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ABSTRACT 
 

An Introductory Study of Solid Materials for Capture and  
Catalysis of Waste Stream Chemicals 

 
Steven Kyle Butler 

Department of Chemistry and Biochemistry, BYU 
Master of Science 

 
Heterogeneous catalysts are key materials in research and industry. Herein we study two 

materials in different stages of development toward being applied as heterogeneous catalysts. 
First, MoO3SnO2 was synthesized and studied as a catalytic system similar to Sn-beta zeolites. 
While the Mo-based catalyst did not show similar activity to Sn-beta, it did show interesting 
reactivity in activating carbonyls and oxidizing organic substrates. Second, a method was 
developed for grafting amines onto carboxylic acid functionalized carbon nanotubes for CO2 
capture. The method was successful for grafting monomer ethylamine groups onto CNT and can 
be further developed to allow for polymeric amine groups to be grafted. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: molybdenum, tin, carbon nanotubes, heterogeneous, catalysis, green chemistry, 
organic, inorganic 
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1 Solid materials for capture and coupling of small organic molecules 

This work is focused on the use of waste stream chemicals as building blocks for useful 

products. This was studied using a solid catalyst in the presence of either a liquid or gaseous 

reactant phase. The liquid phase reactions were carried out in batch reactors and the gas phase 

reactions were carried out in a flow reactor. The use of a catalyst that is a different phase from 

the reactants is known as heterogeneous catalysis. Heterogeneous catalysis has several benefits 

over traditional homogeneous catalysis. Heterogeneous catalysts are generally easier to remove 

from products than homogeneous catalysts (providing that the products are not solid). 

Heterogeneous catalysts usually have a higher reusability as they can often be removed from the 

reaction and re-activated for further use.  

While there are many benefits to heterogeneous catalysts there are also some downsides. 

Characterization of heterogeneous catalysts is often labor intensive—as they are almost 

exclusively solids, they cannot be analyzed by traditional NMR techniques. Powder X-ray 

Crystallography (P-XRD) is generally used to characterize the elements present in a catalyst, 

along with X-ray Photoelectron Spectroscopy (XPS) to characterize the elemental oxidation 

states present and surface composition. Surface area is determined by the Brunauer-Emmett-

Teller technique (BET) as well as chemical vapor desorption experiment to determine the acidity 

and basicity of the metal sites. While characterization can be difficult, the rewards of 
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understanding the composition and active sites of heterogeneous catalysis give important insight 

into the chemistry that is occurring. This understanding can be used to increase the activity and 

selectivity of these catalysts. 

One part of this work involved synthesis of a carbon nanotube (CNT) and 

polyethylenimine (PEI) material to capture CO2. The material later will be used as a scaffold for 

catalysts that can react with the captured CO2. While not yet a heterogeneous catalyst, it is a key 

beginning step in making a heterogeneous catalytic system. 

The other part is the synthesis, characterization, and catalytic testing of MoO3SnO2. This 

catalyst has recently shown interesting reactivity, in the oxidation of dimethylether to 

formaldehyde.1 The catalyst was synthesized, characterized, and tested in a wide variety of 

reactions to determine its catalytic similarity to Sn-beta zeolites, another Lewis acidic catalyst. 

Both parts of this work have involved synthesis of solid materials—one a heterogeneous 

Mo-based catalyst and the other a carbon nanotube based support decorated with amines. While 

the materials made were very different, the techniques used to characterize them were similar. 

For both projects the surface of the material was important. The CNT surface was characterized 

using Brunauer-Emmett-Teller technique (BET) and followed up with a Barrett-Joyner-Halenda 

(BJH) analysis of the physical properties of the pores. The MoO3SnO2 surface was characterized 

using powder X-ray crystallography. Insight into the bonding environments of both materials 

were observed using spectroscopy: MoO3SnO2 by Raman spectroscopy and The CNTs by UV-

Vis spectroscopy.  
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2 Molybdenum Tin Mixed Metal Oxides as a Catalyst for Oxidation 

and Coupling Reactions  

2.1 Introduction 

Molybdenum is an earth abundant and relatively eco-friendly element, unlike most of the 

transition metals which are either toxic or rare. One of the purposes of this project was to expand 

the use of molybdenum-based catalysts. Specifically, I aimed to explore the possibility of 

MoO3SnO2 catalyzing reactions in a similar way as Sn-beta zeolite catalysts.  

The main purpose of this project was to synthesize a previously reported MoO3SnO2 

heterogeneous catalyst and characterize the catalyst through the materials characterization 

techniques used in our lab.1 The catalyst was then tested against a wide range of reactions 

previously reported as catalyzed by Sn-beta zeolites. The results of these reactions would provide 

evidence for the central hypothesis that MoO3SnO2 exhibits similar but distinct reactivity to Sn-

beta zeolites as both are good Lewis-acidic catalysts. 

2.2 Sn-Beta Zeolites 

Beta zeolites are ordered arrays of Si, Al, and O. They form a large network similar to 

that shown in Figure 1. These zeolite structures can be doped with metals to affect their 
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properties. Sn-beta zeolites are generally prepared by treating beta zeolite with SnCl4 and give 

the structure shown in Figure 1.2 

 

Figure 1: Sn-Beta Zeolite3           

 

 

 

Silicate based zeolites doped with transition metals have been used as both solid Lewis 

acidic and solid Lewis basic catalysts.4 Common uses of Sn doped zeolites have been the 

Baeyer-Villiger oxidation of small molecules, conversion of small ketones into esters,5 and 

isomerization of molecules such as glucose.6 The substrates are limited to small molecules 

because the substrates must diffuse into the small pores of the zeolite. 

This catalytic activity comes from the acidic properties of the Sn4+. Tin(IV) is a good 

Lewis acid as it is electron deficient and so can be used in a wide variety of Lewis acid catalyzed 

reactions. Our hypothesis was that the cooperation of Mo and Sn would create a similar Lewis 

acid system with unique reactivity and selectivity using readily available oxide components and 
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without a highly engineered structure; the pore sizes would also allow a larger subset of 

molecules to react. 

2.3 Molybdenum Trioxide 

MoO3 is an earth abundant compound (more abundant in ground water than Fe due to 

solubility7,8) with relatively low toxic effects. These properties have helped Mo research be 

fueled by current green chemistry pushes. It has been used for a wide variety of reactions 

including hydrodeoxygenation9 and NOx reduction.10 The MoO3 includes a Lewis acidic Mo 

center that can undergo IV-VI oxidation cycles and oxidize organic molecules readily. As 

previously stated we sought to harness this Lewis acidity to catalyze reactions. 

2.4 Molybdenum-Tin 

Zhang et. al reported on a molybdenum tin mixed oxide catalyst that showed activity for 

the formation of methyl formate and formaldehyde using dimethyl ether as a substrate.1 The 

mechanism of the reaction occurred through decomposition of the dimethyl ether to a surface 

bound methoxy group (the fate of the CH3
+ was not reported). The methoxy group is then 

oxidized to formaldehyde. This mechanism is shown in Figure 2.  
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Figure 2: MoO3SnO2 Mechanism1  

 

 

 

However, there are some issues with the reported mechanism. How the C-O bond is 

broken and where the CH3 fragment goes are unclear. The O-CH3 is deprotonated but it is not 

shown where the electrons migrate to. Our more likely mechanism shows the Mo coordinating 

the dimethyl ether through an agnostic coordination to the C-O bond then the oxidative addition 

of the C-O onto the Mo is followed by the CH3 deprotonation of the Mo-OH as shown in Figure 

3. In both mechanisms molybdenum shows the ability to break both C-O bonds and C-H bonds.  
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The above oxidation of alcohol and aldehydes to esters is similar to recent Sn-beta zeolite 

catalysts. We attempted to replicate other relevant Sn-beta zeolite catalyzed reactions with the 

simpler molybdenum tin oxide, with the hypothesis that the combination of Sn and Mo sites 

would facilitate unique changes to reactivity and selectivity by the Sn-O-Mo bond increasing the 

Lewis acidity of the Mo and making it a comparable Lewis acid catalyst to others that have been 

reported. The MoO3 on the surface of the SnO2 should mean the substrates are not limited by 

what can diffuse into the pores as with the zeolites. 
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2.5 Catalyst Synthesis 

MoO3SnO2, with a Mo:Sn ratio of 1:2, was synthesized by a co-precipitation method. In a 

typical synthesis, 1.74 grams of AHM ((NH4)6Mo7O24
.4H2O) was dissolved in 20 mL of water. 

5.13 grams of sodium stannate was dissolved in 50 mL of water. The two solutions were mixed 

while stirring vigorously. The solution was heated to 60 °C while stirring and 3.7 mL of 

concentrated nitric acid was added. The solution was kept at 60 °C for 2 hours then allowed to 

cool to room temperature. The solution was then filtered and rinsed with water before being 

dried at 90 °C overnight. The solid was then calcined at 800 °C for 8 hours with a ramp rate of 

13 °C/min. After calcination the catalyst was ground until a visually homogenous fine powder 

was formed. 

The original preparation method was adapted from Zheng et. al.1 Further modifications 

were adapted from a later paper from the same group.11 While attempting to synthesize this 

catalyst we found the methods sections rather vague. No papers reported the concentration of the 

AHM and tin (either SnClx or sodium stannate) solutions. Our experiments showed that the 

concentration of the solutions must be close to saturation to get a proper co-precipitation of the 

desired product. Dilute solutions did not produce a significant amount of precipitate of the 

desired catalyst. 

2.6 Catalyst Characterization 

A couple of techniques were used to characterize the catalyst. Powder x-ray diffraction 

(P-XRD) was used to determine the structure of the MoO3 and SnO2. Similarly, Raman 

spectroscopy was used to characterize the nature of the MoO3 clusters and isolated domains.  
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2.6.1 P-XRD 

Powder x-ray diffraction crystallography was used to characterize the morphology of the 

catalyst. We characterized the samples with an X'Pert Pro, PANalytical with a Cu/Ka radiation 

source (40 kV, 40 mA). The P-XRD spectrum is shown in Figure 4 and shows very small peaks, 

some barely above the noise, that correspond to MoO3 (23.5, 26.5, 28.5). According to Il’in et al. 

the disperse MoO3 domains are shown by the lack of peaks in the P-XRD spectrum.12 Sharp 

peaks are characteristic of more crystalline samples; since there are small sharp peaks, most of 

the particles are most likely smaller than the 2-nm limit of the instrument and thus very dispersed 

on the SnO2 surface. The SnO2 peaks tend to be very broad and hard to identify, especially with 

low signal. 

 

Figure 4: P-XRD Spectrum of MoO3SnO2 
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2.6.2 Raman Spectroscopy 

The functional groups were identified with Raman spectroscopy. We used a Renishaw 

inVia Raman Microscope spectrometer with a 785-nm wavelength laser (1% power) with a 5s 

exposure time and a spectral range of 45.87 to 1273.62 cm-1. Liu et al. identified the disperse 

MoO3 domains by their Raman spectra shown in Figures 5 and 6.13 They assigned bands at the 

following: 636 cm-1, 777 cm-1 are attributed to SnO2 crystallites. 864-870 cm-1, Mo-O-Mo bridge. 

953-967 cm-1, Terminal Mo=O. 672 cm-1, 825 cm-1, 1001 cm-1, crystalline MoO3. They also 

found that increasing the surface density of Mo on the SnO2 increased the amount of crystalline 

MoO3 and the amount of bridging Mo-O-Mo. This is from increased MoO3 agglomeration as 

opposed to formation of isolated MoO3 sites. 

 

Figure 5: Raman of MoO3 on Metal Oxide Supports13 
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Figure 6: Raman of MoO3 Loading on SnO2 Support13 

 

 

 

Comparing our catalyst to that of Liu, the 500 °C calcined catalyst, shown in Figure 7, 

matches that of the MoO3/SnO2 from Liu et. al. Our catalyst showed some crystallite SnO2 peaks 

around 630 cm-1 and the terminal Mo=O between 900 cm-1 and 1000 cm-1
 as seen in the Raman 

of the Liu catalyst. These peaks show that the 500 °C calcination yields very isolated MoO3 

domains and not large clusters of MoO3. The 800 °C calcined catalyst, shown in Figure 8, shows 

more signs of large clusters. The bridging Mo-O-Mo peak at 860-870 cm-1 is much larger than 

the 500 °C catalyst and the 825 cm-1 associated with crystalline MoO3 is also much larger than 

the 500 °C catalyst. The peaks in the 0-400 cm-1 region are a combination those shown in the 

MoO3 control and Sn control shown in Figure 9. The larger MoO3 clusters are probably formed 

from agglomeration of the individual domains as the temperature increased.  
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Figure 7: 500 °C Calcination Raman Spectra 

 

 

 

Figure 8: 800 °C Calcination Raman Spectrum 
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Figure 9: Comparison of Mo3SnO2 Catalyst to MoO3 and SnO2 Controls via Raman 

Spectroscopy 

Controls 

Molybdenum Control 

 

800 °C calcined catalyst 

 

Tin Control 

 

 

 

2.7 Reactions with MoO3SnO2 

With our catalyst synthesized, we next performed a series of probing reactions to 

determine the reactivity of the catalyst. The reactions were mainly pulled from known reactions 

catalyzed by Sn-beta zeolites or Mo based catalysts. The reactions fell into several categories: 

aldol reactions, Baeyer-Villager reactions, ketal reactions, amide formations, and 

transesterifications. 

2.7.1 Aldehyde Formation and Coupling 

Zhang et al.’s work on dimethyl ether oxidation and coupling to form methyl formate was 

our starting point for MoO3SnO2 reactivity.1 We hypothesized that use of diethyl ether would 

give comparable results to dimethyl ether, but in a liquid phase reaction as opposed to a gas 

phase flow system. We tested this by reacting diethyl ether in a pressure tubes under air at 50 °C 
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for 4 hours. As expected the reaction showed a formation of ethyl acetate. While the formation of 

ethyl acetate from diethyl ether is not a new or interesting reaction it served both to show that the 

catalyst was indeed reactive and served as a starting point for other reactions tested.  

2.7.2 Aldol Reactions 

Lewis acids are known to catalyze aldol reactions such as the acid catalyzed aldol 

reaction shown in Figure 10.14 MoO3SnO2 should be able to catalyze aldol reactions as a Lewis 

acidic catalyst. 

 

Figure 10: Acid Catalyzed Aldol Reaction 

 

 

 

Reaction conditions from Roman-Leshkov et al. were used as a reference point in several 

aldol reactions.15 A typical reaction was 0.02 mmol catalyst, 20 mmol aldehyde, 14.5 mmol 

ketone, stirred at 160 °C for 18 hours. MoO3SnO2 showed little activity as an aldol formation 

catalyst.  In initial tests with the 500 °C catalyst there was no formation of aldol products from 

benzaldehyde or hexanal coupled with acetone or hydroxy acetone. When the 800 °C calcined 

catalyst was used in the aldol coupling reaction between benzaldehyde and acetone a small 

amount of aldol product, 4-Phenyl-3-buten-2-one, was formed shown in Figure 11. 
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O

H

O
O+

Catalyst

Chorobenzene

Figure 11: Benzaldehyde Acetone Aldol
O

+

Not observed

 

 

 

This reaction has not been fully optimized yet. However, as the single aldol product was 

seen and not the product from a subsequent aldol of benzaldehyde and 4-Phenyl-3-buten-2-one 

(dibenzalacetone), we are optimistic that it can be optimized to provide a decent and selective 

yield of 4-Phenyl-3-buten-2-one. 

2.7.3 Baeyer-Villiger Reaction 

The lactone products made in Baeyer-Villiger reactions are important in organic 

synthesis, as they can be used as intermediates in various fields, including pharmaceutical and 

agrochemical industries.16,17 They make use of the environmentally friendly H2O2. SnO2 is one 

of the many catalysts that has been studied and shown to be a robust catalyst in this reaction.  

SnO2 nanoparticles on a graphene oxide surface is one of these catalysts that have been 

shown to catalyze Baeyer-Villiger reactions with excellent conversion and selectivity (>90% and 

>99% respectively).18 Molybdenum is known to form a peroxy acid when exposed to 

peroxides.19 We hypothesized that our MoO3SnO2 catalyst would be effective in the Baeyer-

Villiger reaction due to the Lewis acidic nature of the Mo peroxy acid formed from the catalyst 

and H2O2. The increased acidity of the Mo in MoO3SnO2 should activate the ketone in the same 
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cause any unwanted products; however, we were only able to detect >1% of Baeyer-Villiger 

oxidation products. 

Nevertheless, while MoO3 is known to form peroxy acids and be effective in many 

organic transformations, we believe that the combination of MoO3SnO2 and H2O2 forms too 

powerful of an oxidizing agent, which decomposes the organic substrates in our reactions. This 

reaction could be revisited with a weaker oxidant or more controlled addition of H2O2 to prevent 

the over oxidation and decomposition of the cyclohexanone. 

2.7.4 Ketal Formation 

Ketals are organic groups formed by the attack of alcohol groups on ketones to form a 

carbon center with two ether groups and two alkyl groups, as shown in Figure 13 (A and B). We 

sought to form a ketal from glycerol as a starting material. Ketal formation from glycerol is a 

known reaction and proceeds at very mild conditions.20 However, the majority of processes give 

the 5-membered ring ketal as shown in Figure 13 (B); this comes from the attack of neighboring 

alcohol groups. Our goal was to form the less common 6-membered ring, shown in Figure 13 

(A), that is a product of both terminal alcohols attacking the ketone. 

 

O
OH

OH
HO

Cat. O O O
O

OH OH

+ +

Figure 13: Ketal Formation

(A) (B)  
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We adapted a procedure from Wegenhart et. al.21 where 1.0 ml of acetone was mixed 

with 1.0 mL of glycerol and 63 mg of catalyst (calcined at both 500 and 800 °C). The reaction 

was stirred at 50 °C for 1 hour, then allowed to cool to room temperature. The resulting mixture 

was analyzed by GC-MS. While the reaction showed moderate conversion to the ketal, the 5-

membered ring (B) was favored by a factor of 2:1. This shows a statistical mixture and no 

mechanistic selectivity for the terminal alcohols attacking over the internal alcohol. This is true 

for both 500 °C and 800 °C calcined catalysts. 

We tried to force the formation of the 6-membered ring (A) by using an asymmetric 

aldehyde. Benzaldehyde was un-reactive due to the conjugation of the carbonyl into the benzyl 

system. Hexanal showed similar reactivity to acetone and gave comparable results of 2:1 ratio of 

5- to 6-membered rings. 

These experiments showed that MoO3SnO2 effectively catalyzed the ketal formation of 

acetone and glycerol. The reaction showed no selectivity toward the 6-membered ring product, 

which makes MoO3SnO2 an uninteresting catalyst in this reaction. However, a further kinetics 

study could give insight into the possibility of achieving selectivity with an optimized system. 

2.7.5 Transesterification Reactions 

Some useful organic products such as diphenyl carbonate are often formed by use of 

highly toxic phosgene gas.22 To avoid the use of phosgene, transesterifications have been used in 

this process, such as the transformation of phenol and dimethylformate into diphenylformate and 

methanol. Due to the importance of this process, many catalysts are trade secrets; however, the 

catalysts are generally Ti based. The MoO3SnO2 catalyst should be a good candidate for this 

reaction as it has good Lewis acid sites, similar to Ti, that can activate the carbonyl and facilitate 

transesterification, as shown in Figure 14. 
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O

OO

M OH
2x

O

OO

M
2x OH+ +

Figure 14: Dimethylcarbonate Transesterification

 

 

 

The Lewis acidity should sufficiently activate the carbonyl to facilitate attack. However, 

the reverse reaction is more thermodynamically favorable than the forward reaction. To make the 

reaction work, the methanol byproduct must be removed during the reaction process. Weiqing et 

al. reported on a method using a fractionary distillation column.23 

Our lab is not equipped with a set up for circulation temperature control, so we attempted 

to use a similar setup with the only temperature control in the hot plate, as shown in Figure 15.  

A typical reaction involved addition of 3 mL phenol and 3 mL dimethyl carbonate with no 

solvent to a flask charged with 60 mg of catalyst. The solution was then heated to 65 °C, above 

the boiling point of methanol but below the boiling point of dimethylcarbonate. Repeated 

attempts at this procedure did not yield product. Alternatively, the same apparatus was used but 

the dimethylcarbonate was added slowly after the phenol was boiling. This procedure also did 

not yield any product. However, it is possible that a larger scale or the use of a circulating 

temperature control could yield better results for this catalyst. 
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Figure 15: Transesterification Setup 

 

 

 

2.7.6 Formanilide Synthesis 

Formanilides are small organic molecules that are congeners of formamides with an aryl 

group attached to the nitrogen. These molecules are used as building blocks for many 

pharmaceutical and industrial products.24 The most basic formanilide, with no substitutions on 

the aryl ring, is simply called formanilide. 

Formanilide was made from the coupling reaction of ethyl formate and aniline. The 

assumed mechanism is that the catalyst facilitates transformation of the ethyl formate ester into 

an amide, as shown in Figure 16. This is evidenced by the only visible byproduct in GC-MS 

being ethanol. Rasheed et al.25 showed successful catalysis of this reaction with a sulfate catalyst 

immobilized on silica. This system showed excellent yield of up to 90% formanilide at 70 °C in 

6 hrs. While our catalyst didn’t show the same level of activity, we still were able to catalyze the 
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reaction to a lesser extent. We sought to use our catalyst’s ability to form aldehydes and ketones 

from alcohols and ethers to couple the amide formation reaction to an oxidation reaction. 

 

Mo
OO NH2

Mo
O

O
HN NH

O

OH

Figure 16: Proposed Transamidation Reaction Mechanism

 

 

 

While ethyl formate is a naturally abundant source, a major goal of the Stowers’ lab is the 

use of waste chemicals as a feedstock. Glycerol is a waste product of biodiesel production and 

can be oxidized to form carbon monoxide units.26 As a precursor to using glycerol, we tested 

ethylene glycol as it is much easier to work with. Molybdenum peroxy acids are known to 

catalyze the oxidation of alcohols into ketones and aldehydes. We employed both hydrogen 

peroxide and molecular oxygen as the oxidant to form the molybdenum peroxy acid. 

In a typical reaction, 18 µL of aniline, 21 µL of ethylene glycol, and 100 µL of 30% v/v 

H2O2 were mixed in a 7-mL vial while being heated. The vials were allowed to return to room 

temperature and then the products were analyzed by GC-MS. 

The reaction was tested with untreated starting materials: MoO3, SnO2 as well uncalcined 

catalyst. This data is shown in Table 1. At 40 °C only materials containing Mo showed formation 

of products. All the molybdenum containing materials except the catalyst showed a large 

selectivity to nitrobenzene, formed from the oxidation of aniline. The MoO3SnO2 catalyst was 
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the only compound to show formation of the desired product formanilide. The nitrobenzene 

formation is probably due to the formation of the homogeneous MoO3 peroxy acid. The 

MoO3SnO2 allows for more selective oxidation of the ethylene glycol while the increased Lewis 

acidity holds the newly formed carbonyl in place for attack by aniline and formation of 

formanilide. 

 

  

 

 

Extensive experiments including time, temperature, peroxide concentration, and catalyst 

calcination temperature studies were all performed on the system. 

Time of reaction was tested ranging from 1 hour to 16 hours as shown in Table 2. The 

reaction proceeds quickly, reaching 97 % completion in an hour at 50 °C. The rate of the reaction 

made it hard to analyze intermediates. The rate of the reaction is due to the oxidation strength of 

the molybdenum peroxy acid; it rapidly oxidizes the ethylene glycol. 
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Temperature was optimized both with and without catalyst present, the catalyst optimized 

reaction is shown in Table 3. With hydrogen peroxide as the oxidant, the N-formylation proceeds 

at moderate temperatures without the aid of a catalyst (50 °C); however, more of the side 

products (such as nitrobenzene) were formed based on our normalized product yields. With 

catalyst present, 120 °C is the optimal temperature. However, the selectivity is still not high 

enough for the reaction to be useful. 
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Concentration of the peroxide was tested at 10, 30, and 50 % w/w in water. The results 

are shown in Table 4. The concentration of the peroxide did not have a large effect on the 

reaction, but 30% did give slightly better results than the other concentrations. 

 

  

 

 

When hydrogen peroxide was used as the oxidant, some unwanted side products were 

formed. Azobenzene and azoxybenzene were formed by oxidation of aniline. A mass balance 

analysis of the data showed that not all the starting material was present in the products at the 

end of the reaction. When the reaction was scaled up, an analysis of many reactions showed azo- 

and azoxy-benzene as major products. We tested the theory that these products were sticking to 

the catalyst and found that azoxybenzene sticks to the catalyst. This was determined by addition 

of azoxybenzene, peroxide and catalyst to a solvent filled vial which was heated to 50 °C for 4 

hours. The amount of azoxybenzene present decreased significantly as it stuck to the catalyst. 

Also, on scale up the error in mass balances of the reactions was greater than the calculated error 

for azoxybenzene sticking to the catalyst. The loss of mass is likely due to the strong oxidizing 

power of Mo with peroxide—reactants are being severely over oxidized and decomposed into 

small organic products that are not detected by the GC-MS. 
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To overcome the oxidizing power of the peroxide we experimented with using O2 as an 

oxidant in a pressurized Parr reactor. The reactor was charged with 99.7 mg catalyst, 1.8 mL 

aniline, 2.2 mL ethylene glycol, and 6 mL methanol. The vessel was then pressurized with 8 bar 

of compressed air and 7 bar of N2 to give a final pressure of 15 bar. The vessel was heated to 60 

°C and stirred for 4 hours. After cooling to room temperature, the sample was worked up in 

methanol and tested by GC-MS. Using O2 as an oxidant worked in the reaction, giving similar 

conversion, however just as with H2O2, unwanted azobenzene and azoxybenzene were formed by 

overoxidation of aniline.    

2.8 Conclusions 

MoO3SnO2 is an effective catalyst in the transformation of dimethylether to formaldehyde 

and methyl formate. However, to this point we have not been able to find another reaction that 

the catalyst can catalyze in a selective and useful manner. The formanilide reactions showed 

promise but could not be optimized to be selective toward a specific product. 

To the best of our knowledge MoO3SnO2 was not able to replicate the chemistry done by 

Sn-based zeolites. The addition of molybdenum creates a catalyst dominated by Mo chemistry. 

The Mo chemistry on its own leads to unselective decomposition and over oxidation. The Sn 

seems to activate the Mo and facilitate even strong oxidation of substrates. But to this point the 

strong oxidation is non-controllable in the reactions we have tested and thus not useful until it 

can be controlled.  
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3 POLYMERIZATION OF AZIRIDINES AS A SOLID N-BASED 

CO2 CAPTURE AGENT 

3.1 Introduction 

Increased burning of fossil fuels has caused the carbon dioxide in the atmosphere to 

increase significantly, with CO2 concentration up 25.7% from fifty years ago.27 Because of this 

increase, many researchers are developing new ways to handle this large concentration of 

atmospheric CO2. Reduction of carbon emissions is the most widely advertised and researched 

solution. However, reducing CO2 emissions doesn’t immediately deal with our problem of 

atmospheric CO2—we need a solution to reduce our current level of atmospheric CO2. Removal 

of atmospheric CO2 will lead to a decrease in the effects of current CO2 pollution, and in the 

future, will aid in the creation of a carbon neutral society. Two major methods for CO2 removal 

have been suggested, sequestration and storage, or upgrading. Kintisch reported on methods 

where CO2 could be captured and placed in underground storage facilities.27 Upgrading, 

however, is a more practical method where CO2 is reacted with other compounds to form useful 

chemicals.28 Ideally the CO2 would be captured from the atmosphere or industrial sources prior 

to upgrading. 

This project focused on what we feel is an important first step of CO2 upgrading: capture 

of CO2 onto a surface. Liu et al. have shown that amines are effective structures for capturing 
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CO2.29 Specifically polyethyleneimine (PEI) polymers, both branched and linear, have shown 

promising CO2 capture ability. The PEI captures the CO2 in a bifunctional mechanism that 

involves both electrophilic and nucleophilic parts of the PEI. First, an interaction between the 

nucleophilic nitrogen lone pair and the electrophilic carbon. Second, a hydrogen bond between 

the CO2 oxygen and amine N-H bond.30 Our project was an attempt to take advantage of this by 

grafting a branched PEI (BPEI) system onto carbon nanotubes.31 Once good capture of CO2 can 

be established, the surface can be decorated with catalyst for CO2 upgrading reactions.  

The major method that currently exists for synthesis of CO2 capturing solid amine 

materials is wet impregnation of the amines onto a solid support. Wet impregnation is a 

physisorption technique that generally creates the non-covalent attachment of PEI to the surface 

of the CNTs. While physiosorbed PEI on CNT is relatively easy to prepare, it tends to have 

lower stability than chemisorbed compounds when exposed to higher temperatures and 

moisture.32 

Wet impregnation of PEI and 3-(aminopropyl)-triethoxysilane (APTES) onto a porous 

silica support by Fuath et al. gave up to 37% efficiency of mol-CO2/mol-N in a pure CO2 

stream.33 The system also showed thermal stability up to ~350 °C at which point the PEI began 

to degrade. However, after several adsorption/desorption cycles the amount of amine on the 

surface decreased by 47%. This seems to be a significant issue with wet impregnation methods. 

Another solution is preparation of these materials through chemisorption, in which 

amines are covalently bound to the CNT structure. This is the method that we sought to develop 

using small molecule building blocks as the PEI precursor. Covalent binding of PEI to the 

surface of CNT material should provide greater stability at high temperatures, as the material 
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must decompose to be removed. Also, it should provide retention of amine loading and activity 

through repeated use cycles. 

The carbon nanotube support is made of wrapped sheets of graphene in several layers, as 

shown in Figure 17. This provides a large surface area for amines to be grafted onto; however, 

this large conjugated system makes direct attachment of amine groups difficult. Chemical 

functionalization of the CNT surface allows for easier attachment of amines. Nitric acid has been 

used to functionalize the surface CNTs with -OH and -COOH groups.34 These functional groups 

can more easily react with amines to form covalently attached amine networks. Our method for 

attachment of PEI on CNTs is to polymerize cyclic amines using the functionalized surface as 

the starting point for the polymerization. 

 

Figure 17: Multiwalled Carbon Nanotubes35 
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Our inspiration for polymerizing cyclic amines on to CNT came from Jones et. al.36 Jones 

published a method for polymerization of aziridine onto SiO2 surfaces by making use of the 

SiOH groups. Jones showed that polymerization could be achieved through ring-opening of the 

aziridine by hydroxy groups on the surface of a material by heating aziridine in a pressure vessel. 

The ring-opening of the aziridine forms a reactive species which can facilitate ring-opening 

polymerization to form a branched polyethyleneimine network on the surface, as shown in 

Figure 18. This method gave very effective loading onto the Si surface, with organic loading up 

to 42%.  

 

Figure 18: Polymerization of Cyclic Amines onto SiOH Support36 
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Our hypothesis was that we could apply the same technique as Jones et. al to polymerize 

aziridine onto the surface of carbon nanotubes for CO2 capture, and that the covalent nature of 

the attachment would increase the thermal and moisture stability of the PEI. Jones found that 

higher acidity of the support made for more organic loading of the polymer.  We hypothesized 

that the more acidic groups on the relatively neutral surface would still work in the 

polymerization.  The -OH and -COOH groups on the CNT were to serve as the starting point for 

the polymerization. In theory the carboxylate group could cause a ring-opening of the aziridine 

to form the polyethyleneimine anchored by the ester group on the surface of the CNTs, as shown 

below in Figure 19. 

 

Figure 19: Polymerization of Aziridine onto Functionalized CNTs  
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3.2 Synthesis 

The general procedure for making the material consisted of several steps. First, aziridine 

was synthesized from 2-chloroethylamine hydrochloride. Second, CNTs were functionalized 
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with concentrated HNO3. Third, the aziridine was grafted onto the CNTs (Az-CNT). After 

grafting, the Az-CNT was characterized through a variety of methods, including 

thermogravimetric analysis (TGA), FT-IR spectroscopy, Brunauer-Emmett-Teller (BET) 

method, and CO2 flow reactor absorption. 

3.2.1 Aziridine Synthesis 

Aziridine was synthesized by a simple ring closure of 2-chloroethylamine under basic 

conditions as shown in Figure 20. The aziridine was extracted by partial vacuum distillation. In a 

typical synthesis, 8.2 g of NaOH was dissolved in 57 mL of water, then 10.2 g of 2-

chloroethylamine was added. The mixture was heated to 70 °C for 2 hours, then cooled to room 

temperature. The flask was moved to a short path vacuum distillation apparatus and heated to 70 

°C. The aziridine was distilled by slowly applying increasing vacuum to the heated system until 

aziridine condensed into the 0 °C trap. The distillate solution was placed in the freezer overnight 

to separate H2O from aziridine. The frozen solution was warmed slightly by hand and the liquid 

was collected and characterized by NMR. The solution shows peaks at 0.0, wide singlet, and 

1.55, singlet, corresponding to the N-H hydrogen and the C-H hydrogen. However, the aziridine 

wasn’t successfully purified—H2O (singlet 1.8, and singlet 4.5) was always found as a major 

component (>50%) in the aziridine NMR spectra. 
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Figure 20: Aziridine Formation

 

 

 

3.2.2 Carbon Nanotube Functionalization 

Two types of multiwalled carbon nanotubes were used, purchased from cheaptubes.com 

(cheap CNT) and TCI America (TCI CNT). Both types of CNT were functionalized with 

carboxylic acid groups via acid treatment. In a typical synthesis, 500 mg of CNTs and enough 

concentrated nitric acid to completely cover them were placed in an Erlenmeyer flask fitted with 

a water-cooled reflux condenser. The solution was heated to reflux for 3 hours. The solution was 

cooled to room temperature, filtered, and rinsed with deionized water until the pH of the wash 

was 7, generally around 300 ml. The functionalized CNTs were then dried overnight at 90 °C. 

3.2.3 Aziridine Polymerization 

In a typical synthesis, 300 mg of functionalized CNTs were placed in a tall pressure tube. 

1.38 g of the aqueous aziridine solution was placed in a 2-mL vial, which was placed inside of 

the pressure tube resting on the bed of functionalized CNTs, as shown in Figure 21. The tube 

was purged with N2 for 2 minutes, then sealed and heated to 70 °C for 24 hours. The flask was 
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then cooled to room temperature. The pressure was released and the flask attached to a vacuum 

while being heated to 70 °C for 15 minutes to remove any unreacted aziridine. 

 

Figure 21: Aziridine Polymerization Setup 

 

 

 

 Polymerization proceeds via ring-opening of the aziridine, as shown in Figure 22. The 

carboxylic acid groups bound to the CNT, or the lone pair of electrons on an already attached 

amine, initiate the polymerization by attacking the C-N bond and starting the ring-opening. As 

the ring opens it can either attack another aziridine ring to continue the polymerization or attack 

a hydrogen to form a terminal amine. 
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3.2.4 Aziridine Neutralizing 

Aziridine is a very hazardous chemical and so must be handled and disposed of with care. 

Unused aziridine was neutralized by reacting it with phenol in toluene under reflux for 4 hours. 

This should force the ring-opening of all aziridine by phenol to form 2-phenoxyethan-amine. The 

resulting mixture was disposed of as organic unwanted lab material.  

3.3 Characterization 

Several methods were used to characterize the final Az-CNT material. The Brunauer-

Emmett-Teller (BET) method was used for surface area calculations, and the Barrett-Joyner-

Halenda (BJH) adsorption method for pore volumes. Functional groups were characterized by 

Fourier Transform Infrared (FT-IR) spectroscopy as well as thermogravimetric analysis (TGA) 

for amine loading. 

3.3.1 Thermogravimetric Analysis 

Thermogravimetric analysis is a technique where a small sample is heated to elevated 

temperatures while the mass is accurately measured. Mass loss shows groups burning off the 

surface and can be assigned to specific groups. We used a Netzsch STA 409 PC equipped with 

Ar flow gas for TGA experiments. 

The sample was heated from 25 °C to 600 °C at 10 °C/min under Ar flow. The mass loss 

from 0-100 °C is the loss of physiosorbed water on the CNTs; the large mass loss from 200-450 

°C is the amine groups decomposing off the surface of the CNTs; and mass loss above 450 °C is 

decomposition of the CNTs. Az-CNTs were shown to have between 10 and 26% mass loading of 

amine groups. 
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Figure 23 shows the TGA data for TCI CNT, functionalized and non-functionalized, with 

grafted amines aziridine functionalization conditions. The functionalization of the CNTs has a 

significant increase on the amine loading of the grafted sample, 10% unfunctionalized vs. 26 % 

functionalized. This shows that more amine was grafted onto the surface when the CNTs were 

functionalized. The amine loading of the non-functionalized CNTs could be due to physisorption 

or ring-opening of aziridine by surface defects. However, the increase in amine loading does not 

conclusively tell if the aziridine polymerized or not. 

 

 

Figure 24 shows the TGA data for the cheap CNTs. There is much less of a difference 

between the functionalized and non-functionalized CNTs, with only about 2% more amine 

loading for the functionalized. The cheap CNTs are of lower quality and have not been purified 

as the TCI CNTs. This could mean that there are already many surface defects that can cause the 

ring-opening of the CNTs. 
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Figure 23: TGA of TCI CNTs with grafted amines
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3.3.2 FT-IR Spectroscopy 

A Nicolet 6700, Thermo Scientific instrument was used to measure IR absorbance from 

500–2000 cm-1. The very dense nature of CNTs makes spectroscopy difficult, as many of the 

amine functional groups reside in the pore of the CNT’s structure. The dense CNTs block the IR 

radiation from reaching inside the pores due to the large conjugated nature of the CNTs. Only the 

portion of functional groups on the surface outside the pores can be measured using IR. This 

made it very difficult to get good, reliable data. Figure 25 shows the FTIR spectrum of pure 

cheap CNT. There aren’t really any visible functional groups, which is probably due to the 

extremely conjugated nature of the CNTs. The large conjugated network absorbs most of the 

light and overshadows any other features, which is shown by the >50% transmittance. Figures 26 

and 27 show aziridine grafted onto CNT and BPEI wet impregnated onto CNT. Neither one has 

any significant features (other than ambient CO2 noise at 2360 cm-1.) 
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Figure 25: As Is Cheaptubes CNT FTIR 
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3.4 Brunauer–Emmett–Teller and Barrett-Joyner-Halenda Methods 

The Brunauer-Emmett-Teller Technique (BET) method was used to determine the 

surface area and the Barrett-Joyner-Halenda (BJH) adsorption method to determine the pore of 

the material. The sample was degassed for 4 hours at 100 °C under N2 and then run on a 

Micrometrics TriStar II BET instrument. BET gave the surface area of 15.4478 m2/g and BJH 

gave a pore volume of 0.136513 cm3/g. The relatively small surface area and pore volume could 

be due to inhibition of N2 adsorption because of a surface covered in amine groups. 

3.4.1 CO2 Adsorption 

Zheng Zhou et al. tested the materials for CO2 adsorption.31 The Az-CNT did not absorb 

as well as other tested species, 0.15 mmol CO2/g material Az-CNT vs. 0.59 mmol CO2/g 

material BPEI-CNT. With aziridine performing at ~25% of what wet impregnated BPEI did 

there was obviously a problem in the efficiency of the polymerization technique. 
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Figure 27: Branched PEI on CNT FTIR 
Spectrum
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3.5 Results 

Aziridine was synthesized but not successfully purified. Water was always found in the 

NMR spectrum of the purified aziridine. Regardless of this, aziridine was successfully grafted 

onto the CNT surface as evidenced by the TGA mass loss curve. Absorption data shows that Az-

CNT is much less effective than BPEI-CNT at CO2 capture; it appears that this is due to the 

aziridine not polymerizing and only participating in a single ring-opening reaction. So instead of 

polyethyleneimine groups, only a layer of primary amines was on the surface of the CNT. This 

could be due to the weak nucleophilic nature of the carboxyl group compared to the hydroxyl 

groups used by the Jones group. This could also be due to the water present in the aziridine 

samples as that could cause the aziridine to become protonated upon opening. This would have 

truncated the polymerization and only created a monomer layer.  

A monomer layer of amine would prevent the chain wrapping mechanism previously 

described and significantly hinder CO2 capture. This could explain the similar amine loading to 

BPEI but much lower CO2 adsorption. 

The method could be improved in several ways. Aziridine synthesis could be improved 

by increasing the scale, a larger amount of aziridine made would allow for easier distillation and 

purification. A purer aziridine would prevent polymerization truncation by water. Another option 

would be to develop a liquid phase pyridine polymerization technique, perhaps with 2-

chloroethlyamine as a feedstock in presence of a non-nucleophilic base. 

The surface of the CNTs were coated mostly with -COOH groups, which are less 

nucleophilic than -OH groups. An alternative functionalization method could be used to have a 

CNT surface coated with -OH vs. -COOH. 
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3.6 Conclusions 

Aziridine ring-opening is an effective method for chemical attachment of amine groups 

onto functionalized carbon nanotubes. While the system has not been optimized for small scale 

reactions on CNT, it has been shown to graft amine groups onto the functionalized surface, as 

confirmed through TGA analysis. Surface areas and pore volumes were lower than expected, but 

this could be due to method incompatibility with polyethyleneimine. FTIR spectroscopy gave 

inconclusive data due to the strongly absorbing nature of CNTs.  

Optimization of aziridine purification should give better polymerization and longer 

chains of polyethyleneimine. Longer chains should give increased CO2 adsorption while 

retaining the advantages of chemisorption vs. physisorption. 
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4 Conclusions 

In the molybdenum tin part of this work we successfully synthesized and characterized 

the MoO3SnO2 catalyst. We tested the catalyst in a wide variety of reactions with varying results. 

But, overall, we showed that MoO3SnO2 cannot act the same as Sn-beta zeolites. However, the 

molybdenum catalyst does display interesting reactivity that merits further investigation. 

The carbon nanotube project was a greater success than the molybdenum. We were able 

to develop a method for grafting aziridine onto the surface on of functionalized carbon 

nanotubes. While polymerization did not happen, changes to the procedure could facilitate the 

polymerization of the aziridine. 

Overall our experiments had many road blocks and showed mild success. However, we 

were able to successfully synthesize and characterize the amine grafted CNT and the MoO3SnO2 

using Power X-ray diffraction crystallography, Raman spectroscopy, IR spectroscopy, GC-MS, 

and Thermogravimetric analysis, and both projects have potential for further research. 
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