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ABSTRACT 
 

Clinical Predictors of Movement Patterns in Patients with Chronic Ankle Instability 
 

Seong Jun Son 
Department of Exercise Sciences, BYU 

Doctor of Philosophy 
 

BACKGROUND: Chronic ankle instability (CAI) patients have varying levels of mechanical 
and sensorimotor impairments that may lead to disparate functional movement patterns. Current 
literature on landing biomechanics in a CAI population, however, considers all patients as a 
homogeneous group. In our prior work, we identified 6 subgroups of movement patterns using 
lower extremity kinematics during a landing/cutting task and that showed promise in furthering 
understanding of movement patterns in a laboratory-based environment. To increase the utility of 
this methodology in clinical settings, there is a need to find easily administered clinical tests that 
can help identify multiple subgroups of movement patterns in a CAI population. The purpose of 
the present study was to identify clinical tests that would help identify frontal and sagittal 
kinematic movement pattern subgroups during a landing/cutting task. We hypothesized that 
clinical tests would help predict group assignment; which CAI patient is assigned to frontal and 
sagittal kinematic movement pattern subgroups, respectively. METHODS: We recruited 100 
CAI patients from a university population. We used three-dimensional instrumented motion 
analysis to capture ankle, knee and hip kinematics as subjects performed a single-leg maximal 
jump landing/cutting task. We used sagittal and frontal joint angle waveforms to group CAI 
patients. We then used 12 demographic and clinical measures to predict these subgroups of CAI. 
These consisted of gender, Star Excursion Balance Test-Anterior (SEBT-ANT), Biodex static 
balance, figure 8 hop, triple crossover hop, dorsiflexion range of motion (DFROM), number of 
failed trials, body mass index, a score of Foot and Ankle Ability Measure-Activities of Daily 
Living (FAAM-ADL), a score of FAAM-Sports, number of “yes” responses on Modified Ankle 
Instability Index, and number of previous ankle sprains. First, we used functional principal 
component analysis to create representative curves for each CAI patient and plane from the 3 
lower extremity joint angles. We then used these curves as inputs to a predictor-dependent 
product partition model to cluster each CAI patient to unique subgroups. Finally, we used a 
multinomial prediction model to examine the accuracy of predicting group membership from 
demographic and clinical metrics. RESULTS: The predictor-dependent product partition model 
identified 4 frontal and 5 sagittal movement pattern subgroups. Six predictors (e.g., gender, 
SEBT-ANT, figure 8 hop, triple crossover hop, DFROM, and FAAM-ADL) predicted group 
membership with 55.7% accuracy for frontal subgroups. Ten predictors (minus Biodex static 
balance and number of previous ankle sprains) predicted group membership with 59% accuracy 
for sagittal subgroups. CONCLUSION: Novel statistical analyses allowed us to predict group 
membership for multiple frontal and sagittal kinematic movement patterns during landing/cutting 
using a series of clinical predictors. However, due to relatively lower accuracy (56–59% 
accuracy), the clinical utility of the current prediction model may be limited. Future work should 
consider including other clinical predictors to maximize prediction accuracy for identifying 
multiple kinematic movement patterns during a landing/cutting task. 
Keywords: Ankle sprains, prediction, functional test, Bayesian model, landing  
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INTRODUCTION 

 The ankle is the second most-injured joint in the body, and ankle sprains account for 

approximately 15% of all sport injuries.1,2 More than 25,000 ankle sprains occur daily in the U.S. 

which is equivalent to 1 in every 10,000 people,3 costing the U.S. an estimated $2 billion 

annually for treatment.4 One in every 3 individuals who sustains an ankle sprain suffers from 

repeated ankle sprains.5 Despite a high recurrence rate, approximately 55% of ankle sprains are 

not treated by healthcare professionals.6 Up to 74% of patients 2 years postinjury still reported at 

least one residual symptom (e.g., pain, swelling, weakness, instability, etc.).5 Researchers 

suggest that 70‒85% of patients suffering ankle sprain injuries go on to develop chronic joint 

degenerative diseases such as posttraumatic ankle osteoarthritis.7-11 Even though surgical and 

nonsurgical management of posttraumatic ankle injury and arthritis have been administered, and 

the interventions may be effective in managing the symptoms of the injury,12,13 no effective 

interventions have been identified to prevent the progression of ankle osteoarthritis.14,15  

 Chronic ankle instability (CAI) is a condition characterized by chronic residual 

symptoms including pain, swelling, loss of function, joint instability, a feeling of “giving way,” 

and/or recurrent ankle sprains.16,17 Delahunt et al18 characterized CAI as “an encompassing term 

used to classify a subject with both mechanical and functional instability.” Mechanical ankle 

instability is related to mechanical impairments including pathological laxity,19,20 

arthrokinematic restrictions (e.g., a positional fault of the talus21,22 or fibula23,24), osteokinematic 

restrictions (e.g., restricted dorsiflexion25-27), degenerative articular changes28,29 and/or synovial 

changes.30,31 Functional ankle instability is associated with sensorimotor impairments including 

diminished proprioception,32-34 slower reflex reactions,35-37 arthrogenic muscle inhibition,38 

diminished strength39,40 and/or impaired postural control41,42 through spinal and/or supraspinal 
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pathways.43,44 It is believed that any single or any combination of the aforementioned mechanical 

and/or sensorimotor impairments would result in altered movement patterns during 

walking,35,36,45,46 running,26,27,46 landing47-51 or cutting.47,52,53 when compared to healthy controls 

and/or ankle sprain copers.54 

 It is believed that initial ligament damage and impaired sensory pathways to the central 

nervous system result in structural changes and spinal reflex inhibition, which further leads to 

altered joint loads and altered movement patterns during various functional tasks (e.g., walking, 

running, landing, cutting, etc.).55,56 Altered movement patterns have been reported across various 

phases of ankle sprain injury. Specifically, patients with a first-time acute ankle sprain at 2 

weeks postinjury revealed altered landing patterns (e.g., 10% reduction in peak vertical impact 

and 6° increased hip flexion angle).57 Patients with a first-time ankle sprain at 6 months 

postinjury exhibited 5° more ankle inversion and 5° more hip flexion angle during single-leg 

drop landing.58 Patients with CAI appeared to: (i) walk with a more laterally deviated center of 

pressure trajectory during stance36; 2.5‒3° more inversion angle during stance45,59 and 2.9° less 

dorsiflexion angle during stance27; (ii) land with 2.5‒3° less dorsiflexion angle during stance47,48; 

and (iii) run with a 4.8° less dorsiflexion angle during stance26 and 3.9‒4.8° less eversion angle 

during stance.27 These altered movement patterns are thought to predispose CAI patients to 

recurrent ankle sprains due to a more injury-prone and loose-packed position of the foot. Further, 

altered joint loads, due to altered movement patterns as a postinjury compensatory adaptation, 

over the long-term may initiate the onset of ankle articular cartilage degeneration.7,8 

 In CAI research, subjects with CAI are selected in accordance with the consensus 

statement of selection criteria defined in the International Ankle Consortium.60 For example, 

studies have identified CAI subjects using valid and reliable self-reported questionnaires.61,62 
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Because of this self-reported subject inclusion method, a CAI population is considered 

homogeneous. However, the current method does not consider potential individual variability of 

mechanical and sensorimotor impairments, which could potentially lead to conflicting results 

between studies, as demonstrated by varied findings in a single outcome measure showing 

greater inversion kinematics,49,63,64 less inversion kinematics,47 or no difference in frontal ankle 

kinematics48,50,53 during the same or similar landing tasks. According to the Dynamic Systems 

Theory,65 each CAI patient would have a different severity level of mechanical and/or 

sensorimotor impairments following ankle sprain injury based on the interaction of organismic, 

task and environmental constraints.56 This speculation led us to consider multiple movement 

patterns during landing in CAI patients who were selected using subjective self-reported 

questionnaires. Our prior unpublished work (n = 300 patients with CAI) identified 6 kinematic 

movement patterns during landing/cutting. However, we conducted our recent study in a research 

laboratory-based setting using high-speed video cameras and force plates, which limited the 

clinical practicality in clinical settings in identifying multiple movement patterns during landing. 

Therefore, there is a need to find clinical (or functional performance) tests that would help 

identify multiple movement patterns in a CAI population to increase its clinical utility. In this 

study, we selected 12 clinical predictors. Five predictors were clinical tests that are used in 

clinical settings such as a Star Excursion Balance Test-Anterior (SEBT-ANT), Biodex balance 

(static athlete single-leg overall stability index), figure 8 hop for time, triple crossover hop for 

distance, and dorsiflexion range of motion (DFROM). Along with the 5 clinical tests, we 

selected 7 clinical predictors to help predict group membership into certain kinematic movement 

pattern clusters including gender, number of failed trials during the clinical tests, body mass 

index (BMI), perceived instability scores on self-reported questionnaires (Foot and Ankle Ability 
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Measure-Activities of Daily Living [FAAM-ADL], FAAM-Sports subscale, and Modified Ankle 

Instability Index [MAII]), and number of previous ankle sprains. 

This study aimed to identify multiple movement pattern clusters during jump 

landing/cutting from 100 patients with CAI and to find clinical predictors that would help 

identify multiple movement clusters. Based on the success of our recent unpublished work on 

movement pattern clusters, we hypothesized that each CAI patient would show an independent 

kinematic movement pattern during the task, based on the curve’s shape of lower extremity joint 

kinematics and values of 12 clinical predictors, and that we would identify multiple kinematic 

movement pattern subgroups (or clusters). We also hypothesized that clinical predictors would 

help predict kinematic movement clusters to which each CAI patient would be assigned—either 

frontal or sagittal movement pattern subgroups, respectively. 

METHODS 

Research Design 

 This study was a controlled laboratory trial. Each subject reported to the biomechanics 

laboratory for 2 sessions, 2–3 days apart. The first session was a practice session to familiarize 

subjects with the clinical tests (e.g., SEBT-ANT, Biodex static balance, figure 8 hop, triple 

crossover hop, and DFROM). Subjects performed 6 practice trials of each clinical test, which 

took about 40 minutes. The purpose of the practice session was to minimize learning and fatigue 

effects on clinical tests. Multiple trials of the hop tests would be too demanding to perform 

practice and testing trials in the same day. The second session was a testing data collection 

session where each subject performed 3 testing trials of each clinical test followed by 10 trials of 

single-leg maximal vertical forward jump landing/cutting. Total time for the data collection 

session was about 2 hours. Independent variables were (i) lower extremity frontal and sagittal 
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kinematics during landing/cutting and (ii) values of 12 clinical predictors: gender, SEBT-ANT 

reach distance (% of leg length), Biodex static balance (single-leg overall stability index), figure 

8 hop for time (sec), triple crossover hop for distance (m), DFROM (deg), number of failed 

trials, BMI (kg/m2), FAAM-ADL (%), FAAM-Sports (%), MAII (number of “yes” responses on 

questions 4‒8; a feeling of instability during functional tasks), and number of previous ankle 

sprains. Dependent variables were (i) multiple movement pattern clusters, (ii) results of post hoc 

pairwise comparisons and group characteristics (% of values), and (iii) prediction model 

accuracy for frontal and sagittal kinematic movement pattern clusters, respectively. 

Subjects 

One hundred patients with CAI, recruited from a university population, participated in 

this study. Table 1 contains subject demographics. Subjects were identified in accordance with 

endorsed inclusion and exclusion criteria for CAI defined in the International Ankle 

Consortium.60 Subjects were selected using self-reported function questionnaires including a 

FAAM-ADL,61 FAAM-Sports,61 and MAII.62 Specific subject inclusion criteria included (i) a 

history of at least one significant ankle sprain with a first sprain 12 months before the study 

enrollment, and the injury was related to inflammatory symptoms (e.g., pain, swelling, etc.) and 

created at least one interrupted day of desired physical activity, (ii) a history of at least 2 “giving 

way” episodes in the past 6 months and at least 2 “yes” responses on questions 4‒8 on the MAII, 

(iii) a score of < 90% on the FAAM-ADL and < 80% on the FAAM-Sports, and (iv) a history of 

a moderate level of weight-bearing physical activity at least 3 days per week for a total of 90 min 

in the previous 3 months. Specific subject exclusion criteria included (i) a history of lower 

extremity surgeries to the musculoskeletal structures (e.g., bones, joint structures, and nerves), 

(ii) a history of a fracture in lower extremity, and/or (iii) acute musculoskeletal injury to lower 
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extremity joints in the previous 3 months. Thirty-four CAI subjects had unilateral ankle sprains 

and the remaining 66 CAI subjects had bilateral ankle sprains. For subjects with bilateral ankle 

sprains, the subject chose the involved limb based on a greater perceived feeling of instability. 

The Institutional Review Board (F16455) approved this study and each subject provided 

informed consent prior to the study enrollment. 

Experimental Procedures 

 Each subject visited the biomechanics laboratory 2‒3 days prior to testing data collection 

to become familiar with 5 clinical tests (e.g., SEBT-ANT, Biodex static balance, figure 8 hop, 

triple crossover hop, and DFROM). We instructed subjects to wear their own athletic shorts, 

shirts and shoes and performed 6 trials of each clinical test for practice. Subjects reported back to 

the biomechanics laboratory 2‒3 days later for testing data collection. After changing into 

athletic spandex clothing (HeatGear, Under Armour, Baltimore, MD) provided by investigators, 

subjects performed 3 trials of each clinical test in a random order to reduce the order effect. 

Subjects performed 3 clinical tests barefoot (e.g., SEBT-ANT, Biodex static balance, and 

DFROM) and performed 2 clinical tests (e.g., figure 8 hop and triple crossover hop) with athletic 

shoes (T-Lite XI, Nike, Beaverton, OR), provided by investigators. There was a 3-minute rest 

between each clinical test to minimize fatigue effects and a 30-second rest between each trial. 

Upon completion of the clinical tests, subjects performed 10 trials of a single-leg maximal 

vertical forward jump landing/cutting task (Figure 1).  

  



 

7 

Clinical Test Procedures 

 For a SEBT-ANT measure,66-68 subjects performed 3 trials of the test barefoot in an 

anterior direction. We instructed subjects to place the tested foot on a tape measure (cm) and to 

perform maximal anterior direction reaches with the opposite foot followed by a single, light toe 

touch on the tape measure while keeping both hands on their waist. Failed trials were counted if 

the hands did not remain on their waist, the position of the stance foot was not maintained, the 

heel did not remain on the floor, or subjects did not maintain a single-leg stance position during 

the test. Subjects performed the test until they completed 3 successful trials. Distances were 

measured in cm (nearest 0.5 cm) and normalized by dividing by the subject’s lower limb length 

(e.g., from anterior superior iliac crest to distal end of the medial malleolus) and multiplying by 

100 (% of leg length).67 As subjects had the practice session 2‒3 days prior, subjects performed 1 

practice trial and 3 testing trials. There was a 30-second rest between each trial. The mean of the 

best 2 trials was used for data analysis. The previous study demonstrated that the intraclass 

correlation coefficient (ICC) for intra-rater (between sessions) reliability for SEBT-ANT was 

0.92, confidence interval (CI: 0.86‒0.96), and the ICC for inter-rater (between assessors) 

reliability was 0.88 (CI: 0.80‒0.94).69 

 For an ankle DFROM measure,25,70,71 the test was performed using the knee-to-wall 

measurement in which subjects were instructed to stand facing a wall with the tested foot parallel 

with a tape measure secured to the floor with the second toe, center of the heel and knee 

perpendicular to the wall while placing their hands on the wall and the opposite limb 

approximately 1 foot-length behind. Subjects performed a forward lunge in which both knees 

were flexed, but the knee in the tested limb was required to contact the wall while keeping the 

heel planted on the floor. Subjects performed the test until they achieved maximum distances 
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from the wall and continued to maintain knee contact without lifting the heel. A digital 

inclinometer (Digital Protractor Angle Finder Level Inclinometer Magnetic V-Groove, 

RISEPRO, Amazon, Seattle, WA) was used to measure DFROM, and the top edge of the 

inclinometer was aligned with the tibial tuberosity.72 Subjects performed 1 practice trial and 3 

testing trials. There was a 30-second rest between each trial. We used the mean of the best 2 

trials for data analysis. The previous study showed that the ICCs for intra-rater reliability for the 

digital inclinometer was 0.98 (CI: 0.95‒0.99), and the ICCs for inter-rater reliability was 0.90 

(CI: 0.43‒0.97).70,72 

 For a Biodex Balance System measure,73,74 static athlete single-leg overall stability index 

was used to quantify single-leg static postural control as a sum of anterior-posterior and medial-

lateral stability index. Subjects performed the test barefoot on the Biodex platform. We 

instructed subjects to maintain a single-leg stance position with the tested limb in full knee 

extension while holding the opposite knee to 90° flexion and keeping both hands on their waist. 

We instructed subjects to position the tested foot at the center of the platform, to look ahead at 

the visual feedback display, adjusted at their eye level to prevent vestibular distraction and head 

movement, while adjusting their foot position to a comfortable standing position and maintaining 

the moving pointer at or near the center point of the visual feedback display. The position of the 

foot remained constant throughout the static balance test. Subjects performed 1 practice trial and 

3 testing trials. Each trial was 3 sessions for 20 seconds each (a total of 9 individual testing trials 

per subject). There was a 30-second rest between each trial. During the 30-second rest, subjects 

were encouraged to bear their weight on the opposite limb to minimize fatigue on the tested 

limb. The mean of the best 2 trials of static athlete single-leg overall stability index was used for 

data analysis, which was automatically calculated by the Biodex Balance System. The previous 
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study revealed that the ICC for intra-rater reliability was 0.85 (CI: 0.61‒0.94) regarding static 

athlete single-leg overall stability index.73 

 For a figure 8 hop for time (seconds) measure,75 subjects performed the test with athletic 

shoes. We instructed subjects to maintain a single-leg stance position on the tested limb only 

while holding the opposite knee to 90° flexion. Subjects performed a single-leg hop twice as 

quickly as possible on a 5-m course outlined by 2 cones in a figure 8 pattern. An investigator 

recorded the total time with a handheld stopwatch to the nearest 0.01 sec. We used a 50-cm long 

plastic stick adjusted at subject’s chest level, to determine when subjects crossed the finish line. 

Failed trials were counted if subjects put the contralateral limb down, fell, touched the cones, or 

did not complete the course twice. Subjects performed the test until they completed 3 successful 

trials. Subjects performed 1 practice trial and 3 testing trials. There was a 1-minute rest between 

each trial. We used the mean of the best 2 trials for data analysis. The previous study showed that 

the ICC for inter-rater reliability was 0.95 (standard error of measurement 1.66 seconds).76 

 For a triple crossover hop for distance (m) measure,77,78 subjects performed the test with 

athletic shoes. We instructed subjects to maintain a single-leg stance position on the tested limb 

only, while their opposite knee was flexed to 90°. Subjects performed 3 consecutive hops on the 

tested limb in a zigzag pattern, crossing over a 15-cm wide line on the floor as a maximal effort. 

The first and final hops were towards the lateral side of the tested limb. We measured the 

distance using a tape measure (nearest 0.01 m) from the start line to where the heel landed on the 

third hop. Failed trials were counted if subjects put the contralateral limb down, fell, touched the 

15-cm wide tape, or did not complete the test. Subjects performed the test until they completed 3 

successful trials. Subjects performed 1 practice trial and 3 testing trials. There was a 1-minute 

rest between each trial. We used the mean of the best 2 trials for data analysis. The previous 
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studies reported that the ICC for inter-rater reliability was 0.94‒0.96; no studies reported 95% 

CIs.79-81 

The Rationale for 12 Clinical Predictors for the Current Study 

 Based on the success of our unpublished work on identifying multiple kinematic 

movement patterns (6 movement pattern clusters from 200 CAI patients), this study leveraged 

previous findings to identify kinematic movement pattern clusters using values of clinical 

predictors. As such, we selected 12 clinical predictors including gender, SEBT-ANT, Biodex 

static balance (athlete single-leg overall stability index), figure 8 hop for time, triple crossover 

hop for distance, DFROM, number of failed trials, BMI, FAAM-Sports score, FAAM-ADL 

score, MAII responses (“yes” responses on questions 4‒8) and number of previous ankle sprains. 

We selected each predictor based on whether the predictor might be directly or indirectly 

associated with risk factors for CAI. Specifically, gender was included in this study because 

there were gender differences between males and females for functional performance82 and 

physiological characteristics (e.g., strength, mobility, alignment, etc.).83,84 We included 5 clinical 

tests—SEBT-ANT, Biodex static balance, figure 8 hop, triple crossover hop and DFROM—that 

were commonly used in clinical settings to examine the risk of injury,33,84-86 mechanical or 

sensorimotor deficits caused by injury,17,75,87,88 or improvements following the rehabilitation 

interventions.66,89,90 Specifically, SEBT-ANT was included because short reach distance 

indicates poor dynamic postural control, which is often observed in CAI patients32,91 and more 

importantly was identified as a predictor for ankle reinjury85 and for a development of CAI.92 

The SEBT-ANT is a measure of dynamic postural control, and the Biodex balance system is a 

measure of static postural control using a static athlete single-leg overall stability index (anterior-

posterior and medial-lateral postural control stability).93,94 The figure 8 hop for time test was 
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included as Docherty et al75 reported a significant correlation (r = 0.31) between self-reported 

instability index and time to complete the task, indicating that CAI patients took a longer time to 

complete the test relative to controls. We also saw this functional performance deficit in the 

injured ankles relative to the uninjured ankles of CAI patients during single-leg multiplanar 

hop.95 The triple crossover hop for distance test was identified as a predictor for lower extremity 

strength and power.96 The test could increase stress on the lateral structures of the ankle as it has 

side-to-side motion. This would have a potential benefit from this test relative to the other hop 

tests (e.g., single hop for distance, triple straight hop for distance, side hop for time and up-down 

hop, etc.) that use only sagittal-plane motion.75,77,78 Moreover, the number of failed trials during 

the clinical tests was included because more numbers of failed trials may suggest sensorimotor 

impairments in the global and/or local system to cope with clinical tasks during SEBT, Biodex 

balance, figure 8 hop, and triple crossover hop tests. Further, as mechanical and/or sensorimotor 

impairments are thought to be related to perceived self-reported function97 and repeated ankle 

sprains,17,33,75,84-88 we included 3 self-reported function questionnaires: FAAM-ADL, FAAM-

Sports and MAII, and the number of previous ankle sprains. Lastly, a recent prospective study 

concluded that BMI may be a risk factor for repeated ankle sprains, as higher BMI is associated 

with greater risk of ankle reinjury and overall lower extremity injury.85,98,99  

Single-Leg Maximal Vertical Forward Jump Landing/Cutting Task 

Subjects were instructed to perform “double-leg maximal vertical forward jump as high 

as they can,” “land on the force plate with the test leg only,” and “side-cutting jump at 90° to the 

contralateral side as quickly as possible” in a maximal effort while facing forward during the 

task (Figure 1). We allowed up to 10 practice trials, gradually increasing vertical jump height, to 

reduce learning effects for subjects prior to testing data collection. Subjects then performed 10 



 

12 

testing trials of single-leg maximal vertical forward jump landing/cutting. Subjects stood at a 

distance that was 50% of their height from the center of the force plate (Figure 1A). Subjects 

performed a double-leg maximal vertical forward jump (Figure 1B), landed on the force plate 

with the test leg only (Figure 1C), and immediately transitioned to a side-cut jump at 90° to the 

contralateral side (Figures 1D and 1F). We marked 3 target locations: the starting position, the 

landing position on the force plate and the side-cut jump landing position (standardized to 60–

70% of subject’s height) to ensure consistency across all trials of the task. The first 5 trials were 

used to estimate a range of maximal vertical jump heights by adding ± 5% to the average 

maximal vertical jump height. We calculated and confirmed the maximal vertical jump height 

using a sacral marker (posterior superior iliac crest) in Vicon Nexus software during a 1-min rest 

between each trial. The next 5 successful trials were used for data analysis. We discarded and 

repeated a trial if the subject missed any of the target locations or the maximal vertical jump 

height was outside of the range determined in the first 5 trials. There was a 1-min rest between 

each trial. 

Motion Analysis  

 We collected motion data using 12 high-speed cameras (250 Hz; Vicon, Oxford, UK) 

during the stance phase of jump landing/cutting. We placed 44 reflective markers on each 

subject's anatomical landmarks. A single marker was placed bilaterally over anterior and 

posterior superior iliac spine, greater trochanter, medial and lateral femoral condyle, medial and 

lateral malleoli, posterior heel, dorsal midfoot, middle forefoot (head of second metatarsal), 

medial and lateral forefoot. Four rigid clusters with 4 markers were placed bilaterally over the 

lateral midthigh and midshank. 
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Data Processing 

 We collected spatial trajectories from 44 reflective markers using Vicon Nexus software, 

and imported them into Visual 3D (C-Motion, Germantown, MD). The trajectories data were 

smoothed using a fourth-order low-pass Butterworth filter; a cutoff frequency of 10 Hz was 

determined by residual analyses100 for all jump landing/cutting trials. We used the smoothed 

marker coordinates to calculate 3D ankle, knee and hip joint kinematics for jump landing/cutting 

tasks. We created a static model for each subject using previously described methods.82 Joint 

kinematics were calculated using a Cardan rotation sequence of flexion-extension, abduction-

adduction, and internal-external rotation.101  

Functional Statistical Analysis 

 Functional Principal Component Analysis. There were 6 “dimensions” of data that were 

used in this study: ankle, knee and hip angles in both the frontal and sagittal planes. Within each 

“dimension,” a subject had 5 iterate curves (e.g., 5 trials of landing/cutting), making a total of 30 

curves per subject (6 dimensions × 5 trials of the task). The goal was to have a single 

representative curve for analysis per subject in each of frontal and sagittal planes. Of the 5 

available curves for a given subject and dimension, 4 curves were registered to a selected 

reference curve; typically the curve had the largest data points (e.g., the longest stance time). All 

curves started at time point zero and end points were based on the curve to which the replicate 

curves were registered. If the number of observed points varied from curve to curve within a 

subject, then points were interpolated using time-warping splines.102,103 The resulting 5 curves 

were identical in length and very similar in shape, so an average at each point was taken to 

obtain a single curve per subject per dimension, making a total of 6 curves per subject, 3 for each 

of the frontal and sagittal planes. Next, using functional principal component analysis, we 
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reduced the ankle, knee and hip kinematic curves to one in each of the frontal and sagittal planes. 

This process took a “variance-maximizing average” highlighting important and informative 

features found in the input curves. We registered the remaining curves in that plane to the 

reference curve and the resulting curves were the final representative curves used in analysis. In 

short, to obtain representative curves we registered and averaged within-subject dimension 

curves, did functional principal component analysis on within-subject plane curves on 5 groups 

of 2 curves per subject, and then registered between-subject plane curves. 

 Hierarchical Bayesian Model with a Product Partition Model. We used a hierarchical 

Bayesian model that employed a product partition model, to cluster movement curves. A feature 

of the procedure was the probabilistic assignment of individuals to cluster based on shape of the 

representative curve and the similarity of 12 clinical predictor values. For example, if we cluster 

one of the dependent variables, a sagittal representative curve using the functional principal 

component analysis, yit is denoted as a sagittal representative curve and the measurement was 

taken on the i-th subject at time t. In this proposal i = 1, 2, 3, . . . , 100 and t = 1, . . ., ni where ni 

denotes the number of time points for the i-th subject. Measurements of a sagittal representative 

curve during landing/cutting were realizations of subject-specific functions resulting in the 

following equation: 

 yit = β0i + ƒi(zit) + ϵit. (1.1) 

Here zit references time at which yit was measured, ƒi( ) denoted each subject’s (i-th) sagittal 

representative curve, β0i denoted a vertical shift to the i-th subject’s curve, and ϵit was an 

idiosyncratic error or deviation from the subject-specific curve ƒi( ). The error term followed a 

normal distribution with mean 0 and variance σ2 (in notation σ2 ~ N(0, σ2)). In this proposal, 

there was negligible deviations from the curve and σ2 was very small. In model 1.1, ƒi( ) was 
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unknown for each subject, so it was estimated using the data. This seemingly challenging 

problem was greatly simplified when instead of considering ƒi( ) directly we considered an 

approximation of ƒi( ) which was expressed as a simple linear combination of basis functions. 

We used the following equation for this process: 

 ƒi(zit) = h(zit) βi (1.2) 

where h( ) was a known basis function and βi denoted the corresponding “regression” 

coefficients. Instead of estimating ƒi( ), we estimated βi which was much simpler. 

 Predictor Dependent Product Partition Model. The method employed to include values of 

12 clinical predictors in clustering of curves (in addition to the curve shape which was carried 

out using the coefficients in equation 1.2), was through a predictor-dependent product partition 

model.104 The predictor dependent product partition model was a probability distribution that 

assigned probabilities to all the possible ways that n subjects can be collected into κ groups. It 

gets its name because distribution was based on a product called cohesion functions that 

measured the “compactness” of subjects in a cluster and a “similarity” function that measured the 

similarity among subject 12 clinical predictor values. In what follows, the cohesion function was 

denoted by c(·) and the similarity by 𝑔(·). We used ρ to denote a partition of the n subjects into κ 

groups. That was if S1 denoted the collection of subjects in the first group, and S2 the second up 

to Sκ, then ρ = {S1, S2, Sκ}. A predictor dependent product partition model equation had the 

following form: 

 Pr(ρ = {S1, S2,…,Sκ}) = 1
𝐶
 ∏ 𝑐(𝑆𝑗)𝑔(𝑗=1 𝑥

∗

𝑗
) (1.3) 

where C was a normalizing constant ensuring the probabilities associated with all the possible 

partition sums to 1 and 𝑥 ∗

𝑗
  was a collection of cluster specific clinical predictor values. More 

specifically, if we let xi = (x1i, x2i, . . . , xpi) denote the i-th subjects p predictor values (e.g., x1i 
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= gender for the i-th subject, x2i = SEBT-ANT for the i-th subject, x3i = Biodex balance for the 

i-th subject . . ., etc.), then 𝑥 ∗

𝑗
  was the collection of all the xi’s that belong to cluster j. The 

specific form of (•) was dependent on the application, but had to produce larger values when the 

clinical predictor values included in the cluster were more “similar.” In this way, subjects that 

have similar values of clinical predictors had a higher probability of being assigned to the same 

cluster ɑ priori. The partition equation in model 1.3 together with the data equation 1.1 and 

function equation 1.2 modeled subject response curves flexibly, yet still have the ability to 

cluster subjects based on shape of the representative curve and 12 clinical predictor values. We 

refer to the model detailed in equations 1.1 to 1.3 as the prediction model, and was a simplified 

version of that found in a previous paper.105 

RESULTS 

Characteristics of Frontal Kinematic Movement Pattern Clusters 

 We used the product partition model to estimate the number of frontal movement 

clusters, and partitions that contained 4 frontal clusters were identified to have the highest 

posterior probability (Figure 3). The number of subjects in each of 4 frontal clusters are 

presented in Table 2. Six clinical predictors, including gender (p = 0.00), SEBT-ANT (p = 0.03), 

figure 8 hop (p = 0.00), triple crossover hop (p = 0.00), DFROM (p = 0.01) and FAAM-ADL (p 

= 0.03) appeared to be influential for group assignment of 4 frontal clusters (Table 2); there are 

statistically significant differences in the cluster specific means for each of 6 clinical predictors 

between 4 frontal clusters. Table 2 has the results of post hoc pairwise comparisons. Table 3 

shows the characteristics of each of 4 frontal clusters. For example, in frontal cluster 1, the value 

of 45.7% indicates that 45.7% of the subjects in frontal cluster 1 were females who performed 

the triple crossover hop that ranged from 2.38‒4.3 m. 
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Prediction Model Accuracy for Frontal Kinematic Movement Pattern Clusters 

 The multinomial regression model revealed 2.2 times chance (55.7%) of prediction 

model accuracy in assigning each of 97 CAI subjects into 1 of 4 frontal clusters. Due to a small 

sample size in frontal cluster 5 (n = 2) and 6 (n = 1), 97 CAI subjects were used for prediction 

model accuracy. Initially, the prediction model allocated each subject to 1 of 4 frontal clusters 

based on lower extremity frontal kinematics and values of 12 clinical predictors. Then, we 

treated each subject’s cluster assignment as the response in a multinomial regression model. We 

obtained the out-of-sample prediction by excluding a subject’s predictor values and a cluster 

label when fitting the multinomial regression model and then using the fitted model to predict 

group assignment for the excluded subject using the excluded subject’s predictor values. We did 

this for each of the 97 CAI subjects. Table 4 details prediction model accuracy for 4 frontal 

clusters.  

Characteristics of Sagittal Kinematic Movement Pattern Clusters 

 We used the prediction model to determine an optimal number of sagittal movement 

clusters, and we identified partitions that contained 5 sagittal clusters as having the highest 

posterior probability (Figure 7). The number of subjects in each of 5 sagittal clusters are 

presented in Table 5. Ten clinical predictors appeared to be influential for group assignment of 5 

sagittal clusters in the same sense as described for 4 frontal clusters, including gender (p = 0.00), 

SEBT-ANT (p = 0.00), figure 8 hop ( p = 0.00), triple crossover hop (p = 0.00), DFROM (p = 

0.00), the number of failed trials during the clinical tests (p = 0.00), BMI (p = 0.00), FAAM-

Sports score (p = 0.00), FAAM-ADL score (p = 0.00) and MAII “yes” responses on questions 4–

8 (p = 0.03) (Table 5). Results of post hoc pairwise comparisons are presented in Table 5. 

Characteristics of each of 5 sagittal clusters (% of values) are presented in Table 6. For example, 
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in sagittal cluster 1, the value of 65.6% indicates that 65.6% of the subjects in sagittal cluster 1 

were female who performed triple crossover hop that ranged from 2.38‒4.3 m. 

Prediction Model Accuracy for Sagittal Kinematic Movement Pattern Clusters 

 A multinomial regression model used the predictors (or covariates) of gender, SEBT-

ANT, Biodex balance, figure 8 hop, triple crossover hop, DFROM, the number of failed trials 

during the clinical tests, BMI, FAAM-ADL score, FAAM-Sports score, MAII “yes” responses 

and the number of previous ankle sprains, produced an out-of-sample prediction rate of 3.0 times 

chance (59%) in assigning each of 100 CAI subjects into 1 of 5 sagittal clusters. Initially, the 

prediction model allocated each subject to 1 of 5 sagittal clusters using lower extremity sagittal 

kinematics and values of 12 clinical predictors. Then, we treated each subject’s cluster 

assignment as the response in the multinomial regression model. We obtained the out-of-sample 

prediction by excluding a subject’s predictor values and cluster label when fitting the 

multinomial regression model, and then using the fitted model to predict group assignment for 

the excluded subject using the excluded subject’s predictor values. We did this for each of the 

100 CAI subjects. We presented the details of prediction model accuracy for sagittal clusters in 

Table 7.  

DISCUSSION 

 Patients with CAI demonstrated multiple kinematic movement patterns during a single-

leg landing/cutting task (Figure 1). We identified 4 subgroups of frontal movement patterns and 

5 subgroups of sagittal movement patterns, respectively, based on shape of the each patient’s 

representative curve and values of 12 clinical predictors. Our data suggest that 6 clinical 

predictors (e.g., gender, SEBT-ANT, figure 8 hop, triple crossover hop, DFROM, and FAAM-

ADL score; Table 3) provided insight of group membership in assigning each CAI patient to 1 of 
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the 4 frontal clusters with 2.2 time chances (55.7% accuracy; Table 2), while 10 clinical 

predictors (e.g., minus Biodex balance and the number of previous ankle sprains; Table 7) 

provided insight of group membership in assigning each CAI patient to 1 of the 5 sagittal clusters 

with 3.0 time chance (59% accuracy; Table 6). The current study provides novel findings about 

the presence of multiple movement patterns within a homogeneous CAI population through the 

self-reported function. More importantly, clinical tests may help identify specific movement 

patterns in clinical settings without using laboratory-based tools like a motion capture system 

and force plates. 

The Importance of Identifying Multiple Movement Patterns in a CAI Population  

 Previous epidemiology studies6,106,107 reported that a majority of ankle sprains occur 

during jump-landing, hopping, cutting, or twisting (direction changes). It is believed that altered 

movement patterns during these dynamic tasks could predispose CAI patients to vulnerable 

positions and loads of the foot, which could increase risk of ankle sprains.47,48,63 As such, 

rehabilitation interventions could focus on these altered movement patterns to reduce the 

prevalence of ankle reinjury. However, substantial CAI research has been focused on examining 

alterations in each component of mechanical and sensorimotor impairments: pathological 

laxity,20,108,109 arthrokinematic restrictions,16,17 osteokinematic restrictions,25,33,71 strength,33,88,110-

113 proprioception,114-116 reflex reactions33,35,117-126 and postural control,32,91,127,128 while relatively 

few studies have examined altered movement patterns during landing or cutting.47-51,129-132 Due 

to the nature of a static measurement position of mechanical and sensorimotor impairments, 

these studies give us limited perspectives about dynamic characteristics of neuromuscular control 

during functional tasks in an active CAI population.  
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 Researchers have reported altered movement patterns during various landing tasks in CAI 

patients compared to controls and/or ankle sprain copers.47,50,51,59,133 However, findings are 

conflicting between studies—demonstrating greater inversion kinematics,49,63,64 less inversion 

kinematics,47 or no difference in kinematics48,50,53 during prelanding and/or postlanding. 

Conflicting findings between studies may be due to varied jump tasks, but more likely is due to 

multiple movement patterns that naturally exist given various constraints among CAI patients 

who would exhibit varied mechanical and/or sensorimotor impairments.56,65 It is important to 

note that most CAI studies selected CAI patients using a subjective self-reported function 

defining this injured group as homogeneous.25,42,47,60,92 However, considering the varying 

severity of mechanical and/or sensorimotor impairments along with the Dynamic System 

Theory, this injured population could be heterogeneous in terms of multiple movement patterns. 

This assumption led us to conduct a multiple movement pattern study recently, and the results of 

our unpublished work successfully identified 6 kinematic movement pattern clusters during a 

jump landing/cutting task (Figure 1). Since identification of these movement patterns is difficult, 

there is a need to find clinical tests that help identify multiple movement patterns in clinical 

settings, and the results of this study confirmed that multiple movement patterns can be predicted 

by clinical tests (e.g., SEBT-ANT, figure 8 hop, triple crossover hop, and DFROM).  

 It is worth noting that the current rehabilitation interventions have focused on reducing 

symptoms caused by ankle sprains (e.g., pain, swelling, effusion, etc.)134,135 and on improving 

outcomes associated with risk factors of ankle sprains (e.g., diminished strength, impaired 

postural control, reduced reflex reactions, reduced proprioception and decreased range of 

motion).66,89,90,136 Since these interventions were designed based on the existing literature on risk 

factors for recurrent ankle sprains, clinicians provide similar or the same rehabilitation protocols 
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for all CAI patients, which are not individualized nor focused on altered movement patterns 

during functional tasks (e.g., jump-landing and cutting). Because of this, rehabilitation 

interventions appeared to be effective in some CAI studies,12,13,137,138 but not all studies.12,13,139 

As mentioned previously, mechanical and/or sensorimotor impairments contribute to developing 

multiple movement patterns during functional tasks, which potentially predispose this patient 

population in different ways to repeated ankle sprains. To reduce risk of ankle sprains, 

identifying multiple movement patterns is of utmost importance, and if a certain movement 

pattern places this patient population at risk, the interventions should be developed and addressed 

to correct the specific movement patterns during functional tasks. This study is the first step in 

finding clinical predictors that would help identify specific movement patterns during a maximal 

single-leg jump landing plus cutting in a CAI population. 

Multinomial Regression for Prediction Model Accuracy for Frontal and Sagittal Clusters 

 We used a multinomial regression model to quantify the influence of each predictor on 

cluster membership probabilities and to make predictions for frontal and sagittal kinematic 

clusters, respectively. The prediction model revealed 55.7% and 59% out-of-sample prediction 

rates for frontal and sagittal clusters, respectively. However, its clinical utility is questionable 

due to low prediction accuracy for which subject is assigned to a certain cluster. Greater than 

75% of accuracy (3 in 4 cases correct accuracy) may provide more confidence in its clinical 

utility in clinical settings. It is worth noting that researchers should consider a few important 

things to improve the prediction model accuracy in any future study. First, 12 clinical predictors 

included in this study were chosen based on scientific evidence associated with a risk factor or a 

strong predictor for CAI. However, among 12 clinical predictors, only 4 predictors included in 

this study seemed to be highly supported by prospective data as a strong predictor for recurrent 
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ankle sprains including SEBT68,85,92,140 (or a similar Y-balance test),141,142  DFROM,33,86 BMI, 

99,106,107 and FAAM-ADL score.92 As such, more prospective data with a larger sample size is 

needed to identify other strong predictors for ankle reinjury that would help predict multiple 

movement patterns for any future study. Interestingly, BMI, defined as a strong predictor for 

ankle reinjury in previous studies, was not an influential predictor in predicting kinematic 

movement patterns in this study relative to other influential predictors such as SEBT, DFROM 

and FAAM-ADL score. There are two possible reasons. First, the current study may have a 

relatively small sample size compared to previous BMI studies: n = 152,98 n = 53985 and n = 

11918.99 There were only 8% of obese subjects (BMI, ≥ 30)143 and 27% of overweight subjects 

(BMI, 25‒29.9)143 in this study. Due to the smaller ratio of higher BMI, BMI may not have been 

influential in the current study. Second, while the current study was conducted in a university 

setting; most subjects were college students (mean age of 21.8 ± 2.3); the previous BMI studies 

were completed in a high school population.85,98,99 The findings of this study showed that some 

predictors (e.g., Biodex index, failed trials, FAAM-Sports, MAII and number of previous ankle 

sprains) did not play an important role in predicting kinetics movement patterns. Future studies 

should include other high differential predictors along with the influential predictors included in 

this study (e.g., gender, SEBT, figure 8 hop, triple crossover hop, DFROM and FAAM-ADL 

score). As the purpose of the prediction model was to predict lower extremity kinematic 

movement patterns by using values of clinical tests, future work should include movement-

related measures including calcaneal eversion ROM, tibial varum ROM and talar tilt ROM as 

potential clinical predictors as suggested in previous data.84 
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Characteristics of Sagittal Kinematic Movement Pattern Clusters 

 We identified 5 sagittal kinematic pattern clusters in this study based on shape of the 

representative curve (e.g., ankle, knee and hip angles during landing/cutting) and values of 12 

predictors. Sagittal clusters 1, 2, 3, and 5 seemed to have an adequate number of varied subjects 

(17‒32 subjects), while sagittal cluster 4 had only 6 subjects. Not surprisingly, a smaller sample 

size increased characteristics of the cluster to find similarities within the cluster between subjects 

(% of values; Table 6), which may be attributed to less between-subject variability. For example, 

100% of subjects in sagittal cluster 4 (n = 6) were characterized by gender and self-reported 

function. A trend of characteristics of each cluster (% of values) was reduced by having more 

subjects in each sagittal cluster: sagittal cluster 5 (n = 17; 82.3% of values), sagittal cluster 3 (n = 

22; 72.7% of values) and sagittal cluster 1 (n = 32; 65.6% of values) (Table 6).  

 Among the 5 sagittal clusters, clusters 4 and 5 appeared to have a high risk of ankle 

reinjury. For example, sagittal cluster 4 (n = 6, 100% female) demonstrated several distinctive 

characteristics in negative ways including the most restricted DFROM (38.58 deg), the highest 

BMI (29.05 kg/m2), the lowest self-reported function on the FAAM-Sports (48.83%), FAAM-

ADL (72%) and MAII (4.67 “yes” responses), the longest figure 8 hop time (15.11 sec), the 

shortest triple crossover hop distance (3.47 m) and the largest number of failed trials during the 

clinical tests (8.5 times), compared to other sagittal clusters (Table 6). In addition, sagittal cluster 

5 (n = 17, 100% male) also exhibited distinctive negative characteristics, including the shortest 

SEBT-ANT reach distance (56.36% of leg length), the second lowest DFROM (39.31 deg), and 

the second lowest self-reported function on the MAII (3.71 “yes” responses). 

 These findings from sagittal clusters 4 and 5 suggest 3 important clinical implications. 

First, poor performance on SEBT-ANT was identified as a strong predictor for risk of ankle 
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reinjury.68,85 Short reach distances are indicative of poor dynamic postural control, which has 

been observed in patients with CAI in meta-analyses.32,91 Reduced performance on SEBT-ANT 

in sagittal cluster 5 could be due to diminished lower extremity strength,144 mobility,71,145 

balance,146 and coordination147 because these factors are responsible for maintaining control of 

the body during the test. Specifically, short reach distances were associated with restricted 

DFROM (28% of the variance in a SEBT-ANT performance),71 and reduced knee and hip 

flexion kinematics (49% of the variance in a SEBT-ANT performance).148,149 Second, we 

observed a reduced DFROM in sagittal cluster 5, which was defined as a predictor for risk of 

CAI.33,86,150 Pope et al86 reported that limited dorsiflexion ROM (34 deg) results in 5 times 

greater risk of ankle sprains compared to normal DFROM (45 deg) during an intensive 12-week 

training in 1093 Australian Army recruits,86 and further restricted DFROM has been reported in 

CAI patients during walking,27 landing,47,48 cutting,47 running26 and a static weight-bearing lunge 

test.25,71,136 It is believed tension force during sudden inversion stress can result in an anterior 

positional fault of the talus,21,22 which prevents the tibiotalar joint from reaching its rigid, stable, 

close-packed position (full dorsiflexion); thereby restricting dorsiflexion ROM.22,87 This idea is 

supported by a recent study25 suggesting a relationship between the reduced SEBT-ANT reach 

distance and restricted DFROM. Third, studies show that higher BMI increased the risk of ankle 

reinjury 2-fold in 539 high school football players, and increased the risk of reinjury 19 times 

when a higher BMI player (e.g., BMI for age and gender, ≥ 95th percentile)143 player had a 

previous ankle sprain(s).98 Further, even higher BMI (obese, e.g., BMI for age and gender, ≥ 

95th percentile)143 high school athletes sustained increased ankle/foot injuries compared to 

normal weight (e.g., BMI for age and gender, 15‒85th percentile)143 athletes that participated in 

sports such as wrestling, volleyball and football.99 Future work should support a relationship 
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between poor performance on clinical predictors and actual incidence of ankle injury. When it 

comes to a rehabilitation perspective, interventions should focus on increasing DFROM like talar 

glide136 and calf stretching,151 and increasing dynamic postural control like neuromuscular 

training (e.g., balance, strength, proprioception, power, agility, etc.).66,89,90    

 On the other hand, sagittal cluster 3 seemed to be the most physically functional group as 

indicated by the longest triple crossover hop distance (5.97 m), the fastest figure 8 hop time (9.70 

sec), the second highest DFROM (47.71 deg), the second longest SEBT-ANT reach distance 

(65.20% of leg length) and the least failed trials during the clinical tests (3.73 times) among all 

sagittal clusters. Although good performance on the hop tests may be attributed to the high male 

ratio (91%)—because males have better performance measures than females due to physiological 

differences (e.g., strength and muscle fiber characteristics)83—other values of the predictors 

(e.g., DFROM, SEBT-ANT, and number of failed trials) indicate this group to be the most 

physically functional group among all sagittal clusters. Future research should examine a 

relationship between a better performance and risk of ankle reinjury.  

Characteristics of Frontal Kinematic Movement Pattern Clusters 

 Like the sagittal clusters, a small sample size seemed to be associated with higher 

characteristics of the cluster (% of values). For example, frontal clusters 2 and 4 had a relatively 

small sample size of 8 and 14 subjects, respectively, which resulted in a better percentage of 

values that ranged from 62.5‒64.2% when compared to frontal cluster 1 (n = 35) and 3 (n = 40) 

that ranged from 37.5‒45.7% (Table 3). Frontal cluster 4 appeared to be the most physically 

functional group as indicated by the longest SEBT-ANT reach distance (65.29% of leg length), 

the fastest figure 8 hop time (10.02 sec), the longest triple crossover hop distance (5.92 m), the 

largest DFROM (47.59 deg), and the highest FAAM-ADL scores (88.21%). As the hop tests 



 

26 

(e.g., figure 8 hop and triple crossover hop) are dependent on physical capacity (e.g., strength 

and muscle fiber characteristics),83 a better performance on the hop tests in frontal cluster 4 could 

be due to a higher male ratio (79%), but values of other clinical predictors suggest that frontal 

cluster 4 seems to be the most physically functional group among all frontal clusters (Table 2). 

On the other hand, frontal cluster 2 seemed to be the least physically functional group. While 

frontal cluster 4 exhibited the best values on several predictors (e.g., SEBT-ANT, figure 8 hop, 

triple crossover hop, DFROM, and FAAM-ADL score), values of aforementioned predictors for 

frontal cluster 2 were completely opposite (e.g., the least values). A poor performance on the hop 

tests may result from a higher female ratio (88%) and/or the observed lowest self-reported 

function on the FAAM-ADL score (80.5%) and FAAM-Sports score (67.75%). Greater 

perceived instability of the ankle may decrease physical performance due to fear of ankle 

reinjury as reported by reduced function on the Disablement in the Physically Active Scale, 

increased Tampa Scale of Kinesiophobia-11, and increased Fear-Avoidance Beliefs 

Questionnaire.97 As frontal cluster 4 seemed to be the most physically functional, and frontal 

cluster 2 seemed to be the least physically functional, prospective data should examine whether 

physical functionality is associated with risk of ankle reinjury.  

High vs. Low Characteristics Between Sagittal and Frontal Clusters 

 Among 12 clinical predictors included in this study, 6 predictors (e.g., gender, SEBT-

ANT, figure 8 hop, triple crossover hop, DFROM and FAAM-ADL) appeared to be influential 

for group membership of both frontal and sagittal clusters (Tables 2 and 5). We identified 4 

frontal clusters in this study. In frontal cluster 4, 64.2% of subjects were characterized by gender 

(male), figure 8 hop (8.3‒10.3 sec) and triple crossover hop (5.56‒7.79 m). In frontal cluster 2, 

62.5% of subjects were characterized by gender (female), triple crossover hop (2.38‒4.3 m) and 



 

27 

Biodex balance (0.25‒0.75 index stability). On the other hand, 5 sagittal kinematic movement 

pattern clusters were identified in this study. Sagittal clusters with a range from 30.4‒100% was 

better characterized compared to frontal clusters which ranged from 37.5‒64.2%. A possible 

explanation for this result is the fact that the sagittal representative curves displayed far less 

individual variability in shape, and, as a result, the clinical predictors had more influence on the 

resulting cluster configuration. In sagittal cluster 3, 72.7% of subjects were characterized by 

triple crossover hop (5.56‒7.79 m) and figure 8 hop (8.3‒10.3 sec). In sagittal cluster 4, 100% of 

subjects were characterized by gender (female) and FAAM-Sports (28‒69%) and 82.3% of 

subjects were characterized by gender (male) and SEBT-ANT (46.7‒59.5% of leg length). 

Among 6 frontal clusters, frontal clusters 5 (n = 2) and 6 (n = 1) were not included in further 

analyses (e.g., pairwise comparisons, post hoc pairwise comparison, and prediction model 

accuracy) due to a small sample size. Each of 4 frontal clusters were characterized by 2 

predictors with a range of 37.5‒64.2%, while each of 5 sagittal clusters were characterized with a 

range of 30.4‒100%. On the basis of these findings observed higher characteristics of sagittal 

clusters (% of values presented in Table 6) may be attributed to lower between-subject variability 

in lower extremity sagittal kinematics during jump landing/cutting compared to frontal 

kinematics. For example, during landing, sagittal kinematics at the ankle, knee and hip involve a 

uniplanar direction towards increasing flexion angles (e.g., dorsiflexion, knee flexion and hip 

flexion) so that no opposite direction of sagittal kinematics (e.g., plantarflexion, knee extension 

and hip extension) would occur. As such, there are only uniplanar differences in kinematics 

(more or less angles) between subjects. Further, during side-cutting, sagittal kinematics at the 

ankle, knee and hip would also occur in a uniplanar direction towards increasing extension 

angles (e.g., plantarflexion, knee extension and hip extension). However, lower extremity frontal 
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kinematics could occur in biplanar directions like inversion or eversion at the ankle and 

adduction or abduction at the knee and hip. Changes in the magnitude of frontal kinematics 

(angle differences) and biplanar directions of 3 lower extremity joints would lead to higher 

between-subject variability during jump landing/cutting, which potentially reduces the ability to 

characterize each frontal cluster. Greater variability between subjects in frontal kinematics may 

be associated with mechanical and/or sensorimotor impairments reported in CAI patients. From a 

mechanical impairment perspective, changes in pathological laxity and arthrokinematic 

restrictions may contribute to a greater variability of frontal kinematics, especially at the ankle. 

Substantial evidence has shown increased ankle ligament laxity (e.g., inversion and/or anterior 

direction) as measured by an ankle arthrometer in CAI patients,19,43,108-110,152,153 while a few 

studies reported no increased ankle laxity in patients with CAI.154,155 Conflicting results may 

support the idea of between-subject variability in a CAI population, suggesting that not all CAI 

patients have the same impairments. 

 Damage to lateral ankle ligaments (e.g., anterior talofibular, calcaneofibular, and 

posterior talofibular) and mechanoreceptors results in articular deafferentation (reduced sensory 

feedback),156,157 which potentially decreases dynamic ankle joint stabilization (reduced motor 

function) of ankle musculatures (e.g., peroneal muscle groups).158 It is believed greater ankle 

ligament laxity would reduce mechanical stability at the ankle,19,156 which would place the foot 

into a more inverted position during initial landing, which is thought to increase risk of repeated 

ankle sprains.20,108,109 For a sensorimotor perspective, relating to ligament laxity, it may be 

possible that a patient with high inversion ligament laxity would use a movement strategy to 

increase eversion angle as a self-protective motor strategy to avoid repeated ankle sprains as 

increased inversion laxity is a less stable, loose-packed, more vulnerable position to lateral ankle 
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sprains, which is supported by a recent landing study.47 Considering all possible ways to cope 

with mechanical and sensorimotor impairments during landing/cutting, greater between-subject 

variability of frontal kinematics are likely present in a CAI population. In addition, sensorimotor 

impairments in evertors, including slower reflex reactions,35-37 arthrogenic muscle inhibition,38 

and diminished strength39,40 are substantially reported in CAI patients. Conversely, some studies 

have reported no sensorimotor impairments in patients with CAI including strength,152,159-161 

reflex reactions,32,40,84 and muscular activation.52,124 Due to evertor impairments, each CAI 

patient would utilize his/her own movement strategy to accomplish desired movement tasks in a 

variety of ways, which ultimately result in higher variance of frontal kinematics between 

subjects, and further it would reduce the ability to characterize frontal kinematic movement 

pattern clusters. 

Clinical Implications 

 When it comes to identifying kinematic movement patterns, the first step was to identify 

each movement pattern, which we successfully accomplished in our recent unpublished work. 

The second step, which was the purpose of the current study, was to find clinical predictors that 

help identify multiple movement patterns. The results of the current study revealed that 

kinematic movement patterns can be predicted using values of clinical predictors, however due 

to low prediction accuracy (55.7‒59%), its clinical diagnostic utility remains questionable. 

However, prediction accuracy could be increased up to a desirable level (75% accuracy; 3 in 4 

cases correct accuracy) if future work would include high influential predictors that were 

identified in the current study and would add other influential predictors that are movement-

related measures. The third step is to identify altered movement patterns that place CAI patients 

at risk of ankle reinjury by measuring an actual incidence of injury as a follow-up study. The last 
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step is to identify interventions to address altered-movement patterns and further to examine 

whether the interventions can actually reduce the risk of ankle reinjury. The end goal of this 

project is that clinicians can predict which altered-movement pattern is at risk of reinjury using a 

series of clinical tests without using high-cost biomechanical tools, and further provide target 

interventions to correct altered-movement patterns to minimize risk of reinjury. We characterized 

some clusters, including sagittal clusters 4 and 5, as being high risk of ankle reinjury (e.g., 

shorter SEBT-ANT reach distance, restricted DFROM, higher BMI, and higher perceived self-

reported function). Prospective data should seek to support a potential relationship between poor 

motor performance on dynamic postural control (SEBT-ANT), ankle mobility (DFROM), hop 

tests (figure 8 hop and triple crossover hop) and higher BMI and an actual increased risk of 

reinjury.  

Limitations of the Study 

 There are few limitations in the current study. First, altered movement patterns can be 

caused by various biomechanical parameters (e.g., ground reaction force, net internal joint 

moment, muscle activation, etc.). However, the current study only used lower extremity joint 

kinematics, which may provide limited information in understanding comprehensive altered 

movement patterns that would predispose a CAI population to risk of reinjury. Second, the 

predictor dependent clustering model identified 4 frontal clusters and 5 sagittal clusters. 

However, the number of subjects in frontal cluster 2 (n = 8), frontal cluster 4 (n = 14) and sagittal 

cluster 4 (n = 6) may not have a sufficient number of subjects for desired power (80%) to 

examine between-cluster differences in clinical predictors (e.g., post hoc pairwise comparisons, 

Tables 2 and 5). Third, we did not provide prospective data (e.g., actual incidences of ankle 

sprain injury, number of “giving way” episodes, exposure time to sports, type of participating 
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sports, etc.) with the current subjects to quantify a relationship between altered movement 

patterns and risk of ankle reinjury. As such, as a 1-year follow up study, we are currently 

collecting prospective data to see which altered-movement patterns would have higher risk of 

reinjury. Fourth, although we collected data with 100 subjects in this study, since other 

prospective studies used a larger number of subjects: n = 152,98 n = 539,85 n = 109386 and n = 

1191899 to identify a risk factor for ankle reinjury, we may not have enough power to examine a 

relationship between altered-movement patterns and risk of ankle reinjury with the 100 subjects. 

Lastly, ankle sprains are observed across various ages from adolescence to elderly people, and, 

therefore, we can only generalize our findings to a college student population (mean age of 21.8 

± 2.3 years). 

CONCLUSIONS 

 Statistical analyses—including the functional principal component analysis for a 

representative curve, product partition model for a subject assignment into the cluster and 

predictor dependent clustering model for the probability of the cluster—allowed us to predict 

kinematic movement patterns (which subject could be assigned to a certain cluster) using ankle, 

knee and hip kinematics as well as values of 12 clinical predictors. Six clinical predictors (e.g., 

gender, SEBT-ANT, figure 8 hop, triple crossover hop, DFROM, and FAAM-ADL score) were 

influential in predicting frontal kinematic movement pattern clusters (Table 2), while 10 clinical 

predictors (minus the Biodex balance and number of ankle sprains) were influential in predicting 

sagittal kinematic movement pattern clusters (Table 5). The end goal of this study is to identify 

altered movement patterns that predispose CAI patients to higher risk of ankle reinjury and to 

identify appropriate interventions to correct altered movement patterns to reduce the prevalence 

of ankle reinjury. The current findings of this study suggest that we were able to identify 4 
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frontal and 5 sagittal kinematic movement pattern clusters, and these movement pattern clusters 

seemed to be predicted using a series of clinical tests which ranged from 55.7 to 59% accuracy. 

Due to low prediction model accuracy in the current model, clinical practicality may be limited 

(40% errors). However, prediction model accuracy might be increased in future work by 

incorporating a different set of predictors by keeping the current high influential predictors (e.g., 

gender, SEBT-ANT, figure 8 hop, triple crossover hop, DFROM and FAAM-ADL score) used in 

this study and replacing the current low influential predictions (e.g., Biodex index, number of 

failed trials during the clinical tests, FAAM-Sports, MAII, and number of previous ankle sprains) 

with other new promising predictors (e.g., ROM measures of calcaneal eversion, tibial varum, 

and talar tilt).    
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Table 1.  Subject Demographics 
 

 

Group 

 

N 

Age 

(yr) 

Height 

(cm) 

Mass 

(kg) 

BMId 

(kg/m2) 

FAAM e-

ADLf (%) 

FAAMe-

Sports (%) 

MAIIg 

No. “yes” 

responses 

No.h Ankle 

Sprains (n) 

Duration since 

last ankle 

sprain (months) 

CAIa 
50 Mb 

50 Fc 

21.8 

(2.3) 

174.4 

(10.8) 

74.1 

(13.8) 

24.3 

(3.7) 

85.3 

(5.7) 

68.5 

(10.0) 

3.5 

(1.1) 

3.5 

(2.3) 

11.6 

(10.7) 

Data are mean (SD). 
aChronic Ankle Instability 
bMale 
cFemale 
dBody Mass Index 
eFoot and Ankle Ability Measure 
fActivities of Daily Living 

gModified Ankle Instability Index 
hNo., number of   
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Table 2.  Post Hoc Pairwise Comparisons Between Frontal Kinematic Movement-Pattern Clusters 
 

Frontal Cluster 1 2 3 4 5 6 
Number of Subjects 35 8 40 14 2 1 

 

 

Cluster 

Gender 

(M/Fa) 

SEBT- 

ANTb 

(% LL)c 

Biodex 

balance 

(index) 

Figure 8 

hop 

(sec) 

Triple 

cross hop 

(m) 

DFROMd 

(deg) 

Failed 

trials 

BMIe 

(kg/m2) 

FAAMf-

Sports (%) 

FAAMg-

ADLf (%) 

MAIIh 

“yes” 

responses 

No.i 

ankle 

sprains 

1 0.29k,l 65.27 k 0.84 12.51k,l 4.42k,l 47.35j 4.94 23.84 69.69 86.09 3.54 3.43 

2 0.12m,n 62.45 0.71 13.62m,n 4.20n 41.25n 5.50 24.52 67.75 80.50n 3.75 3.38 

3 0.65 61.01 0.81 11.00 5.10o 43.46 4.72 24.74 68.55 85.08 3.40 3.83 

4 0.79 65.29 0.74 10.02 5.92 47.59 4.00 23.42 70.36 88.21 3.57 2.71 

p-value 0.00* 0.03* 0.31 0.00* 0.00* 0.01* 0.61 0.56 0.91 0.03* 0.84 0.50 

Data are mean. 
Frontal clusters 5 and 6 were not included in analyses for post hoc pairwise comparisons due to a small sample size. 
aM = male (denote by 1); F, female (denoted by 0) 
bSEBT-ANT = Star Excursion Balance Test–Anterior 
cLL = Leg Length 
dDFROM = dorsiflexion range of motion 
eBMI = Body Mass Index 
fFAAM = Foot and Ankle Instability Measure 
gADL = Activities of Daily Living 
hMAII = Modified Ankle Instability Index 
iNo., number of  
 

jindicates statistically significant differences between clusters 1 and 2. 
kindicates statistically significant differences between clusters 1 and 3. 
lindicates statistically significant differences between clusters 1 and 4. 
mindicates statistically significant differences between clusters 2 and 3. 
nindicates statistically significant differences between clusters 2 and 4. 
oindicates statistically significant differences between clusters 3 and 4. 
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Table 3.  Characteristics for Each of 4 Frontal Kinematic Movement Pattern Clusters  
 

Cluster Predictor 1 Predictor 2 % of values 

1 
(n = 35) 

Triple cross hop (2.38–4.3 m) Gender (female) 45.7% 
Figure 8 hop (12.2–20.7 sec) Gender (female) 45.7% 
Triple cross hop (2.38–4.3 m) Figure 8 hop (12.2–20.7 sec) 37.1% 

SEBT-ANTa (59.5–66.8% LLb) Gender (female) 28.5% 
FAAMc-ADLd (87–89%) Gender (female) 28.5% 

Biodex balance (0.25–0.75) Gender (female) 25.7% 

2 
(n = 8) 

Biodex balance (0.25–0.75) Gender (female) 62.5% 
Triple cross hop (2.38–4.3 m) Gender (female) 62.5% 
No.e sprains (1–3 episodes) Gender (female) 50% 

Figure 8 hop (12.2–20.7 sec) Triple cross hop (2.38–4.3 m) 50% 
Figure 8 hop (12.2–20.7 sec) Gender (female) 50% 

DFROMf (28.4–43.2 deg) FAAMc-ADLd (60–87%) 50% 

3 
(n = 40) 

Figure 8 hop (8.3–10.3 sec) Gender (male) 37.5% 
Triple cross hop (5.56–7.79 m) Gender (male) 35% 

FAAMc-ADLd (60–87%) FAAMc-Sports (28–69%) 35% 
Triple cross hop (5.56–7.79 m) Figure 8 hop (8.3–10.3 sec) 32.5% 

DFROMf (43.2–48.4 deg) MAIIg “yes” (2–4 responses) 27.5% 

4 
(n = 14) 

Figure 8 hop (8.3–10.3 sec) Triple cross hop (5.56–7.79 m) 64.2% 
Figure 8 hop (8.3–10.3 sec) Gender (male) 64.2% 
FAAMc-ADLd (87–89%) DFROMf (48.4–60.9 deg) 42.8% 
Biodex balance (0.75–0.9) Gender (male) 35.7% 
Biodex balance (0.75–0.9) Triple cross hop (5.56–7.79 m) 35.7% 

SEBT-ANTa (66.8–83.5 % LLb) DFROMf (48.4–60.9 deg) 35.7% 
Clusters 5 and 6 were not included due to a small sample size (n = 3). 
aSEBT-ANT = Star Excursion Balance Test-Anterior 
bLL = Leg Length 
cFAAM = Foot and Ankle Instability Measure 
dADL = Activities of Daily Living 
eNo., number of 
fDFROM = Dorsiflexion Range of Motion 
gMAII = Modified Ankle Instability Index 



 
 

45 

Table 4.  Multinomial Regression of Prediction Model Accuracy for Frontal Kinematic Movement-Pattern Clusters 
 

Frontal Cluster 1 2 3 4 
Number of Subjects 35 8 40 14 

 

 
Prediction 1 

(n) 
Prediction 2 

(n) 
Prediction 3 

(n) 
Prediction 4 

(n) 

Actual 
Prediction 

(N) 

Actual 
Unprediction 

(N) 

Actual Prediction 
Model Accuracy 

(%) 
Actual 1 (n) 21 3 9 2 21 / 35 14 / 35 60.0 
Actual 2 (n) 5 0 3 0 0 / 8 8 / 8 00.0 
Actual 3 (n) 10 0 28 2 28 / 40 12 / 40 70.0 
Actual 4 (n) 5 0 5 5 5 / 14 10 / 14 35.7 

     54 / 97 44 / 97 55.7 
Data are the number of subjects in each of four clusters. 
Clusters 5 and 6 were not included in analyses for prediction model accuracy due to a small sample size (n = 3).   
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Table 5.  Post Hoc Pairwise Comparisons Between Sagittal Kinematic Movement-Pattern Clusters 
 

Sagittal Cluster 1 2 3 4 5 
Number of Subjects 32 23 22 6 17 

 

Cluster 

Gender 

(M/Fa) 

SEBT-

ANTb 

(% LL)c 

Biodex 

balance 

(index) 

Figure 8 

hop 

(sec) 

Triple 

cross hop 

(m) 

DFROMd 

(deg) 

Failed 

trials 

BMIe 

(kg/m2) 

FAAMf-

Sports (%) 

FAAMf-

ADLg (%) 

MAIIh 

“yes” 

responses 

No.i 

ankle 

sprains 

1 0.03j,k,l 65.38m 0.75 13.18j,k,l,m 4.10j,k,m 47.84l,m 5.09l 23.17l 72.50l 86.88l 3.50 2.84 

2 0.52n,o,p 63.41p 0.90 11.30n,o 4.80n,o,p 44.78p 4.35o 24.80 71.30o 87.00o 3.22o 3.61 

3 0.91q 65.20r 0.76 9.70q 5.97q 47.71q,r 3.73q 23.59q 66.73q 85.64q 3.23q 3.55 

4 0.00s 60.94 0.76 15.11s 3.47s 38.58 8.50s 29.05 48.83s 72.00s 4.67 5.50 

5 1.00 56.36 0.86 10.27 5.66 39.31 4.53 24.98 69.29 86.00 3.71 3.82 

p-value 0.00* 0.00* 0.09 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.03* 0.11 

Data are mean. 
aM/F = M = male (denoted by 1); F = female (denoted by 0) 
bSEBT-ANT = Star Excursion Balance Test–Anterior 
cLL = Leg Length 
dDFROM = Dorsiflexion Range of Motion 
eBMI = Body Mass Index 
fFAAM = Foot and Ankle Instability Measure 
gADL = Activities of Daily Living 
hMAII = Modified Ankle Instability Index 
iNo., number of 
 

jindicates statistically significant differences between clusters 1 and 2. 
kindicates statistically significant differences between clusters 1 and 3. 
lindicates statistically significant differences between clusters 1 and 4. 
mindicates statistically significant differences between clusters 1 and 5. 
nindicates statistically significant differences between clusters 2 and 3. 
oindicates statistically significant differences between clusters 2 and 4. 
pindicates statistically significant differences between clusters 2 and 5. 
qindicates statistically significant differences between clusters 3 and 4. 
rindicates statistically significant differences between clusters 3 and 5. 
sindicates statistically significant differences between clusters 4 and 5. 
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Table 6.  Characteristics for Each of 5 Sagittal Kinematic Movement Pattern Clusters  
 

Cluster Predictor 1 Predictor 2 % of values 

1 
(n = 32) 

Triple cross hop (2.38–4.3 m) Gender (female) 65.6% 
MAIIa “yes” (2–4 responses) Gender (female) 56.2% 
No.b sprains (1–3 episodes) Gender (female) 53.1% 
Biodex balance (0.25–0.75) Gender (female) 46.8% 
FAAMc-Sports (76–79%) Gender (female) 43.7% 

SEBT-ANTd (59.5–66.8 % LL) Gender (female) 40.6% 

2 
(n = 23) 

FAAMc-ADLe (89%) SEBT-ANTd (59.5–66.8% LL) 30.4% 
FAAMc-ADLe (89%) Biodex balance (0.75–0.9) 30.4% 

BMI (18.4–22.4 kg/m2) No.b sprains (1–3 episodes) 30.4% 
Figure 8 hop (8.3–10.3 sec) Triple cross hop (5.56–7.79 m) 26% 
Figure 8 hop (8.3–10.3 sec) Gender (male) 26% 

3 
(n = 22) 

Triple cross hop (5.56–7.79 m) Figure 8 hop (8.3–10.3 sec) 72.7% 
DFROMg (48.4–60.9 deg) Gender (male) 50% 
No.b sprains (1–3 episodes) Gender (male) 36.3% 

SEBT-ANTd (46.7–59.5 % LL) Gender (male) 31.8% 
DFROMg (43.2–48.4 deg) Gender (male) 31.8% 

4 
(n = 6) 

FAAMc-Sports (28–69%) Gender (female) 100% 
Figure 8 hop (12.2–20.7 sec) Triple cross hop (2.38–4.3 m) 83.3% 
Figure 8 hop (12.2–20.7 sec) Gender (female) 83.3% 
Figure 8 hop (12.2–20.7 sec) FAAMc-Sports (28–69%) 83.3% 

5 
(n = 17) 

SEBT-ANTd (46.7–59.5 % LL) Gender (male) 82.3% 
DFROMg (28.4–43.2 deg) Gender (male) 76.4% 
No.b sprains (3–5 episodes) SEBT-ANTd (46.7–59.5 % LL) 58.8% 
No.b sprains (3–5 episodes) Gender (male) 58.8% 
Figure 8 hop (8.3–10.3 sec) Gender (male) 58.8% 

Triple cross hop (5.56–7.79 m) Gender (male) 52.9% 
aMAII = Modified Ankle Instability Index 
bNo., number of 
cFAAM = Foot and Ankle Instability Measure 
dSEBT-ANT = Star Excursion Balance Test–Anterior 
eADL = Activities of Daily Living 
fBMI = Body Mass Index 
gDFROM = Dorsiflexion Range of Motion
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Table 7.  Multinomial Regression of Prediction Model Accuracy for Sagittal Kinematic Movement-Pattern Clusters 
 

Sagittal Cluster 1 2 3 4 5 
Number of Subjects 32 23 22 6 17 

 

 
Prediction 1 

(n) 
Prediction 2 

(n) 
Prediction 3 

(n) 
Prediction 4 

(n) 
Prediction 5 

(n) 

Actual 
Prediction 

(N) 

Actual 
Unprediction 

(N) 

Actual Prediction 
Model Accuracy 

(%) 
Actual 1 (n) 25 6 1 0 0 25 / 32 7 / 32 78.1 
Actual 2 (n) 8 7 6 0 2 7 / 23 16 / 23 30.4 
Actual 3 (n) 1 6 11 0 4 11 / 22 11 / 22 50.0 
Actual 4 (n) 0 1 0 5 0 5 / 6 1 / 6 83.3 
Actual 5 (n) 0 2 4 0 11 11 / 17 6 / 17 64.7 

      59 / 100 41 / 100 59.0 
Data are the number of subjects in each of 5 clusters.   
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Figure 1. Single-leg maximal vertical forward jump landing/cutting task.  
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Figure 2. Frontal ankle, knee, and hip joint angles (x-axis) during the stance phase of 
landing/cutting (y-axis).  
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Figure 3. Frontal kinematic probability, Pr (k), for the number of frontal clusters.  
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Figure 4. Frontal kinematic representative curves for CAI 100 subjects (left subplot).  
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Figure 5. Frontal kinematic representative curves for each of 6 frontal clusters.  
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Figure 6. Sagittal ankle, knee, and hip joint angles (x-axis) during the stance phase of 
landing/cutting (y-axis).  
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Figure 7. Sagittal kinematic probability, Pr(k), for the number of sagittal clusters.  
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Figure 8. Sagittal kinematic representative curves for 100 CAI subjects (left subplot).  
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Figure 9. Sagittal kinematic representative curves for each of 5 sagittal clusters. 
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Figure Captions 
 
Figure 1. Single-leg maximal vertical forward jump landing/cutting task. A, a double-leg 
standing position; B, a maximal vertical forward jump; C, a single-leg landing; D, a single-leg 
side-cutting jump to the contralateral side; E, a double-leg landing position.  
 
Figure 2. Frontal ankle, knee, and hip joint angles (x-axis) during the stance phase of 
landing/cutting (y-axis). The functional principle component analysis produced a frontal 
kinematic representative curve for each subject using shape and length of the curve. When the 
frontal kinematic representative curve is close to zero (y-axis), the probability is reduced. 
 
Figure 3. Frontal kinematic probability, Pr (k), for the number of frontal clusters. The product 
partition model indicated that 5 or 6 clusters had the highest probability to determine the optimal 
number of frontal kinematic movement-pattern clusters. 
 
Figure 4. Frontal kinematic representative curves for CAI 100 subjects (left subplot). Mean of 
frontal kinematic representative curves for each of 6 frontal clusters (right subplot). 
 
Figure 5. Frontal kinematic representative curves for each of 6 frontal clusters. 
 
Figure 6. Sagittal ankle, knee, and hip joint angles (x-axis) during the stance phase of 
landing/cutting (y-axis). The functional principle component analysis produced a sagittal 
kinematic representative curve for 100 subjects using shape and length of the curve. When the 
sagittal kinematic representative curve is close to zero (y-axis), the probability is reduced. 
 
Figure 7. Sagittal kinematic probability, Pr(k), for the number of sagittal clusters. The product 
partition model indicated that 5 clusters had the highest probability to determine the optimal 
number of sagittal kinematic movement-pattern clusters. 
 
Figure 8. Sagittal kinematic representative curves for 100 CAI subjects (left subplot). Mean of 
sagittal kinematic representative curves for each of 5 sagittal clusters (right subplot). 
 
Figure 9. Sagittal kinematic representative curves for each of 5 sagittal clusters. 
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