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abstract

It Is Better to Be Upside Than Sharpe!

Daniele DApuzzo
Department of Mathematics, BYU

Master of Science

Based on the assumption that returns in Commercial Real Estate (CRE) are normally 
distributed, the Sharpe Ratio (SR) has been the standard risk-adjusted performance mea-
sure for the past several years. Research has questioned whether this assumption can be 
reasonably made. The Upside P otential Ratio (UPR) as a risk-adjusted performance mea-
sure is an alternative to measure performance on a risk-adjusted basis but its values differ 
from the Sharpe Ratio’s only in the assumption of skewed returns. We will provide reason-
able evidence that CRE returns should not be fitted with a normal distribution and present 
the Gaussian Mixture Model (GMM) as our choice of distribution to fit skewness. We 
will then use a GMM distribution to measure performance of CRE domestic markets via 
UPR. Additional insights will be presented by introducing an alternative risk-adjusted per-
formance measure that we will call D-ratio. We will show how the UPR and the D-ratio can 
provide a tool-box that can be added to any existing investment strategy when identifying 
markets’ past performance and timing of entrance. The intent of this thesis is not to pro-
vide a comprehensive framework for CRE investment decisions but to introduce statistical 
and mathematical tools that can serve any portfolio manager in augmenting any investment 
strategy already in place.

Keywords: Sharpe Ratio, Real Estate, Upside Potential Ratio, Gaussian Mixture Models, 
D-ratio
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Chapter 1. Sharpe meets Gaussian Mixture

Models

We introduce the Sharpe Ratio (SR) and discuss its benefits and limitations. We then

introduce the Upside Potential Ratio (UPR) as a refinement and improvement to the SR,

discussing its benefits and limitations. Evidence will be presented of skewness of returns in

Commercial Real Estate (CRE) by referring to NCREIF (National Council of Real Estate

Investment Fiduciaries) data1 . Gaussian Mixture Models (GMM) will then be presented

as our choice of skewed distribution to fit CRE returns.

1.1 Sharpe Ratio

Modern Portfolio Theory (MPT) started in the 1950s with Markovitz’s publication Portfo-

lio Selection2. At the core of MPT is the paradigm that first and second moments of returns

are sufficient statistics to measure performance of assets. Portfolio managers since then have

been analyzing funds through the mean and standard deviation of returns, although few

measures have been introduced that include higher moments of the distribution. The exten-

sive use of mean and variance in financial literature is described in the Journal of Portfolio

Management forty years after Markowitz’s publication:

We build on Markowitz’s mean-variance paradigm, which assumes that the mean

and standard deviation of the distribution of one-period return are sufficient

statistics for evaluating the prospects of an investment portfolio.3

William Sharpe introduced a measure that combines mean and standard deviation into a

1 NCREIF collects both property and fund level information from its members on a quarterly basis, and
in one case on a monthly basis. This data is used to produce various indices and performance reports. The
data is also available to members in masked form for research and other purposes. NCREIFs historical
property and fund database go back to the Fourth Quarter 1977 and consists of over 35,000 properties and
over 150 open-end and closed-end funds. For further information on NCREIF data and methodology please
visit https://www.ncreif.org/

2Harry Markowitz, The Journal of Finance, Vol.7, No.1.(Mar, 1952), pp.77-91
3The Sharpe Ratio, Journal of Portfolio Management, 1994, p. 49

1



single performance measure and it has been referred to as the Sharpe Ratio (SR). The

intuition behind the Sharpe Ratio (SR) is that volatility of returns is perceived as risk for

an investor while a high returns average attracts investors. This interpretation was already

discussed by Markowitz when he said:

We next consider the rule that the investor does (or should) consider expected

return a desirable thing and variance of return an undesirable thing. 4

The SR wants to capture the performance of an asset with respect to a risk free rate bench-

mark return by comparing units of excess returns to units of risk taken. With the SR we

want to answer the question: If I invest in this given asset rather than investing at the risk

free rate of return, how many units of profits can I expect to receive for any additional unit

of risk taken? Identifying a given asset’s returns with A and with rf the risk-free rate of

returns, the SR was introduced in 1966 5 as excess returns over standard deviation:

SR =
E[A]− rf

σA
(1.1)

The advantage in using this measure is evident: simplicity. It involves the simplest sample

parameters in statistics which computation is quite simple under assumption of normal

returns. Using Maximum Likelihood Estimators (MLE’s) on a set of sample data, the

inference population statistics are :

µ =

N∑
i=1

xi

N
, σ2 =

N∑
i=1

(xi − µ)2

N − 1

where N is the sample size and xi are the sample values. The SR will return a value of 1

when each unit of reward is offset by a unit of risk. A value greater than 1 reflects a strong

asset that rewards the investor with more units of profit than risk. The opposite argument

4Harry Markowitz, The Journal of Finance, Vol.7, No.1.(Mar, 1952), pp.77
5The Journal of Business, Vol. 39, No. 1, Part 2: Supplement on Security Prices (Jan., 1966), pp.

119-138
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exists for positive values smaller than 1. Needless to say that an asset with a negative SR

value is quickly disregarded.

One limitation to using the SR is how it interprets risk. Volatility is not inherently negative

for an investor. An investor with a conservative investment profile is adverse to sensitive

upside and downside swings in returns and prefers to invest in stable, low volatility assets

(note that low volatility results in a high SR score hence the preference for high SR values) but

the same conservative investor will prefer to invest in an asset with exclusively positive swings

in returns (note that high upside volatility either is not captured by the SR or it negatively

affects it). Hence, a refinement of the SR was presented by Sortino as the Upside Potential

Ratio (UPR), which compares the upper central first moment ( E[A− rf ]+) with the second

lower central moment (σ−), using a benchmark rate as a center of tendency. (Sample average

is known as first moment and variance is known as second moment. Central instead refers

to computing mean and variance of values above a threshold which in our case is the risk

free rate of returns).

UPR =
E[A− rf ]+

σ−
(1.2)

The UPR appears to be more insightful to an investor that wants to measure profitability

of an investment against negative volatility, regardless of the investor’s risk profile. But this

measure gives us the same results as the SR unless we relax the underlying assumption of

normality of returns. One of the limits of applying the SR is that returns are not always

normally distributed and measuring volatility for a skewed distribution can be a challenging

task. Note that using the same MLE formulas as above to measure the mean and variance of

a sample distribution are not valid if the data violates the assumption of normality. Rather,

these formulas provide a population’s mean estimate and its variance but not the distribution

parameters.

Research has already shown the inadequacy of assuming normality

The assumption of normality of returns is invalid for most securities including

3



real estate 6 7

Finding volatility for skewed returns is a challenging task that could be avoided if we could

safely assume normality of return since positive or negative volatility would coincide in

symmetric distributions. The question remains: are CRE returns skewed?

1.2 CRE Returns Analysis

We now challenge the assumption of normal returns for CRE returns and show the limita-

tions of the SR in capturing adequately the performance of a given market. To simplify our

sample size, we choose the following markets : Atlanta, Austin, Baltimore, Boston, Chicago,

Miami, New York, Phoenix, Pittsburgh, San Antonio, San Francisco and Washington, DC.

Of these twelve, industry professionals intuitively rank some of them as gateway or primary

markets (Boston, New York, San Francisco, Washington, DC), others as secondary markets

(Austin, Chicago, Miami, Phoenix) and the remaining as tertiary markets (Atlanta, Bal-

timore, Pittsburg, San Antonio). An example of what these returns look like is provided

below (we used simple kernel density estimations to plot the returns)

61997, Journal of Real Estate Portfolio Management, volume 3, issue 1, pp. 37-47
7Further evidence that returns in CRE are skewed and fat-tailed can be found in the same article under

the paragraph Normality

4



Figure 1.1: San Antonio Figure 1.2: Phoenix

With the above graphs we notice that markets can present both positive and negative

skewness along with bimodal behaviors. Below we provide a table that shows ranking accord-

ing to SR values along with their skewness. Intuitively, we want primary markets to perform

better than secondary markets and similarly we expect secondary markets to perform better

than tertiary.

Table 1.1: Sharpe ranking and Skewness (Office property type)
Ranking Market Skewness Sharpe Ratio

1 San Antonio -1.38 1.10
2 Pittsburgh -0.97 1.03
3 Baltimore -0.73 0.98
4 Washington, DC -0.35 0.90
5 Austin -0.75 0.66
6 New York 0.02 0.65
7 Boston -0.73 0.61
8 Phoenix 1.92 0.57
9 Miami 0.94 0.56
10 San Francisco -0.19 0.54
11 Chicago 0.62 0.51
12 Atlanta 0.76 0.43

The top three performing markets for the Office type properties were San Antonio, Pitts-

burgh and Baltimore, which are all tertiary markets. Interestingly, the top performing mar-

kets with the SR are also the markets with the highest negative skewness. This inadequacy

of the SR in measuring performance in presence of negative excess returns had already been

observed

5



It turns out that the SR will frequently provide a biased result when excess

negative returns are present 8

The Sharpe Ratio is a very useful measure of investment performance. Because

it is based on mean-variance theory, and thus is basically valid only for quadratic

preferences or normal distribution, skewed investment returns can lead to mis-

leading conclusions. 9

There is clearly a need for a mathematical and statistical tool to better capture skewness and

moments of non-normal distributions in CRE and literature seems to have not yet presented

reliable and satisfactory results.

1.3 Gaussian Mixture Model

We now introduce Gaussian Mixture Models, as a statistical tool in fitting skewed distribu-

tion. A Gaussian Mixture Model (GMM) is a skewed distribution obtained by a weighted

average of normal densities. Although we know that the sum of normal random variables

produces a normal variable, hence it is still symmetric, this is not the case when we have a

weighted sum of normal densities:

φGMM(x) =
n∑

i=1

wiφi(x). (1.3)

Referring to a multivariate gaussian distribution density as f we have :

f(x) =
1

(2π)
n
2

√
det(Σ)

exp

(
−1

2
(x− µ)Σ−1(x− µ)T

)
GMM(x) =

n∑
i=1

wi
1

(2π)
n
2

√
det(Σi)

exp

(
−1

2
(x− µi)Σ

−1
i (x− µi)

T

)
82014, Journal of Financial Service Professionals, volume 68, issue 3, 12-14
9William T. Ziemba, Journal of Portfolio Management, vol.32, no.1 (Fall 2005):108-122
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where wi are positive weights that add up to 1 and Σi is the covariance matrix. Finding the

means and standard deviations of each component can be a daunting task if we are trying

to fit data. It’s beyond the scope of this research to explain how this is done but it suffices

to say that GMM parameters are found via machine learning algorithms along with the EM

algorithm10.

Chapter 2. Upside Potential Ratio derived

We now provide the UPR explicit formula by choosing to fit returns with a GMM density.

Before we do so, we provide a few intermediary results. Given µ, σ2, φ(x) and Φ to represent

respectively the mean, variance, density and cumulative distribution function of a normal

distribution and r to represent the benchmark return against which we are measuring per-

formance, we compute partial first moment, partial second upper and partial second lower

moments.

Here the upper first moment for a normal distribution is computed:

10Casella, Berger, Statistical Inference, Second Edition, p.326

7



∫ ∞
r

xφ(x) dx =
1√

2πσ2

∫ ∞
r

xe−
(x−µ)2

2σ2 dx

=
1√
2π

∫ ∞
r−µ
σ

(µ+ tσ)e−
t2

2 dt

=
µ√
2π

∫ ∞
r−µ
σ

e−
t2

2 dt+
σ√
2π

∫ ∞
r−µ
σ

te−
t2

2 dt

= µ (1− Φ(r)) +
σ√
2π

∫ −∞
− (r−µ)2

σ2

ev(− dv)

= µ (1− Φ(r)) +
σ2

σ
√

2π

(
e−

(µ−r)2

2σ2

)
= µΦ̄(r) + σ2φ(r)

where Φ̄ = 1−Φ(r). Here is an auxiliary integral that we’ll use to derive second upper and

lower moments:

1√
2π

∫ ∞
a

te−
t2

2 dt =
1√
2π

∫ −∞
−a2

2

ev − dv

=
1√
2π

∫ −a2
2

−∞
ev dv

=
1√
2π
e−

a2

2
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The second lower moment for a normal distribution is now derived :

∫ r

−∞
x2φ(x) dx =

1

σ
√

2π

∫ r

−∞
x2e−

(x−µ)2

2σ2 dx

=
1

σ
√

2π

∫ r−µ
σ

−∞
(µ+ tσ)2e−

t2

2 σ dt

=
µ2

√
2π

∫ r−µ
σ

−∞
e−

t2

2 dt+
σ2

√
2π

∫ r−µ
σ

−∞
t2e−

t2

2 dt+
2µσ√

2π

∫ r−µ
σ

−∞
te−

t2

2 dt

= µ2Φ(r) +
σ2

√
2π

∫ r−µ
σ

−∞
t2e−

t2

2 dt+
2µσ√

2π

(∫ ∞
−∞

te−
t2

2 dt−
∫ ∞
r−µ
σ

te−
t2

2 dt

)

= µ2Φ(r) +
σ2

√
2π

∫ r−µ
σ

−∞
t2e−

t2

2 dt+ 2µσ

0− e−
(r−µ)2

2σ2

√
2π


= µ2Φ(r) +

σ2

√
2π

∫ r−µ
σ

−∞
t2e−

t2

2 dt− 2µσ2φ(r)

= µ2Φ(r) + σ2Φ(r) + µσ2φ(r)− rσ2φ(r)− 2µσ2φ(r)

= (µ2 + σ2)Φ(r)− (µ+ r)σ2φ(r)

where we have used this auxiliary result:

1√
2π

∫ r−µ
σ

−∞
t2e−

t2

2 dt =
1√
2π

∫ r−µ
σ

−∞
t d
(
−e−

t2

2

)
=

1√
2π
t
(
−e−

t2

2

) ∣∣∣ r−µσ
−∞
− 1√

2π

∫ r−µ
σ

−∞

(
−e−

t2

2

)
dt

=
r − µ
σ
√

2π

(
−e−

(r−µ)2

2σ2 − 0

)
+

1√
2π

∫ r−µ
σ

−∞
e−

t2

2 dt

= −r − µ
σ
√

2π
e−

(r−µ)2

2σ2 + Φ(r)

= (µ− r)φ(r) + Φ(r)

Having calculated first upper moment and second lower (and upper) moments for a normal

distribution, we can now compute the first upside central moment (which measures the units

of excess profit above a benchmark rate) and the second downside central moment (which

9



measures the units of standard deviation below a benchmark rate) for a GMM and indicate

them respectively as µ+
1 (r) and µ−2 (r). They are analytically defined as follows :

µ+
1 (r) =

∫ ∞
r

(x− r)φ(x) dx and µ−2 (r) =

∫ r

−∞
(x− r)2φ(x) dx.

Combining all previous results we have the explicit upper first moment:

µ+
1 (r) =

∫ ∞
r

(x− r)φ(x) dx

=

∫ ∞
r

(x− r)Σn
i=1wiφi(x) dx

=
n∑

i=1

wi

∫ ∞
r

(x− r)φi(x) dx

=
n∑

i=1

wi

[∫ ∞
r

xφi(x) dx− r
∫ ∞
r

φi(x) dx

]
=

n∑
i=1

wi

[
µΦ̄(r) + σ2φi(r)− rΦ̄(r)

]
=

n∑
i=1

wi

[
(µ− r)Φ̄(r) + σ2φi(r)

]

10



And the lower second moment:

µ−2 (r) =

∫ r

−∞
(x− r)2φ(x) dx

=

∫ r

−∞
(x− r)2Σn

i=1wiφi(x) dx

=
n∑

i=1

wi

∫ r

−∞
(x− r)2φi(x) dx

=
n∑

i=1

wi

(∫ r

−∞
x2φi(x) dx+ r2

∫ r

−∞
φi(x) dx− 2r

∫ r

−∞
xφi(x) dx

)
=

n∑
i=1

wi

[∫ r

−∞
x2φi(x) dx+ r2Φi(r)− 2r

(
µi −

∫ ∞
r

xφi(x) dx

)]
=

n∑
i=1

wi

[∫ r

−∞
x2φi(x) dx+ r2Φi(r)− 2rµi + 2r

∫ ∞
r

xφi(x) dx

]
=

n∑
i=1

wi

[∫ r

−∞
x2φi(x) dx+ r2Φi(r)− 2rµi + 2r

(
µiΦ̄(r) + σ2

i φi(r)
)]

=
n∑

i=1

wi

[∫ r

−∞
x2φi(x) dx+ r2Φi(r)− 2rµi + 2rµiΦ̄(r) + 2rσ2

i φi(r)

]
=

n∑
i=1

wi

[
Φ(r)

(
µ2
i + σ2

i

)
− φi(r)σ

2
i (µi − r) + r2Φi(r)− 2rµiΦ(r)

]
=

n∑
i=1

wi

[
Φi(r)

(
µ2
i + σ2

i − 2rµi

)
− σ2

i φi(r) (µi − r) + r2Φi(r)
]

=
n∑

i=1

wi

{
Φi(r)

[
(µi − r)2 + σ2

i

]
+ φi(r)σ

2
i (r − µi)

}

We will be introducing soon an application for the upper second moment but present here

its explicit formula:

µ+
2 (r) =

n∑
i=1

wi

{
Φ̄i(r)

[
(µi − r)2 + σ2

i

]
+ φi(r)σ

2
i (µi − r)

}

11



The computation is quite similar to the negative we just derived hence we skip the compu-

tation.

2.1 Explicit formula and comparison to Sharpe

After having computer partial first and second moments, we can now combine the previous

intermediary results to give an explicit formula for the UPR :

UPR =
µ+
1 (r)(

µ−2 (r)
) 1

2

=

∑n
i=1wi

[
(µ− r)Φ̄(r) + σ2φi(r)

]
(∑n

i=1wi

{
Φi(r)

[
(µi − r)2 + σ2

i

]
+ φi(r)σ2

i (r − µi)
}) 1

2

Comparing now the ranking of markets using the UPR and the SR: This is the ranking

Table 2.1: UPR ranking vs SR
Ranking Market UPR Sharpe Ratio

1 Austin 1.06 0.77
2 New York 0.73 0.79
3 Washington, DC 0.71 0.23
4 San Francisco 0.69 0.65
5 San Antonio 0.68 1.30
6 Miami 0.66 0.69
7 Atlanta 0.65 0.53
8 Chicago 0.61 0.63
9 Phoenix 0.60 0.71
10 Boston 0.59 0.73
11 Baltimore 0.56 1.20
12 Pittsburgh 0.55 1.27

we would intuitively expect, displaying the majority of primary markets highest, secondary

markets in mid-ranking and tertiary markets (the ones that performed well with the SR!) at

12



the bottom.

Chapter 3. D-ratio

3.1 Introduction to the D-ratio

While UPR can be interpreted as location with respect to benchmark compared to negative

moment, we introduce the D-ratio as positive moment compared to negative moment. It’s

more of a comparison between second moments differnt from the UPR which compares first

moment with second moment. The D-ratio instead compares units of positive volatility

vs negative volatility. It measures the relative strength of positive skewness centered at a

benchmark rate, with respect to the strength of negative skewness.

DR =

(
µ+
2 (r)

µ−2 (r)

) 1
2

(3.1)

by previous calculation the explicit formula becomes

DR =

(∑n
i=1wi

{
Φ̄i(r)

[
(µi − r)2 + σ2

i

]
+ φi(r)σ

2
i (µi − r)

}∑n
i=1wi

{
Φi(r)

[
(µi − r)2 + σ2

i

]
+ φi(r)σ2

i (r − µi)
}) 1

2

. (3.2)

The image below represents a visual summary of the UPR and the D-ratio. The UPR

compares the excess returns above a benchmark (blue arrow) to the standard deviation of

returns below the benchmark (red arrow). The D-ratio compares the standard deviation

above the benchmark ( green arrow) to the deviation below the benchmark (red arrow).

This technique of decomposing returns in their mean and standard deviation components is

not new but the calculations are. The old way of calculating the components of standard

deviation involved using MLE’s on a truncated set of returns. It would truncated returns

above the benchmark to compute negative standard deviation and viceversa. Using MLE’s

13



in such a way requires the assumption that all returns are equally probable which is far

from being a reasonable assumption. GMM’s are a useful probabilistic density that allows

us to assign the right probability to each return and to decompose standard deviation in its

components more efficiently.

Table 3.1: Ranking by D-ratio
Ranking Market D-ratio

1 Austin 1.87
2 Phoenix 1.41
3 Miami 1.35
4 Atlanta 1.30
5 New York 1.24
6 Chicago 1.15
7 Washington, DC 1.14
8 San Francisco 1.13
9 San Antonio 1.02
10 Boston 0.96
11 Baltimore 0.92
12 Pittsburth 0.90

Below the ranking we obtain with the D-ratio, which is quite close to the UPR ranking

hence another reasonable performance measure.

14



Chapter 4. Markets timing and investment

strategy

4.1 Investment strategy and intuitions

Table 4.1: D-ratio, UPR and Excess Returns
Market D-ratio UPR Excess R Score

Austin 1.87 1.1 3.54 9
New York 1.24 0.73 0.70 8

San Francisco 1.13 0.69 0.62 8
Washington, DC 1.14 0.71 0.27 7

Miami 1.35 0.66 -0.62 7
Atlanta 1.30 0.66 -0.77 7

San Antonio 1.02 0.68 0.53 6
Chicago 1.15 0.61 -1.1 5
Phoenix 1.41 0.60 -1.38 5
Boston 0.96 0.60 0.12 4

Pittsburgh 0.90 0.55 -0.96 3
Baltimore 0.92 0.56 -0.98 3

With the tools we have now at hand, we can decompose market returns in its main

components of mean and standard deviation. For a REIT (Real Estate Investment Fund)

whose purpose is to preserve capital and achieve above market returns it can be useful to

identify markets that measure returns above a national average and that have a higher chance

of upside scenarios than downside. Below we show an example on using the decomposition

we reached with the UPR, D-ratio and Excess Returns (numerator of the UPR). This allows

us to identify markets that outperform the national average (positive Excess Returns) and

that have favorable reward-per-risk trade-offs (UPR and D-ratio). We have divided the

markets in a top, middle and bottom tier for each performance measure (Excess Returns,

UPR and D-ratio). Then we score each tier (high=3, medium=2, low=1) and added up the

scores according to their individual scores. What comes out is that Austin, New York, San

Francisco and Washington, DC are the top 4 markets an investor should evaluate on a risk
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adjusted performance. This matches what institutional investors believe are the gateway

markets. Miami, Atlanta, San Antonio and Boston can be tactical investments when the

timing is right. Phoenix, Chicago, Pittsburgh and Baltimore are discouraged investments.

In this table, we see that the D-ratio and Excess returns do a good job at describing a

market in its main performance components (excess returns vs upside and downside volatility

comparison). To help us with tactical moves on secondary markets, if barriers of entrance

in gateway markets are too high, then the UPR and GMM come to the rescue to help us

identify the timing for each market.

4.2 Markets Analysis

Below we present the results of fitting returns with a GMM distribution. We choose 3

components to decompose market returns into their business cycle components. The com-

ponent with the higher mean will represent the peak of a cycle, the middle one represent

the recovery phase of a cycle and the low mean component represents a trough. Each of

these components has a weight assigned that can be interpreted as the time-weight of each

cycle phase. Comparing the GMM model for Atlanta and Phoenix we notice that Atlanta

returns are below national average level about 80% of the time. The information that this

can provide to a fund manager is that if properties in Atlanta are reporting returns above

national level, this is not likely to be a stable behavior and there is approximatively a 2

year window to sell-high in Atlanta. In Phoenix the situation is slightly different. Returns

are below the national level only 50% of the time but the time-weight of far-above national

average returns is 3% indicating that using Phoenix as a strategical investment is risky and

delicate. New York, on the other hand, outperforms the market 74% of the time. Through

GMM models and UPR ranking we can decompose risk and cycle phases for each market.

It allows a fund manager to identify risks inherent to each market, it allows flexibility in

how to measure risk and how to diversify a portfolio’s risk. It allows static analysis, by

evaluating a market in comparison to the national average by UPR, Excess Returns and the
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D-ratio or to analyze markets collectively by building an optimal portfolio with respect to

a more intuitive definition of risk as proposed by the lower second moment (denominator of

the UPR and D-ratio). Given the current portfolio selection framework available, based on

mean and standard deviation of returns, this offers tools to augment any existing investment

strategy.
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