

PROCESSOR CYCLES

PERCENT OVERHEAD

6.5E+09

6E+09

5.5E+09

5E+09

4.5E+09

80

70

60

50

40

30

20

10

4E+09

PROCESSOR CYCLES VERSUS PERIOD
-+PRT-+DMA

100 150 200 250 300 350 400 450 500 550

PERIOD (MS)

600 650 700 750 800 850 900 950 1000

Figure 6.11: Clock cycles versus security monitor period.

OVERHEAD PERCENTAGE
-=+SWATT-+DMA

100 150 200 250 300 350 400 450 500 550

PERIOD (MS)

600 650 700 750 800 850 900 950 1000

Figure 6.12: Percentage of total clock cycles lost for attestation.

62

TEST PROGRAM PROFILER RESULTS BY PERIOD

Main Loop% % PRT Code % Random Number Gen %

90%

80%

70%

60%

50%

40%

20%

PERCENTAGE PROCESSING TIME

10%

0% |
10 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

PERIOD (MS)

Figure 6.13: PRT-Attestation Processor Utilization.

One drawback of our method for probing the PC is that extraneous code will only be de-
tected as long as it is currently running when a system measurement takes place. For example, if
malicious code is placed in some unused portion of memory, it will be detected only if we happen
to probe the PC while the malicious code is being executed. Imagine a compromised application
where approximately 10% of the CPU time is spent in malicious code. On average, it would take
10 PC probes to detect the malicious code.

We perform an experimental test where we reduce the number of addresses in PCiegal by
10%. In other words, one-tenth of the program addresses are now deemed illegal. We do this to
simulate a program that spends a small fraction of its execution time in “malicious” code. We then
compute the average time required to detect an illegal PC value over 50 runs of our test program.
As a reminder, the test program plays 10 complete games of tic-tac-toe. The results are shown in

Figure 6.14. We also plot the expected average time to detect an illegal PC value.

63

AVERAGE TIME TO DETECT COMPROMISE
12000

10000

8000

6000

4000

AVERAGE TIME TO DETECT

2000

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

SECURITY MONITOR PERIOD (MS)
Expected Average -%-Observed Average

Figure 6.14: Average Time To Detect Illegal PC versus security monitor period.

There is a possibility that the malicious code and security monitor period could become
synchronized in such a way that the malicious code never gets detected. In other words, there
is a chance that the PC probe always occurs while the malicious code is not running. To help
mitigate this concern, the security monitor period could be set to a pseudo-random value after each

measurement is made.

6.3 Discussion

From the functional and performance results, we demonstrated that our attestation frame-
work can be applied to various types of hardware systems. From our results, DMA-Checksum
is clearly advantageous over PRT-Checksum. The increased overhead and additional complexity
due to the tight timing requirements in PRT-Checksum make it inferior to DM A-Checksum, but
sufficient (given proper security monitor period selection) for systems without DMA capability.

Ultimately, we have demonstrated the flexibility and feasibility of our framework.

64

6.4 Analysis

In this section we present an analysis of the attestation framework. First, we present a
protocol analysis with regard to the security properties discussed in Section 2.3. We then present a
security analysis with respect to the threat model defined in Chapter 4. Finally, we discuss benefits

and limitations of the proposed attestation framework.

6.4.1 Protocol Analysis

1. Measurement Diversity. We have shown how measurement diversity can be achieved through
both a checksum of executable code and PC monitoring. Because the secure domain is
implemented in programmable logic, a system designer could easily extend the framework
to include additional measurements specific to the platform. For example, some embedded
devices contain memory mapped configuration registers that are accessed through reads and
writes to specific memory addresses. In a similar fashion to the memory checksum, one

could create a checksum of configuration register contents.

2. Domain Separation. Our attestation protocol achieves strong domain separation by imple-
menting the secure domain in FPGA hardware. It is possible that a software vulnerability
could allow FPGA bitstream modifications, but as mentioned previously, bitstream security

is beyond the scope of this thesis.

3. Self-Protection. The secure domain acts as a root of trust because it is implemented in
hardware. Therefore we can assume that it boots up into a secure state. We believe that our
implementation is small enough that it could possibly be formally verified, but this is left for

future work.

4. Exclusive Key Access. Cryptographic keys are not externally accessible to anything outside

the security monitor. The application domain is physically barred from key access.

5. Immutability. In DMA-Attestation, the protocol is immutable because attestation function-
ality resides purely in hardware. PRT-Attestation on the other hand, does contain some mu-
table components, but is designed in such a way that the secure domain can detect tampering

of these components.

65

6. Controlled Invocation. The protocol described in Section 5.2.7 prevents unauthorized parties
from initiating attestation by requiring a password and valid session token. Using sufficiently
strong encryption and PRNG algorithms make it computationally infeasible for an adversary

to forge an attestation request.

6.4.2 Security Analysis

1. Software Vulnerabilities. Even with careful security design practices, it is impossible to
predict how an attacker might attempt to abuse and exploit a system. The attestation protocol
presented here does not prevent software vulnerabilities, but it does provide a means whereby

we can remotely detect compromise.

2. Denial of Service. Denial of service attacks are a major security issue and continue to grow
in prevalence. We believe that the remote attestation protocol presented here could help
combat denial of service attacks by providing a means to detect botnet malware, such as

Mirai, that often goes unnoticed on a device.

3. Buffer Overflow. The attestation protocol presented here does not prevent buffer overflows,
but as previously mentioned, it provides a reliable protocol to detect adversarial tampering.

However, it is possible that remote attestation could serve as a deterrent to attempted exploits.

4. Replay Attacks. Section 5.2.7 thoroughly describes how replay attacks are prevented in our

attestation framework.

5. Return Oriented Programming. Unfortunately, the attestation framework presented here does
not protect against ROP techniques. This is because ROP takes advantage of code that al-
ready exists on the system without modifying the executable. Additionally, the PC will be

executing instructions within the legal range, so this approach cannot detect ROP exploits.

6.4.3 Benefits

Flexibility
One of the major advantages of the attestation framework presented here is that it can

easily be updated or adapted to suit various types of systems. We have already demonstrated

66

how PRT-Checksum can be used for systems without DMA, and DMA-Checksum for those with
DMA capability. Security is largely a “cat and mouse” game, meaning that the idea of security
is constantly changing and adapting. A “secure” system may suddenly be made insecure by the
discovery of a new vulnerability, at which point the system designers may be able to make it
secure again by patching the vulnerability. The ability to update the security monitor and other
secure domain components is extremely advantageous. If a previously unknown vulnerability
is discovered, the FPGA can be updated to close the vulnerability. However, the FPGA update
process itself may present new security vulnerabilities, but this is beyond the scope of this thesis.
Secure remote update mechanisms are an entirely different area of research.

Cryptographic algorithms have a finite lifetime. As computational power increases and be-
comes cheaper, cryptographic algorithms must be updated and strengthened to resist compromise.
If current cryptographic algorithms become deprecated and new ones replace them, it would be
relatively easy to update the attestation framework to utilize the latest algorithms. This could per-

haps even be achieved remotely, through secure remote update processes.

Low Overhead

We have shown that DMA-Checksum attestation incurs a very small performance penalty
on a system (.001%), and below a certain execution frequency, PRT-Checksum also incurs low
system overhead. In an ideal system with DMA capability, the security monitor operates with min-

imal processor intervention and therefore essentially negligible overhead.

Fast Verifier-Prover Response Time

In essence, attestation is continually taking place in our attestation protocol. The security
monitor periodically makes system measurements and determines security status. Therefore, when
a verifier sends an attestation challenge, it is essentially just querying the current security status
within the security monitor. This means that the verifier does not have to wait for the prover to
compute a proof, as is common in many attestation protocols. This is especially beneficial for large
programs, where (as demonstrated in Section 6.1.1) the time to generate a memory checksum is
non-trivial. This is especially important for user-facing applications where response time is crucial

to user experience.

67

6.4.4 Limitations

Cost
The major drawback to this attestation framework is the added cost of the FPGA. However,
SoCs integrating FPGAs with a processor are becoming more commonplace. As the cost of FP-

GAs s decline, we believe that FPGA cost will become less of an issue in the near future.

Power

A major consideration in embedded systems design is power draw. Mobile phones and
other devices that run on battery power dominate our daily lives. Obviously, battery powered
devices must be designed so as to maximize battery life. Our attestation framework may not be
well suited to battery powered devices, but a thorough power study would be required to make any
claims in this regard.

The addition of an FPGA to an embedded system will inevitably consume more power than
one without. However, low-power FPGAs do exist and FPGA designs are continually improving

and becoming more power efficient.

Bitstream Security

We briefly mentioned the issue of bitstream security in Section 5.2.1. For this attestation
protocol to be secure, it is imperative that the bitstream be immutable. If an adversary is able to up-
load or modify the bitstream, therefore modifying the secure domain, then we can no longer make
secure claims about our system. Methods to ensure trust in FPGA bitstreams have been explored

and are an active area of research [17], [49], [50].

Single Process Systems

Currently, this protocol is only suitable for single process systems with a single thread of
execution. Therefore, a system requiring an operating system (OS) would not be well suited for
this type of attestation. An OS will determine where to load an executable into memory (rather
than a linker script); therefore the task of calculating PCegal becomes problematic. It could still be
possible to perform DMA-Checksum on a device running an OS, but the security monitor would

need to have information regarding the executable location in memory.

68

CHAPTER 7. CONCLUSION

Cyber-crime is at an all time high, and will likely become more commonplace. More and
more devices are being built with Internet connectivity, opening them up to cyber attacks. These
devices are often designed without security in mind, leaving them vulnerable to attack. The work
in this thesis builds upon previously proposed attestation techniques, namely SWATT and FPGA-
Based Remote Code Integrity Verification, to provide a flexible framework for remote attestation

of Internet connected embedded devices.

7.0.1 Contributions
The main contributions of this thesis are summarized as follows:
o A flexible remote attestation framework that is adaptable and extensible.

e A proof-of-concept implementation of the framework to demonstrate feasibility. The imple-
mentation successfully detects tampered executables and unauthorized code stored in mem-

ory.
e Demonstration of adaptability to systems with different hardware features.
e A study of the performance impact of various security monitor periods.

e A survey of embedded systems security and proposed attestation techniques.

7.0.2 Future Work

As mentioned in the previous chapter, our framework is vulnerable to ROP techniques. An
area of future work would be to build in resistance to ROP, perhaps through implementations of

existing ROP defense mechanisms. Also, because the security monitor frequently probes the PC,

69

it may be possible to construct some type of histogram or control tree, representing the histor-
ical execution path. Using this data, the security monitor could possibly predict if control flow
seems unusual, hence detecting ROP exploit. We are unsure if this is feasible in FPGA hardware,
however, or if a secure co-processor would be required for such a task.

Another interesting area not explored in this paper would be the power impact of the pro-
tocol. We have demonstrated correct functionality and feasibility of the protocol, but if power
requirements are too steep, it may not be of much utility to embedded systems designers wishing
to optimize for battery life.

With the growing popularity of operating systems such as Linux, the attestation framework
presented here would be even more useful if it could be adapted to work with multi-process oper-
ating systems. This would require the security monitor to have some knowledge regarding the OS
memory management, so as to allow the security monitor to construct checksums of the correct
memory regions.

Currently, many of the security monitor parameters (such as shared symmetric keys, PCjegal,
etc.) must be hard-programmed into the FPGA bitstream. A configuration protocol that would
allow a verifier to update security monitor parameters could be extremely beneficial to the frame-
work. Additionally, a key exchange protocol such as Diffie-Hellman would be useful for updating

the shared keys in a secure manner.

70

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

REFERENCES

P. E. Ross, “Hackers Commandeer a Moving Jeep - IEEE Spectrum,” p. 1, 2015.
[Online]. Available: http://spectrum.ieee.org/cars-that-think/transportation/self-driving/
hackers-take-control-of-a-moving-jeep 1

A. Drozhzhin, “Black Hat USA 2015: The full story of how that Jeep was hacked,” 2015. [On-
line]. Available: https://www.kaspersky.com/blog/blackhat-jeep-cherokee-hack-explained/
9493/ 1

Gartner Research, “Gartner Says 8.4 Billion Connected “Things” Will Be in Use in 2017,
Up 31 Percent From 2016,” 2017. [Online]. Available: https://www.gartner.com/newsroom/
1d/3598917 1

J. Radcliffe, “Hacking Medical Devices for Fun and Insulin: Breaking the Human SCADA
System,” in Black Hat Conference presentation slides, 2011. 1

N. Allen, “Cybersecurity weaknesses threaten to make smart cities more costly and dangerous
than their analog predecessors,” USApp—American Politics and Policy Blog, 2016. 1

A. Stavrou, J. Voas, 1. Fellow, C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “DDoS
in the IoT: Mirai and Other Botnets,” Computer, vol. 50, no. 7, pp. 80-84, 2017. 1

M. Patton, E. Gross, R. Chinn, S. Forbis, L. Walker, and H. Chen, “Uninvited connections: A
study of vulnerable devices on the internet of things (I0T),” Proceedings - 2014 IEEE Joint
Intelligence and Security Informatics Conference, JISIC 2014, pp. 232-235, 2014. 1

Z. K. Zhang, M. C. Y. Cho, C. W. Wang, C. W. Hsu, C. K. Chen, and S. Shieh, “IoT security:
Ongoing challenges and research opportunities,” Proceedings - IEEE 7th International Con-
ference on Service-Oriented Computing and Applications, SOCA 2014, pp. 230-234, 2014.
1,20

B. A. Kuperman, C. E. Brodley, H. Ozdoganoglu, T. N. Vijaykumar, and A. Jalote, “Detection
and Prevention of Stack Buffer Overflow Attacks,” Communications of the ACM, vol. 48,
no. 11, pp. 50-56, nov 2005. 1

C. Cowan, F. Wagle, Calton Pu, S. Beattie, and J. Walpole, “Buffer Overflows: Attacks
and Defenses for the Vulnerability of the Decade,” in Proceedings DARPA Information Sur-
vivability Conference and Exposition. DISCEX’00, vol. 2. 1EEE Comput. Soc, 2003, pp.
119-129. 1

R. Langner, “Stuxnet: Dissecting a Cyberwarfare Weapon,” IEEE Security and Privacy,
vol. 9, no. 3, pp. 49-51, 2011. 2

71

http://spectrum.ieee.org/cars-that-think/transportation/self-driving/hackers-take-control-of-a-moving-jeep
http://spectrum.ieee.org/cars-that-think/transportation/self-driving/hackers-take-control-of-a-moving-jeep
https://www.kaspersky.com/blog/blackhat-jeep-cherokee-hack-explained/9493/
https://www.kaspersky.com/blog/blackhat-jeep-cherokee-hack-explained/9493/
https://www.gartner.com/newsroom/id/3598917
https://www.gartner.com/newsroom/id/3598917

[12] A. Francillon, Q. Nguyen, K. B. Rasmussen, and G. Tsudik, “A Minimalist Approach to
Remote Attestation,” Proceedings of the Conference on Design, Automation & Test in Europe,
no. 244, pp. 1-6, 2014. 2,7

[13] A. Seshadri, A. Perrig, L. Van Doom, and P. Khosla, “SWATT: SoftWare-based AT Testation
for embedded devices,” Proceedings - IEEE Symposium on Security and Privacy, vol. 2004,
pp- 272-282, 2004. 2, 16, 31

[14] A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. Khosla, “SCUBA: Secure Code Update
By Attestation in sensor networks,” WiSe ’06: Proceedings of the 5th ACM workshop on
Wireless security, pp. 85-94, 2006. 2

[15] N. Agarwal and K. Paul, “XEBRA: XEn Based Remote Attestation,” in IEEE Region 10
Annual International Conference, Proceedings/TENCON. 1EEE, nov 2017, pp. 2383-2386.
2,11,15,35

[16] P. Koeberl, S. Schulz, A. Sadeghi, and V. Varadharajan, “TrustLite: A Security Architecture
for Tiny Embedded Devices,” Proceedings of the European Conference on Computer Systems
(EuroSys), pp. 1-14, 2014. 2

[17] C. Basile, S. D. Di Carlo, and A. Scionti, “FPGA-based remote-code integrity verification
of programs in distributed embedded systems,” IEEE Transactions on Systems, Man and
Cybernetics Part C: Applications and Reviews, vol. 42, no. 2, pp. 187-200, 2012. 2, 18, 35,
68

[18] K. Eldefrawy, A. A. Francillon, D. Perito, G. Tsudik, K. E. Defrawy, A. A. Francillon, D. Per-
ito, and G. Tsudik, “SMART: Secure and Minimal Architecture for (Establishing a Dynamic
Root of Trust,” in NDSS 2012, 19th Annual Network and Distributed System Security Sympo-
sium, February 5-8, San Diego, USA, vol. 12, San Diego, UNITED STATES, 2012, pp. 1-15.
2,18

[19] D. Fu and X. Peng, “TPM-based remote attestation for Wireless Sensor Networks,” Tsinghua
Science and Technology, vol. 21, no. 3, pp. 312-321, 2016. 2

[20] A. Mey and S. Hoff, “Nearly Half of All U.S. Electricity Customers Have Smart Meters,”
2017. [Online]. Available: https://www.eia.gov/todayinenergy/detail.php?id=34012 5

[21] X. Fang, S. Misra, G. Xue, and D. Yang, “Smart Grid The New and Improved Power Grid:
A Survey,” IEEE Communications Surveys & Tutorials, vol. 14, no. 4, pp. 944-980, 2012. 5

[22] B. Krebs, “FBI: Smart Meter Hacks Likely to Spread,” 2012. [Online]. Available:
https://krebsonsecurity.com/2012/04/fbi-smart-meter-hacks-likely-to-spread/ 5

[23] C. W. Ten, C. C. Liu, and G. Manimaran, “Vulnerability Assessment of Cybersecurity for
SCADA Systems,” IEEE Transactions on Power Systems, vol. 23, no. 4, pp. 1836-1846,
2008. 7

[24] Y. Chahid, M. Benabdellah, and A. Azizi, “Internet of things security,” 2017 International
Conference on Wireless Technologies, Embedded and Intelligent Systems, WITS 2017, 2017.
7

72

https://www.eia.gov/todayinenergy/detail.php?id=34012
https://krebsonsecurity.com/2012/04/fbi-smart-meter-hacks-likely-to-spread/

[25] G. Coker,J. Guttman, P. Loscocco, A. Herzog, J. Millen, B. O’Hanlon, J. Ramsdell, A. Segall,
J. Sheehy, and B. Sniffen, “Principles of remote attestation,” International Journal of Infor-
mation Security, vol. 10, no. 2, pp. 63-81, 2011. 7

[26] A.J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptography.
CRC Press, 1996. 8

[27] C. Moratelli, S. Johann, M. Neves, and F. Hessel, “Embedded virtualization for the design of
secure 10T applications,” Proceedings of the 27th International Symposium on Rapid System
Prototyping Shortening the Path from Specification to Prototype - RSP ’16, pp. 2-6, 2016. 11

[28] R. Kaiser and S. Wagner, “Evolution of the PikeOS microkernel,” First International Work-
shop on Microkernels for Embedded Systems, no. January, 2007. 11

[29] G. Heiser and B. Leslie, “The OKL4 Microvisor: Convergence point of microkernels and
hypervisors,” Proceedings of the first ACM asia-pacific workshop ..., pp. 19-23, 2010. 11

[30] A. Patel, M. Daftedar, M. Shalan, and M. W. El-Kharashi, “Embedded hypervisor xvisor: A
comparative analysis,” Proceedings - 23rd Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, PDP 2015, pp. 682-691, 2015. 11

[31] A. Celesti, D. Mulfari, M. Fazio, M. Villari, and A. Puliafito, “Exploring Container Virtual-
ization in IoT Clouds,” 2016 IEEE International Conference on Smart Computing, SMART-
COMP 2016, no. Lxc, 2016. 11

[32] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated performance comparison
of virtual machines and Linux containers,” 2015 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS), pp. 171-172, 2015. 11

[33] R. Morabito, J. Kjdllman, and M. Komu, “Hypervisors vs. lightweight virtualization: A per-
formance comparison,” Proceedings - 2015 IEEE International Conference on Cloud Engi-
neering, IC2E 2015, pp. 386-393, 2015. 11

[34] N.L. Petroni, T. Fraser, J. Molina, and W. a. Arbaugh, “Copilot - a Coprocessor-based Kernel
Runtime Integrity Monitor,” USENIX Security’04, pp. 179-194, 2004. 11

[35] Trusted Computing Group Incorporated, “TCG Specification Architecture Overview.”
[Online]. Available: https://www.trustedcomputinggroup.org/wp-content/uploads/TCG{_}
1{_}4{_}Architecture{_}Overview.pdf 11

[36] H. Krawczyk, R. Canetti, and M. Bellare, “HMAC: Keyed-hashing for message authentica-
tion,” pp. 1-11, 1997. 12

[37] N. Leveson and C. Turner, “An investigation of the Therac-25 accidents,” Computer, vol. 26,
no. 7, pp. 1841, 1993. 20

[38] N. Falliere, L. Murchu, and E. Chien, “W32. stuxnet dossier,” Symantec Security Response,
vol. 14, no. February, pp. 1-69, 2011. [Online]. Available: http://large.stanford.edu/courses/
2011/ph241/grayson2/docs/w32{_}stuxnet{_}dossier.pdf 20

73

https://www.trustedcomputinggroup.org/wp-content/uploads/TCG{_}1{_}4{_}Architecture{_}Overview.pdf
https://www.trustedcomputinggroup.org/wp-content/uploads/TCG{_}1{_}4{_}Architecture{_}Overview.pdf
http://large.stanford.edu/courses/2011/ph241/grayson2/docs/w32{_}stuxnet{_}dossier.pdf
http://large.stanford.edu/courses/2011/ph241/grayson2/docs/w32{_}stuxnet{_}dossier.pdf

[39] A. Costin, J. Zaddach, and A. Francillon, “A Large Scale Analysis of the Security of Embed-
ded Firmwares,” USENIX Security, 2014. 21

[40] N. D. Matsakis and F. S. Klock, “The Rust Language,” ACM SIGAda Ada Letters, vol. 34,
no. 3, pp. 103-104, 2014. 21

[41] Z. Li and Q. Liao, “Toward a Monopoly Botnet Market,” Information Security Journal,
vol. 23, no. 4-6, pp. 159-171, 2014. 21

[42] P. Syverson, “A Taxonomy of Replay Attacks,” Proceedings The Computer Security Founda-
tions Workshop VII, pp. 187-191, 1994. 25

[43] M. Prandini and M. Ramilli, “Return-Oriented Programming,” IEEE Security & Privacy,
vol. 10, no. 6, pp. 84-87, nov 2012. 25

[44] H. Shacham, “The Gemoetry of Innocent Flesh on the Bone: Return-into-libc without Func-
tion Calls (on the x86),” Proceedings of the 14th ACM conference on Computer and commu-
nications security - CCS "07, p. 552, 2007. 28

[45] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “When Good Instructions Go Bad:
Generalizing Return-Oriented Programming to RISC,” ACM Transactions on Information
and System Security, vol. 15, no. 1, pp. 1-34, 2012. 28

[46] JonathanSalwan, “ROPgadget.” [Online]. Available: https://github.com/JonathanSalwan/
ROPgadget 28

[47] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda, “G-Free: Defeating Return-
Oriented Programming Through Gadget-less Binaries,” in Proceedings of the 26th Annual
Computer Security Applications Conference on - ACSAC "10. New York, New York, USA:
ACM Press, 2010, p. 49. 28

[48] L. Davi, A. Sadeghi, and M. Winandy, “ROPdefender: A Detection Tool to Defend Against
Return-Oriented Programming Attacks,” Proceedings of the 6th ACM Symposium on Infor-
mation, Computer and Communications Security - ASIACCS 11, p. 40, 2011. 28

[49] S. Trimberger, “Trusted design in FPGAS,” in Proceedings of the 44th annual conference on
Design automation - DAC 07, vol. 9781441980. New York, New York, USA: ACM Press,
2007, p. 5. 35, 68

[50] M. M. Parelkar and K. Gaj, “Implementation of EAX mode of operation for FPGA bitstream
encryption and authentication,” Proceedings - 2005 IEEE International Conference on Field
Programmable Technology, vol. 2005, pp. 335-336, 2005. 35, 68

[51] Digilent Incorporated, “Zybo Reference Manual.” [Online]. Available: https://reference.
digilentinc.com/reference/programmable-logic/zybo/reference-manual 49

[52] Xilinx Incorporated, “Zyng-7000 All Programmable SoC Technical Reference Man-
ual” [Online]. Available: https://www.xilinx.com/support/documentation/user{ _} guides/
ug585-Zynq-7000-TRM.pdf 49

74

https://github.com/JonathanSalwan/ROPgadget
https://github.com/JonathanSalwan/ROPgadget
https://reference.digilentinc.com/reference/programmable-logic/zybo/reference-manual
https://reference.digilentinc.com/reference/programmable-logic/zybo/reference-manual
https://www.xilinx.com/support/documentation/user{_}guides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/documentation/user{_}guides/ug585-Zynq-7000-TRM.pdf

[53] H. Hsing, “Tiny AES. [Online]. Available: https://opencores.org/project,tiny{_}aes,
Overview 50

75

https://opencores.org/project,tiny{_}aes,Overview
https://opencores.org/project,tiny{_}aes,Overview

