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ABSTRACT 
 

Development and Testing of the Valence Multipole Model OH Potential 
for Use in Molecular Dynamics Simulation 

 
Charles Stephen Andros 

Department of Geological Sciences, BYU 
Master of Science 

 
 Here we describe the fitting and testing, via molecular dynamics simulation, of a 
bond-order potential for water with a unique force field parameterization. Most potentials 
for water, including some bond-order (reactive) potentials, are based on a traditional, 
many-body decomposition to describe water’s structure with bond stretch, angle bend, 
electrostatics, and non-bonded terms. Our model uses an expanded version of the Bond 
Valence Model, the Valence Multipole Model, to describe all aspects of molecular 
structure using multibody, bond-order terms. Prior work successfully related these 
multibody, bond order terms to energy, provided the structures were close to equilibrium. 
The success of this equilibrium energy model demonstrated the plausibility of adapting 
its parameterization to a molecular dynamics force field. Further, we present extensive 
testing of ab initio methods to show that the ab initio data we obtained, using the 
CCSD(t)/cc-pwCVTZ level of theory, to augment the fitting set of our parameters is of 
the highest quality currently available for the OH system. While the force field is not yet 
finished, the model has demonstrated remarkable improvement since its initial testing. 
The test results and the insights gleaned from them have brought us significantly closer to 
adapting our unique parametrization to a fully functional molecular dynamics force field. 
Once the water potential is finished, it is our intent to develop and expand the Valence 
Multipole Model into a fully reactive alternative to CLAYFF, a non-reactive potential 
typically used to simulate fluid interfaces with clays and other minerals. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: molecular dynamics simulation, bond-order potential, Bond Valence Model, 
Valence Multipole Model 
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INTRODUCTION 
 

In the field of computational chemistry, there is constant demand for more 

accurate, faster, and chemically reactive models. Molecular mechanics (MM) models, 

which describe atoms as “balls on springs,” (Hinchliffe 2003) are specifically designed to 

meet the first two demands but are usually only accurate over a limited range of chemical 

scenarios. This limitation is especially evident when applying MM methods to model 

water, as demonstrated by the sheer number of water models in existence (Finney 

2001,Guillot 2002). Attempts to improve these water models, like adding chemical 

reactivity, typically involve the addition of more adjustable parameters, which adds 

increased complexity and detracts from their computational efficiency. 

Since the first rigid MM water model (Bernal and Fowler 1933), many 

improvements have been introduced to make them more realistic, such as adding 

interaction sites, flexibility, polarizability, and dissociability (Mahoney and Jorgensen 

2000, H. Yu and Gunsteren 2003, Nada and Eerden 2003, Saint-Martin, Hess et al. 2004, 

Olano and Rick 2005, Wu, Tepper et al. 2006, Van Duin, Zou et al. 2014). To adequately 

simulate aqueous systems, however, a computationally efficient water model is necessary 

because large numbers of water molecules are required (Glättli, Daura et al. 2002, Horn, 

Swope et al. 2004). Therefore, rigid water models have emerged as the most popular. By 

holding strong H-O bonds and H-O-H angles rigid, the calculations become much more 

efficient. Additionally, most rigid water models use the assumption of “pair-wise 

additivity”, which further improves their efficiency. This assumption states that each 

individual n-body interaction (uij) is completely independent of all other interactions and 
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that the sum of the energies of these interactions can be approximated as the total energy 

of the system (Utotal): 

𝑈𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑢𝑖𝑗𝑖<𝑗          (1) 

(Rowley 1994). The simple point charge (SPC) SPC and transferable intermolecular 

potential (TIP) families of models are examples of rigid, and very popular, water models. 

However, none of these rigid water models can ever satisfactorily reproduce all of 

water’s physical and chemical behavior because they neglect anything involving the 

vibrational characteristics, polarizability, and reactivity of the molecules (Wallqvist and 

Berne 1993, Jorgensen and Jenson 1998, Van der Spoel, Van Maaren et al. 1998, Finney 

2001, Guillot 2002, Ren and Ponder 2004, Mason and Brady 2007, Ball 2008, Tan, 

Cendagorta et al. 2014, Tan, Tran et al. 2016). Some have argued that water models do 

not need to reproduce all of water’s behavior, but that rigid models need to be improved 

by including different data in the fitting set such as the temperature of maximum density 

(Tmd) or the density of various ice polymorphs (Abascal and Vega 2005, Vega, McBride 

et al. 2005). Still others have proposed augmenting empirical data with, or even 

exclusively using, data obtained from ab initio methods (Burnham and Xantheas 2002, 

Xantheas 2005, Te and Ichiye 2010, Medders, Babin et al. 2014, Van Duin, Zou et al. 

2014, Liu, Wang et al. 2016). Often, those employing ab initio data also advocate using 

dissociable water models, pointing out that only a dissociable water model can capture 

certain quantum and chemical effects, such as proton and hydroxyl ion transport. 

Furthermore, non-dissociable MM models will continually struggle to capture atomistic 

behavior at low temperature, because quantum effects become more pronounced, 

especially for light elements such as hydrogen (Billeter, King et al. 1994). 
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Historically, reactive water potentials have been less popular, in part due to their 

high computational expense. Reactive potentials are also very difficult to develop and 

expand because they have so many adjustable parameters, which multiply exponentially 

for each new atom type added to the force field. One approach for reducing the number 

of adjustable parameters is to augment a traditional MM force field with a bond order 

constraint. By introducing bond order to a traditional MM parameterization, the force 

field can account for the entire coordination sphere at once, thus avoiding the assumption 

of “pair-wise additivity”. The ReaxFF force field is a good example of an arguably 

successful, reactive potential that augments a traditional MM parameterization with bond 

order (Van Duin, Baas et al. 1994, Van Duin, Dasgupta et al. 2001, Van Duin, Strachan 

et al. 2003, Van Duin, Zou et al. 2014). In addition to ReaxFF, several other bond-order 

potentials have been developed with reasonable degrees of success (Finnis and E. 1984, 

Tersoff 1988, Brenner 1990). However, despite using a traditional MM parameterization, 

bond-order potentials like ReaxFF still struggle with exponentially multiplying adjustable 

parameters. Thus, they typically cannot combine more than a select few elements into a 

single force field. We submit that restructuring the basic architecture of an MM force 

field can solve part of the parametrization issue. In this work, we explore a bond-order 

potential that uses a unique parameterization based almost entirely on bond valence, an 

empirical estimate of bond order using bond lengths. 

Recently our group developed a bond-order potential that very accurately predicts 

the potential energy of structures near equilibrium for the element group Al, Si, O, and H 

(Wander and Bickmore 2016). Our use of bond valence in a bond-order potential is not 

without precedent (Grinberg, Cooper et al. 2002, Cooper, Grinberg et al. 2003, Grinberg, 
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Cooper et al. 2004, Shin, Cooper et al. 2005, Shin, Grinberg et al. 2007, Shin, Son et al. 

2008, Grinberg, Shin et al. 2009, Liu, Grinberg et al. 2013, Liu, Grinberg et al. 2013, 

Takenaka, Grinberg et al. 2013). However, most bond-order potentials use bond order to 

correct the more traditional n-body terms (bond stretch, angle bend, etc.), the basic 

mathematical framework of our model is based on multi-body, bond-valence (i.e., bond-

order) terms, with some more traditional terms added as correction. In other words, our 

force field is to our knowledge the first of its kind. 

 In this work, we describe part of the fitting and the initial testing of this new 

reactive potential for water. One challenge faced while fitting the model was a lack of 

adequate data with which to fit our reactive potential. Non-reactive potentials are 

typically fitted to macroscopic, physical properties (atom pair radial distribution 

functions, Tmd, etc.). However, this choice of calibration data is insufficient for 

developing a reactive water potential, where transition states need to be described in 

detail. Due to recent advancements in ab initio methods, ab initio data is increasingly 

used both for fitting model parameters and/or examining a model’s behavior around 

transition states (Van Duin, Baas et al. 1994, Van Duin, Dasgupta et al. 2001, Van Duin, 

Strachan et al. 2003, Ren and Ponder 2004, Xantheas 2005, Te and Ichiye 2010, 

Medders, Babin et al. 2014, Tan, Cendagorta et al. 2014, Van Duin, Zou et al. 2014, Liu, 

Wang et al. 2016, Tan, Tran et al. 2016). However, different ab initio methods exhibit 

varying degrees of accuracy with respect to various quantum properties. We therefore 

decided to first test a wide range of ab initio methods to determine a level of theory that 

was sufficiently accurate for our purposes (see Appendix – Tables 1 and 2). We 

ultimately used the CCSD(t) level of theory with the cc-pwCVTZ (correlation consistent, 



5 
 

polarization, weighted, core and valence, triple zeta) basis set to calculate various oxygen 

and hydrogen configurations to augment our calibration dataset (see Appendix – Tables 3 

and 4). 

Once the model parameters were calibrated, we determined to test our water model by 

simulating five macroscopic properties of water. The five selected properties are (in order 

of importance): atom pair radial distribution functions (RDF), self-diffusion coefficient, 

temperature of maximum density (Tmd), and the thermal expansion coefficient 

(expansivity) and isothermal compressibility at different temperatures. Most agree that a 

reliable water potential needs to reproduce experimental values for all atom pair RDFs 

and the self-diffusion coefficient at room temperature. The Tmd is a unique property of 

water derived from the hydrogen bonding network that water forms. We therefore 

reasoned our model should be able to reproduce the Tmd since one of the great strengths 

of bond valence is accounting for complex bonding networks. The expansivity and 

compressibility tests were selected because these are easily derived from a Tmd 

calculation. 

 Our goal for this water potential is to develop a reactive alternative to the MM 

force field CLAYFF (Cygan, Liang et al. 2004). CLAYFF is a nonreactive potential 

designed to simulate fluid interfaces with clays and other minerals characterized by 

complex and disordered structures and composition. The first step towards developing a 

reactive version of CLAYFF is to develop a potential for the OH system. Once the OH 

potential is developed, we will expand the potential to include those elements necessary 

to simulate clays (Si, Na, K, Cl, etc.). 
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THEORY 
 
 All MM force fields require three essential components: structural descriptors, 

ideal values for those structural descriptors and energy cost functions for deviation from 

said ideal values. Many energy cost functions are similar to Hooke’s Law for springs, 

𝑢 = 1
2
𝑘(𝑥 − 𝑥0)2         (2) 

Here, the spring length  𝑥 is the structural descriptor, 𝑢 describes the energy cost in terms 

of potential energy, 𝑥0 is the ideal value of the structural descriptor, and  𝑘 is a constant. 

Most MM force fields have multiple energy cost functions with one or more structural 

descriptors that can be adjusted to fit some set of data including thermodynamic data, 

physical properties, and crystal/molecular structures (Rappé and Casewit 1997, 

Hinchliffe 2003, Cramer 2004, Comba, Hambley et al. 2009). Except for Van der Waals 

and traditional electrostatics terms for non-bonded atoms, all the structural descriptors in 

our model are based on bond valence. 

Bond Valence and the Bond Valence Model 

The concept of bond valence grew out of Pauling’s treatment of oxidation 

number, or atomic valence (𝑉𝑖), as a measure of the atom’s bonding power, which is 

distributed as bond valence in all bonds incident to the central atom (Pauling 1929). Bond 

valence is typically calculated using a simple exponential function (Eqn. 3) or power 

function (Eqn. 4) to relate the interatomic distance between ions 𝑖 and 𝑗 (𝑅𝑖𝑗) to bond 

valence (𝑠𝑖𝑗). 

�𝑠𝑖𝑗� = 𝑒�𝑅0−𝑅𝑖𝑗�/𝐵         (3) 

�𝑠𝑖𝑗� = �𝑅0
𝑅𝑖𝑗
�
1/𝐵

         (4) 
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Both 𝑅0 and  𝐵 are fitted empirical parameters specific to a given atom pair, where 𝑅0 is 

the bond length at which 𝑠𝑖𝑗  = 1 in valence units (v.u.) and  𝐵 describes the curvature of 

the function (Brown and Altermatt 1985). 

As mentioned previously, all MM models require three essential components: 

structural descriptors, ideal values for those structural descriptors, and energy cost 

functions. The BVM exhibits two of these essential components (see below) but does not 

use an energy cost function. The structural descriptor of the BVM is the bond valence 

sum (𝑆𝑖). 

𝑆𝑖 =  ∑ 𝑠𝑖𝑗𝑗           (5) 

The first axiom of the BVM, the “valence sum rule,” states that the valence sum is ideally 

equal to the atomic valence (Brown 2002, Wander, Bickmore et al. 2015). 

∑ 𝑠𝑖𝑗 ≈𝑗 𝑉𝑖          (6) 

In this way, the valence sum rule can be thought of as defining the ideal value of the 

𝑆𝑖structural descriptor. A structure may be stable if the valence sum rule is closely 

followed, which implies an energy cost for deviation, but no specific function is used to 

describe it. The atomic valence is equal to the absolute value of the oxidation state if only 

polar bonds are considered (Brown 2002, Wander, Bickmore et al. 2015). For example, 

the ion O2- has an atomic valence of 2 v.u. In the H2O(g) molecule, the O2- forms two polar 

O-H bonds each with ~1.0 v.u. Therefore, the sum of the bond valences reaching the 

central O is 2 v.u., or its atomic valence. 

To develop a force field based mostly on bond valence, we have performed 

several expansions of the BVM. These expansions are as follows: development of several 

new bond valence-based structural descriptors using a multipole expansion, accounting 
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for fully covalent bonds, and redefining and optimizing the shape of bond valence curves 

to produce appropriate potential energy surfaces. This expanded model, still under 

development, is called the Valence Multipole Model (VMM) (Wander and Bickmore 

2016). 

Valence Multipole Model 

Because the improvements to the VMM are still on-going, we present the current 

stages of development in four separate phases. First, we show the expansions made to the 

original BVM to create structural descriptors for the VMM. Second, we present the 

VMM as an equilibrium energy model, which demonstrates it is possible to develop 

robust ideal values and energy cost functions for the structural descriptors of the VMM. 

Third, we examine the adjustments made to the functions and parameters of the 

equilibrium model to make it a fully reactive potential for the OH system. This reactive 

potential was designed to account for much of the complex quantum behavior exhibited 

by the OH system. We did this knowing that simplification of the model would likely be 

necessary, instead the objective of this procedure was to see how much complexity we 

could initially incorporate into the potential. The tests presented later in this work explore 

the strengths, weaknesses, and key issues associated with this new reactive potential. 

Finally, we discuss some of the simplifications we introduced to the model in accordance 

with the test results. These simplifications are designed to help bring our potential closer 

to functioning properly as a fully reactive molecular dyanmics force field. 

Expanding the BVM 

The first expansion of the BVM involved developing bond-valence parameters for 

same-ion types. The traditional BVM addresses polar covalent and ionic bonds but does 
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not address fully covalent bonds. Wander et al. (2015) showed that for the Al-Si-K-O and 

Al-Si-H-O systems, inclusion of anion-anion bonding in calculating the bond valence 

sum produced significant improvements in the adherence of known structures to the 

valence sum rule. In addition to improving the bond valence sum, allowing for same-ion 

interactions permits the model to account for co-ion attractive and repulsive interactions 

using bond valence. For example, H2O2(g) forms two bonds, one polar O-H bond and one 

fully covalent O-O bond. Instead of assuming an atomic valence of 1 for O1-, i.e., the 

absolute value of its oxidation state, we assume an atomic valence of 2. Thus, we have 1 

polar O-H bond with ~ 1.0 v.u. and one covalent O-O bond with ~1.0 v.u (Wander, 

Bickmore et al. 2015). 

The second expansion of the BVM was redefining and optimizing the bond 

valence-length curve relationships to account for a wide range of bond lengths, such as 

would be required to describe transition states. The BVM is traditionally used to 

determine the plausibility of proposed crystal structures, therefore the bond valence-

length curves were originally calibrated on crystal structure data. This is problematic 

because crystal structures typically display a very limited range of bond lengths. Wander 

et al (2015) used both molecular and crystal structure data to show that neither Eqn. 3 nor 

4 is flexible enough to capture the bond valence-length relationship over a large 

distribution of bond lengths. They therefore developed a series of more flexible, hybrid 

power-exponential functions, with 3 (Eqn. 7) and 4 (Eqn. 8) fitted parameters 

respectively:  

𝑠𝑖𝑗 = 𝑒�𝑅0−𝑅𝑖𝑗�𝑤/𝐵 �𝑅0
𝑅𝑖𝑗
�

(1−𝑤)/𝐵
       (7) 

  
𝑠𝑖𝑗 = 𝑤𝑒�𝑅0−𝑅𝑖𝑗�/𝐵1 + (1 − 𝑤)𝑒�𝑅0−𝑅𝑖𝑗�/𝐵2      (8)  
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Here, 𝑠𝑖𝑗 is the bond valence in valence units (v.u.), 𝑅𝑖𝑗  is the bond length between atoms 

𝑖 and 𝑗, 𝐵  and 𝑅0 are fitted parameters, and 𝑤  is a weighting parameter. These new 

equations were much better suited to describing the bond valence-length relationship over 

a wide range of bond lengths.  

 The third expansion of the BVM involved the development of new bond valence-

based structural descriptors. The BVM, despite its inherent strength for identifying 

plausible combinations of bond lengths, cannot address some other aspects of molecular 

structure, such as the angular distribution of bonds. To remedy this, we performed a 

multipole expansion of the bond valence incident to individual atoms out to the 

quadrupole moment. We accomplished this by treating bond valences as vector quantities 

in the direction of the bond, with magnitude equal to the bond valence. These new 

structural descriptors allow us to describe all aspects of molecular structure using fully 

multibody terms. The monopole moment of the multipole expansion is provided by the 

bond valence sum. The dipole moment structural descriptor is the norm of sum of the 

bond valence vectors and describes the lopsidedness of the bond valence distribution 

(Bickmore, Wander et al. 2013). The quadrupole moment descriptor is provided by the 

Frobenius norm of a second-order tensor that describes the ellipsoidal distribution of the 

bond valence. The dipole moment can describe non-centrosymmetric distortions, while 

the quadrupole moment describes centrosymmetric distortions, such as caused by Jahn-

Teller effects (Shepherd, Wander et al. 2016).  

Equilibrium Energy Model 

Wander and Bickmore (2016) developed ideal values and energy cost functions 

for the new structural descriptors of the VMM for the element group Al-Si-H-O. 
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Provided that the bond valence sum was within 0.2 v.u. of the atomic valence, or rather 

for stable structures at equilibrium, the model provided accuracies of ~5 kJ/mol per 

unique atom, which is comparable to some ab initio approaches. The energy cost function 

for the valence monopole structural descriptor was computed using a Morse-like 

potential: 

𝐸𝑉𝑀,𝑖 = 1
2

 𝑉𝑖𝐷𝐸1,𝑖 ��
𝑆𝑖
𝑉𝑖
�
𝛼𝑖
− 1�

2
       (9) 

Here, 𝐸𝑉𝑀,𝑖 is the valence monopole energy for atom  𝑖. 𝐷𝐸1,𝑖 is a weighted average of the 

dissociation energies of all bonds incident to atom 𝑖 and is analogous to the well depth 

term in a Morse potential, 𝑆𝑖 is the bond valence sum, and 𝑉𝑖  is the atomic valence. The 𝛼𝑖 

term is discussed in further detail below. The energy cost function of the valence dipole 

descriptor was a simple harmonic function: 

𝐸𝑉𝐷,𝑖 = 𝑘𝑉𝐷,𝑖 ��𝑃𝚤��⃗ � − �𝑃𝚤��⃗ �𝐼𝑑𝑒𝑎𝑙�
2
       (10) 

Where  𝑘𝑉𝐷,𝑖  is a kind of spring constant and �𝑃𝚤��⃗ � the norm of the sum of the bond 

valence vectors. For water, there is only one defined value of �𝑃𝚤��⃗ �𝐼𝑑𝑒𝑎𝑙, which is designed 

to produce an HOH bond angle of 104°. A similar treatment was used for the valence 

quadrupole energy cost function, but because it is not relevant to this work is it not 

discussed in further detail here. 

The 𝛼𝑖 parameter in Eqn. 10 is a function of the averaged bond force constant 

(𝑘1,𝑖), the well depth term (𝐷𝐸1,𝑖), and the averaged bond valence curvature parameter 

(𝐵𝑖) and was computed as follows: 

𝛼𝑖 = 𝐵𝑖�
𝑘1,𝑖

2𝐷𝐸1,𝑖
          (11) 
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To compute the averaged force constant 𝑘1,𝑖, they used prior work to show there 

exists a linear relationship between a bond’s force constant and its bond order (Badger 

1934, Johnston 1966). They therefore calculated an individual bond’s force constant 

using the following equation: 

𝑠𝑖𝑗 = 𝑘1,𝑖𝑗

𝑘1
          (12) 

Where 𝑘1 is the force constant of a single bond and 𝑘1,𝑖𝑗  is the force constant for the 

single bond between atoms 𝑖 and 𝑗. However, because the bond valence is inherently a 

multibody parameter, values that are typically associated with a particular bond need to 

be averaged over all bonds incident to the central atom. Therefore, they used a weighed 

arithmetic mean over all incident bonds 𝑖𝑗  to obtain 𝑘1,𝑖  as well as the averaged values 

𝐷𝐸1,𝑖  and 𝐵𝑖: 

𝑘1,𝑖 = �1
𝑆𝑖
∑ 𝑠𝑖𝑗𝑘1,𝑖𝑗𝑗 �         (13) 

𝐷𝐸1,𝑖 = �1
𝑆𝑖
∑ 𝑠𝑖𝑗𝐷𝐸,𝑖𝑗𝑗 �        (14) 

1
𝐵𝑖

= �1
𝑆𝑖
∑ 𝑠𝑖𝑗

𝐵𝑖𝑗𝑗 �         (15) 

Here, 𝐵𝑖𝑗 is the same as the function curvature 𝐵 parameter seen in Eqn. 7. In cases 

where Eqn. 8 was needed, two different bonds are computed using each of the 𝐵1 and 𝐵2 

parameters. 

The final parameter, 𝐷𝐸,𝑖𝑗, was estimated using a polynomial function of 𝑠𝑖𝑗. For 

most atom pairs in the Al-Si-H-O element group, the following function was adequate to 

relate the dissociation energy of a bond (𝐷𝐸,𝑖𝑗) to the bond valence: 

𝐷𝐸,𝑖𝑗 = 𝑎𝑠𝑖𝑗 + 𝑏𝑠𝑖𝑗2  + ⋯        (16) 
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However, O-H bonds were an exception and required a slightly different functional form: 

𝐷𝐸,𝑖𝑗 = 𝑎𝑠𝑖𝑗
1/2 + 𝑏𝑠𝑖𝑗𝑐           (17) 

In both Eqn. 16 and 17,  𝑎, 𝑏,  𝑐, etc., are fitted constants. 

The Initial Reactive OH Potential 

Wander and Bickmore (2016) noted that further work would be required to 

calibrate the model to describe transition state configurations. Wander et al (in prep) used 

a database of ab initio calculations (see Appendix – Tables 3 and 4) to refit the model 

parameters of Wander and Bickmore (2016) to develop a model for use in molecular 

dynamics (MD) simulation for the O-H group. Furthermore, valence monopole energy 

cost function and parameters had to be slightly repurposed so they could be integrated in 

real time. Wander et al (in prep) did this by making the key valence monopole parameters 

(𝐷𝐸 , 𝑘, and𝑠𝑖𝑗) a function of a new parameter 𝑠𝑚𝑖𝑛, which is 𝑠𝑖𝑗 defined at the minimum 

energy. This defined a new triad of valence monopole parameters (𝐷𝑒,  𝐹, and 𝑅𝑚𝑖𝑛). 

Now, the valence monopole energy is calculated as the sum of the bonds incident to it, 

𝐸𝑉𝑀𝑀 = 1
2
∑ 𝐸𝑖𝑗𝑗          (18) 

and the energy of the bond between atoms 𝑖𝑗 is a Morse-like function defined as, 

𝐸𝑖𝑗 = 𝑒−2𝛼�𝑅𝑖𝑗−𝑅𝑚𝑖𝑛(𝑠𝑚𝑖𝑛)� − 2𝑒−𝛼�𝑅𝑖𝑗−𝑅𝑚𝑖𝑛(𝑠𝑚𝑖𝑛)�     (19) 

where, 

𝛼 = � 𝐹(𝑠𝑚𝑖𝑛)
2𝐷𝑒(𝑠𝑚𝑖𝑛)         (20) 

According to this formulation, each bond only receives half of the energy of the bond. 

This specification is necessary to account for structures, like ozone, where two atoms 

prefer different bond orders.  
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Wander et al (in prep) further had to develop a formulation for each component of 

the new valence monopole triad (𝐷𝑒,  𝐹, and 𝑅𝑚𝑖𝑛). For the force constant (𝐹 ), the 

formulation is very similar to the original, 

𝐹(𝑠𝑚𝑖𝑛) = 𝐹𝑠𝑖𝑛𝑔𝑙𝑒𝑠𝑚𝑖𝑛        (21) 

where 𝐹𝑠𝑖𝑛𝑔𝑙𝑒  is the force constant of a single bond. The dissociation energy (𝐷𝑒) required 

more adjustment. Continued work showed the polynomial functional form (Eqn. 17) was 

insufficient to describe the relationship between 𝑠𝑖𝑗 and 𝐷𝑒  at large bond orders. So 

instead Wander et al. (in prep) used a logistic functional form, 

𝐷𝑒 = 𝐿

1+𝑒−𝑘�𝑠𝑚𝑖𝑛�
+ ∑ 𝐿𝑛

1+𝑒−𝑘𝑛�𝑠𝑚𝑖𝑛−𝑠0𝑛�𝑛 − 𝐷𝑒(𝑠𝑚𝑖𝑛 = 0)    (22) 

where 𝐿, 𝑘, and 𝑠0 are fitted parameters. For 𝑅𝑚𝑖𝑛, which is the bond length between 

atoms 𝑖𝑗 at 𝑠𝑚𝑖𝑛, they numerically inverted Eqn. 8 to obtain the following equation, 

𝑅𝑚𝑖𝑛 = 𝑐0 + ∑ 𝑐𝑛𝑒(𝑎𝑛−𝑠𝑚𝑖𝑛) 𝑏𝑛⁄
𝑛        (23) 

This numerical differentiation is correct to within 0.001 Å. 

Because the ideal value of 𝑠𝑚𝑖𝑛 is inherently dependent on the instantaneous 

chemical environment in which a given atom finds itself, Wander et al (in prep) faced 

some difficulty finding the proper value of 𝑠𝑚𝑖𝑛. As they explored different methods for 

defining 𝑠𝑚𝑖𝑛, they noted that 𝑉𝑖, the atomic valence, changed as a function of the 

coordination number. They therefore defined 𝑠𝑚𝑖𝑛 as a function of coordination number 

(𝑁𝑐𝑜𝑜𝑟𝑑), 

𝑆𝑚𝑖𝑛 = 𝑉𝑖
𝑁𝑐𝑜𝑜𝑟𝑑

          (24) 

The coordination number is therefore calculated at every time step as a function of the 

instantaneous bond valences and the bond valence sum, 
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𝑁𝑐𝑜𝑜𝑟𝑑 = 𝑆𝑖
2

∑ 𝑠𝑖𝑗
2

𝑗
         (25) 

Further, to ensure the coordination number is always an integer value, we added a 

rounding function to Eqn. 25. Thus, Eqn. 25 allows the 𝑠𝑚𝑖𝑛 of each bond to be updated 

at every time step, providing a new set of values for the valence monopole triad (𝐷𝑒,  𝐹, 

and 𝑅𝑚𝑖𝑛). 

 Finally, to account for non-bonded interactions, Wander et al (in prep) introduced 

a method to describe repulsion between ions of the same type. Bonding between ions of 

the same type, such as two O2- ions, is assumed to be negligible. So, we introduced a 

pairwise, non-bonded term called the Morse-cut potential, 

𝐸𝑖𝑗,𝑖 = 𝐷𝑁𝐵,𝑖 �𝑒
−2𝛼�𝑅𝑖𝑗−𝑅𝑚𝑖𝑛(𝑠𝑚𝑖𝑛)� − 1�

2
+ 𝐷𝑁𝐵,𝑖     (26) 

Here 𝐷𝑁𝐵,𝑖  is the dissociation energy of the repulsive potential energy curve for a given 

co-ion pair. The Morse-cut potential can be thought of as a core-core repulsion term and 

is responsible for ensuring atom pairs do not approach each other too closely. The Morse-

cut potential makes use of a cutoff radius where 𝑅𝑐𝑢𝑡 = 𝑅𝑚𝑖𝑛 for the atom pair and 

outside the cutoff radius, the Morse-cut potential is set to 0. However, to prevent the 

Morse-cut potential from operating on ions within a molecule, we added a 1-3 bonding 

term. The following equation defines the criteria for a “bound” atom, 

𝑠𝑖𝑗 ≥
𝑉𝑖

2𝑁𝑐𝑜𝑜𝑟𝑑
          (27) 

This allows the model to consider ions within a molecule as “bonded” and thus not 

subject to the Morse-cut potential. 
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Refining the Reactive OH Potential 

 The functional forms of the O-H potential discussed above were subjected to 

rigorous tests, discussed below. The test results revealed a very important issue intrinsic 

to the framework of the VMM: it allows too much structural flexibility. Traditional MD 

force fields, which assume pairwise additivity, excel at constraining atomistic behavior 

such that certain physical properties are precisely reproduced when subject to the 

appropriate conditions. The current multi-body terms of the VMM OH potential (valence 

monopole and dipole) avoid pairwise additivity but allow too much structural flexibility. 

We therefore performed a series of adjustments to the VMM OH potential to constrain its 

behavior.  

 The most significant manifestation of excess flexibility in the model was the 

ability to bond a hydrogen atom to two oxygen atoms. Due to energy conservation issues 

within the model potential itself (see below), atoms attained very high kinetic energy 

values during MD simulation. This allowed non-bonded hydrogen atoms to come very 

close to the proximal oxygens. Once a non-bonded hydrogen came within about 1.4 Å of 

a neighboring oxygen, the 𝑁𝑐𝑜𝑜𝑟𝑑 (Eqn. 25) of that oxygen increased from 2 to 3, 

allowing the previously weak O-H to become a strong O-H bond. This was problematic 

as it allowed the hydrogen to become fully bonded to two proximal oxygens. The 

solution was defining an “excess” 𝑠𝑖𝑗, which is always greater than or equal to zero. 

𝑠𝑖𝑗,𝑒𝑥𝑐𝑒𝑠𝑠  =  𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝑆𝑖–𝑉𝑖, 𝑆𝑗–𝑉𝑗)      (28)  

The 𝑠𝑖𝑗,𝑒𝑥𝑐𝑒𝑠𝑠 is used to determine the corrected bond valence value, 

𝑠𝑖𝑗′ =  𝑠𝑖𝑗  −  𝑠𝑖𝑗,𝑒𝑥𝑐𝑒𝑠𝑠        (29) 



17 
 

Here 𝑠𝑖𝑗′ is the bond valence corrected for over-bonding. Next, we extended the pairwise, 

repulsive Morse-cut potential (Eqn. 26) to include non-bonded O2- and H+ ions. This 

means that the only non-bonded, attractive potential present in the VMM is the 

Coulombic potential. Finally, to help simplify the model, we decided to remove the soft-

core Coulombic potential and replace it with a traditional Coulombic potential, 

𝐸𝑐𝑜𝑢𝑙 =  𝐶𝑞𝑖𝑞𝑗
𝜖𝑟

          (30) 

Where 𝐶 is a conversion constant, 𝑞 is the charge on atoms  𝑖 and 𝑗 , 𝜖 is the dielectric 

constant and 𝑟 is the interatomic distance. 

Model Calibration 

All ab initio calculations used for fitting the model parameters were performed 

using the CCSD(t) level of theory with the cc-pwCVTZ basis set. CCSD(t) indicates a 

full treatment is provided for singlet and doublet states and perturbation theory is used to 

approximate the triplet states. These excited states (singlet through triplet) are sometimes 

considered necessary to obtain accurate energies (Cramer 2004). Some have even 

asserted that the CCSD(t) level of theory, combined with the cc-pCVnZ basis sets, should 

provide sufficiently accurate water cluster data for fitting a reactive water model 

(Xantheas 2005). 

The correlation-consistent family of basis sets (cc-pVnZ) was developed with the 

intent of approximating the complete basis set, which hypothetically gives the exact 

solution to the Schrödinger equation within the limits of that basis set and within the 

Born-Oppenheimer approximation (Balabanov and Peterson 2005). In most calculations, 

the frozen core approximation (which neglects electron correlation of core electrons) is 

acceptable to use. However, in cases where highly accurate thermodynamic properties or 
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geometries are required, the electron correlation with the core electrons cannot be 

ignored. Therefore, the cc-pCVnZ basis sets were specifically designed to handle the 

core-valence correlation (Peterson and Dunning 2002, Peterson and Puzzarini 2005). 

Peterson and Dunning (2002) further tested and developed a set of weighted correlation 

consistent, core-valence basis sets (cc-pwCVnZ). The weighted basis sets weigh the core-

valence electron correlation more heavily than the core-core correlation. Like the 

unweighted basis set family cc-pCVnZ, the weighted basis sets demonstrated superior 

convergence to empirical molecular property values. However, they recommended that 

when considering energetic or spectroscopic properties the weighted basis sets should be 

used over the unweighted basis sets. They further provided dissociation energies and 

bond lengths for several oxygenated species obtained using the cc-pwCV(T,Q)Z basis 

sets that were highly accurate. 

Soft-Core Electrostatics 

 The structural descriptors of the initial VMM OH potential were calibrated on 

equilibrium structures and thus designed to handle short-range interactions. However, 

when performing MD simulation long-range interactions play a key role in the structuring 

of the molecules. Therefore, it became necessary to introduce a traditional Coulombic 

potential to the VMM force field. The soft-core electrostatics potential was developed for 

use in conjunction with a second potential that accounts for short-range interactions and 

was therefore highly desirable for the VMM water model. By using the soft-core 

Coulombic potential, the model can use exclusively bond-valence to handle short-range 

interactions and a traditional Coulombic potential for long-range interactions. 
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The soft-core electrostatics potential (known in LAMMPS as the pair style 

coul/long/soft) was developed to avoid singularities or numerical instabilities, which 

occur during free energy calculations when sites are created or removed (Beutler, Mark et 

al. 1994). The Coulombic energy is calculated using the following equation: 

𝐸 =  𝜆𝑛 𝐶𝑞𝑖𝑞𝑗

𝜀[𝛼(1−𝜆)2+𝑟2]
1
2
  for  𝑟 < 𝑟𝑐         (31) 

Where C is a conversion constant, 𝑞𝑖  and 𝑞𝑗  are the charges of atoms 𝑖𝑗, 𝜖 is the dielectric 

coefficient, 𝑟 is the interatomic distance, 𝑛 and 𝛼 are positive constants and 𝜆 is the 

activation parameter. When 𝜆 = 1, the electrostatic interactions are calculated as a 

traditional Coulombic potential with a cutoff. When 𝜆 = 0, the electrostatic interactions 

are ignored. While the use of soft-core electrostatics with the VMM has been deprecated, 

this potential was present in all MD simulations described below. 

METHODS 
 

To determine the most accurate and efficient method for the ab initio calculations, 

we performed a series of geometry optimizations of Na2 using the CCSD, CCSDT, 

CCSD(t) and configuration interaction with doublets (CID) theories. We tested each level 

of theory in conjunction with the correlation consistent basis sets: cc-pVnZ, cc-pCVnZ. 

All the basis sets were tested with double, triple, quadruple and, in some cases, quintuple 

zeta. We also tested both the augmented and non-augmented versions of these basis sets 

using CCSD. The total number of Na2 geometry optimization tests used to determine the 

optimal level of theory was 55 optimizations (Appendix – Table 1). We then proceeded 

to perform 9 bond energy scans of Na2 using the cc-pCV(D,T,Q)Z basis sets and the 

CCSD, CCSD(t) and CCSDT levels of theory (Appendix – Table 2). All ab initio 

calculations were performed using the Gaussian 09 software.  
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The combination of CCSD(t) with cc-pwCVTZ was used for all ab initio 

calculations used to augment the database used to fit the model parameters. A total of 29 

oxygen and hydrogen species were calculated and included in the data fitting set 

(Appendix – Tables 3 and 4). The species were selected to give as wide a spread of bond 

valences as possible so that our fitting set accounted for most plausible bond valences. 

The molecular dynamics software package LAMMPS was used to perform all 

molecular dynamics tests of the VMM water model. The initial configuration for all 

VMM water simulation tests was a 15.56 x 15.56 x 15.56 Å proton-disordered ice (Ih) 

crystal with 128 water molecules. The NVT ensemble (constant number of particles, 

volume and temperature) was used for most MD simulations. The NVE ensemble 

(constant number of particles, volume and energy) was used to measure the model’s 

energy conservation. The temperature for all simulations performed in NVT was 

maintained by velocity scaling. Simulation temperatures were reached by scaling up from 

zero to the desired temperature over 1 picosecond (ps). A time-step of 0.1 femtosecond 

was used to help ensure energy conservation. All simulations were run on a total of 16 

processors and achieved close to 100 ps of simulation time. For the soft-core electrostatic 

potential (LAMMPS pair style coul/long/soft), a 𝜆 of 0.99 and 𝑛 of 1 were used. A 

Coulombic potential cutoff of 7.5 Å was used. We varied the 𝛼 parameter to determine 

the optimal value for VMM water simulation. The Ewald summation technique was 

employed for long-range electrostatic interactions (Ewald 1921). 

The properties of maximum density, compressibility and expansivity are typically 

simulated using the NPT ensemble (constant number of particles, pressure and 

temperature) at atmospheric pressure. We decided to perform these tests by running 
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multiple simulations in NVT and adjusting the volume of the box at the start of the 

simulation and allowing the box to equilibrate. We tested this methodology using the 

TIP4P/2005 potential and obtained a linear relationship between density and pressure at a 

variety of temperatures. This relationship gave the water’s density under the conditions of 

atmospheric pressure and the box temperature. Using these density values, we reproduced 

very well the temperature of maximum density (Tmd) and the expansivity and 

compressibility values at those temperatures. 

RESULTS AND DISCUSSION 
 

We first discuss the results from our tests of ab initio methods and the oxygen and 

hydrogen species we used to augment our parameter fitting database. Next, we present 

the VMM’s MD simulated values for unit pair RDFs, diffusivity and Tmd. The unit pair 

RDFs revealed the water structure was incorrect. On-going work suggests this may be 

caused by the valence dipole moment insufficiently constraining the HOH bond angles. 

Further, the values obtained for Tmd and diffusivity suggested that the gradients of the 

VMM were not being properly calculated, so we performed an MD simulation using the 

NVE ensemble. This simulation confirmed that the VMM gradients were being 

improperly calculated, as demonstrated by periods of substantial energy gain and steady 

temperature increase during the simulation. Consequently, we began searching for 

discontinuities in the VMM’s valence monopole and dipole potentials. We found and 

resolved one discontinuity in the valence monopole potential but the model still does not 

conserve energy during MD simulation. We suspect the remaining problem yet lies in 

transitions between allowed ideal states of the valence monopole and dipole moments. 
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There are many ideal states allowed and we have yet to account for the model’s behavior 

during transitions between all ideal states.  

Ab Initio Calculations 

 The results from the Na2 ab initio calculations were used to determine what level 

of ab initio was accurate enough to augment our calibration data set. Examination of the 

Na2 molecule geometry optimizations revealed the cc-pCVnZ family of basis sets were 

the most consistently correct across all levels of theory (Appendix – Table 1). To 

determine exactly what level of theory and basis set we should use, we performed bond 

dissociation scans on Na2 molecules (Appendix – Table 2). The values calculated in these 

bond scans included bond length (R), dissociation energy (De) and force constant (k). 

Ultimately, we determined the CCSD(t) level of theory combined with the cc-pCVTZ 

basis set was the best combination of efficiency and accuracy for Na2. However, since ab 

initio calculations perform differently for different elements, we examined the results 

from Peterson and Dunning (2002) who performed calculations using oxygenated species 

with both the cc-pCVTZ and cc-pwCVTZ basis sets. They ultimately recommended the 

cc-pwCVnZ basis sets over cc-pCVnZ basis sets.  

We therefore used the CCSD(t)/cc-pwCVTZ level of theory to examine oxygen-

oxygen and hydrogen-oxygen bonds over a spread of bond valence values. It is 

noteworthy to mention that some of the species included in the fitting set were unusual 

radicals, however these structures were necessary to provide a good sampling of bond 

valences (see Appendix – Table 3 and 4). Furthermore, because we have thoroughly 

tested our selected level of theory, we are confident the values obtained from these 

structures are sufficiently accurate.  
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MD Simulation Tests 

Here we present the MD simulated values for all oxygen-hydrogen unit pair radial 

distribution functions (RDF), the self-diffusion coefficient and the temperature of 

maximum density (Tmd). Because the Tmd test failed, we were unable to calculate the 

expansivity and compressibility values. All MD simulated values demonstrated poor 

agreement with experimental values. We initially thought this shortcoming indicated our 

simulation conditions and/or the soft-core Coulombic potential parameters were 

improperly assigned. However, experimentation with the Coulombic potential parameters 

and the simulation conditions yielded no significant improvement. This led to the 

hypothesis that the Tmd and self-diffusion coefficient values were erroneous because 

VMM OH potential’s gradients were being improperly calculated.  

Radial Distribution Functions 

RDFs for the oxygen-oxygen, oxygen-hydrogen and hydrogen-hydrogen atom 

pairs were computed and compared with experimental values (Figures 1 – 3). Please note 

that the experimental RDFs did not account for bonded atoms. All RDFs were computed 

at close to 300 K with a box density of 1.02 g/cm3. The RDFs reveal that the water 

structure predicted by the model is flawed: all RDFs have either missing peaks and/or 

structural abnormalities. 

At first, we believed the structural abnormalities were caused by improperly 

combining the soft-core electrostatic potential with the bond valence potentials. We 

therefore varied the 𝛼 parameter of the Coulombic potential to produce different radii of 

curvature for the short-range portion of the Coulombic potential’s curve. We computed 

RDFs using eight different alpha values, varying the curvature of the Coulombic potential 
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curve from nearly flat to a traditional Coulombic potential curve. Little to no difference 

was noted between the eight sets of RDFs. The RDFs presented here were calculated 

using a Coulombic potential curve with the largest tested radius of curvature (i.e., a 

nearly flat Coulombic potential curve).  

Figure 1 – Comparison of the VMM MD simulated and experimental oxygen-oxygen unit pair 
radial distribution functions. Note the lack of O-O structure past 3 Å. 

The first peak in the OO RDF (Figure 1) at 2.8 Å is too tall and sharp, suggesting 

perhaps the gradients of the oxygen-oxygen either the repulsive or the attractive potential 

may be slightly too steep. However, comparatively speaking, the sharpness of the first 

peak is not unusual for an MD force field. Looking at the second peak, the experimental 

RDF demonstrates a broad peak centered at about 4.5 Å. The VMM’s second peak 

however is rather sharp and close to 5.5 Å. It is possible the VMM’s peak at 5.5 Å is 

merely the second peak shifted, or it could be an entirely different and fictitious structure.  
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The second peak of the OH RDF (Figure 2) at 1.9 A is too steep and narrow, 

suggesting again that the gradients for bonded O-H pairs are too steep. The third peak 

occurs at about the right distance, 3.1 Å, but it is too wide and slightly deformed, which 

suggests some unusual O-H structuring is occurring around 3.5 Å. 

  
Figure 2 – Comparison of the VMM MD simulated and experimental oxygen-hydrogen unit pair 
radial distribution functions. The first peak is bonded structures. Note the unusual O-H 
structuring around 3.5 Å. 

 The first peak of the HH RDF is very wide (Figure 3), suggesting that the model 

allows hydrogen atoms to come into proximity to each other. Visualization of the 

molecules during MD simulation indicated that the hydrogens on neighboring water 

molecules were oriented towards each other instead of the oxygens. Further, a wide 

spread of HOH bond angles was observed during the simulations. These erroneous 

behaviors are probably what caused the width of the first peak.  
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Figure 3 – Comparison of the VMM MD simulated and experimental hydrogen-hydrogen unit 
pair radial distribution functions. Note the wide first peak. 

Self-Diffusion Coefficient 

 For the self-diffusion coefficient, we first obtained self-diffusion coefficients from 

the models TIP4P/2005, SPC-E and ReaxFF to ensure our methodology was correct. The 

simulated self-diffusion coefficients were all within 6% of the literature values (Table 1).  

Model D*10-9 (m2/s) 

 
Simulated Literature 

VMM 714 - 
SPC/E 2.65 2.49 

TIP4P/2005 1.95 2.08 
ReaxFF 2.06 2.11 

Experiment - 2.27 
Table 1 – Reproduced water self-diffusion coefficients with the VMM’s self-diffusion coefficient 
at 298 K. The literature value for SPC-E was taken from (Chaplin 2001). The experimental and 
TIP4P/2005 values were taken from Abascal and Vega (2005). The ReaxFF value was simulated 
using the Fe/O/water parameter file (Aryanpour, van Duin et al. 2010) and the literature value 
taken from Adri et al. (2013). 
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We calculated the self-diffusion coefficient using the Einstein equation 

6𝐷𝑡 =  lim𝑡 →∞(|𝑟𝑖(𝑡) −  𝑟𝑖(0)|)2,       (32) 

where 𝑟𝑖(𝑡) is the position of particle 𝑖 at time 𝑡. The VMM self-diffusion coefficient in 

Table 1 is wildly inaccurate and is more representative of a gas-phase self-diffusion 

coefficient. Furthermore, velocities had to be rescaled every five time-steps to prevent the 

simulation temperature from rapidly climbing.  

Initially, as with the RDFs, we thought the erroneous behavior was caused by 

improperly combining the short-range bond valence potentials and the soft-core 

Coulombic potential. We tested this by varying the charge of the oxygen from -0.6 to -1.0 

e, in five increments of 0.1 e, and the Coulombic potential’s radius of curvature from 3 to 

7 Å, in five increments of 1 Å, for a total of 25 simulations. We further examined a 

simulation with no charge, which removed all long-range interactions from the model. 

Ultimately, the variation in the self-diffusion coefficient in the charged tests was 

negligible. The uncharged simulation produced a noticeably different value for the self-

diffusion coefficient but it was still representative of a gas-phase diffusivity. These 

results demonstrated that charge was not the determining factor for the gas phase-like 

self-diffusion coefficient. We therefore decided to use a charge of -0.7 e for oxygen and 

0.35 e for hydrogen because this produces a charge dipole very close to the correct dipole 

for liquid water. 

 Because charge had a negligible effect on the self-diffusion, we questioned 

whether the simulations adequately conserved energy. We decided to test different length 

time steps to see if a smaller time step would produce a more realistic self-diffusion 

coefficient. We ran simulations using a time steps of 1, 0.5, 0.25 and 0.1 fs and calculated 
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the self-diffusion coefficient for each simulation. However, once again the differences 

between the calculated self-diffusion coefficients were negligible. This raised the 

question of whether gradients of the VMM were being properly calculated. 

Temperature of Maximum Density, Expansivity and Compressibility 

The properties of temperature of maximum density (Tmd), expansivity and 

compressibility were simulated by running multiple simulations using NVT with different 

box sizes. These simulations were used to generate a pressure vs. density relationship to 

predict the box density under atmospheric pressure. This method was first tested using 

TIP4P/2005. Figure 4 shows one such pressure vs. density relationship at 300 K. 

 

Figure 4 – MD simulation relationship between ensemble pressure and box density for the 
TIP4P/2005 potential. Note how linear the ensemble pressure vs box density relationship is for 
this potential.  

The water densities of 1 bar pressure were calculated using linear relationships, 

like the one seen in Figure 4, for twelve different temperatures using TIP4P/2005 (Figure 

5). The following expression was used to calculate the maximum density (Taken from 

Abascal and Vega 2005): 
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𝜌 = 𝑎 + 𝑏
𝑇

+ 𝑐
𝑇2

+ 𝑑
𝑇3

+ 𝑒
𝑇4

+ 𝑓
𝑇5

       (33) 

The coefficients of the fit were 𝑎 = 0.3164, 𝑏 = 381.4, 𝑐 = -5.318x104, d = -539.1, 𝑒  = 

0.5211, 𝑓 = 0.2316. The expression gives a reproduced Tmd of 279 K for the TIP4P/2005 

potential, compared to the literature TIP4P/2005 Tmd of 278 K. 

 

Figure 5 – Comparison of the reproduced with the literature TIP4P/2005 density values over a 
suite of temperatures. The Tmd predicted by the reproduced curve differed from the literature Tmd 
by 1 K. 

 The thermal expansion coefficient (expansivity) 𝛼𝑝  is defined as: 

𝛼𝑝 = − 1
𝑉
�𝜕𝑉
𝜕𝑇
�
𝑃

         (34)  

Following the method of Abascal and Vega (2005), the expansivity for the TIP4P/2005 

potential was obtained by analytical differentiation of the polynomial fit used to 

determine the maximum density. Figure 6 shows the results of the expansivity 
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reproduced here as well as the Abascal and Vega (2005) reported values for TIP4P/2005. 

The average deviation of the reproduced values from the literature values was 5%. 

 

Figure 6 – Comparison of the reproduced with the literature TIP4P/2005 expansivity values over 
a suite of temperatures. The average deviation from the literature values was 5%. 

The isothermal compressibility is defined as: 

𝜅𝑇 =  − 1
𝑉
�𝜕𝑉
𝜕𝑝
�
𝑇
         (35) 

The partial derivative of volume with respect to pressure at constant temperature was 

calculated using a 2nd order polynomial. A comparison of the estimated Abascal and 

Vega (2005) compressibility values with the TIP4P/2005 potential values reproduced 

here is provided in Figure 7. The average deviation from the literature values was about 

6%. 
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Figure 7 – Comparison of the reproduced with the literature TIP4P/2005 compressibility values 
over a suite of temperatures. The average deviation from the literature values was about 6%. 

To test the VMM’s simulated maximum density, expansivity and compressibility, 

we used the above methodology. Therefore, we started by calculating pressure vs. density 

relationships for ten different temperatures. However, unlike TIP4P/2005, the VMM 

simulations did not produce a linear relationship between pressure and density for any of 

the tested temperatures. To verify that the simulations were properly equilibrated, we 

decided to calculate the standard deviations of the simulations’ ensemble pressures. We 

did this by re-running several simulations multiple times. The re-run simulations were 

chosen such that we sampled a good spread over box density and temperature. We used 

the re-run ensemble pressures to calculate a standard deviation of the pressure for each of 

the selected re-run simulations. All but one of the ensemble pressures exhibited standard 
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deviations between 1-5%. This suggests that the simulations were sufficiently 

equilibrated. Figure 8 shows one such pressure vs. density relationship while Table 2 

compares the linearity of the pressure vs density relationship for the VMM and 

TIP4P/2005 simulations at various temperatures. Because of the combined failures of all 

the above tests, we greatly suspected the gradients of the model were being improperly 

calculated. We therefore performed a simulation using the NVE ensemble to test this 

hypothesis. 

 

Figure 8 – MD simulation relationship between ensemble pressure and box density for the VMM 
OH potential. Notice how there is no discernable relationship between box density and ensemble 
pressure. 
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Table 2 – Comparison of the linearity for the ensemble pressure-box density relationship between 
the VMM OH and the TIP4P/2005 potentials over a suite of temperatures. Note how the 
relationship for the VMM OH potential is non-linear for all sampled temperatures. 

Energy Conservation 

We performed a simulation using the NVE ensemble to determine if the gradients 

of the VMM OH potential were being improperly calculated. The simulation was 

equilibrated to a temperature of 298 K over 1 ps using the NVT ensemble. Figure 9 

shows the potential energy during the NVE portion of the simulation. The observed 

energy gain confirmed our hypothesis that the gradients of the VMM were being 

improperly calculated. Furthermore, the energy gain, and subsequent temperature 

increase, also explained the gas-phase-like self-diffusion coefficient we measured. We 

reasoned that if there existed any discontinuities in the VMM’s potentials, these would 

cause the observed energy gain. We therefore decided to systematically examine the 

valence monopole and dipole potentials to determine if there existed any discontinuities 

in these potentials. 

Temperature 
(K) 

TIP4P/2005 
R2 

VMM 
R2 

260 0.9967 0.2928 
270 0.9993 0.1423 
280 0.9837 0.1192 
290 0.9984 0.4315 
300 0.9998 0.0182 
310 0.9970 0.3742 
320 0.9973 0.2425 
330 0.9999 0.6279 
340 0.9998 0.2870 
350 0.9998 0.2546 
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Figure 9 – MD simulation box potential energy using the VMM OH potential. The increase in 
energy over time evidences that the gradients of the VMM are being improperly calculated. 

Valence Monopole and Dipole Potentials 

Here we examine the valence monopole (two-body) and valence dipole (three-

body) potentials of the VMM. We did this to determine if any discontinuities existed in 

these potentials, which would account for the lack of energy conservation. We found one 

significant discontinuity in the valence monopole potential for a strong oxygen-hydrogen 

bond. We added a smoothing function to the discontinuity and performed a second 

simulation again using the NVE ensemble. The energy conservation in this second 

simulation improved considerably, however the problem of energy gain remained. 

Therefore, we suspect there may yet exist discontinuities in the transitions between ideal 

states of the VMM. 
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Valence Monopole Potentials 

Here we examine the two-body potentials of the VMM’s OH potential. We first 

present the repulsive, Morse-cut potentials for the hydrogen-hydrogen and oxygen-

oxygen pairs. Next, we examine a strong oxygen-hydrogen bond potential by pulling 

apart a hydroxide ion. Finally, we examine the weak oxygen-hydrogen bond potential by 

pulling apart a water trimer arranged in a tetrahedral configuration.  

Figures 10 and 11 present the Morse-cut potentials for two hydrogen ions and two 

oxygen ions, respectively. The HH Morse-cut potential was particularly suspect because, 

as previously noted, during MD simulation the hydrogen atoms preferentially oriented 

themselves towards each other rather than towards neighboring oxygens. Despite this 

unusual structuring, the Morse-cut potential for neither hydrogen nor oxygen ions show 

any anomalous behavior.  

 

Figure 10 – Morse-cut and soft-core Coulombic potential curves for two H+ ions. The coulombic 
potential is nearly flat because the radius of curvature of the potential curve is very small. Note 
how there is no discontinuity in the potential curve. 
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Figure 11 – Morse-cut and soft-core Coulombic potential curves for two O2- ions. The coulombic 
potential is nearly flat because the radius of curvature of the potential curve is very small. Note 
how there is no discontinuity in the potential curve. 

 Figure 12 shows the valence monopole potential for a strong oxygen-hydrogen 

bond. The potential curve exhibits a significant discontinuity at 3 Å. This sharp cutoff 

was sufficient for the VMM OH potential as an equilibrium energy model, but posed a 

severe problem for a potential designed for use in MD simulation. Therefore, a 

smoothing function was applied to the cutoff, producing a new curve (Figure 13). 
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Figure 12 – Valence monopole and soft-core Coulombic potential curves of a hydroxide ion (OH-
). The coulombic potential is nearly flat because the radius of curvature of the potential curve is 
very small. Note the valence monopole potential curve discontinuity at 3 Å bond length. 

  

Figure 13 – Valence monopole and soft-core Coulombic potential curves of a hydroxide ion (OH-
). Note how the valence monopole potential curve discontinuity has been smoothed. 
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After adding the smoothing function to the strong oxygen-hydrogen bond 

potential, we performed a follow-up simulation using the NVE ensemble to see if the 

gradients would calculate properly. Unfortunately, this follow-up simulation did not 

conserve energy, indicating there may still exist discontinuities in some other portion of 

the VMM OH potential. However, significant changes were observed after smoothing the 

cutoff. Table 3 shows ensemble averaged values, averaged over 11 ps, obtained from the 

initial and follow-up simulations performed using the NVE ensemble. 

 

 

 

Table 3 – Comparison of MD simulation ensemble averages using temperature, pressure, and 
total energy using the VMM OH potential before and after smoothing the valence monopole 
potential curve discontinuity, as observed in Figures 12 and 13. These ensemble averages were 
obtained using the NVE ensemble. Notice the significant improvements in the values of the 
averages after the addition of the smoothing function.  

We last examined the valence monopole potential for a weak oxygen-hydrogen 

bond. Because the structure of water is tetrahedral, we generated a water trimer with two 

neighboring water molecules in a tetrahedral configuration around the central water 

(Figure 14).  

Model State Temperature (K) Pressure (Mpa) Energy (Kcal/mol) 
Pre-Smoothing 221929.9825 3088278.106 34971.12872 
Post-Smoothing 1918.388427 24846.90634 -16637.77909 
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Figure 14 – Water trimer configuration used to generate the 3D potential energy surfaces seen in 
Figures 15 and 16. 

We then obtained a potential energy surface by separately adjusting the bond lengths of 

each weak H-O bond from 0.6 Å to 3.1 Å in increments of 0.1 Å (Figure 15). 

 

Figure 15 – Potential energy surface of two weak oxygen-hydrogen bonds (see Figure 14 for the 
molecular configuration). The weak hydrogen-oxygen bonds were adjusted in increments of 0.1 
Å. Note the problematic energy wells between 1.4 Å – 0.8 Å. 
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The energy well observed around O-H distances from about 0.8 Å to 1.4 Å is the 

result of Eqn. 25 failing to predict the ideal coordination number for the approaching 

hydrogen. It is possible the rounding function of Eqn. 25 was not working properly, 

which allowed non-integer coordination numbers. Ultimately, the model allows the 

approaching hydrogen atom to become “bonded” to both oxygen atoms. Thus, we 

developed Eqns. 28 and 29 to ensure that this “overbonding” problem can no longer 

occur.  

We also decided that we needed to begin simplifying the model to ensure we 

could locate the VMM’s remaining issues. This involved removing the soft-core 

electrostatics and extending the Morse-cut potential to include charged oxygen-hydrogen 

pairs. We replaced the soft-core electrostatics with traditional electrostatics and re-fit the 

short-range bond valence parameters accordingly. After extending the Morse-cut 

potential to include oxygen-hydrogen pairs, we reperformed the tetrahedral potential 

energy scan (as seen in Figure 15) to obtain a new surface (Figure 16). Figure 16 

demonstrates that expanding the Morse-cut to include oxygen-hydrogen pairs 

successfully simplified these previously-complex interactions. 
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Figure 16 – Potential energy surface of two weak oxygen-hydrogen bonds (see Figure 14 for the 
molecular configuration). The weak hydrogen-oxygen bonds were adjusted in increments of 0.1 
Å. Note how the potential is simple and purely repulsive. 

Valence Dipole Potential 

Here we present the three-body valence dipole potential for a water molecule. As 

previously noted, examination of the HOH bond angles during MD simulation revealed a 

wide distribution of bond angles. We therefore decided to examine the HOH valence 

dipole potential for discontinuities (Figure 17). However, we found no discontinuities in 

this potential. We therefore concluded that the valence dipole moment introduced too 

much angular flexibility, which allowed for the wide distribution of HOH bond angles. 

We also suspect that this angular flexibility is responsible for the incorrect water structure 

observed in the RDFs presented above. However, how to adjust the valence dipole 

potential to fix this issue was unclear because it is already a very simple potential: it uses 

a simple harmonic function and has only one ideal value. Ultimately, the angular 
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flexibility issue was resolved by turning off the electrostatic interactions between 

hydrogen ions bound to the same oxygen. 

 

Figure 17 – Valence dipole potential curve for a water molecule. Note how the curve is a simple 
harmonic potential with no discontinuities. 

CONCLUSIONS 
 

Both the success of the equilibrium energy model and the quality of the ab initio 

data used to augment the fitting set of the VMM’s parameters indicate that adapting the 

parameterization of the VMM to a reactive MD potential is highly plausible. We still 

believe it is possible to adapt the VMM to a reactive MD potential, however the tests 

discussed above indicate there are still significant problems with the model itself. For 

example, we suspect transitions between the integer values of 𝑁𝑐𝑜𝑜𝑟𝑑 (Eqn. 25) may be 

creating discontinuities in the valence monopole and dipole potentials of the VMM, 
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which discontinuities cause the gradients to calculate improperly. Ultimately, we 

identified two major causes for the observed issues with the VMM. First, our 

parameterization is new; therefore, no prior work has been done to adapt it to an MD 

force field. Second, our parameterization is rather complex due to the multibody nature of 

the valence monopole and dipole potentials, which can make sourcing the identified 

issues very challenging. Therefore, it is likely that further simplification of the model will 

yet be necessary to uncover and source the remaining issues associated with the model. 

One way to simplify the model may be to use a smaller fitting set for the VMM’s 

parameters. Included in the fitting set (Appendix – Tables 3 and 4) were many highly 

unusual, or even theoretical, molecules. It is likely that accounting for these strange, or 

even non-existent, molecules introduced an elevated level of complexity into the model. 

Therefore, it may be necessary to remove some of these unusual molecules from the 

fitting set and recalibrate the model to a smaller but simpler data set. Once the model has 

been adequately simplified, other outstanding issues such as energy conservation and 

long-range structure should be much easier to both find and resolve. 
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APPENDIX 
 
Theory Core Basis Set Bond Length (Å) Time (minutes) Bond Length Error 
CCSD Full aug-vqz 3.19 2.01 1.14E-01 
CCSD full aug-cvdz 3.06 17.52 1.92E-02 
CCSD full aug-cvtz 1.95 303.31 1.12E+00 
CCSD no full aug-vtz 3.15 3.87 6.94E-02 
CCSD no full aug-vdz 3.10 69.96 1.68E-02 
CCSD no full aug-vdz* 3.20 0.61 1.25E-01 
CCSD no full aug-vtz 3.20 0.50 1.25E-01 
CCSD no full aug-vqz 3.18 3.86 9.88E-02 
CCSD no full aug-cvdz 3.20 0.65 1.24E-01 
CCSD no full aug-cvtz 3.18 6.83 9.88E-02 
CCSD no full aug-vqz 3.18 118.63 9.84E-02 
CCSD no full aug-cvdz 3.19 1.19 1.11E-01 
CCSD no full aug-cvtz 3.18 36.95 9.91E-02 
CCSD Full aug-vdz 3.1933 1.65 1.143E-01 
CCSD Full aug-vtz 3.0595 13.95 1.950E-02 
CCSD Full vdz 3.21 0.62 1.3E-01 
CCSD Full vtz 3.08 3.71 1.1E-03 
CCSD Full vqz 2.96 52.63 1.1E-01 
CCSD full cvdz 3.16 1.36 8.3E-02 
CCSD full cvtz 3.10 29.28 2.3E-02 
CCSD full cvqz 3.09 531.84 1.4E-02 
CCSD no full vdz 3.20 0.32 1.3E-01 
CCSD no full vtz 3.18 1.50 9.9E-02 
CCSD no full vqz 3.18 26.28 9.8E-02 
CCSD no full cvdz 3.19 0.52 1.1E-01 
CCSD no full cvtz 3.18 15.37 9.9E-02 
CCSD no full cvqz 3.18 288.91 1.0E-01 

CCSDT Full vdz 3.21 0.72 1.3E-01 
CCSDT Full vtz 3.08 4.05 4.0E-03 
CCSDT Full vqz 2.96 32.52 1.2E-01 
CCSDT full v5z 3.18 256.79 9.9E-02 
CCSDT full cvdz 3.16 2.36 8.2E-02 
CCSDT full cvtz 3.10 26.17 2.0E-02 
CCSDT full cvqz 3.09 323.78 9.3E-03 
CCSDT full cv5z 3.08 4513.37 1.0E-03 
CCSDT no full vdz 3.20 0.41 1.3E-01 
CCSDT no full vtz 3.18 1.10 9.9E-02 
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CCSDT no full vqz 3.18 15.05 9.8E-02 
CCSDT no full v5z 3.18 68.67 9.9E-02 
CCSDT no full cvdz 3.19 0.55 1.1E-01 
CCSDT no full cvtz 3.18 6.74 9.9E-02 
CCSDT no full cvqz 3.18 69.02 1.0E-01 
CCSDT no full cv5z 3.18 590.02 1.0E-01 

CID Full vdz 3.21 0.37 1.3E-01 
CID Full vtz 3.08 2.05 1.8E-03 
CID Full vqz 2.97 29.94 1.1E-01 
CID full cvdz 3.14 0.65 6.3E-02 
CID full cvtz 3.09 14.82 1.4E-02 
CID full cvqz 3.09 256.83 9.3E-03 
CID no full vdz 3.20 0.28 1.3E-01 
CID no full vtz 3.18 1.20 9.9E-02 
CID no full vqz 3.18 16.66 9.8E-02 
CID no full cvdz 3.19 0.41 1.1E-01 
CID no full cvtz 3.18 12.12 9.9E-02 
CID no full cvqz 3.18 159.17 1.0E-01 

Appendix Table 1 – Test of various ab initio methods using Na2. 

Theory 
R 

(Å) 
De 

(kJ/mol) 
Force Constant 

(k) 
R Error 

(Å) 
% Error 

k 
% Error 

De 
Time 

(s) 
CCSD/cvdz 3.162 157.052 96.366 0.083 6.64% 107.3% 348.9 
CCSD/cvtz 3.103 167.674 105.641 0.024 2.34% 121.3% 3030.2 
CCSD/cvqz 3.093 132.882 104.663 0.014 1.40% 75.4% 34888.9 

CCSD(t)/cvdz 3.161 133.643 95.441 0.082 7.54% 76.4% 561.5 
CCSD(t)/cvtz 3.099 122.563 103.505 0.020 0.28% 61.8% 5173.6 
CCSD(t)/cvqz 3.088 95.434 102.521 0.009 0.68% 26.0% 51746.5 
CCSDT/cvdz 3.161 138.469 95.398 0.082 7.58% 82.8% 458.8 
CCSDT/cvtz 3.099 124.206 103.548 0.020 0.32% 64.0% 4173.9 
CCSDT/cvqz 3.088 95.434 102.521 0.009 0.68% 26.0% 42380.3 
Appendix Table 2 – Ab initio bond scan tests using Na2. 

Molecule R (Å) Bond Valence 
(v.u.) 

De 
(kJ/mol) 

Force Constant 
(K) 

2H2O 1.956 0.016 17.915 99.722 
H2O OH- 1.217 0.287 129.360 1141.312 
H2O OH- 1.215 0.290 126.916 1153.058 
H5O2+ 1.201 0.309 220.728 2153.211 
H5O2+ 1.181 0.337 220.728 2153.211 
OH+ 1.029 0.695 314.540 3286.532 
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H2O- 1.008 0.775 101.424 2637.204 
H2O+ 1.000 0.807 376.399 3933.573 
H3O+ 0.977 0.911 901.325 6592.694 

OH 0.970 0.944 435.042 4721.048 
OH- 0.967 0.959 363.461 4473.736 

2H2O 0.964 0.976 132.699 1141.094 
H2O2 0.963 0.981 432.905 4880.260 
H2O 0.958 1.005 481.197 5118.829 

Appendix Table 3 – Ab initio database for O-H interactions 

Molecule R (Å) Bond Valence 
(v.u.) 

De 
(kJ/mol) 

Force Constant 
(K) 

O2++ 1.048 2.971 705.673 13766.636 
O2+ 1.118 2.503 683.930 10444.992 

HOO+ 1.198 2.055 620.713 7287.767 
O2 1.210 1.998 609.994 7167.061 
O3 1.271 1.717 287.453 3124.834 

F2O2 1.295 1.622 289.272 3144.609 
O2- 1.342 1.441 401.294 3714.691 

Cl2O2 1.392 1.274 267.671 2427.469 
Br2O2 1.388 1.286 287.453 2463.634 

CH3OOCH3 1.445 1.117 331.016 2773.073 
BH2OOBH2 1.450 1.104 276.977 2534.183 

H2O2 1.455 1.089 321.858 2757.314 
HOO- 1.509 0.952 321.971 2188.496 
Li2O2 1.565 0.829 342.261 1801.297 
Na2O2 1.581 0.796 229.110 1553.394 

Appendix Table 4 – Ab initio database for O-O interactions 
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