
(a) (b)

Figure 6.17: (a) The known RapidScat one-way antenna pattern for the horizontally polarized
(H-pol) inner beam (regular units). (b) Contour plot of the H-pol one-way antenna pattern (dB).

(a) (b)

Figure 6.18: (a) The derived RapidScat one-way antenna pattern for the horizontally polarized
(H-pol) inner beam (regular units). (b) Contour plot of the H-pol one-way antenna pattern (dB).
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(a) (b)

Figure 6.19: (a) The known RapidScat one-way antenna pattern for vertically polarized (V-pol)
inner beam (regular units). (b) Contour plot of the V-pol one-way antenna pattern (dB).

(a) (b)

Figure 6.20: (a) The derived RapidScat one-way antenna pattern for vertically polarized (V-pol)
inner beam (regular units). (b) Contour plot of the V-pol one-way antenna pattern (dB).
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(a) (b)

Figure 6.21: (a) The difference between the known and derived one-way antenna patterns for the
inner beam (regular units). (b) The difference between the known and derived one-way antenna
patterns for the outer beam (regular units).

6.3 Summary

This chapter presents the various results attained from performing the SRF estimation tech-

niques described in Chapter 3, the pointing validation techniques discussed in Chapter 4, and the

one-way antenna pattern derivation developed in Chapter 5 on real data. The estimated SRF using

real data is shown to be offset in azimuth by 0.263◦ for the inner beam and 0.244◦ for the outer

beam. By applying the bias correction presented in simulation in Chapter 4, the SRF is properly

centered and the dimensions of the -3 dB and -6 dB contours are minimally affected. The estimated

SRF also has beam contour dimensions similar to the predicted SRF and the RMSE of the estimate

compared to the predicted is 0.042 for the inner beam and 0.053 for the outer beam. Using the

Taylor series approach to deriving the one-way antenna pattern yields a pattern which has a wider

main lobe than the SRF but which yields the appropriate SRF when multiplied with a shifted ver-

sion of itself. The SRF recovered from the derived one-way antenna pattern has an RMSE of 0.012

for both the inner and outer beams. Though this error is very small, the RMSE of the one-way

patterns compared to the true RapidScat antenna patterns are 0.143 and 0.133 for the inner and

outer beams respectively. The error in the one-way pattern derivation is probably great enough to

disqualify the derived pattern as calibration truth.
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CHAPTER 7. CONCLUSION

This thesis explores the estimation of the RapidScat SRF using an island target in an angle-

based coordinate system. The angle-based method is an improvement on the previously developed

ground-based method developed by Joshua Bradley [19]. This thesis verifies the SRF estimation

process through simulation. An artificial azimuth bias is simulated to observe the behavior of

the resulting SRF estimate. That bias is corrected by adding an azimuth offset to the boresight

azimuth for every measurement. When the angle-based SRF estimation is performed on actual

data, the estimated RapidScat SRF shows that there exists an azimuth bias in both the inner and

outer beams. This bias is estimated and corrected to yield a better SRF estimate. This bias can also

be used to correct the RapidScat antenna pointing and measurement locations in ground processing.

The azimuth bias found by estimating the SRF is assumed to be pervasive in the RapidScat

data set. This means that the ((lat,lon), σ◦) pair for all of the RapidScat measurements is slightly

off. This could be corrected by recomputing the true locations of every RapidScat measurement

after correcting the azimuth angle of the measurement.

This thesis also derives the one-way antenna pattern from the estimated SRF using a Taylor

series expansion. The resulting one-way pattern successfully recovers the estimated SRF, but is

significantly different compared to the true one-way pattern. The method of deriving the one-way

pattern from the SRF requires knowledge of the slant range. This is problematic for RapidScat

because of the highly variable measurement geometry associated with the ISS.

7.1 Contributions

This thesis makes the following contributions to the field of scatterometry:

• An alternate method for estimating the SRF of a pencil-beam scatterometer that is more

robust to changes in platform altitude and attitude.
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The angle-based method for estimating the SRF developed in this thesis does not assume

stable platform geometry. This allows the SRF to be estimated despite large variations in

altitude and attitude when platforms like the ISS are used. The differences in the angle-

based method and the previously developed ground-based method are discussed in Chapter

3 and results are shown in Chapter 6.

• A demonstration of how the antenna pointing of a pencil-beam scatterometer can be validated

using an estimate of the SRF.

In this thesis, the SRF is estimated for the purpose of estimating pointing biases. Pointing

biases are estimated by the amount the estimated SRF is offset within an azimuth/elevation

coordinate grid. Pointing biases are corrected by adding a bias-correction term (equal to the

bias) to the biased angle for each measurement. This procedure is verified in simulation in

Chapter 4 and results using actual data are shown in Chapter 6.

• A method of deriving the one-way antenna pattern for a pencil beam scatterometer from the

SRF.

The SRF, which is dominated by the two-way antenna pattern, can be modeled as the product

of two one-way antenna patterns which are shifted relative to each other. The shift is due to

the rotation of the antenna during ToF. The one-way antenna pattern can be derived using a

Taylor series expansion with the shift in the patterns estimated from the nominal slant range.

This process is shown using simulated data in Chapter 5 and the results using actual data are

shown in Chapter 6.

7.2 Future Work

There are several areas in which the work of this thesis can be extended. This section

describes those areas and suggests some work that can be done.

• Estimate the azimuth bias for various date ranges to analyze any potential time-varying bias.

If there are varying biases for different date ranges, there may be some other factor influenc-

ing the pointing which was not considered previously. A time-varying bias would indicate

that a different correction factor would need to be used for the several date ranges. The size
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of date range used to estimate a bias would have to be large enough to still collect a lot of

data for the SRF estimation process. Thus, one could shrink the date range used in this thesis

and estimate the SRF and compare the estimated biases. The date range could be tightened

until the estimated SRF doesn’t resemble a smooth function.

• Explore the implications of an azimuth bias on the geophysical model function and wind/rain

estimation models.

The geophysical model function (GMF) is used to estimate surface qualities based on scat-

terometer measurements. Wind speed and direction and rainfall are very common parameters

that are estimated by the remote sensing community. The implications of an antenna point-

ing bias include the mislocation of radar measurements and error in measurement azimuth

angles, both of which play a role in the GMF. So, experiments can be conducted where the

pointing bias is used to update the geometry and location of a set of measurements. These

updated measurements can be used to estimate wind speeds, for example, using the current

GMF and then the wind speeds can be compared to original estimates. This comparison

can be performed for multiple parameters to analyze the overall affect of pointing biases on

geophysical estimates.

• Explore the effect that the varying slant range has across the footprint in the one-way antenna

pattern derivation.

Appendix B justifies the approximation that slant range is constant over the two-way antenna

pattern, but this is still an approximation. The one-way antenna pattern derivation can be

extended by including the varying slant range in the elevation direction. This would make

the shift in the two one-way patterns a function of elevation angle and potentially improve

the accuracy of the estimated gain patterns.

• Measure the sensitivity of the SRF estimate RMSE to the method by which the island σ◦ is

unbiased from the ocean σ◦.

In this thesis, the contribution of ocean σ◦ on measurements including land is estimated

using a quadratic fit. There are other ways of estimating this contribution including perhaps

a cubic or fourth-order polynomial fit. The quadratic fit performed well for the purposes
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of this thesis, but the RMSE of the estimated SRF may be improved by attempting other

kinds of estimation. There may also be methods employed by near-coastal wind retrieval

algorithms that would improve the SRF estimation process.

• Extend the angle-based SRF estimation algorithm to estimate the slice SRFs and analyze the

influence of a pointing bias on individual slices.

This thesis only considered full-footprint ”egg” σ◦ measurements. However, the footprint

(two-way antenna pattern) can be broken up into slices using range and doppler processing

techniques. This allows the resolution of radar data to be made more fine and enhances the

resolution of reconstructed images. Each slice has its own SRF. An antenna pointing bias

may have some implications as far the creation of slices, though a bias in azimuth should

not be as influential as a bias in elevation. Further research can be conducted to evaluate the

slice SRF.
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APPENDIX A. SELECTING THE NUMBER OF SINGULAR VALUES IN RANK-REDUCED
ESTIMATION

In Chapter 2, the mathematical framework for estimating the SRF is developed using sin-

gular value decomposition (SVD). After decomposing the Q matrix [see Eq. (2.10)], the rank of Q

is reduced to produce, Q̃, [see Eq. (2.11)]. The rank is reduced by choosing the number of singular

values to include, i.e., the rank of Σ1, and setting all other singular values to zero. This appendix

explores the reasoning used to decide how many singular values to retain in the SRF estimation

process. While a single set of simulated data for the SRF is used in this analysis, the discussion in

this appendix applies to all sets of data used in this thesis for estimating the SRF.

In general, the singular values are ordered down the diagonal of Σ in decreasing order:

Σ =


σ1 0

σ2
. . .

0 σM

 with σ1 ≥ σ2 ≥ . . .≥ σM, (A.1)

where M is the rank of Σ, and σM is the singular value corresponding to the M-th singular vector.

The relationship between the magnitude of each singular value of the SRF and its placement in

the diagonal of Σ is seen in Fig. (A.1). The elbow in Fig. (A.1) indicates the point at which the

singular vectors start to represent more noise than signal. This trend is general for many SVD

problems but Fig. (A.1) is specific for the simulated SRF data used in this appendix. The principle

components of Q, which are associated with the signal power, are the first several singular vectors

which correspond to the largest singular values. The noise is represented by the small singular

values making up Σ2 in Eq. (2.10) which are the values after the elbow in Fig. (A.1).
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Figure A.1: A plot of the magnitude of each singular value of Q. The magnitude decreases with
each succeeding singular value as in Eq. (A.1).

With the number of singular values included in the SRF estimate, there is a trade-off in

noise and higher order detail. For example, the first four singular vectors represent the four most

important signal components in the SRF and are reshaped into matrices and plotted in Fig. (A.2).

As a general trend, more lobes appear in higher order singular vectors. These smaller lobes can

represent noise or high frequency information for the SRF. So, while including more singular

values yields greater detail in the SRF, they also include more noise.

For the purposes of this thesis, the center of the SRF, which is not greatly influenced by

including more singular vectors, is more important than higher order details. Thus, an appropri-

ately conservative choice for the number of singular values to use is near the elbow; this is the

primary heuristic for determining how many singular values to include in the SRF estimate. The

elbow is located at roughly 20-30 singular values for the experiments conducted in this thesis. SRF

estimates using 15-30 singular values are subjectively chosen as candidate best estimates because

they typically bracket the elbow. Fig. (A.3) shows the estimated SRF using 15, 20, 25, and 30

singular values. Visually, these are all very similar so a secondary heuristic must be used to decide

the best number of singular values to retain.
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(a) (b)

(c) (d)

Figure A.2: Reshaped singular vectors: (a) First. (b) Second. (c) Third. (d) Fourth.

The secondary heuristic is the number of singular values where the corresponding SRF

estimate has the fewest negative pixels. This is appropriate in the case of estimating the SRF

because it does not make physical sense to have a negative value in a SRF. The final choice for

the number of singular values to include in the SRF estimate for the data used in this appendix is

26 because the SRF using 26 singular values has fewer negative pixels than the other numbers of

singular values between 15-30. By retaining the first 26 singular values the succeeding ∼ 2000

singular values are set to zero to reduce the noise in the estimate.
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(a) (b)

(c) (d)

Figure A.3: Estimates of the SRF using simulated data for the inner beam for various numbers of
singular values (in regular units). (a) 15 singular values. (b) 20 singular values. (c) 25 singular
values. (d) 30 singular values.
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APPENDIX B. SLANT RANGE DEPENDENCE OF THE SRF

For any given measurement, the slant range from the radar to the surface varies over the

illuminated two-way antenna pattern. The expression given by Eq. (1.7) shows that the SRF,

which is defined over ~ν , is a function of the gain G and the slant range r. Both G and r are

functions of ~ν which includes the observation geometry for r. Since the geometry is different for

every measurement, the SRF is unique for every measurement. This makes the estimation process

described in Chapter 2 cumbersome and impractical. To enable the use of a nominal SRF rather

than a unique SRF for every measurement, the dependence of r on~ν can be removed.

This appendix presents a reasonable approximation for the slant range. The approximation

is verified with parameters from RapidScat.

B.1 Approximation of Slant Range

Consider defining the slant range at each point within the footprint as

r = r0 +∆r, (B.1)

= r0

(
1+

∆r
r0

)
, (B.2)

where r0 is the nominal slant range to the center of the footprint on the ground and ∆r is the

difference between r0 and the slant range to any other point within the footprint. Since r0 is much

greater than ∆r the ratio ∆r/r0 is very small and r ≈ r0. An illustration of the way slant range

varies over the footprint is shown in Fig. (B.1).

B.2 The Case of RapidScat

In order to verify this slant range approximation for RapidScat, the parameters contained

in Fig. (1.1) can be used to calculate the approximate variations in slant range. Only the variations
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Figure B.1: An illustration of the slant range for a pencil-beam scatterometer. β is the elevation
beam width angle and θ is the incidence angle. ro is the nominal slant range and rmin and rmax are
the minimum and maximum slant range across the elevation dimension, respectively.

in slant range in the elevation dimension of the beam are significant because the slant range across

the azimuth dimension is almost constant. Using the law of cosines, the maximum slant range and

the minimum slant range in the elevation dimension can be computed. The computed values are

found in the table below. The maximum error in σ◦ resulting from the approximation r = r0 is

6.12%.

Table B.1: RapidScat Slant Range Variations

Nominal Slant Range (r0) 600 km
Max. Slant Range 609.54 km
Min. Slant Range 590.57 km

Max. ∆r 9.54 km
Ratio ∆r

r0
0.0159

Nominal r4 1.2960×1011 km4

Max. r4 1.3804×1011 km4

Max. Percent Error in assuming r = r0 6.12%

The values in the table above show that it is a reasonable approximation to ignore the

variations in slant range over the coordinate system~ν in the case of RapidScat.
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