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ABSTRACT 

Improving Post-Wildfire Seeding Success using Germination Modeling 
and Seed Enhancement Technologies 

William Charles Richardson 
Department of Plant and Wildlife Sciences, BYU 

Master of Science 

Arid and semi-arid rangelands are important ecosystems that are consistently degraded 
through disturbances such as wildfires. After such disturbances, the invasion and dominance of 
annual grasses, like cheatgrass (Bromus tectorum L.), can lead to an overall loss of ecosystem 
productivity and an increase in fire frequency. To reduce weed dominance, native and introduced 
perennials species are typically be seeded in the fall. High mortality is seen from these seeded 
plant communities due to germinated seed being exposed to freezing, drought, fungal pathogens, 
and other biotic and abiotic stressors during winter months. We utilized wet-thermal 
accumulation models to first further validate the theory that germination from seeded plant 
populations occurs during periods of high environmental stress, and then to establish the 
practicality of abscisic acid seed coatings as a technology that could circumvent winter 
germination and mortality. In Chapter 1, we developed an excel workbook called Auto-Germ 
using Visual Basic for Applications, which allows users to estimate field germination timing 
based on wet-thermal accumulation models and field data. We then used Auto-Germ to model 
seed germination timing for 10 different species, across 6 years, and 10 Artemisia-steppe sites in 
the Great Basin of North America. We estimated that for the majority of the species analyzed, a 
mid to late-winter planting was required on average for the majority of the population to 
germinate in the spring. This planting time would be logistically difficult for many land 
managers, due to freezing and/or saturated soil conditions. In Chapter 2, we utilized wet-thermal 
accumulation models to evaluate the use of abscisic acid (ABA) to delay germination of 
Pseudoroegneria spicata (Pursh) Á. Löve (perennial native bunchgrass) across 4 years and 6 
Artemisia-steppe sites. Germination models estimated that ABA seed treatments typically would 
delay germination of fall sown seed to late winter or early spring when conditions may be more 
favorable for plant establishment. Based on these results, we recommend both the use of wet-
thermal accumulation models as a tool in educating researchers and land managers in knowing 
when seeding practices should occur, and the further study of ABA seed coatings as a technology 
that may improve plant establishment of fall sown seeds. 

Keywords: germination rate, restoration, seeding, thermal time, wet-thermal accumulation 
model, seed enhancement technology, abscisic acid 
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CHAPTER 1 

Use of Auto-Germ to model germination timing in the Sagebrush-steppe 

William Charles Richardson, Dallin R. Whitaker, Kyler P. Sant, Bruce A. Roundy,  
Zackary T. Aanderud, Matthew D. Madsen  

Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah 

ABSTRACT 

Germination timing has a strong influence on direct seeding efforts, and therefore is a 

closely tracked demographic stage in a wide variety of wildland and agricultural settings. 

Predictive seed germination models, based on soil moisture and temperature data in the seed 

zone are an efficient method of estimating germination timing. We utilized Visual Basic for 

Applications (VBA) to create Auto-Germ, which is an Excel workbook that allows a user to 

estimate field germination timing based on wet-thermal accumulation models and field 

temperature and soil moisture data. To demonstrate the capabilities of Auto-Germ, we calculated 

various germination indices and modeled germination timing for 11 different species, across 6 

years, and 10 Artemisia-steppe sites in the Great Basin of North America to identify the planting 

date required for 50% or more of the simulated population to germinate in spring (1 March or 

later), which is when conditions are predicted to be more conducive for plant establishment. Both 

between and within the species, germination models indicated that there was high temporal and 

spatial variability in the planting date required for spring germination to occur. However, some 

general trends were identified, with species falling roughly into three categories, where seeds 

could be planted on average in either fall (Artemisia tridentata ssp. wyomingensis and Leymus 

cinereus), early winter (Festuca idahoensis, Poa secunda, Elymus lanceolatus, Elymus 

elymoides, and Linum lewisii), or mid-winter (Achillea millefolium, Elymus wawawaiensis , and 
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Pseudoroegneria spicata) and still not run the risk of germination during winter. These 

predictions made through Auto-Germ demonstrate that fall may not be an optimal time period for 

sowing seeds for most non-dormant species if the desired goal is to have seeds germinate in 

spring. 

INTRODUCTION 

Seed germination timing strongly impacts the success of direct seeding efforts in 

wildland systems by influencing exposure to pathogens, nutrients and soil moisture, temperature, 

light, herbivory, and other biotic and abiotic factors (Gornish et al. 2015; James & Carrick 

2016).  For these reasons, several studies have tracked germination timing in the field to better 

understand and improve seeding outcomes (Gerrit 1991; Abbott & Roundy 2003; James, Rinella 

& Svejcar 2012; Boyd & James 2013). However, tracking seed germination timing in the field 

can be challenging, resource intensive, and time-consuming. Additionally, knowledge gained 

from short-term field germination studies is often lacking due to high annual variability in 

weather conditions at the time of the experiment (Hardegree et al. 2016a). Subsequently, to gain 

general inferences from germination studies, labor intensive studies need to be repeated for 

multiple years.  

Researchers have turned to predictive germination models for a more efficient method of 

estimating germination timing (Hardegree & Van Vactor 1999; Bradford 2002a; Allen et al. 

2007; Hardegree et al. 2017). In recent years, models have been developed that assume there are 

naturally occurring processes within the seeds themselves already in place to regulate 

germination timing (Finch-Savage & Leubner-Metzger 2006a). It has been shown that the 

majority of these processes are a function of temperature and moisture (Bradford 1990; Allen, 

Debaene-Gill & Meyer 1992; Hardegree et al. 1999; Hardegree et al. 2008).  
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Progress towards germination can be predicted through a wet-thermal accumulation 

model where soil moisture must exceed a base water potential (Ψ𝑏𝑏) for germination to occur. 

(Finch-Savage, Steckel & Phelps 1998; Roundy et al. 2007; Rawlins 2009; Rawlins et al. 2012) 

The base water potential used is derived through laboratory experimentation (Roundy et al. 

2007). Though there are many factors that influence the rate of seed germination and number of 

germinable seeds, adjusting Ψ𝑏𝑏 is expected to correct for impacts from environmental conditions, 

after-ripening and seasonal changes in dormancy cycling (Bradford 2002b). Subsequently, once 

Ψ𝑏𝑏 is determined, seed germination timing and number of germinable seeds may be accurately 

predicted from soil temperature. Field trials have validated wet-thermal accumulation models 

(Rawlins et al. 2012a; Rawlins et al. 2012b), and confirmed their utility in predicting seed 

germination in a number of settings, with a wide variety of species (Hardegree et al. 2016b; 

Cline, Roundy & Christensen 2017a; Cline, Roundy & Christensen 2017b). Despite the 

simplicity of wet-thermal accumulation models, a relatively large amount of data and processing 

is required to develop the models and estimate seed germination timing in the field. 

To overcome the logistical challenges associated with predicting seed germination 

timing, we created a programmed workbook called “Auto-Germ” that allows users to efficiently 

process seed germination data and predict seed germination timing in the field. Our workbook 

utilizes Visual Basic for Applications (VBA) in Microsoft Excel (Microsoft Corporation, 

Redmond, Washington, USA) to create wet-thermal accumulation models as well as calculate 

various other germination indices from laboratory constant temperature trials. Auto-Germ also 

provides users with an interface to apply the wet-thermal accumulation models to estimate 

germination timing in the field from historic soil moisture and temperature data sets.  

Auto-Germ’s predictive germination modeling capabilities has the potential to educate 

practitioners in knowing how their planting dates may influence germination timing and 



4 

subsequently the growing conditions that impact seedling establishment. The Artemisia spp. 

(sagebrush)-steppe ecosystem in the Great Basin region of the western United States is an 

example of an imperiled ecosystem that would benefit from improved restoration practices 

(Suring, Rowland & Wisdom 2005; Hardegree et al. 2016a). In this region, seeding is used to 

reclaim degraded sites that have been impacted by wildlfires, invasive species, and various 

human disturbances (Noss 1995; Knick et al. 2011; Davies et al. 2014). In the Artemisia-steppe, 

seeding typically occurs in autumn, with the expectation that seeds will remain dormant in the 

soil and then germinate in the spring (Richards, Chambers & Ross 1998; Crawford et al. 2004; 

Madsen et al. 2016). However, planting too early in the year can result in seeds germinating 

prior to winter and then experiencing high mortality over the winter period (James & Svejcar 

2010). Winter mortality may occur as a result of freezing conditions (James, Svejcar & Rinella 

2011; Boyd & Lemos 2013). Roundy and Madsen (2016) determined that across 14 sagebrush 

steppe sites there was an average of 58 freeze-thaw periods for the upper 1-3 cm of soil between 

October and March. Seedbed freezing conditions have been shown to alter the physiological 

responses of big sagebrush (Artemisia tridentata Nutt. (Asteraceae)) in the Great Basin (Loik & 

Redar 2003), and has the potential to further inhibit plant survival of perennial grasses such as 

bluebunch wheatgrass (Pseudoroegneria spicata [Pursh] A. Love) (Boyd & Lemos 2013). 

Mortality may also occur to seedlings over the winter period as a result of drought, pathogens, 

and expenditure of seed carbohydrate resources (James et al., 2011; Madsen et al., 2016). 

Subsequently, in this region understanding the seeding date required to prevent premature 

germination and subsequent winter mortality is paramount to improve the effectiveness of 

restoration projects. 

Our objectives were to provide instructions on how to use Auto-Germ and demonstrate 

the utility of the program through a case study that 1) calculated various germination indices 
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under different constant temperatures on 10 different species commonly used for restoration 

projects in the Great Basin, and 2) for these same species modeled seed germination timing 

across 6 years and 10 Artemisia-steppe sites to estimate the planting date required for 50% or 

more of the simulated population of seeds to germinate in spring (March 1st or later) when 

conditions are predicted to be more conducive for plant establishment. 

METHODS AND MATERIALS 

Instructions for Operating Auto-Germ  

There are four main steps for processing data in Auto-Germ, which include: 1) entering 

laboratory data, 2) wet-thermal model creation, 3) entering field data, and 4) model application. 

Each step is initiated by clicking a button in Auto-Germ on the Home worksheet (note macros 

and content must be enabled to use Auto-Germ). Auto-Germ provides instructions on the Home 

worksheet for each step (Fig. 3-1-APPENDIX 1). 

Step 1 – Germination Count Data Input 

The first step is to input germination counting data from constant-temperature laboratory 

trials into the Data Entry worksheet (Figure 3-2-APPENDIX 1), which is accessed by clicking 

the Data Entry button. To input new data, click the Start Over button on the Data Entry 

worksheet. In Auto-Germ, the data organization must match the sheet setup, where column A is 

temperature in Celsius, column B is replicate (or block), column C is plot ID, column D is 

treatment, column E is the number of seeds planted per sample, and everything from column F to 

the right is measurement dates and their respective germination counts. The planting date is 

entered into cell B8. The workbook processes up to 100 germination date entries and 1,000 

samples. Under each measurement date, enter the number of seeds that germinated between the 
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last counting time and the current one. Do not enter cumulative germination counting data on this 

sheet. Entries in the in the columns labeled as rep/block and plot ID are optional. If the user does 

not want to produce wet-thermal accumulation models, germination metrics will be calculated 

through Auto-Germ without temperature data.  Auto-Germ will not operate if empty cells are 

included under the columns labeled as temperature, treatment, seeds planted, planting date and 

the germination measurement columns. The treatment column can be used to signify a number of 

different variables. For example, if seed treatments are being analyzed the type of seed treatment 

would be placed in this column. If species were being compared the treatment column would 

contain the name of the species.  

 

Step 2 – Wet-thermal Model Creation 

Once the data is entered, return to the Home worksheet and click the Make a Model 

button, and enter in the pop up-window the lower and upper germination percentage and interval 

size to model. The workbook can model any range of germination percentages from 1 - 99%. 

The four new worksheets created are called Germination Metrics, Data Averages, Standard 

Error, and Polynomial Equations. Once the calculations are completed, a pop up window notifies 

that the data is ready to be viewed. Click the View Data button under the Workbook Options 

heading to view the worksheets in a new workbook that can be saved, or click the worksheet tabs 

on the bottom of the screen. The Germination Metrics sheet displays the whole data set sorted by 

treatment, temperature, and calculated germination metrics. The calculated metrics for each 

sample include the number of seeds that germinated, final germination percentage, mean 

germination time, coefficient of variation of the germination time, mean germination rate, 

uncertainty of germination, synchrony of germination, and time to reach each percent 

germination (Ranal et al. 2009).  
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Mean germination time is calculated as: 

(eqn 1) 

𝑡𝑡 =
∑ 𝑛𝑛𝑖𝑖𝑡𝑡𝑖𝑖𝑘𝑘
𝑖𝑖=1

∑ 𝑛𝑛𝑖𝑖𝑘𝑘
𝑖𝑖=1

 

where: 

𝑡𝑡 = mean germination time  

𝑡𝑡𝑖𝑖 = time from the start of the experiment to the 𝑖𝑖𝑡𝑡ℎ observation 

𝑛𝑛𝑖𝑖 = number of seeds germinated in the 𝑖𝑖𝑡𝑡ℎ time 

𝑘𝑘 = last time of germination 

The coefficient of variation is calculated as follows: 

(eqn 2) 

𝐶𝐶𝑉𝑉𝑡𝑡 =
𝑠𝑠𝑡𝑡
𝑡𝑡
∗ 100 

where: 

𝐶𝐶𝐶𝐶𝑡𝑡 = coefficient of variation of the germination time𝑠𝑠𝑡𝑡 = standard deviation of the 

germination time 

𝑡𝑡 = mean germination time 

The mean germination rate is calculated by taking the inverse of the mean germination 

time. 

The uncertainty of germination is calculated as: 

(eqn 3) 

𝑈𝑈 = −�𝑓𝑓𝑖𝑖

𝑘𝑘

𝑖𝑖=1

∗ 𝑙𝑙𝑙𝑙𝑙𝑙2𝑓𝑓𝑖𝑖 

where: 
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𝑈𝑈 = Uncertainty of the germination process 

𝑓𝑓𝑖𝑖 =
𝑛𝑛𝑖𝑖

∑ 𝑛𝑛𝑖𝑖𝑘𝑘
𝑖𝑖=1

𝑛𝑛𝑖𝑖 = number of seeds germinated on the 𝑖𝑖𝑡𝑡ℎ time 

𝑘𝑘 = last time of observation 

The synchrony of germination was calculated as follows: 

(eqn 4) 

𝑍𝑍 =
∑ 𝐶𝐶𝑛𝑛𝑖𝑖,2
𝑘𝑘
𝑖𝑖=1

𝐶𝐶∑𝑛𝑛𝑖𝑖,2
 

where: 

𝑍𝑍 = synchrony of germination 

𝐶𝐶𝑛𝑛𝑖𝑖,2 =
𝑛𝑛𝑖𝑖(𝑛𝑛𝑖𝑖 − 1)

2

𝐶𝐶𝑛𝑛𝑖𝑖,2 = combination of the seeds germinated in the 𝑖𝑖𝑡𝑡ℎ time, two by two 

𝑛𝑛𝑖𝑖 = number of seeds germinated on the 𝑖𝑖𝑡𝑡ℎ time 

The time to reach each percent germination was calculated as follows: 

(eqn 5) 

T𝑁𝑁 = ��
𝑡𝑡𝑎𝑎  − 𝑡𝑡𝑏𝑏
𝑛𝑛𝑎𝑎 − 𝑛𝑛𝑏𝑏

� (𝑁𝑁 − 𝑛𝑛𝑏𝑏)� + 𝑡𝑡𝑏𝑏 

where: 

T𝑁𝑁 = time (days) to subpopulation germination 

ta  = incubation day when subpopulation germination was reached 

tb  = incubation day before subpopulation germination was reached 

na = number of germinated seeds on day that subpopulation germination was reached 

nb  = number of germinated seeds on day before subpopulation germination was reached 
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N    = number of germinated seeds equal to the percentage of the total subpopulation of interest 

  The Data Averages worksheet displays the same metrics for the average of each 

treatment and temperature combination. The Standard Error worksheet displays the standard 

error for each calculation on the Data Averages worksheet. The Polynomial Equations worksheet 

contains second-order polynomial equations with their associated coefficient values (A, B and 

C), the R2 value for each germination percentage of each treatment, and the corresponding 

graphs depicting germination rate as a function of temperature (Figure 3-3-APPENDIX 1). To 

create new polynomial equations for different times to set germination percentages using the 

same data set, the newly created sheets either need to be exported or deleted.  

 

Step 3 – Field Data Input 

To estimate seed germination timing in the field from your polynomial equations, the 

user needs to create worksheets containing their field soil temperature and water potential data. 

Click the See Sample Data button on the Home worksheet to see how field data worksheets 

should be formatted. Create separate worksheets for separate sites and planting years. The format 

of the data must match the example data in the worksheet, where column A is the measurement 

date and time, column B is temperature, and column C is water potential. The user must input 

their own field data worksheets to apply the model. The field data worksheets must be located in-

between the Home and Data Entry worksheets. If there are any other worksheets besides field 

data in this location, the program will not operate correctly.  

 

Step 4 – Field Germination Predictions 

At this point, two options are available for the user to choose from. The first option is to 

predict the time to reach the previously specified germination percentages based on a planting 
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date. The second option is to predict the dates a certain germination percentage is reached based 

on a range of planting dates. Before clicking either button, make sure that steps 1 - 3 are 

complete and that the Polynomial Equations worksheet is located in the workbook somewhere 

after the Data Entry worksheet. If Polynomial Equations are missing or has a changed name, 

Auto-Germ will not operate. 

To predict the times to reach the previously specified germination percentages, click the 

Choose Planting Date button on the Home worksheet. Enter the planting date to model for in the 

pop-up window. The minimum water potential threshold can be changed from the default value 

of -1.5 MPa, based on the species being evaluated. The new worksheet created is named Planting 

Date (Figure 3-4-APPENDIX 1). The tables on the left of Planting Date show the predicted dates 

when the corresponding germination percentages will occur for each treatment according to each 

individual field data sheet. The graphs of the tables are located on the right. 

To predict the dates a certain germination percentage is reached, click the Choose 

Germination Percentage button on the Home worksheet. Enter the percent germination and the 

range of planting dates to model in the pop up window. The minimum water potential threshold 

can also be changed from the default value of -1.5 MPa. The new sheet is named % Germination 

(Figure 3-5-APPENDIX 1). The tables on the left of % Germination show the predicted time to 

reach the specified percent germination, given the specified range of planting dates. Each table 

corresponds to a field data sheet. The graphs of the tables are located on the right.  

 

Workbook Options 

 Workbook Options is the last heading on the Home sheet. The View Data button will 

create a new workbook that contains all of the data generated from steps 2 and 4, but will not 

remove any new worksheets. The new workbook containing generated data may be saved. The 
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Export Data button will export the data that was generated in steps 2 and 4 to another workbook 

that can be saved, and data will be removed from Auto-Germ. The Start Over button will 

completely reset Auto-Germ and delete all the data generated, but will not affect worksheets 

located before Data Entry. 

Case Study 

Laboratory Methods 

We developed wet-thermal-time models for 10 seedlots of species commonly used in 

restoration projects in the Great Basin. We included eight perennial grasses; bluebunch 

wheatgrass, Great Basin wildrye (Leymus cinereus (Scribn. & Merr.) Á. Löve), Idaho fescue 

(Festuca idahoensis Elmer ssp. idahoensis), Sandberg bluegrass (Poa secunda J. Presl), Snake 

River wheatgrass (Elymus wawawaiensis J. Carlson & Barkworth), thickspike wheatgrass 

(Elymus lanceolatus (Scribn. & J.G. Sm.) Gould), and bottlebrush squirreltail (Elymus 

elymoides (Raf.) Swezey), two forb species; Lewis flax (Linum lewisii Pursh) and western 

yarrow (Achillea millefolium L. var. occidentalis DC.), and one shrub species; Wyoming big 

sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle & Young). Seed was purchased 

from certified lots at Granite Seed (Lehi, UT, USA). A range of constant temperatures was used 

to germinate the seeds (5, 10, 15, 20, and 25 °C). The study was setup using a randomized block 

split-plot design, with temperature comprising the split plot. Seven repetitions were used for each 

species, at every temperature. In each repetition, 25 seeds were placed in a 9 cm diameter petri 

dish that contained a single layer of blotter paper. Five ml of water was initially added to each 

petri and additional water was added as petri dishes dried throughout the study. Petri-dishes were 

closed in plastic bags by block to prevent the loss of water. Germinated seeds were counted 

every 1-3 days, for 60 days. Seeds that had germinated were counted, recorded, and removed 
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from the petri dishes. Germination count data was then processed in Auto-Germ to develop wet-

thermal accumulation models for each species. 

Auto-Germ was used to calculate final germination percentage, T50, synchrony, and mean 

germination time. A mixed model analysis was used to first determine the significance (p<0.05) 

of species, incubation temperature, and their interactions (unless determined to not be 

significant) for the four indices. In the model, blocks were considered random, while incubation 

temperature and species were both considered fixed. We tested for differences in responses to 

species at the incubation temperatures of 5, 10, 15, 20, and 25 °C using a Tukey pairwise 

comparison test (P<0.05). Final germination was squared and the log of T50, synchrony, and 

mean germination time was taken to normalize the data. 

 

Field Germination Predictions 

Wet-thermal accumulation models for each species was applied to historical soil 

temperature and water potential data from the Sagebrush Step Treatment and Evaluation Project 

(SageSTEP) (Cline 2014) to determine how planting date influenced germination timing. We 

selected from the SageSTEP network ten different sites to model seed germination timing that 

were within Artemisia-steppe and Pinus spp.- Juniperus spp.(pinyon-juniper) woodland 

communities that had been treated with prescribed burns (Moses Coulee, WA, Saddle Mountain, 

WA, Bridge Creek, OR, Hart Mountain, OR, Marking Corral, NV, Owyhee, NV, Blue Mountain, 

CA, Greenville Bench, UT, Onaqui, UT, and Stansbury, UT) (McIver & Brunson 2014). At each 

of these sites, hourly measurements were made at approximately 1-3 cm below the soil surface to 

estimate soil temperature using thermocouples and soil water potential using gypsum blocks 

(Delmhorst Inc., Towaco, NJ, USA). 
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At each of the field sites we evaluated seed germination timing for each of the 10 seedlots 

using the second option in Step 4 on the Home worksheet, which predicts the dates a certain 

germination percentage is reached based on a range of planting dates. Simulations were ran on 6 

different years with daily planting dates between September 1st and March 1st. For each 

simulated planting date, we analyzed for the date a simulated population of seed would reach 

50% germination.  A base water potential threshold of -1.5 MPa was used in the simulations 

based off of research by (Rawlins et al. 2012; Rawlins et al. 2012b).  

We used the planting date required for 50% or more of the simulated population of seeds 

to germination in spring (i.e. 1 March or later) as the metric to compare between species. This 

metric was chosen because it is estimated to be the planting date required for land managers to 

circumvent the limiting biotic and abiotic factors causing mortality to seedlings during the 

winter. We used mixed model analysis to first determine the significance (α = 0.05) of species, 

site, and year for germination date (all fixed variables). We then tested for differences in 

responses to species, site, and year using a Tukey pairwise comparison test (P = 0.05). 

RESULTS 

Germination Indices 

Mixed model analysis showed that incubation temperature, species, and the interaction 

between these two factors affected final germination percentage (F = 10.5, P < 0.001; F = 23.6, P 

< 0.001; F = 2.9, P < 0.001), synchrony (F = 49.0, P < 0.001; F = 52.6, P < 0.001; F = 5.9, P < 

0.001), T50 (F = 1240.9, P < 0.001; F = 143.4, P < 0.001; F = 25.6, P < 0.001), and mean 

germination time (F = 726.8, P < 0.001; F = 116.1, P < 0.001; F = 18.8, P < 0.001), respectively. 

As would be expected for cool season species in the Great Basin, germination was highest in 
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general around 15 ℃ and typically declined under the lowest (5℃) and highest (25℃) 

temperatures.  The degree that germination percentage changed by temperature was variable for 

each species, with some species showing a limited change in germination with temperature 

(thickspike wheatgrass, bluebunch wheatgrass, Idaho fescue, and Sandberg bluegrass), while 

other species were more variable (western yarrow, Snakeriver wheatgrass, Lewis flax, 

bottlebrush squirreltail, Great Basin wildrye, and Wyoming big sagebrush; Figure 1-1). 

Subsequently, it was at the highest and lowest temperatures tested were there was the greatest 

range in germination between species. For example, at 25 ℃, thickspike wheatgrass had the 

highest final germination percentage (96%) and Lewis flax had the lowest (34%). At 5 ℃, Idaho 

fescue had the highest final germination percentage (90%) while bottlebrush squirreltail had the 

lowest (57% ; Figure 1-1). 

 Synchrony values fluctuated greatly between temperatures for all species (Figure 1-1). 

There were five species that had synchrony values above 0.40 (thickspike wheatgrass, bluebunch 

wheatgrass, western yarrow, bottlebrush squirreltail, and Sandberg bluegrass). Both Great Basin 

wildrye and Wyoming big sagebrush had consistently the lowest values of synchrony (0.08 – 

0.18; Figure 1-1).  

 Both T50 and mean germination time followed similar patterns, where all species had the 

highest values at 5 ℃, and then decreased until 20 and 25 ℃ when many species had slight 

increases in the two variables (Figure 1-2). The greatest difference between consecutive 

temperatures for both T50 and mean germination time occurred with Wyoming big sagebrush 

between 5 and 10 ℃ (32 and 31 days). Out of all the species, Wyoming big sagebrush had the 

highest T50 and mean germination time at 5 ℃ (41 and 48 d, respectively), but then these values 

quickly decreased as temperature increased; by 25 ℃, this species produced one of the fastest 

germinating times (2 and 4 d, respectively). Great Basin wildrye had the second highest T50 and 
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mean germination times at 5 ℃ (22 and 25 days), but relative to the other species it maintained 

high values as temperature increased. Western yarrow was typically the fastest germinating 

species as shown by T50 and mean germination time values. However, at 10 ℃ western yarrow 

mean germination time was lower for bluebunch wheatgrass by 7 days and at 25 ℃, T50  was 

lower for Wyoming big sagebrush by 2 days (Figure 1-2). 

 

Field Predictions 

Wet thermal accumulation models appeared to have sufficient accuracy to predict 

germination time (adjusted R2 = 0.71– 0.98). Species (F = 23.2, P < 0.001), site (F = 146.4, P < 

0.001), and year (F = 79.3, P < 0.001) affected the planting date required to have 50% or more of 

the simulated population of the seeds germinate after 1 March.  The site that produced the 

earliest average planting date across all species was Marking Corral (28 October), while the site 

that produced the latest average planting date across all species was Bridge Creek (7 February; 

Figure 1-3). Seven of the sites had average planting dates in mid-fall to early-winter (September 

to November), while the other three sites had average planting dates much later in the season 

(January to February; Figure 1-3). All years had similar ranges, with 2011-2012 having the 

earliest average planting date (27 October), and 2014-2015 having the latest (6 January; Figure 

1-4). 

Analysis by individual species showed each species had average planting dates as early 

as September, and as late as February to have 50% or more of the simulated population of the 

seeds germinate after 1 March (Figure 1-5). While there was extreme variability across all 

species in the date required for the majority of seed to germinate by spring or later, certain 

species consistently required later planting dates than others. Western yarrow had the latest 
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average planting date (24 December), with the interquartile range of the data falling between 15 

November and 16 February. The only other two species that had average planting dates in 

December were Snakeriver wheatgrass (5 December) and bluebunch wheatgrass (4 December). 

These species, while having later average planting dates than all other species besides western 

yarrow, had some of the largest interquartile ranges (19 October-9 February and 20 October-7 

February respectively). Thickspike wheatgrass (28 November), Idaho fescue (21 November), 

Lewis flax (19 November), Sandberg bluegrass (18 November), and bottlebrush squirreltail (14 

November) all had average planting dates in November. Great Basin wildrye (29 October) and 

Wyoming big sagebrush (25 October) had the earliest average planting dates, with interquartile 

ranges that began in mid-September (14 September, 15 September), and ended as early as late 

November – early December (23 November, 6 December; Figure 1-5).  

DISCUSSION 

Our programmed Excel workbook enables researchers to quickly process large data sets 

to estimate field germination timing using a wet-thermal accumulation model in combination 

with field data. Auto-Germ is applicable to most germination data sets from non-dormant seed. 

Our program may provide both land managers and researchers with a better understanding of 

how seeds interact with unique soil temperature and moisture regimes. The germination indices 

calculated in the case study further demonstrated the importance of understanding this 

interaction. High variability was seen across all indices and temperatures, showing that 

individual species react uniquely to differences in soil temperature and moisture. Both with final 

germination percentage and synchrony, temperature greatly affected the values, demonstrating 

how different species may be better acclimated to particular environments. Similarly with T50 

and mean germination time, while a distinct relationship could be seen between the indices and 
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temperature across all species, certain species consistently maintained faster germination times 

than others. 

In the case study, the use of Auto-Germ allowed for germination predictions to be made 

for 11 species across 10 sites and 6 years. This breadth of study, allows for researchers to 

understand the germination patterns of species across large temporal and spatial spectrums 

without the investment of man power and resources required for multi-year field studies. Being 

able to quickly understand how species react to field temperature regimes can be extremely 

useful for areas such as the Great Basin, where there are high volumes of disturbed sites that 

require restoration.  

Wet-thermal accumulation models, while more simplistic than other hydrothermal 

models, have been shown to be useful tools in predicting seed germination. Hardegree et al. 

(2017) demonstrated that even though wet-thermal models can overestimate germination rates 

(more so than other hydrothermal models) when soil water potential is between 0 Mpa and the 

water potential threshold (for this study, -1.5 Mpa), these errors are minimized by the majority of 

field germination occurring between 0 and -0.2 Mpa. This smaller range diminishes the 

magnitude of overestimation, since a relatively small portion of time would be spent at water 

potentials where the models would have the highest degree of potential error (Hardegree et al. 

[IN REVIEW]). Rawlins et al. (2012) further validated wet-thermal models by accurately 

predicting whether or not germination of six seeded species would occur by mid-spring. Both 

authors noted that while wet-thermal models have the potential to be extremely useful in 

estimating germination timing, more research needs to be conducted to understand their 

limitations. For this reason, it should be noted that predictions developed from Auto-Germ 

should be used as rough assessments to help guide further research and management.  
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In this study, the predictions made demonstrated the necessity of tailoring restoration 

practices for individual species commonly used throughout the Great Basin. To have the majority 

of germination occur after 1 March, all species involved in the study required planting dates that 

ranged from September to February. This variability was due largely to the number of locations 

used in the study, many of which had different soil temperature and moisture regimes. This 

similarity in range throughout the entire area of study is not representative of what occurred at 

individual sites. Each species reacted differently to the soil microclimatic data that was used for 

modeling at each site. For example, at the Hart Mountain, OR, site, species that exhibited lower 

T50 and mean germination time values, such as western yarrow, Snakeriver wheatgrass, and 

bluebunch wheatgrass, on average all required planting dates by mid-November – early 

December for the majority of the simulated population to germinate after 1 March. Conversely, 

species with higher T50 and mean germination time values, such as Great Basin wildrye and 

Wyoming big sagebrush, could be planted much earlier in the season (late September), and 

typically not have the majority of the seeds germinate over the winter. This demonstrates two 

key points, firstly that restoration plans developed for a species at one site or year do not 

translate to sites and years with different soil temperature and moisture regimes. The optimal 

planting date (the date required for the majority of germination to occur after 1 March) for a 

species such as bluebunch wheatgrass varies greatly between sites like Bridge Creek, OR and 

Marking Corral, NV where the climates are different. The same principle can be applied to 

variability seen on a year to year basis. The annual environmental changes at individual sites 

create vastly different results for planting dates. The second key point is that at any given site, 

understanding the germination characteristics of individual species can greatly increase the 

success rates of restoration projects. Planting Wyoming big sagebrush in mid-October may be 

late enough in the season to circumvent winter germination at multiple sites in the area of study, 
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however; for a species such as bluebunch wheatgrass, which germinates more quickly, a planting 

date in mid-December might be more suitable. 

Our findings validates winter mortality as a major contributor to the lack of spring 

emergence seen in restoration efforts. Not including Wyoming big sagebrush and Great Basin 

wildrye, 50% or more of the required planting dates for spring germination occurred by 

November or later. This means that land managers who seed areas in mid to late fall would run 

the risk of having germination occur outside of more favorable spring conditions. Premature 

germination could potentially be mitigated by planting later in the season, however this study 

shows that seeding would need to take place in early to late winter. Winter seeding can be 

logistically challenging due to freezing and/or saturated soil conditions impacting the delivery of 

seed from mechanical equipment. Alternatively, seed dormancy may prevent seed germination 

until conditions are favorable for establishment and growth (Baskin & Baskin 2001; Finch-

Savage & Leubner-Metzger 2006b; Allen et al. 2007). Seed dormancy can be induced through 

the addition of the plant hormone abscisic acid (ABA), which could be used in the coating of 

rangeland seeds to delay germination of fall- sown seeds until spring (see chapter 2 of thesis).   

Additionally, our study demonstrates the benefits that seed mixes can have in restoration 

efforts. Rinella and James (2017) demonstrated that seed mixes of both bluebunch wheatgrass 

and Sandberg bluegrass led to better establishment than individually seeded species. This study 

shows that at any given site, the annual differences in temperature and moisture can lead to 

vastly different outcomes in germination timing for individual species. As shown from the 

germination indices calculated in this study, the species used reacted in unique ways to different 

temperatures, both in the timing and spread of germination. This demonstrates how individual 

species may be better suited for different temperature regimes and environments. Using multiple 
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species could increase the probability of having seeds germinate and establish during periods of 

more favorable conditions.   

CONCLUSION 

Our study is one example of how predictive modeling has the potential to help 

researchers and land managers better understand when seeding practices should occur to 

optimize planting dates so seeds are more likely to germinate during conditions favorable for 

plant establishment. Germination timing between species is extremely variable, and so having a 

tool that can quickly and effectively predict when seeds would germinate in the field would be 

beneficial. Auto-Germ addressed this need and helped us gain a better understanding of the 

individual planting requirements of several species common to the Great Basin. 
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FIGURES

Figure 1-1. Final germination percentage and synchrony at temperatures ranging from 5-25 °C 
for 10 different species commonly seeded in the Great Basin, USA. Values with the same 
incubation temperature with different letters are significantly different (P < 0.05) at that 
temperature. Letters correspond with the order of the data points in the figure. 
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Figure 1-2. Time to 50% germination and mean germination time at temperatures ranging from 
5-25 °C. Values with the same incubation temperature with different letters are significantly
different (P < 0.05) at that temperature. The letters correspond with the data points from top to
bottom. Letters correspond with the order of the data points in the figure.
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Figure 1-3. Planting date by site required for 50% or more of the simulated population to germinate in March or later. Box limits 
represent the first and third quartiles, the black line within the box indicates the median, the blue line indicates the mean, the whiskers 
limits represent the 10th and 90th percentiles, and the individual dots represent outliers. Plots with different corresponding letters are 
statistically different (p < 0.05).
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Figure 1-4. Planting date by year required for 50% or more of the simulated population to germinate in March or later. Box limits 
represent the first and third quartiles, the black line within the box indicates the median, the blue line indicates the mean, the whiskers 
limits represent the 10th and 90th percentiles, and the individual dots represent outliers. Plots with different corresponding letters are 
statistically different (p < 0.05). 
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Figure 1-5 . Planting date by species required for 50% or more of the simulated population to germinate in March or later. Box limits 
represent the first and third quartiles, the black line within the box indicates the median, the blue line indicates the mean, the whiskers 
limits represent the 10th and 90th percentiles, and the individual dots represent outliers. Plots with different corresponding letters are 
statistically different (p < 0.05). 

Sp
ec

ie
s 

Planting Date 



32 

CHAPTER 2 

Influence of Abscisic Acid (ABA) Seed Coating on Seed Germination Rate 
and Timing of Bluebunch Wheatgrass 

William Charles Richardson, Turmandakh Badrakh, Bruce A. Roundy, Zackary T. Aanderud, 
Steven L. Petersen, Phil S. Allen, Dallin Whitaker, Matthew D. Madsen 

Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah 

ABSTRACT 

Semi-arid rangeland degradation is a reoccurring issue that is seen throughout the world. 

In the Great Basin of North America, seeds sown in the fall to restore degraded sagebrush 

(Artemisia spp.) steppe plant communities may experience high mortality in winter due to 

germinated seed being exposed to freezing, drought, fungal pathogens, and other biotic and 

abiotic stressors. Delaying germination until early spring when conditions are more suitable for 

plant growth may increase seedling survival. We evaluated the use of abscisic acid (ABA) to 

delay germination of Pseudoroegneria spicata (Pursh) Á. Löve (perennial native grass), by 

investigating potential delays in germination of uncoated seeds, and seeds coated with 25% ABA 

at 0.25, 0.5, 1.0, 1.5, 2.0, 4.0, and 6.0 g/100 g1 of seed. We conducted seed trials to assess the 

influence of temperature and ABA levels on germination, varying from 5-25 °C at 5 °C intervals 

and developed quadratic thermal accumulation regression models for each treatment. Further, we 

applied the models to four-years of historic soil moisture and temperature data across six 

sagebrush steppe sites to predict seed germination timing. Germination percentage remained 

similar across all temperatures except at 25 °C, where the treatments 2 and 6 g BioNik 100 g-1 

seed had lower values (<70% germination). All ABA concentrations delayed germination, with 

the greatest delays at 5-10 °C. For example, the time required for 50% of the seeds to germinate 
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at 5 °C was increased by 16 - 46 d, depending on the amount of ABA applied. The synchrony of 

germination decreased with increasing ABA application rates. Seed germination models 

indicated that the majority of untreated seed germinated 5-11 weeks after an October 15th 

simulated planting date. In contrast, seeds treated with ABA delayed germination to late winter 

or early spring. Our research indicates that P. spicata may germinate directly after seeding, thus 

exposing the seedlings to the harsh environmental conditions of winter. Seed germination models 

predict ABA seed coatings may delay germination of P. spicata during years where the seed 

would otherwise germinate during the winter months, until conditions are more suitable for plant 

survival and growth. 

INTRODUCTION 

Disturbance and inter-annual precipitation variability cause arid and semi-arid rangelands 

across the world to be extremely susceptible to a decline in environmental health. (GLP 2005; 

Reynolds et al. 2007; Zhao et al. 2017). The sagebrush (Artemisia spp.)-steppe ecosystem in the 

Great Basin region of North America is an example of a degraded rangeland, which currently 

exists on only 56% of its historic range (Suring, Rowland & Wisdom 2005; Hardegree et al. 

2016). A prominent stressor to sagebrush communities is through the invasion and dominance of 

annual grasses, which increase fire frequency and perpetuates weed dominance (Dantonio & 

Vitousek 1992; Baker 2006; Balch et al. 2013). Cheatgreass (Bromus tectorum L.) is a dominant 

invasive annual weed that increases wildfire frequency by producing a dry, fine, continuous fuel 

layer early in the summer season (Dantonio & Vitousek 1992; Bradley et al. 2006; Germino, 

Chambers & Brown 2016). The dominance of cheatgrass also decreases organic carbon stored in 

the soil (Rau et al. 2011), and reduces the habitat of wildlife species such as sage-grouse 

(Centrocercus urophasianus), that depend on the sagebrush steppe system (Knick et al. 2003). 
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To reduce weed dominance and stabilize soils, native and introduced perennial species are 

typically seeded in fall after wildfires (Richards, Chambers & Ross 1998; Crawford et al. 2004; 

Madsen et al. 2016). However, it has been suggested failure rates within many revegetation 

projects could be as high as 90% (Hardegree et al. 2010).   

Plant recruitment may be limited by ecological processes, such as freezing and thawing 

of the seedbed, development of physical soil crusts, and pathogen attack, during the first winter 

the seeds are sown (James, Svejcar & Rinella 2011; Hardegree et al. 2016). In the Great Basin, 

soil water recharge occurs in fall, winter, and spring (Roundy et al. 2014). Wildfires in sagebrush 

steppe generally occur during the hot and dry summer period. Burned rangelands are typically 

seeded in fall before the soils begin to freeze and before soil moisture is too high to operate 

planting equipment (Amaranthus & Perry 1989; Beyers 2004). James et al. (2011) and Boyd and 

James (2013) found that 80% of fall-seeded perennial grasses, such as bluebunch wheatgrass 

(Pseudoroegneria spicata (Pursh) Á. Löve), germinate prior to winter but only a small 

percentage of the seeds sown (10-15%) produced seedlings that emerged from the soil in the 

spring. 

Seed dormancy may prevent seed germination until conditions are favorable for 

establishment and growth (Baskin & Baskin 2001; Finch-Savage & Leubner-Metzger 2006; 

Allen et al. 2007). Dormancy mechanisms vary across species through adaptation to the 

prevailing environment (Baskin & Baskin 2004; Finch-Savage & Leubner-Metzger 2006). 

Physiological dormancy is the most abundant form of dormancy and varies in its severity from 

species that require several months of stratification before germination, to species that can 

germinate through after-ripening in dry storage (Baskin & Baskin 2004; Baskin & Baskin 2005). 

Seed dormancy may be induced through the addition of the plant hormone abscisic acid (ABA) 

during seed maturation on the mother plant (Kucera et al. 2005). Within the seed, ABA is a 
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regulator of both the induction and maintenance of dormancy, which functions through a 

complex network of signaling pathways (Finch-Savage & Leubner-Metzger 2006; Zhao et al. 

2011). Within the seed, it is not necessarily the concentration of ABA that effects dormancy but 

its relation to the concentration of gibberellins (GA) (LeonKloosterziel et al. 1996; Lefebvre et 

al. 2006). When the ratio of ABA concentration to GA concentration is higher, seeds are more 

likely to maintain some dormancy (Kermode 2005; Duclos, Altobello & Taylor 2014). Both the 

localization of ABA and the competency of cells to respond to the hormone play important roles 

in breaking dormancy as well (Finch-Savage & Leubner-Metzger 2006).  

The effects of ABA on seeds in laboratory and agricultural experiments show that ABA 

can delay germination when applied exogenously.(Romagosa et al. 2001; Aroca et al. 2008; Atia 

et al. 2009; Papenfus et al. 2013; Hussaina et al. 2015). However, no study has demonstrated the 

effect ABA would have on seeds used for restoration efforts in rangeland settings. Research is 

needed to understand the rate ABA should be applied to sufficiently push germination to at least 

late winter or early spring when temperatures are less likely to damage plant tissue (Pearce 

2001). Roundy and Madsen (2016) reported that freezing conditions in Great Basin sagebrush 

communities can last as long as 168 days (October to mid-March). Wet thermal accumulation 

models may offer the first step in determining if ABA application rates in a seed coating are 

sufficient to delay germination until after this freezing period. Germination timing of many non-

dormant seed populations is a function of temperature accumulation when seeds are imbibed 

(Rawlins et al. 2012a). Wet thermal accumulation models predict the timing and rate of seed 

germination based on temperature, with progress towards germination accumulated when 

temperature and soil moisture are above a set threshold (Forcella et al. 2000; Vleeshouwers & 

Kropff 2000). Rawlins et al. (2012b) found that wet thermal accumulation models that were 
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applied to field soil moisture and temperature data could accurately predicted germination in 

seed bags 50-95% of the time, depending on the season the seeds were sown. 

The objectives of this study were to: 1) assess the effect of ABA application rate, applied 

within a seed coating, on final germination percentage, seed germination timing, and the spread 

of when the seeds would germinate (synchrony) under different constant temperatures, 2) for 

each unique seed coating create thermal accumulation models that express how germination 

timing changes with temperature, 3) apply thermal accumulation models to field soil moisture 

and temperature data sets across the Great Basin to predict seed germination timing from 

simulated planting dates. We hypothesized that ABA seed coatings will delay seed germination 

with the extent of delay a function of the rate of ABA applied. We also hypothesized that models 

will predict that ABA coatings could provide sufficient delay to allow seed germination to occur 

in spring. 

MATERIALS AND METHODS 

Seed Coatings 

To investigate ABA rates on seed germination we focused on ‘Anatone’ bluebunch 

wheatgrass, a common perennial bunchgrass in much of the Intermountain West, USA. 

Bluebunch wheatgrass provides quality forage for livestock and wildlife, helps suppress weeds, 

and is commonly seeded in restoration projects. Certified seed was purchased from Granite Seed 

(Lehi, UT, USA). The form of ABA used in this experiment was obtained from Valent 

BioSciences Corporation (Libertyville, IL, USA), under the trade name BioNik™. Seven 

different rates of ABA were applied to the seed at rates of 0.25, 0.5, 1.0, 1.5, 2.0, 4.0, and 6.0 g 

Bionik 100 g-1. A coated treatment without any ABA was not added to the study because 
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preliminary lab trials showed no significant difference in germination time and total germination 

between untreated seed and coated seed with no ABA (Badrakh, 2016).  

Seeds were coated under a two-step process in a 30-cm rotary seed coater from Universal 

Coating Systems (Independence, OR, USA). We applied ABA during the first step of the coating 

process in a dilution of Agrimer SCP binder (Ashland Inc., Covington, KY, USA). In this first 

step, a total of 10 g of liquid was applied to the seed. In the second step, 50 g of Agrimer SCP 

and 175 g of calcium carbonate powder (limestone) was added slowly to the seed to cover the 

ABA coating and build up the size of the seed. The coated seed was then dried using a forced air 

dryer at 43 °C (Brace Works Automation and Electric, Lloydminster, SK, CAN). 

 

Germination Experiment 

In addition to the seven ABA treatments, untreated seeds were included in the experiment 

(control). Each treatment was repeated seven times. In each replicate, 25 seeds were placed in 13 

x 13 cm acrylic boxes (Pioneer Plastics, Dixon KY, USA) filled with 140 g of fine sand. Before 

planting, the sand was watered to field capacity. Seeds were placed on the surface of the sand, 

and the boxes were sealed to maintain moisture levels. The study was installed as a randomized 

complete block split-plot design, with temperature comprising the split-plot factor. We used a 

range of constant temperatures to germinate seeds (5, 10, 15, 20, 25 °C). Seeds were placed in 

Precision Plant Growth Chambers (Thermo Fischer Scientific, Waltham, MA, USA) to maintain 

the different temperatures. Each block had one of each treatment, and took up an entire shelf in 

the growth chamber. The number of germinated seeds was counted every 1-3 d. We defined 

germination as the extension of the radical 2 mm from the seed. Once germinated, seeds were 

removed from the boxes. After each counting, the blocks were randomly placed on a new shelf 

within the growth chamber. 
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From laboratory seed germination counts, we calculated several seedling dormancy 

indices, final germination percentage, time to reach germination at 10% intervals from 10-90%, 

and germination synchrony. Final germination percentage was calculated as the ratio of the 

number of seeds germinated to the total number of seeds. Time to reach a certain germination 

percentage (Tx, i.e., time to reach 10% germination is T10) was calculated as follows: 

T = ��𝑡𝑡𝑎𝑎 −𝑡𝑡𝑏𝑏
𝑛𝑛𝑎𝑎−𝑛𝑛𝑏𝑏

� (𝑁𝑁 − 𝑛𝑛𝑏𝑏)� + 𝑡𝑡𝑏𝑏    (eqn 1) 

where: T is equal to time (days) to subpopulation germination, ta is equal to the incubation day 

when subpopulation germination was reached, tb is equal to the incubation day before 

subpopulation germination was reached, na is equal to the number of germinated seeds on the 

day that subpopulation germination was reached, nb is equal to the number of germinated seeds 

on the day before subpopulation germination was reached, and N is equal to the number of 

germinated seeds equal to either 10, 20, 30, 40, 50, 60, 70, 80, or 90% of the total population 

(Rawlins et al. 2012a). Germination synchrony was calculated by subtracting T90 from T10. 

We created mixed models to first determine the significance (p<0.05) of ABA 

concentration, incubation temperature, and their interactions (unless determined to not be 

significant) for final germination percentage, T50, and synchrony of germination. In the model, 

blocks were considered random, while incubation temperature and treatment were both 

considered fixed. We tested for differences in responses to ABA concentrations at the incubation 

temperatures of 5, 10, 15, 20, and 25 °C using a Tukey pairwise comparison test (p<0.05). The 

square root of T50 was used to normalize the data, but a transformation of total germination 

percentage and synchrony was not needed as indicated by viewing residuals.  
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Prediction of Seed Germination Timing in the Field 

Linear and curvilinear regression was used to apply polynomial equations to the 

germination time data gathered from the experiment in the previous section. These equations, or 

wet thermal models, estimate germination rate (inverse of Tx) in relation to incubation 

temperature. Germination rate was used instead of Tx to improve model accuracy (Rawlins et al., 

2012a). Models were created for all seed treatments, for each of the germination intervals 

described above. These models were then applied to historical soil temperature and water 

potential data from the Sagebrush Step Treatment and Evaluation Project (SageSTEP) (Cline 

2014). We selected from the SageSTEP network six different sites to model seed germination 

timing, which were within Wyoming big sagebrush (Artemisia tridentata Nutt. 

ssp. wyomingensis Beetle & Young) communities that had all been treated with prescribed burns 

(Moses Coulee, WA, Saddle Mountain, WA, Hart Mountain, OR, Roberts, ID, Owyhee, NV, and 

Onaqui, UT) (McIver & Brunson 2014). At each of the sites, hourly measurements were made at 

approximately 1-3 cm below the soil surface to estimate soil temperature using thermocouples 

and soil water potential using gypsum blocks (Delmhorst, Inc., city and state). Gypsum block 

resistance was converted to MPa of water potential using standard calibration curves (Rawlins et 

al. 2012b). 

Estimates of seed germination timing were predicted at each site over a four-year period 

(2011-2014) with the exception of the Moses Coulee site, which did not have enough data to be 

used for 2011. A simulated planting date of October 15th was set for modeling seed germination 

timing, which is a common time for land managers to initiate seeding projects in the Great Basin. 

In calculating seed germination timing, progress towards germination was determined for each 

individual hourly soil temperature data point starting at the planting date. Progress towards 

germination was calculated by dividing hourly soil temperature by the time to reach Tx at the 



40 

temperature of that data point (determined using the regression models described above). In this 

model, thermal progress toward germination is accumulated only for hours when soil water 

potential is above -1.5 Ψ. This ratio, or progress towards germination, was then converted to a 

percentage and accumulated until 100% was reached. At that point, we determined that Tx was 

reached. The process was repeated for each thermal model created. From this data we determined 

the time when the majority of seed for each treatment would germinate (i.e. month of the year 

when > 50% of the population had germinated) and then averaged the data across all sites and 

years.  Additionally, graphs were developed that show when each treatment of seed would reach 

each Tx interval for each site and simulated planting year.  

RESULTS 

Final Germination Percentage 

Mixed model analysis showed that incubation temperature (F = 5.6, P < 0.001), ABA 

concentration (F  = 8.9, P < 0.001), and the interaction between these two factors (F = 8.0, P < 

0.001) affected final germination percentage. Typically, germination was similar between most 

treatments at temperatures ranging from 5-20 ℃.  Germination for the lower application rates of 

ABA (0.25-1.0 g BioNik 100 g-1 seed) were slightly higher than untreated seed (Figure 2-1a). At 

25 ℃, the 2 and 6 g BioNik 100 g-1 seed treatments had lower germination (69% and 65% 

respectively) than the other treated and untreated seeds (average of 87%). Throughout all the 

temperatures, the highest final germination percentage was 97% (0.5 g BioNik 100 g-1 seed, 20 

℃) and the lowest was 65% (6 g BioNik 100 g-1 seed, 25 ℃).  
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Germination Time  

Incubation temperature (F = 81.8, P<0.001) and ABA concentration (F = 324.38, P < 

0.001) affected T50. Typically as temperature increased, T50 values declined out to 15 °C and then 

at 25 °C, T50 values began to increase. Within each constant temperature, T50 increased with 

increasing concentration of ABA (Figure 2-1b). Across all incubation temperatures, there was a 

strong delay in germination for treated compared to untreated seed (Figure 2-1b). For example, at 

5 °C, seed treated with ABA at 0.25, 0.5, 1, 2, 4, and 6 g BioNik 100 g-1 seed had T50 values that 

were 8.2, 10.1, 12.7, 14.3, 14.4, 19.8, and 20.0 d longer than untreated seed, respectively (Figure 

1b).  

 

Synchrony 

Synchrony was affected by incubation temperature (F = 90.1, P < 0.001), ABA 

concentration (F = 109.5, P < 0.001), and the interaction between the two (F = 10.3, P < 0.001). 

In general, synchrony for all treatments was low at 5 ℃, peaked at 10 or 15 ℃, and then 

decreased as temperatures continued to increase (Figure 2-1c). Within each temperature regime, 

untreated seed typically had the most synchronous germination, ranging from 5.3 - 33.5 d 

(Figure 2-1c). The only exception was at 25 ℃, where both the 0.25 and 0.5 g Bionik 100 g-1 

seed were more synchronous (21.3 and 25.0 d, respectively) than the untreated seeds (33.5 d). 

Synchrony decreased with increasing ABA concentration.  For example, at the lowest ABA 

application rate (0.25 g BioNik 100 g-1 seed) synchrony ranged from 6.4 – 21.3 d, while at the 

highest ABA application rate (6.0 g BioNik 100 g-1 seed) synchrony was between 18.1 - 68.3 d, 

depending on temperature (Figure 2-1c).  
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Prediction of Seed Germination Timing in the Field 

All wet thermal accumulation models created had sufficient accuracy to predict 

germination time (adjusted R2 = 0.51– 0.85). For untreated seed, the majority of the seeds were 

estimated to germinate during the winter period (October –February), and only 22% of the seeds 

were estimated to germinate in March or later (Figure 2-2). Time required for the majority of the 

seeds to germinate increased as ABA application rates increased (Figures 2-2). For almost all 

sites and planting years, the majority of ABA-coated seeds were predicted to germinate in spring 

or early summer (March – May) depending on the application rate of ABA applied (Figures 2-2). 

The majority of seeds coated with 0.25 – 2.0 g BioNik 100 g-1 seed germinated  13 - 22%  of the 

time during October – February, 52 - 57% of the time in March, and 21 - 35 % of the time in 

April or later (Figure 2-2). Conversely, the majority of seed coated with 4 and 6 g BioNik 100 g-1 

seed germinated 9% of the time during October – February, 26- 30% of the time in March, and 

61- 65% of the time in April or later (Figure 2-2). 

Analysis of individual sites showed high variation in germination timing for the seed 

treatments by site and year (Figures 2-3, 2-4).  At Roberts and Owyhee, all germination for 

treated seed was predicted to occur by spring (March – April) (Figures 2-3, 2-4). Similar results 

were seen for Moses Coulee, except for 2012-2013. During this period, there were high levels of 

variability between treatments. The lowest ABA treatment (0.25 g BioNik 100 g-1) had 

germination occur during the winter months (November – December), the highest ABA 

treatment (6 g BioNik 100 g-1) was predicted to reach 20% germination during the winter 

(February), with the rest of the population germinating by Spring (March – April). All other 

treatments fell somewhere in between those two rates (Figure 2-3).At Onaqui for 2012-2013 and 

2013-2014, and Hart Mountain for 2011-2012 and 2012-2013, germination of treated seed was 

predicted to occur by spring (March – April). During 2010-2011, for both sites, the two lowest 
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ABA rates (0.25 and 0.5 g BioNik 100 g-1) had between 10%-30% germination occurring in 

winter (February), with the rest occurring by spring (March – April). For 2011-2012 at Onaqui, 

and 2013-2014 at Hart Mountain, the lowest five rates of ABA (0.25-2 g BioNik 100 g-1) had 

anywhere between 10%-70% germination occurring in winter (February), with the rest occurring 

by spring (March – April) (Figures 2-3, 2-4).In Saddle Mountain, during 2011-2012 and 2013-

2014, the lower rates of ABA (0.25-1 g BioNik 100 g-1) had 10%-40% germination occurring in 

winter (February), with the rest occurring by spring (March – April). For 2012-2013, all 

germination across all treated seed was predicted to occur in winter (November – February). 

During 2010-2011, much more variation within treatments was seen. For the lowest five rates of 

ABA (0.25-2 g BioNik 100 g-1), germination was predicted to occur in winter (November – 

February). For the two highest rates of ABA (4 and 6 g BioNik 100 g-1), germination was 

predicted to occur between mid-winter and spring (December – March) (Figure 2-3).   

DISCUSSION 

Our hypothesis that ABA seed coatings will delay seed germination with the extent of 

delay a function of the rate of ABA applied was validated through this study. Accumulation of 

ABA in dormant seeds decreases overtime due to after-ripening (Walkersimmons 1987; Bewley 

1997; Ali-Rachedi et al. 2004). Seeds used for restoration projects are usually stored for a year or 

longer prior to use (Personal Communication, Joshua Buck, Granite Seed Inc. Lehi, UT, USA). 

Long storage periods can lead to decreased levels of ABA within the seeds, and quick 

germination once the seeds are sown. Our study provides a solution to this problem, and 

demonstrates how ABA application can be tailored to sites where early germination may lead to 

high seedling mortality.   
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While our hypothesis that increasing levels of ABA applied to the seed would create a 

greater delay in germination was proven to be correct, two ABA rates (2 and 6 g BioNik 100 g-1 

seed), showed moderately lower total germination at the highest temperature used in the study 

(25 ℃). It was our observation that the lower germination for these ABA coating rates was due to 

the seeds spending more time prior to germination in warm moist conditions that are conducive 

to pathogen attack (Doohan, Brennan & Cooke 2003; Koseki & Isobe 2005).  

Wet-thermal accumulation models applied to historic microclimate field data predicted 

that the majority of untreated seeds germinated within two to three weeks of being planted on 

most years and sites. The late fall/early winter germination of untreated seed would subject the 

seedlings to harsh environmental conditions during the winter and potentially result in high 

seedling mortality (James, Svejcar & Rinella 2011).  

Germination models also estimated that ABA treated seeds can delay germination of fall 

planted seeds until spring, which is anticipated to be a more environmentally favorable condition 

for seedling survival and plant establishment. Roundy and Madsen (2016) reported that across 

14-sagebrush steppe sites throughout the Great Basin there was an average of 58 freeze-thaw 

periods for the upper 1-3 cm of soil between October and March. Boyd and Lemos (2013) 

reported major reduction in emergence and tiller density for range grasses adapted to sagebrush 

steppe after exposure to only 4 days of freezing. The range of sub-zero temperatures that 

seedlings can tolerate can be quite narrow (Bois et al. 2006). Modeling of germination using 

field seedbed temperatures suggests that the delays induced by ABA in the laboratory was 

sufficient to avoid sagebrush steppe-frost periods for most years and sites. The majority of ABA 

treated seed was predicted to germinate by March or later. Coatings of ABA could be tailored to 

work on specific sites known to have shorter or longer freezing periods, or to species with 

limited frost tolerance.  
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While the results of our germination modeling generally indicated positive trends towards 

germination timing with an ABA seed treatment, it is unclear whether ABA seed coatings would 

improve establishment on all simulated planting years. We assume an early spring germination 

timing would be most beneficial because this would maximize the period seeds could grow 

before they were subjected to summer drought. With this germination timing objective, lower 

ABA application rates typically provide a more optimal germination timing. Cline (2017) 

characterized seedling root zone drying rates of sagebrush steppe communities. The soil water 

potential at the sites studied was above the plant permanent wilting point (-1.5 Mpa) during 

initial spring (March 1 – June 30) drying periods for 37.3 days at 3 cm and 87.3 days at 30 cm 

soil depth.  This data suggest that seedlings could have sufficient time to establish on most years 

if germination is delayed into March. 

For some of the modeled sites and years, primarily at the Owhyee site, the untreated seed 

did not start to germinate until the spring. While for many sites the addition of ABA may be 

beneficial, for sites where soil temperature and moisture are low during the fall and winter 

months, the addition of synthetic ABA may not aid in the establishment of seedling populations. 

In these instances an extended delay in germination with ABA until late spring or early summer, 

may result in the seedling not having sufficient moisture for plant establishment. 

Since it may be difficult to predict what the precipitation and temperature will be for a 

given year, ABA may also be useful in creating a bet-hedging strategy for seed germination. The 

synchrony of a seed population is greatly decreased once ABA is added. This could lead to seeds 

germinating throughout the late winter/early spring months. Varying levels of dormancy within a 

seed population is a strategy used by plants to mitigate against environmental risks (Venable & 

Brown 1988; Hierro et al. 2009; Lewandrowski et al. 2016). It is probable that the risk of 

seeding failures could be reduced by expanding the envelope that seeds germinate under to 
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increase the likelihood that some seeds will germinate within a window that is more favorable 

for plant establishment and survival. 

CONCLUSION 

Current seeding practices need to be altered in order to increase success (James & Svejcar 

2010; James, Svejcar & Rinella 2011). Species used in rangeland seeding practices germinate 

quickly after a fall planting and then are subjected to multiple stressors during winter that can 

cause mortality, such as freezing, drought, fungal pathogens, and other biotic and abiotic factors 

(Cline, Roundy & Christensen 2017b; Cline, Roundy & Christensen 2017a). Modeled estimates 

of seed germination timing in this study predict that ABA seed coatings has the potential to be a 

conservative strategy, which overcomes some of these environmental barriers by delaying seed 

germination until spring when conditions are more favorable for plant establishment. The 

application of ABA to seeds may also improve restoration efforts by spreading the period seeds 

germinate, which may increase the likelihood of seeds germinating during periods of the year 

with favorable growing conditions. Experiments need to be conducted to verify the results of this 

research in the field and determine how delaying seed germination with ABA coatings impacts 

plant establishment and survival. 
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FIGURES 

Figure 2-1. Influence of BioNik (a 25% formulation of abscisic acid) rates applied to seed on (a) 
final germination percentage, (b) time to reach 50% germination, and (c) germination synchrony 
at temperatures ranging from 5-25 °C. Values with the same incubation temperature with 
different letters are significantly different (p < 0.05) at that temperature. The letters correspond 
with the data points from top to bottom. 
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Figure 2-2. The period of the year when greater than 50% of the seed germinated. Values 
represent the percentage of occurrence across all sites (4 sites) and planting years (6 years) for 
untreated seed and seed treated with BioNik at rates ranging from 0-6 g Bionik 100 g-1 seed. 
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Figure 2-3. Modeled estimates of the percentage of seeds expected to germinate over time for 
untreated seed and seed coated with increasing rates of BioNik and soil water potential and 
temperature used to model seed germination timing. Simulations were run with an October 15th 
planting date on four separate years (2010-2013) for sites in (a) Roberts, ID, Onaqui, UT, and 
Moses Coulee, WA. 
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Figure 2-4. Modeled estimates of the percentage of seeds expected to germinate over time for 
untreated seed and seed coated with increasing rates of BioNik and Soil water potential and 
temperature used to model seed germination timing. Simulations were run with an October 15th 
planting date on four separate years (2010-2013) for sites in (a) Saddle Mountain, WA, Hart 
Mountain, OR, and Owyhee, NV.  



58 

APPENDIX CHAPTER 1 

Figure 3-1-APPENDIX 1. The first or “Home” worksheet in Auto-Germ. This worksheet has 
step by step instructions on how to use each feature of the workbook. 
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Figure 3-2-APPENDIX 1. A completed example of the “Data Entry” worksheet in Auto-Germ. 
This is where germination counting data is input from constant-temperature laboratory trials. 

Figure 3-3-APPENDIX 1. A completed example of the “Polynomial Equations” worksheet. This 
sheet contains the coefficient values and graphs of the second degree polynomial equations for 
each treatment and percent germination combination. 
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 Figure 3-4-APPENDIX 1. An example of the figures found in the “Planting Date” worksheet. 
Shows the predicted germination times of six species common to the Great Basin of North 
America, based on soil temperature and water potential data from Hart Mountain, OR for the 
year 2010. The simulated planting date was on October 15th.  

Figure 3-5-APPENDIX 1. An example of the figures found in the “% Germination” worksheet. 
Shows the date at which the simulated population will reach 50% germination for six species 
common to the Great Basin of North America, for every planting date between 10/15/2010 and 
01/15/2011 at Hart Mountain, OR. 
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