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ABSTRACT

The Effects of L-Cysteine on Alzheimer’s Disease Pathology in APOE2, APOE3, and
APOE4 Homozygous Mice

Stephen Gerard Cieslak Jr.
Department of Physiology and Developmental Biology, BYU
Master of Science

The APOE gene is of profound importance regarding the onset of Alzheimer’s disease
(AD). From the small physical differences among the protein products of the isoforms of this
gene arises a profound difference in their physiologies. For example, the APOE?2 isoform confers
resistance to AD, the APOE3 isoform confers neutral susceptibility to AD, and the APOE4
isoform confers proneness to AD. L-cysteine is an amino acid that has several anti-AD
properties, among which are its ability to sequester iron and form glutathione — a powerful
antioxidant — and therefore may be a promising potential dietary supplement for ameliorating
AD pathology. In our experiment, we fed Mus musculus (mice) homozygous for APOE?2,
APOE3, and APOE4 either a control diet or a diet high in L-cysteine. Using Western blotting
analysis, we quantified Amyloid B (AB), hyper-phosphorylated Tau (HP-Tau), and the three
APOE proteins that we extracted from post-mortem brains of APOE2, APOE3, and APOE4
homozygous mice of 3-, 6-, 9-, and 12-month ages. We calculated a three-way ANOVA on a
sample of 86 mice to examine the effect of age, genotype, and diet on protein quantities. We
found that administration of L-cysteine trends towards lowering levels of A in each cohort, but
this effect is statistically insignificant. On the other hand, L-cysteine caused a significant
decrease in APOE production with regard to diet [F(1,62) = 6.17, p=0.02], indicating that less
APOE is produced due to the decrease in AP burden. Furthermore, administration of L-cysteine
revealed no significant impact on or trends regarding HP-Tau deposition between diet types for
each cohort. However, we observed that L-cysteine appeared to nullify the increasing trend in
HP-Tau deposition between APOE2 and APOE4 cohorts. Thus, L-cysteine may be weakly
affecting HP-Tau deposition via its ability to somewhat reduce A burden and consequently
prevent the shutdown of the proteosomes responsible for the degradation and clearance of HP-
Tau. Taken together, these data suggest that L-cysteine should be considered as an intervention
for AD pathology.
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INTRODUCTION

Functions of APOE and AP Proteins in Relation to AD Pathology

Several factors are involved in the onset and regulation of AD. Among these factors is the
APOE gene, which encodes the APOE protein. One function of APOE is clearing AP from the
brain, where it works by co-localizing with A after it is secreted into the perivascular space
(Roylan et al, 2011), thereby resulting in a decrease in oxidative stress and AD symptoms
(Espiritu et al, 2008). A major role of AP is to sequester iron, which is toxic to the brain
(Bousejra-Elgarah et al, 2011). Moreover, the role of APOE in the clearance of AP is important
because AP can accumulate in the extracellular space and form plaques, which are toxic to
neurons and thereby, facilitate the onset of AD.

There are three different alleles for APOE: €, €3, and €4 — each of which codes for a
protein that differs at only one or two amino acids from and in the same positions as the others
(Tables 1 and 2) (Ghebranious et al, 2005). Consequently, there are six different genotypes of
APOE that exist naturally: APOE2, APOE2/3, APOE2/4, APOE3, APOE3/4, and APOE4. Those
with the APOE?2 genotype are at the most reduced risk for AD, because the &> allele has
protective effects against AD (Corder et al, 1994). APOE?2/3 is at a lesser risk for AD, APOE2/4
and APOE?3 are at neutral risks for AD, APOE3/4 is at an elevated risk for AD, and APOE4 is at

the greatest risk for AD (Razali et al, 2013).

Table 1: Amino Acid Differences Among APOE Isoforms.

APOE Isoform Amino Acid Differences Number of Tyrosines
APOE2 Cys-112; Cys-158 4
APOE3 Cys-112; Arg-158 4
APOE4 Arg-112; Arg-158 4




Table 2: Amino Acid Sequences of APOE2, APOE3, and APOE4.

Protein | Protein Sequence
Isoform
APOE2 | MKVEQAVETEPEPELRQQTEWQSGQRWELALGRFWDYLRWVQTLSEQVQ
EELLSSQVTQELRALMDETMKELKAYKSELEEQLTPVAEETRARLSKELQA
AQARLGADMEDVCGRLVQYRGEVQAMLGQSTEELRVRLASHLRKLRKRL
LRDADDLQKCLAVYQAGAREGAERGLSAIRERLGPLVEQGRVRAATVGSL
AGQPLQERAQAWGERLRARMEEMGSRTRDRLDEVKEQVAEVRAKLEEQA
QQIRLQAEAFQARLKSWFEPLVEDMQRQWAGLVEKVQAAVGTSAAPVPSD
NH

APOE3 | MKVEQAVETEPEPELRQQTEWQSGQRWELALGRFWDYLRWVQTLSEQVQ
EELLSSQVTQELRALMDETMKELKAYKSELEEQLTPVAEETRARLSKELQA
AQARLGADMEDVCGRLVQYRGEVQAMLGQSTEELRVRLASHLRKLRKRL
LRDADDLQKRLAVYQAGAREGAERGLSAIRERLGPLVEQGRVRAATVGSL
AGQPLQERAQAWGERLRARMEEMGSRTRDRLDEVKEQVAEVRAKLEEQA
QQIRLQAEAFQARLKSWFEPLVEDMQRQWAGLVEKVQAAVGTSAAPVPSD
NH

APOE4 | MKVEQAVETEPEPELRQQTEWQSGQRWELALGRFWDYLRWVQTLSEQVQ
EELLSSQVTQELRALMDETMKELKAYKSELEEQLTPVAEETRARLSKELQA
AQARLGADMEDVRGRLVQYRGEVQAMLGQSTEELRVRLASHLRKLRKRL
LRDADDLQKRLAVYQAGAREGAERGLSAIRERLGPLVEQGRVRAATVGSL
AGQPLQERAQAWGERLRARMEEMGSRTRDRLDEVKEQVAEVRAKLEEQA
QQIRLQAEAFQARLKSWFEPLVEDMQRQWAGLVEKVQAAVGTSAAPVPSD
NH

In addition, a relationship exists between the clearance of AP and the isoformic identity
of APOE. AP clearance decreases from APOE2 to APOE3 to APOE4 (Castellano, 2011).
Moreover, due to the presence of the cysteine residue in APOE3, disulfide bridges can form
between APOE3 molecules, allowing APOE3 to exist as monomers and homodimers (Aleshkov
et al, 1999). Since APOE2 has two cysteine residues, it can exist not only as monomers and
homodimers, but also as homopolymers via the formation of disulfide bridges (Aleshkov et al,
1999). However, the lack of cysteine residues in APOE4 does not allow for the formation of
disulfide bonds between/among APOE4 molecules, which may contribute to the insufficiency of
APOE4 at clearing AP from cells. Consequently, the buildup of AP increases oxidative stress and

further facilitates the onset of AD in APOE4 genotypes (Jofre-Monseny et al, 2008).




Palmitoylation of APOE Isoforms

Interestingly, a direct relationship was found between the ability of APOE proteins to
form stable complexes with AP and their degrees of lipidation. APOE2 has the most lipidation
and forms the most stable complex with AB, APOE3 has intermediate lipidation and forms a
complex with AP of intermediate stability relative to APOE2 and APOE4, and APOE4 has the
least lipidation and forms the least stable complex with AP (Gunzburg et al, 2007). Lipidation
comes in three forms: prenylation (also known as farnesylation), myristoylation, and
palmitoylation. Prenylation typically occurs at cysteine residues in the final four C-terminal
amino acids of a protein (Yang, 2000), myristoylation typically occurs at N-terminal glycine
residues (except in cases of caspase cleavage during apoptosis) (Podell et al, 2004), and
palmitoylation only occurs at cysteine, tyrosine, serine, and threonine residues (Ji, 2013). Given
that myristoylation and prenylation sites are not present in any of the APOE isoforms due to the
lack of N-terminal glycines (and, for the purposes of this experiment, the lack of apoptotic
caspase cleavage) and the lack of cysteines in the final four C-terminal amino acids, respectively,
the most probable type of lipidation occurring in APOE isoforms is palmitoylation.
Palmitoylation is most probable due to the abundance of serine, tyrosine, and threonine residues
in all APOE isoforms, as well as the presence of two cysteines in APOE2 and one cysteine in

APOE3.

Pathology of AP and Tau Proteins

Another factor that facilitates the onset of AD pathology is the protein Tau, which is
necessary for the integrity of microtubules. Under degenerative conditions, mechanisms such as
mitochondrial and metabolic dysfunction as well as loss of metal homeostasis result in the

formation of reactive oxygen species (ROS) that cause hyper-phosphorylation of the Tau protein



(Mondragon-Rodriguez et al, 2013). Normally, HP-Tau proteins are degraded and cleared by
proteosomes, but in AD patients, the high levels of AP inhibit these proteosomes, leading to the
over-proliferation of HP-Tau (Tseng et al, 2008). The over-proliferation of HP-Tau contributes
to the formation of neurofibrillary tangles, which in turn increases oxidative stress (Mondragon-
Rodriguez et al, 2013). Thus, APOE4, AP plaques, and HP-Tau tangles facilitate the onset of AD

pathology.

Diet and the APOE4 Gene

Aside from the genetics of AD, there has also been research on how diet influences AD
symptoms caused by APOE4. Specifically, researchers Chan et al (2008) tested a triple-
combination diet consisting of N-acetylcysteine (NAC), acetyl-L-carnitine (ALCAR), and S-
adenosylmethionine (SAMe) on the behavioral function of APOE4 mice. The results showed a
significant increase in behavioral function. For example, attack latency improved by
approximately 90%, attack frequency decreased about 95%, and Y-maze testing showed that
cognitive function increased by about 30% and then after one month, up to 70% (Chan et al,
2008). However, the increase in cognitive performance was reversible because the values
reverted to those observed before the start of the treatment; within two weeks after withdraw of
supplementation (Chan et al, 2008). When supplementation was given again, cognitive
performance increased by approximately 70% (Chan et al, 2008). Thus, the extents of the
individual roles of L-cysteine, ALCAR, and SAMe in treating AD in APOE4 patients should be

researched.



HYPOTHESES

I propose that a diet rich in L-cysteine will help to partially or completely alleviate the
pathology of AD in mice carrying APOE4 by inhibiting proliferation of AP plaques and HP-Tau
tangles, with negligible side effects; furthermore, that a diet rich in L-cysteine will either
generate AD pathology in APOE3 and/or APOE?2 mice by enabling the proliferation of AP
plaques and HP-Tau tangles, or will have no effect on APOE3 and/or APOE?2 mice. I also
propose that the arginine-to-cysteine changes among isoforms of APOE at positions 112 and 158
are important because in some instances they increase potential palmitoylation sites (via the
presence of more cysteines) and in other instances they allow for the binding and clearing of
more AP plaques (via the formation of homodimers and homopolymers of APOE isoforms); and
because they allow for the palmitoylation of more tyrosines, serines, and threonines (due to the
relieving of steric hindrance in the tertiary structures of APOE isoforms). Our objectives are

outlined below:

Objective 1A

Confirm via Western blot analysis whether the administration of a diet rich in L-cysteine
to APOE4 mice helps to reduce or eliminate levels of oxidative stress and AD pathology by
reducing or eliminating levels of AP plaques and HP-Tau tangles, with or without any negative
side effects; furthermore, whether the administration of a diet rich in L-cysteine to APOE3 and/or
APOE?2 mice either increases levels of oxidative stress and AD pathology by enabling the

proliferation of AP plaques and HP-Tau tangles, or has no effect (ex vivo analysis).

Objective 1B
Confirm the precise locations of all palmitoylation sites of APOE2, APOE3, and APOE4;
the ratio of AP molecules in complex with monomers of APOE isoforms, homodimers of APOE

5



isoforms, and APOE2 homopolymers; and the clearance rates of APOE and AP per cohort, via

mass spectrometry analysis (ex vivo analysis).



MATERIALS AND METHODS

Sources of Reagents, Antibodies, and Proteins

Protease inhibitor and rabbit polyclonal anti-phospho-MAPT (pSer?$?) primary antibodies
were purchased from Sigma-Aldrich. BCA assay kit was purchased from ThermoFisher
Scientific (Pierce) and Spectra multicolor broad range protein ladder was purchased from
ThermoFisher Scientific. Immunoprecipitation Kit — Dynabeads® Protein G (RID: 10007D) was
purchased from Life Technologies (Novex). Precast Criterion Tris-HCI protein gels and
nitrocellulose membranes were purchased from Bio-Rad. Rabbit polyclonal anti-
APOE2/APOE3/APOE4 primary antibodies were purchased from BioVision. Rabbit polyclonal
anti-beta Amyloid 1-42 primary antibodies were purchased from Bioss Antibodies. Rabbit
monoclonal anti-GAPDH primary antibodies were purchased from Cell Signaling Technology.
IRDye 800CW donkey anti-rabbit secondary antibodies were purchased from Li-Cor. Purified
(>97%) mouse Amyloid 1-42 protein was purchased from rPeptide: Premiere Peptide Solutions.
Purified (>95%) human MAPT protein was purchased from Syd Labs. Purified (>95%) human
APOE3 and APOE4 (>90%) proteins were purchased from ProSpec Protein Specialists. Purified

(>90%) human APOE2 was purchased from Creative BioMart.

Source of Transgenic Mice

APOE4-tg knockout mice (Tg(GFAP-APOE*4)1Hol) for endogenous mouse 4APOE, but
expressing human A POE4 under the direction of the human glial fibrillary acidic protein (GFAP)
promoter, were purchased from Jackson Laboratory, USA. APOE3-tg knockout mice (Tg(GFAP-
APOE*3)37Hol) for endogenous mouse APOE, but expressing human 4POE3 under the
direction of the human GFAP promoter, were purchased from Jackson Laboratory, USA. These

APOE3 homozygous mice served as our wild type mice. APOE2-tg knockout mice (Tg(GFAP-



APOE*2)14Hol) for endogenous mouse APOE, but expressing human APOE?2 under the
direction of the human GFAP promoter, were purchased from Jackson Laboratory, USA. APOE
genotypes were not mixed when breeding these mice or any progeny mice in order to keep all
mice homozygous with respect to APOE genotype. Breeders were kept separate from

experimental mice, and both male and female mice were used in this experiment.

Sources of Control and Experimental Diets

The control diet was purchased from Envigo and consisted of standard laboratory chow,
which contained 4g L-cysteine/kg total food weight. L-cysteine (97% purity) was purchased from
Sigma-Aldrich. To make the experimental diet, 10g L-cysteine/kg total food weight was added to
the control diet by Envigo, along with a blue-green dye for ease in identification. Both diets were

isocaloric in relation to each other and were of equal palatability.

Care of Mice

Mice were divided into control and experimental diet groups. Prior to 2 months of age,
the experimental diet group was fed the control diet. From 2 months of age until being sacrificed,
the experimental diet group was fed only the experimental diet. The control diet group was
always fed the control diet. All animals were housed under standard conditions (20 C
temperature, 12 hour light-dark cycle) with equal free access to air, food, and water. All
procedures were performed in compliance with the USDA Animal Welfare Act and the NIH

Public Health Service Policy on the Humane Care and Use of Animals.

Tissue Preparation

In compliance with institutional guidelines for the humane treatment of animals, mice
were sacrificed using chambers containing isofluorane gas at 3-months, 6-months, 9-months, and
12-months of age. Mouse brains were carefully removed and cut in the mid-sagittal plane. For

8



each brain, one half was fixated in 4% formaldehyde solution for future immunohistochemistry
analysis and the other half was snap frozen at -80 °C for Western blot analysis. Each frozen
sample was thawed and homogenized in a mixture of protease inhibitor (1:100 dilution) and

25mM ammonium bicarbonate; following which, BCA analyses were performed.

SDS-PAGE and Western Blotting

Levels of APOE, HP-Tau, and A proteins were examined by Western blotting. For each
sample, ~30pg homogenate protein was separated using precast 4-15% and 4-20% gradient SDS-
PAGE gels and transferred to nitrocellulose membranes (pore sizes 0.45um). Each gel also
contained ~2pg of a purified control protein based off of which primary antibody was to be used
on its respective blot. All gel loading volumes were equal. Each membrane was incubated with
its respective primary antibody (anti-APOE2/APOE3/APOE4 dilution = 1:3000; anti-phospho-
MAPT (pSer®®?) dilution = 1:1000; anti-beta Amyloid 1-42 dilution = 1:2000; anti-GAPDH
dilution = 1:1000) in blocking buffer (3% nonfat dried milk in 1x tris-buffered saline with
Tween 20 (TBST)) overnight at 4 °C, washed three times with 1x TBST, and then incubated in
blocking buffer for 1 hour at room temperature with Li-Cor IRDye 800CW secondary antibodies
(donkey anti-rabbit IgG, 1:10000 dilution). Levels of proteins were estimated by densitometry
analysis using the Li-Cor Image Studio 4.0 software. Anti-GAPDH immunoblots were used as

loading controls.

In vivo D20 Labeling and Clearance Analysis Preparation of APOE and A}
D>0 saline was injected into each mouse either one day (for APOE labeling) or eight
days (for AP labeling) before sacrificing. The injection volume (in uL) was determined by

multiplying the weight (in grams) of each mouse by a factor of 35. Upon sacrificing, the blood of



each mouse was collected and centrifuged to obtain its plasma, which plasma was then distilled
to collect a mixture of D,O/H>0. Each D>O/H>0O mixture was added to MQ water (1:300

dilution) to prepare for trace gas spectrometry analysis.

Immunoprecipitation
The procedure from Immunoprecipitation Kit — Dynabeads® Protein G (RID: 10007D)

from Life Technologies (Novex) was followed prior to mass spectrometry analysis.

Broad-Spectrum Mass Spectrometry Analysis Sample Preparation

Trypsin (1pg trypsin/100ug total protein in sample) digests (with and without subsequent
HPLC preparation) and in-gel trypsin (concentration of trypsin prepared: 12.5ng/ulL) digests
(without subsequent HPLC preparation) were performed on tissue homogenate samples prior to

running mass spectrometry analyses.

Image and Statistical Analysis

Western blot images were quantified using the Li-Cor Image Studio 4.0 software. Each
image was cleaned three times using the noise removal tool. Selected bands were quantified
based on their relative intensities and adjusted for background. Statistical tests were performed
using SAS Version 9.4 (SAS Institute, Inc., Cary NC, USA). Following a logarithmic
transformation of the mean intensities, relationships among diet type, APOE genotype, and age
were analyzed using a three-way ANOVA with Tukey-Kramer a posteriori comparisons of
significant main effects. To compare the palatability of each diet, differences in mouse
weight between diet type and genotype cohorts were analyzed using a 2x2 factorial ANOVA
statistical model. Statistical significance was defined at o = 0.05. Statistical significance for

trends was defined by non-overlapping standard error bars.
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RESULTS

Comparison of Diet Palatability

The overall statistical model was insignificant [F(5,106) = 1.919, n =112 mice, p =
0.097], as were the main effects of diet [F(1,106) =0.779, n =112 mice, p = 0.379], genotype
[F(2,106) = 1.521, n =112 mice, p = 0.223], and diet X genotype [F(2,106) =2.726, n =112

mice, p = 0.070].

Effect of L-Cysteine on AP Deposition

Three-way ANOVA analysis revealed significant mixed effects on AP deposition for the
following: age [F(3,62) = 5.97, n = 86 mice, p = 0.001], APOE genotype [F(2,62) =3.82, n =86
mice, p = 0.03], age X APOE genotype [F(6,62) =5.91, n =86 mice, p < 0.0001], age X diet
type [F(3,62) =4.20, n = 86 mice, p < 0.01], and age X APOE genotype X diet type [F(6,62) =
2.21, n =86 mice, p = 0.05] (Table 3). However, diet type [F(1,62) =0.56, n = 86 mice, p =
0.46] and APOE genotype X diet type [F(2,62) = 0.02, n = 86 mice, p = 0.98] were not found to

be significantly different (Table 3).

Table 3: Overall Statistics for A Deposition.

Effect Num DF Den DF F Value p Value
Age 3 62 5.97 0.001
APOE Genotype 2 62 3.82 0.03
Diet Type 1 62 0.56 0.46
Age X APOE 6 62 591 <0.0001
Genotype

Age X Diet Type |3 62 4.20 <0.01
APOE Genotype X | 2 62 0.02 0.98
Diet Type

Age X APOE 6 62 221 0.05
Genotype X Diet

Type
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Follow-up a posteriori analyses for age showed significant decreases between 3-months
and 6-months (p = 0.002), 3-months and 9-months (p = 0.006), and 3-months and 12-months (p =
0.05).

APOE genotype showed a significant increase between APOE2 and APOE4 genotypes (p
=0.03).

Age X APOE genotype revealed significant increases between 12-months X APOE?2 and
APOE3 (p =0.0001), and between 12-months X APOE2 and APOE4 (p = 0.0002); and significant
decreases between APOE4 X 3-months and 6-months (p = 0.02), APOE4 X 3-months and 9-
months (p = 0.03), APOE2 X 3-months and 12-months (p = 0.006), and APOE2 X 9-months and
12-months (p = 0.02).

Age X diet type showed significant decreases between control diet X 3-months and 6-
months (p = 0.04) and control diet X 3-months and 12-months (p = 0.002).

Age X APOE genotype X diet type revealed significant increases between 12-months X
control diet X APOE?2 and APOE3 (p = 0.03), and between 12-months X L-cysteine diet X APOE?2
and APOE4 (p = 0.04); and significant decreases between APOE2 X control diet X 3-months and
12-months (p = 0.02), APOE?2 X control diet X 6-months and 12-months (p = 0.02), and APOE4
X control diet X 3-months and 6-months (p = 0.01).

AP plaques were found between 40kD and 50kD, at ~45kD (Figure 1). The bands at

~45KkD typically represent chains of A bound to a monomer of APOE (LaDu et al, 2012).
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Figure 1: Western Blots Showing AP Plaques.

1A: AB (1-42) at ~45kD.

1B: GAPDH loading controls for AP (1-42) Western blot.

Lanes are listed in numerical order, from left to right.

Lane 1 = protein molecular weight ladder. Lane 2 = purified mouse A protein (1-42). Lane 3 =
APOE?2/3-month/L-cysteine diet. Lane 4 = APOE2/3-month/control diet. Lane 5 = APOE2/6-
month/L-cysteine diet. Lane 6 = APOE2/6-month/control diet. Lane 7 = APOE2/9-month/L-
cysteine diet. Lane 8 = APOE2/9-month/control diet. Lane 9 = APOE2/12-month/L-cysteine diet.
Lane 10 = APOE2/12-month/control diet. Lane 11 = APOE3/3-month/L-cysteine diet. Lane 12 =
APOE3/3-month/control diet. Lane 13 = APOE3/6-month/L-cysteine diet. Lane 14 = APOE3/6-
month/control diet. Lane 15 = APOE3/9-month/L-cysteine diet. Lane 16 = APOE3/9-
month/control diet. Lane 17 = APOE3/12-month/L-cysteine diet. Lane 18 = APOE3/12-
month/control diet. Lane 19 = APOE4/3-month/L-cysteine diet. Lane 20 = APOE4/3-
month/control diet. Lane 21 = APOE4/6-month/L-cysteine diet. Lane 22 = APOE4/6-
month/control diet. Lane 23= APOE4/9-month/L-cysteine diet. Lane 24 = APOE4/9-
month/control diet. Lane 25 = APOE4/12-month/L-cysteine diet. Lane 26 = APOE4/12-
month/control diet.

There were no statistically significant differences in AP deposition between the control
and L-cysteine diets for any of the cohorts (Table 3), nor were there any statistically significant
trends in protein amount (Figure 2). Nevertheless, we did observe a decrease in AP deposition
for each cohort as a result of the L-cysteine diet (Figure 2). It is possible that increasing the

number of subjects in the study would provide a better indication of the effect of diet.
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Figure 2: Trends in AP Deposition.
Effect of L-Cysteine on APOE Production

Three-way ANOVA analysis revealed significant mixed effects on APOE production for
the following: age [F(3,62) =47.97, n = 86 mice, p < 0.0001], APOE genotype [F(2,62) = 17.42,
n =86 mice, p < 0.0001], diet type [F(1,62) = 6.17, n = 86 mice, p = 0.02], and age X APOE
genotype [F(6,62) =22.05, n = 86 mice, p < 0.0001] (Table 4). However, age X diet type
[F(3,62) = 0.90, n = 86 mice, p = 0.45], APOE genotype X diet type [F(2,62) =2.74, n = 86
mice, p = 0.07], and age X APOE genotype X diet type [F(6,62) = 0.43, n = 86 mice, p = 0.85]

were not found to be significantly different (Table 4).
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Table 4: Overall Statistics for APOE Production.

Effect Num DF | Den DF F Value p Value
Age 3 62 47.97 <0.0001
APOE Genotype 2 62 17.42 <0.0001
Diet Type 1 62 6.17 0.02
Age X APOE 6 62 22.05 <0.0001
Genotype

Age X Diet Type 3 62 0.90 0.45
APOE Genotype X 2 62 2.74 0.07
Diet Type

Age X APOE 6 62 0.43 0.85
Genotype X Diet Type

Follow-up a posteriori analyses for age showed significant decreases between 3-months
and 6-months (p = 0.001), and 9-months and 12-months (p < 0.0001); and significant increases
between 3-months and 9-months (p < 0.0001), 6-months and 9-months (p < 0.0001), and 6-months
and 12-months (p = 0.0007).

APOE genotype showed significant increases between APOE2 and APOE3 genotypes (p <
0.0001) and APOE2 and APOE4 genotypes (p < 0.0001).

Diet type revealed a significant decrease between control diet and L-cysteine diet (p =
0.01).

Age X APOE genotype revealed significant increases between 12-months X 4POE?2 and
APOE3 (p < 0.0001), 12-months X APOE2 and APOE4 (p < 0.0001), 12-months X APOE3 and
APOE4 (p = 0.004), APOE2 X 3-months and 9-months (p < 0.0001), APOE2 X 6-months and 9-
months (p <0.0001), APOE3 X 6-months and 9-months (p < 0.0001), APOE4 X 3-months and 9-
months (p < 0.0001), APOE4 X 3-months and 12-months (p < 0.0001), APOE4 X 6-months and
9-months (p < 0.0001), and APOE4 X 6-months and 12-months (p < 0.0001); and significant
decreases between APOE2 X 3-months and 12-months (p < 0.0001), APOE2 X 6-months and 12-

months (p = 0.002), and APOE2 X 9-months and 12-months (p < 0.0001).
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Although the weight of APOE is ~34kD per pure monomer, APOE2 is known to form
monomers, dimers, and polymers of itself, whereas APOE3 is known to form monomers and
dimers of itself (Aleshkov et al, 1997; Aleshkov et al, 1999). Furthermore, all APOE isoforms
undergo intensive modifications of varying degrees, such as lipidation (Hanson et al, 2013),
glycosylation (Wernette-Hammond et al, 1989, loannou et al, 1998; Aleshkov et al, 1999; Tams
et al, 1999; Haiberg-Nielsen et al, 2006; Lee et al, 2010), nitrosylation (Abrams et al, 2011), and
sialylation (Marmillot et al, 1999; Lee et al, 2010). Thus, modified and/or polymerized APOE
was typically found at ~140kD in these blots, as well as various amounts at other weights
(Figures 3.1 and 3.2).

Additionally, for all APOE3 and APOE4 subjects, we found a lesser amount of APOE at
~45kD (Figures 3.1 and 3.2), which typically signifies a monomer of APOE binding to chains of
AP (LaDu et al, 2012). However, at the 12-month interval for the APOE?2 cohort, we saw no
bands at ~45kD (Figure 3.1). Lastly, at all time intervals for all cohorts, we saw trace amounts of
APOE at ~97kD (Figures 3.1 and 3.2), which typically signifies a dimer of APOE binding to

chains of AP (LaDu et al, 2012).
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Figure 3: Western Blots Showing APOE Levels.

3A: APOE at ~140kD.

3B: APOE at ~97kD.

3C: APOE at ~45kD.

3D: APOE monomers at ~35kD.

3E: GAPDH loading controls for APOE Western blot.

Lanes are listed in numerical order, from left to right.

Figure 3.1: Lane 1 = protein molecular weight ladder. Lane 2 = purified human APOE2. Lane 3
= APOE?2/3-month/L-cysteine diet. Lane 4 = APOE2/3-month/control diet. Lane 5 = APOE2/6-
month/L-cysteine diet. Lane 6 = APOE2/6-month/control diet. Lane 7 = APOE2/9-month/L-
cysteine diet. Lane 8 = APOE2/9-month/control diet. Lane 9 = APOE2/12-month/L-cysteine diet.
Lane 10 = APOE2/12-month/control diet. Lane 11 = purified human APOE3. Lane 12 =
APOE3/3-month/L-cysteine diet. Lane 13 = APOE3/3-month/control diet. Lane 14 = APOE3/6-
month/L-cysteine diet. Lane 15 = APOE3/6-month/control diet. Lane 16 = APOE3/9-month/L-
cysteine diet. Lane 17 = APOE3/9-month/control diet. Lane 18 = APOE3/12-month/L-cysteine
diet. Lane 19 = APOE3/12-month/control diet.

Figure 3.2: Lane 1 = protein molecular weight ladder. Lane 2 = purified human APOE4. Lane 3
= APOE4/3-month/L-cysteine diet. Lane 4 = 4POE4/3-month/control diet. Lane 5 = APOE4/6-
month/L-cysteine diet. Lane 6 = APOE4/6-month/control diet. Lane 7= APOE4/9-month/L-
cysteine diet. Lane 8 = APOE4/9-month/control diet. Lane 9 = APOE4/12-month/L-cysteine diet.
Lane 10 = APOE4/12-month/control diet.

Although there was an overall statistically significant decrease in APOE production
between the control and L-cysteine diets, there were no significant differences in APOE
production between each diet for any of the individual cohorts (Table 4). However, we did
observe statistically significant trends. For example, there was a significant trend towards a
decrease in APOE4 production between the control and L-cysteine diets (Figure 4). There was
also a significant trend towards an increase in APOE production between APOE2 and APOE4
cohorts on the control diet; interestingly, this trend becomes insignificant with administration of

the L-cysteine diet (Figure 4).
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Figure 4: Trends in APOE Production.
Effect of L-Cysteine on HP-Tau Deposition

Three-way ANOVA analysis revealed significant mixed effects on HP-Tau deposition for
the following: age [F(3,62) = 9.64, n = 86 mice, p < 0.0001], APOE genotype [F(2,62) =8.18, n
=86 mice, p = 0.0007], and age X APOE genotype [F(6,62)=3.13, n =86 mice, p =0.01]
(Table 5). However, diet type [F(1,62) = 0.98, n = 86 mice, p = 0.33], age X diet type [F(3,62) =
1.02, n = 86 mice, p = 0.39], APOE genotype X diet type [F(2,62) = 2.23, n =86 mice, p =0.12],
and age X APOE genotype X diet type [F(6,62) = 1.54, n = 86 mice, p = 0.18] were not found to

be significantly different (Table 5).
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Table 5: Overall Statistics for HP-Tau Deposition.

Effect Num DF Den DF F Value p Value
Age 3 62 9.64 <0.0001
APOE Genotype 2 62 8.18 0.0007
Diet Type 1 62 0.98 0.33
Age X APOE 6 62 3.13 0.01
Genotype

Age X Diet Type |3 62 1.02 0.39
APOE Genotype 2 62 2.23 0.12

X Diet Type

Age X APOE 6 62 1.54 0.18
Genotype X Diet

Type

Follow-up a posteriori analyses for age showed a significant decrease between 3-months
and 6-months (p < 0.0001); and significant increases between 6-months and 9-months (p = 0.03),
and 6-months and 12-months (p = 0.001).

APOE genotype showed significant increases between APOE?2 and APOE3 genotypes (p =
0.02) and APOE?2 and APOE4 genotypes (p = 0.002).

Age X APOE genotype revealed significant increases between 3-months X APOE2 and
APOE3 (p = 0.03), 6-months X APOE2 and APOE4 (p = 0.02); and significant decreases between
APOE3 X 3-months and 6-months (p = 0.0001), and APOE3 X 3-months and 9-months (p = 0.04).

Typically, we saw HP-Tau tangle fragments at ~20kD for all subjects (Figure 5). For the
APOE? cohort at 3-months and for all APOE4 subjects, we also found more developed tangles at
~48kD and ~62kD (Figure 5). Interestingly, the APOE3 cohort from 3-9 months showed a
similar amount of tangles at ~48kD as at ~20kD, but none at 62kD (Figure 5). By 12-months, all
cohorts expressed these more developed HP-Tau tangles at both ~48kD and ~62kD, except for

the APOE? cohort (Figure 5).
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Figure 5: Western Blots Showing HP-Tau Tangles.

5A: HP-Tau at ~62kD.

5B: HP-Tau at ~48kD.

5C: HP-Tau at ~20kD.

5D: GAPDH loading controls for HP-Tau Western blot.

Lanes are listed in numerical order, from left to right.

Lane 1 = protein molecular weight ladder. Lane 2 = purified human MAPT protein. Lane 3 =
APOE?2/3-month/L-cysteine diet. Lane 4 = APOE2/3-month/control diet. Lane 5 = APOE2/6-
month/L-cysteine diet. Lane 6 = APOE2/6-month/control diet. Lane 7 = APOE2/9-month/L-
cysteine diet. Lane 8 = APOE2/9-month/control diet. Lane 9 = APOE?2/12-month/L-cysteine diet.
Lane 10 = APOE2/12-month/control diet. Lane 11 = APOE3/3-month/L-cysteine diet. Lane 12 =
APOE3/3-month/control diet. Lane 13 = APOE3/6-month/L-cysteine diet. Lane 14 = APOE3/6-
month/control diet. Lane 15 = APOE3/9-month/L-cysteine diet. Lane 16 = APOE3/9-
month/control diet. Lane 17 = APOE3/12-month/L-cysteine diet. Lane 18 = APOE3/12-
month/control diet. Lane 19 = APOE4/3-month/L-cysteine diet. Lane 20 = APOE4/3-
month/control diet. Lane 21 = APOE4/6-month/L-cysteine diet. Lane 22 = APOE4/6-
month/control diet. Lane 23= APOE4/9-month/L-cysteine diet. Lane 24 = APOE4/9-
month/control diet. Lane 25 = APOE4/12-month/L-cysteine diet. Lane 26 = APOE4/12-
month/control diet.

There were no statistically significant differences in HP-Tau deposition between the
control and L-cysteine diets for any of the cohorts (Table 5). However, we did observe a
statistically significant trend. Specifically, there was a significant trend towards an increase in
HP-Tau deposition between APOE2 and APOE4 cohorts on the control diet; interestingly, this

trend becomes insignificant with administration of the L-cysteine diet (Figure 6).
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Figure 6: Trends in HP-Tau Deposition.
Palmitoylation Sites and Patterns of Different APOE Isoforms, and their Interactions with A
Unfortunately, due to the low concentrations of APOE in murine brains, we were unable
to analyze the palmitoylation sites and patterns of different APOE isoforms, their clearance rates,
or their covalent molecular interactions with AP using the technology available to us at this time.
Several attempts at mass spectrometry analysis that began with sample preparation involving
immunoprecipitation, trypsin digest from total brain homogenate, in-gel trypsin digest, and
HPLC mass spectrometry preparation all proved unfruitful. However, as we have recently
obtained access to improved mass spectrometry technology, we will continue our experiments to
reveal the palmitoylation sites and patterns of different APOE isoforms, as well as their

clearance rates and interactions with Af.
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DISCUSSION

Effects of L-Cysteine

The administration of L-cysteine to our mice resulted in no significant effect or trends
concerning AP deposition, but nevertheless resulted in somewhat of a decrease in A} deposition
for each cohort. Perhaps L-cysteine is indeed having an effect, but our statistical power was too
low to confirm any effect.

However, L-cysteine did cause a statistically significant decrease in APOE production,
but these results were considering diet alone, as interactions with age and/or APOE genotype
were insignificant. Although interactions with age and/or APOFE genotype were insignificant for
APOE production, we did see a significant trend towards a decrease in APOE4 production with
administration of L-cysteine as well as a nullifying effect of L-cysteine on the significance of a
trend towards an increase in APOE production between APOE2 and APOE4 cohorts.

Furthermore, despite the fact that L-cysteine had no significant effect on HP-Tau
deposition, we saw a significant trend towards an increase in HP-Tau deposition between APOE?2
and APOE4 cohorts. Interestingly, the L-cysteine diet had nullified the significance of this trend.

Taken together, these results may indicate that the L-cysteine diet is helping with the
clearance of AP as well as HP-Tau, which would be a novel find and worth pursuing in the
future. For any future studies, increasing the number of subjects may give us a better indication

of the effect of the L-cysteine diet.

Triple Combination Diet
It appears that consistent administration of L-cysteine trends towards lowering levels of
AP in each cohort, but this effect is insignificant. On the other hand, L-cysteine caused a

significant decrease in APOE production, but only with regard to diet. Thus, it is evident that
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even though the trend of L-cysteine towards decreasing levels of AP plaques is profoundly weak,
significantly less APOE is produced due to this slight decrease in AP burden, indicating that
even small levels of AP invoke a mass production of APOE. Furthermore, administration of L-
cysteine revealed no significant impact on or trends regarding HP-Tau deposition between diet
types for each cohort. Nevertheless, L-cysteine did nullify the significance of a trend towards an
increase in HP-Tau deposition between APOE2 and APOE4 cohorts. Thus, L-cysteine may be
weakly affecting HP-Tau deposition via its ability to somewhat reduce AP burden and
consequently prevent the shutdown of the proteosomes responsible for the degradation and
clearance of HP-Tau (Tseng et al, 2008). However, our effect was not as profound as what Chan
et al (2008) described. A possible explanation for this significance is because NAC was used
instead of L-cysteine (Chan et al, 2008).

NAC is a prodrug to L-cysteine created by the attachment of an acetic acid group to
enable the molecule to enter systemic circulation more easily after metabolism (Tirouvanziam et
al, 2006). Therefore, a possible reason for the inefficiency (relative to NAC) of L-cysteine in
relieving AD pathology could be because upon metabolism, too much is lost to have an effect on
neurological function similar to NAC. Additionally, L-cysteine may only yield the degree of the
effects seen by Chan et al (2008) when administered with ALCAR and/or SAMe. On the other
hand, L-cysteine may alleviate AD pathology to the same extent regardless of how it is
administered (as NAC or with ALCAR and/or SAMe in combination). Thus, further experiments
will be needed to determine the extent of the role of L-cysteine vs. NAC, as well as the roles of
ALCAR and SAMe in relation to L-cysteine/NAC.

Although the results of Chan et al (2008) show much success, there still remain problems

with treatment application. For instance, both NAC and SAMe have negative adverse effects in
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humans. Although NAC has not yet been proven to be carcinogenic, it is known to have cancer-
exacerbating effects. For example, NAC increases proliferation of tumor cells by reducing ROS,
DNA damage, and p53 expression in both mouse and human lung tumor cells (Holtzman et al,
2000; Bensaad et al, 2005; Chen et al, 2012). High levels of ROS up-regulate p53 to induce
apoptosis of damaged and/or cancerous cells (Holtzman, 2000; Bensaad et al, 2005; Chen et al,
2012). Also, NAC has been reported (in some cases) to cause nausea, vomiting, fevers, and
rashes when taken orally (DailyMed, 2014). Additionally, SAMe has been reported (in some
cases) to cause dyspepsia, gastrointestinal disorders, and anxiety (Najm et al, 2004). SAMe is
also a weak DNA-alkylating agent (Rydberg et al, 1982). Taken together, this triple-combination
diet appears to be potentially unsafe for long-term use in humans. On the other hand, there are no
known adverse effects of L-cysteine and ALCAR. L-cysteine is converted to alanine after
donating its sulfide to sequester iron (Lill et al, 2006) and an increase in alanine levels leads to
an increase in alanine aminotransferase (ALT) levels, which in turn increases the risk of
developing type 2 diabetes mellitus (Sattar et al, 2004). However, the increase in alanine caused
by the sequestering of iron by L-cysteine would likely not be enough to raise ALT to dangerous

levels.

Possible Mechanisms of Treatment for L-Cysteine

As a treatment for AD, L-cysteine may act in a number of possible ways. For example, L-
cysteine can sequester iron via its sulfide, making iron-sulfur clusters and alanine (Figure 7) (Lill
et al, 2006). As a result, it is suggestive that AP will not be formed to sequester the iron, and thus
AP plaque levels will decrease. Consequently, the inability of APOE4 to sufficiently clear AP

plaques would be negated.
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Additionally, free L-cysteine is oxidized in the body to form cystine (two L-cysteine
molecules bound together via a disulfide bridge), which works as a substrate for the cystine-
glutamate antiporter (Figure 7) (Lo et al, 2008). The cystine-glutamate antiporter pumps cystine
into the cell and glutamate out of the cell (Lo et al, 2008). The cystine-glutamate antiporter is
important in AD, because excitotoxicity due to excess glutamate release, as well as reduced
uptake by impaired glutamate transporters, damages nerve cells and exacerbates AD via the
binding of excess glutamate to the N-methyl-D-aspartate (NMDA) receptor (Liu et al, 2000;
Hynd et al, 2004; Yi et al, 2006). So far, astrocytal excitatory amino acid transporter 2 (EAAT2)
has been identified as an impaired glutamate transporter in AD (Y1 et al, 2006), although the
same discovery has not yet been made for neuronal EAAT2 (Furness et al, 2008). EAAT2 is
uncommon in neurons (Furness et al, 2008), but common in astrocytes (Yi et al, 2006), whereas
EAAT3 is the most common neuronal transporter of glutamate and cysteine, but is not found in
astrocytes (Holmseth et al, 2012). Moreover, glycine serves as a necessary co-agonist to
glutamate for the NMDA receptor (Liu et al, 2000). Interestingly, L-cysteine can combine with
glutamate and glycine in cells to form the antioxidant glutathione (GSH) (Dringen et al, 1999;
Aoyama et al, 2008), and by so doing, potentially bind excess intracellular glutamate before that
glutamate can be pumped out of the astrocytes via the cystine-glutamate antiporters or the broken
EAAT?2 transporters (Figure 7). GSH is a powerful antioxidant (Dringen, 2000) that naturally

reduces oxidative stress, which is a powerful contributing factor to AD.
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Figure 7: Possible Effects of L-Cysteine on Oxidative Stress.

7A. L-cysteine combining with glutamate and glycine in an astrocyte to form GSH, and thus
binding excess intracellular glutamate before that glutamate can be pumped out of the astrocyte
via the cystine-glutamate antiporters or the broken EAAT?2 transporters.

7B. Free L-cysteine being oxidized in the body to form cystine, which works as a substrate for
the cystine-glutamate antiporter.

7C. Cystine synthesis from two free cysteines.

7D. L-cysteine sequestering iron via its sulfide, making iron-sulfur clusters and alanine (occurs
inside the mitochondria).

7E. Glutathione breakdown.

7F. Glutathione synthesis.

Osidative Stress ’

In addition, L-cysteine may form disulfide bridges with free cysteine residues in APOE3
and APOE?2, thus preventing dimerization of APOE3 and dimerization/polymerization of
APOE2, which might in turn reduce the number of A molecules bound to these isoforms;

however, it would not have these adverse effects on APOE4, because APOE4 has no cysteine

residues (Figure 8).

26



[\ = APOE3 monomer
(4 &
v %ﬁ_ =APOE4 @ =ILCysteine
] 3
o < ,—,[/r‘x @ =L -Cysteine X = AP chain
L.'/ ?4 X = AP chain 1.';\,_ /) = APOE3 dimer
c D
M
® - = ;,, X ‘\S‘ X "4 2 =APOE2intemal
— 1480 NE B¢ polymeric molecule
/ i{:__ X - = APOE2 monomer 5@ B¢ X% %%, 7 ?.
i o—7 33 . ;
Xx->4 / X £ 27 y X=gge—X | E Xoy B9 - X X2 i‘;.@‘V & =L-Cyseine
6—— [ & Y e X ~ B8, 1 i é 8 =LCysteine L Q\Qg"lﬁ\
2 & i - B g4\ X = AP chain \ {\, X gi’f = APOE2 termainal
e f M 2B T 31\3 ) ey L” polymeric molecule
] g ¢ o)
€ -«% / e- _;,g {E 9 1\, = APOE2 dimer 7
L % L4
(S o 2% X = AP chain

Figure 8: Potential Effects of L-Cysteine on the Number of Bound AP Molecules per APOE
Molecule and on the Polymerization of APOE.

8A. APOE4 (only monomers). No effect.

8B. APOE3 (monomers and dimers). May prevent dimerization by binding to Cys-112, thus
potentially allowing for the attachment of only one AP chain, for example. For dimers, there
would be no effect.

8C. APOE2 (monomers and dimers). In monomers, may prevent polymerization by binding to
Cys-112 or Cys-158, thus potentially allowing for the attachment of only one AP chain (if
APOE2 remains monomeric) or two AP chains (if APOE2 becomes dimeric), for example. May
also prevent polymerization by binding to both Cys-112 and Cys-158, thus potentially allowing
for the attachment of only one AP chain, for instance. In dimers, may prevent further
polymerization by binding to both free cysteine residues, thus potentially allowing for the
attachment of only two A chains, for example. If only one free cysteine residue is bound, then
further polymerization of APOE2, and consequently, further binding of A chains can occur.
8D. APOE?2 (internal and terminal polymeric molecules). No effect on internal polymeric
molecules. On terminal polymeric molecules, may prevent further polymerization by binding to
Cys-112 or Cys-158, thus potentially allowing for the attachment of a number of AP chains equal
to the maximum number of APOE2 molecules polymerized, for example.

Moreover, the binding of L-cysteine to free cysteine residues in APOE3 and APOE2
would prevent S-palmitoylation of those bound cysteine residues, which would in turn lessen the
stability of APOE3/AB and APOE2/AP complexes; however, it would not have these adverse
effects in APOE4 or in dimers of APOE3, because APOE4 lacks cysteine residues and APOE3

dimers lack free cysteine residues (Figure 9).
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Figure 9: Potential Effects of L-Cysteine on Palmitoylation.

9A. O-palmitoylation vs. S-palmitoylation.

9B. APOE4 (only monomers). No effect; only O-palmitoylation is possible.

9C. APOE3 (monomers and dimers). May prevent S-palmitoylation at Cys-112; no effect on
potential O-palmitoylation for monomers. For dimers, there would be no effect, as only O-
palmitoylation is possible.

9D. APOE2 (monomers and dimers). For monomers, if L-cysteine binds both Cys-112 and Cys-
158, S-palmitoylation is prevented, but there is no effect on O-palmitoylation. If L-cysteine binds
either Cys-112 or Cys-158, one half of the possible S-palmitoylation scenarios are prevented, but
there is no effect on O-palmitoylation. For dimers, if L-cysteine binds both free cysteine
residues, S-palmitoylation is prevented, but there is no effect on O-palmitoylation. If L-cysteine
binds either free cysteine residue, one half of the possible S-palmitoylation scenarios are
prevented, but there is no effect on O-palmitoylation.

9E. APOE2 (internal and terminal polymeric molecules). No effect; only O-palmitoylation is
possible for internal polymeric molecules. For terminal polymeric molecules, there would be no
effect on O-palmitoylation; however, the binding of L-cysteine to Cys-112 or Cys-158 would
prevent S-palmitoylation.

Additionally, L-cysteine can be converted to palmitic acid inside of neurons and other
cells of the body (Figure 10). If made in cells other than neurons, the palmitic acid molecules
could leave those cells and enter the bloodstream, which could carry them to astrocytes where
they could cross the blood-brain barrier to enter neurons (Figure 10). If made in neurons (or after
having entered neurons), the neuronal increase in palmitic acid might result in an increase in O-
palmitoylation of APOE4, thus increasing the stability of APOE/AB complexes — potentially to

the level of stability had with APOE2/Af complexes (Figure 10). O-palmitoylation and S-
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palmitoylation of APOE3 and APOE2 might also increase, resulting in more stable APOE3/Af
and APOE2/AP complexes, respectively (Figure 10). However, S-palmitoylation of APOE3
prevents its dimerization and binding of L-cysteine, and of APOE2, prevents its
dimerization/polymerization and binding of L-cysteine; consequently, less A molecules might
be able to bind APOE3 and APOE2, and more L-cysteine would be available in these cases
(Figure 10). Furthermore, free L-cysteine could potentially bind free palmitic acid, which would
prevent the further use of either of those molecules, so long as they were bound to each other
(Figure 10). Therefore, although the administration of L-cysteine to APOE2 and APOE3
genotypes potentially yields more risks than benefits, the administration of L-cysteine to APOE4
genotypes would have no adverse effects and only has the potential to benefit those suffering

from APOE4-induced AD.
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Figure 10: Other Possibilities.

10A. Palmitic acid molecules made from L-cysteine in other cells of the body can potentially
leave those cells, enter the blood stream, travel to astrocytes, and then travel to neurons. The
increase in free intracellular palmitic acid may in turn increase O-palmitoylation and S-
palmitoylation, which would consequently increase the stability of APOE/AB complexes.

10B. Free L-cysteine can potentially bind palmitic acid (or any other hydroxyl- or thiol- containing
molecule) and vice-versa, thus rendering the bound palmitic acid (or other hydroxyl- or thiol-
containing molecule) and free L-cysteine molecule useless, so long as they were bound to each
other.

10C. An increase in free palmitic acid may prevent the dimerization of APOE3 and any form of
polymerization of APOE2 via S-palmitoylation of Cys-112 and of Cys-112 and/or Cys-158,
respectively; such an increase may prevent the binding of free L-cysteine to APOE3 and APOE2
molecules. It is important to note that any compound containing a hydroxyl group (except water)
or a thiol group would have the same potential effects as palmitic acid or L-cysteine, respectively,
on APOE3 dimerization and any form of APOE2 polymerization.

10D. Conversion of Cysteine to Palmitic Acid. The mechanism of conversion of L-cysteine to
palmitic acid is conserved throughout different cells of the body.

Possible Polymerization of APOE4
While performing this experiment, we made another interesting observation regarding the
possible polymerization of APOE4. Western blot analyses revealed the majority of APOE4 to be

at weights >140kD (Figure 3.1), at weights equal to that of APOE3 and APOE2 (Figure 3.2).
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Moreover, APOE4 was found at ~97kD (although to a lesser degree than at >140kD), which
typically signifies a dimer of APOE binding to chains of AP (Figure 3.2) (LaDu et al, 2012).
APOE2 and APOE3 were also found at ~97kD at all time intervals (Figure 3.1). Since APOE4
lacks cysteine residues (Tables 1 and 2), these possible dimers and polymers of APOE4 cannot
be forming via disulfide bonds. On the other hand, APOE4 could be forming dimers and
polymers (and APOE3, polymers) via dityrosine bonds, as tyrosine residues are equally abundant
in all APOE isoforms (Tables 1 and 2). Dityrosine bonds are formed via oxidation (Al-Hilaly et
al, 2013) and an abundance of oxidative stress, as is found in AD (Al-Hilaly et al, 2013), may
lead to the formation of dityrosine bonds between APOE4 molecules and also between APOE3
molecules, causing dimers and polymers of APOE4 to form and polymers of APOE3 to form.
Furthermore, AP polymerizes via dityrosine bonds (Al-Hilaly et al, 2013). Given that AP
is produced in neurons (Hartmann et al, 1997) and that APOE is produced in microglia and
astrocytes (Holtzman et al, 2012), and to a lesser degree, in neurons (albeit, to a greater degree in
neurons when in response to excitotoxic injury, which is common in AD) (Liu et al, 2000; Hynd
et al, 2004; Xu, 2006; Yi et al, 2000), it is plausible that APOE4 is forming dimers and polymers,
and that APOE3 is forming polymers via the same mechanism as Af. We will perform further
experiments in the near future with SDS-PAGE and mass spectrometry analysis to determine if
APOEH4 is able to form dimers and polymers, and if APOE3 is able to form polymers via
dityrosine bonds or some other means. Therefore, since it is currently believed that APOE4
cannot dimerize, proving otherwise would significantly impact our perception of APOE4 and of

its contribution to AD pathology.
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Possible Interactions of APOE Isoforms with A

A plausible explanation as to why APOE2 is the most efficient (and APOE4, the least
efficient) at clearing AP is that homodimers of APOE isoforms can clear twice as many
molecules of AP as monomers of APOE isoforms, and homopolymers of APOE2 can clear any

number times as many molecules of AP as monomers of APOE isoforms (Figure 11).
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Figure 11: Potential Number of Bound A Molecules to Monomers, Oligomers, and Polymers of
Different APOE Isoforms.

11A. APOE4 (only monomers). For example, 1 AP chain/APOE4 molecule.

11B. APOE3 (monomers or dimers).For example, 1 AP chain/APOE3 monomer and 2 AP
chains/APOE3 dimer.

11C. APOE2 (monomers, dimers, trimers, or polymers). For example, 1 AB chain/APOE2
monomer, 2 AP chains/APOE2 dimer, 3 A chains/APOE2 trimer, and n AP chains/APOE2 n-
mer.

Thus, the arginine-to-cysteine changes among APOE isoforms are significant. In
addition, not only are the changes of arginine to cysteine at positions 112 and/or 158 important —
these positions themselves are important. For example, the change of arginine to cysteine at
position 112 causes the repulsion of positively-charged arginine-61 from arginine-112 to be lost,
and consequently the attraction of arginine-61 to negatively-charged glutamate-255 is lost
(Zhong et al, 2008) (Figure 12). As a result, much of the steric hindrance is relieved between the
C-terminal helix and the central helices of the protein (Zhong et al, 2008) (Figure 12), revealing

approximately 12-17 potential palmitoylation sites. Furthermore, although the change of arginine
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to cysteine at position 158 causes the attraction of negatively-charged aspartate-154 to arginine-
158 to be lost, it allows for the binding of arginine-150 to aspartate-154, which significantly
changes the orientation of the protein from position 158 up to the N-terminus (Dong et al, 1996)
(Figure 12).
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Figure 12: Crystal Structures and Intramolecular Ionic Interactions of Different APOE Isoforms.
Consequently, approximately 19 potential palmitoylation sites are revealed. For a detailed
map of potential palmitoylation sites of each APOE isoform concerning each respective

polymerization scenario, see Table 6.
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Table 6: Differences in Potential Palmitoylation Sites Between APOE Isoforms and their
Monomers, Oligomers, and Polymers.

Possible sites of S-palmitoylation in blue. Possible sites of O-palmitoylation in red. C = Cysteine.
S = Serine. T = Threonine. Y = Tyrosine.

Protein Isoform Protein Sequence

APOE4 MKVEQAVETEPEPELRQQTEWQSGQRWELALGRFWDYLRW
VQTLSEQVQEELLSSQVTQELRALMDETMKELKAYKSELEEQ
LTPVAEETRARLSKELQAAQARLGADMEDVRGRLVQYRGEV
QAMLGQSTEELRVRLASHLRKLRKRLLRDADDLQKRLAVYQ
AGAREGAERGLSAIRERLGPLVEQGRVRAATVGSLAGQPLQE
RAQAWGERLRARMEEMGSRTRDRLDEVKEQVAEVRAKLEE

QAQQIRLQAEAFQARLKSWFEPLVEDMQRQWAGLVEKVQA

AVGTSAAPVPSDNH

APOE3 Monomer | MKVEQAVETEPEPELRQQTEWQSGQRWELALGRFWDYLRW
VQTLSEQVQEELLSSQVTQELRALMDETMKELKAYKSELEEQ
LTPVAEETRARLSKELQAAQARLGADMEDVCGRLVQYRGEV
QAMLGQSTEELRVRLASHLRKLRKRLLRDADDLQKRLAVYQ
AGAREGAERGLSAIRERLGPLVEQGRVRAATVGSLAGQPLQE
RAQAWGERLRARMEEMGSRTRDRLDEVKEQVAEVRAKLEE
QAQQIRLQAEAFQARLKSWFEPLVEDMQRQWAGLVEKVQA
AVGTSAAPVPSDNH

APOE3 Dimer MKVEQAVETEPEPELRQQTEWQSGQRWELALGRFWDYLRW
VQTLSEQVQEELLSSQVTQELRALMDETMKELKAYKSELEEQ
LTPVAEETRARLSKELQAAQARLGADMEDVCGRLVQYRGEV
QAMLGQSTEELRVRLASHLRKLRKRLLRDADDLQKRLAVYQ
AGAREGAERGLSAIRERLGPLVEQGRVRAATVGSLAGQPLQE
RAQAWGERLRARMEEMGSRTRDRLDEVKEQVAEVRAKLEE

QAQQIRLQAEAFQARLKSWFEPLVEDMQRQWAGLVEKVQA

AVGTSAAPVPSDNH

APOE2 Monomer | MKVEQAVETEPEPELRQQTEWQSGQRWELALGRFWDYLRW
VQTLSEQVQEELLSSQVTQELRALMDETMKELKAYKSELEEQ
LTPVAEETRARLSKELQAAQARLGADMEDVCGRLVQYRGEV
QAMLGQSTEELRVRLASHLRKLRKRLLRDADDLQKCLAVYQ
AGAREGAERGLSAIRERLGPLVEQGRVRAATVGSLAGQPLQE
RAQAWGERLRARMEEMGSRTRDRLDEVKEQVAEVRAKLEE
QAQQIRLQAEAFQARLKSWFEPLVEDMQRQWAGLVEKVQA
AVGTSAAPVPSDNH
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APOE2
Homodimer/APOE2
Homotrimer
(terminal APOE2
molecule)/APOE2
Homopolymer
(terminal APOE2
molecule)

MKVEQAVETEPEPELRQQTEWQSGQRWELALGRFWDYLRW
VQTLSEQVQEELLSSQVTQELRALMDETMKELKAYKSELEEQ
LTPVAEETRARLSKELQAAQARLGADMEDVCGRLVQYRGEV
QAMLGQSTEELRVRLASHLRKLRKRLLRDADDLQKCLAVYQ
AGAREGAERGLSAIRERLGPLVEQGRVRAATVGSLAGQPLQE
RAQAWGERLRARMEEMGSRTRDRLDEVKEQVAEVRAKLEE
QAQQIRLQAEAFQARLKSWFEPLVEDMQRQWAGLVEKVQA
AVGTSAAPVPSDNH

or
MKVEQAVETEPEPELRQQTEWQSGQRWELALGRFWDYLRW
VQTLSEQVQEELLSSQVTQELRALMDETMKELKAYKSELEEQ
LTPVAEETRARLSKELQAAQARLGADMEDVCGRLVQYRGEV
QAMLGQSTEELRVRLASHLRKLRKRLLRDADDLQKCLAVYQ
AGAREGAERGLSAIRERLGPLVEQGRVRAATVGSLAGQPLQE
RAQAWGERLRARMEEMGSRTRDRLDEVKEQVAEVRAKLEE
QAQQIRLQAEAFQARLKSWFEPLVEDMQRQWAGLVEKVQA
AVGTSAAPVPSDNH

APOE2 Homotrimer
(internal APOE2
molecule)/APOE2
Homopolymer
(internal APOE2
molecule)

MKVEQAVETEPEPELRQQTEWQSGQRWELALGRFWDYLRW
VQTLSEQVQEELLSSQVTQELRALMDETMKELKAYKSELEEQ
LTPVAEETRARLSKELQAAQARLGADMEDVCGRLVQYRGEV
QAMLGQSTEELRVRLASHLRKLRKRLLRDADDLQKCLAVYQ
AGAREGAERGLSAIRERLGPLVEQGRVRAATVGSLAGQPLQE
RAQAWGERLRARMEEMGSRTRDRLDEVKEQVAEVRAKLEE
QAQQIRLQAEAFQARLKSWFEPLVEDMQRQWAGLVEKVQA
AVGTSAAPVPSDNH
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