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ABSTRACT 

Quantitative Morphological Classification of Planetary Craterforms 
Using Multivariate Methods of Outline-Based Shape Analysis 

Thomas Joseph Slezak 
Department of Geological Sciences, BYU 

Master of Science 

Craters formed by impact and volcanic processes are among the most fundamental 
planetary landforms. This study examines the morphology of diverse craterforms on Io, the 
Moon, Mars, and Earth using quantitative, outline-based shape analysis and multivariate 
statistical methods to evaluate the differences between different types of. Ultimately, this should 
help establish relationships between the form and origin of craterforms. Developed in the field of 
geometric morphometrics by paleontological and biological sciences communities, these 
methods were used for the analysis of the shapes of crater outlines.  

The shapes of terrestrial ash-flow calderas, terrestrial basaltic shield calderas, martian 
calderas, Ionian paterae, and lunar impact craters were quantified and compared. Specifically, we 
used circularity, ellipticity, elliptic Fourier analysis (EFA), Zahn and Roskies (Z-R) shape 
function, and diameter. Quantitative shape descriptors obtained from EFA yield coefficients 
from decomposition of the Fourier series that separates the vertical and horizontal components 
among the outline points for each shape. The shape descriptors extracted from Z-R analysis 
represent the angular deviation of the shapes from a circle. These quantities were subjected to 
multivariate statistical analysis including principal component analysis (PCA) and discriminant 
analysis, to examine maximum differences between each a priori established group. 

Univariate analyses of morphological quantities including diameter, circularity, and 
ellipticity, as well as multivariate analyses of elliptic Fourier coefficients and Z-R shape function 
angular quantities show that ash-flow calderas and paterae on Io, as well as basaltic shield 
calderas and martian calderas, are most similar in shape. Other classes of craters are also shown 
to be statistically distinct from one another. Multivariate statistical models provide successful 
classification of different types of craters. Three classification models were built with overall 
successful classification rates ranging from 90% to 75%, each conveying different shape 
information. The EFA model including coefficients from the 2nd to 10th harmonic was the most 
successful supervised model with the highest overall classification rate and most successful 
predictive group membership assignments for the population of examined craterforms. 

Multivariate statistical methods and classification models can be effective tools for 
analyzing landforms on planetary surfaces and geologic morphology. With larger data sets used 
to enhance supervision of the model, more successful classification by the supervised model 
could likely reveal clues to the formation and variables involved in the genesis of landforms. 

Keywords: planetary geology, volcanology, geomorphology, shape analysis, geometric 
morphometrics, remote sensing, image processing, multivariate statistics, geomorphology 
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1 INTRODUCTION 

1.1 The Problem 

The morphology of craterforms on a planetary surface provides the primary source of 

information used to infer the geologic history of the body (Zimbelman, 2001). Despite 

substantial conceptual and mathematical development in the quantitative methods used in the 

analysis of natural, irregular forms (e.g., Zahn and Roskies, 1972; Kuhl and Giardina, 1982; 

Lohmann, 1983; Rohlf and Marcus, 1993), modern studies of planetary landforms (Michalski 

and Bleacher, 2013; Watters et al., 2017) continue to employ methods of morphometric 

analysis, such as measurement-derived dimensionless ratios or “indices”, abandoned as tools 

for useful morphologic analysis by the biological shape analysis community in the 1970s 

(Lestrel, 2000).  

Analogous to biology, examinations of form in geology aim to reveal how mechanics and 

evolution relate to morphology; together these fields comprise the physical natural sciences 

(Lestrel, 2000; Neal and Russ, 2012). One example of a geological form is a craterform, or 

roughly round depression. Craterforms, circular to sub-circular to sub-angular depressions of 

no implied origin, similar in morphology can be produced from different processes (Evans, 

1986), and physical processes inferred from qualitative information lacking quantitative 

support is more likely to conject incorrect conclusions (Hayek, 1979), many of which are used 

to understand the global evolution and geologic history of a planetary body (Greeley, 2013). 



2 

The links between morphology, origin, and the processes incurred on a natural form are 

evident in geology ranging in scale from millimeter to meter-sized sedimentary particles 

(Powers, 1953) to planetary landforms (Zimbelman, 2001) ranging in scale from meters to 

hundreds of kilometers. 

However, shape is not easily quantified and communicating the information provided by 

morphology can be difficult. Existing methods used to differentiate landforms and assign 

respective nomenclature use criteria such as qualitative descriptions, indices derived from 

measurements (e.g., width to length ratio), and the fitting of mathematical models (e.g., power 

laws, quadratic equations) to evaluate landforms using morphologic variables (Evans, 1986). 

Figure 1 Examples of craterforms examined in this study including paterae on Io (a and d), lunar impact craters (b), 
martian calderas (c), terrestrial ash-flow calderas (e) and basaltic shield volcanoes (f). While the crater morphologies 
are similar, differences in shape can be quantitatively derived. 

a 
 

b 
 

c
 

d 
 

e 
 

f 
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However, it is likely that the morphology of surface forms produced by natural processes is 

multivariate (Evans, 1972).  

This study introduces multivariate, outline-based shape analysis as a quantitative tool to 

support the classification of planetary landforms. We adapt methods from modern studies in 

systematic evolutionary biology and paleontology that are used to identify or classify species 

from differences in form. Quantitative support for visual assessments of morphologic 

phenomena in geology enhance the scientific interpretations extracted from observations 

(MacLeod, 2002). Both historical (Evans, 1972) and contemporary (Pike, 2001; Mahanti et al., 

2014) works have stressed the importance of establishing a standardized quantitative 

classification system for the morphologic characterization of geologic landforms, yet no such 

system currently exists for the various types of craters formed on planets and moons.  

Craterforms (see Fig. 1) are found on all planetary bodies throughout the solar system. The 

variables and processes that influence the resultant morphologies, or shapes, of craterforms 

present a morphogenetic link. While the shapes of some craterforms such as lunar impact craters 

are relatively simple, others such as paterae (defined by the International Astronomical Union as 

“complex, or irregular craters with scalloped edges”) on Io are complex and the processes of 

their formation remain incompletely understood (Radebaugh et al., 2001; Radebaugh, 2005; 

Slezak et al., 2015; Dundas, 2017). Others, such as lunar impact craters have been well studied, 

with differences in their morphology already quantitatively linked to differences in formation 

(Wilhelms et al., 1987; Melosh, 1989).. We quantify the two-dimensional crater shapes from 

images using digitized coordinates of their outlines. A wealth of information is stored in the 

morphology of geologic forms and this study examines this information using modern methods 

of morphometrics previously unapplied to studies of planetary surfaces. This work provides a 
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framework for the standardized classification of morphologic differences between craterforms. 

The shapes of paterae on Io are compared with calderas on Mars, lunar impact craters, and 

terrestrial ash-flow calderas and basaltic shield volcanoes. We used the criteria of Pike and Clow 

(1981) as modified by Radebaugh and Christiansen (1999) to classify the terrestrial volcanoes 

examined. The objective of this study is to determine if patterns in craterform shapes can be 

quantitatively identified using outline-based shape analysis, thus evaluating whether 

morphologic patterns have the potential to provide information about the formation of surface 

landforms. 
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2 BACKGROUND 

2.1 Shape in the Natural Sciences 

Shape is inherently subjective to human visual perception, and its interpretation is 

inclusive to personal experiences and prior knowledge, in conjunction with psychological, 

cultural, and ocular influences (Neal and Russ, 2012; Bookstein, 2014; Lestrel, 2015). The visual 

recognition and interpretation of shape is fundamental to human behavioral responses and few 

words in human language are able to effectively communicate detailed information about shape 

(Thompson, 1942; Lestrel, 2000). In particular, the recognition of objects by their outlines is 

fundamental to the human visual system (MacLeod, 1999; MacLeod, 2002). However, small 

structural details and subtle changes in closed contours are significantly less apparent (Lestrel, 

2000; Loffler, 2008) but they can provide clues to extract geologic information. Unless 

differences can be readily identified in irregular outline data by the human visual system, fine 

distinctions can be dismissed when perception is inundated with nonconforming information 

(Lestrel, 2000).  

Critical terms such as “morphometrics”, “shape”, and “size,” carry different connotative 

definitions in studies of form between the biological and geological sciences. Form, or 

morphology, describes size and shape (Fig. 2) and these properties communicate the fundamental 

principles of the physical, natural sciences: complexity, variability, and evolution. Complexity 

refers to the dissimilarity of the shape relative to the number of variables involved in the process 
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(Lestrel, 2000). Variability refers to the differences in shape that are produced by a given process 

and is associated with the strength of certain formation mechanisms. Evolution refers to the 

change in morphology as a function of time (e.g., scarp collapse, volcanic resurgence, etc.) 

(Malin and Dzurisin, 1978; Mouginis-Mark and Rowland, 2001). While the morphologies of 

landforms on planetary surfaces provide rich visual information that enables scientific inferences 

to be made intuitively from comparisons with similar features, shape is not as easily quantified. 

2.2 Morphology and Morphometrics 

Morphology is an intrinsic property of all natural forms that provides the information used 

to interpret the systematic processes acting on the form over time (Greene, 1896). The concept of 

Figure 2 Form, or morphology, is a function of size and shape. Figure adapted from 
Richtsmeier et al. (2002). 
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form, or morphology, incorporating the properties of size and shape (Fig. 2), is elementary to the 

discipline of geomorphology (Evans, 1986; Lestrel, 1997). The ability to accurately classify 

craterforms is a fundamental task of planetary geology (Shoemaker, 1963; Greeley, 2011). 

Endogenic and exogenic planetary processes can produce craterforms similar in shape that yield 

opposing geologic implications for the evolution and age of planetary surfaces. Heavily impact 

cratered terrains suggest older surface ages and an inactive interior while the presence of 

volcanic craters and few (or no) impact craters suggest active resurfacing and thus an active 

interior. Identifying the differences in shape that are connected to the formation processes of 

craterforms will enhance our knowledge of the geologic history of planetary surfaces. 

Landform shape is a fundamental aspect of geomorphology that is most effectively 

described using both qualitative and quantitative information (Huggett, 2016). Shape is defined 

in this study as the geometric properties of an outline, or closed contour, in two-dimensional plan 

view, invariant to translation, rotation, and size. The morphology of craterforms on planetary 

surfaces is controlled by many variables. Both endogenic (volcanic and collapse processes) and 

exogenic (impact cratering) mechanisms of crater formation fundamentally involve the transfer 

of energy through a geologic medium. Impact-induced crater morphology is dependent on the 

energy of the impacting bolide, the geophysical properties of the target body, and the physical 

properties of the impacting surface (e.g., Cintala et al., 1977; Wood et al., 1977; Grieve and 

Robertson, 1979; Pike, 1980; Ravine and Grieve, 1986). The morphology and shape of volcanic 

forms is dependent on three general groups of factors, including planetary variables, rheological 

properties of magma, and the intrinsic properties of eruption (Whitford-Stark, 1982; Greeley, 

2013).  
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Morphologic information can be communicated multiple ways. The most common 

methods include semantic descriptions or classifications such as “circular”, “scalloped”, “rough”, 

“sharp”, or “angular” (Sayıncı et al., 2014). One example of this description method, the Powers 

(1953) sphericity -roundness classification system is a prominent example of how these 

descriptive classifications can be used to communicate powerful geomorphological information. 

Second, morphology can be communicated through measurements of internal dimensions and 

size from linear distances and ratios, using traditional morphometrics, also commonly referred to 

merely as morphometrics (Lestrel, 1997). Morphometrics is the measurement of shape and its 

dimensions (Marcus et al., 1996), and in context to geomorphology is explicated by Goudie 

(2003) as “the measurement of landforms”. The discipline of morphometrics consists of a 

number of procedures that quantitatively communicate measurement-derived information to 

enhance comparisons and relationships of morphology, or form (Read, 1990; Lestrel, 2015). 

Third, morphology can be examined by the analysis of shape using the bounding form of an 

outline (Lestrel, 1997) and its relative geometric properties that are invariant to scale, translation, 

and rotation using the mathematical technique of form comparison known as “geometric 

morphometrics” (Rohlf and Marcus, 1993). Figure 3 shows a flowchart of the various sub-

disciplines of morphometrics and highlights the methodology used for this this study. This study 

uses boundary morphometrics techniques derived from the field of geometric morphometrics to 

examine the morphologic differences in forms lacking biological homology (Bookstein, 1998). 

The ability of quantities, or shape descriptors, to communicate specific aspects of relevant 

information is dependent on the complexity of the posed hypothesis and extent of morphologic 

differences among the compared forms (Lestrel, 2000). The development of modern advances in 

the extraction of geologic information from observations could be greatly enhanced using 
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detailed quantitative comparisons of morphology. Traditional morphometrics and geometric 

morphometrics are both described in more detail below. 

2.3 Traditional Morphometrics  

Traditional morphometric methods can be useful to examine size and shape properties 

collected from physical measurements of natural forms (Lestrel, 1997). Commonly used 

morphometric measurements include length, width, perimeter, and area, as well as derived 

dimensionless ratios from these measures such as circularity, aspect ratio, best-fit ellipse, 

effective diameter, and others (Neal and Russ, 2012). While these quantities and ratios are easily 

calculated, significant shape information is lost and equivalent values can equally represent a 

range of different shapes. Traditional morphometrics provide quantities of shape that are not as 

effective for comparisons of complex forms (Evans, 1972; MacLeod, 1999; Sayıncı et al., 2014). 

Morphometrics
(2-dimensional)

"Traditional" Morphometrics Geometric Morphometrics

Landmark analyses Outline analysis

Curve 
Approximation

Polynomial 
functions

Elliptic Fourier 
analysis

Other Fourier 
analyses

Eigenshape 
analysis

Figure 3 Flowchart of the sub-disciplines of morphometrics (Crampton, 1995); the methods used in this study are 
illustrated by the green boxes. 
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Furthermore, analyses of shape using these measures can yield morphometric results that fail to 

describe visually intuitive differences among the shapes in the analysis. Andrews-Hanna et al. 

(2008), for example, conclude that it is logically invalid to attribute patterns of ellipticity to 

endogenic geologic processes.  

Modern craterform studies apply techniques of traditional morphometrics (Lohmann, 

1983; Rohlf and Marcus, 1993; Lestrel, 2000) and directly link measurement-derived 

quantitative indices to geologic information and interpretations (e.g., Fassett et al., 2009; 

Michalski and Bleacher, 2013). These procedures use scalar measures such as area, perimeter, 

diameter, and depth, to compute values such as circularity (form factor), ellipticity, and depth-to-

diameter ratio, which are used as primary quantitative descriptors of shape or form. These ratios 

are used to support interpretations and are most effectively applied where visual differences in 

morphology are substantiated a priori. However, these methods do not include the detailed 

spatial information specific to the geometry of a complex, or irregular outline or shape 

(MacLeod, 1999).  

This study examines the morphology of paterae on Io, martian calderas, terrestrial basaltic 

shield calderas, terrestrial ash-flow calderas, and lunar impact craters using quantitative, outline-

based shape analysis and multivariate statistical methods to evaluate if morphologic distinctions 

can be classified using shape information alone. 

2.4 Geometric Morphometrics 

Geometric morphometrics (Rohlf and Marcus, 1993) is a field of study pertaining to a set 

of methods that express shape quantitatively and preserve all geometric information throughout 

statistical analysis, while allowing shapes to be reconstructed to their original form. Geometric 
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morphometrics has 30+ years of legacy in fields of biological research (MacLeod, 2017a), and its 

results can address a larger number of scientific problems by communicating detailed 

quantitative comparisons of shape effectively. Shapes are examined by techniques that disregard 

variables including scale, translation, and rotation (Slice, 1996) and use procedures that enable 

visually intuitive comparisons of shape in an analytically tractable manner (MacLeod, 2002). By 

examining the correlations among the shapes of different populations of craterforms, formation 

processes can be extracted. Outline-based, “landmark-free” (does not depend on location) 

methods of shape analysis, descending from the advent of geometric morphometrics known as 

“boundary morphometrics” (Lestrel, 1997), are used to investigate patterns in the 

geomorphology of the craterforms examined in this study.  

Studies using geometric morphometrics are accomplished by removing all non-shape 

variation (scaling, translation, and rotation) prior to quantitative analysis to allow shape 

information to be extracted for further analysis (Adams et al., 2013). Non-shape variations result 

from location and scaling of each craterform in the image (see Fig. 4). The outline is traced and 

50 km 
 

1 km 
 

Figure 4 Non-shape variables of position, translation, and scaling result in differences in craterform location within 
processed imagery. 
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Cartesian coordinates are then extracted (see Fig. 6). One standalone method standard in 

geometric morphometrics to accomplish this is Procrustes analysis.  However, this technique 

poses issues for the analysis of geomorphologic information as it assumes at least one 

(topologically) homologous point exists, from which procedures for standardized rotation among 

all forms can be accomplished. Craterforms of different origins inherently lack any such 

homology and thus this method produces erroneous results for craterforms. This presents a 

significant problem to “landmark-free” outline analysis studies as the quantities derived from 

each outline must be ordinal to some mark of reference. Ergo, mathematically-derived starting 

points along each outline, known as artificial, geometric, or “pseudo”-homologous points 

(Sneath and Sokal, 1982; O’Higgens, 1997) or Type III landmarks (MacLeod, 2011a) are derived 

for the craterforms by rotating the shapes to the point corresponding to the maximum distance 

from each shape’s centroid. This study employs other methods that are able to manage the non-

homology inherent to craterforms in comparison to Procrustes analysis. 

2.5 Previous Outline Studies of Morphology in the Geological Sciences 

The scope of application for geometric morphometrics has been thus far limited to studies 

of forms in the natural sciences because variability is intrinsic to the natural world. Difficulties in 

the description of form exist for both biological and geological specimens. While the biological 

sciences community has developed the field of geometric morphometrics to address the 

difficulties that arise in describing biological form (Lestrel, 1997), the modern geological 

sciences community has yet to take advantage of this methodology.  

Pioneering studies in the analysis of grain shapes by Ehrlich and Weinberg (1970) 

introduced outline-based analysis approaches to the geological sciences community through 
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Fourier analysis as an “exact” method to characterize grain shapes. The Fourier series expansion 

can be used to quantitatively examine shapes treated as closed curve periodic functions by 

providing an approximation to the curve using any infinite number of harmonics to derive 

frequencies and amplitudes. The application of traditional, radial Fourier analysis to examine the 

variability among simple closed curves derived from the outline of geologic forms has been 

applied to lunar impact craters by Eppler et al. (1977a; 1977b; 1978; 1983), and Ravine and 

Grieve (1986) to examine the variability in, and to identify influential factors affecting, 

morphology in lunar craters. Additional applications of Fourier analysis in other planetary 

studies include Kordesh et al. (1982), Kordesh and Basu (1982), Kordesh et al. (1983), Kordesh 

(1983a); Kordesh (1983b), to analyze the differences between lunar soil particle shapes and 

clasts in meteoritic breccia.  

The results of these studies were limited to the availability of multi-dimensional data 

reduction procedures and subsequent robust statistical methods of comparison enabled by 

advances in computational power and the maturation of outline-based shape methods. Eppler et 

al. (1978) and Eppler et al. (1983), employ the “closed form” method of Fourier analysis from 

Ehrlich and Weinberg (1970) which assumes some number of k points are placed at equiangular 

intervals originating from the shape’s centroid. 

In these analyses, the shape’s centroid is calculated from all of the points initially placed 

along the outline; however, the centroid of the k points placed at equal angle intervals differs 

from the absolute centroid of the shape, and this introduces significant error into subsequent 

Fourier analysis because the assumption of equiangularity is violated (Ehrlich et al., 1983; 

MacLeod, 2011b). Furthermore, these results are limited in their scope of geological 

interpretation by proxy in identifying combinations of statistically significant harmonic 
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frequencies and amplitudes. The interpretations of these studies relied on comparisons of the 

presence of patterns among individual statistically significant Fourier descriptors produced from 

analysis. Ultimately the conclusions of these outline-based studies were limited by available 

multivariate statistical analysis and computational power, as well failing to reconcile a standard 

procedure for the requisition of the inherent flaws in these analyses pointed out by Ehrlich et al. 

(1983) and others. Studies of geomorphological forms using Fourier-based analysis largely died 

out in the late 1980’s following the failure to resolve the discrepancies. A more recent 

application of radial Fourier analysis to craterforms by Watters et al. (2017) did not follow the 

methods used by the biological community that we pursue here. 

While some recent studies have explored quantitative frameworks to standardize lunar 

crater classifications using methods such as the application of Chebyshev polynomials (e.g., 

Mahanti et al., 2014), these methods rely upon high-resolution topographic data. The use of 

polynomials (e.g., Craddock and Howard, 2000) and power laws (e.g., Baldwin, 1963; Pike, 

1977) have been used to describe certain aspects of morphologic relationships for selected crater 

populations. The mathematical representation of craterform morphology using outline shape 

information has yet to be examined using modern multivariate approaches on any planetary 

body.
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3 METHODOLOGY 

3.1 Image Sources and Outline Digitization 

We examined the shapes of 406 craterforms consisting of identified paterae on Io, lunar 

impact craters, martian calderas, and terrestrial basaltic shield calderas and ash-flow calderas. 

We use a stereographic map projection applied to each image from which outlines were 

obtained. A stereographic map projection ensures conformality (shape preservation) is preserved 

in contrast to other map projections that compromise shape distortion for correct scaling. The 

images in Appendix A are projected in stereographic map projection with ad hoc procedures 

implemented to correct the scale bars of each image. An example of the distortions in shape and 

scale that occur as a result of different map projections is illustrated in Fig. 5. 

Figure 5 (a) Rheita crater on a shaded relief map using an equidistant cylindrical projection and (b) Rheita crater 
using a stereographic map projection of LROC WAC imagery. Image credit: lroc.sese.asu.edu, (a) 100 m/px LROC 
DEM; (b) 100 m/px LROC WAC. 

a 
 

b 
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3.1.1 Sources of Images  

First, lists of craterforms produced by different processes were generated for different 

groups of craterforms. A sample consisting of 154 paterae on Io with well-defined boundaries 

and sufficient image resolution was examined in this study from images acquired by the Galileo 

Solid State Imaging camera (SSI) (Belton et al., 1992) and the Voyager 1 Narrow Angle Camera 

(NAC) (Smith et al., 1977), retrieved from the Planetary Data Service (PDS), and processed in 

the ISIS3 software developed by the U.S. Geological Survey (https://isis.astrogeology.usgs.gov). 

The spatial resolution of the imagery used ranges from ~7 m/px to ~2 km/px, and since this is a 

sample dataset, not every patera at sufficient resolution was measured. The images of paterae 

were processed using Io 2000 IAU geographic datum and a polar stereographic map projection, 

with the central projection coordinates corresponding to the center of the image. 

The Io Galileo SSI / Voyager Color Merged Global Mosaic base map provided by the U.S. 

Geological Survey Astrogeology Branch (Belton et al., 1992; Geissler et al., 1999; Becker and 

Geissler, 2005; Barth et al., 2009; Veeder et al., 2009; Williams et al., 2011b) was also used to 

collect observations of paterae at ~2 km/px spatial resolution. The mosaic was loaded into 

ESRI’s ArcMap 10.4 software as a USGS .cub file using bilinear interpolation resampling using 

a stereographic projection coordinate system and the Io 2000 IAU geographic datum.  The 

projected images of the paterae were exported as 2000 px by 2000 px .jpg files and included a 

scale bar (denoted in km (Appendix B)) that was later modified to correct for scaling errors 

introduced by the stereographic map projection for craters at high latitude. 

Locations of terrestrial basaltic shield volcanoes and ash-flow calderas were taken from 

global databases provided by the ASTER Volcano Archive (AVA) and Smithsonian Global 

Volcanism Program (Venzke et al., 2002). Supplementary records and geologic mapping of ash-
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flow shields are provided by Newhall and Dzurisin (1988), Lipman (1997), Radebaugh and 

Christiansen (1999), and Hughes and Mahood (2008). Images of a sample dataset of 38 ash-flow 

calderas and 35 basaltic shield calderas were collected in ArcGIS using ESRI’s Online World 

Imagery base map layer and projected into a stereographic coordinate system. This base map 

layer contains imagery ranging in resolution from 15 m/pixel to the sub-meter scale depending 

on location. Where ESRI imagery was insufficient to resolve the complete shape) of the 

craterform due to image anomalies or obscuration from superficial effects such as clouds or 

snow, DigitalGlobe 2016® imagery ranging from ~1 – 15 m/px from Google Earth Pro (for n) 

was used. In some locations (for n), 30 m/px Landsat Enhanced Thematic Mapper (ETM) and 15 

m/px Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Visible and 

Near Infrared (VNIR) imagery from the USGS and NASA’s Land Processes Distributed Active 

Archive Center (NASA LP DAAC 2015) were used.  

Images of martian calderas documented by Hodges and Moore (1994), Williams et al. 

(2009), Robbins et al. (2011), and Tanaka et al. (2014) were taken from the THEMIS-IR Day 

Global Mosaic 100m v12 (Edwards et al., 2011) global image base map and CTX imagery using 

the JMARS software (Christensen et al., 2009). Martian calderas were located and the map was 

re-projected to the central coordinates of each caldera using the JMARS Reproject.... tool to 

preserve conformal and equal-area attributes. The THEMIS IR Day v12 mosaic has a spatial 

resolution of 100 m/px; CTX imagery has a resolution of ~7 m/px and was used for some 

calderas (n) where higher resolution imagery was need to define their shapes. A sample of 24 

calderas from Mars were studied. 

Lunar impact craters were selected from the Lunar and Planetary Institute’s Lunar Impact 

Crater Database (Losiak et al., 2015). The simple to complex transition causes morphologic 
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(shape) variation as the crater diameter increases. Simple craters are nearly circular, like bowls, 

and lack central peaks, while complex craters display more complicated morphologies and have 

central peaks, or pits. “Transitional” impact craters lack central peaks but have more complex 

rim outlines than simple impact craters. The simple to complex transition occurs at ~21 km for 

craters in the lunar highlands and at ~16 km diameter for craters in mare (Wilhelms et al., 1987). 

A simple random sample (SRS) of lunar craters was selected from the Lunar and Planetary 

Institute 2015 impact crater database (Losiak et al., 2015) binned by diameter ranges of [0-12 

km], [12-35 km], and [35 – 220 km] to identify crater morphology associated with these ranges 

in size (Wilhelms et al., 1987). While the lunar simple-complex transition is related to size, but 

not defined by it, this method of sampling allows the diversity of impact craterform shapes on 

the Moon to be included in the study. Images of lunar impact craters were processed in ArcMap 

10.4 from the LRO LOLA and Kaguya Terrain Camera DEM merge base map (Barker et al., 

2016) and the LRO LROC-WAC Global Mosaic 100m June 2013 map. Similar to the other base 

maps, a polar stereographic map projection is used. 

Craterforms with ambiguous origins were not used in this analysis. A total of 406 

craterform outlines, consisting of 154 ionian paterae, 38 terrestrial ash-flow calderas, 35 

terrestrial basaltic shields, 24 martian calderas, and 155 lunar impact craters were studied. 

3.1.2 Outline Digitization   

The tps series software (Rohlf, 2015) was used to digitize crater outlines from the selected 

images. This software stores data in the tps file format, the default file type used in geometric 

morphometrics software packages and scripts. A tps file is a simple text file that consists of a 
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series of Cartesian coordinates for a shape in a given image, with header lines that list additional 

information such as ID, image name, and scale factor.  

Outlines were traced for each craterform manually by placing a number of points along the 

most continuous and well-defined outer boundary of the craterform using the Curve tool in 

tpsDig2. The initial point of each outline was arbitrarily placed in the northwest quadrant of the 

image along the structural bounds of the craterform followed by placement of points along the 

craterform rim in a clockwise fashion (Fig. 6a). Additional points can be placed until the outline 

satisfactorily represents the morphology of each craterform. The number of “raw” points needed 

to outline each craterform varies with the complexity of its shape. The final point on the curve is 

placed just before the initial point.  

When all of the curves have been sufficiently outlined, the tps file was then modified in the 

Sublime Text 3 text editor to complete the outline. A value of 1 was added to the value of points 

collected for each specimen, and the first listed Cartesian coordinate for each specimen is 

replicated onto the final line of its coordinates so as to geometrically close the shape of each of 

the outlined curves. Following these modifications, the file is re-opened in tpsDig2 and the 

10 km 10 km 

Figure 6 A visualization of the transformation from raw, maually placed Cartesian points (A) along the outline 
of the craterform to points with equidistant spacing (B) from linear interpolation. 

a b 
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outline is resampled to 100 equally spaced points using linear interpolation (Fig. 6b). The 

number of points is conventionally fixed at 99, consistent with other studies (Lohmann, 1983; 

Rohlf and Archie, 1984; Ferson et al., 1985). Interpolating the points to equal-length spacing 

ensures that the shapes can be compared at “positions of maximum correlation” (see Lohmann, 

1983), since craterforms inherently lack topologically homologous landmarks. Mathematically 

derived, “pseudo-homologous” points (Sneath and Sokal, 1973) of reference were obtained for 

the shapes in the dataset by reordering the outline points to the point that corresponds with the 

maximum distance to the centroid. 

After all of the craterform outlines have been resampled in tpsDig2, the relative area, 

perimeter, and circularity for each shape were calculated using the tpsUtil program. Following 

calculations of area and perimeter, the previously added point used to enclose each outline is 

removed since the quantitative methods employed assume the first and final point are connected. 

A total of 99 equally spaced points along each outline were collected and quantitative analysis 

was subsequently performed.  

3.2 Quantitative Analysis of Crater Shapes  

We employed multiple quantitative methods to examine and compare the craterforms and 

evaluate the ability of these quantitative analyses to describe the complexity and variability in 

shapes. Traditional morphometric measures of “circularity" (Eq. 1), also known as “formfactor” 

or “compactness,” and “ellipticity,” also known as “axial ratio,” were calculated for each shape. 

Outline-based shape analysis methods, including the Zahn and Roskies (1972), or Z-R shape 

function, also known as the tangent angle approach, and elliptic Fourier analysis (EFA) were 

used to produce multivariate descriptors of the craterforms. Multivariate statistical methods 
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including principal component analysis (PCA) and discriminant analysis were then used to 

identify statistically significant differences between and among the groups of craterforms. This 

study tested the hypothesis that patterns between groups of craterforms can be quantitatively 

distinguished using quantities derived from outline-based shape analysis and multivariate 

statistical analysis. 

3.3 Traditional Morphometrics: Circularity 

Two-dimensional analyses derived from measurements of the morphology of landforms 

are often used in morphometric analysis of planetary surfaces. Circularity is defined by a shape’s 

likeness to a circle in terms of its area and perimeter. The equation for circularity is: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 4𝜋𝜋𝜋𝜋
𝑃𝑃2

,         (1) 

where 𝐴𝐴 is the area enclosed by a closed curve and 𝑃𝑃 is the perimeter of the object. The 

result is a dimensionless quantity between 0 and 1, where a value of 1 indicates a circle and a 

value of 0 indicates a line between two points. For regular polygons, an equilateral triangle 

produces a circularity value of 0.61, a square yields a circularity value of 0.79, and the circularity 

of a pentagon is 0.87. Of course, circularity alone does not capture all of the geometric properties 

of shape. It is therefore preferable that multivariate methods of analysis are employed. 

3.4 Multivariate Analysis: Z-R and EFA 

Shape outlines can be quantified in multiple ways. A common approach is to fit a 

mathematical function to the sampled points of the outline in polar coordinates. A number of 

Fourier analyses can be applied to approximate a curve along the points of an outline, and the 

resultant coefficients from this approximation can then be subjected to multivariate analysis.  
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The Z-R shape function is an intuitive shape descriptor that is founded on the geometric 

properties of a circle, making it ideal to quantify impact and volcanic crater shapes. An analysis 

of boundary coordinates computed by the Z-R shape function results in a set of angles, expressed 

in radians, whose cumulative sum represents the angular change around the perimeter of the 

shape. The Z-R shape function is: 

𝜙𝜙(𝐶𝐶) = 𝜃𝜃(𝐶𝐶) − 𝜃𝜃(0) − 𝐶𝐶 , 

(Error! Bookmark not defined.2) 

where t is the distance from the starting point, 𝜃𝜃(0) is the tangent angle at the starting 

point, and 𝜃𝜃(𝐶𝐶) is the tangent angle of a vector of distance 𝐶𝐶 from the starting point (Zahn and 

Roskies, 1972; Rohlf and Archie, 1984). The Zahn and Roskies (1972), or Z-R shape function 

(Eq. 2) evaluates the shape of an object by the curvature of its outline and provides an “intrinsic 

Figure 7 A plot of Z-R shape function results for Linné impact crater and Maasaw patera from their outlines 
shown in Fig. 4. 



23 

representation” of shape (Bookstein et al., 1982). The number of values output by the shape 

function correspond to the number of Cartesian points used to represent each outline. A total of 

Figure 8 Z-R analysis of Camaxtli patera (Io), the ϕ-based approach, where (ϕi, ϕi+1, ϕi+n…) describes shape as the 
angular deviation from an ideal circular form. 

98 output values are output from the function for each craterform and are collected into a matrix 

for further analysis. Figure 7 illustrates these quantities and their derivation along the outline of 

Camaxtli patera on Io. 



24 

Fourier analysis methods can also be applied to describe the change in tangent angle values 

of each point along the shape’s curve as a function of arc length (Eq. 2). This “tangent angle 

approach” was proposed by Zahn and Roskies (1972) and the derived quantities were further 

subjected to Fourier analysis; however, others (Lohmann, 1983; Rohlf and Archie, 1984) took 

the raw quantities and realized that they could be examined alone to obtain similar results. 

The Z-R shape function was applied using the Wolfram Mathematica software and 

MacLeod’s (2011) “Z-R Shape Function 1.4” notebook (MacLeod, personal communication). 

Figure 8 shows a representation of Maasaw patera and Linné crater (see Fig. 1) according to 

Zahn and Roskies (1972) shape function. Linné crater is a nearly circular simple crater, and here 

plots as a nearly straight line while the more irregular Maasaw patera deviates from a circle. 

These measures are scale-invariant and isolate shape as a variable that can be quantitatively 

compared while allowing each shape to be easily reconstructed.  

Elliptic Fourier analysis (Kuhl and Giardina, 1982), (EFA) is a widely-used technique of 

geometric morphometrics in outline analysis studies that provides a more precise approximation 

of complex shapes in comparison to traditional Fourier analysis and it is well-suited to boundary 

morphometrics (Rohlf and Archie, 1984; Lestrel, 2000). Elliptic Fourier analysis (Kuhl and 

Giardina, 1982) uses Fourier decomposition to separate the x (horizontal) and y (vertical) inter-

point components of the outline as independent parametric functions  of arc length and distance 

of each point from the starting point along the outline (Marcus et al., 1996; Lestrel, 1997, Kuhl 

and Giardina, 1982, Ferson et al., 1985; MacLeod, 2012).The parametric equations of the Z-R 

shape function, described by Kuhl and Giardina (1982) are: 

𝑥𝑥(𝐶𝐶) = ∑ �𝐴𝐴𝑛𝑛 cos �2𝜋𝜋𝑛𝑛𝜋𝜋
𝑇𝑇
� + 𝐵𝐵𝑛𝑛 sin �2𝜋𝜋𝑛𝑛𝜋𝜋

𝑇𝑇
��𝑁𝑁

𝑛𝑛=1 , (3)
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𝐶𝐶(𝐶𝐶) = ∑ �𝐶𝐶𝑛𝑛 cos �2𝜋𝜋𝑛𝑛𝜋𝜋
𝑇𝑇
� + 𝐷𝐷𝑛𝑛 sin �2𝜋𝜋𝑛𝑛𝜋𝜋

𝑇𝑇
��𝑁𝑁

𝑛𝑛=1 , (4) 

where n equals the harmonic number, N equals the maximum harmonic number, t equals the 

incremental displacement between successive points along the outline, and T equals the total 

displacement over the complete shape. 

The Fourier coefficients for x components of the shape function are (Kuhl and Giardina, 

1982; Ferson et al., 1985): 

𝐴𝐴𝑛𝑛 = T
2𝑛𝑛2𝜋𝜋2

+ � ∆𝑥𝑥𝑝𝑝
∆𝜋𝜋𝑝𝑝

�cos �2𝜋𝜋𝑛𝑛𝜋𝜋𝑝𝑝
𝑇𝑇

� − cos �2𝜋𝜋𝑛𝑛𝜋𝜋𝑝𝑝−1
𝑇𝑇

��
𝑘𝑘

𝑝𝑝=1
, (5) 

𝐵𝐵𝑛𝑛 = T
2𝑛𝑛2𝜋𝜋2

+ � ∆𝑥𝑥𝑝𝑝
∆𝜋𝜋𝑝𝑝

�sin �2𝜋𝜋𝑛𝑛𝜋𝜋𝑝𝑝
𝑇𝑇

�− sin �2𝜋𝜋𝑛𝑛𝜋𝜋𝑝𝑝−1
𝑇𝑇

��
𝑘𝑘

𝑝𝑝=1
, (6) 

where k is the number of steps in the trace (indexed by p), ∆𝑥𝑥𝑝𝑝 is the displacement along the x-

axis of the outline between steps 𝑝𝑝 − 1 and 𝑝𝑝, ∆𝐶𝐶𝑝𝑝 is the length of the linear segment between 

these steps, 𝐶𝐶𝑝𝑝 is the accumulated length of such segments at step 𝑝𝑝, and 𝑇𝑇 (=𝐶𝐶𝑘𝑘) is the total 

length of the closed curve. Similarly, the Fourier coefficients for the y-aspect are: 

𝐶𝐶𝑛𝑛 = T
2𝑛𝑛2𝜋𝜋2

+ � ∆𝑦𝑦𝑝𝑝
∆𝜋𝜋𝑝𝑝

�cos �2𝜋𝜋𝑛𝑛𝜋𝜋𝑝𝑝
𝑇𝑇

� − cos �2𝜋𝜋𝑛𝑛𝜋𝜋𝑝𝑝−1
𝑇𝑇

��
𝑘𝑘

𝑝𝑝=1
, (7) 

𝐷𝐷𝑛𝑛 = T
2𝑛𝑛2𝜋𝜋2

+ � ∆𝑦𝑦𝑝𝑝
∆𝜋𝜋𝑝𝑝

�sin �2𝜋𝜋𝑛𝑛𝜋𝜋𝑝𝑝
𝑇𝑇

�− sin �2𝜋𝜋𝑛𝑛𝜋𝜋𝑝𝑝−1
𝑇𝑇

��
𝑘𝑘

𝑝𝑝=1
, (8) 

These equations are used to compute the coefficients for a number of harmonics that are 

sufficient to quantitatively describe and compare the craterforms in this study. The resulting 

coefficients produce cos 𝑥𝑥, sin 𝑥𝑥, cos 𝐶𝐶, and sin𝐶𝐶 coefficients for each n harmonic, which 

describe inter-point orientation independently in the horizontal and vertical direction and 

approximate the shape function. While the coefficients produced from the EFA procedure 
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defined by Kuhl and Giardina (1982) can be immediately subjected to multivariate statistical 

analysis, we use the normalization procedure of Ferson et al. (1985) to ensure the shape data is 

invariant to non-shape variables (scaling, translation, and rotation). While the application of 

various Fourier series expansion methods typically disregards these outline variables, the 

application of Fourier analysis to shape can be sensitive to rotation, scaling, and the starting 

point of the traced outline (Ferson et al., 1985). These variables can be normalized for the shapes 

in the study using the following matrix operations. 

�𝐶𝐶𝑛𝑛 𝑏𝑏𝑛𝑛
𝐶𝐶𝑛𝑛 𝑑𝑑𝑛𝑛

� =  1
𝐸𝐸∗
�cos𝜙𝜙 sin𝜙𝜙

sin𝜙𝜙 cos𝜙𝜙� ∗ �
𝐴𝐴𝑛𝑛 𝐵𝐵𝑛𝑛
𝐶𝐶𝑛𝑛 𝐷𝐷𝑛𝑛

� ∗ �cos𝑛𝑛𝜃𝜃 −sin𝑛𝑛𝜃𝜃
sin𝑛𝑛𝜃𝜃 cos𝑛𝑛𝜃𝜃 �, (9) 

where 𝑛𝑛 is the harmonic of the computed set of Fourier coefficients. The size of the minor (semi-

major) axis, 𝐸𝐸∗, of the best-fit ellipse and the angular orientation of the ellipse 𝜙𝜙 expressed in 

radians are given by: 

𝐸𝐸∗ = √𝐶𝐶∗2 + 𝐶𝐶∗2 (10) 

𝜙𝜙 = sin−1�𝐶𝐶
∗
𝐶𝐶∗� � (11) 

on the interval 0 ≤ 𝜙𝜙 ≤ 2𝜋𝜋. Normalized coefficients, 𝐶𝐶∗and 𝐶𝐶∗ are given by the equations: 

𝐶𝐶∗ = 𝐴𝐴1 cos 𝜃𝜃 + 𝐵𝐵1 sin𝜃𝜃, (12) 

𝐶𝐶∗ =  𝐶𝐶1 cos𝜃𝜃 + 𝐷𝐷1 sin𝜃𝜃. (13) 

The calculation of 𝜃𝜃 is given by: 

𝜃𝜃 =  1
2

tan−1 ��2 (𝜋𝜋1𝐵𝐵1+𝐶𝐶1𝐷𝐷1)
𝜋𝜋12+𝐶𝐶12−𝐵𝐵12−𝐷𝐷12

�� (14) 

on the interval, 0 ≤ 𝜃𝜃 < 𝜋𝜋.  
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As a result of this normalization procedure, the first three coefficients of the first harmonic, 

cos 𝑥𝑥1, sin 𝑥𝑥1, and cos 𝑥𝑥1 (𝐶𝐶∗, 𝑏𝑏∗, and 𝐶𝐶∗) are degenerated to values of 1, 0, and 0 respectively 

and thus yield values that are not useful in further statistical analysis. The fourth coefficient of 

the 1st harmonic, sin𝐶𝐶1 (𝑑𝑑∗), however, provides the ellipticity (also known as axial ratio) of the 

best fit ellipse for each shape, and thus contributes meaningful shape information. Successive 

harmonics yield additional coefficients that produce a function that fits the outline of a shape 

with increasing precision.  

It is desirable to limit the number of coefficients to the lowest number of harmonics 

necessary to adequately represent the shape differences among the craterforms. Similar to all 

other Fourier analyses, the first few consecutive harmonics (following the 1st) provide most of 

the information needed to approximate the shape. 

The number of harmonics necessary to adequately describe the complexity across all of the 

craterforms was evaluated a posteriori in multiple ways. One way, shown in Fig. 9, is to visually 

examine successive harmonic shape approximations in comparison to the original outlines to 

determine how many harmonics are sufficient to represent the complexity of craterforms 

included in the study (Crampton, 1995). Another example of this is shown by Fig. 10 applied to 

Figure 9 An example of elliptic Fourier analysis applied to the shape of Maasaw patera. As successive harmonics 
are applied, a better approximation of shape results at the cost of the inclusion of additional coefficients in the 
dataset. 
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the global computed values of the Fourier power (for the first 30 harmonics. The PAST3 

(PAleontological STatistics) software package (Hammer et al., 2001) was used to compute the 

normalized elliptic Fourier analysis coefficients with the implementation of the Ferson et al. 

(1985) normalization procedure. From a posteriori examinations, we select the first 5 harmonics 

and 10 harmonics as adequate descriptors of the complexity and variability of the shapes 

included in this study. The coefficients corresponding to these harmonics were included in the 

multivariate statistical analysis in order to compare the differences and ability of the two 

quantitative descriptors to differentiate and successfully classify craterforms by shape alone. Due 

to the degeneration of the first three coefficients of the first harmonic due to the Ferson et al. 

(1985) normalization, and considering the final coefficient of the first harmonic represents 

ellipticity, which is extracted to be examined separately, the first harmonic is effectively 

removed and the number of coefficients as a function of its harmonic is 4n – 4. Thus, we subject 

16 coefficients (n=5) and 36 (n=10) coefficients from elliptic Fourier analysis to multivariate 
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analysis to determine the model that most accurately assigns membership of craterforms to their 

groups identified a priori (achieves the highest rate of success in classification) in this study.  

3.5 Outlier Identification Criteria 

Analysis of the shape quantities for each craterform produced by elliptic Fourier analysis 

and the Z-R shape function was completed using the PAST3 (Hammer et al., 2001) and JMP 13 

Pro (SAS Institute Inc., 2017) statistical software packages. Univariate statistical tests were 

computed to test the statistical significance (α=0.05) of diameter, circularity, and ellipticity using 

analysis of variance (ANOVA), while multivariate analysis of variance (MANOVA) tests were 

used to examine the multivariate dataset (elliptic Fourier coefficients. Z-R shape function 

angles). Multivariate outlier analyses (pooled within-group) were conducted for each group of 

craterforms using tests to examine Mahalanobis Distances, Jackknife Distances, and T2 values in 

Figure 10 The averaged Fourier power values for each harmonic of elliptic Fourier analysis of all craterforms. The 
plot shows how contributed shape information, the area under the curve, changes as the harmonic number increases. 
The power values for the 1st and 2nd harmonics are excluded from the plot and are 1.82E-04 and 6.23E-04, respectively. 
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JMP 13 Pro. The craterform groups were assumed to have unequal variances. In all analyses, a 

confidence coefficient of α = 0.05 is implemented and 95% confidence ellipses are used to 

visualize relationships between groups. No craterform shapes were found to be outliers in this 

study defined by the criteria above. 

3.6 Multivariate Statistical Analyses 

Multivariate statistical analyses allow multiple variables to be examined simultaneously 

for an individual among a larger population. Reducing the many dimensions of the data that 

describe a single shape is critical in this process. To correlate the data, we used a variant of 

discriminant analysis known as canonical variate analysis (CVA). We subjected the 98 angular 

values for each craterform shape, computed from the Z-R shape function and the harmonic 

coefficients from elliptic Fourier analysis (for 5 and 10 harmonics, in separate runs) to separate 

multivariate statistical analyses, including discriminant analysis and principal component 

analysis. Both techniques reduce the dimensionality of the dataset to show the greatest amount of 

shape information in a 2-dimensional space. As any single column of variables for the 

craterforms can be compared against all others in a dataset, the dimensionality of a multivariate 

dataset is p-1. 

A confidence level of 95% (α = 0.05) is used to conclude that the true mean of a group lies 

within the range of values represented by its ellipse. Significance is considered using an ad hoc 

procedure examining the resultant p-values from statistical analysis in context to others 

produced. A p-value describes the likelihood of the statistical result to be replicable from random 

data and correlates directly to the selected α level of confidence. As this study employs 
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exploratory methods, p-values are examined comparatively and within reason, and thus statistical 

significance is not limited in absolute to p-values > 0.05. 

3.7 Principal Component Analysis 

Principal component analysis (PCA) is a form of multivariate statistical analysis that seeks 

to maximize the variance of a linear combination of variables and, in this study, provides a 

visually intuitive way to interpret shape differences in craterforms. The objective of this method 

is to represent maximum variability in the data using the fewest number of components. It allows 

proportions of variance among the total population to be explained by the principal dimensions 

of variation within a dataset. Principal component analysis is often used as a data-dimensionality 

reduction technique that allows sets of many variables, such as the 98 angular values produced 

for each shape by the Z-R shape function, or the 36 elliptic Fourier coefficients of the 10th 

harmonic produced by the EFA procedure, to be visualized using principal axes of variance in a 

two-dimensional space. Data dimensionality reduction in PCA is achieved by eigenanalysis, a 

procedure of finding the eigenvalues and eigenvectors of the correlation matrix using the 

Singular Value Decomposition (SVD) algorithm. The computed eigenvalues provide a measure 

of variance among the data corresponding from the eigenvectors (principal components) usually 

represented as the axes of a 2D plot. The application of PCA to the output of the Z-R shape 

function is known as “eigenshape analysis” (Lohmann, 1983; Lohmann and Schweitzer, 1990).  

3.8 Discriminant Analysis (Canonical Variate Analysis) 

Discriminant analysis is a form of multivariate analysis that examines and maximizes the 

differences between groups distinguished a priori from a population while minimizing within-

group variation for one or more classification criteria. The two fundamental objectives of 
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discriminant analysis are first, to optimally describe group separation and second, to predict 

where measurements will fall into groups using a classification function (Rencher and 

Christensen, 2012). The first task is known as “canonical discriminant analysis” whereas the 

second task is referred to as “classification analysis” or “supervised classification”. Canonical 

variate analysis (Fisher, 1936), or CVA, is a type of discriminant analysis that is intended to 

maximize the differences between multiple groups (k >2) in a population (Lestrel, 2000). This 

analysis performs a series of standardized axis rotations and transformations, which result in the 

data for the two or more groups to optimally project onto a lower dimensional space where 

maximum differences between the mean value of each group can be visualized. The first 

canonical variable represents the linear combination of the coefficients that maximizes the 

multiple correlation between the craterform groups and the coefficients. The second canonical 

variable is a multiple linear combination, mathematically independent to the first, that maximizes 

correlation between the craterform groups (SAS Institute Inc., 2017). Discriminant analysis is 

useful to identify the specific variables that contribute to group separation. It is used in this study 

to provide the framework of a classification system by which additional (unknown) craterform 

shapes lacking a priori classification could be assigned to a specific group based on multiple 

quantities of form, including shape-derived quantities.  

Discriminant analysis was completed with the JMP 13 Pro software using the Z-R shape 

function and the coefficients produced from elliptic Fourier analysis. The quadratic method of 

discriminant analysis was chosen because the covariance matrices of the shape quantities for the 

craterform groups are unequal and it is particularly robust to within-group differences between 

covariance matrices for the craterform populations (Friedman, 1989). It also provides a better fit 

of the classification function to the data in this study in comparison to linear fits. 
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4 RESULTS 

4.1 Diameter 

Diameter values for the craterforms are displayed in Figure 11 and summarized in Table 1. 

Figure 11 shows outlier box plots for each group where the boxes represent the interquartile 

range (IQR), derived by subtracting the 3rd quartile from the 1st quartile; the line within the box 

represents the group mean. The “whiskers” or lines extending from each box, are drawn to the 

Figure 11 Diameter box plots and values for the craterforms examined in this study. 
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farthest point within the range of 1.5 times the IQR, points displayed beyond these lines 

represent potential outliers in terms of the IQR. Table 1 shows the mean diameters (km) for each 

group, the Lower 95% and Upper 95% represent the lower and upper limits of the confidence 

interval in the diameter values. While the measurement of diameter is inherently subjective in the 

determination of the major and minor axes of the craters, these values are taken from the 

literature (Newhall and Dzurisin, 1988; Radebaugh et al., 2001; Venzke et al., 2002) and from 

the Gazetteer of Planetary Nomenclature, courtesy of the IAU, USGS, and NASA 

(planetarynames.wr.usgs.gov).   

As shown in Fig. 11 and Table 1, paterae on Io are the largest and most variable in size of 

the craterforms examined in this study, with a mean diameter of ~72 km +/- 45.6 km (1 standard 

deviation). Martian calderas are the second largest craterforms in this study with a mean 

diameter of ~57 km +/- 29 km. Lunar impact craters are the third largest craterforms in the study 

with a mean diameter of ~31 km+/- 31 km. It is important to reiterate that the lunar craters in this 

study were selected from a simple random sample that included an approximately equal number 

of simple craters, transitional craters, and complex craters. Based on crater-size frequency 

distributions (SFD), if the sample of lunar craters had been selected from the true global 

population of lunar craters, the mean diameter would be much lower (see Neukum et al., 1975), 

and the largest craterforms would have been lunar impact craters. Terrestrial calderas have the 

Table 1 Craterform group diameter means and standard deviations in km.  
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smallest diameters with ash-flow calderas having a mean diameter of 16 km +/- 12.19 km and 

craters on basaltic shields having a mean diameter of 6.81 km +/- 5.28 km. 

4.2 Circularity 

 Because we did not have accurately scaled values for area and perimeter, unscaled values 

from the shape measurements were used to calculate circularity for each craterform; since these 

are dimensionless ratios, they are size-independent. For any set of n digitized points, a true 

circularity value of 1 is impossible due to the presence of pixel values, inherent to all digital 

imagery. Considering that the points in this study are interpolated to 99 equidistant points, even 

an errorless outline of a circle can only be considered a regular 99-sided polygon with a 

mathematical maximum circularity value of 0.9997. Circularity distributions and values are 

summarized in Figure 11 and Table 2. Figure 12 shows an outlier box plot of circularity values. 

Table 2 shows the mean circularity for each group, their standard deviations, and upper and 

lower limits corresponding to 95% confidence intervals.  This plot shows that most craterform 

groups have similar values of circularity but Io’s paterae are the least circular. As expected, lunar 

impact craters are significantly more circular than any of the other examined craterforms with a 

mean circularity of 0.96 +/- 0.03 (1 standard deviation), also showing that lunar impact craters 

have the smallest variation in circularity. Martian calderas and terrestrial basaltic shield calderas 

are less circular than impact craters and have very similar mean circularities of 0.90 +/- 0.06 and 

0.88 +/- 0.06 respectively. Moreover, they are more variable in circularity than impact craters.  

Ionian paterae (0.81 +/- 0.12) and ash-flow calderas (0.82 +/- 0.10) have nearly equivalent mean 

circularities and are significantly less circular than calderas on basaltic shields and martian 



36 

calderas.  These two types of craters are also most variable in shape than the other categories as 

indicated by the large standard deviation (+/- 0.10-0.12). 

Differences in circularity are subjected to paired statistical testing to examine what 

differences might exist between the groups from pairwise comparisons. Results from a non-

parametric Tukey-Kramer test are shown in Table 3. A non-parametric Tukey test is chosen 

Figure 12 Box plots and plotted points of the circularity of the different classes of craters. 

Table 2 Statistics for craterform circularity.  
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because the groups have non-equal variance, and a Tukey test is selected because a non-normal 

distribution is assumed for the craterforms within each group. Colored p-values shown in orange 

indicate statistical significance (a = 0.05) between the groups, orange indicates very small p-

values while red indicate larger p-values, non-colored values indicate non-statistically significant 

results. The test shows that statistically significant differences exist between all paired 

comparisons except for paterae on Io and ash-flow calderas, and martian calderas and basaltic 

shield calderas. 

4.3 Ellipticity  

Ellipticity values for each crater, provided from the normalization procedure applied to the 

elliptic Fourier analysis, are shown in Figure 13 and summarized in Table 4. High ellipticity 

values indicate non-elongate shapes and low values indicate highly elongate shapes. While these 

measures are often derived from visual estimates of the major and semi-major axis, ellipticity in 

this study is derived from the first elliptic Fourier coefficient, sin𝐶𝐶1 (𝑑𝑑∗), a product of the shape 

normalization procedure of Ferson et al. (1985). While ellipticity values are conceptually similar 

Table 3 Results from a non-parametric Tukey-Kramer test of ellipticity. Statistically significant p-values are 
shown in orange and red and identify groups of craterforms that are different using group circularity values. 
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to circularity, they convey different information as they use internal shape properties of the 

principal horizontal and vertical axes of the shape. Ellipticity is equivalent in this sense to axial 

ratio, values close to 1 represent geometric similarity to a circle. They provide a best fitting 

ellipse using only using the information provided by the geometric placement of the coordinates 

Figure 13 Box plots and plotted points for the ellipticity of the different classes of craters.  

Table 4 Mean ellipticity, standard deviation, and confidence interval boundary values for the 
craterform groups. 
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for each shape, rather than using any information provided by area or perimeter, and furthermore 

eliminate any subjective influence in the determination of major and minor axes.  

As expected, lunar impact craters have the higher ellipticity value than any of the other 

examined craterforms with a mean ellipticity of 0.96 +/- 0.03 (1 standard deviation), also 

indicating that lunar impact craters have the smallest variation in ellipticity. Martian calderas are 

more elliptical than impact craters with a mean ellipticity value of 0.87 +/- 0.07. As for 

circularity, calderas on terrestrial basaltic shields (0.83 +/- 0.10) and ash-flow calderas (0.79 +/- 

0.12) are most similar among all of the groups in terms of their mean values and variations. 

Paterae on Io (0.73 +/- 0.14) have the lowest mean ellipticity value and highest standard 

deviation among all groups.  

A non-parametric Tukey-Kramer test is applied to the univariate data to examine 

statistically significant differences between the ellipticity values of the groups and the results are 

shown in Table 5. The test shows that martian calderas and ash-flow calderas, basaltic shield 

calderas and ash-flow calderas, martian calderas and basaltic shield calderas, and ash-flow 

calderas and ionian paterae cannot by distinguished from one another with statistical 

Table 5 Results from a non-parametric Tukey-Kramer test of ellipticity. 
Statistically significant p-values are shown in orange and identify groups of 

craterforms that are different using group ellipticity values.  
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significance. This result differs from the test on circularity values as it finds two additional group 

pairs of craterforms that are unable to be distinguished with statistical significance. 

4.4 Discriminant analysis of EFA Coefficients from the 2nd to 5th Harmonics 

 The shapes of craterforms are next analyzed using multivariate statistical methods. Here 

we subject the elliptic Fourier coefficients of the 2nd to 5th harmonics, selected using a posteriori 

procedures (see Figure 9 and Figure 10) and produced by the elliptic Fourier analysis procedure 

for each craterform shape to discriminant analysis to examine the maximum differences between 

the groups. Figure 14 shows results from discriminant analysis of the first 16 elliptic Fourier 

coefficients (2nd to 5th EFA harmonics) for each craterform group. The ellipses shown in the plot 

represent 95% intervals of confidence that the group mean lies within the ellipse. The 

discriminant analysis is shown to be statistically significant by the statistical tests in Table 6 for 

the null hypothesis. This shows that the means of the covariates are approximately equal across 

the groups of craterforms from discriminant analysis. The low p-values from the statistical tests 

indicate that the results of the analysis are statistically significant. Separation between 

confidence ellipses indicate significant differences between most craterform shapes. On the other 

hand, the 95% confidence limits for martian calderas and basaltic shield calderas largely overlap 

indicating that they have similar shapes. 

Table 6 Statistical significance test for discriminant analysis 
of the 2nd to 5th harmonic elliptic Fourier coefficients.  
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Table 7 shows that the first canonical variate is statistically significant and represents 89% 

of the total shape variance between the groups. Low p-values here indicate that the differences 

between the groups of shapes, represented by the covariates, are statistically significant. The 

three other canonical variates account for residual differences in shape but each lack the power to 

statistically distinguish between groups. In this case, only the first canonical variate is 

statistically significant and thus the y-axis, or vertical displacement of the points shown in Figure 

14 provides information that fails to sufficiently describe significant differences between the 

groups of shapes. To examine the information provided by the statistically significant first 

canonical variate, the canonical scores from this axis are extracted and plotted onto a density plot 

(Fig. 15).  

 Discriminant analysis is a powerful tool to examine the differences in the shapes of these 

crater types. Table 8 shows that using the assignments of craterform types known a priori and an 

estimation of the number of necessary harmonics from a posteriori assessment, the predictive 

model successfully assigns group membership to ~75.6% of the craterforms using the first 16 

Table 7 Statistical significance test for the 2nd to 5th harmonic canonical variates produced by discriminant 
analysis. The first canonical axis is shown in the first row and the additional axes follow sequentially. 

Table 8 Misclassification rate of predicted group 
assignments from the canonical variate analysis for the 2nd 

to 5h harmonics of EFA.  
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elliptic Fourier coefficients of the 2nd to 5th harmonics. Table 9 shows established classifications 

and predicted group membership from the canonical variate analysis, Table 10 shows the 

numbers iterated as percentages.  

The model successfully identifies group membership for 94% of the lunar impact craters 

included in the study while the other craterform groups show variation in the results of the 

model’s prediction among more than one category. Of 154 total paterae, 91 (59%) are 

successfully assigned correct membership. Of the remaining paterae, 31 (20%) are assigned 

membership to the basaltic shield caldera group, 14 (9%) are assigned to the ash-flow caldera 

group, 12 (8%) are assigned to the impact crater group, and 6 (4%) are assigned to martian 

calderas. For the ash-flow caldera group, 26 of 38 (68%) are correctly assigned membership; 5 

(13%) of ash-flow calderas are classified as paterae, 4 (11%) are assigned membership to the 

basaltic shield caldera group, and 3 (8%) are assigned classification to martian calderas. Basaltic 

Table 9 Predicted group membership assignments produced by the canonical variate analysis of the elliptic 
Fourier coefficients from the 2nd to 5th harmonics. 

Table 10 Success rates for predicted group classifications based on shape from canonical variate analysis of the 
elliptic Fourier coefficients from the 2nd to 5th harmonics. 
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shield calderas are correctly assigned group membership for 26 of 35 total (74%), with 4 (11%) 

assigned to both the lunar impact crater group and mars caldera group, and 1 (3%) assigned 

membership to ionian paterae. Martian calderas are classified successfully for 19 of 24 total 

(79%); the remaining 5 (21%) were assigned membership to the impact crater group. Lunar 

impact craters have the most successful predicted classification of all the craterform groups, with 

145 of 155 (94%) assigned correct membership. Of the remaining 10 impact craters, 6 (4%) are 

assigned to the basaltic shield group, 3 (2%) are assigned to the ash-flow caldera group, and 1 

(~1%) is classified as an ionian patera. 

Figure 15 This plot shows a density curve distribution of the statistically significant canonical variate 1 scores from 
discriminant analysis of the 2nd to 5th harmonic of elliptic Fourier coefficients and the differences in these scores 
among craterform groups. 
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4.5 Discriminant analysis of EFA Coefficients from the 2nd to 10th Harmonics 

As shown earlier (Fig. 14), using the 2nd the 10th harmonics from analysis of the elliptic Fourier 

coefficients provide an effective visual representation for the complexity of shapes included in 

this study. The 36 elliptic Fourier coefficients representative of the 9 total harmonics, selected 

from a posteriori information, are subjected to discriminant analysis. Results from discriminant 

analysis are shown by Fig. 16 and Table 11 lists the p-values from multiple computed statistical 

tests and shows the analysis was statistically significant. Similar to the prior analysis, the ellipses 

shown in the plot represent 95% intervals of confidence that the group mean lies within the 

ellipse. These results allow the differences in classification that result when additional harmonic 

values are included in the analysis to be examined. All p-values included in Table 11 are < 0.05 

and thus allow the null hypothesis, that the means of the covariates for the canonical variables 

are equal across all groups, to be rejected. Table 12 reveals that the first and second canonical 

variate axis are statistically significant and together represent 88% of the total differences in  

Table 11 Statistical significance test for the canonical 
variate analysis of the first 36 elliptic Fourier coefficients 
(10 harmonics). . The first canonical axis is shown in the 

first row and the additional axes follow sequentially. 
 

Table 12 Statistical significance of canonical variates from analysis of 36 coefficients (2nd 
to 10th harmonics) from elliptic Fourier analysis. 
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shape. The other canonical values have p-values much greater than 0.05 and thus only the x axis 

(canonical variate 1) should be considered in visual analysis of  Fig. 16. In contrast to the 

discriminant analysis performed on coefficients of the 2nd to 5th harmonics, the shape differences 

represented by the first canonical variable here is lower by ~12%. Considering only statistically 

significant canonical variates, the cumulative percent of shape differences able to be described  

from discriminant analysis of the 2nd to 10th harmonics is 1.3% less than that provided by the 2nd 

to 5th harmonics, despite the fact that only its first canonical variate is statistically significant.  

As shown by the results provided in Table 13, the discriminant model successfully 

classifies 90.4%, or 367 of 406 total craterforms, using the elliptic Fourier coefficients of the 10th 

harmonic. The predicted classifications from the canonical variate analysis of craterform shapes 

using the 10th harmonic, or 36 elliptic Fourier coefficients resulting from discriminant 

(classification) analysis are shown in Table 12 and are provided in as percentages. The predicted 

group membership assignments are provided in Table 14 and rates of success in the model’s 

classification of the craterforms are provided in Table 15 The model produced from canonical 

variate analysis successfully classifies >99%, or 154 of the 155 total lunar impact craters 

included in the study, 1 (<1%) is assigned membership to the ionian patera group. Ash-flow 

calderas have an overall successful group classification of 84% with 32 of 38 successfully 

classified. Of the remaining 6 ash-flow calderas, 5 (13%) are assigned to the ionian patera group, 

and one (3%) ash-flow caldera is assigned to the impact crater group. Basaltic shield calderas are 

Table 13 Misclassification rate of predicted group 
assignments from the canonical variate analysis for the 2nd 

to 10th EFA harmonics. 
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classified correctly for 31 of 35 total, yielding an 89% successful classification rate. The 4 

remaining basaltic shield calderas (11%) are assigned to the lunar impact crater group. Of 154 

total paterae, 138 (90%) are successfully classified. Of the 16 misclassified paterae, 13 (8%) are 

assigned to the lunar impact crater group, 2 (~1%) are assigned to the basaltic shield caldera 

group, and 1 (<1%) is assigned membership to the ash-flow caldera group. For the 24 martian 

caldera shapes examined in the study, 12 (50%) are correctly assigned group membership. Of the 

remaining 12 misclassified martian calderas, 6 (25%) are assigned membership to the ionian 

patera group, and 6 (25%) are classified as lunar impact craters.  

4.6 Multivariate analysis of Zahn and Roskies Shape Function Results 

Discriminant analysis of the Z-R shape function values is shown in Fig. 17. The points on the 

canonical variate plot are more widely dispersed than on the elliptic Fourier analysis plots 

presumably because of the greater number of variables produced by the Z-R shape function as 

Table 15 Success rates for predicted group classifications from shape by canonical variate analysis from the EFA 
coefficients of the 2nd to 10th harmonics.  

Table 14 Predicted group membership assignments from shape by canonical variate analysis from the EFA 
coefficients of the 2nd to 10th harmonics.  
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angles between 99 interpolated points. Table 16 shows that the results of the canonical variate 

analysis are statistically significant, and the null hypothesis that there is no statistical difference 

between the groups of craterform shapes, can be rejected. As shown in Table 17, the first two 

canonical variables are statistically significant at the 95% confidence level and together describe 

~80% of the shape differences.  

Canonical variate analysis results in Table 18 successfully predict group membership for 

~84% of the total craterforms, misclassifying 64 out of 406 total craterform shapes. The overall 

misclassification rate resulting from discriminant analysis of the Z-R shape function results falls 

between the misclassification rates of analyses of the 2nd to 5th and 2nd to 10th harmonic orders of 

elliptic Fourier coefficients. While the discriminant analysis of the Z-R shape function quantities  

Table 17 Statistical significance test for the 
discriminant analysis of Z-R shape function values.  

Table 16 Statistical test for the canonicals resulting from discriminant analysis of Z-R shape 
function values. 

Table 18 Overall misclassification rate from discriminant 
analysis of Z-R shape function. 
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correctly classifies craterforms at an overall rate between those of the elliptic Fourier 

results, as shown by Table 6 and Table 12, and Z-R group membership, the most successful 

predicted classification rate for lunar impact craters (100%) and ionian paterae (96%), however it 

fails to adequately classify the remaining groups including ash-flow calderas (16%), basaltic 

shield calderas (51%), and martian calderas (63%) as shown by Table 19 and Table 20.  

For paterae, 148 of 154 (96%) are assigned correct group membership, while the remaining 

6 (4%) are assigned group membership prediction to the lunar impact crater population. For 38 

ash-flow calderas, only 6 (16%) are assigned correct group membership while the majority, 23 

(61%) are assigned membership to the martian caldera group. Additionally, 5 (13%) are assigned 

predicted membership to ionian paterae and 4 (11%) are assigned membership to the basaltic 

shield caldera group. Basaltic shields are classified successfully from 18 of the 35 total (51%) in 

this study. For the other basaltic shield calderas, 12 (34%) are assigned membership to the 

Table 20 Success rate for correct group membership assignment from canonical variate analysis of Z-R shape 
function results. 

Table 19 Predicted classifications from canonical variate analysis of Z-R shape function values. 
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martian caldera group and 5 (14%) are assigned to paterae on Io. Concerning martian calderas, 

the model successfully classifies 15 out of 24 (63%). Of the residual 9 martian calderas, 4 (17%) 

are assigned membership to the basaltic shield group, 3 (13%) are assigned to the ionian patera 

group, and 2 (8%) are assigned to the lunar impact crater group. 

Principal component analysis was performed on the Z-R tangent angle dataset as shown in 

Fig. 18. The first principal axis (PC-1), or first eigenshape, represents 79.9% of shape variance 

among the groups of craterforms and the second principal axis (PC-2) is the second dimension of 

greatest variation representing 10.5% of shape variance. Thus, ~90% of shape differences and 

variability among the craters in the study can be represented in two-dimensions. This procedure, 

known as “eigenshape analysis”, shows that PCA can provide a valuable visualization tool to 

examine the principal variability among the craterform shapes and their respective groups. 

Fig 18. shows that ionian paterae have the greatest variability among all groups and lunar 

impact craters have the least variability. Similar, large ellipses for ash-flow calderas and ionian 

paterae suggests these groups have the greatest diversity in shapes. The ellipses of basaltic shield 

calderas and martian calderas have similar placement in the plot, suggesting these forms vary 

similarly in shape.  
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Figure 18 “Eigenshape” (principal com
ponent analysis) plot of Z-R

 shape function results. G
oldenrod represents paterae on Io, turquoise show

s ash-flow
 

calderas, green show
s basaltic shield calderas, red show

s m
artian calderas, and navy show

s lunar im
pact craters. 
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5 DISCUSSION 

5.1 Craterform Shape Relationships  

The findings of this study allow the null hypothesis – that groups of craterforms are unable 

to be differentiated from other craterforms – to be rejected with α=0.05 confidence. Shape 

analysis of the groups of craterforms from univariate statistical examinations of diameter 

(Section 4.1), circularity (Section 4.2), ellipticity (Section 4.3), as well as multivariate 

discriminant analysis of elliptic Fourier coefficients (Sections 4.4 and 4.5) and Z-R shape 

function tangent values (Section 4.6) provide consistent results to compare morphologic 

differences in each craterform group. As discussed below, we find that the morphology of 

paterae is least different to terrestrial ash-flow calderas, the morphology of basaltic shield 

calderas is least different to martian calderas, and the morphology of lunar impact craters are 

considerably different from all other compared groups.  

Table 2 shows that the mean circularity and standard deviation of paterae on Io (0.81 +/- 

0.12) and ash-flow calderas (0.82 +/- 0.10) are similar. Table 4 further shows that the mean 

ellipticity of paterae on Io (0.73 +/- 0.14) and ash-flow calderas (0.79 +/- 0.12) lie within one 

standard deviation, and have the lowest values (least circular) of all the craterforms studied. 

Martian calderas and terrestrial basaltic shield calderas are more circular and have less variability 

in their shapes than Ionian paterae and ash-flow calderas. Martian calderas and terrestrial basaltic 

shield calderas have mean circularities and standard deviations of 0.90 +/- 0.06 and 0.88 +/- 0.06 
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respectively. Mean ellipticities of martian calderas (0.87+/-0.07) and terrestrial basaltic shield 

calderas (0.83+/-0.10) are also similar. The variability indicated by standard deviation of both 

shape values are half that of ash-flow calderas and paterae on Io. The shapes of impact crater 

have a much larger mean circularity and much smaller standard deviation (0.96 +/- 0.03) as well 

as high ellipticity indices (also 0.96+/-0.03) despite the fact that the group includes simple, 

transitional, and complex crater sub-types. Furthermore, the variability in the population is half 

that of basaltic shield calderas and martian calderas, and a quarter of that of ash-flow calderas 

and Ionian paterae.   

Results from univariate analysis of circularity and ellipticity using a Tukey-Kramer test 

show that there are statistically significant differences between the mean values for all pairwise 

comparisons of the craterform groups with the exception of ash-flow calderas and Ionian paterae, 

and basaltic shield calderas and martian calderas. Results from this test using values of ellipticity 

also show that there is no statistical difference between ash-flow calderas and martian calderas, 

and ash-flow calderas and basaltic shield calderas. While circularity and ellipticity describe 

similar visual properties of shape, they employ different shape information and thus provide 

somewhat different results when subjected to statistical testing.  

Results from discriminant analysis of elliptic Fourier analysis coefficients of the 2nd to 5th 

harmonics, displayed in Table 9 and Table 10 show that lower harmonic orders describe more 

general information concerning the differences in shape, and that this information vary 

significantly between the groups. Discriminant analysis of the 2nd to 10th harmonic deconvolution 

of the elliptic Fourier coefficients produces the “best” overall classification rate (90.4%) and 

provides a robust model able to differentiate simple forms. Impact craters have the highest 

circularity and ellipticity, and paterae on Io have the lowest circularity and ellipticity. 
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Discriminant analysis of EFA is most powerful in its ability to achieve high classification rates 

among intermediate forms such as ash-flow calderas and basaltic shields (Table 14 and Table 

15). Thus, discriminant analysis of EFA results, when applied at harmonic values containing a 

satisfactory amount of shape information, provides the strongest ability to measure complexity in 

shapes. 

Discriminant analysis of Z-R shape function quantities was most successful in correctly 

classifying and assigning predicted group membership to the complex shapes of paterae on Io 

and the simple shapes of lunar impact craters. However, the ability of discriminant analysis using 

Z-R shape descriptors is substantially degraded in its ability to account for the differences that 

exist among the other intermediate craterforms. This method’s inability to differentiate some 

landforms thus reveals commonalities among them. Principal component analysis of the 

parameters produced by Z-R shape function analysis (Fig. 18), however, does provide shape 

information that, while not statistically testable, reveals the major morphologic variability in the 

sample. PC analysis provides a visually intuitive representation of the correlation in shape among 

the craterform groups (Fig. 18). The plot shows 95% confidence intervals for the groups of 

craterforms. Lunar impact craters are highly clustered towards the center (or mean) of the plot 

and are easily differentiated from other forms. Basaltic shields and martian calderas plot 

similarly, but have different variability in shape as illustrated by the axial orientation of each 

ellipse. Ionian paterae and ash-flow calderas have the largest variability among the craterform 

groups and plot in similar orientations. These visual similarities are supportive of interpretations 

derived from canonical variate analysis and statistical analysis of circularity. 

Classification results from canonical variate analysis of Zahn and Roskies (1972) shape 

function output, is shown in Table 13 and Table 14.  While the analysis provides an improved 
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classification for paterae on Io with an overall 97% rate of success for the group and maintains a 

rate of 100% for successful classification of lunar impact craters, this model does not have a high 

success rate in distinguishing other craterforms from each other. Ash-flow caldera shapes have a 

16% overall rate of successful group classification, basaltic shield calderas have a 51% 

successful classification rate, and martian calderas have a 63% success rate for successful group 

assignment. This method thus provides the strongest means of separating ionian paterae from all 

other craterforms, which reveals that by at least this measure, these are unique craterforms. The 

larger number of variables (98 angular quantities) produced by the Z-R function for each 

craterform may highlight that significant change in shape occurs around ionian paterae to a 

stronger degree than for any other craterform.  

5.2 Implications of Shape Findings for Properties of Craterforms 

Two primary relationships appear strongest among the various analyses. Only minor 

differences in shape exist between terrestrial ash-flow calderas and ionian paterae, and between 

basaltic shield calderas and martian calderas. These correlations may reveal commonalities in 

formation processes of craterforms. For one thing, the comparatively larger sizes of paterae on Io 

and terrestrial calderas might be a contributor to the minor differences in their shape. 

Terrestrial ash-flow calderas are most similar to paterae on Io in shape and, possibly of 

greater geomorphological importance, the variability of shape (Evans, 1972). They are also 

comparable in size; some of the largest terrestrial calderas have diameters (or areas or 

perimeters) similar to Ionian paterae (Radebaugh, 1999; Davies, 2007). While the silica content 

of paterae on Io has been found by Keszthelyi et al. (2007) to be basaltic in composition, 

whereas the composition of magmas that form ash-flow calderas are much higher in silica 
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(rhyolitic), the mobilization of the magma by a high content of volatiles in Io’s crust (Dundas, 

2017) may produce similar, explosive eruption styles. It is possible that they form by similar 

geologic processes, or are modified over time by processes that make their shapes similar. 

Perhaps similar shapes result from explosive eruptive styles, crustal properties, or magmatic 

compositions, to name a few. Explosive eruptive styles are more likely to produce a wide range 

of morphologies in craterforms as they provide little time for simple geologic processes to yield 

a characteristic form, such as the more uniform formation processes of pit craters observed 

throughout the solar system (Okubo and Martel, 1998). 

However, there are similarities between basalt shield calderas and paterae on Io. Both have 

steep walls and flat floors. Both can sustain lava lakes (Lopes et al., 2004) as indicated by dark 

floor materials inferred by Geissler et al. (1999) and others to be mafic silicate lavas, and are 

most likely basaltic in composition (Keszthelyi et al., 2007).  

Minor differences in shape from analysis of basaltic shield calderas and martian calderas 

were revealed by this study. While it is common for the bounding morphology of these craters to 

be influenced by volcanic nesting, or post-formation inter-caldera collapse events, these events 

are also notable in ionian paterae. However, results show that paterae on Io lack shape 

similarities with either basaltic shield calderas or martian calderas in all examinations. Martian 

calderas are widely considered to be analogous to calderas on terrestrial basaltic shield 

volcanoes; both result from basaltic magmas and share qualitative morphologic similarities 

resulting from collapse style and post-formation processes (Mouginis-Mark and Robinson, 1992; 

Crumpler et al., 1996; Mouginis-Mark et al., 2007; Howard, 2010) as well as basic 

morphometric similarities (Plescia, 2004) considering rim height and crater width.  
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5.3 Methodological Considerations 

A significant consideration that deserves continued question is the effect of data 

dimensionality reduction techniques on the results of the multivariate analysis. Data 

dimensionality reduction techniques have been shown to be a primary influence on differences in 

results from PCA in comparison to discriminant analysis (CVA) of outline analysis of bird 

feathers (Sheets et al., 2006) while others find little difference in results produced from CVA and 

PCA analysis for large multivariate datasets (Peltier et al., 2015). These types of considerations 

lead back to the fundamental question involved in the selection of a particular method of 

multivariate data analysis: What methods best describe the differences important to the geologic 

processes or variables investigated? While these questions vary by study, I present an overview 

of the methods and their effectiveness in craterform classification. 

The Z-R classification model clearly portrays much different properties of shape in 

comparison to the elliptic Fourier derived models. While these differences in shape vary 

significantly from results of the EFA models, they could convey other information pertinent to 

currently unidentified similarities in geomorphology. 

It is necessary to address the disparity among modern morphometric studies of craterforms. 

Some studies exclusively study craterform features on planetary bodies using metrics of 

ellipticity (e.g., Holohan et al., 2005) or “circularity” (e.g., Luo and Howard, 2005) as defined by 

Equation 3-1, and as this study shows, these two metrics can yield different conclusions as they 

are based on different shape properties. It may be confusing because, some studies define 

“circularity” using different formulas, that communicate other geomorphological information 

(e.g., Pike, 1976; Zuber and Parmentier, 1984). Furthermore, some studies confuse even basic 

geomorphological metrics such as ellipticity (axial ratio) to be the definition of “circularity” 
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(e.g., Schultz and Singer, 1980), which is well-founded in morphometric literature. It is helpful 

that the geomorphological community is able to communicate using a standard language of 

mathematical terminology.  

5.4 Other Implications 

Three paterae shapes: Atar, Bochica, and Unnamed patera at 11.23N, 84.74W (shown in 19) 

are consistent from both elliptic Fourier analysis and Z-R analysis with lunar impact craters. The 

shapes of these highly circular paterae on Io are sometimes indistinguishable from those of lunar 

impact craters. These patera could be the result of entirely different processes (e.g., impact 

cratering) or of a variation in the normative mechanism of patera formation. It is also possible 

that the near circular shapes are not “real” and the low-resolution of the images leads to a shape 

with less subtle deviations than in reality. These impact crater-like shapes suggest that the 

conclusion of Williams et al. (2011a), that no impact craters have been detected on Io’s surface, 

is inconclusive. While the shapes of highly circular paterae are well-correlated with impact-

produced craters, other mechanism common in volcanic settings, such as pit craters, could 

explain these features. The interpretation of the origin of these circular paterae requires a larger 

Figure 19 Highly circular paterae: Atar (left), Bochica (middle), and Unnamed patera at 11.23N, 84.74W (right) 
on Io classified as impact craters by statistical analysis. Dark material (~fresh lava) in B might argue against a 
simple crater impact origin, although without constraints on the thickness of Io’s crust, impact craters could 
penetrate the upper lithosphere.  
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craterform dataset to make supportable inferences or additional data such as higher-resolution 

imagery or in-situ observations. A mission to Io able to collect topographic data and higher 

resolution imagery is requisite to further our understanding of how and why patera shapes are 

most similar with terrestrial forms, and what implications that might have for existing models of 

terrestrial volcanism. 
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6 CONCLUSION 

This study introduces a multidisciplinary approach to the quantification of planetary 

landforms that combines methods from systematic biology and geomorphology, two fields of the 

physical natural sciences that rely substantially on shape to interpret processes of origin and 

evolution. Outline-based approaches to geomorphologic analysis are supported by similar 

findings from both discriminant analysis of multivariate quantities produced from elliptic Fourier 

analysis and Z-R analysis. Discriminant analysis of these shape quantities shows that lunar 

impact craters are easily distinguished from all other craterforms, ash-flow calderas and paterae 

on Io are most different from all other groups in similar ways, and that basaltic shield calderas 

and martian calderas are the least different of all craterforms examined in the study.  

The study successfully demonstrates the application of outline-based shape analysis to the 

study of planetary surfaces and landform morphology. The ability to quantify and examine shape 

information using multivariate analyses of shape enables the scientific community to investigate 

empirical relationships that exist between morphology and landform origin and evolution.  

This study establishes the introduction of multivariate analysis to the quantification of 

geomorphological features in a way that allows predictive modeling and machine learning to 

contribute to our understanding of the role shape plays in geology. With techniques such as 

“eigenimage” analysis and machine learning (MacLeod, 2015; MacLeod, 2017b), computer 

vision, and derivative crater detection algorithms (CDA) (e.g., Stepinski et al., 2012; Emami et 
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al., 2015), this study displays how multivariate shape information from geomorphologic features 

can be used and applied to different studies.  

As additional shape data is collected and the methods of this study are applied to other 

craterforms that have been produced by a diversity of geologic processes on planetary surfaces 

observed throughout the solar system, the methodology will provide clues that will enhance our 

understanding of the many planetary surfaces and landforms that have yet to be seen. 
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