
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2018-03-01

A Flexible FPGA-Assisted Framework for Remote
Attestation of Internet Connected Embedded
Devices
Jared Russell Patten
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Patten, Jared Russell, "A Flexible FPGA-Assisted Framework for Remote Attestation of Internet Connected Embedded Devices"
(2018). All Theses and Dissertations. 6722.
https://scholarsarchive.byu.edu/etd/6722

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F6722&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F6722&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F6722&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F6722&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F6722&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsarchive.byu.edu%2Fetd%2F6722&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/6722?utm_source=scholarsarchive.byu.edu%2Fetd%2F6722&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

A Flexible FPGA-Assisted Framework for Remote Attestation

of Internet Connected Embedded Devices

Jared Russell Patten

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

James K. Archibald, Chair
Doran Wilde
Dah Jye Lee

Department of Electrical and Computer Engineering

Brigham Young University

Copyright c© 2018 Jared Russell Patten

All Rights Reserved

ABSTRACT

A Flexible FPGA-Assisted Framework for Remote Attestation
of Internet Connected Embedded Devices

Jared Russell Patten
Department of Electrical and Computer Engineering, BYU

Master of Science

Embedded devices permeate our every day lives. They exist in our vehicles, traffic lights,
medical equipment, and infrastructure controls. In many cases, improper functionality of these de-
vices can present a physical danger to their users, data or financial loss, etc. Improper functionality
can be a result of software or hardware bugs, but now more than ever, is often the result of mali-
cious compromise and tampering, or as it is known colloquially “hacking”. We are beginning to
witness a proliferation of cyber-crime, and as more devices are built with internet connectivity (in
the so called “Internet of Things”), security should be of the utmost concern. Embedded devices
have begun to seamlessly merge with our daily existence. Therefore the need for security grows as
it more directly affects the safety of our data, property, and even physical health.

This thesis presents an FPGA-assisted framework for remote attestation, a security service
that allows a remote device to prove to a verifying entity that it can be trusted. In other words, it
presents a protocol by which a device (be it an insulin pump, vehicle, etc.) can prove to a user (or
other entity) that it can be trusted - i.e. that it has not been “hacked”. This is accomplished through
executable code integrity verification and run-time monitoring. In essence, the protocol verifies
that a device is running authorized and untampered software and makes it known to a verifier in a
trusted fashion. We implement the protocol on a physical device to demonstrate its feasibility and
to examine its performance impact.

Keywords: Remote Attestation, Embedded Systems Security, Reconfigurable Computing, FPGA,
Internet of Things, IoT

ACKNOWLEDGMENTS

First and foremost I would like to thank my amazing wife. I’m grateful for her patience and

willingness to put up with my late night study sessions, and for the kind words of encouragement

through the process.

I would like to thank my thesis advisor Prof. Archibald, who has continually inspired and

motivated me in my studies. His knowledge, enthusiasm, and patience have been invaluable to my

research. Additionally, I would like to extend my thanks to my thesis committee: Prof. Wilde and

Prof. Lee for their mentoring and valuable feedback.

I extend special thanks to all my professors and colleagues at BYU who have contributed to

my education in so many ways. I’d also like to thank my fellow members of the BYU Embedded

Security Group for their contributions, ideas, feedback, and for making it a fun experience.

TABLE OF CONTENTS

List of Tables . vi

List of Figures . vii

List of Listings . viii

Chapter 1 Introduction . 1

Chapter 2 Remote Attestation . 4
2.1 Definition . 4
2.2 Example Use Case . 5
2.3 Required Security Properties . 7

2.3.1 Measurement Diversity . 7
2.3.2 Domain Separation . 9
2.3.3 Self-Protection . 11
2.3.4 Exclusive Key Access . 12
2.3.5 Immutability . 14
2.3.6 Controlled Invocation . 14

Chapter 3 Related Work . 15
3.1 Software Remote Attestation . 15

3.1.1 XEn Based Remote Attestation (XEBRA) 15
3.1.2 SoftWAre-based remote ATTestation (SWATT) 16

3.2 Hardware Remote Attestation . 17
3.2.1 SMART . 18
3.2.2 FPGA-Based . 18

Chapter 4 Threat Model . 20
4.1 Software Vulnerabilities . 20
4.2 Denial of Service . 21
4.3 Buffer Overflow . 22
4.4 Replay Attack . 25
4.5 Return Oriented Programming . 25

Chapter 5 Remote Attestation Framework . 30
5.1 Shortcomings and Strengths of Current Methods 30

5.1.1 Memory Read Latency . 30
5.1.2 Nondeterministic Network Latency . 31
5.1.3 Executable Based Proofs . 34

5.2 Proposed Framework . 34
5.2.1 Architecture . 35
5.2.2 Security Status . 35

iv

5.2.3 System Measurements . 36
5.2.4 DMA-Checksum . 38
5.2.5 PRT-Checksum . 39
5.2.6 System Characterization . 43
5.2.7 Attestation Protocol . 43
5.2.8 Preventing Replay Attacks . 45
5.2.9 Implementation . 49

Chapter 6 Results and Analysis . 51
6.1 Functional Results . 51

6.1.1 Memory Read Time . 52
6.1.2 DMA-Checksum . 53
6.1.3 PRT-Attestation . 55

6.2 Performance Results . 61
6.3 Discussion . 64
6.4 Analysis . 65

6.4.1 Protocol Analysis . 65
6.4.2 Security Analysis . 66
6.4.3 Benefits . 66
6.4.4 Limitations . 68

Chapter 7 Conclusion . 69
7.0.1 Contributions . 69
7.0.2 Future Work . 69

References . 71

v

LIST OF TABLES

5.1 Non-Deterministic Network Latency . 33
5.2 AES Output Variance by Input . 46

6.1 Cycle Count For Memory Reads . 57
6.2 Prover Response Time (in Cycles) Characterization 58

vi

LIST OF FIGURES

2.1 Challenge Response Protocol . 5
2.2 Smart Meter Topography . 6
2.3 Cryptographic Hash . 8
2.4 Measurement Diversity . 9
2.5 Domain Separation . 10
2.6 Example Compromised Attestation Code . 13

4.1 IoT Botnet . 22
4.2 Example Stack . 23
4.3 Stack Overflow . 24
4.4 Replay Attack . 26
4.5 ROP Gadget Chain . 28
4.6 ROP Detailed Sequence . 29

5.1 Non-Deterministic Network Paths . 32
5.2 Top Level Attestation Architecture . 36
5.3 Example System Without DMA . 39
5.4 Example Load Redirect . 40
5.5 Checksum Generation Without DMA . 41
5.6 Attestation Protocol . 44
5.7 Preventing Replay Attacks . 47
5.8 Zybo Implementation . 49

6.1 Memory Read Time . 52
6.2 Checksum-Gen Output . 54
6.3 DMA-Attestation Results With Unmodified Executable 54
6.4 DMA-Attestation Results With Modified Executable 55
6.5 DMA-Attestation Results With Code Placed in Unused Memory 55
6.6 Response Time Probability . 58
6.7 PRT-Attestation Results With Unmodified Executable 59
6.8 Checksum-Gen Output for PRT-Checksum With Seed as Input 59
6.9 PRT-Attestation Results With Modified Executable 60
6.10 PRT-Attestation Results With Code Placed in Unused Memory 60
6.11 Clock Cycles Versus Period . 62
6.12 Overhead Percentage . 62
6.13 PRT-Attestation Processor Utilization . 63
6.14 Average Time To Detect Illegal PC . 64

vii

LIST OF LISTINGS

4.1 Vulnerable C Code Segment . 24
4.2 Smart Lock Control Function . 27
4.3 Gadget Finder Tool Sample Output . 27
6.1 Memory Read Code . 56
6.2 Memory Read Code With Added If-Statement . 56

viii

CHAPTER 1. INTRODUCTION

In 2015, a team of security researchers demonstrated that they could remotely gain control

of a 2015 Jeep Cherokee [1]. Through an insecure remote update process, the team was able to

modify the firmware of a specific microcontroller on the vehicle, which allowed them to issue

arbitrary commands over the vehicle’s CAN bus [2]. With full control over the vehicle’s CAN bus,

the attackers could assume control of the vehicle’s lights, wipers, brakes, and transmission.

Like modern vehicles, many systems feature external connectivity through Internet enabled

embedded devices. These devices increasingly permeate our everyday lives; we find them in our

vehicles, traffic lights, medical equipment, power grid controls, etc. There are currently an esti-

mated 6.3 billion connected devices in the so called “Internet of Things” (IoT), and that number

could reach 20.4 billion by 2020 [3]. Improper functionality of these devices can present a physical

danger to their users, data or financial loss, etc [4], [5]. Improper functionality can be the result of

software or hardware bugs, but now more than ever, it can also be the result of malicious software.

We are beginning to see a proliferation of cyber-crime, therefore the need for secure embedded

devices is greater than ever. The problem was magnified in 2016 by the massive distributed denial

of service (DDoS) attack against DNS servers, making Twitter, Netflix, Reddit, and other web-

sites inaccesible for several hours [6]. The attack was carried out by compromised IoT devices,

primarily web cameras, DVRs, and routers infected with the Mirai Botnet.

There are many common security vulnerabilities that plague embedded systems, such as

weak cryptography, software vulnerabilities, and unchanged default passwords [7], [8]. Buffer

overflows are one of the most common and well-known types of software vulnerabilities [9]. Under

the right circumstances, a buffer overflow exploit can allow an attacker to insert malicious code

into device memory [10]. Buffer overflows are only one example of a vulnerability through which

an attacker can insert malicious code into a system.

1

Most current embedded systems have no means of detecting malicious code in their mem-

ory. Malicious code can thus go unnoticed until it has released its payload or inflicted damage

on the system, as was the case with the 2010 Stuxnet worm that slowly sabotaged and destroyed

Iranian nuclear centrifuges over a period of several months [11].

While it is difficult, if not impossible, to design a perfectly secure system, we can design

systems that are capable of detecting tampering. An active area of research for tamper detection is a

method called remote attestation. Francillon et al. define remote attestation as: “A security service

that involves verification of internal state of a remote embedded device” [12]. Many proposed re-

mote attestation solutions work by comparing the remote device memory contents with a “golden”

model of memory [13]–[17]. Usually, the memory contents are converted to a fixed-length rep-

resentation with a hashing or checksum algorithm (described in more detail in Section 2.3.1) to

simplify transmission and storage of the golden model. A device whose code has been modified

will produce an incorrect checksum, and a remote verifier can then choose how to respond, perhaps

by halting communication with the device or notifying an administrator or user. Many proposed

protocols generate this checksum purely in software [13], [15]; others require custom hardware

architectures or ASICs [16], [18], [19].

Remote attestation protocols which rely on memory integrity verification techniques face

several major challenges. First, as embedded systems grow in sophistication, their memory map

also grows in complexity and size. Therefore, taking a hash or checksum of an entire memory map

can hog computing resources. Software-only solutions pose a challenge because the checksum-

generating code itself could become compromised. Generally, hardware solutions are more secure,

but are more expensive and inflexible.

The contribution of this thesis is a flexible FPGA-based remote attestation framework that

builds primarily upon two previously proposed solutions. We observe that the memories of modern

embedded systems contain not only executable code, but also large regions of runtime heap, stack

memory and memory mapped IO (i.e., dynamic regions of memory). To predictively generate a

golden checksum of these dynamic memory regions would be difficult, if not impossible. Instead of

taking a checksum of the entire memory layout, the FPGA-based security service proposed in this

thesis periodically takes a checksum of the software executable, directly followed by an assertion

of the memory address of the currently executing instruction. If this address lies outside of a

2

pre-defined legal range, or the checksum does not match the golden checksum, the FPGA-based

attestation service internally records a device compromise. Through encrypted communication, a

remote trusted device can query the security status of the untrusted device by communicating with

the FPGA security service.

We implement and demonstrate the feasibility of this framework and observe how it affects

system performance. Additionally, we analyze and discuss its security properties. We show how

the framework can be adapted for different types of embedded systems, therefore providing a

flexible, secure remote attestation framework for embedded systems.

The remainder of this thesis is organized as follows. Chapter 2 presents a definition of

remote attestation and defines a set of required security properties. Chapter 3 is a brief survey of

previously proposed remote attestation solutions. Chapter 4 defines a threat model, which we will

use as a basis for our security analysis in a later chapter. In Chapter 5 we present our proposed

attestation framework and implementation details. Chapter 6 consists of the results and analysis of

our implementation. Lastly, Chapter 7 discusses our conclusions and future work.

3

CHAPTER 2. REMOTE ATTESTATION

2.1 Definition

Remote attestation is the process of remotely (usually over an Internet connection) verify-

ing the internal state of a system. This state can include code memory, hardware configuration,

runtime state, etc. Vulnerabilities (as described in Chapter 4) in embedded systems may allow

a malicious entity to assume control of a device or extract sensitive information. Generally, this

requires an attacker to modify the system in some way (i.e. through code insertion) so that the

system can be re-purposed to suit the attackers needs. The goal of remote attestation is to detect

malicious tampering remotely. It is important to understand that remote attestation techniques do

not attempt to prevent tampering, but instead aim to detect it.

Remote attestation is generally implemented as a challenge-response protocol between a

verifier entity and a prover entity. In the computer security field, a challenge-response protocol is

where one entity prompts (challenges) another entity to provide an answer (response). The chal-

lenger then decides whether the answer is correct, and acts accordingly. Password authentication

is a common example of a challenge-response protocol. In the context of remote attestation, we

define the challenger as the verifier, and the responder as the prover (see Figure 2.1). Remote

attestation protocols are not limited to one prover for each verifier, in fact a single entity may act

as the verifier to many provers.

When challenged by the verifier, a prover is responsible for constructing a proof, which

usually consists of a representation of its internal state. We assume that the verifier is trusted,

while the prover is untrusted. Therefore, the proof must be unforgable, so that even a compromised

device is incapable of providing false statements about its state. When challenged by a verifier, the

prover sends a proof in response, which the verifier uses to establish trust in the device.

This uncovers the major paradox and challenge with remote attestation. How can we guar-

antee that a proof from an untrusted device has not been forged? Chapter 3 presents a brief survey

4

Figure 2.1: Remote attestation is challenge-response protocol between verifier and prover entities.
The verifier initiates a “challenge”, to which the prover replies with a “response”.

of several proposed implementations of remote attestation, each of which attempt to solve this

problem.

2.2 Example Use Case

As of this writing, almost half of all American households are equipped with “smart” power

meters [20]. As opposed to traditional meters, smart meters are characterized by the capability of

two-way communication between the meter and the utility, usually via Wi-Fi, cellular, or wired

connection (see Figure 2.2) [21]. Smart meters allow for real-time sensor readings, which benefit

the utility through improved capability for power outage notification, increased power reliabil-

ity, and detailed monitoring. Consumers benefit by gaining real-time energy usage information,

allowing them to better manage energy use, in turn lowering energy costs.

While smart meters have the potential to increase the efficiency of energy distribution and

consumption, they also pose a greater security challenge than traditional meters. Smart meters in

Puerto Rico have already been successfully exploited, as was revealed in a 2010 FBI intelligence

bulletin [22]. According to the assessment, the compromised meters were programmed to under-

report electricity usage, resulting in estimated annual losses of $400 million.

These particular meters feature an optical port, through which a field technician can gather

in-field diagnostics. Using an optical converter, similar to the one used by technicians, an attacker

5

Figure 2.2: Smart meters are characterized by two-way communication between the utility and the
meter.

can communicate with the meter using a computer and special software. At this point, the attacker

has full control over the device configuration, and can configure it to under-report, reducing the

customer bill by 50 to 75%.

The FBI believes that former employees of the power utility were responsible for carrying

out the attacks, as well as for training others to do so. Hackers were known to charge between

$300-$1000 dollars to alter a meter, resulting in a cheaper power bill to the customer. Thus, there

was monetary incentive for both the hackers and the customers.

Although physical access was required to carry out this particular attack, it is not far-fetched

to imagine a future where Internet connected smart meters are remotely vulnerable to similar types

of tampering. Without remote attestation (or a similar protocol), how can the utility possibly ensure

that a meter has not been infected with malware or been compromised in some manner?

Effective remote attestation could play a crucial role in assuring that smart meters have

not been tampered with, and therefore are reporting accurate information. Timely detection of

compromised meters could have massive financial benefits to the utility and may even serve as a

deterrent to hackers; if an attacker knows there is a high probability of detection, there is likely

less motivation to attempt the hack.

Under our definition of remote attestation, each smart meter corresponds to a prover entity,

and the power utility is the verifier entity. When challenged by the utility, the smart meter must

provide a proof of its internal state, thus proving to the utility that it has not been compromised.

6

Perhaps the utility wishes to attest each smart meter at periodic intervals, or possibly just right

before receiving a meter reading so as to ensure that the readings are authentic.

As with any security related topic, it is difficult to quantify what makes a system “secure”,

as security is largely a cat and mouse problem. However, in the following sections, we explore

several properties required to defend against currently known attacks.

2.3 Required Security Properties

A system designer cannot fully anticipate the vulnerabilities that may appear in a system,

but certain classifications of vulnerabilities have been well studied and can be prevented [23], [24].

Based on the works of Coker et al. and Francillon et al., we define a minimal set of properties

that are required for a secure remote attestation protocol [12], [25], which we use as a basis in the

design of our proposed attestation framework. The six properties of the framework are as follows:

1. Measurement Diversity

2. Domain Separation

3. Self-Protection

4. Exclusive Key Access

5. Immutability

6. Controlled Invocation

Most implementations of remote attestation strive to meet these requirements through var-

ious means. Following is a more thorough discussion of each of the these properties.

2.3.1 Measurement Diversity

When challenged by a verifier, the prover responds with a proof representing its internal

state. The state of a device may consist of the loaded executable, memory state, hardware config-

uration, etc. Thus, a prover device must be capable of taking self-measurements. The claims of a

proof are limited by the types of self-measurements taken by the prover. For example, if a proof

7

Figure 2.3: A hash function takes a string of finite length input and produces a fixed-length output.
In this example, the input string is mapped to a 10 character alpha-numeric string. Cryptographic
hashes like this are often used in remote attestation protocols.

consists solely of memory contents, then the prover can only make integrity claims regarding its

memory; the proof says nothing about the hardware configuration. Indeed, the verifier can only

attest the prover memory.

To construct a memory proof, many attestation protocols compute a cryptographic hash of

memory. A hash function is simply a one-way function that takes an arbitrary length input, and

produces a fixed-length “hash” (see Figure 2.3). Hash functions are many-to-one, meaning that

many different inputs can produce the same hash. Cryptographic hash functions are a sub-class of

hash functions that ideally exhibit the following three properties [26]:

1. Preimage resistance - Given a hash function h and output y, it is computationally difficult to

find an input x such that h(x) = y.

2. 2nd-preimage resistance - Given a hash function h and an input x, it is computationally

difficult to find an additional input x’ such that x 6= x′ and h(x) = h(x′).

3. Collision resistance - Given a hash function h, it is computationally difficult to find two

values x, and x’ such that x 6= x′ and h(x) = h(x′). In other words, it is difficult to find two

input values that result in the same hash.

One can see why cryptographic hash functions are useful for remote attestation; they allow

attestation code or hardware to compute a small fixed length value, which can then be supplied to

a verifier instead of sending the entire memory contents.

8

Figure 2.4: Secure remote attestation protocols should perform diverse internal state measure-
ments. This Figure illustrates a remote attestation scheme under which only the executable code is
attested, resulting in a non-diverse measurement.

Recall from Section 2.2, that the configuration of Puerto Rican smart meters was simply

modified to under-report power usage. Let us imagine that the meters were configured to under-

report by simply modifying a system variable, implying that the executable code did not require

modification. Imagine that the meter has a built-in remote attestation protocol that when chal-

lenged, computes a cryptographic hash of the executable code, then returns the hash to the verifier.

The verifier can compare this hash against its golden hash, and respond accordingly (see Figure

2.4).

Note that the modification of system variables will not affect the resulting hash during an

attestation sequence. Therefore, modification of system configuration variables does not manifest

itself in the proof, resulting in a false positive from the perspective of the verifier.

This example illustrates the importance of taking diverse measurements of the system state.

Ideally, a prover should be comprehensive in measuring its internal state. As mentioned earlier, the

system state may consist of both hardware and software.

2.3.2 Domain Separation

Domain separation is the idea that different pieces of system functionality can by separated

into different domains, such that the interface between them is finely specified and tightly con-

9

trolled. Therefore, two different domains can only interact with one another in a pre-determined

fashion.

With remote attestation, it is vital that measurement tools are able to provide accurate and

untampered measurements of the application, even when the application is compromised. In this

context, measurement tools (or other secure functionality) must reside in a separate domain from

the application, such that the application cannot tamper with the measurement tools. Therefore,

even if the target is compromised, the prover can still perform accurate and reliable measurements

of the system.

Figure 2.5 illustrates an example system in which the measurement tools, a secure boot

module, and an Advanced Encryption Standard (AES) engine are placed in a separate domain from

the device code and hardware configuration. We define the interface between the domains as one-

way from the measurement tools to the device code and hardware configuration. Therefore, even

if device code is compromised – i.e. through malware – it cannot tamper with the measurement

tools.

Figure 2.5: Example domain separation.

10

One common method to achieve domain separation is through virtualization techniques

[27]. For example, measurement tools could be placed in one virtual machine (VM), and the ap-

plication domain in another. The system could be configured so that the measurement tool VM

has read access to the target VM, but not the other way around [15]. The software programs that

run virtual machines are called hypervisors. If we make the assumption that a hypervisor is imple-

mented correctly, a compromised target does not have the ability to tamper with the measurement

tools, as they are contained in separate VMs.

The downfall of virtualization techniques are that they often require more processing power,

as the computational overhead introduced by a hypervisor is non-trivial. To combat this issue,

several light-weight hypervisors have been developed that are optimized for small embedded de-

vices [27]–[30]. Container based virtualization is another promising technology for implementing

domain separation, where virtualization takes place at the operating system (OS) level, as opposed

to hypervisors which must run a guest OS on top of a host OS [31]. Containers don’t require

special hardware like some hypervisors do, and often require less processor overhead [32], [33].

Hardware assisted techniques are arguably more secure due to the nature of physical sep-

aration, but can be more costly. Copilot [34] and trusted platform modules (TPM) [35] are two

examples of techniques for achieving domain separation through hardware.

2.3.3 Self-Protection

Self-protection refers to the problem of building trust in the integrity of the domain sepa-

ration itself. Most attestation frameworks consist of a trusted and a non-trusted domain, but what

properties of the trusted domain allow us to trust it? How do we initially build trust in the secure

domain? These are the fundamental problems that self-protection presents.

To trust a domain means that we do not need to attest it. In other words, we can trust the

domain even if remote attestation is not performed on it. Sometimes, we build trust through formal

verification of the domain. Formal verification is the act of verifying or proving the correctness

of a design, either hardware or software. Because of the large number of input combinations, as

well as internal state, large systems are extremely difficult to formally verify. Thus, for a domain

to be trusted via formal verification, it must be built with components small enough that they can

be formally verified.

11

Formal verification is a viable option because vulnerabilities in a system are often the result

of software or hardware bugs. Therefore a formally verified hardware or software system is difficult

to exploit.

ARM processors contain secure-boot, another method for establishing trust. The general

idea is that you start with a small trusted component (possibly trusted through formal verification)

called the root of trust. Generally the root of trust must reside in a non-modifiable section of

code, such as read-only memory (ROM), or in hardware. A chain of trust is then established by

authenticating every other component before it is used. A TPM does this by having a hardware

root of trust, which then cryptographically authenticates the integrity of any software before it is

used by the system processor.

2.3.4 Exclusive Key Access

Many remote attestation frameworks rely on some form of cryptographic communication or

other cryptographic operations. If this is the case, the attestation components must have their own

keys that are inaccessible to other components of the system. Other system components must not

have access to these keys, so as to prevent any type of forgery or abuse by a compromised system.

For example, keys could be stored in the secure domain in such a way that they are physically

inaccessible from the application domain.

Imagine an attestation protocol where a prover takes a cryptographic hash of its executable

and sends it to the verifier. The issue here is that if a compromised target discovers the hashing

algorithm used by the attestation protocol, it becomes easy for the adversary to forge a valid mem-

ory hash by storing a “good” copy of the executable somewhere else in memory. Figure 2.6 shows

what a compromised memory map may look like in such a scenario.

To overcome this problem, many protocols utilize a hash-based message authentication

code (HMAC). To construct an HMAC, a secret cryptographic key is hashed together with the

data to produce a hash that is not reproducible by an entity that doesn’t know the secret key. The

definition of an HMAC as described by RFC 2104 [36] is as follows:

HMAC(K, text) = H((K⊕opad)||H((K⊕ ipad)||text)), (2.1)

12

Figure 2.6: Example compromised attestation code. A compromised application may be able to
store a copy of the original attestation code in an unused portion of memory.

where:

1. H is a cryptographic hash function,

2. opad is the byte 0x5C repeated B times, where B is the block length (see RFC 2104),

3. K is a cryptographic secret key,

4. ipad is the byte 0x36 repeated B times, where B is the block length (see RFC 2104),

5. text is the input data to the HMAC function, and

6. || represents concatenation.

Now, if the attestation components of the system have exclusive access to K, then even a

compromised executable cannot forge a hash of the original executable. This is only one exam-

ple (albeit a common one) of secret key usage in remote attestation schemes. Cryptographic or

authenticated communication between the prover and the verifier is another common use.

13

2.3.5 Immutability

Immutability follows closely with domain separation, but it is simply the notion that at-

testation code or hardware should not be modifiable by other components of a system. Hardware

attestation is inherently immutable, because it is impossible for a compromised system to modify

hardware functionality. Sometimes FPGAs are used for attestation functionality and although it is

possible to modify an FPGA bitstream from software, certain techniques can be employed to make

this difficult. A brief discussion on FPGA bitstream security is given in Section 5.2.1. If the at-

testation functionality resides in software, then a mechanism to prevent modification of attestation

code is necessary. This can be accomplished with read-only-memory (ROM), or some other such

protection. Domain separation is also a good technique to prevent unauthorized components from

accessing attestation code, therefore preventing modification.

2.3.6 Controlled Invocation

Only an authorized verifier should be allowed to initiate attestation. This property ensures

that an adversary cannot initiate attestation, which is important in preventing denial-of-service

attacks. Denial-of-service attacks, as the name describes, are a class of attacks where an adversary

attempts to prevent access to some type of resource. Denial-of-service attacks are discussed in

more detail in Section 4.2.

14

CHAPTER 3. RELATED WORK

This chapter presents a brief survey of relevant research in the area of remote attestation.

We focus on several techniques that have influenced the work presented in this thesis. Of particular

importance to this work are SWATT and FPGA-based memory verification.

3.1 Software Remote Attestation

Remote attestation techniques that do not rely on external hardware or custom architectural

solutions are desirable in many situations, such as for legacy systems where hardware modifica-

tions are impractical. While desirable for certain types of applications, they tend to be inherently

less secure, as software is generally more exploitable than hardware. What follows is a discussion

of several prominent software attestation techniques.

3.1.1 XEn Based Remote Attestation (XEBRA)

As discussed in Chapter 2, a secure attestation protocol should contain strongly defined

domain separation and have the ability to self-protect its secure functionality. XEn Based Remote

Attestation (XEBRA) [15] implements a form of domain separation by utilizing the lightweight

hypervisor Xen. The goal is that two separate virtual machines will not be able to interfere with

one another. The Xen hypervisor is chosen because it is small enough in size to be formally

verified, thus giving reasonable assurance of the correctness of the hypervisor.

The XEBRA framework consists of two separate virtual machines running on the same

hardware system, referred to as the control and application domains, respectively. Through secure

boot technology, the control domain acts as the root of trust for secure functionality. The attestation

functionality is implemented in the control domain, and therefore boots into a trusted state. Thus, if

application code is compromised, an attacker will not be able to modify attestation or other secure

functionality because it resides in a separate virtual machine.

15

Obviously, XEBRA is only well suited to devices that provide hardware virtualization sup-

port, and therefore is not suitable for resource constrained embedded devices. The XEBRA pa-

per argues that because the cost of microcontrollers is continually declining, and more embedded

processors (such as many ARM family devices) are beginning to include hardware virtualization

support, the feasibility of the XEBRA protocol will continue to grow.

3.1.2 SoftWAre-based remote ATTestation (SWATT)

In SoftWAre-based remote ATTestation (SWATT) [13], no custom hardware is required.

The entire protocol can be implemented purely in software. The protocol goes as follows:

1. Verifier initiates the attestation by sending a challenge to the prover. The challenge contains

a pseudo-random value.

2. Prover uses the value received from step 1 to seed a pseudo-random number generator

(PRNG).

3. Prover uses the PRNG output to generate a memory address.

4. Prover performs a memory read at the address from step 3, and uses the result to update a

checksum.

5. Prover repeats steps 3 and 4 for a predetermined number of iterations (using the next PRNG

value at each step).

6. Prover sends the resulting checksum to the verifier.

7. Verifier compares the checksum against a “golden” checksum.

8. If the prover response time is longer than a pre-determined value, the verifier assumes that

the checksum-generating memory traversal has been tampered with and therefore deems the

prover to be compromised.

9. If the checksums match, the attestation is successful, otherwise it fails and the device is

assumed to be compromised.

16

The Pseudo-random traversal of memory is designed to prevent a compromised prover

from simply pre-calculating the correct checksum and returning this to the verifier. This way, the

prover cannot predict the checksum and can only begin calculating it when the attestation request

is received.

A compromised device could potentially store the original executable code in some unused

portion of memory, then redirect all memory loads of the pseudo-random traversal to the original

executable (see Figure 2.6). For example, imagine we have an executable of 1000 bytes starting at

address 0x0000. We assume that all memory locations beyond address 0x03E8 (1000 in hexadec-

imal notation) are unused. The compromised device makes a copy of the original executable and

stores it in memory starting at address 0x03E8. Therefore, if the first address of the pseudo-random

traversal is address 0x0005, then the load will can be redirected to address 0x03ED (1005 in hex-

adecimal) where the original contents of address 0x0005 reside. In this manner, the compromised

device can generate a correct checksum.

To prevent this scenario, the response time of the prover is taken into consideration. Load

redirects would require an additional if-statement in the code to check if the next memory read

touches an altered location. Therefore, the additional time required to execute the if-statement

would be manifest in the prover response time. This is only possible, however, if the network

latency is deterministic.

A major advantage of SWATT is that it makes no assumptions about the integrity of the

checksum-generating function. In other words, attestation should function properly even if the

application (including the checksum-generating function) is compromised.

3.2 Hardware Remote Attestation

As seen in Section III, software-only attestation techniques suffer from several challenges,

such as self protection of attestation functions. Generally, techniques that leverage external hard-

ware can help to alleviate some of these challenges. What follows are two prominent attestation

techniques involving secure coprocessors or hardware modifications.

17

3.2.1 SMART

Secure and Minimal Architecture for (establishing a dynamic) Root of Trust (SMART) [18]

uses a custom architectural solution to provide a secure root of trust. This root of trust can be used

to create a secure attestation scheme.

SMART works by storing attestation code on a prover device in an immutable read-only

memory (ROM). This code basically generates a checksum of a memory region as specified by a

verifier device. Because attestation code is stored in ROM, a compromised application will not be

able to modify it.

The checksum is a keyed HMAC, consisting of code memory. The HMAC key is private,

and therefore is only accessible by SMART attestation code. To prevent unauthorized key access,

SMART utilizes a custom memory controller unit (MCU). The MCU protects access to the key by

only allowing access if the contents of the PC register currently points to code in the ROM SMART

region. In other words, only SMART code is allowed to read the key in memory. An attempted

access to the key with an invalid PC value will cause the MCU to reset the processor, thus thwarting

unauthorized key access. To prevent any abuse of SMART code, the processor is only allowed to

execute the ROM SMART code at a pre-defined starting location, which is enforced by the MCU

in the same fashion as the key access protection mechanism.

SMART aims to provide strong security properties, while requiring minimal hardware

modifications. The authors claim that many devices already have built-in ROMs and that the

MCU modifications are few in number and relatively easily accomplished. The SMART paper

demonstrates the feasibility of the protocol by describing a hardware implementation. This was

accomplished by modifying an open source MSP430 core in the SystemVerilog hardware descrip-

tion language, doing so with less than 200 lines of modifications to the code.

3.2.2 FPGA-Based

Basile et al. present a remote code verification protocol based on a hybrid FPGA-processor

approach [17]. An FPGA is used as a root of trust for secure functionality, and a processor is used

for user application functionality, called the secure and application domains respectively. Both the

FPGA and processor work in tandem as a prover device. Communication between the verifier and

18

the prover device is handled by the processor, which forwards attestation requests to the hardware

secure domain. An attestation sequence takes the following steps:

1. Verifier initiates the attestation by sending an encrypted request. Both the verifier and the

secure (FPGA) domain of the prover share a symmetric key.

2. Application domain of the prover receives the encrypted request and forwards it to the secure

domain.

3. Secure domain decrypts the request and verifies its authenticity.

4. If the request is authentic, the secure domain takes a checksum of: 1) the operating system

kernel, and 2) the portion of the program currently in memory.

5. The two checksums from the previous step are combined into an HMAC response, encrypted

and sent to the application domain.

6. Application domain forwards the response to the verifier.

7. Verifier determines if HMAC is valid, and responds accordingly.

Note that in steps 2 and 6, if a compromised application fails to forward a response or

request, the verifier will assume system compromise. This is possible because in the scenario that

a verifier never receives a response from the prover in a pre-defined time frame, the verifier can

assume that the prover has been compromised (or had a system failure). Given a sufficiently strong

key and symmetric encryption algorithm, a compromised prover will not have the ability to tamper

with or extract any sensitive information from the encrypted response or request packets.

19

CHAPTER 4. THREAT MODEL

In this section we define a threat model, consisting of a summary of several vulnerabilities

commonly found in embedded systems, as well as common attacks. In a later section, we analyze

the security of our proposed attestation protocol with regards to the threat model. Note that this is

not a complete list of threats, only a small subset of very common and well studied ones.

4.1 Software Vulnerabilities

Software bugs are inevitably present in any type of software system. Bugs generally result

from human programming or design errors. Sometimes (albeit more rare) bugs can also arise from

compiler errors. Regardless of the source, bugs are an inevitable byproduct of software design.

Often, these bugs simply result in incorrect operation of a system, producing unexpected

and incorrect results. Sometimes software bugs are simply annoying, but in some cases can have

deadly consequences as was the case with the Therac-25 incident [37]. The Therac-25 was a

radiation therapy machine, designed for use in cancer treatment, which worked by blasting malig-

nant cells with controlled ionized radiation. Over a period of two years, at least six patients were

administered deadly doses of radiation due to a software bug.

Under the right circumstances, software bugs can be exploited by an adversary. Such bugs

are referred to as software vulnerabilities [8]. By taking advantage of a software vulnerability,

an adversary may be able to take control of a system, steal information, cause physical harm or

damage, deny access to resources, etc. Although the Therac-25 incident was not the result of

malicious intent, similar software bugs could be exploited for malicious purposes.

The well-known 2010 Stuxnet worm was able to propagate and overwrite the code of pro-

grammable logic controllers (PLC) that controlled Iranian nuclear centrifuges through several zero-

day vulnerabilities in Microsoft Windows [38]. A zero-day vulnerability is a type of software vul-

20

nerability that is known only to an adversary, and is thus particularly dangerous because it does not

usually get fixed until it has been abused for malicious intent.

The software running on embedded systems is no less prone to software vulnerabilities than

traditional desktop systems. A 2014 study of embedded firmware security by Costin et al. revealed

that a large number of embedded systems are running outdated firmware with software vulner-

abilities [39]. Fortunately, there are ways to mitigate software vulnerabilities. Many software

vulnerabilities are well documented and can easily be prevented by careful design and implemen-

tation.

As previously discussed, formal verification can be used to verify the correctness of a

program. Several tools exist to accomplish this task, but as discussed, only small programs are

feasibly formally verified. Several programming languages have been developed to help prevent

certain types of programming errors. One such language, Rust, helps guarantee memory safety

[40]. One type of vulnerability that arises from misuse of memory bugs is discussed in Section

4.3.

4.2 Denial of Service

A denial-of-service attack (DoS) is a category of attack where an adversary attempts to

deny legitimate usage of a service to its normal users. Generally, this applies to network services,

where the DoS perpetrator attempts to overwhelm the network service, making it unavailable for

its intended use. For example, an attacker may attempt to send a high volume of network traffic

to a website server in an attempt to overload the server, thus preventing legitimate traffic from

accessing it.

A distributed denial of service (DDoS) attack is a type of DoS attack where the flood of

traffic comes from many sources. This is usually accomplished through armies of compromised

“zombie” devices, called a Botnet (see Figure 4.1) [41]. A zombie is a device that has been infected

with some type of Botnet malware such as Mirai. Zombie devices can lie dormant until the Botnet

owner wishes to initiate a DDoS attack, at which point the actions of the zombie device are still

generally undetected.

DDoS attacks are particularly difficult to thwart because it is difficult to distinguish between

legitimate and flood traffic. In a simple DoS attack, the victim can simply block traffic from the

21

Figure 4.1: IoT Botnets are commonly used for DDoS attacks where many compromised zombie
devices are controlled by an attacker. The zombie devices flood a victim with traffic in an attempt
to overwhelm it, making its services unavailable to the intended recipients.

attacker’s IP address once the attack is detected, whereas DDoS traffic will have many different

IP address sources. A zombie device may also purposely only use a small fraction of the host’s

bandwidth to remain inconspicuous.

The motives behind DDoS attacks vary, but they have been used for activism, blackmail,

economic gain, etc. Botnets can essentially be rented, where the price usually depends on the

desired duration of DDoS attack. The high availability and ease of access to DDoS attack tools

has led to a proliferation of these types of attacks in the wild. Additionally, the dramatic increase

in the number of insecure Internet connected devices has only exacerbated the problem.

4.3 Buffer Overflow

Buffer overflows are a common type of software vulnerability that can be particularly dan-

gerous under the right circumstances. This is because they sometimes permit an attacker to insert

arbitrary exploit code into a device, sometimes allowing him to take complete control of the de-

vice. They are possible because of the way stack frames are laid out in memory (see Figure 4.2 for

a sample stack layout).

22

Figure 4.2: Example Stack containing two stack frames, one for function “foo” and another for
function “bar”.

Buffer overflow exploits work by writing data to a buffer that is larger than the allocated

size of the buffer, thus overwriting adjacent memory. A careful attacker can deliberately overflow

a buffer, and overwrite the stack frame return address with a desired target address. Once the

function is complete, control will be diverted to the attacker’s desired target address.

A common source of buffer overflow vulnerability is the strcpy function in the C program-

ming language. In it, a source buffer is copied to a destination buffer without regard to size of the

destination buffer. For example, the following code segment in listing 4.1 demonstrates a function

that is vulnerable to a buffer overflow.

23

1 vo id b a r (c h a r ∗ i n p u t b u f f e r)

2 {

3 c h a r b u f f e r [8] ;

4 s t r c p y (b u f f e r , i n p u t b u f f e r) ;

5 }

Listing 4.1: Vulnerable C Code Segment

Imagine an attacker who wishes to divert program control to a function located at address

0x12345678. We assume that the attacker has the ability to provide arbitrary input to the function

bar, perhaps through system input. Additionally, we assume that the system in question constructs

stack frames as in Figure 4.2 and has a 32-bit word size.

To divert control to address 0x12345678, the attacker must call the function bar and pro-

vide it with some input (called an exploit string) that will overwrite the return address with the

desired target address. The input string to bar need only contain 8 bytes of arbitrary data (to

fill buffer) followed by the desired target address. Figure 4.3 shows how the stack will look af-

ter a successful buffer overflow exploit. Notice that the return address has been overwritten with

0x12345678. Now when bar is finished executing, the program will continue execution starting at

address 0x12345678.

Figure 4.3: Stack Overflow.

24

Oftentimes, attackers will craft an exploit string that contains executable code, and over-

write the return address to point back to the exploit string. The exploit code can contain any

payload, but often the goal is to initiate a connection to an attacker controlled machine and open

a shell, giving full system access to the attacker. Note that many systems disallow stack code

execution, thus thwarting this type of exploit, but do not prevent buffer overflows in general.

4.4 Replay Attack

Replay attacks are a category of exploit where an adversary intercepts or sniffs network

traffic with the purpose of re-transmitting or delaying information [42]. Figure 4.4 illustrates a

basic form of a replay attack. Suppose that Bob wishes to login to a network server. To do so,

his encrypted password Pe is transmitted to the server over a network connection, where the server

can then decrypt and authenticate the password. Eve sniffs (eavesdrops) the network and saves a

copy of the encrypted password. Now, at any later time, Eve can send this encrypted password to

the server and successfully login. In this simplified scenario, the server has no way to know if the

password came from Bob or Eve. Note that Eve never even has to learn Bob’s password – simply

owning a copy of the encrypted version is enough to impersonate Bob.

4.5 Return Oriented Programming

Return oriented programming (ROP) is a type of attack that utilizes buffer overflow vul-

nerabilities (or any other attack that lets an attacker overwrite the call stack) to execute sequences

of code already present on the system [43]. Through careful manipulation of the stack, an attacker

can chain together small sequences of existing instructions (called “gadgets”) to form arbitrary

code sequences. A gadget generally consists of a few instructions, followed by a return statement.

For example, imagine a smart-lock system where a door lock is controlled by an Internet

connected embedded device. We define the system with the following characteristics:

1. Function parameters are passed through registers R0, R1, R2, and R3.

2. The system stack follows the format of Figure 4.2, i.e. a function stack frame contains (from

bottom to top) function parameters, return address, then local variables. The system word

size is 32 bits.

25

Figure 4.4: Replay attack. Eve captures Bob’s encrypted password Pe and replays it at a later time
to impersonate Bob.

3. The stack is non-executable.

4. The device code contains a function, control lock, that is used to unlock or lock the door. Its

location in memory is 0x10017C50.

5. The device code contains the buffer overflow vulnerability from listing 4.1.

6. Input is passed to the vulnerable function through external user input.

7. RET instructions pop the top value off the stack and program control continues at the address

that has been popped.

Listing 4.2 shows the code for the control lock function. Notice that if the integer value 1

is passed to the control lock function, the door will be unlocked, whereas an integer value 0 will

lock the door.

26

1 vo id c o n t r o l l o c k (i n t un l oc k)

2 {

3 i f (u n lo ck == 1)

4 {

5 / / Code t o un lo ck door

6 }

7 e l s e

8 {

9 / / Code t o l o c k door

10 }

11 }

Listing 4.2: Smart Lock Control Function

Before diverting control to the control lock function, an attacker must first place the value

1 in R0. Because of the non-executable stack, this must be done with ROP techniques. Using a

gadget finder tool, we find two “chainable” gadgets. Listing 4.3 shows the example output of the

gadget finder tool.

1 0x1001050C : MOV R7 , # 1 ; RET

2 0 x10015144 : MOV R0 , R7 ; RET

Listing 4.3: Gadget Finder Tool Sample Output

To place a 1 in R0, we must chain the first gadget with the second. To do this, we need to

first exploit the buffer overflow function to redirect program execution to the first gadget at address

0x1001050c. In addition, the exploit string must contain addresses for both the second gadget

and the control lock. Therefore, our exploit string will be a sequence of byte values representing

AAAAAAAA1001050C1001514410017C50. See Figure 4.5 for a depiction of the stack after the

buffer overflow has occurred. Recall from Section 4.3 that the first eight ’A’ characters are simply

to fill the local variable buffer buffer[8].

Figure 4.6 shows a detailed view of the system state for each instruction of the exploit.

Note that the instruction pointed to by an arrow during each timestep is the next instruction to be

executed. With our exploit string, the value of 1 is stored in R0 right before program control is

27

Figure 4.5: Return oriented programming gadget chain.

redirected to address 0x10017C50 (the address of control lock). Thus the attack is successful in

unlocking the smart lock.

From the example, one can see how an attacker could potentially chain together a much

longer sequence of instructions. It has been demonstrated that a sufficiently large program contains

enough gadgets to construct a Turing Complete library of gadgets, meaning that any algorithm can

be constructed [44], [45]. Several tools, such as ROPgadget [46], exist to help locate and construct

a library of gadgets. However, tools like ROPgadget require that an attacker have a copy of the

executable code.

Return oriented programming attacks have become popular because it has become increas-

ingly common for systems to employ non-executable stacks. Several techniques to mitigate ROP

attacks have been suggested. Some use compiler techniques to create gadget-less binaries by in-

strumenting the code with special routines that only allow a RET instruction to execute if the

function in which it resides was run from its starting point [47]. Another defense mechanism,

ROPdefender, works by storing a copy of every function call return address on a shadow stack.

When a return instruction is executed, the top value on the shadow stack is checked to ensure

control is resuming at correct location in memory [48].

28

Figure 4.6: Return oriented programming sequence showing stack and registers at each step.

29

CHAPTER 5. REMOTE ATTESTATION FRAMEWORK

In this chapter, we present a remote attestation framework that builds upon several of the

techniques discussed in Chapter 3. We show how the framework improves upon existing solutions

by meeting the following goals:

• Improved capability for detection of malicious tampering.

• Increased flexibility – suitable for various embedded systems with different hardware com-

ponents.

• Reduced system overhead.

We first present a discussion of several weaknesses in existing attestation methods that

motivated the work of this thesis, followed by the description of the framework.

5.1 Shortcomings and Strengths of Current Methods

5.1.1 Memory Read Latency

A key component in many attestation schemes is some type of memory verification, where

memory contents of a prover device are compared against a golden memory. A difference between

the prover memory and golden memory indicate that the prover memory has been corrupted, per-

haps by malicious tampering.

In most attestation protocols, a prover will condense its memory contents into a fixed-

length representation, usually consisting of a hash or checksum. Checksum functions are similar

to hash functions in that they take a variable length input and produce a fixed length output, but

their purpose is to check data integrity. Ideally, a checksum function will exhibit the following

properties:

30

1. It is easy to compute.

2. It takes input of arbitrary length, and produces a fixed-length output.

3. A small change in input will result in a significant change in output.

As opposed to transmitting an entire copy of device memory, the prover need only transmit

the 128-bit checksum. It is possible that a system may have many legal memory configurations,

each of which must be maintained by the verifier as a golden representation. In a system with n

legal memory configurations, the verifier must either store n golden checksums/hashes or n copies

of memory.

For attestation protocols utilizing software-only techniques, the time required to read mem-

ory can present significant overhead to the system, which can greatly degrade system performance.

These effects are analyzed in Section 6.1.1. A more desirable technique is direct memory access

(DMA) – special circuitry that allows read and write access to memory without the aid of the

processor.

5.1.2 Nondeterministic Network Latency

Some attestation techniques such as SWATT rely on prover response time in the challenge-

response protocol to detect tampering [13]. For example, imagine that we have an attestation

protocol where a response is expected in 1 millisecond or less after the challenge is issued. If the

prover takes longer than 1 millisecond, the verifier will assume that the prover has been tampered

with and is expending extra time to forge a proof.

In theory, and under specific conditions, this can be a valid approach. However, remote

attestation is most useful when it works over an Internet connection. Network latency is unpre-

dictable because of the non-deterministic path that data may take to reach its destination. Each

router in the path determines the next “hop” based on current traffic loads and various other fac-

tors.

To illustrate, imagine we have the prover-verifier attestation system depicted in Figure 5.1.

The prover and verifier are physically separated, but connected over the Internet through a network

of routers. Sometimes, communication between the verifier and prover occurs by data packet

31

Figure 5.1: Internet packets can take different paths to reach the same destination. In a), the prover
response only takes two hops to reach the verifier, whereas in b), three hops are taken.

transmission through routers two and three. At other times (perhaps due to congestion on the link

between routers two and three), as depicted in b), data packets may travel through routers one, two,

and three. We say that the data made two and three hops, respectively.

Even when the path is the same, the latency is non-deterministic. To physically demonstrate

the nondeterministic nature of network latency, we used the Linux Traceroute utility to track the

exact IP address of every router the data packets traverse to reach Facebook.com. To maintain

privacy we do not list the IP addresses, instead we simply list the number of hops. Table 5.1 shows

the results for five successive Traceroutes to Facebook.com from a single computer.

To properly interpret the results in Table 5.1, one must understand the basic functionality

of the Traceroute utility. Every IPv4 and IPv6 packet header contains a time to live (TTL) field,

sometimes referred to as the hop limit. The TTL field specifies how many hops a packet is allowed

to take before it should be discarded. When data passes through a router, the TTL field is decre-

32

Table 5.1: The latency to reach Facebook.com for five successive Traceroutes. The latency varies
by as much as 0.21 milliseconds to receive a response from the server.

Hop number and time (ms) to reach

1 2 3 4 5 6 7 8 9 10 11

Request 1 0.29 0.59 0.27 0.56 0.74 3.57 19.91 18.76 18.57 17.65 17.63

Request 2 0.30 0.26 0.28 0.58 0.75 3.73 19.18 18.77 18.74 17.77 17.62

Request 3 0.31 0.32 0.31 0.56 0.74 3.72 18.73 18.65 18.58 17.61 17.52

Request 4 0.25 0.30 0.29 0.56 0.77 3.69 20.25 18.50 18.50 17.50 17.46

Request 5 0.28 0.31 0.26 0.55 0.77 3.73 21.61 18.91 18.73 17.73 17.67

mented by one. A router that encounters a packet with a TTL of zero will discard it and send an

error message to the original sender.

Traceroute iteratively sends packets with incrementing TTL values, starting with a TTL of

one. For each error message received, Traceroute can determine the round trip time (RTT) to and

from that respective router (or hop). Packets continue to be sent until no more error messages are

received, indicating that the packet has successfully reached its destination. Using this information,

Traceroute constructs an estimate of the network path. Because information for a single hop is

determined by a different packet, the results may not necessarily be indicative of the true path –

and latency – of a single packet. Despite this, the results still provide us with an informative and

useful estimate of the path.

The results shown in Table 5.1 indicate that the path taken by the five successive requests

seem to take the same path each time. This is revealed by the consistency in relative time difference

between hops for each of the Traceroutes. We see that the network latency to reach Facebook.com

is nondeterministic, even on the same network path. It is possible that the path could change at

a later time or date, thus inducing more variance. This is problematic for attestation protocols

requiring strict timing of prover responses, because it requires the verifier to accept a wide range

of response times, potentially allowing a compromised device to hide malicious activity in the

extra slack.

33

Even if tight timing bounds could be guaranteed from one location, the response time will

vary wildly between physical locations. Imagine a mobile phone application that takes the role of

the verifier and the prover is a smart lock system. As part of the process to check the status of the

smart lock, an attestation sequence is required. A user may wish to check the status of his/her lock

from any physical location. Therefore an attestation protocol that relies on tight timing bounds

over a network appears to be impractical due to network latency variance.

5.1.3 Executable Based Proofs

Many attestation protocols rely solely on the binary executable code in proof construction.

Usually the proof is generated by taking a hash or checksum of the binary executable. As will be

shown in Section 6.1.1, reading the entire memory may be costly, therefore time may be saved

by reading only the executable code. This is especially true in systems that have large portions of

unused memory; if the executable code fills up most of memory, not much computation time will

be saved.

The issue here is that if an adversary is able to insert malicious code into some unused

portion of memory, executable-based attestation will not detect the malicious code; these types of

attestation can only detect tampering of the executable itself. Many types of malware (especially

Botnet malware) are infact designed to leave the host system intact so as to go unnoticed. Malicious

code can find its way onto a system through a variety of means such as buffer overflows, return

oriented programming, exploitation of default credentials, software vulnerabilities, etc.

Based on this observation, we claim that executable-only attestation proofs are limited

in their security guarantees. Our proposed solution overcomes this problem without requiring a

prover to read out the entire memory layout.

5.2 Proposed Framework

As stated in the opening paragraph of this chapter, one of the design goals of our proposed

attestation architecture is flexibility. In this section we present the framework for our attestation

protocol, then show how the protocol can be adapted to suit different types of devices. More

34

precisely, we show how it can be adapted for systems with built-in DMA capability, and also for

devices without DMA capability.

5.2.1 Architecture

Our proposed attestation framework follows the challenge-response protocol presented in

Figure 2.1. The prover device is divided into two domains: the secure and application domains

(see Figure 5.2). The application domain consists of a processor, memory, peripherals, etc., and

the secure domain is a hardware root of trust, implemented in an FPGA. The application domain is

where all normal system functionality resides. In other words, it contains the application program

and data. We assume that the application domain can be under full adversarial control.

The secure domain contains the functionality responsible for taking system measurements

and constructing attestation proofs. This functionality is wrapped up in a logic block we call

the security monitor. The security monitor contains a private encryption key (inaccessible to the

application domain) that is used in the creation of its proofs. The cryptographic nature of the

challenge/response protocol means that it is infeasible for a compromised application domain to

forge an acceptable proof.

Because hardware is difficult (if not impossible) to modify, we can build assurance that the

secure domain will boot into a trusted state. It is possible that an adversary may be able to modify

the FPGA bitsteam or re-program the FPGA with a compromised bitstream, but this is beyond the

scope of this paper. Methods to prevent bitstream reversal and tampering through encryption and

various other methods have been proposed [17], [49], [50].

In order to initiate an attestation sequence, the verifier must communicate with the secure

domain. To do so, we build upon XEBRA [15] and FPGA-Based Remote-Code Integrity Veri-

fication [17], where the verifier communicates with the secure domain indirectly as explained in

Section 5.2.7.

5.2.2 Security Status

Most attestation protocols only perform a system measurement when initiated by a verifier.

The protocol presented here differs in that regard; system measurements are taken at a periodic

35

Figure 5.2: Top level remote attestation architecture.

interval as controlled by a programmable interval timer (PIT) (see Figure 5.2). The security mon-

itor module is responsible for taking system measurements (described in Section 5.2.3) and uses

them to determines the “security status”. The security status can take on two values: “PASS” and

“FAIL”, which indicate the following:

• PASS - System is in a known good state.

• FAIL - System is in an unexpected state (corresponding to device compromise).

Measurements continue to be taken and security status updated without intervention of

the verifier. Thus, when the verifier issues an attestation challenge, the prover simply reports the

current security status to the verifier. As a result, the actual attestation process between a verifier

and prover is very quick.

5.2.3 System Measurements

The security monitor takes two different measurements:

1. Checksum of executable in memory.

2. Current program counter (PC) value.

36

As is common in many attestation protocols, our protocol takes a checksum of the exe-

cutable in memory. We show how this can be accomplished both with systems featuring DMA and

those without in Sections 5.2.4 and 5.2.5 respectively. As discussed in Section 5.1.3, we claim that

executable-only proofs are not sufficiently secure as malicious code in unused portions of memory

will go undetected. To overcome this problem, our framework also probes the current PC value to

verify that it is contained within a legal set of values, PClegal.

To understand how PClegal is established, a basic understanding of linkers and linker scripts

is required. To convert source code into the binary executable format that can be loaded and read by

an embedded device, two major steps are required. First, the source files are compiled into object

files. Second, all the object files are passed through a linker which combines (links) all of the

object files and any library files into a single object file. Additionally, the linker must determine

the addresses of the target device at which the code should reside. This is accomplished with a

linker script, which allows the programmer to specify where the code should be placed in device

memory.

To establish PClegal, we can simply examine the linker script to find the starting address

of the executable (Estart). The size of the executable (Esize) can be determined by examining the

executable headers. We can calculate the minimum PC value (PCmin) and maximum PC value

(PCmax) as follows:

PCmin = Estart (5.1)

PCmax = Estart +Esize. (5.2)

Therefore the legal set of PC values (PClegal) is defined by:

{x ∈ PClegal | x >= PCmin ∧ x <= PCmax}. (5.3)

Note that equation 5.3 only holds if system code and application code are all placed in a

single contiguous memory region. The framework can easily be adapted to accommodate devices

where system code and application code are non-contiguous by adapting equation 5.3. It is also

important to note that this method for determining PClegal only works if the location of a program

37

in memory is static. A system with an operating system will make it difficult to determine the

exact location of the executable, because it could get loaded into differing parts of memory across

different runs.

With these measurements (a checksum and PC value), the security monitor can then de-

termine the current security status. The security monitor does this by comparing the memory

checksum against the golden checksum, then verifies that the current PC value is a member of

PClegal. If either of these two comparisons return false, the security status is set to “FAIL”.

To summarize, the security monitor does the following when initiated by the PIT. The

security status starts out in the “PASS” state.

1. Compute a memory checksum.

2. Probe PC.

3. Compare memory checksum against golden checksum.

4. Verify that current PC value is a member of PClegal.

5. If either step 3 or 4 fail, the security status is set to “FAIL”. If failure occurred because of

an invalid PC value, record the failing address. Otherwise, if failure occurred because of an

invalid checksum, record the failing checksum.

Note that our protocol differs from most others in that the checksum comparison is done

by the prover (in the secure domain as part of the measurement process), rather than the verifier.

Thus, system characterization need only happen once (described in Section 5.2.6) and the verifier

does not need to maintain a golden checksum. In this way, the secure domain acts as a sub-verifier,

which is responsible for verifying internal state, then relaying this information to the true verifier.

The ideal period for the PIT, and therefore how often system measurements are taken, is

explored and analyzed in Chapter 6.

5.2.4 DMA-Checksum

In this section we explain DMA-Checksum, a method for computing a memory checksum

in systems where the security monitor has direct access to memory. As shown in Figure 5.2, the

38

Figure 5.3: An example system where the secure domain does not have direct access to the appli-
cation memory.

security monitor uses an FPGA DMA module to read memory. An XOR checksum is iteratively

generated by reading the executable one word at a time and performing an XOR operation with the

checksum for each read.

This is the ideal method for checksum creation, because it will produce little or no overhead

to the application domain processor. However, DMA-Checksum only works if the security monitor

is able to directly read memory. In other words, if DMA must be initiated by the processor, we

cannot make accurate security claims. This is because if a compromised application must first be

notified that we wish to initiate a DMA transfer, then the application can simply redirect the DMA

transfer to a stored good copy of the code.

Therefore, this method of generating the checksum is limited to systems where the secure

domain has direct access to the memory where the executable is stored. Many system-on-chip

(SoC) devices contain this feature, so it is reasonable to assume that this approach is viable for

modern devices.

In the next section, we show how a memory checksum can still be generated by systems

where the secure domain does not have direct access to the device memory.

5.2.5 PRT-Checksum

In some systems, the secure domain may not have direct access to the device memory. For

example, 5.3 illustrates a system where processor and memory are in one physical package, and

the FPGA in another. In this specific example, the secure domain does not have direct access to

memory.

39

Figure 5.4: Example load redirect. A malicious application can redirect memory loads to a saved
copy of the original executable.

To read memory in a secure manner, we build upon the techniques of SWATT (see Section

3.1.2) to provide a pseudo-random traversal checksum technique we call PRT-Checksum. PRT-

Checksum differs from SWATT only in that timing is tightly controlled and measured between the

security monitor and application domain, rather than measuring timing between the verifier and

prover.

The scenario that PRT-Checksum is designed to prevent is illustrated in Figure 5.4. The

secure domain cannot simply ask the application domain to provide it with the contents of a mem-

ory location, because a compromised application can easily redirect the load to a saved copy of the

original executable. We refer to this as load-redirection.

The idea behind SWATT (and PRT-Checksum) is that in order to redirect a memory load, an

extra if-statement (possibly involving multiple comparisons) must be added to the code to check if

the memory location requested by the secure domain touches a compromised region, thus resulting

in extra clock cycles. To prevent a compromised attacker from pre-loading a memory address

in an attempt to thwart the strict timing requirements, a pseudo-random traversal of memory is

performed such that a compromised application cannot predict which address will be loaded. The

trade-offs for various traversal lengths are explored in the SWATT paper, but in our framework we

choose the traversal length to be the size of the executable code (Esize).

When prompted by the PIT, the security monitor requests a checksum from the application

domain as illustrated in Figure 5.5.

40

Figure 5.5: Checksum generation process for a system without DMA capability.

41

1. Security monitor generates a PRNG seed for the traversal.

2. Security monitor starts a hardware timer, then passes the PRNG seed to the application.

3. Application gets the next value from the PRNG.

4. PRNG value is used to calculate a random address X in the set PClegal.

5. Application reads memory at address X (Memory[X]).

6. Update checksum by performing checksum= checksum⊕memory[X]. Repeat steps 3-6 until

the specified number of iterations is complete (Esize in this case). When complete, send the

checksum to the security monitor.

7. Security monitor stops hardware timer.

8. If the timer count value is too high, set security status to “FAIL”.

At step 5, a compromised application may attempt to redirect the memory load to address

Y instead of address X. To do this, the application would have to perform an extra if-statement to

see if address X is a modified memory location. Alternatively, the application could simply add

an offset to address X, but in either case, additional instructions would be required. This would be

detected as extra cycle time in the hardware timer kept by the security monitor. In other words, if

the application takes too long to respond, the security monitor will assume that the application is

redirecting loads and the security status is set to “FAIL”.

Also note that the PRNG algorithm contained in the application domain used for checksum

generation must be the same algorithm used on the verifier side. Otherwise, the traversal used to

compute a golden checksum will not be identical to the actual traversal.

Using the protocol described in Section 5.2.2 would require the security monitor to store

a potentially infinite number of golden checksums. Therefore, in PRT-Checksum, the protocol is

modified in the following manner. The security monitor does not store copies of golden checksums,

rather, the verifier is responsible for computing golden checksums and comparing them with those

it receives. The prover need only save the latest computed checksum and the seed that produced it.

Both of these values are given to the verifier as a response to an attestation challenge, after which

42

the verifier can compute the golden checksum using the given seed and a saved clean copy of the

executable. The security monitor is still responsible for monitoring the PC and application domain

response timing.

With regards to response timing, PRT-Checksum overcomes the shortcomings described

in Section 5.1.2 because we are not dealing with non-deterministic network latency. The timing

between the security monitor and application domain can be tightly bounded and controlled.

5.2.6 System Characterization

Before system deployment, the device must be characterized so as to generate the golden

checksums and PClegal. This is as simple as taking a checksum of the memory and calculating

PClegal as described in Section 5.2.3 before deploying the system. These are then programmed

into both the security monitor and verifier.

5.2.7 Attestation Protocol

As mentioned earlier, communication between the verifier and the secure domain is facil-

itated by the application domain. Figure 5.6 illustrates the flow of communication between the

verifier and secure domain.

Because our framework focuses on Internet connected devices, we assume that the appli-

cation domain will be running some type of network stack to enable remote access and control. A

network stack is the software that implements a networking protocol such as TCP/IP.

The decision to route communication through the application domain is not an arbitrary

one. While it would certainly be possible for the secure domain to run its own network stack, we

argue that is unnecessary because the application domain already contains this functionality and

therefore would require duplication of resources. The application domain also acts as a firewall to

the secure domain, as certain traffic can be filtered out.

Attestation challenges and responses are encrypted to prevent a compromised application

domain from tampering with the request or response. Without encryption, an application domain

under adversarial control may be able to modify or forge the attestation response. In our frame-

work, the attestation challenge consists of a password, known to both the verifier and security

43

Figure 5.6: Attestation Protocol. Attestation challenges are passed to the secure domain through
the application domain.

monitor, concatenated with a one-time session token (described in Section 5.2.8). The challenge is

then encrypted with key Ks as follows: Ks < Token,Password >.

Similarly, the response contains a session token and password, but also contains the at-

testation status, checksum, and a PC address. If the security status is “FAIL”, the PC value or

checksum will correspond to either the PC value or checksum that caused the failure, respectively.

Remember that when the security monitor detects an invalid PC value or checksum, it is recorded.

Otherwise, if the status is “PASS”, then these will correspond to the PC value and checksum from

the last system measurement. For DMA-Checksum, the verifier does not specifically require the

checksum, but in some circumstances it may be useful for a verifier to have the checksum. Ad-

ditionally, it helps provide input randomness to the encryption process. The PC address is also

not explicitly required for attestation, but is useful to a system administrator who may wish to

know where the PC assertion failed. The response is encrypted with Ks as follows: Ks < Token,

Password,Attestation Status,Checksum, PC address >.

To perform encryption and decryption, both the verifier and the prover (specifically the se-

curity monitor) must possess the same symmetric encryption key Ks. A symmetric key encryption

algorithm is one in which both encryption and decryption uses the same key; in other words both

44

parties participating in the encryption/decryption process must have a copy of the same key. In

our proposed framework, Ks must be pre-programmed into both the prover secure domain and the

verifier device.

As shown in Figure 5.2, the verifier device must contain an encryption engine and the

security monitor module must also contain an encryption engine. To initiate attestation, as shown

in Figure 5.6, the verifier first encrypts the challenge, which is sent to the application domain, then

forwarded to the secure domain. The secure domain decrypts the challenge, verifies that it comes

from an authentic verifier (explained in Figure 5.2.8), then answers with an encrypted response by

passing it to the application domain which forwards it to the verifier.

The verifier uses its copy of Ks to decrypt the response and then responds to the status

accordingly. How the verifier responds to the security status is largely application specific. It

might, for example, notify a user or administrator and halt future communication with the device.

It is possible that a compromised application may refuse to forward the attestation chal-

lenge or response and simply drop it. However, if this occurs, the verifier will never receive a

valid response, and therefore assume device compromise. Using a sufficiently strong encryption

protocol makes it computationally infeasible for a compromised application to forge or tamper

with a response or challenge. Therefore, a compromised application has incentive to forward the

challenges and responses. Failure to do so will be detected quickly by the verifier.

5.2.8 Preventing Replay Attacks

To prevent replay attacks, the challenge is tagged (before encryption) with a “nonce”. A

nonce is a one-time-use number that is used in cryptographic communication to ensure that the

communication cannot be used in replay attacks. The nonce is concatenated with the data, then

encrypted. Modern encryption protocols such as AES exhibit the property that a small change in

input will result in an output that does not resemble the original output.

For example, suppose we wish to encrypt the word “Attestation” with AES-128 and send

it across a network. We can prevent replay attacks by concatenating the output of a counter with

the word “Attestation” and then encrypt. Table 5.2 shows the outputs of AES-128 using various

nonce values. Notice that for each successive input, the message was modified only slightly, but

45

Table 5.2: AES-128 encryption of various inputs with a nonce
using key 0x00001111222233334444555566667777.

Input Text (Plaintext) Encrypted Output Text (Hexadecimal)

Attestation 7a18f6c57a8420c6c875b4b5c5993343

0 Attestation 944f7d8a75e6c6766f1acbf3a408f2c2

1 Attestation a4947e2fcc4b01d25231722035d0e9d2

2 Attestation 69ab00b57695a1e65c423b2f967b837d

3 Attestation 199fa4732f606b0e48feeff00139d05c

the output changed greatly in each case. This property makes it computationally infeasible for an

attacker to forge a message with the proper nonce.

The receiving party can then decrypt the message and verify that it has not been victim of a

replay attack by checking the nonce. If the receiving party receives a message with the same nonce

twice, it can be sure that the second message was a replay attack and the message will be ignored.

In real-word applications, the nonce usually consists of a pseudo-random number.

In our framework, we use a session token as a nonce to prevent replay attacks. The session

token consists of a pseudo-random number, and is generated by both the verifier and the prover

security monitor. Both the prover and security monitor must contain an instance of a pseudo-

random number generator (PRNG) and seed it with Ks. It is imperative that both PRNG instances

use the same pseudo-random algorithm and seed value. The verifier PRNG can be implemented in

software, and the security monitor in hardware, so long as they both produce an identical stream

of random numbers given the same seed.

Figure 5.7 illustrates the attestation protocol. An explanation of each step is given as fol-

lows:

1. PRNG initialization. This step need only occur once at system initialization.

a) Verifier PRNG (PRNGv) seeded with Ks.

b) Prover PRNG (PRNGp) seeded with Ks.

46

Figure 5.7: Replay attacks are prevented by tagging each attestation request with a session token
(nonce).

2. Generate session token. The number in parenthesis indicates the token number in sequential

order for ease of reading, not necessarily the actual token value. Note that Tokenp and

Tokenv are assumed to be equivalent. Tokenv and the password are encrypted with Ks, and

then transmitted to the verifier.

a) Verifier token (Tokenv) is generated by getting the next random value in PRNGv stream.

b) Prover token (Tokenp) is generated by getting the next random value in PRNGp stream.

3. Challenge is received.

47

a) Prover receives the challenge and decrypts it using Ks.

b) Eve is sniffing traffic and saves a copy of the encrypted challenge.

4. Prover checks that Tokenp equals Tokenv. The password is also checked at this step. If

the tokens match and the password is correct, an attestation response is sent to the the ver-

ifier. The response consists of Tokenp concatenated with the attestation status (pass/fail),

password, and PC address. The response is then encrypted with Ks.

5. The verifier receives the attestation response.

a) Verifier decrypts the response using Ks.

b) Prover generates a new token Tokenv by getting the next random value in PRNGv

stream.

6. Verifier checks that Tokenp equals Tokenv and that the correct password is supplied. At this

point, the verifier responds according to the attestation status. If attestation failed, the user

might be notified or communication with the prover halted. The manner in which a verifier

responds to an attestation failure is application specific.

7. a) A new verifier session token (Tokenv) is generated by getting the next random value in

the PRNGv stream.

b) Eve replays her saved copy of Ks < Tokenv,Password > by transmitting it to the prover

in the attempt to initiate an attestation sequence.

8. Prover decrypts the challenge Ks.

9. Prover compares Tokenv with Tokenp and finds that Tokenv is invalid, indicating a replay

attack attempt.

10. Because of an invalid session token, the prover ignores the request and does not provide a

response to Eve.

To preserve the integrity of the above protocol, it is essential that the PRNG algorithm and

initial seed value remain secret, hence our choice for using Ks as the seed; Ks will already be kept

secret.

48

5.2.9 Implementation

We implemented our attestation framework on a Digilent Zybo board. The Zybo board

features a Xilinx Zynq Z-7010 SoC, which contains an ARM Cortex-A9 processor, Xilinx 7-Series

FPGA, and onboard memory controller. The board also contains 512 MB of DDR3 memory,

which interfaces with the Zynq chip via an Advanced Microcontroller Bus Architecture (AMBA)

interconnect [51], [52]. Figure 5.8 shows a high level architecture of our implementation. We

define the entire programmable logic (FPGA) portion of the chip as our secure domain, and the

processing system as the application domain. Because the secure domain is implemented in an

FPGA, the application domain cannot modify it, giving us a hardware root of trust.

Figure 5.8: Remote attestation implementation on Zybo board.

The secure domain components, including the PIT, security monitor, and DMA engine were

all written in Verilog. For encryption/decryption we used the open source “Tiny AES” module from

49

OpenCores.org [53]. Application and verifier software components were written in C, using the

Xilinx SDK development environment.

The security monitor was implemented as an AMBA Master, meaning that it is allowed to

initiate AMBA bus transactions. This is necessary so that the security monitor can initiate memory

reads to the DDR controller. All communication between the application and the security monitor

happens through a register interface.

The ARM processor does not provide direct access to the PC register. Therefore, to de-

termine the PC value, we make use of the ARM interrupt mechanism. When an interrupt occurs,

the processor must save the current context by pushing all of the register values onto the stack,

and placing the return address in the “link register”. This is done so that when the ISR finishes

execution, the processor can return to the same state it was in before the interrupt occurred, includ-

ing the PC value where execution will resume. We utilize this mechanism by raising a hardware

interrupt and inserting a assembly routine that executes before the ISR. The assembly routine saves

the value of the link register, subtracts 4 (since the return address in the link register is the address

of the next instruction to be executed), and then stores it in a global variable. The ISR then reads

the global PC variable and writes it to the security monitor.

We ensure that the assembly routine and ISR described above have not been modified

by taking the memory checksum before performing the PC probe interrupt. Thus, if the ISR or

assembly routine have been modified, it will be manifest in the memory checksum.

To generate golden checksums, we created a utility called Checksum-Gen that is capable

of creating both PRT and DMA checksums given an input binary executable. While our tool is

capable of creating both types of checksums, only one type will be needed for a given system. As

a reminder, PRT checksums are only required for systems with no DMA capability. The tool also

determines the length of the .text section by examining the .elf headers. The .text section contains

the application code, therefore we use this number for Esize in determining PClegal.

To determine PClegal, we use Esize from Checksum-Gen, then find Estart by manually ex-

amining the linker script that is generated by Xilinx SDK (the development environment we use

for creating application domain software). Using these values, we can compute PCmin and PCmax

and therefore PClegal.

50

CHAPTER 6. RESULTS AND ANALYSIS

In Chapter 5 we presented the framework for a remote attestation protocol and showed how

it can be implemented both on systems with DMA capability and those without. In this chapter,

we present our test results and analysis.

The tests performed in this chapter were run using our hardware implementation described

in Section 5.2.9. For the software, we use a test application, consisting of a Tic-Tac-Toe game.

This program was chosen because it utilizes many of the Zybo board system components. The

program computes Tic-Tac-Toe moves using the minimax algorithm, which works by recursively

computing a score for each potential next move, based on all possible game outcomes of that move.

The move with the highest score is chosen as the next move. The algorithm is processor intensive,

especially at the beginning of the game where the number of possible outcomes is large.

Not only is the test application processor-intensive, but it makes extensive use of an LCD

display. Through DMA writes to a video buffer, the processor is able to display images to the LCD

display. The moves for player 1 are randomly calculated, then player 2 responds by computing the

next best move via the minimax algorithm. The program is roughly 164 KB in size.

6.1 Functional Results

In this section we present experimental results that further motivate several of the design

choices made for our attestation framework. We then present the functional results of our attesta-

tion framework – using both the DMA-Checksum method and the PRT-Checksum method. For the

functional tests presented here, the PIT interval is set to 50ms. Our desktop computer acts as the

verifier device, and is connected to the prover via a serial connection. We use a serial connection

for ease of test and proof-of-concept, but communication could just as easily be performed over

an Internet connection. Also, for ease of test and demonstration of proof-of-concept, we are not

performing encryption or decryption. TinyAES only requires 29 clock cycles to encrypt or de-

51

crypt, and since this only occurs when a challenge is issued by the verifier, the overhead induced

by encryption/decryption is negligible.

6.1.1 Memory Read Time

To further motivate the design choice to take a checksum of just the executable and not the

entire memory layout, we measure the time it takes our implementation to generate a checksum

of various executable sizes. Figure 6.1 shows the results. For comparison purposes, we also mea-

sured the time required to generate a simple software checksum by sequentially reading memory

and performing the XOR operation. These measurements are recorded in the figure and labeled

“software”.

0

50

100

150

200

250

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

To
ta

l T
im

e
(S

ec
o

n
d

s)

Memory Size (MB)

Total Time Required to Generate a Checksum

Software Pseudo-Random Traversal DMA

Figure 6.1: Memory (512 MB DDR3) read time for various read lengths.

52

As expected, PRT-Checksum adds significant overhead to the checksum process. The

added overhead comes from the process of generating random numbers and performing check-

sum calculations. Our implementation used a linear-feedback shift register for generating random

numbers, followed by a modulus operation to map the pseudo-random value to an address in the

proper memory range. Perhaps an optimized PRNG algorithm and a computation without modulus

or division would result in less overhead. Regardless, PRT-Checksum will always result in more

overhead than DMA-Checksum.

As previously discussed, without probing the PC value, a checksum of the entire memory

layout would be required to ensure that extraneous code isn’t being stored in an unused portion of

memory. Our results show that to generate a checksum of the entire 512MB memory for our imple-

mentation takes approximately 35 and 232 seconds for the DMA-Checksum and PRT-Checksum

respectively. Thus, if there are large portions of unused memory, an executable-only checksum

will result in much less overhead and latency.

6.1.2 DMA-Checksum

We first test the functionality of attestation using DMA-Checksum. To start, we character-

ize the system in the following two steps:

1. Generate the golden checksum of the test program executable.

2. Calculate PClegal.

To generate the golden checksum on the verifier side, we use our Checksum-Gen tool with

the test executable as input. Figure 6.2 shows the two outputs of the tool: the size of the .text

section (the executable code), and the resulting golden checksum of the executable. As a reminder,

the size of the executable (Esize) is used in calculating PClegal.

To calculate PClegal we first examine the linker script to find Estart , which we find to

be 0x00100000. Using Estart and Esize we compute PCmin and PCmax to be 0x00100000 and

0x001281BC respectively. Finally, we compute PClegal with {x ∈ PClegal | x >= PCmin ∧ x <=

PCmax}.

53

Figure 6.2: Output of the Checksum-Gen tool for a DMA-Checksum. The output is the golden
checksum, as computed by providing the executable file as input.

Figure 6.3: DMA-Attestation results as shown by the verifier. The output consists of the prover re-
sponse after initiation of an attestation challenge. This response reflects the system measurements
of an unmodified executable.

The golden checksum and PClegal are both programmed into the FPGA bitstream as part

of the security monitor and loaded onto the Zybo board. We then initiate an attestation challenge

via the serial console, and receive the output shown in Figure 6.3.

Remember from Section 5.2.7 that the attestation response contains a token, password,

attestation status, checksum, and PC address. The output of our verifier program (shown in Figure

6.3) only shows the security monitor attestation status, computed checksum and PC value. The

password and token are only used internally; if either are incorrect the verifier will display an

error message. The “PASS” status indicates that the application memory is intact and the security

monitor has not detected an invalid PC value. As a sanity check, we can manually verify that

the most recently computed security monitor checksum and PC value (as given in Figure 6.3)

are valid. Indeed, the security monitor checksum matches the golden checksum (as computed

by Checksum-Gen in Figure 6.2) and the PC value is less than 0x001281BC and greater than

0x00100000. Remember that the attestation status is all the verifier requires to make security

claims (in DMA-Checksum), but the checksum and PC value are included in the response because

they may be of value to the verifier, as discussed in Section 5.2.7.

Next we load an executable with a slight modification – one line of altered C code. We load

the modified code onto the Zybo board and initiate an attestation challenge via the serial console.

The results of the attestation are shown in Figure 6.4. As expected, we see a “FAIL” attestation

54

Figure 6.4: DMA-Attestation results as shown by the verifier. The output consists of the prover re-
sponse after initiation of an attestation challenge. This response reflects the system measurements
of a modified executable.

Figure 6.5: DMA-Attestation results as shown by the verifier. The output consists of the prover re-
sponse after initiation of an attestation challenge. This response reflects the system measurements
of a system with extraneous code placed in unused memory.

status. The checksum and PC values help provide some insight as to why attestation fails. The PC

value is greater than 0x00100000 and less than 0x001281BC, indicating that the processor has only

been executing instructions that belong to PClegal. However, the checksum we received from the

security monitor – 0x0BE2A1AF – does not match our golden checksum. Because the executable

code was modified, the security monitor computed a different checksum, and we were successful

in detecting altered code.

Finally, we ensure that the security monitor can properly detect malicious code running in

an unused portion of memory. We load and run the original executable that has been augmented

with additional code outside PClegal. Again, we initiate the attestation via the serial console and

the resulting output is shown in Figure 6.5. Notice that the checksum in Figure 6.5 is correct,

which is expected because memory contents did not change in the range of the original executable.

However, the results shows that an invalid PC value (0x00133A68) was detected, therefore the

security monitor shows “FAIL” status.

6.1.3 PRT-Attestation

To prove the validity of PRT-Checksum, we must ensure that we can detect load-redirects.

To do this, we measure how long it takes the application to perform a memory read, then perform

the same measurement with an added if-statement in the code. We perform this measurement with

the hardware timer built into the security monitor to achieve cycle-accurate timing. The code for

55

these two measurements is shown in listings 6.1 and 6.2. We performed 10 consecutive reads, each

with a random address (to better simulate a pseudo-random traversal) and show the results in Table

6.1.

1 t i m e r c l e a r () ;

2 t i m e r s t a r t () ;

3

4 r e a d d a t a = X i l I n 3 2 (r e a d a d d r e s s) ;

5

6 t i m e r s t o p () ;

Listing 6.1: Memory Read Code

1 t i m e r c l e a r () ;

2 t i m e r s t a r t () ;

3

4 i f (r e a d a d d r e s s >= min && r e a d a d d r e s s <= max) {

5 r e a d d a t a = X i l I n 3 2 (r e a d a d d r e s s + m a l i c i o u s o f f s e t) ;

6 }

7 e l s e {

8 r e a d d a t a = X i l I n 3 2 (r e a d a d d r e s s) ;

9 }

10

11 t i m e r s t o p () ;

Listing 6.2: Memory Read Code With Added If-Statement

The average read time (in cycles) for the 10 memory reads was 142.4 using the original

code (listing 6.1), and 159.4 with the added if-statement (listing 6.2). We observe that, on average,

the addition of an if-statement incurs additional delay; therefore PRT-Checksum will be feasible

on our system.

56

Table 6.1: The time required (in cycles) for 10 pseudo-random memory
reads with and without an added if-statement.

Read number and time (in cycles) taken

1 2 3 4 5 6 7 8 9 10

Original (no if-statement) 304 130 130 96 132 118 126 126 130 132

Added if-statement 290 146 146 112 156 134 160 154 154 142

To perform PRT-Checksum, we must first characterize the system in the following ways:

1. Determine PClegal

2. Determine acceptable application domain response time, Rmax.

The method used to calculate PClegal for PRT-Checksum is identical to the process used in

DMA-Checksum. Because we are using the same test program, PClegal will be identical to that of

Section 6.1.2.

Next, we calculate the acceptable application domain response time, Rmax – i.e. the max-

imum allowable time for an application to generate a checksum (steps 3 - 6 in Figure 5.5). We

do this by characterizing the response time over 100 attestation challenges. Table 6.2 shows the

minimum, maximum, and average response times of these 100 challenges. Additionally, we per-

form the same measurements on an application containing an added if-statement (similar to the

one shown in listing 6.2) in the attestation code. We then define Rmax as follows:

Rmax = Omax +
Amin−Omax

2
, (6.1)

where:

1. Omax represents the maximum recorded response time for the original code, and

2. Amin represents the minimum recorded response time for the code with the added if-statement.

The intuition behind equation 6.1 is that it is entirely possible that we did not measure the

true Amin or Omax, and to reduce the probability of false positives or negatives, we compute Rmax

57

Table 6.2: Prover response time characterization. These values correspond to the minimum, max-
imum and average times (in cycles) required for the attestation code to

compute a checksum. Obtained over 100 runs.

Minimum (cycles) Maximum (cycles) Average (cycles)

Original (no if-statement) 7422726 7470896 7452021.6

Added if-statement 7632450 7731428 7694039.7

Figure 6.6: A conceptual depiction of the probability of various application domain response times
for the original code (O) and the code with the added if-statement (A). We compute Rmax such that
it lies halfway between our measured Omax and Amin. This is done to minimize the likelihood of
false positives and negatives from the security monitor.

to be halfway between our measured Amin and Omax. See Figure 6.6 for a conceptual visualization

of the response time probability and Rmax selection. Note that Figure 6.6 does not represent the

response time probability based on our measured response times; it is merely intended to aid in the

understanding of the intuition behind equation 6.1.

To summarize, we set Rmax to 7551673 as calculated by equation 6.1. Thus, if the appli-

cation domain ever takes longer than 7551673 cycles to compute a checksum, then the security

monitor will set the attestation status to “FAIL”. We program Rmax and PClegal into the FPGA

bitstream and load it onto the Zybo board. We load our unmodified executable and initiate an

attestation request via the serial console. The response from the prover to the verifier is shown in

Figure 6.7. The “PASS” status indicates that the secure domain has not detected load-redirection

up to this point.

58

Figure 6.7: PRT-Attestation results as shown by the verifier. The output consists of the prover re-
sponse after initiation of an attestation challenge. This response reflects the system measurements
of an unmodified executable.

Figure 6.8: Checksum-Gen for PRT-Checksum with seed provided by the security monitor as
input.

Remember that in PRT-Checksum, it is the verifier’s responsibility to perform checksum

comparison. To do this, it must first compute the golden checksum based on the seed contained in

the prover response (0xE4E0583B in this case). We use this seed as input to our Checksum-Gen

utility and view the resulting checksum in Figure 6.8. Indeed the checksum as provided by the

security monitor (0x5D6FBF5D) in Figure 6.7 matches the computed golden checksum.

Next we ensure that PRT-Checksum is capable of detecting a modified executable. In the

same manner as done in Section 6.1.2, we modify the executable by altering one line of code. We

load and run the modified executable and initiate an attestation challenge. The resulting response

is shown in Figure 6.9. We run Checksum-Gen with the seed from the response, and find our

golden checksum to be 0xc55f9b3c. The golden checksum does not match the one received from

the security monitor, therefore we assume device compromise. Note that the attestation status

indicates “PASS”; this is because in PRT-checksum, the attestation status only provides us with

information regarding the PC value (since the security monitor cannot verify the checksum).

The next test is to ensure that code injected into an unused portion of memory can be de-

tected. We set up this test in the same manner as Section 6.1.2 and receive the output shown in

Figure 6.10. First, notice that the attestation status is “FAIL”, thus indicating a failed PC asser-

59

Figure 6.9: PRT-Attestation results as shown by the verifier. The output consists of the prover re-
sponse after initiation of an attestation challenge. This response reflects the system measurements
of a modified executable.

Figure 6.10: PRT-Attestation verifier output consisting of the prover response after initiation of an
attestation challenge. This response reflects the system measurements of a system with extraneous
code placed in unused memory.

tion. Manual examination of the PC value from the prover response reveals that a PC value of

0x0013853D was detected by the security monitor, which is not a member of PClegal.

Finally, we test that PRT-Checksum is capable of detecting an added if-statement in the

attestation code. We add the if-statement from listing 6.2 to the checksum-generating code of

the executable, then load and run it. The attestation returned a “FAIL” status as expected, thus

demonstrating the effectiveness of PRT-Checksum in detecting added if-statements.

To test for false-positives, we load the program with the added if-statement and perform

1000 attestation challenges from the verifier serial console, each of which resulted in a “FAIL”

attestation status. We then test for false-negatives by loading the original executable into device

memory and performing another 1000 attestations. In each case, the checksum received matched

the golden checksum, and attestation status was “PASS”.

We therefore conclude that our chosen value of Rmax provides high resiliency to both false

positives and negatives. It is worth noting however, that smaller programs will have a smaller gap

between Amin or Omax due to a smaller quantity of if-statements being performed in compromised

60

code. Therefore we speculate that a smaller executable may result in a higher probability of false

positives or negatives.

6.2 Performance Results

In this section, we measure the performance impact of our attestation protocol on the test

application. After all, system designers will likely be hesitant to add security features that signifi-

cantly degrade their system performance.

We establish a test baseline by running the test program of 10 automated tic-tac-toe games

with the security monitor disabled. Each test (set of 10 games) is seeded with the same value to

maintain consistency across tests. We found that 10 games takes 4.56×109 processor cycles.

To measure the performance impact of the attestation mechanism, we enable the security

monitor and measure the test program cycle count with various PIT intervals. For example, if the

PIT timer period is set to 10 milliseconds, the security monitor will perform system measurements

every 10 milliseconds. Figure 6.11 shows the impact of the security monitor in terms of total clock

cycles required to run the test program to completion.

Interestingly, PRT-Checksum does not add significantly more overhead than DMA-Checksum

as long as the security monitor period is greater than approximately 500 milliseconds. DMA-

Checksum results in a steady .001% overhead, while PRT-Checksum hovers at approximately

1% until the period decreases below about 500 milliseconds. Periods less than 500 milliseconds

begin to result in exponentially increasing overhead. In Figure 6.12 we relate these numbers to

the baseline by computing the percentage overhead. The percentage overhead represents the total

percentage of clock cycles that are lost to the application because of attestation.

Next we use the built-in Xilinx-SDK profiler to observe which parts of the program are

utilizing the processor. Figure 6.13 shows the results. When we attempted to profile processor

usage for DMA-checksum, the profiler did not have the granularity to detect the PC probe ISRs.

Also, the Xilinx-SDK profiler uses interrupts to sample the software state, therefore, if the profiler

interrupt priority is lower than that of the PC-probe interrupt, then the PC-probe ISR may not get

profiled. However, with the results from the percent overhead measurements, we can still conclude

that the percentage of processor time used in DMA-checksum is negligible.

61

4E+09

4.5E+09

5E+09

5.5E+09

6E+09

6.5E+09

100095090085080075070065060055050045040035030025020015010050

P
R

O
C

ES
SO

R
 C

YC
LE

S

PERIOD (MS)

PROCESSOR CYCLES VERSUS PERIOD

PRT DMA

Figure 6.11: Clock cycles versus security monitor period.

0

10

20

30

40

50

60

70

80

10009509008508007507006506005505004504003503002502001501005010

P
ER

C
EN

T
O

V
ER

H
EA

D

PERIOD (MS)

OVERHEAD PERCENTAGE

SWATT DMA

Figure 6.12: Percentage of total clock cycles lost for attestation.

62

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10009509008508007507006506005505004504003503002502001501005010

P
ER

C
EN

TA
G

E
P

R
O

C
ES

SI
N

G
 T

IM
E

PERIOD (MS)

TEST PROGRAM PROFILER RESULTS BY PERIOD

Main Loop% PRT Code % Random Number Gen %

Figure 6.13: PRT-Attestation Processor Utilization.

One drawback of our method for probing the PC is that extraneous code will only be de-

tected as long as it is currently running when a system measurement takes place. For example, if

malicious code is placed in some unused portion of memory, it will be detected only if we happen

to probe the PC while the malicious code is being executed. Imagine a compromised application

where approximately 10% of the CPU time is spent in malicious code. On average, it would take

10 PC probes to detect the malicious code.

We perform an experimental test where we reduce the number of addresses in PClegal by

10%. In other words, one-tenth of the program addresses are now deemed illegal. We do this to

simulate a program that spends a small fraction of its execution time in “malicious” code. We then

compute the average time required to detect an illegal PC value over 50 runs of our test program.

As a reminder, the test program plays 10 complete games of tic-tac-toe. The results are shown in

Figure 6.14. We also plot the expected average time to detect an illegal PC value.

63

0

2000

4000

6000

8000

10000

12000

100095090085080075070065060055050045040035030025020015010050

A
V

ER
A

G
E

TI
M

E
TO

 D
ET

EC
T

SECURITY MONITOR PERIOD (MS)

AVERAGE TIME TO DETECT COMPROMISE

Expected Average Observed Average

Figure 6.14: Average Time To Detect Illegal PC versus security monitor period.

There is a possibility that the malicious code and security monitor period could become

synchronized in such a way that the malicious code never gets detected. In other words, there

is a chance that the PC probe always occurs while the malicious code is not running. To help

mitigate this concern, the security monitor period could be set to a pseudo-random value after each

measurement is made.

6.3 Discussion

From the functional and performance results, we demonstrated that our attestation frame-

work can be applied to various types of hardware systems. From our results, DMA-Checksum

is clearly advantageous over PRT-Checksum. The increased overhead and additional complexity

due to the tight timing requirements in PRT-Checksum make it inferior to DMA-Checksum, but

sufficient (given proper security monitor period selection) for systems without DMA capability.

Ultimately, we have demonstrated the flexibility and feasibility of our framework.

64

6.4 Analysis

In this section we present an analysis of the attestation framework. First, we present a

protocol analysis with regard to the security properties discussed in Section 2.3. We then present a

security analysis with respect to the threat model defined in Chapter 4. Finally, we discuss benefits

and limitations of the proposed attestation framework.

6.4.1 Protocol Analysis

1. Measurement Diversity. We have shown how measurement diversity can be achieved through

both a checksum of executable code and PC monitoring. Because the secure domain is

implemented in programmable logic, a system designer could easily extend the framework

to include additional measurements specific to the platform. For example, some embedded

devices contain memory mapped configuration registers that are accessed through reads and

writes to specific memory addresses. In a similar fashion to the memory checksum, one

could create a checksum of configuration register contents.

2. Domain Separation. Our attestation protocol achieves strong domain separation by imple-

menting the secure domain in FPGA hardware. It is possible that a software vulnerability

could allow FPGA bitstream modifications, but as mentioned previously, bitstream security

is beyond the scope of this thesis.

3. Self-Protection. The secure domain acts as a root of trust because it is implemented in

hardware. Therefore we can assume that it boots up into a secure state. We believe that our

implementation is small enough that it could possibly be formally verified, but this is left for

future work.

4. Exclusive Key Access. Cryptographic keys are not externally accessible to anything outside

the security monitor. The application domain is physically barred from key access.

5. Immutability. In DMA-Attestation, the protocol is immutable because attestation function-

ality resides purely in hardware. PRT-Attestation on the other hand, does contain some mu-

table components, but is designed in such a way that the secure domain can detect tampering

of these components.

65

6. Controlled Invocation. The protocol described in Section 5.2.7 prevents unauthorized parties

from initiating attestation by requiring a password and valid session token. Using sufficiently

strong encryption and PRNG algorithms make it computationally infeasible for an adversary

to forge an attestation request.

6.4.2 Security Analysis

1. Software Vulnerabilities. Even with careful security design practices, it is impossible to

predict how an attacker might attempt to abuse and exploit a system. The attestation protocol

presented here does not prevent software vulnerabilities, but it does provide a means whereby

we can remotely detect compromise.

2. Denial of Service. Denial of service attacks are a major security issue and continue to grow

in prevalence. We believe that the remote attestation protocol presented here could help

combat denial of service attacks by providing a means to detect botnet malware, such as

Mirai, that often goes unnoticed on a device.

3. Buffer Overflow. The attestation protocol presented here does not prevent buffer overflows,

but as previously mentioned, it provides a reliable protocol to detect adversarial tampering.

However, it is possible that remote attestation could serve as a deterrent to attempted exploits.

4. Replay Attacks. Section 5.2.7 thoroughly describes how replay attacks are prevented in our

attestation framework.

5. Return Oriented Programming. Unfortunately, the attestation framework presented here does

not protect against ROP techniques. This is because ROP takes advantage of code that al-

ready exists on the system without modifying the executable. Additionally, the PC will be

executing instructions within the legal range, so this approach cannot detect ROP exploits.

6.4.3 Benefits

Flexibility

One of the major advantages of the attestation framework presented here is that it can

easily be updated or adapted to suit various types of systems. We have already demonstrated

66

how PRT-Checksum can be used for systems without DMA, and DMA-Checksum for those with

DMA capability. Security is largely a “cat and mouse” game, meaning that the idea of security

is constantly changing and adapting. A “secure” system may suddenly be made insecure by the

discovery of a new vulnerability, at which point the system designers may be able to make it

secure again by patching the vulnerability. The ability to update the security monitor and other

secure domain components is extremely advantageous. If a previously unknown vulnerability

is discovered, the FPGA can be updated to close the vulnerability. However, the FPGA update

process itself may present new security vulnerabilities, but this is beyond the scope of this thesis.

Secure remote update mechanisms are an entirely different area of research.

Cryptographic algorithms have a finite lifetime. As computational power increases and be-

comes cheaper, cryptographic algorithms must be updated and strengthened to resist compromise.

If current cryptographic algorithms become deprecated and new ones replace them, it would be

relatively easy to update the attestation framework to utilize the latest algorithms. This could per-

haps even be achieved remotely, through secure remote update processes.

Low Overhead

We have shown that DMA-Checksum attestation incurs a very small performance penalty

on a system (.001%), and below a certain execution frequency, PRT-Checksum also incurs low

system overhead. In an ideal system with DMA capability, the security monitor operates with min-

imal processor intervention and therefore essentially negligible overhead.

Fast Verifier-Prover Response Time

In essence, attestation is continually taking place in our attestation protocol. The security

monitor periodically makes system measurements and determines security status. Therefore, when

a verifier sends an attestation challenge, it is essentially just querying the current security status

within the security monitor. This means that the verifier does not have to wait for the prover to

compute a proof, as is common in many attestation protocols. This is especially beneficial for large

programs, where (as demonstrated in Section 6.1.1) the time to generate a memory checksum is

non-trivial. This is especially important for user-facing applications where response time is crucial

to user experience.

67

6.4.4 Limitations

Cost

The major drawback to this attestation framework is the added cost of the FPGA. However,

SoCs integrating FPGAs with a processor are becoming more commonplace. As the cost of FP-

GAs decline, we believe that FPGA cost will become less of an issue in the near future.

Power

A major consideration in embedded systems design is power draw. Mobile phones and

other devices that run on battery power dominate our daily lives. Obviously, battery powered

devices must be designed so as to maximize battery life. Our attestation framework may not be

well suited to battery powered devices, but a thorough power study would be required to make any

claims in this regard.

The addition of an FPGA to an embedded system will inevitably consume more power than

one without. However, low-power FPGAs do exist and FPGA designs are continually improving

and becoming more power efficient.

Bitstream Security

We briefly mentioned the issue of bitstream security in Section 5.2.1. For this attestation

protocol to be secure, it is imperative that the bitstream be immutable. If an adversary is able to up-

load or modify the bitstream, therefore modifying the secure domain, then we can no longer make

secure claims about our system. Methods to ensure trust in FPGA bitstreams have been explored

and are an active area of research [17], [49], [50].

Single Process Systems

Currently, this protocol is only suitable for single process systems with a single thread of

execution. Therefore, a system requiring an operating system (OS) would not be well suited for

this type of attestation. An OS will determine where to load an executable into memory (rather

than a linker script); therefore the task of calculating PClegal becomes problematic. It could still be

possible to perform DMA-Checksum on a device running an OS, but the security monitor would

need to have information regarding the executable location in memory.

68

CHAPTER 7. CONCLUSION

Cyber-crime is at an all time high, and will likely become more commonplace. More and

more devices are being built with Internet connectivity, opening them up to cyber attacks. These

devices are often designed without security in mind, leaving them vulnerable to attack. The work

in this thesis builds upon previously proposed attestation techniques, namely SWATT and FPGA-

Based Remote Code Integrity Verification, to provide a flexible framework for remote attestation

of Internet connected embedded devices.

7.0.1 Contributions

The main contributions of this thesis are summarized as follows:

• A flexible remote attestation framework that is adaptable and extensible.

• A proof-of-concept implementation of the framework to demonstrate feasibility. The imple-

mentation successfully detects tampered executables and unauthorized code stored in mem-

ory.

• Demonstration of adaptability to systems with different hardware features.

• A study of the performance impact of various security monitor periods.

• A survey of embedded systems security and proposed attestation techniques.

7.0.2 Future Work

As mentioned in the previous chapter, our framework is vulnerable to ROP techniques. An

area of future work would be to build in resistance to ROP, perhaps through implementations of

existing ROP defense mechanisms. Also, because the security monitor frequently probes the PC,

69

it may be possible to construct some type of histogram or control tree, representing the histor-

ical execution path. Using this data, the security monitor could possibly predict if control flow

seems unusual, hence detecting ROP exploit. We are unsure if this is feasible in FPGA hardware,

however, or if a secure co-processor would be required for such a task.

Another interesting area not explored in this paper would be the power impact of the pro-

tocol. We have demonstrated correct functionality and feasibility of the protocol, but if power

requirements are too steep, it may not be of much utility to embedded systems designers wishing

to optimize for battery life.

With the growing popularity of operating systems such as Linux, the attestation framework

presented here would be even more useful if it could be adapted to work with multi-process oper-

ating systems. This would require the security monitor to have some knowledge regarding the OS

memory management, so as to allow the security monitor to construct checksums of the correct

memory regions.

Currently, many of the security monitor parameters (such as shared symmetric keys, PClegal,

etc.) must be hard-programmed into the FPGA bitstream. A configuration protocol that would

allow a verifier to update security monitor parameters could be extremely beneficial to the frame-

work. Additionally, a key exchange protocol such as Diffie-Hellman would be useful for updating

the shared keys in a secure manner.

70

REFERENCES

[1] P. E. Ross, “Hackers Commandeer a Moving Jeep - IEEE Spectrum,” p. 1, 2015.
[Online]. Available: http://spectrum.ieee.org/cars-that-think/transportation/self-driving/
hackers-take-control-of-a-moving-jeep 1

[2] A. Drozhzhin, “Black Hat USA 2015: The full story of how that Jeep was hacked,” 2015. [On-
line]. Available: https://www.kaspersky.com/blog/blackhat-jeep-cherokee-hack-explained/
9493/ 1

[3] Gartner Research, “Gartner Says 8.4 Billion Connected ”Things” Will Be in Use in 2017,
Up 31 Percent From 2016,” 2017. [Online]. Available: https://www.gartner.com/newsroom/
id/3598917 1

[4] J. Radcliffe, “Hacking Medical Devices for Fun and Insulin: Breaking the Human SCADA
System,” in Black Hat Conference presentation slides, 2011. 1

[5] N. Allen, “Cybersecurity weaknesses threaten to make smart cities more costly and dangerous
than their analog predecessors,” USApp–American Politics and Policy Blog, 2016. 1

[6] A. Stavrou, J. Voas, I. Fellow, C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “DDoS
in the IoT: Mirai and Other Botnets,” Computer, vol. 50, no. 7, pp. 80–84, 2017. 1

[7] M. Patton, E. Gross, R. Chinn, S. Forbis, L. Walker, and H. Chen, “Uninvited connections: A
study of vulnerable devices on the internet of things (IoT),” Proceedings - 2014 IEEE Joint
Intelligence and Security Informatics Conference, JISIC 2014, pp. 232–235, 2014. 1

[8] Z. K. Zhang, M. C. Y. Cho, C. W. Wang, C. W. Hsu, C. K. Chen, and S. Shieh, “IoT security:
Ongoing challenges and research opportunities,” Proceedings - IEEE 7th International Con-
ference on Service-Oriented Computing and Applications, SOCA 2014, pp. 230–234, 2014.
1, 20

[9] B. A. Kuperman, C. E. Brodley, H. Ozdoganoglu, T. N. Vijaykumar, and A. Jalote, “Detection
and Prevention of Stack Buffer Overflow Attacks,” Communications of the ACM, vol. 48,
no. 11, pp. 50–56, nov 2005. 1

[10] C. Cowan, F. Wagle, Calton Pu, S. Beattie, and J. Walpole, “Buffer Overflows: Attacks
and Defenses for the Vulnerability of the Decade,” in Proceedings DARPA Information Sur-
vivability Conference and Exposition. DISCEX’00, vol. 2. IEEE Comput. Soc, 2003, pp.
119–129. 1

[11] R. Langner, “Stuxnet: Dissecting a Cyberwarfare Weapon,” IEEE Security and Privacy,
vol. 9, no. 3, pp. 49–51, 2011. 2

71

http://spectrum.ieee.org/cars-that-think/transportation/self-driving/hackers-take-control-of-a-moving-jeep
http://spectrum.ieee.org/cars-that-think/transportation/self-driving/hackers-take-control-of-a-moving-jeep
https://www.kaspersky.com/blog/blackhat-jeep-cherokee-hack-explained/9493/
https://www.kaspersky.com/blog/blackhat-jeep-cherokee-hack-explained/9493/
https://www.gartner.com/newsroom/id/3598917
https://www.gartner.com/newsroom/id/3598917

[12] A. Francillon, Q. Nguyen, K. B. Rasmussen, and G. Tsudik, “A Minimalist Approach to
Remote Attestation,” Proceedings of the Conference on Design, Automation & Test in Europe,
no. 244, pp. 1–6, 2014. 2, 7

[13] A. Seshadri, A. Perrig, L. Van Doom, and P. Khosla, “SWATT: SoftWare-based ATTestation
for embedded devices,” Proceedings - IEEE Symposium on Security and Privacy, vol. 2004,
pp. 272–282, 2004. 2, 16, 31

[14] A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. Khosla, “SCUBA: Secure Code Update
By Attestation in sensor networks,” WiSe ’06: Proceedings of the 5th ACM workshop on
Wireless security, pp. 85–94, 2006. 2

[15] N. Agarwal and K. Paul, “XEBRA: XEn Based Remote Attestation,” in IEEE Region 10
Annual International Conference, Proceedings/TENCON. IEEE, nov 2017, pp. 2383–2386.
2, 11, 15, 35

[16] P. Koeberl, S. Schulz, A. Sadeghi, and V. Varadharajan, “TrustLite: A Security Architecture
for Tiny Embedded Devices,” Proceedings of the European Conference on Computer Systems
(EuroSys), pp. 1–14, 2014. 2

[17] C. Basile, S. D. Di Carlo, and A. Scionti, “FPGA-based remote-code integrity verification
of programs in distributed embedded systems,” IEEE Transactions on Systems, Man and
Cybernetics Part C: Applications and Reviews, vol. 42, no. 2, pp. 187–200, 2012. 2, 18, 35,
68

[18] K. Eldefrawy, A. A. Francillon, D. Perito, G. Tsudik, K. E. Defrawy, A. A. Francillon, D. Per-
ito, and G. Tsudik, “SMART: Secure and Minimal Architecture for (Establishing a Dynamic
Root of Trust,” in NDSS 2012, 19th Annual Network and Distributed System Security Sympo-
sium, February 5-8, San Diego, USA, vol. 12, San Diego, UNITED STATES, 2012, pp. 1–15.
2, 18

[19] D. Fu and X. Peng, “TPM-based remote attestation for Wireless Sensor Networks,” Tsinghua
Science and Technology, vol. 21, no. 3, pp. 312–321, 2016. 2

[20] A. Mey and S. Hoff, “Nearly Half of All U.S. Electricity Customers Have Smart Meters,”
2017. [Online]. Available: https://www.eia.gov/todayinenergy/detail.php?id=34012 5

[21] X. Fang, S. Misra, G. Xue, and D. Yang, “Smart Grid The New and Improved Power Grid:
A Survey,” IEEE Communications Surveys & Tutorials, vol. 14, no. 4, pp. 944–980, 2012. 5

[22] B. Krebs, “FBI: Smart Meter Hacks Likely to Spread,” 2012. [Online]. Available:
https://krebsonsecurity.com/2012/04/fbi-smart-meter-hacks-likely-to-spread/ 5

[23] C. W. Ten, C. C. Liu, and G. Manimaran, “Vulnerability Assessment of Cybersecurity for
SCADA Systems,” IEEE Transactions on Power Systems, vol. 23, no. 4, pp. 1836–1846,
2008. 7

[24] Y. Chahid, M. Benabdellah, and A. Azizi, “Internet of things security,” 2017 International
Conference on Wireless Technologies, Embedded and Intelligent Systems, WITS 2017, 2017.
7

72

https://www.eia.gov/todayinenergy/detail.php?id=34012
https://krebsonsecurity.com/2012/04/fbi-smart-meter-hacks-likely-to-spread/

[25] G. Coker, J. Guttman, P. Loscocco, A. Herzog, J. Millen, B. O’Hanlon, J. Ramsdell, A. Segall,
J. Sheehy, and B. Sniffen, “Principles of remote attestation,” International Journal of Infor-
mation Security, vol. 10, no. 2, pp. 63–81, 2011. 7

[26] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptography.
CRC Press, 1996. 8

[27] C. Moratelli, S. Johann, M. Neves, and F. Hessel, “Embedded virtualization for the design of
secure IoT applications,” Proceedings of the 27th International Symposium on Rapid System
Prototyping Shortening the Path from Specification to Prototype - RSP ’16, pp. 2–6, 2016. 11

[28] R. Kaiser and S. Wagner, “Evolution of the PikeOS microkernel,” First International Work-
shop on Microkernels for Embedded Systems, no. January, 2007. 11

[29] G. Heiser and B. Leslie, “The OKL4 Microvisor: Convergence point of microkernels and
hypervisors,” Proceedings of the first ACM asia-pacific workshop . . . , pp. 19–23, 2010. 11

[30] A. Patel, M. Daftedar, M. Shalan, and M. W. El-Kharashi, “Embedded hypervisor xvisor: A
comparative analysis,” Proceedings - 23rd Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, PDP 2015, pp. 682–691, 2015. 11

[31] A. Celesti, D. Mulfari, M. Fazio, M. Villari, and A. Puliafito, “Exploring Container Virtual-
ization in IoT Clouds,” 2016 IEEE International Conference on Smart Computing, SMART-
COMP 2016, no. Lxc, 2016. 11

[32] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated performance comparison
of virtual machines and Linux containers,” 2015 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS), pp. 171–172, 2015. 11

[33] R. Morabito, J. Kjällman, and M. Komu, “Hypervisors vs. lightweight virtualization: A per-
formance comparison,” Proceedings - 2015 IEEE International Conference on Cloud Engi-
neering, IC2E 2015, pp. 386–393, 2015. 11

[34] N. L. Petroni, T. Fraser, J. Molina, and W. a. Arbaugh, “Copilot - a Coprocessor-based Kernel
Runtime Integrity Monitor,” USENIX Security’04, pp. 179–194, 2004. 11

[35] Trusted Computing Group Incorporated, “TCG Specification Architecture Overview.”
[Online]. Available: https://www.trustedcomputinggroup.org/wp-content/uploads/TCG{ }
1{ }4{ }Architecture{ }Overview.pdf 11

[36] H. Krawczyk, R. Canetti, and M. Bellare, “HMAC: Keyed-hashing for message authentica-
tion,” pp. 1–11, 1997. 12

[37] N. Leveson and C. Turner, “An investigation of the Therac-25 accidents,” Computer, vol. 26,
no. 7, pp. 18–41, 1993. 20

[38] N. Falliere, L. Murchu, and E. Chien, “W32. stuxnet dossier,” Symantec Security Response,
vol. 14, no. February, pp. 1–69, 2011. [Online]. Available: http://large.stanford.edu/courses/
2011/ph241/grayson2/docs/w32{ }stuxnet{ }dossier.pdf 20

73

https://www.trustedcomputinggroup.org/wp-content/uploads/TCG{_}1{_}4{_}Architecture{_}Overview.pdf
https://www.trustedcomputinggroup.org/wp-content/uploads/TCG{_}1{_}4{_}Architecture{_}Overview.pdf
http://large.stanford.edu/courses/2011/ph241/grayson2/docs/w32{_}stuxnet{_}dossier.pdf
http://large.stanford.edu/courses/2011/ph241/grayson2/docs/w32{_}stuxnet{_}dossier.pdf

[39] A. Costin, J. Zaddach, and A. Francillon, “A Large Scale Analysis of the Security of Embed-
ded Firmwares,” USENIX Security, 2014. 21

[40] N. D. Matsakis and F. S. Klock, “The Rust Language,” ACM SIGAda Ada Letters, vol. 34,
no. 3, pp. 103–104, 2014. 21

[41] Z. Li and Q. Liao, “Toward a Monopoly Botnet Market,” Information Security Journal,
vol. 23, no. 4-6, pp. 159–171, 2014. 21

[42] P. Syverson, “A Taxonomy of Replay Attacks,” Proceedings The Computer Security Founda-
tions Workshop VII, pp. 187–191, 1994. 25

[43] M. Prandini and M. Ramilli, “Return-Oriented Programming,” IEEE Security & Privacy,
vol. 10, no. 6, pp. 84–87, nov 2012. 25

[44] H. Shacham, “The Gemoetry of Innocent Flesh on the Bone: Return-into-libc without Func-
tion Calls (on the x86),” Proceedings of the 14th ACM conference on Computer and commu-
nications security - CCS ’07, p. 552, 2007. 28

[45] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “When Good Instructions Go Bad:
Generalizing Return-Oriented Programming to RISC,” ACM Transactions on Information
and System Security, vol. 15, no. 1, pp. 1–34, 2012. 28

[46] JonathanSalwan, “ROPgadget.” [Online]. Available: https://github.com/JonathanSalwan/
ROPgadget 28

[47] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda, “G-Free: Defeating Return-
Oriented Programming Through Gadget-less Binaries,” in Proceedings of the 26th Annual
Computer Security Applications Conference on - ACSAC ’10. New York, New York, USA:
ACM Press, 2010, p. 49. 28

[48] L. Davi, A. Sadeghi, and M. Winandy, “ROPdefender: A Detection Tool to Defend Against
Return-Oriented Programming Attacks,” Proceedings of the 6th ACM Symposium on Infor-
mation, Computer and Communications Security - ASIACCS ’11, p. 40, 2011. 28

[49] S. Trimberger, “Trusted design in FPGAs,” in Proceedings of the 44th annual conference on
Design automation - DAC ’07, vol. 9781441980. New York, New York, USA: ACM Press,
2007, p. 5. 35, 68

[50] M. M. Parelkar and K. Gaj, “Implementation of EAX mode of operation for FPGA bitstream
encryption and authentication,” Proceedings - 2005 IEEE International Conference on Field
Programmable Technology, vol. 2005, pp. 335–336, 2005. 35, 68

[51] Digilent Incorporated, “Zybo Reference Manual.” [Online]. Available: https://reference.
digilentinc.com/reference/programmable-logic/zybo/reference-manual 49

[52] Xilinx Incorporated, “Zynq-7000 All Programmable SoC Technical Reference Man-
ual.” [Online]. Available: https://www.xilinx.com/support/documentation/user{ }guides/
ug585-Zynq-7000-TRM.pdf 49

74

https://github.com/JonathanSalwan/ROPgadget
https://github.com/JonathanSalwan/ROPgadget
https://reference.digilentinc.com/reference/programmable-logic/zybo/reference-manual
https://reference.digilentinc.com/reference/programmable-logic/zybo/reference-manual
https://www.xilinx.com/support/documentation/user{_}guides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/documentation/user{_}guides/ug585-Zynq-7000-TRM.pdf

[53] H. Hsing, “Tiny AES.” [Online]. Available: https://opencores.org/project,tiny{ }aes,
Overview 50

75

https://opencores.org/project,tiny{_}aes,Overview
https://opencores.org/project,tiny{_}aes,Overview

	Brigham Young University
	BYU ScholarsArchive
	2018-03-01

	A Flexible FPGA-Assisted Framework for Remote Attestation of Internet Connected Embedded Devices
	Jared Russell Patten
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Listings
	Chapter 1 Introduction
	Chapter 2 Remote Attestation
	2.1 Definition
	2.2 Example Use Case
	2.3 Required Security Properties
	2.3.1 Measurement Diversity
	2.3.2 Domain Separation
	2.3.3 Self-Protection
	2.3.4 Exclusive Key Access
	2.3.5 Immutability
	2.3.6 Controlled Invocation

	Chapter 3 Related Work
	3.1 Software Remote Attestation
	3.1.1 XEn Based Remote Attestation (XEBRA)
	3.1.2 SoftWAre-based remote ATTestation (SWATT)

	3.2 Hardware Remote Attestation
	3.2.1 SMART
	3.2.2 FPGA-Based

	Chapter 4 Threat Model
	4.1 Software Vulnerabilities
	4.2 Denial of Service
	4.3 Buffer Overflow
	4.4 Replay Attack
	4.5 Return Oriented Programming

	Chapter 5 Remote Attestation Framework
	5.1 Shortcomings and Strengths of Current Methods
	5.1.1 Memory Read Latency
	5.1.2 Nondeterministic Network Latency
	5.1.3 Executable Based Proofs

	5.2 Proposed Framework
	5.2.1 Architecture
	5.2.2 Security Status
	5.2.3 System Measurements
	5.2.4 DMA-Checksum
	5.2.5 PRT-Checksum
	5.2.6 System Characterization
	5.2.7 Attestation Protocol
	5.2.8 Preventing Replay Attacks
	5.2.9 Implementation

	Chapter 6 Results and Analysis
	6.1 Functional Results
	6.1.1 Memory Read Time
	6.1.2 DMA-Checksum
	6.1.3 PRT-Attestation

	6.2 Performance Results
	6.3 Discussion
	6.4 Analysis
	6.4.1 Protocol Analysis
	6.4.2 Security Analysis
	6.4.3 Benefits
	6.4.4 Limitations

	Chapter 7 Conclusion
	7.0.1 Contributions
	7.0.2 Future Work

	References

