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abstract

A New Family of Topological Invariants

Nicholas Guy Larsen
Department of Mathematics, BYU

Master of Science

We define an extension of the nth homotopy group πn which can distinguish a larger class
of spaces. (E.g., a converging sequence of disjoint circles and the disjoint union of countably
many circles, which have isomorphic fundamental groups, regardless of choice of basepoint.)
We do this by introducing a generalization of homotopies, called component-homotopies,
and defining the nth extended homotopy group to be the set of component-homotopy classes
of maps from compact subsets of (0, 1)n into a space, with a concatenation operation.

We also introduce a method of tree-adjoinment for “connecting” disconnected metric
spaces and show how this method can be used to calculate the extended homotopy groups
of an arbitrary metric space.

Keywords: algebraic topology, homotopy, fundamental group
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Chapter 1. The Extended Homotopy Groups

1.1 Introduction

Consider the following subspaces of R2:

X =
⋃
i∈N

{
(x, y) ∈ R2 : d

(
(x, y),

(
1

2(i−1) ,
1

2(i+1)

))
=

1

2(i+1)

}
and

Y = X ∪ {(x, y) ∈ R2 : d((x, y), (−1, 0)) = 1}.

So X is a countable collection of circles and Y is the same collection of circles, converging

to a point contained in another circle. It is easy to see that for any choice of x′, we have

π1(X, x
′) = π1(Y, x

′) ∼= Z.

Imagine that instead of finding the path-homotopy classes of maps (I, ∂I) → (X, x′) or

(I, ∂I) → (Y, x′), we were to take a compact subset of the unit interval I with possibly

infinitely many components and map each of these as a loop into either X or Y . It is clear

with some consideration that we could construct such a map onto Y that is surjective, while

this is impossible for X.

The motivation for this thesis is to formalize this idea in order to define a family of

topological invariants which extend the homotopy groups (i.e., contain subgroups that are

isomorphic to the homotopy groups) while distinguishing a larger class of spaces.

1.2 Component-homotopies

Let X be a topological space and let {Xi}i∈J be the set of path components of X, indexed

by some set J . For each i ∈ J , fix xi ∈ Xi. For n ≥ 2, let In−1t = {x ∈ In : xn = t}, where I

is the unit interval [0, 1].

For n ∈ N, let Un be the collection of nonempty open subsets of (0, 1)n. For each U ∈ Un,

let ∂U denote the boundary of U in In. Now define Rn(X, {xi}) to be the set of continuous
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maps from elements U of Un into X mapping ∂U into {xi}:

Rn(X, {xi}) = {φ : (U, ∂U)→ (X, {xi}) : U ∈ Un}.

Notice that an element of Rn can be thought of as many “simultaneous” maps of In into X,

each sending ∂In to some element of {xi}.

For simplicity, we may refer to Rn(X, {xi}) as Rn or Rn(X) when the choices of X and/or

{xi} are clear from context.

Let b be the self-homeomorphism of In defined by

(x1, . . . , xn) 7→ (1− x1, x2, . . . , xn).

For each U ∈ Un, let U− denote b(U). By Lemma A.1.1, ∂(U−) = (∂U)−, so we will use the

notation ∂U− to refer to both. For each φ : (U, ∂U) → (X, {xi}) ∈ Rn, define φ as φ ◦ b,

which we will call the reverse of φ. We will show that reverses of elements of Rn are also

elements of Rn.

Claim 1.2.1. For each φ ∈ Rn(X, {xi}), we have φ ∈ Rn(X, {xi}) as well.

Proof. Let φ : (U, ∂U) → (X, {xi}) ∈ Rn be arbitrary. We will show that φ : (U−, ∂U−) →

(X, {xi}) ∈ Rn.

Since b is a reflection across {x ∈ Rn : x1 = 1/2}, we have that U− = b(U) ∈ Un. Also

since φ = φ ◦ b and φ is assumed to be continuous, φ must be continuous.

Let x ∈ ∂(U−). As we have seen, ∂(U−) = (∂U)−, so b(x) ∈ ∂U . Then

φ(b(x)) = φ(x) ∈ {xi},

which shows that φ : (U−, ∂U−)→ (X, {xi}) ∈ Rn(X, {xi}), proving the claim.
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Consider the following homeomorphisms of Rn:

`(x1, . . . , xn) =
(x1

3
, x2, . . . , xn

)
r(x1, . . . , xn) =

(
x1 + 2

3
, x2, . . . , xn

)
.

Notice that ` and r have the following properties:

1. ∂`(U) = `(∂U) and ∂r(U) = r(∂U) (by Lemma A.1.1),

2. for U ∈ Un, `(U), r(U) ∈ Un,

3. for any U, V ∈ Un, `(U) ∩ r(V ) = ∅ and ∂(`(U) t r(V )) = ∂`(U) t ∂r(V ). Also

`(U) ∪ ∂`(U) and r(V ) ∪ ∂r(V ) are disjoint closed sets.

We define a binary operation ∗ on Rn(X, {xi}). Let φ : (U, ∂U) → X and ψ : (V, ∂V ) →

(X, {xi}) in Rn be arbitrary. Let W = `(U) ∪ r(V ). Define φ ∗ ψ : (W,∂W )→ (X, {xi}) by

(φ ∗ ψ)(x1, . . . , xn) =


φ(3x1, x2, . . . , xn) (x1, . . . , xn) ∈ `(U) ∪ ∂`(U)

ψ(3x1 − 2, x2, . . . , xn) (x1, . . . , xn) ∈ r(V ) ∪ ∂r(V ).

Equivalently,

(φ ∗ ψ)(x) =


φ(`−1(x)) (x1, . . . , xn) ∈ `(U) ∪ ∂`(U)

ψ(r−1(x)) (x1, . . . , xn) ∈ r(V ) ∪ ∂r(V ).

Now we will show that Rn is closed under ∗.

Claim 1.2.2. If φ, ψ ∈ Rn(X, {xi}), then φ ∗ ψ ∈ Rn(X, {xi}).

Proof. Let φ : (U, ∂U)→ (X, {xi}) and ψ : (V, ∂V )→ (X, {xi}) in Rn be arbitrary, and set

W = `(U) ∪ r(V ).

By property 2 of ` and r, W = `(U) ∪ r(V ) ∈ Un.

Recall that φ is continuous by assumption and that ` is a homeomorphism. Then since

(φ ∗ ψ) = φ ◦ `−1 on `(U) ∪ ∂`(U), φ ∗ ψ is continuous on `(U) ∪ ∂`(U). Similarly, φ ∗ ψ is
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continuous on r(V ) ∪ ∂r(V ). Therefore φ ∗ ψ is continuous by the pasting lemma, noting

that `(U) ∪ ∂`(U) and r(V ) ∪ ∂r(V ) are disjoint and closed.

Let x ∈ ∂W . By property 3 of ` and r, x is contained in exactly one of ∂`(U) and ∂r(V ).

Suppose that x ∈ ∂`(U) = `(∂U). Then x = `(y) for some y ∈ ∂U , and

(φ ∗ ψ)(x) = (φ ∗ ψ)(`(y)) = φ(`−1(`(y))) = φ(y) ∈ {xi}.

Similarly, if x ∈ ∂r(V ), (φ ∗ψ)(x) ∈ {xi}. Then (φ ∗ψ)(∂W ) ⊆ {xi}, proving the claim.

With the reverses of elements of Rn and the operation ∗, we are close to showing that

Rn is a group. However, it is easy to see that ∗ fails to be associative. In order for this to be

the case, we must define an equivalence relation ∼ on Rn. For φ : (U, ∂U) → (X, {xi}), ψ :

(V, ∂V ) → (X, {xi}) ∈ Rn, we say that φ ∼ ψ if there exists an open subset O of In+1 and

a continuous function h : (O, ∂O)→ (X, {xi}) satisfying the following:

1. O ∩ In0 = U × {0},

2. O ∩ In1 = V × {1},

3. h(·, 0)|U×{0} = φ, and

4. h(·, 1)|V×{1} = ψ,

where Int = {x ∈ In+1 : xn+1 = t} ∼= In for t ∈ I.

Notice that in the special case where U = V = (0, 1)n, φ ∼ ψ exactly when φ and ψ are

homotopic, with h as a homotopy. For this reason, when φ ∼ ψ we will say that φ and ψ

are component-homotopic and that h is a component-homotopy between φ and ψ.

Claim 1.2.3. The relation ∼ is an equivalence relation.

Proof. We must show that ∼ is reflexive, symmetric, and transitive.
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Claim 1.2.4. ∼ is reflexive.

Subproof. Let φ : (U, ∂U) → (X, {xi}) be arbitrary. Let O = U × I and define h : (O, ∂O)

by

h(x, t) = φ(x).

Then clearly φ ∼ φ, proving the claim. �

Claim 1.2.5. ∼ is symmetric.

Subproof. Suppose that φ ∼ ψ, where φ : (U, ∂U) → (X, {xi}) and ψ : (V, ∂V ) → (X, {xi})

are elements of Rn. Then by definition, there exists an open subset O of In+1 and a

component-homotopy h : (O, ∂O) → (X, {xi}) between φ and ψ. Define O′ = bn+1(O)

and h′ = h ◦ bn+1. Then it is easy to see that h′ is a component-homotopy between ψ and φ,

proving the claim. �

Claim 1.2.6. ∼ is transitive.

Subproof. Suppose that φ ∼ ψ and ψ ∼ θ, where φ : (U, ∂U) → (X, {xi}), ψ : (V, ∂V ) →

(X, {xi}), and θ : (W,∂W )→ (X, {xi}) are elements of Rn. Then there exist O1 ⊆ In+1 and

h1 : (O1, ∂O1)→ (X, {xi}) satisfying the conditions of ∼ to show that φ ∼ ψ and O2 ⊆ In+1

and h2 : (O2, ∂O2)→ (X, {xi}) showing that ψ ∼ θ.

Let O = {(x1, . . . , xn, xn+1/2) : x ∈ O1} ∪ {(x1, . . . , xn, xn+1/2 + 1/2) : x ∈ O2} and

define h : (O, ∂O)→ (X, {xi}) by

h(x) =


h1(x1, . . . , xn, 2xn+1) xn+1 ∈ [0, 1/2]

h2(x1, . . . , xn, 2xn+1 − 1) xn+1 ∈ [1/2, 1].

Then h is a component-homotopy between φ and θ, proving the claim. �

Since ∼ is reflexive, symmetric, and transitive, it is an equivalence relation.

5



Now we define

ρn(X, {xi}) = Rn(X, {xi})/ ∼,

so ρn(X, {xi}) is the set of component-homotopy classes of maps (U, ∂U) → (X, {xi}) for

U ∈ Un. For simplicity we may refer to ρn(X, {xi}) as ρn or ρn(X) when the choice of X

and/or {xi} is clear from context, as we did with Rn.

1.3 The extended homotopy groups

Recall that the obstacle to showing that Rn is a group under ∗ was that ∗ is not associative

on elements of Rn. However, we can show that ∗ is associative on component-homotopy

classes, and therefore that ρn is in fact a group. It is worth noting that this proof is very

similar to the proof that πn is a group, with the only significant differences coming from

the fact that the operation ∗ compresses the first coordinate by a factor of three, while the

operation on πn compresses the first coordinate by a factor of two.

Claim 1.3.1. The set ρn(X, {xi}) has a group structure under ∗, defined by [φ]∗ [ψ] = [φ∗ψ]

for [φ], [ψ] ∈ ρn(X, {xi}).

Proof. First we must show that ∗ is well-defined with respect to ∼.

Claim 1.3.2. The operation ∗ on ρn(X, {xi}) is well-defined with respect to ∼.

Subproof. Let [φ], [ψ] ∈ ρn(X, {xi}) be arbitrary. Let φ1 : (U1, ∂U1) → (X, {xi}) and φ2 :

(U2, ∂U2) → (X, {xi}) be representatives of [φ] and let ψ1 : (V1, ∂V1) → (X, {xi}) and

ψ2 : (V2, ∂V2)→ (X, {xi}) be representatives of [ψ]. To show that ∗ is well-defined, we must

show that [φ1 ∗ ψ1] = [φ2 ∗ ψ2], or equivalently,

(φ1 ∗ ψ1) ∼ (φ2 ∗ ψ2).

Since φ1, φ2 ∈ [φ] and ψ1, ψ2 ∈ [ψ], φ1 ∼ φ2 and ψ1 ∼ ψ2. Then there exists some open

Oφ ⊆ In+1 and hφ : (Oφ, ∂Oφ)→ (X, {xi}), and some open Oψ ⊆ In+1 and hψ : (Oψ, ∂Oψ)→
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(X, {xi}) satisfying the properties of ∼ to show that φ1 ∼ φ2 and ψ1 ∼ ψ2, respectively.

Let O = `(Oφ) ∪ r(Oψ) and define h : (O, ∂O)→ (X, {xi}) by

h(x) =


hφ(`−1(x)) x ∈ `(Oφ)

hψ(r−1(x)) x ∈ r(Oψ).

Then h is a component-homotopy, proving the claim. �

Claim 1.3.3. ρn(X, {xi}) is closed under ∗.

Subproof. This follows immediately from Claim 2. �

Claim 1.3.4. ρn(X, {xi}) has an identity element under ∗.

Subproof. Fix x′ ∈ {xi}. Let ex′ : (In, ∂In) → (X, {xi}) be the constant map to x′. Then

clearly [ex′ ] ∈ ρn. We will show that [ex′ ] is an identity element of ρn. It suffices to show

that for each φ ∈ Rn, (φ ∗ ex′) ∼ φ.

Let φ : (U, ∂U)→ (X, {xi}) be arbitrary. Then since ∼ is reflexive, there exists an open

set Oφ ⊆ In+1 and a component-homotopy hφ : (Oφ, ∂Oφ)→ (X, {xi}) between φ and itself.

Let k be the homeomorphism of In+1 defined by

k(x1, . . . , xn, t) =

(
2t+ 1

3
(x1), x2, . . . , xn, t

)
.

(Notice that k(x1, . . . , xn, 0) = `(x1, . . . , xn, 0) and k(x1, . . . , xn, 1) = (x1, . . . , xn, 1).) Let

Ox′ be an open subset of In+1 such that Ox′ ∩ In0 = r(In), and x1 > 2/3 and xn+1 < 1/9 for

all x ∈ Ox′ . Define O = k(Oφ) ∪Ox′ and h : (O, ∂O)→ (X, {xi}) by

h(x) =


φ(k−1(x)) x ∈ k(Oφ)

x′ x ∈ Ox′ .

Then h is a component-homotopy between (φ ∗ ex′) and φ, which proves the claim. �
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Claim 1.3.5. Each element of ρn(X, {xi}) has a two-sided inverse under ∗.

Subproof. Let [φ] ∈ ρn(X, {xi}) be arbitrary. Let φ : (U, ∂U)→ (X, {xi}) be a representative

of [φ]. By Claim 1, φ : (U−, ∂U−) → (X, {xi}) ∈ Rn. We will show that [φ] is a two-sided

inverse for [φ]. It suffices to show that (φ ∗ φ) ∼ ex′ for some x′ ∈ {xi}, since (φ) = φ.

First notice that since φ ∼ φ, there exists an open set Oφ ⊆ In+1 and a component-

homotopy hφ : (Oφ, ∂Oφ)→ (X, {xi}) between φ and itself. Let Ox′ = {x ∈ In+1 : 0 < x1 <

1, xn+1 ≥ 2/3}. Let σ be a homeomorphism from In+1 to {x ∈ In+1 : xn+1 ≤ 1/3} such

that σ(int(In0 )) = `(int(In0 ) and σ(int(In1 )) = r(int(In0 )). Let O = σ(Oφ) ∪ Ox′ and define

h : (O, ∂O)→ (X, {xi}) by

h(x) =


hφ(σ−1(x)) x ∈ σ(Oφ)

x′ x ∈ Ox′ .

Then h is a component-homotopy between (φ ∗ φ) and ex′ , proving the claim. �

Claim 1.3.6. The operation ∗ on ρn(X, {xi}) is associative.

Subproof. Let [φ], [ψ], [θ] ∈ ρn(X, {xi}). Let φ : (U, ∂U) → (X, {xi}), ψ : (V, ∂V ) →

(X, {xi}), θ : (W,∂W )→ (X, {xi}) be representatives of these classes respectively. We must

show that ([φ] ∗ [ψ]) ∗ [θ] = [φ] ∗ ([ψ] ∗ [θ]), or equivalently, that (φ ∗ψ) ∗ θ ∼ φ ∗ (ψ ∗ θ). This

means that we must show that there exists some open O ⊆ In+1 and a component-homotopy

h : (O, ∂O)→ (X, {xi}) between (φ ∗ ψ) ∗ θ and φ ∗ (ψ ∗ θ).

Since ∼ is reflexive, there exist open sets Oφ, Oψ, Oθ and functions hφ, hψ, hθ satisfying

the conditions of ∼ to show that φ ∼ φ, ψ ∼ ψ, and θ ∼ θ, respectively. Define σφ, σψ, and

8



σθ to be homeomorphisms of U × I, V × I, and W × I, respectively, such that

σφ(x1, . . . , xn, t) =

(
2t+ 1

9
(x1), x2, . . . , xn, t

)
σψ(x1, . . . , xn, t) =

(
x1 + 4t+ 2

9
, x2, . . . , xn, t

)
σθ(x1, . . . , xn, t) =

(
(3− t)x1 + 2t

9
, x2, . . . , xn, t

)
.

Then notice that σφ(U × I)∩ In0 = `2(U), σφ(U × I)∩ In1 = `(U), σψ(V × I)∩ In0 = `(r(V )),

σψ(V × I) ∩ In1 = r(`(V )), σθ(W × I) ∩ In0 = r(W ), and σθ(W × I) ∩ In1 = r2(W ). Let

O = σφ(U × I) ∪ σψ(V × I) ∪ σθ(W × I) and define h : (O, ∂O)→ (X, {xi}) by

h(x) =


hφ(σ−1φ (x)) x ∈ σφ(U × I)

hψ(σ−1ψ (x)) x ∈ σψ(V × I)

hθ(σ
−1
θ (x)) x ∈ σθ(W × I).

Then h is a component-homotopy between (φ∗ψ)∗ θ and φ∗ (ψ ∗ θ), proving the claim. �

Since ∗ is a well-defined, associative operation under which ρn is closed and has two-sided

inverses, ρn is a group under ∗.

Chapter 2. Properties of the Extended Ho-

motopy Groups

2.1 Relationship to homotopy groups

Now we show that ρn is in fact an extension of πn by showing that πn can be isomorphically

embedded in ρn.
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Claim 2.1.1. The homotopy group πn(X, x′) is isomorphic to a subgroup of ρn(X, {xi}).

Proof. Notice that since x′ is contained in the same path component as some element of

{xi}, we can assume without loss of generality that x′ ∈ {xi}.

For an arbitrary φ : (In, ∂In)→ (X, x′), let [φ]πn denote the homotopy class of φ (which

is an element of πn) and [φ]ρn the component-homotopy class of φ (which is an element of

ρn).

Choose [φ] ∈ πn(X, x′) and let φ ∈ [φ]. Then φ is a continuous map (In, ∂In)→ (X, x′),

which means that φ ∈ Rn(X, {xi}). Define f : πn(X, x′)→ ρn(X, {xi}) by f([φ]πn) = [φ]ρn .

Suppose that [φ]πn , [ψ]πn ∈ πn(X, x′). To avoid confusion, we will use ? to denote the

operation in πn(X, x′) and ∗ to denote the operation that we have defined previously on

ρn(X, {xi}). We will use the standard definition of ?:

(φ ? ψ)(x) =


φ(2x1, x2, . . . , xn) x1 ∈ [0, 1/2]

ψ(2x1 − 1, x2, . . . , xn) x1 ∈ [1/2, 1].

We claim that f is a homomorphism. We must show that

f([φ ? ψ]πn) = f([φ]πn) ∗ f([ψ]πn)

[φ ? ψ]ρn = [φ]ρn ∗ [ψ]ρn

(φ ? ψ) ∼ (φ ∗ ψ).

Since ∼ is reflexive, there exists an open Oφ ⊆ In+1 and a component-homotopy hφ :

(Oφ, ∂Oφ) → (X, x′) between φ and itself. Similarly, there exists an open Oψ ⊆ In+1 and

a component-homotopy hψ : (Oψ, ∂Oψ) → (X, x′) between ψ and itself. Let σφ and σψ be
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homeomorphisms of In+1 such that

σφ(x1, . . . , xn, t) =

(
(3− t)x1

6
, x2, . . . , xn, t

)
σψ(x1, . . . , xn, t) =

(
(3− t)x1 + (3 + t)

6
, x2, . . . , xn, t

)
.

Then notice that σφ(In+1) ∩ In0 = {(x1/2, x2, . . . , xn) : x ∈ In}, σφ(In+1) ∩ In1 = `(In),

σψ(In+1) ∩ In0 = {x1/2 + 1/2, x2, . . . , xn) : x ∈ In}, and σψ(In+1) ∩ In1 = r(In). Let O =

σφ(Oφ) ∪ σψ(Oψ) and define h : (O, ∂O)→ (X, {xi}) by

h(x) =


hφ(σ−1φ (x)) x ∈ σφ(Oφ)

hψ(σ−1ψ (x)) x ∈ σψ(Oψ).

Then h is a component-homotopy between φ?ψ and φ∗ψ, proving that f is a homomorphism.

Now suppose that f([φ]) is the identity element of ρn(X, {xi}) for some [φ] ∈ πn(X, x′),

φ : (In, ∂In) → (X, x′). Then φ ∼ ex′ , where ex′ : (In, ∂In) → (X, x′) is the constant map

to x′. By definition of ∼, there exists an open O ⊆ In+1 and a component-homotopy h :

(O, ∂O)→ (X, x′) between φ and ex′ . Notice that h is an extension of φ : (In, ∂In)→ (X, x′)

to a map (int(In+1), ∂In+1)→ (X, x′), which means that [φ] is trivial in πn and therefore f

is injective.

Since f is an injective homomorphism, we have that

πn(X, x′) ∼= f(πn(X, x′)) ≤ ρn(X, {xi}).

It follows easily from this proof that when X is path-connected, ρn(X) ∼= πn(X).

2.2 Tree-connected spaces

Now we introduce a method for calculating ρn(X, {xi}) when X is a metric space. Suppose

that X is a metric space, with metric dX . Further suppose that the set of basepoints {xi}i∈J

11



is a closed subset of X. We define T (X, {xi}) to be the quotient space of

(⊔
i∈J

[0, 1]i

)
∪X

formed by

1. 0j ∼ 0k for all j, k ∈ J

2. 1i ∼ xi for all i ∈ J

3. tj ∼ tk whenever t ≤ 1− 1
2
dX(xj, xk).

Let K denote the “tree” part of T (X, {xi}); i.e., K = T (X, {xi}) \ (X \ {xi}). Then K is

a metric space under the shortest-path metric dK . Also notice that we can replace dX with

the topologically equivalent metric d′X defined by

d′X(pi, pj) = min{dX(pi, pj), dX(pi, xi) + 2 + dX(xj, pj)}

for pi ∈ Xi, pj ∈ Xj. Then it is easy to see that T (X, {xi}) is a path-connected metric

space, with a metric d which agrees exactly with d′X on X and dK on K. We claim that we

can calculate the nth extended homotopy group of X by finding the nth homotopy group of

T (X).

Claim 2.2.1. πn(T (X, {xi}), x′) ∼= ρn(X, {xi}).

Proof. As before, we will let [φ]πn denote an element of πn and [ψ]ρn denote an element of

ρn, where φ and ψ satisfy the necessary conditions. Also since T (X, {xi}) is path-connected,

πn(T (X, {xi}), x′) is independent (up to isomorphism) of the choice of basepoint, so we may

suppose without loss of generality that x′ ∈ {xi}.

Let [φ]πn ∈ πn. Choose φ : (In, ∂In) → (X, x′) ∈ [φ]πn . Notice that X is closed in

T (X, {xi}), since T (X)\X =
⋃
i∈J [0, 1)i is open. AlsoX\{xi} is open. Let U = φ−1(X\{xi})

12



and define φ′ = φ|(U∪∂U). Then we claim that φ′ : (U, ∂U) → (X, {xi}) ∈ R1 (and so

[φ′]ρn ∈ ρn).

We have that φ′(U) ⊆ X by definition. Since φ is continuous and X −{xi} is open, so is

U , so U ∈ U1. Also since φ is continuous, so is φ′. To see that φ′(∂U) ⊆ {xi}, let x ∈ ∂U .

Then by definition there exists a sequence {sα} in U that converges to x. Since U is open

and x ∈ ∂U , then x 6∈ U . Since X is closed and φ′({xi}) ⊆ X, then φ′(x) ∈ X, since φ′ is

continuous. Since U = φ−1(X \ {xi}) and x 6∈ U , then φ′(x) 6∈ X \ {xi}. Then it must be

the case that φ′(x) ∈ {xi} and therefore φ′(∂U) ⊆ {xi}.

Now define f : πn(T (X, {xi}), x′)→ ρn(X, {xi}) by f([φ]πn) = [φ′]ρn . We claim that f is

an isomorphism.

Claim 2.2.2. f is well-defined.

Subproof. Suppose that [φ1]πn = [φ2]πn , where φ1 and φ2 are maps (In, ∂In)→ (T (X, {xi}), x′).

Then there exists a homotopy h : (In+1, ∂In+1) → (X, x′) between φ1 and φ2. Let O =

h−1(X \ {xi}), which is an open subset of In+1. It is easy to see that h′ = h|(O∪∂O) is a

component-homotopy between φ′1 and φ′2, so f([φ1]πn) = [φ′1]ρn = [φ′2]ρn = f([φ2]πn) and f is

well-defined. �

Claim 2.2.3. f is injective.

Subproof. Suppose that [f(φ)]ρn = [f(ψ)]ρn , where φ and ψ are maps (In, ∂In)→ (T (X, {xi}), x′).

Then there exists a component-homotopy h : (O, ∂O) → (X, {xi}) between f(φ) and f(ψ).

Since our goal is to show that [φ]πn = [ψ]πn , if we find a homotopy between φ and ψ then

we are done.

Let W = cl(O)∪ ∂In+1. Notice that we can extend h continuously to a map h1 on W by

defining h1 = φ(x) on In0 , h1 = ψ(x) on In1 , and h1 = x′ otherwise. Now we must show that

we can extend h1 continuously to the rest of In+1.
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Since it is a finite union of closed sets, W is closed, so ∂W ⊆ W . Consider W c = In+1\W .

By definition, ∂W = ∂W c, so h1(∂W
c) is defined. We wish to show that h1(∂W

c) =

h1(∂W ) ⊆ K.

Recall that ∂W c = ∂W ⊆ ∂cl(O) ∪ ∂I2 and let x ∈ W c be arbitrary. If x ∈ ∂cl(O), then

by definition h1(x) ∈ {xi}, so h1(x) ∈ K. Then suppose that x ∈ ∂In+1∩W c. If x 6∈ In0 ∪ In1 ,

then h1(x) = x′ ∈ {xi} by construction, so suppose that x ∈ In0 ∪ In1 , so either h1(x) = φ(x)

or h1(x) = ψ(x). Also notice that clearly ∂W c ∩ O = ∅, since O ⊆ W , so we know that

x 6∈ O. Let Uφ = φ−1(X \ {xi}), so that we have f(φ) : (Uφ, ∂Uφ)→ (T (X, {xi}), x′). Define

Uψ similarly. Recall that by definition, O ∩ ∂In0 = Uφ and O ∩ ∂In1 = Uψ, so since x 6∈ O,

then x 6∈ Uφ and x 6∈ Uψ. Since by definition, Uφ = φ−1(X \ {xi}) and Uψ = ψ−1(X \ {xi}),

h1(x) 6∈ (X \ {xi}). But since K = T (X, {xi}) \ (X \ {xi}), this means that h1(x) ∈ K.

Let h2 : ∂W c → K be defined as h1|∂W c . Notice that ∂W c is a closed subset of the

normal space W c (since W c ⊆ In+1). Since K is an absolute retract for normal spaces, h2

can be extended continuously to a map h3 : cl(W c)→ K. [1] Define h′ : In+1 → T (X, {xi})

by

h′(x) =


h1(x) x ∈ cl(W )

h3(x) x ∈ cl(W c).

By construction, h1 and h3 agree on the intersection of their domains, ∂W = ∂W c. Then

by the pasting lemma, h′ is continuous and therefore h′ is a homotopy between φ and ψ,

proving the claim. �

Claim 2.2.4. f is surjective.

Subproof. Let [φ]ρn be arbitrary. Choose φ : (U, ∂U) → (X, {xi}) ∈ [φ]ρn We want to show

that there exists [ψ]πn and ψ ∈ [ψ]πn such that ψ|U = φ, so that f([ψ]πn) = [φ]ρn .

Let V = In \cl(U) and let Vα be a component of V . Notice that φ is defined on ∂V = ∂U

and that φ(∂V ) ⊆ {xi}.
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Define φ′ : ∂V ∪ ∂In → K by φ′(0, a2, . . . , an) = φ′(1, b2, . . . , bn) = x′ and φ′(x) = φ(x)

otherwise. Then since ∂V ∪ ∂In is a closed subspace of V and K is an absolute retract

for normal spaces, φ′ extends continuously to a map φ′′ : V → K. Define ψ : (In, ∂In) →

(T (X, {xi}), x′) by

ψ(x) =


φ(x) x ∈ cl(U)

φ′′(x) x ∈ cl(V ).

Since cl(U) ∩ cl(V ) = ∂U = ∂V and φ(∂U) = φ′′(∂U) by construction, ψ is continuous by

the pasting lemma. Then [ψ] ∈ πn(T (X, {xi}), x′) and f([ψ]πn) = [φ]ρn , which proves the

claim. �

Claim 2.2.5. f is a homomorphism.

Subproof. Let [φ]πn and [ψ]πn be arbitrary. Letting ? denote the usual operation in πn, it

suffices to show that

f([φ]πn ? [ψ]πn) = f([φ]πn) ∗ f([ψ]πn)

f([φ ? ψ]πn) = f([φ]πn) ∗ f([ψ]πn)

[(φ ? ψ)′]ρn = [φ′]ρn ∗ [ψ′]ρn

(φ ? ψ)′ ∼ φ′ ∗ ψ′.

Define θ0, θ1 : (In, ∂In)→ (T (X, {xi}), x′) as follows:

θ0(a1, . . . , an) = (φ ? ψ)(a1, . . . , an)

θ1(a1, . . . , an) =


φ(3a1, a2, . . . , an) a1 ∈ [0, 1/3]

x′ a1 ∈ [1/3, 2/3]

ψ(3a1 − 2, a2, . . . , an) a1 ∈ [2/3, 1].

It is easy to see that [θ0]πn = [θ1]πn , so there exists a homotopy h : (In+1, ∂In+1) →
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(T (X, {xi}), x′) such that h|In0 = θ0 and h|In1 = θ1. Define O = h−1(X) and h′ = h|O.

Then h′ is a component-homotopy between (φ ? ψ)′ and φ′ ∗ ψ′, since θ1|O = φ′ ∗ ψ′. This

shows that (φ ? ψ)′ ∼ φ′ ∗ ψ′ and that f is a homomorphism. �

Since f is a bijective homomorphism, we can conclude that

πn(T (X, {xi}), x′) ∼= ρn(X, {xi}).

2.3 Examples

Example 2.3.1. For i ∈ N, let

Xi =

{
(x, y) ∈ R2 : d

(
(x, y),

(
1

2(i−1) ,
1

2(i+1)

))
=

1

2(i+1)

}
,

and let X0 = {(0, 0)}. Let xi =
(

1
2(i−1) , 0

)
for i ∈ N and let x0 = (0, 0). Let X =

⋃∞
i=0Xi.

It is an easy corollary of Claim 6 that ρ1(X, {xi}) is isomorphic to the Hawaiian Earring

Group H.

We will see from the next example the importance of the inclusion of the limit point

(0, 0) in the previous example.

Example 2.3.2. For i ∈ N define Xi and xi as in the previous example. Let X ′ =
⋃
i∈NXi.

Then (X ′, {xi}) ∼= (Y, {yi}) =
⋃
i∈N(Yi, yi), where

Yi = {(x, y) ∈ R2 : d((x, y), (i, 1)) = 1}

and yi = (i, 0). Letting Z = (Y, {yi}) ∪ {(x, 0) : x ∈ R}, it is easy to see that

ρ1(X
′, {xi}) ∼= ρ1(Y, {yi}) ∼= π1(T (Y, {yi}), y1) ∼= π1(Z) ∼=

⊕
i∈N

Z.
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Appendix A. Lemmas

A.1 Lemmas

Lemma A.1.1. Suppose φ : X → Y is a homeomorphism and A ⊆ X. Then ∂φ(A) =

φ(∂A).

Proof. If ∂φ(A) = ∅, then by definition, φ(A) is both open and closed. Since φ is a homeo-

morphism, A is both open and closed, and therefore φ(∂A) = φ(∅) = ∅ and we are done.

Now suppose that ∂φ(A) 6= ∅. Choose p ∈ ∂φ(A). Let U be a neighborhood of φ−1(p). It

suffices to show that U ∩ (X \A) 6= ∅. Since φ is a homeomorphism, φ(U) is a neighborhood

of p, and by definition, φ(U) ∩ (Y \ φ(A)) 6= ∅. Choose q ∈ φ(U) ∩ (Y \ φ(A)). Then

φ−1(q) ∈ U and φ−1(q) 6∈ A, so φ−1(q) ∈ U ∩ (X \ A) 6= ∅ and we are done.

Notice that the reverse inclusion follows from a similar argument by considering the

homeomorphism φ−1 : Y → X.

Lemma A.1.2. For U ∈ Un, (`(U))− = r(U−) and (r(U))− = `(U−).

Proof. Recall that we used the notation U− to signify b(U), where b(x1, . . . , xn, xn+1) =

(x1, . . . , xn,−xn+1). Then to show that (`(U))− = r(U−), we must show that b(`(U)) =

r(b(U)).

Let x ∈ U ∈ Un. Then

b(`(x)) = b(x1/3, x2, . . . , xn) = (1− x1/3, x2, . . . , xn) and

r(b(x)) = r(1− x1, x2, . . . , xn) = ((1− x1 + 2)/3, x2, . . . , xn)

= ((3− x1)/3, x2, . . . , xn)

= (1− x1/3, x2, . . . , xn),

so b(`(x)) = r(b(x)) and therefore (`(U))− = r(U−).

The proof that (r(U))− = `(U−) is similar.
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