device tree for each device that the driver needs to interact with. After

the probe function has run for the last time, the initialization function can return and the driver is

now inserted into the kernel.

When a driver is inserted into the kernel, a device file is created in the kernel’s file system.

Software running in user space can then perform operations on this file using the Input/Output

Control (IOCTL) function. In the kernel module, the IOCTL function defines different operations

that can be performed on the hardware device and associates each operation with a unique number.

This function is called from user space using three parameters: a file descriptor of the associated

device file, the number of the IOCTL operation to execute, and a parameter of type long that can be

cast to whatever data type is needed to pass necessary information between user space and kernel

space.

5.4 JCM DMA Linux Drivers

There are three distinct device drivers that have been developed for the new JCM DMA

system: a DMA driver, JTAG driver, and SelectMAP driver. This section will describe each of

these drivers in detail, including how user space software interacts with them. The connectivity of

these drivers is shown in Figure 5.3 for the hardware system that includes a JTAG module and a

SelectMAP module. When the Multi-JTAG hardware is used, the SelectMAP driver is not loaded

and seven additional JTAG modules are loaded instead. The user space code interacts with the

JTAG and SelectMAP drivers solely through the IOCTL function. These drivers communicate

with the JTAG and SelectMAP firmware modules as well as the DMA driver in kernel space. The

DMA driver is never accessed from user space directly. When any of these drivers are loaded,

2The match table is an array of C structures which each contain a string member named ”compatible.” This member
is what is compared with the compatible properties of device tree nodes.
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Figure 5.3: User Space, Kernel Space, and Hardware Connections

they probe the device tree to obtain base addresses for the hardware modules involved in the driver

as well as any necessary interrupt numbers. The interrupts are then immediately registered with

associated ISRs. The specifics of these drivers are covered in the following subsections.

5.4.1 DMA Driver

The DMA driver is responsible for managing all DMA transfers in the system. To do this,

it needs to get the base addresses of the AXI DMA IP and the two AXI4-Stream Interconnect

modules from the device tree. It also needs to get the interrupt numbers for the read and write

channels of the AXI DMA IP. Finally, it allocates a contiguous buffer of one full page (4 KB) of

memory to use when transferring data via DMA. After all of the initial setup, the DMA driver

exports two functions that are accessible to the other drivers in kernel space: DMA read and DMA

write.
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Both of these functions are made atomic by using a semaphore. Only one device is allowed

to initiate a DMA transfer at a time because every DMA transfer must be preceeded by setting up

the AXI4-Stream Interconnects so the AXI DMA IP is connected to the correct firmware module.

This connection cannot be changed in the middle of a transfer or the data will be redirected. The

AXI DMA IP also only includes one read channel and one write channel, so multiple transfers

cannot happen simultaneously.

The DMA read function takes four parameters: a destination address, transfer length, de-

vice ID, and DMA control register address for the requesting device. The destination address is

used to copy data from the DMA buffer in kernel space to an array in user space so the data read

from the slave device can be used there. The transfer length specifies the length of the transfer

given in 32-bit words. The device ID is used to determine how to configure the AXI4-Stream In-

terconnects. Finally, the DMA control register address must be written with the transfer length as

described in the previous chapter.

The actual DMA read function is shown in Figure 5.4. First, the semaphore is obtained.

Then the AXI4-Stream interconnects are configured according to the device ID. The DMA control

register address is then written with the number of words to be transferred. Finally, the AXI DMA

control registers are written to initiate the transfer. The process which called the function is then

put to sleep until the interrupt indicating that the read transfer is complete has fired. Once the

process wakes up, it copies the data that was read from the buffer in kernel space to user space and

releases the semaphore.

The DMA write function is very similar and is shown in Figure 5.5. It first obtains the

semaphore, then configures the AXI4-Stream interconnects using a device ID passed to the func-

tion. It then copies the data to be written to the slave from user space into the buffer in the kernel.

The transfer is initiated and then the process goes to sleep until the interrupt signalling the end of

the transfer is received. Finally, the process wakes up, releases the semaphore, and returns.

These two functions are never accessed from user space. They are only called from other

parts of the kernel, namely the JTAG and SelectMAP drivers that oversee transactions between the

JCM and a slave device.
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i n t j cm dma read ( u32∗ d e s t a d d r , u32 t r a n s f e r l e n g t h , u32 d e v i d , u32
d m a c o n t r o l a d d r ) {

long r e t ;
/ / Ob ta in semaphore
i f ( d o w n i n t e r r u p t i b l e (&sem ) )

re turn −ERESTARTSYS ;
c o n n e c t a x i s t r e a m ( d e v i d ) ;
d m a r e a d r e a d y = 0 ; / / r e s e t t h e ready f l a g

/ / W r i t e dma c o n t r o l r e g i s t e r i n r e q u e s t i n g d e v i c e
∗ ( v o l a t i l e u32 ∗ ) ( d m a c o n t r o l a d d r ) = t r a n s f e r l e n g t h ;
/ / W r i t e t h e d e s t i n a t i o n a d d r e s s ( Ke rn e l Array )
∗ ( v o l a t i l e u32 ∗ ) ( dmaBaseAddress + DMA DEST ADDRESS OFFSET) = ( u32 )

physAddr ;
/ / S t a r t t h e DMA
∗ ( v o l a t i l e u32 ∗ ) ( dmaBaseAddress + DMA READ CONTROL OFFSET) = ∗ (

v o l a t i l e u32 ∗ ) ( dmaBaseAddress + DMA READ CONTROL OFFSET) |
DMA START MASK;

/ / W r i t e t h e Leng th o f t h e t r a n s f e r ( a c t u a l l y s t a r t s t r a n s f e r )
∗ ( v o l a t i l e u32 ∗ ) ( dmaBaseAddress + DMA READ TRANSFER LENGTH OFFSET) =

s i z e o f ( u32 ) ∗ t r a n s f e r l e n g t h ;

/ / Wait u n t i l t r a n s f e r i s c o m p l e t e
i f ( ! w a i t e v e n t i n t e r r u p t i b l e t i m e o u t ( wq , ( d m a r e a d r e a d y ! = 0 ) , HZ/ 1 0 ) )

p r i n t k ( ”DMA r e a d t i m e o u t ” ) ;

/ / T r a n s f e r da ta from k e r n e l a r r a y t o u s e r space
r e t = c o p y t o u s e r ( ( u32 ∗ ) d e s t a d d r , ( u32 ∗ ) ke rnArray , s i z e o f ( u32 ) ∗

t r a n s f e r l e n g t h ) ;
i f ( r e t < 0) {

p r i n t k ( ” E r r o r copy ing t o u s e r s p a c e i n dma read \n\ r ” ) ;
}
/ / R e l e a s e semaphore
up(&sem ) ;
re turn 0 ;

}
EXPORT SYMBOL( jcm dma read ) ;

Figure 5.4: DMA Read Function in DMA Driver

5.4.2 JTAG and SelectMAP Drivers

The JTAG and SelectMAP drivers perform the same operations with very few differences.

They are responsible for initiating and managing transfers in the JTAG and SelectMAP firmware

modules. They each define the same four IOCTL operations: write, read, register write, and

register read.
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i n t j c m d m a w r i t e ( u32∗ s r c a d d r , u32 t r a n s f e r l e n g t h , u32 d e v i d ) {
long r e t ;
/ / Ob ta in semaphore
i f ( d o w n i n t e r r u p t i b l e (&sem ) )

re turn −ERESTARTSYS ;
c o n n e c t a x i s t r e a m ( d e v i d ) ;
d m a w r i t e r e a d y = 0 ; / / r e s e t t h e ready f l a g

r e t = c o p y f r o m u s e r ( ( u32 ∗ ) ke rnArray , ( u32 ∗ ) s r c a d d r , s i z e o f ( u32 )
∗ t r a n s f e r l e n g t h ) ;

i f ( r e t < 0) {
p r i n t k ( ” E r r o r copy ing from u s e r s p a c e i n d m a w r i t e \n\ r ” ) ;

}
/ / I n i t i a t e DMA T r a n s f e r
/ / W r i t e t h e Source Addres s ( Ke rn e l Array )
∗ ( v o l a t i l e u32 ∗ ) ( dmaBaseAddress + DMA SOURCE ADDRESS OFFSET) = ( u32 )

physAddr ;
/ / S t a r t t h e DMA
∗ ( v o l a t i l e u32 ∗ ) ( dmaBaseAddress + DMA WRITE CONTROL OFFSET) = ∗ (

v o l a t i l e u32 ∗ ) ( dmaBaseAddress + DMA WRITE CONTROL OFFSET) |
DMA START MASK;

/ / W r i t e t h e Leng th o f t h e t r a n s f e r ( a c t u a l l y s t a r t s t r a n s f e r )
∗ ( v o l a t i l e u32 ∗ ) ( dmaBaseAddress + DMA WRITE TRANSFER LENGTH OFFSET)

= s i z e o f ( u32 ) ∗ t r a n s f e r l e n g t h ;

/ / Wait u n t i l t r a n s f e r i s c o m p l e t e
i f ( ! w a i t e v e n t i n t e r r u p t i b l e t i m e o u t ( wq , ( d m a w r i t e r e a d y ! = 0 ) , HZ/ 1 0 ) )

p r i n t k ( ”DMA w r i t e t i m e o u t ” ) ;
/ / R e l e a s e semaphore
up(&sem ) ;
re turn 0 ;

}
EXPORT SYMBOL( j c m d m a w r i t e ) ;

Figure 5.5: DMA Write Function in DMA Driver

The register read and write functions are exactly as one would expect. They read or write

a register in the address space of the hardware module associated with the driver. This is done by

making an IOCTL call in user space, passing in the appropriate IOCTL number for the operation,

and supplying a pointer to a struct containing an offset and a pointer to a 32-bit unsigned integer

as the third parameter. The offset is added to the base address obtained from the device tree to

form the address of the register. The pointer is used to obtain data to be written in the case of a

register write, or store data read from the register in the case of a register read. These functions
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whi le ( c o m p l e t e d l e n g t h < t o t a l t r a n s f e r ) {
/ / S e l e c t how many words t o t r a n s f e r
c u r r e n t t r a n s f e r = ( ( c o m p l e t e d l e n g t h + DMA WRITE TRANSFER LENGTH) >

t o t a l t r a n s f e r ) ? r e m a i n d e r w o r d s : DMA TRANSFER LENGTH;

/ / W r i t e t h e n e x t s e t o f words and i n c r e m e n t a d d r e s s and c o u n t e r
/ / The w h i l e loop i s t o r e t r y i f t h e w r i t e f a i l s
whi le ( j c m d m a w r i t e ( w o r k i n g a d d r e s s , c u r r e n t t r a n s f e r , d e v i d ) ) ;
c o m p l e t e d l e n g t h += c u r r e n t t r a n s f e r ;
w o r k i n g a d d r e s s += c u r r e n t t r a n s f e r ;

/ / Done w r i t i n g . E x i t l oop
i f ( c o m p l e t e d l e n g t h == t o t a l t r a n s f e r )

break ;

/ / S t a r t t h e t r a n s f e r i f we haven ’ t a l r e a d y
i f ( ! s t a r t e d t r a n s f e r ) {

/ / I n i t i a t e JCM w r i t e
s t a r t j c m ( JTAG WRITE , t o t a l t r a n s f e r , c o n t r o l w o r d ) ;
s t a r t e d t r a n s f e r = t r u e ;

}
/ / I f we have w r i t t e n enough t o c l e a r t h e i n t e r r u p t , w a i t f o r

i n t e r r u p t
i f ( j t a g i n t e r r u p t i s c l e a r e d ( ) ) {

/ / Wait u n t i l FIFO i s empty enough
w a i t f o r j c m i n t e r r u p t ( ) ;

}
}

i f ( ! s t a r t e d t r a n s f e r ) {
/ / I n i t i a t e JCM w r i t e
s t a r t j c m ( JTAG WRITE , t o t a l t r a n s f e r , c o n t r o l w o r d ) ;
s t a r t e d t r a n s f e r = t r u e ;

}
/ / P o l l i n g i n u s e r space t o f i n i s h up t r a n s f e r
break ;

Figure 5.6: JTAG Write IOCTL Operation

are available so the user space code does not have to deal with the base address of the hardware

modules or the specifics of reading and writing registers in the modules.

The write operation is used to write data to the slave device (connected via JTAG or Se-

lectMAP) using the firmware modules described in the previous chapter. In this case, the third

IOCTL parameter is a pointer to a struct that needs to be copied from user space. This struct con-

tains the address of the first word in memory to be written to the slave device, the number of words

to be transferred, and the data that should be written to the control register of the firmware module.
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After extracting this data and saving it, the main loop of this operation begins. This loop is shown

in Figure 5.6.

The first step is to determine the length of the next DMA transfer. The maximum length

of a DMA transfer is 1024 due to the size of the DMA buffer. If there are 1024 or more words

that remain in the total transfer, this is selected as the length of the current transfer. If not, the

number of remaining words in the transfer is selected. Once the length of the current transfer has

been selected, the actual DMA transfer can begin. Once it has finished, the number of completed

words thus far in the transfer is incremented, as is the address of the next data to be written. If

the transfer is complete, the loop will break at this point. If not, the JTAG or SelectMAP control

register will be written to initiate the transfer in the hardware module (if it has not already been

initiated). Finally, the last step in the loop is to sleep until the FIFO half empty interrupt fires. This

call is surrounded by a check to the status register of the hardware module to ensure that enough

data has been written to clear the interrupt. This is important because the interrupt is rising edge

sensitive, meaning that it will only trigger as it goes from low to high. If the process goes to sleep

waiting for the interrupt while the interrupt line is high, it will time out because the interrupt will

never fire again.

The read operation is similar and uses the same struct for the third parameter as is described

above. The main loop of the read operation is shown in Figure 5.7. Before entering this loop, the

read transfer is started in the firmware module and the process sleeps until the interrupt indicating

that the FIFO has reached half full arrives. In the main loop, the length of the current transfer is

computed just as before. Then a DMA read operation is started and the completed length and the

destination address are incremented upon completion. If there are still 1024 or more words to be

read from the device, the process will sleep until the FIFO halfway mark interrupt fires again. If

not, the driver simply polls the status register of the firmware module until the transfer is complete

because the FIFO interrupt will not fire again. Once this is complete, it will return to the top of the

loop and initiate a DMA transfer to read the remaining words from the device.

5.4.3 User Space Changes

The changes to user space code are relatively minor. A DMA driver class has been created

which handles all interactions with the device drivers in the kernel. This includes making IOCTL
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whi le ( c o m p l e t e d l e n g t h < t o t a l t r a n s f e r ) {
/ / S e l e c t how many words t o t r a n s f e r
c u r r e n t t r a n s f e r = ( c o m p l e t e d l e n g t h + DMA READ TRANSFER LENGTH >

t o t a l t r a n s f e r ) ? r e m a i n d e r w o r d s : DMA READ TRANSFER LENGTH ;

/ / read t h e n e x t s e t o f words and i n c r e m e n t a d d r e s s / c o m p l e t e d word
c o u n t e r

/ / The w h i l e loop i s t o r e t r y i f t h e read f a i l s
whi le ( j cm dma read ( w o r k i n g a d d r e s s , c u r r e n t t r a n s f e r , d e v i d ,

jcmBaseAddress + JCM DMA CONTROL OFFSET) ) ;
c o m p l e t e d l e n g t h += c u r r e n t t r a n s f e r ;
w o r k i n g a d d r e s s += c u r r e n t t r a n s f e r ;

/ / At t h i s p o i n t , t h e FIFO i n t e r r u p t w i l l n e v e r f i r e
i f ( ( t o t a l t r a n s f e r − c o m p l e t e d l e n g t h ) < JTAG FIFO THRESHOLD ) {

/ / Wait f o r t r a n s f e r t o c o m p l e t e
whi le ( j c m i s b u s y ( ) ) ;
/ / A f t e r t h i s wai t , r e t u r n t o t h e t o p o f loop and read u n t i l

c o m p l e t e
}
/ / I f we have read enough da ta f o r t h e i n t e r r u p t t o c l e a r , w a i t f o r

i n t e r r u p t
e l s e i f ( j t a g i n t e r r u p t i s c l e a r e d ( ) ) {

w a i t f o r j c m i n t e r r u p t ( ) ;
}

}
break ;

Figure 5.7: JTAG Read IOCTL Operation

calls and creating structs to be passed to kernel space. To maintain backwards compatibility in

the software with older hardware versions, an object of this class is created only if the current

firmware version supports DMA. This happens automatically based on the contents of a version

register present in the firmware. When the DMA driver object is used, all interactions with the

hardware that occur in the user space code are automatically redirected to the DMA driver object

with no user intervention. In this way, high-level user code that makes use of the JCM software

library does not need to change when using different firmware versions.

This chapter has described the changes that have been made to the Linux kernel of the JCM.

These changes are in the form of device tree nodes and kernel modules which facilitate software

interaction with the firmware modules described previously. The performance of this system will

be described in the following chapter.
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CHAPTER 6. PERFORMANCE

This chapter analyzes the performance of the new JCM system with DMA. First, the data

rates of the new system will be compared with the original JCM, followed by a comparison of the

processor utilization. This leads into a discussion of the Multi-JTAG system made possible by the

more efficient utilization of processor resources.

6.1 Data Rate

All of the data rate measurements in this section were obtained using the same method

which was described in Section 3.2.3. The time it takes to transfer a large amount of data (800 Mb

for JTAG, 4,000 Mb for SelectMAP) between the JCM and a slave device is measured. Then the

size of the transfer is divided by the measured time to get the data rate in Mbps.

A chart comparing the JTAG data rates with and without DMA is shown in Figure 6.1. The

differences are hard to see at lower clock speeds because the version without DMA does not have

too much trouble keeping up. However, at higher clock speeds the standard version falls well short

of the potential maximum data rate. The DMA version, on the other hand, remains very close to

the maximum data rate for all clock speeds. The increased speed and efficiency of moving data to

the module using DMA means that the processor is able to feed data to the module more quickly,

increasing the data rate as expected.

The difference between read and write operations using DMA is also much smaller with

writes just barely edging out reads in terms of data rate. This is due to the state machine changes

that make it so a read transfer can happen without first filling the write FIFO. This way, no unnec-

essary data is transferred to the module during a read, which increases the data rate.

The data rates for 8-, 16-, and 32-bit SelectMAP are shown in Figures 6.2, 6.3, and 6.4 re-

spectively. The increased data rate that DMA can provide is even more apparent in the SelectMAP

interface because the potential data rate is so much higher. Notice that the standard JCM transfers

55



Figure 6.1: JTAG Data Rate Comparison

cannot exceed a data rate of about 100 Mbps. The data rate with DMA, on the other hand, can

exceed 950 Mbps in some configurations.

This is a huge improvement over the original design, but it still is not perfect. When using

32-bit mode at high clock speeds, the data rate actually starts to drop compared to lower clock

speeds. This appears to be because the driver times out occasionally when waiting for interrupts

to arrive. At a 50 MHz clock in 32-bit mode, the speed at which the DMA engine moves data in

and out of the hardware module is similar to the speed at which the module moves data in and

out of the FIFOs while performing reads and writes using SelectMAP. This appears to cause some

glitches on the FIFO half full interrupt line as the number of words in the FIFO hovers around the

half full threshold. These glitches are tricky to guard against and lead to some missed interrupts in

the driver. The driver recovers using a timeout when waiting for an interrupt, but the extra time it

takes to wake up limits the data rate. Understanding this issue more fully and addressing it is an

important task for future work.

There is also a clear difference in the data rate of reads and writes at high speeds using

SelectMAP in 16-bit or 32-bit mode. The maximum data rate of a write operation is about 950

Mbps, whereas the maximum data rate of a read is only about 550 Mbps. The reason for this
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Figure 6.2: 8-Bit SelectMAP Data Rate Comparison

is not clear at this time, but one possibility is that writes to main memory (which would occur

when using DMA to read from a module) are given less priority by the memory controller than

reads from memory. This could create a bottleneck and extend the time of DMA transfers from

the hardware module to memory when there is other memory traffic. Exploring this aspect of the

performance is a good opportunity for future work.

6.2 Processor Utilization

The processor utilization during write operations using various interfaces is shown in Fig-

ure 6.5. Previously, the processor utilization was greater than 99% whenever the JCM hardware

modules were in use. Utilization approaches this for high throughput configurations such as 16-

and 32-bit SelectMAP operating at high frequencies. This happens because the user program never

gets to sleep for very long before the process wakes up to start new DMA transfers. Even so, the

utilization never exceeds 84% when using the SelectMAP interface. This number could potentially

be reduced by increasing the size of the FIFO within the SelectMAP module and transferring more
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Figure 6.3: 16-Bit SelectMAP Data Rate Comparison

data at a time with DMA. This way, the processor does not have to interact with the hardware as

often.

When using a lower throughput interface like JTAG, the utilization can be as low as 1%.

Even at its maximum speed, the processor utilization using JTAG never exceeds 6%. This is a

huge improvement over the previous system and it leaves the processor open to do a variety of

other tasks. The Multi-JTAG system takes advantage of this by managing multiple JTAG chains

using the same processor.

6.3 Multi-JTAG

As explained previously, the Multi-JTAG system can manage up to eight JTAG chains

simultaneously. The data rates of the system running eight JTAG chains is shown in Table 6.1

and the processor utilization is shown in Figure 6.5. Even while transferring data between eight

slave devices simultaneously, the data rate is higher than the data rate of the original JCM system.

It trails only slightly behind the improved data rate of the DMA system as shown in the table.

58



Figure 6.4: 32-Bit SelectMAP Data Rate Comparison

Table 6.1: Multi-JTAG Data Rates

Clock Rate Data Rate
(Single JTAG)

Data Rate Per Port
(Multi-JTAG)

Maximum Total Data Rate
(Multi-JTAG)

Total Data Rate
(Multi-JTAG)

10 MHz 9.96 Mbps 9.72 Mbps 80 Mbps 77.77 Mbps
17 MHz 16.54 Mbps 15.90 Mbps 136 Mbps 127.16 Mbps
25 MHz 24.70 Mbps 23.30 Mbps 200 Mbps 186.37 Mbps
31 MHz 29.03 Mbps 27.12 Mbps 248 Mbps 216.94 Mbps
38 MHz 35.07 Mbps 32.33 Mbps 304 Mbps 258.61 Mbps
50 MHz 48.77 Mbps 43.71 Mbps 400 Mbps 349.65 Mbps

These results are significant because a single system can be used to test up to 8 devices in parallel

without significant performance degradation. This allows for much more efficient use of available

hardware, potentially relieving a cost burden on JCM users as well as a labor burden on our lab

that must employ students to build JCM Breakout Boards and other hardware. The Multi-JTAG

system has been deployed on the TURTLE project mentioned in Chapter 2. Researchers on the

project use only two JCM systems to inject faults on 10 different boards simultaneously.
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Figure 6.5: Processor Utilization Using DMA

This chapter has presented the performance of the new JCM architecture described in this

thesis. The improvements in data rate and utilization provide higher speed configuration manage-

ment and more efficient hardware usage. There is still room for improvement because the max-

imum data rates are not achieved at higher clock rates, but it provides much better performance

over the previous version of the JCM.
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CHAPTER 7. CONCLUSION

The system described in this thesis has improved upon the original JCM by adding DMA

and interrupt support. This has resulted in faster data rates (up to 9.97x speedup) using both the

JTAG and SelectMAP interfaces. It has also decreased processor utilization dramatically, improv-

ing the overall performance and responsiveness of the system. By decreasing processor utilization,

the JCM is also able to manage up to eight JTAG chains simultaneously. This multi-JTAG system

has been used in the BYU TURTLE project to collect fault injection data from ten FPGAs using

only two JCMs.

There are still many opportunities for future work on this system. Some aspects of the per-

formance are still not fully understood and require further investigation to improve. For example,

the reason behind the slower upper limit of the data rate of SelectMAP read operations compared

to write operations is still unknown and needs to be resolved. The exact factors that limit the data

rate of the SelectMAP interface at high speeds are also unknown.

The processor utilization is still very high when the SelectMAP interface operates at high

speeds. This could potentially be reduced by increasing the size of the buffer FIFOs and transfer-

ring more data at a time via DMA. More experimentation with buffer and transfer sizes could lead

to lower utilization and possibly even higher data rates.

The basic functionality of the JCM also has room to expand to incorporate more than just

Xilinx FPGAs. The SelectMAP interface is unique to Xilinx devices, but the JTAG interface is

used in thousands of other devices. The JCM could be not only an FPGA configuration manager,

but also a flexible JTAG tool that can be used to interact with a wide variety of electronics. The

JCM software is currently being revised to further decouple basic JTAG functionality from Xilinx-

specific functionality. This will allow for more flexible JTAG usage in various situations.

The user interface to the JCM presents more opportunities for improvements. A client-

server model is under development that will replace the current model in which user-created pro-
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grams are run natively on the JCM. With the new model, the JCM will simply run a server program

that accepts requests from clients. User programs will consist of Python scripts that open a con-

nection to the JCM server and then send a series of requests to the server. This model will make

it easier to utilize the multiple JTAG ports by letting the server take care of executing requests in

parallel. It will also make rapid development and scripting simpler for users and remove the need

for compilation on the JCM.

The JCM has been an essential part of many of the research activities of the BYU Con-

figurable Computing Lab. The need for high-speed configuration management will only increase

as larger and more complex devices are released. The improvements to the JCM described in this

thesis make it even more capable of filling that need as a programmable, high-speed configuration

manager.
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